1
|
Radojkovic DB, Pesic M, Radojkovic M, Vukelic Nikolic M, Jevtovic Stoimenov T, Radenkovic S, Ciric V, Basic D, Radjenovic Petkovic T. Significance of Duodenal Prolactin Receptor Modulation by Calcium and Vitamin D in Sulpiride-Induced Hyperprolactinemia. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:942. [PMID: 38929559 PMCID: PMC11205369 DOI: 10.3390/medicina60060942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/02/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024]
Abstract
Background and Objectives: Hyperprolactinemia, as a potential side-effect of some antipsychotic medications, is associated with decreased bone density and an increased risk of fractures. This study investigates whether calcium and vitamin D supplementation affects prolactin receptor (Prlr) gene expression in the duodenum, vertebrae, and kidneys of female rats with sulpiride-induced hyperprolactinemia. Materials and Methods: Twenty-one-week-old female Wistar rats were assigned to three groups: Group S consisted of ten rats who received sulpiride injections (10 mg/kg) twice daily for 6 weeks; Group D (10 rats) received daily supplementation of 50 mg calcium and 500 IU vitamin D along with sulpiride for the last 3 weeks; and Group C consisting of seven age-matched nulliparous rats serving as a control group. Real-time PCR was used to assess Prlr gene expression in the duodenum, vertebrae, and kidneys. Results: In Group S, Prlr gene expression was notably decreased in the duodenum (p < 0.01) but elevated in the vertebrae and kidneys compared to Group C. Conversely, Group D exhibited significantly increased Prlr expression in the duodenum (p < 0.01) alongside elevated expression in the vertebrae and kidneys. Conclusions: In sulpiride-induced hyperprolactinemia, decreased Prlr gene expression in the duodenum may lead to reduced intestinal calcium absorption. Consequently, prolactin may draw calcium from the skeletal system to maintain calcium balance, facilitated by increased Prlr gene expression in the vertebrae. However, vitamin D supplementation in sulpiride-induced hyperprolactinemia notably enhances Prlr gene expression in the duodenum, potentially ameliorating intestinal calcium absorption and mitigating adverse effects on bone health.
Collapse
Affiliation(s)
- Danijela Branislav Radojkovic
- Medical Faculty, University of Nis, Blvd. Dr Zoran Djindjic 81, 18000 Nis, Serbia; (M.P.); (M.R.); (M.V.N.); (T.J.S.); (S.R.); (V.C.)
- Clinic of Endocrinology, Diabetes and Metabolic Disorders, University Clinical Center Nis, Blvd. Dr Zoran Djindjic 48, 18000 Nis, Serbia
| | - Milica Pesic
- Medical Faculty, University of Nis, Blvd. Dr Zoran Djindjic 81, 18000 Nis, Serbia; (M.P.); (M.R.); (M.V.N.); (T.J.S.); (S.R.); (V.C.)
- Clinic of Endocrinology, Diabetes and Metabolic Disorders, University Clinical Center Nis, Blvd. Dr Zoran Djindjic 48, 18000 Nis, Serbia
| | - Milan Radojkovic
- Medical Faculty, University of Nis, Blvd. Dr Zoran Djindjic 81, 18000 Nis, Serbia; (M.P.); (M.R.); (M.V.N.); (T.J.S.); (S.R.); (V.C.)
- Surgery Clinic, University Clinical Center Nis, Blvd. Dr Zoran Djindjic 48, 18000 Nis, Serbia
| | - Marija Vukelic Nikolic
- Medical Faculty, University of Nis, Blvd. Dr Zoran Djindjic 81, 18000 Nis, Serbia; (M.P.); (M.R.); (M.V.N.); (T.J.S.); (S.R.); (V.C.)
| | - Tatjana Jevtovic Stoimenov
- Medical Faculty, University of Nis, Blvd. Dr Zoran Djindjic 81, 18000 Nis, Serbia; (M.P.); (M.R.); (M.V.N.); (T.J.S.); (S.R.); (V.C.)
| | - Sasa Radenkovic
- Medical Faculty, University of Nis, Blvd. Dr Zoran Djindjic 81, 18000 Nis, Serbia; (M.P.); (M.R.); (M.V.N.); (T.J.S.); (S.R.); (V.C.)
- Clinic of Endocrinology, Diabetes and Metabolic Disorders, University Clinical Center Nis, Blvd. Dr Zoran Djindjic 48, 18000 Nis, Serbia
| | - Vojislav Ciric
- Medical Faculty, University of Nis, Blvd. Dr Zoran Djindjic 81, 18000 Nis, Serbia; (M.P.); (M.R.); (M.V.N.); (T.J.S.); (S.R.); (V.C.)
- Clinic of Endocrinology, Diabetes and Metabolic Disorders, University Clinical Center Nis, Blvd. Dr Zoran Djindjic 48, 18000 Nis, Serbia
| | - Dijana Basic
- Psychiatry Clinic, University Clinical Center Nis, Blvd. Dr Zoran Djindjic 48, 18000 Nis, Serbia;
| | | |
Collapse
|
2
|
John Levy Barnett M. A Scoping Review of the Apparent Phenomenon of the Improvement in Hypoparathyroidism in Pregnant and Postpartum Females. Cureus 2023; 15:e46123. [PMID: 37790033 PMCID: PMC10544865 DOI: 10.7759/cureus.46123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2023] [Indexed: 10/05/2023] Open
Abstract
Hypoparathyroidism requires management with both calcium supplementation and active vitamin D to avert a state of hypocalcemia. During late gestation and the postpartum period (specifically lactation), there is an under-recognized, yet intriguing occurrence of apparent 'pseudohyperparathyroidism', whereby supplementation dosages may need to either be reduced or discontinued, to prevent hypercalcemia. The explanation for this apparent phenomenon of improved parathyroid status ('remission' or 'resolution') is incompletely understood; the purpose of this review is to analyze the case reports of this enigma within the medical (and grey) literature, providing an overall pathophysiological explanation and recommendation for the management of such patients. A literature search was conducted through PubMed/Medline, CINAHL, Cochrane Library Database, Scopus, UpToDate, Google Scholar, and the grey literature without a time-restricted period, analyzing all available articles within the literature describing an apparent improvement in parathyroid status in late-gestation and postpartum (lactating) females. Non-hypoparathyroid case reports were also included to further analyze and synthesize an overall likely pathophysiological explanation. Through the literature search, 24 papers were identified covering such a phenomenon in patients with hypoparathyroidism, alongside multiple additional reports of a similar occurrence in patients without underlying hypoparathyroidism. The pathophysiology is believed to occur due to the placental production of parathyroid hormone-related peptide (PTHrP) during gestation, with further production from the lactating mammary glands during the postpartum period. A typical pattern is observed, with increased PTHrP and suppressed PTH throughout both gestation and lactation (present in both normal and hypoparathyroid subjects). The concept of PTHrP-induced hypercalcemia is further demonstrated in patients without hypoparathyroidism, including subjects with placental hypersecretion and mammary gland enlargement. It is evident that patients with hypoparathyroidism may require a dosage reduction during late gestation and lactation, due to the risk for hypercalcemia. In addition to patients with hypoparathyroidism, this pathophysiological phenomenon occurs in unsuspecting patients, demonstrating the need for all clinicians in contact with pregnant females to be aware of this uncommon - yet perilous - occurrence.
Collapse
|
3
|
Peltz-Sinvani N, Raz HM, Klein P, Ish-Shalom S, Vered I, Tripto-Shkolnik L. Pregnancy- and lactation-induced osteoporosis: a social-media-based survey. BMC Pregnancy Childbirth 2023; 23:311. [PMID: 37131133 PMCID: PMC10152747 DOI: 10.1186/s12884-023-05639-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/24/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Pregnancy- and lactation-induced osteoporosis (PLO) presenting as spinal fractures is rare, and the spectrum of clinical presentation, risk factors and pathophysiology are incompletely understood. The aim of this study was to delineate clinical parameters, risk factors and osteoporosis-related quality of life (QOL) of women with PLO. METHODS Participants of a social-media (WhatsApp) PLO group and mothers of a parents' WhatsApp group (control group) were offered to fill a questionnaire, including an osteoporosis-related QOL section. The groups were compared using the independent Students t test for numerical variables, and the Chi-square test or Fisher's exact test for categorical variables. RESULTS Twenty-seven women with PLO and 43 in the control group (aged 36.2 ± 4.7 and 38.8 ± 4.3 years, respectively, p = 0.04) participated. Among women with PLO, more than 5 vertebrae were involved in 13 (48%), 4 vertebrae in 6 (22%), and 3 or fewer vertebrae in 8 (30%). Among the 24 women with relevant data, 21 (88%) had nontraumatic fractures; 3 (13%) women had fractures during pregnancy, and the remaining during the early postpartum period. Diagnosis was delayed for over 16 weeks for 11 (41%) women; 16 (67%) received teriparatide. Significantly lower proportions of women in the PLO group engaged in physical activity over 2 hours/week, before and during pregnancy (37 vs. 67%, p < 0.015 and 11 vs. 44%, p < 0.003, respectively). A lower proportion of the PLO than the control group reported calcium supplementation during pregnancy (7% vs. 30%, p = 0.03) and a higher proportion reported treatment with low-molecular-weight-heparin during pregnancy (p = 0.03). Eighteen (67%) of the PLO group expressed fear of fractures and 15 (56%) fear of falls, compared to none and 2%, respectively, of the control group (p < 0.00001 for both). CONCLUSIONS Most of the women with PLO who responded to our survey reported spinal fractures involving multiple vertebrae, delayed diagnosis, and treatment with teriparatide. Compared to a control group, they reported less physical activity and impaired QOL. For this uncommon yet severe condition, a multidisciplinary effort should be exerted for early identification and treatment, to alleviate back pain, prevent subsequent fractures and improve QOL.
Collapse
Affiliation(s)
- Naama Peltz-Sinvani
- Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Hadar Milloh Raz
- Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Pinchas Klein
- Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Iris Vered
- Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Liana Tripto-Shkolnik
- Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
4
|
Jiang H, Chanpaisaeng K, Christakos S, Fleet JC. Intestinal Vitamin D Receptor Is Dispensable for Maintaining Adult Bone Mass in Mice With Adequate Calcium Intake. Endocrinology 2023; 164:bqad051. [PMID: 36960562 PMCID: PMC10282920 DOI: 10.1210/endocr/bqad051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/03/2023] [Accepted: 03/22/2023] [Indexed: 03/25/2023]
Abstract
1,25-Dihydroxyvitamin D3 (1,25(OH)2D3)-mediated intestinal calcium (Ca) absorption supplies Ca for proper bone mineralization during growth. We tested whether vitamin D receptor (VDR)-mediated 1,25(OH)2D3 signaling is critical for adult Ca absorption and bone by using mice with inducible Vdr gene knockout in the whole intestine (villin-CreERT2+/- × Vdrf/f, WIK) or in the large intestine (Cdx2-CreERT2+/- ×Vdrf/f, LIK). At 4-month-old, Vdr alleles were recombined (0.05 mg tamoxifen/g BW, intraperitoneally [i.p.], 5 days) and mice were fed diets with either 0.5% (adequate) or 0.2% (low) Ca. Ca absorption was examined after 2 weeks while serum 1,25(OH)2D3, bone mass, and bone microarchitecture were examined after 16 weeks. Intestinal and renal gene expression was measured at both time points (n = 12/genotype/diet/time point). On the 0.5% Ca diet, all phenotypes in WIK and LIK mice were similar to the controls. Control mice adapted to the 0.2% low-Ca diet by increasing renal Cyp27b1 mRNA (3-fold), serum 1,25(OH)2D3 level (1.9-fold), and Ca absorption in the duodenum (Dd, + 131%) and proximal colon (PCo, + 28.9%), which prevented bone loss. In WIK mice, low-Ca diet increased serum 1,25(OH)2D3 (4.4-fold) but Ca absorption remained unaltered in the Dd and PCo. Consequently, significant bone loss occurred in WIK mice (e.g., cortical thickness, Ct.Th, -33.7%). LIK mice adapted to the low-Ca diet in the Dd but not the PCo, and the effect on bone phenotypes was milder (e.g., Ct.Th, -13.1%). Our data suggest intestinal VDR in adult mice prevents bone loss under low Ca intake but is dispensable under adequate calcium intake.
Collapse
Affiliation(s)
- Heng Jiang
- Department of Nutritional Sciences, Dell Pediatric Research Institute, University of Texas, Austin, TX 78723, USA
| | - Krittikan Chanpaisaeng
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, Pathum Thani 12120, Thailand
| | - Sylvia Christakos
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - James C Fleet
- Department of Nutritional Sciences, Dell Pediatric Research Institute, University of Texas, Austin, TX 78723, USA
| |
Collapse
|
5
|
Vitamin D-Mediated Regulation of Intestinal Calcium Absorption. Nutrients 2022; 14:nu14163351. [PMID: 36014856 PMCID: PMC9416674 DOI: 10.3390/nu14163351] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/27/2022] Open
Abstract
Vitamin D is a critical regulator of calcium and bone homeostasis. While vitamin D has multiple effects on bone and calcium metabolism, the regulation of intestinal calcium (Ca) absorption efficiency is a critical function for vitamin D. This is necessary for optimal bone mineralization during growth, the protection of bone in adults, and the prevention of osteoporosis. Intestinal Ca absorption is regulated by 1,25 dihydroxyvitamin D (1,25(OH)2 D), a hormone that activates gene transcription following binding to the intestinal vitamin D receptor (VDR). When dietary Ca intake is low, Ca absorption follows a vitamin-D-regulated, saturable pathway, but when dietary Ca intake is high, Ca absorption is predominately through a paracellular diffusion pathway. Deletion of genes that mediate vitamin D action (i.e., VDR) or production (CYP27B1) eliminates basal Ca absorption and prevents the adaptation of mice to low-Ca diets. Various physiologic or disease states modify vitamin-D-regulated intestinal absorption of Ca (enhanced during late pregnancy, reduced due to menopause and aging).
Collapse
|
6
|
Evans HC, Briggs EF, Burnett RH, Contreras-Correa ZE, Duvic MA, Dysart LM, Gilmore AA, Messman RD, Reid D, Rasit Ugur M, Kaya A, Memili E. Harnessing the value of reproductive hormones in cattle production with considerations to animal welfare and human health. J Anim Sci 2022; 100:6620798. [PMID: 35772763 DOI: 10.1093/jas/skac177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/20/2022] [Indexed: 01/02/2023] Open
Abstract
The human population is ever increasing while the quality and quantity of natural resources used for livestock production decline. This calls for improved product efficiency and the development of improved and sustainable cattle production methods to produce higher quality products to satisfy the demands of both the modern and transient world. The goal of this review was to summarize the interactions, challenges, and opportunities in cattle production relating to their endocrine system, and how reproductive hormones and others impact economically important traits, animal welfare, and human health. A comprehensive literature search was conducted with a focus on analysis of natural hormones and the use of exogenous hormone administration for reproduction, growth, and development of beef and dairy cattle. Hormones regulate homeostasis and enhance important traits in cattle, including fertility, growth and development, health, and the production of both meat and milk products. Reproductive hormones such as testosterone, estradiol, progesterone, and related synthetics like trenbolone acetate and zeranol can be strategically utilized in both beef and dairy cattle production systems to enhance their most valuable traits, but the impact of these substances must account for the welfare of the animal as well as the health of the consumer. This scientific review provides a comprehensive analysis of the bovine endocrine system's impact on food animals and product quality which is vital for students, researchers, livestock producers, and consumers. Although important advances have been made in animal science and related technological fields, major gaps still exist in the knowledge base regarding the influence of hormones on the production and welfare of food animals as well as in the public perception of hormone use in food-producing animals. Filling these gaps through transformative and translational research will enhance both fundamental and applied animal science to feed a growing population.
Collapse
Affiliation(s)
- Holly C Evans
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Elanie F Briggs
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Randy H Burnett
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Zully E Contreras-Correa
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Morgan A Duvic
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Lacey M Dysart
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Alicia A Gilmore
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Riley D Messman
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Dana Reid
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Muhammet Rasit Ugur
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Abdullah Kaya
- Department of Reproduction and Artificial Insemination, Selcuk University, Konya, Turkey.,Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Erdogan Memili
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| |
Collapse
|
7
|
Beggs MR, Bhullar H, Dimke H, Alexander RT. The contribution of regulated colonic calcium absorption to the maintenance of calcium homeostasis. J Steroid Biochem Mol Biol 2022; 220:106098. [PMID: 35339651 DOI: 10.1016/j.jsbmb.2022.106098] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/05/2022] [Accepted: 03/20/2022] [Indexed: 11/20/2022]
Abstract
Calcium absorption and secretion can occur along the length of the small and large intestine. To date, the focus of research into intestinal calcium absorption has been the small intestine, the site contributing the majority of intestinal calcium absorption. However, evidence that the colon contributes as much as 10% of enteral calcium transport has been available for decades. Transcellular calcium absorption and bidirectional paracellular calcium flux contributing to either net absorption or secretion have been observed in the colon, depending on the physiological state. Moreover, the calcium transport pathways contributing to colonic absorption or secretion are regulated by a variety of hormones, including calcitriol, plasma calcium and dietary factors, including prebiotics. Herein we review historical and recent research highlighting the role of colonic calcium transport in overall maintenance of calcium balance, and suggest these data are consistent with the colon being a site of significant regulated transepithelial calcium transport.
Collapse
Affiliation(s)
- Megan R Beggs
- Department of Physiology, University of Alberta, Canada; Women's and Children's Health Institute, Alberta, Canada
| | | | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Demark; Department of Nephrology, Odense University Hospital, Denmark
| | - R Todd Alexander
- Department of Physiology, University of Alberta, Canada; Women's and Children's Health Institute, Alberta, Canada; Department of Paediatrics, University of Alberta, Canada.
| |
Collapse
|
8
|
Identification of Breed Differences in Known and New Fescue Toxicosis Associated Phenotypes in Charolais-and Hereford-Sired Crossbred Beef Cows. Animals (Basel) 2021; 11:ani11102830. [PMID: 34679850 PMCID: PMC8532925 DOI: 10.3390/ani11102830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/29/2022] Open
Abstract
Simple Summary The consumption of toxic fescue has caused significant losses in the U.S. beef industry. Widely accepted symptoms of toxic fescue exposure include the retention of a thick hair coat, tissue necrosis in the extremities, and reduced nutrient absorption. However, there is variability in the severity of these symptoms, both across and within breeds. The objective of this study was to characterize the effect of fescue toxicosis across Hereford- and Charolais-sired cows for known and new fescue stress-associated phenotypes. Results indicated that Hereford cows had a lessened ability to shed their winter coat and regulate body temperature along with lower serum mineral concentrations compared to Charolais cows when exposed to toxic fescue. Differences between and within sire breed in hair shedding were also observed, providing further evidence of genetic variation. This study provides evidence of variability in the fescue toxicosis that is potentially useful for genetic selection to reduce fescue stress and characterizes effects on pregnant cows which may impact calves in utero. Abstract Beef cattle phenotypes are affected by the consumption of toxic fescue. Toxic fescue’s impact is dependent on heat stress and breed composition, with genetic variability for robustness to toxin exposure believed to exist within and across breeds. The study objective was to characterize the effect of fescue toxicosis across breeds for known and novel heat and fescue stress-associated phenotypes. One-hundred crossbred fall-calving Charolais- and Hereford-sired cows of parities 1–3 were allocated to graze either toxic fescue (n = 50), non-toxic fescue (n = 25), or a rotation between toxic and non-toxic fescue (n = 25) for 156 days. Phenotypes impacted by breed (genetics) included hair coat score (p < 0.0001), hair reduction/shedding rate (p < 0.05), rectal temperature (RT) (p < 0.0001), vaginal temperature (p < 0.05), serum phosphorus concentration (p < 0.02) and respiration rate (RR) (p < 0.003). Cows on toxic fescue experienced reduced hair shedding efficacy (p < 0.0001), higher vaginal temperatures (p < 0.0001), increased systolic blood pressure (p < 0.04), increased RR (p < 0.0001) and reduced average daily gain (p < 0.0001), compared to cows grazing non-toxic fescue. Calves born from cows with higher RT during the last third of gestation had higher RT at weaning (p < 0.02), indicating potential physiological effects of in utero heat stress. The study indicates that beef cows exhibit variable responses to toxic fescue within and across breeds which may impact future calf phenotypes.
Collapse
|
9
|
Patra MK, De UK, Kent Y, Rungsung S, Krishnaswamy N, Deka BC. Influence of seasonal variation on post-farrowing dysgalactia syndrome (PFDS) and serum biochemistry profiles in the periparturient sow. Trop Anim Health Prod 2021; 53:346. [PMID: 34091765 DOI: 10.1007/s11250-021-02793-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 05/30/2021] [Indexed: 12/19/2022]
Abstract
The objective of this study was to investigate the effect of seasonal variation on the frequency of post-farrowing dysgalactia syndrome (PFDS), sow body condition score (BCS), piglet survival, and weaning to estrus interval under intensive management systems. In addition, the effects of PFDS on litter characteristics and serum biochemistry, oxidative stress indices, thyroid, and cortisol profile were examined in order to identify potential biomarkers in the pre-farrowing stage. The study was conducted in summer and winter seasons in Nagaland, India, on 50 sows from 30 days before farrowing until weaning at 45 days. Sows were classified retrospectively into PFDS and non-PFDS. Although statistically, no significant difference was noted in the occurrence of PFDS between the seasons, the proportion of PFDS development was substantially higher in winter than summer (37.5 vs. 26.9%). In winter, the incidence of piglet stillbirth and sow weaning to estrus period was significantly higher (p < 0.05) and the mean litter size at weaning was significantly lower (p < 0.01). At weaning, the mean litter weight and average daily weight gain were decreased (p < 0.05) in both summer and winter, and the total number of piglets died in each litter was increased in sows afflicted with PFDS compared with healthy sows. A significant interaction effect of peripartum days and PFDS was observed in the changes of blood glucose, albumin (p < 0.05), and HDL-cholesterol (p = 0.07) concentration. Mean T3 and T4 concentration was influenced by peripartum days in both the season and a consistently lower T3 concentration was detected in PFDS sows before farrowing. It is concluded that PFDS sows exhibited an increased incidence of stillbirth and scouring of neonatal piglets during the winter. A pronounced drop in mean circulating T3 concentration in sows from 30 days before farrowing to 3 days after farrowing reflects endocrine-mediated metabolic dysfunction. Further research is warranted with more number of sows to identify the critical values of serum T3 concentration in the immediate pre-farrowing period for prediction of sows developing PFDS after farrowing.
Collapse
Affiliation(s)
- M K Patra
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar-243122, Bareilly, UP, India. .,ICAR Research Complex for North Eastern Hill Region, Nagaland Centre, Medziphema, Nagaland, 797 106, India.
| | - U K De
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar-243122, Bareilly, UP, India
| | - Y Kent
- ICAR Research Complex for North Eastern Hill Region, Nagaland Centre, Medziphema, Nagaland, 797 106, India.,Department of Animal Husbandry and Veterinary Services, Govt. of Nagaland, Kohima, Nagaland, India
| | - S Rungsung
- ICAR Research Complex for North Eastern Hill Region, Nagaland Centre, Medziphema, Nagaland, 797 106, India.,College of Veterinary Science and Animal Husbandry, Central Agricultural University, Jalukie, Peren, Nagaland, 797 110, India
| | - N Krishnaswamy
- ICAR-Indian Veterinary Research Institute, Hebbal, Bengaluru, 560024, India
| | - B C Deka
- ICAR Research Complex for North Eastern Hill Region, Nagaland Centre, Medziphema, Nagaland, 797 106, India.,Assam Agricultural University, Jorhat, Assam, 785013, India
| |
Collapse
|
10
|
Grinman D, Athonvarungkul D, Wysolmerski J, Jeong J. Calcium Metabolism and Breast Cancer: Echoes of Lactation? ACTA ACUST UNITED AC 2020; 15:63-70. [PMID: 33299957 DOI: 10.1016/j.coemr.2020.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lactation requires a series of adaptations in maternal calcium and bone metabolism to ensure a steady supply of calcium to the lactating mammary gland. The alterations in systemic metabolism are accompanied by alterations in the expression of calcium receptors, channels, binding proteins, pumps and transporters in mammary epithelial cells to increase the uptake of calcium from the extracellular fluid and to transport it into milk. Intracellular calcium regulates signaling pathways that mediate changes in cell proliferation, differentiation and death and many of the molecules involved in supporting and coordinating calcium secretion into milk are re-expressed and redeployed to support malignant behavior in breast cancer cells. In this article, we review adaptations of systemic calcium homeostasis during lactation, as well as the mechanisms of milk calcium transport. We then discuss how reactivation of these pathways contributes to the pathophysiology of breast cancer.
Collapse
Affiliation(s)
- Diego Grinman
- Section of Endocrinology and Metabolism, Department of Medicine, Yale School of Medicine
| | - Diana Athonvarungkul
- Section of Endocrinology and Metabolism, Department of Medicine, Yale School of Medicine
| | - John Wysolmerski
- Section of Endocrinology and Metabolism, Department of Medicine, Yale School of Medicine
| | - Jaekwang Jeong
- Section of Endocrinology and Metabolism, Department of Medicine, Yale School of Medicine
| |
Collapse
|
11
|
Areco VA, Kohan R, Talamoni G, Tolosa de Talamoni NG, Peralta López ME. Intestinal Ca 2+ absorption revisited: A molecular and clinical approach. World J Gastroenterol 2020; 26:3344-3364. [PMID: 32655262 PMCID: PMC7327788 DOI: 10.3748/wjg.v26.i24.3344] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/11/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
Ca2+ has an important role in the maintenance of the skeleton and is involved in the main physiological processes. Its homeostasis is controlled by the intestine, kidney, bone and parathyroid glands. The intestinal Ca2+ absorption occurs mainly via the paracellular and the transcellular pathways. The proteins involved in both ways are regulated by calcitriol and other hormones as well as dietary factors. Fibroblast growth factor 23 (FGF-23) is a strong antagonist of vitamin D action. Part of the intestinal Ca2+ movement seems to be vitamin D independent. Intestinal Ca2+ absorption changes according to different physiological conditions. It is promoted under high Ca2+ demands such as growth, pregnancy, lactation, dietary Ca2+ deficiency and high physical activity. In contrast, the intestinal Ca2+ transport decreases with aging. Oxidative stress inhibits the intestinal Ca2+ absorption whereas the antioxidants counteract the effects of prooxidants leading to the normalization of this physiological process. Several pathologies such as celiac disease, inflammatory bowel diseases, Turner syndrome and others occur with inhibition of intestinal Ca2+ absorption, some hypercalciurias show Ca2+ hyperabsorption, most of these alterations are related to the vitamin D endocrine system. Further research work should be accomplished in order not only to know more molecular details but also to detect possible therapeutic targets to ameliorate or avoid the consequences of altered intestinal Ca2+ absorption.
Collapse
Affiliation(s)
- Vanessa A Areco
- Laboratorio “Dr. Fernando Cañas”, Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba 5000, Argentina
| | - Romina Kohan
- Laboratorio “Dr. Fernando Cañas”, Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba 5000, Argentina
| | - Germán Talamoni
- Laboratorio “Dr. Fernando Cañas”, Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba 5000, Argentina
| | - Nori G Tolosa de Talamoni
- Laboratorio “Dr. Fernando Cañas”, Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba 5000, Argentina
| | - María E Peralta López
- Laboratorio “Dr. Fernando Cañas”, Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba 5000, Argentina
| |
Collapse
|
12
|
Saki F, Sadeghian F, Kasaee SR, Koohpeyma F, Ranjbar Omrani GH. Effect of prolactin and estrogen on the serum level of 1,25-dihydroxy vitamin D and FGF23 in female rats. Arch Gynecol Obstet 2020; 302:265-271. [PMID: 32409924 DOI: 10.1007/s00404-020-05567-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 04/25/2020] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Estrogen and prolactin affect vitamin D metabolism. In conditions such as pregnancy and lactation, their interaction in regulating vitamin D metabolism and circulating FGF23 is not clearly defined. The aim of this study is to investigate this interaction in female rats. METHOD This study was performed on 50 female adult rats, which were divided into five groups of Sham, ovariectomized rats (O), and three groups of ovariectomized rats were indicated with prolactin alone (OP), estradiol alone (OE), and a combination of estradiol and prolactin (OEP). Serum levels of 25(OH)D, 1,25(OH)2D3, FGF23, PTH, vitamin D-binding protein, calcium, and phosphorous were evaluated. RESULTS Serum 1,25(OH)2D3 and PTH in OE were higher than the O group (P < 0.001 and P = 0.003, respectively). Serum FGF23 in the OE group was lower than the O group (P = 0.016). Serum 1,25(OH)2D3 increased in OP compared to the O group (P < 0.001) and OE group (P < 0.001). Serum FGF23 in OP was lower than the O group (P = 0.04). Furthermore, combining estradiol and prolactin showed no extra effect on increasing serum 1,25(OH)2D3. Serum 1,25(OH)2D3 was positively correlated with serum prolactin levels (r = 0.318, P = 0.017) in all five groups. CONCLUSION It is suggested that estradiol could increase 1,25(OH)2D3 by elevating PTH and decreasing serum FGF23; however, prolactin was able to increase 1,25(OH)2D3 by lowering serum FGF23. Moreover, prolactin was shown to be more potent in augmenting serum 1,25(OH)2D3 than estrogen itself, which is important in maternal and fetal calcium supply during late pregnancy and lactation.
Collapse
Affiliation(s)
- Forough Saki
- Shiraz Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, P.O. Box, 71345-1744, Shiraz, Iran
| | - Faezeh Sadeghian
- Shiraz Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, P.O. Box, 71345-1744, Shiraz, Iran
| | - Seyed Reza Kasaee
- Shiraz Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, P.O. Box, 71345-1744, Shiraz, Iran
| | - Farhad Koohpeyma
- Shiraz Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, P.O. Box, 71345-1744, Shiraz, Iran
| | - Gholam Hossein Ranjbar Omrani
- Shiraz Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, P.O. Box, 71345-1744, Shiraz, Iran.
| |
Collapse
|
13
|
Christakos S, Li S, De La Cruz J, Shroyer NF, Criss ZK, Verzi MP, Fleet JC. Vitamin D and the intestine: Review and update. J Steroid Biochem Mol Biol 2020; 196:105501. [PMID: 31655181 PMCID: PMC6954280 DOI: 10.1016/j.jsbmb.2019.105501] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/04/2019] [Accepted: 10/14/2019] [Indexed: 12/11/2022]
Abstract
The central role of vitamin D in calcium homeostasis is to increase calcium absorption from the intestine. This article describes the early work that served as the foundation for the initial model of vitamin D mediated calcium absorption. In addition, other research related to the role of vitamin D in the intestine, including those which have challenged the traditional model and the crucial role of specific calcium transport proteins, are reviewed. More recent work identifying novel targets of 1,25(OH)2D3 action in the intestine and highlighting the importance of 1,25(OH)2D3 action across the proximal/distal and crypt/villus axes in the intestine is summarized.
Collapse
Affiliation(s)
- Sylvia Christakos
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ 07103, USA.
| | - Shanshan Li
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ 07103, USA
| | - Jessica De La Cruz
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ 07103, USA
| | - Noah F Shroyer
- Integrative Molecular and Biomedical Sciences Graduate Program, Division of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zachary K Criss
- Integrative Molecular and Biomedical Sciences Graduate Program, Division of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael P Verzi
- Department of Genetics, Rutgers University, New Brunswick, NJ 08854, USA
| | - James C Fleet
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
14
|
Zhao D, Han X, Huang L, Wang J, Zhang X, Jeon JH, Zhao Q, Dong JT. Transcription factor ZFHX3 regulates calcium influx in mammary epithelial cells in part via the TRPV6 calcium channel. Biochem Biophys Res Commun 2019; 519:366-371. [PMID: 31519324 DOI: 10.1016/j.bbrc.2019.08.148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022]
Abstract
Zinc finger homeobox 3 (ZFHX3) is a transcription factor that regulates multiple cellular processes including cell proliferation, differentiation and neoplastic development. It is also involved in the function of steroid hormones estrogen and progesterone and the peptide hormone prolactin in mammary epithelial cells. In this study, we investigated whether and how ZFHX3 regulates intracellular calcium homeostasis in mammary epithelial cells. We found that ZFHX3 affected both store operated calcium entry and store independent calcium entry (SOCE and SICE). Simultaneously, the expression of the calcium channel TRPV6 was regulated by ZFHX3, as demonstrated by expression analysis and luciferase reporter assay. In cells with knockdown of ZFHX3, calcium entry was partially rescued by the overexpression of wild type but not the pore mutants of TRPV6. In addition, overexpression of TRPV6 promoted differentiation of the MCF10A mammary epithelial cells in three-dimensional culture, which is consistent with our previous findings that ZFHX3 is essential for mammary gland differentiation. These findings suggest that ZFHX3 plays an important role in intracellular calcium homeostasis in mammary epithelial cells, at least in part, by regulating TRPV6.
Collapse
Affiliation(s)
- Dan Zhao
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xueying Han
- Department of Zoology and Developmental Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Lili Huang
- Department of Zoology and Developmental Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jianpeng Wang
- Department of Zoology and Developmental Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xi Zhang
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ju-Hong Jeon
- Department of Physiology, Seoul National University College of Medicine, Seoul, 110-799, South Korea
| | - Qiang Zhao
- Department of Zoology and Developmental Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Jin-Tang Dong
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China; Department of Hematology and Medical Oncology, School of Medicine, Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| |
Collapse
|
15
|
Beggs MR, Lee JJ, Busch K, Raza A, Dimke H, Weissgerber P, Engel J, Flockerzi V, Alexander RT. TRPV6 and Ca v1.3 Mediate Distal Small Intestine Calcium Absorption Before Weaning. Cell Mol Gastroenterol Hepatol 2019; 8:625-642. [PMID: 31398491 PMCID: PMC6889763 DOI: 10.1016/j.jcmgh.2019.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Intestinal Ca2+ absorption early in life is vital to achieving optimal bone mineralization. The molecular details of intestinal Ca2+ absorption have been defined in adults after peak bone mass is obtained, but they are largely unexplored during development. We sought to delineate the molecular details of transcellular Ca2+ absorption during this critical period. METHODS Expression of small intestinal and renal calcium transport genes was assessed by using quantitative polymerase chain reaction. Net calcium flux across small intestinal segments was measured in Ussing chambers, including after pharmacologic inhibition or genetic manipulation of TRPV6 or Cav1.3 calcium channels. Femurs were analyzed by using micro-computed tomography and histology. RESULTS Net TRPV6-mediated Ca2+ flux across the duodenum was absent in pre-weaned (P14) mice but present after weaning. In contrast, we found significant transcellular Ca2+ absorption in the jejunum at 2 weeks but not 2 months of age. Net jejunal Ca2+ absorption observed at P14 was not present in either Trpv6 mutant (D541A) mice or Cav1.3 knockout mice. We observed significant nifedipine-sensitive transcellular absorption across the ileum at P14 but not 2 months. Cav1.3 knockout pups exhibited delayed bone mineral accrual, compensatory nifedipine-insensitive Ca2+ absorption in the ileum, and increased expression of renal Ca2+ reabsorption mediators at P14. Moreover, weaning pups at 2 weeks reduced jejunal and ileal Cav1.3 expression. CONCLUSIONS We have detailed novel pathways contributing to transcellular Ca2+ transport across the distal small intestine of mice during development, highlighting the complexity of the multiple mechanisms involved in achieving a positive Ca2+ balance early in life.
Collapse
Affiliation(s)
- Megan R. Beggs
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada,The Women’s & Children’s Health Research Institute, Edmonton, Alberta, Canada
| | - Justin J. Lee
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada,The Women’s & Children’s Health Research Institute, Edmonton, Alberta, Canada
| | - Kai Busch
- Experimentelle und Klinische Pharmakologie und Toxikologie, Saarland University, Homburg, Germany
| | - Ahsan Raza
- Experimentelle und Klinische Pharmakologie und Toxikologie, Saarland University, Homburg, Germany
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Petra Weissgerber
- Experimentelle und Klinische Pharmakologie und Toxikologie, Saarland University, Homburg, Germany
| | - Jutta Engel
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, School of Medicine, Homburg, Germany
| | - Veit Flockerzi
- Experimentelle und Klinische Pharmakologie und Toxikologie, Saarland University, Homburg, Germany
| | - R. Todd Alexander
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada,The Women’s & Children’s Health Research Institute, Edmonton, Alberta, Canada,Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada,Correspondence Address correspondence to: R. Todd Alexander, MD, PhD, Department of Pediatrics, 4-585 Edmonton Clinic Health Academy, 11405 – 87 Avenue, University of Alberta, Edmonton, Alberta T6G 2R7, Canada. fax: (780) 248-5556.
| |
Collapse
|
16
|
Review: Endocrine pathways to regulate calcium homeostasis around parturition and the prevention of hypocalcemia in periparturient dairy cows. Animal 2019; 14:330-338. [PMID: 31337460 DOI: 10.1017/s1751731119001605] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Calcium homeostasis is crucial for the normal function of the organism. Parathyroid hormone, calcitriol and calcitonin play critical roles in the homeostatic regulation of calcium. Serotonin and prolactin have also been shown to be involved in the regulation of calcium homeostasis. In modern dairy cows, the endocrine pathways controlling calcium homeostasis during non-lactating and non-pregnant physiological states are unable to fully support the increased demand of calcium required for milk synthesis at the onset of lactation. This review describes different endocrine systems associated with the regulation of calcium homeostasis in mammalian species around parturition with special focus on dairy cows. Additionally, classic and novel strategies to reduce the incidence of hypocalcemia in parturient dairy cows are discussed.
Collapse
|
17
|
Saki F, Sadeghian F, Kasaee SR, Talezadeh P, Ranjbar Omrani GH. The effect of prolactin itself and in combination with estrogen on bone mineral density in female rats. Gynecol Endocrinol 2019; 35:539-543. [PMID: 30599794 DOI: 10.1080/09513590.2018.1548592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Estrogen deficiency induced by hyperprolactinemia can reduce bone mineral density. Hyperprolactinemia through other mechanisms other than estrogen deficiency, with direct effect on the bone might cause bone loss in women. The present study evaluated the effect of prolactin itself and in combination with estrogen on bone mineral density of female rats. This study was performed on 50 adult female rats divided into five groups; included (a) Sham, (b) Ovariectomized rats; and (c-e) included ovariectomized rats were given prolactin alone, prolactin + estradiol and estradiol, respectively. Bone mineral density (BMD) and vitamin D metabolism parameters were checked in all groups before and after the study. There was no significant difference in baseline values of these parameters. Estradiol could increase 1,25(OH)2D3 and PTH levels and decrease serum ALP level. In addition, Prolactin could increase serum 1,25(OH)2D3 and ALP levels and decrease tibia BMD significantly without any change in PTH level. Combination of estradiol and prolactin could increase serum 1,25(OH)2D3 and PTH and tibia BMD compared with OVX group. Combination of estradiol and prolactin could significantly increase tibia BMD, in ovariectomized rats. We hypothesized that this combination could improve bone loss secondary to hyperprolactinemia by elevated PTH.
Collapse
Affiliation(s)
- Forough Saki
- a Shiraz Endocrinology and Metabolism Research Center , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Faezeh Sadeghian
- a Shiraz Endocrinology and Metabolism Research Center , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Seyed Reza Kasaee
- a Shiraz Endocrinology and Metabolism Research Center , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Pedram Talezadeh
- a Shiraz Endocrinology and Metabolism Research Center , Shiraz University of Medical Sciences , Shiraz , Iran
| | | |
Collapse
|
18
|
Abstract
Vitamin D is a principal factor required for mineral and skeletal homeostasis. Vitamin D deficiency during development causes rickets and in adults can result in osteomalacia and increased risk of fracture. 1,25-Dihydroxyvitamin D3 (1,25(OH)2D3), the hormonally active form of vitamin D, is responsible for the biological actions of vitamin D which are mediated by the vitamin D receptor (VDR). Mutations in the VDR result in early-onset rickets and low calcium and phosphate, indicating the essential role of 1,25(OH)2D3/VDR signaling in the regulation of mineral homeostasis and skeletal health. This chapter summarizes our current understanding of the production of the vitamin D endocrine hormone, 1,25(OH)2D3, and the actions of 1,25(OH)2D3 which result in the maintenance of skeletal homeostasis. The primary role of 1,25(OH)2D3 is to increase calcium absorption from the intestine and thus to increase the availability of calcium for bone mineralization. Specific actions of 1,25(OH)2D3 on the intestine, kidney, and bone needed to maintain calcium homeostasis are summarized, and the impact of vitamin D status on bone health is discussed.
Collapse
Affiliation(s)
- Sylvia Christakos
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA.
| | - Shanshan Li
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Jessica DeLa Cruz
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Lieve Verlinden
- Clinical and Experimental Medicine and Endocrinology, KU Leuven, Leuven, Belgium
| | - Geert Carmeliet
- Clinical and Experimental Medicine and Endocrinology, KU Leuven, Leuven, Belgium
| |
Collapse
|
19
|
Carmeliet G, Bouillon R. How Important Is Vitamin D for Calcium Homeostasis During Pregnancy and Lactation? J Bone Miner Res 2018; 33:13-15. [PMID: 29165840 DOI: 10.1002/jbmr.3344] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/18/2017] [Accepted: 11/20/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Geert Carmeliet
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Ageing, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | - Roger Bouillon
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Ageing, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| |
Collapse
|
20
|
Abstract
The central role of hormonal 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] is to regulate calcium and phosphorus homeostasis via actions in intestine, kidney, and bone. These and other actions in many cell types not involved in mineral metabolism are mediated by the vitamin D receptor. Recent studies using genome-wide scale techniques have extended fundamental ideas regarding vitamin D-mediated control of gene expression while simultaneously revealing a series of new concepts. This article summarizes the current view of the biological actions of the vitamin D hormone and focuses on new concepts that drive the understanding of the mechanisms through which vitamin D operates.
Collapse
Affiliation(s)
- J Wesley Pike
- Department of Biochemistry, University of Wisconsin-Madison, Biochem Addition, Room 543D, 433 Babcock Drive, Madison, WI 53706, USA.
| | - Sylvia Christakos
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| |
Collapse
|
21
|
Dhawan P, Veldurthy V, Yehia G, Hsaio C, Porta A, Kim KI, Patel N, Lieben L, Verlinden L, Carmeliet G, Christakos S. Transgenic Expression of the Vitamin D Receptor Restricted to the Ileum, Cecum, and Colon of Vitamin D Receptor Knockout Mice Rescues Vitamin D Receptor-Dependent Rickets. Endocrinology 2017; 158:3792-3804. [PMID: 28938396 PMCID: PMC5695835 DOI: 10.1210/en.2017-00258] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 09/06/2017] [Indexed: 01/01/2023]
Abstract
Although the intestine plays the major role in 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] action on calcium homeostasis, the mechanisms involved remain incompletely understood. The established model of 1,25(OH)2D3-regulated intestinal calcium absorption postulates a critical role for the duodenum. However, the distal intestine is where 70% to 80% of ingested calcium is absorbed. To test directly the role of 1,25(OH)2D3 and the vitamin D receptor (VDR) in the distal intestine, three independent knockout (KO)/transgenic (TG) lines expressing VDR exclusively in the ileum, cecum, and colon were generated by breeding VDR KO mice with TG mice expressing human VDR (hVDR) under the control of the 9.5-kb caudal type homeobox 2 promoter. Mice from one TG line (KO/TG3) showed low VDR expression in the distal intestine (<50% of the levels observed in KO/TG1, KO/TG2, and wild-type mice). In the KO/TG mice, hVDR was not expressed in the duodenum, jejunum, kidney, or other tissues. Growth arrest, elevated parathyroid hormone level, and hypocalcemia of the VDR KO mice were prevented in mice from KO/TG lines 1 and 2. Microcomputed tomography analysis revealed that the expression of hVDR in the distal intestine of KO/TG1 and KO/TG2 mice rescued the bone defects associated with systemic VDR deficiency, including growth plate abnormalities and altered trabecular and cortical parameters. KO/TG3 mice showed rickets, but less severely than VDR KO mice. These findings show that expression of VDR exclusively in the distal intestine can prevent abnormalities in calcium homeostasis and bone mineralization associated with systemic VDR deficiency.
Collapse
Affiliation(s)
- Puneet Dhawan
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103
| | - Vaishali Veldurthy
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103
| | - Ghassan Yehia
- The Genome Editing Core Facility, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103
| | - Connie Hsaio
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103
| | - Angela Porta
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103
| | - Ki-in Kim
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103
| | - Nishant Patel
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103
| | - Liesbet Lieben
- Clinical and Experimental Medicine and Endocrinology, KU Leuven, Leuven B-3000, Belgium
| | - Lieve Verlinden
- Clinical and Experimental Medicine and Endocrinology, KU Leuven, Leuven B-3000, Belgium
| | - Geert Carmeliet
- Clinical and Experimental Medicine and Endocrinology, KU Leuven, Leuven B-3000, Belgium
| | - Sylvia Christakos
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103
| |
Collapse
|
22
|
Hollis BW, Wagner CL. Vitamin D supplementation during pregnancy: Improvements in birth outcomes and complications through direct genomic alteration. Mol Cell Endocrinol 2017; 453:113-130. [PMID: 28188842 DOI: 10.1016/j.mce.2017.01.039] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 12/16/2022]
Abstract
Pregnancy represents a time of rapid change, including dramatic shifts in vitamin D metabolism. Circulating concentrations of the active form of vitamin D-1,25(OH)2D skyrocket early in pregnancy to levels that would be toxic to a nonpregnant adult, signaling a decoupling of vitamin D from the classic endocrine calcium metabolic pathway, likely serving an immunomodulatory function in the mother and her developing fetus. In this review, we summarize the unique aspects of vitamin D metabolism and the data surrounding vitamin D requirements during this important period. Both observational and clinical trials are reviewed in the context of vitamin D's health effects during pregnancy that include preeclampsia, preterm birth, and later disease states such as asthma and multiple sclerosis. With enhanced knowledge about vitamin D's role as a preprohormone, it is clear that recommendations about supplementation must mirror what is clinically relevant and evidence-based. Future research that focuses on the critical period(s) leading up to conception and during pregnancy to correct deficiency or maintain optimal vitamin D status remains to be studied. In addition, what effects vitamin D has on genetic signatures that minimize the risk to the mother and her developing fetus have not been elucidated. Clearly, while there is much more research that needs to be performed, our understanding of vitamin D requirements during pregnancy has advanced significantly during the last few decades.
Collapse
Affiliation(s)
- Bruce W Hollis
- Medical University of South Carolina, Division of Neonatology, Department of Pediatrics, 173 Ashley Avenue, MSC 514, Charleston, SC 29425, United States.
| | - Carol L Wagner
- Medical University of South Carolina, Division of Neonatology, Department of Pediatrics, 173 Ashley Avenue, MSC 514, Charleston, SC 29425, United States
| |
Collapse
|
23
|
Constantin T, Tangpricha V, Shah R, Oyesiku NM, Ioachimescu OC, Ritchie J, Ioachimescu AG. Calcium and Bone Turnover Markers in Acromegaly: A Prospective, Controlled Study. J Clin Endocrinol Metab 2017; 102:2416-2424. [PMID: 28407138 DOI: 10.1210/jc.2016-3693] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 04/06/2017] [Indexed: 11/19/2022]
Abstract
CONTEXT Acromegaly has been associated with calcium-phosphate and bone turnover alterations. Controlled studies of these interactions are sparse. OBJECTIVE To evaluate calcium and bone metabolism in active and treated acromegaly. DESIGN/SETTING/PATIENTS We conducted a controlled, prospective study at a tertiary referral center. We studied 22 patients with acromegaly referred for surgical or medical therapy (ACM) and 22 with nonfunctioning pituitary adenomas referred for surgery (control). MAIN OUTCOME MEASURES Calcium (serum and urine), phosphorus, parathyroid hormone (PTH), 25-hydroxy- and 1,25-dihydroxy-vitamin D, bone turnover markers [serum C-terminal telopeptide of type 1 collagen (CTX) and procollagen type 1 N-terminal propeptide (P1NP)], and cytokines [receptor activator of nuclear factor κB ligand (RANK-L) and osteoprotegerin (OPG)] at baseline and 3 to 6 months after treatment. RESULTS At baseline, the ACM group had lower PTH levels than controls (36.3 ± 13.9 pg/mL vs 56.0 ± 19.9 pg/mL) and higher phosphorus (4.34 ± 0.71 mg/dL vs 3.55 ± 0.50 mg/dL) (P < 0.01). Groups had similar levels of serum and urine calcium and 25-hydroxy- and 1,25-dihydroxy-vitamin D. The ACM group had higher bone turnover markers than control; P1NP and CTX were strongly correlated (r2 = 0.82, P < 0.05). CTX was dependent on age and disease group but not on sex or gonadal status. After treatment of acromegaly, serum calcium (9.52 ± 0.43 mg/dL to 9.26 ± 0.28 mg/dL), phosphorus (4.34 ± 0.71 mg/dL to 3.90 ± 0.80 mg/dL), and CTX (0.91 ± 0.75 ng/mL to 0.63 ± 0.68 ng/mL) decreased, while PTH increased (36.3 ± 13.9 pg/mL to 48.9 ± 16.7 pg/mL) (P < 0.01). 25-hydroxy-vitamin D, P1NP, and RANK-L/OPG ratio did not change significantly. CONCLUSION Acromegaly patients exhibited PTH-independent calcium-phosphate alterations and enhanced coupled bone formation and resorption. Within 6 months of treatment, bone resorption decreased, whereas RANK-L/OPG changes were inconsistent.
Collapse
Affiliation(s)
- Tina Constantin
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30307
| | - Vin Tangpricha
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30307
- Atlanta VA Medical Center, Decatur, Georgia 30033
| | - Reshma Shah
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30307
| | - Nelson M Oyesiku
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia 30307
| | - Octavian C Ioachimescu
- Atlanta VA Medical Center, Decatur, Georgia 30033
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30307
| | - James Ritchie
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30307
| | - Adriana G Ioachimescu
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30307
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia 30307
| |
Collapse
|
24
|
Starke S, Reimers J, Muscher-Banse AS, Schröder B, Breves G, Wilkens MR. Gastrointestinal transport of calcium and phosphate in lactating goats. Livest Sci 2016. [DOI: 10.1016/j.livsci.2016.04.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Kovacs CS. Maternal Mineral and Bone Metabolism During Pregnancy, Lactation, and Post-Weaning Recovery. Physiol Rev 2016; 96:449-547. [PMID: 26887676 DOI: 10.1152/physrev.00027.2015] [Citation(s) in RCA: 251] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
During pregnancy and lactation, female physiology adapts to meet the added nutritional demands of fetuses and neonates. An average full-term fetus contains ∼30 g calcium, 20 g phosphorus, and 0.8 g magnesium. About 80% of mineral is accreted during the third trimester; calcium transfers at 300-350 mg/day during the final 6 wk. The neonate requires 200 mg calcium daily from milk during the first 6 mo, and 120 mg calcium from milk during the second 6 mo (additional calcium comes from solid foods). Calcium transfers can be more than double and triple these values, respectively, in women who nurse twins and triplets. About 25% of dietary calcium is normally absorbed in healthy adults. Average maternal calcium intakes in American and Canadian women are insufficient to meet the fetal and neonatal calcium requirements if normal efficiency of intestinal calcium absorption is relied upon. However, several adaptations are invoked to meet the fetal and neonatal demands for mineral without requiring increased intakes by the mother. During pregnancy the efficiency of intestinal calcium absorption doubles, whereas during lactation the maternal skeleton is resorbed to provide calcium for milk. This review addresses our current knowledge regarding maternal adaptations in mineral and skeletal homeostasis that occur during pregnancy, lactation, and post-weaning recovery. Also considered are the impacts that these adaptations have on biochemical and hormonal parameters of mineral homeostasis, the consequences for long-term skeletal health, and the presentation and management of disorders of mineral and bone metabolism.
Collapse
Affiliation(s)
- Christopher S Kovacs
- Faculty of Medicine-Endocrinology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| |
Collapse
|
26
|
Macica CM, King HE, Wang M, McEachon CL, Skinner CW, Tommasini SM. Novel anatomic adaptation of cortical bone to meet increased mineral demands of reproduction. Bone 2016; 85:59-69. [PMID: 26825813 PMCID: PMC7429445 DOI: 10.1016/j.bone.2015.12.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 12/14/2015] [Accepted: 12/18/2015] [Indexed: 12/27/2022]
Abstract
The goal of this study was to investigate the effects of reproductive adaptations to mineral homeostasis on the skeleton in a mouse model of compromised mineral homeostasis compared to adaptations in control, unaffected mice. During pregnancy, maternal adaptations to high mineral demand include more than doubling intestinal calcium absorption by increasing calcitriol production. However, calcitriol biosynthesis is impaired in HYP mice, a murine model of X-linked hypophosphatemia (XLH). In addition, there is a paucity of mineralized trabecular bone, a primary target of bone resorption during pregnancy and lactation. Because the highest density of mineral is in mature cortical bone, we hypothesized that mineral demand is met by utilizing intracortical mineral reserves. Indeed, analysis of HYP mice revealed dramatic increases in intracortical porosity characterized by elevated serum PTH and type-I collagen matrix-degrading enzyme MMP-13. We discovered an increase in carbonate ion substitution in the bone mineral matrix during pregnancy and lactation of HYP mice, suggesting an alternative mechanism of bone remodeling that maintains maternal bone mass during periods of high mineral demand. This phenomenon is not restricted to XLH, as increased carbonate in the mineral matrix also occurred in wild-type mice during lactation. Taken together, these data suggest that increased intracortical perilacunar mineral turnover also contributes to maintaining phosphate levels during periods of high mineral demand. Understanding the mechanisms of skeletal contribution to mineral homeostasis is important to improving the treatment and prevention of fracture risk and bone fragility for female patients with XLH, but also provides important insight into the role and unique adaptations of the maternal skeleton to the demands of fetal development and the needs of postnatal nutrition.
Collapse
Affiliation(s)
- Carolyn M Macica
- Department of Medical Sciences, Frank H. Netter, M.D., School of Medicine at Quinnipiac University, North Haven, CT 06518, United States.
| | - Helen E King
- Department of Geology and Geophysics, Yale University, New Haven, CT 06520, United States; Department of Earth Sciences, Utrecht University, Utrecht, The Netherlands.
| | - Meina Wang
- Department of Orthopaedics and Rehabilitation, Yale University, New Haven, CT 06520, United States.
| | - Courtney L McEachon
- Department of Orthopaedics and Rehabilitation, Yale University, New Haven, CT 06520, United States.
| | - Catherine W Skinner
- Department of Geology and Geophysics, Yale University, New Haven, CT 06520, United States.
| | - Steven M Tommasini
- Department of Orthopaedics and Rehabilitation, Yale University, New Haven, CT 06520, United States.
| |
Collapse
|
27
|
Mady LJ, Ajibade DV, Hsaio C, Teichert A, Fong C, Wang Y, Christakos S, Bikle DD. The Transient Role for Calcium and Vitamin D during the Developmental Hair Follicle Cycle. J Invest Dermatol 2016; 136:1337-1345. [PMID: 26994969 DOI: 10.1016/j.jid.2016.02.813] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/02/2016] [Accepted: 02/15/2016] [Indexed: 12/14/2022]
Abstract
The role for 1,25-dihydroxyvitamin D3 and/or calcium in hair follicle cycling is not clear despite their impact on keratinocyte differentiation. We found that calbindin-D9k null (knockout) pups generated from calbindin-D9k knockout females fed a vitamin D-deficient, low-calcium (0.47%) diet develop transient alopecia. The pups appear phenotypically normal until 13 days of age, after which the hair progressively sheds in a caudocephalic direction, resulting in truncal alopecia totalis by 20-23 days, with spontaneous recovery by 28 days. Histological studies showed markedly dystrophic hair follicles, loss of hair shafts with increased apoptosis, and hyperplastic epidermis during this time. Ha1 expression is lost during catagen in all mice but recovers more slowly in the knockout pups on the vitamin D-deficient, low-calcium diet. Keratin 1 expression is reduced throughout days 19-28. The expressions of involucrin, loricrin, and cathepsin L is initially increased by day 19 but subsequently falls below those of controls by day 23, as does that of desmoglein 3. Feeding the mothers a high-vitamin D/high-calcium (2%)/lactose (20%) diet lessens the phenotype, and knockout pups fostered to mothers fed a normal diet do not develop alopecia. Our results show that in calbindin-D9k knockout pups, a maternal vitamin D-deficient/low-calcium diet leads to transient noncicatricial alopecia.
Collapse
Affiliation(s)
- Leila J Mady
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University-New Jersey Medical School, Newark, New Jersey, USA
| | - Dare V Ajibade
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University-New Jersey Medical School, Newark, New Jersey, USA
| | - Connie Hsaio
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University-New Jersey Medical School, Newark, New Jersey, USA
| | - Arnaud Teichert
- Department of Medicine and Dermatology, Endocrine Unit, Veterans Affairs Medical Center, University of California, San Francisco, California, USA
| | - Chak Fong
- Department of Medicine and Dermatology, Endocrine Unit, Veterans Affairs Medical Center, University of California, San Francisco, California, USA
| | - Yongmei Wang
- Department of Medicine and Dermatology, Endocrine Unit, Veterans Affairs Medical Center, University of California, San Francisco, California, USA
| | - Sylvia Christakos
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University-New Jersey Medical School, Newark, New Jersey, USA
| | - Daniel D Bikle
- Department of Medicine and Dermatology, Endocrine Unit, Veterans Affairs Medical Center, University of California, San Francisco, California, USA.
| |
Collapse
|
28
|
Christakos S, Dhawan P, Verstuyf A, Verlinden L, Carmeliet G. Vitamin D: Metabolism, Molecular Mechanism of Action, and Pleiotropic Effects. Physiol Rev 2016; 96:365-408. [PMID: 26681795 PMCID: PMC4839493 DOI: 10.1152/physrev.00014.2015] [Citation(s) in RCA: 1087] [Impact Index Per Article: 135.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
1,25-Dihydroxvitamin D3 [1,25(OH)2D3] is the hormonally active form of vitamin D. The genomic mechanism of 1,25(OH)2D3 action involves the direct binding of the 1,25(OH)2D3 activated vitamin D receptor/retinoic X receptor (VDR/RXR) heterodimeric complex to specific DNA sequences. Numerous VDR co-regulatory proteins have been identified, and genome-wide studies have shown that the actions of 1,25(OH)2D3 involve regulation of gene activity at a range of locations many kilobases from the transcription start site. The structure of the liganded VDR/RXR complex was recently characterized using cryoelectron microscopy, X-ray scattering, and hydrogen deuterium exchange. These recent technological advances will result in a more complete understanding of VDR coactivator interactions, thus facilitating cell and gene specific clinical applications. Although the identification of mechanisms mediating VDR-regulated transcription has been one focus of recent research in the field, other topics of fundamental importance include the identification and functional significance of proteins involved in the metabolism of vitamin D. CYP2R1 has been identified as the most important 25-hydroxylase, and a critical role for CYP24A1 in humans was noted in studies showing that inactivating mutations in CYP24A1 are a probable cause of idiopathic infantile hypercalcemia. In addition, studies using knockout and transgenic mice have provided new insight on the physiological role of vitamin D in classical target tissues as well as evidence of extraskeletal effects of 1,25(OH)2D3 including inhibition of cancer progression, effects on the cardiovascular system, and immunomodulatory effects in certain autoimmune diseases. Some of the mechanistic findings in mouse models have also been observed in humans. The identification of similar pathways in humans could lead to the development of new therapies to prevent and treat disease.
Collapse
Affiliation(s)
- Sylvia Christakos
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey; and Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Puneet Dhawan
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey; and Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Annemieke Verstuyf
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey; and Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Lieve Verlinden
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey; and Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Geert Carmeliet
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey; and Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| |
Collapse
|
29
|
Intestinal mucosal changes and upregulated calcium transporter and FGF-23 expression during lactation: Contribution of lactogenic hormone prolactin. Arch Biochem Biophys 2015; 590:109-117. [PMID: 26657069 DOI: 10.1016/j.abb.2015.11.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/22/2015] [Accepted: 11/25/2015] [Indexed: 12/23/2022]
Abstract
As the principal lactogenic hormone, prolactin (PRL) not only induces lactogenesis but also enhances intestinal calcium absorption to supply calcium for milk production. How the intestinal epithelium res-ponses to PRL is poorly understood, but it is hypothesized to increase mucosal absorptive surface area and calcium transporter expression. Herein, lactating rats were found to have greater duodenal, jejunal and ileal villous heights as well as cecal crypt depths than age-matched nulliparous rats. Morphometric analyses in the duodenum and cecum showed that their mucosal adaptations were diminished by bromocriptine, an inhibitor of pituitary PRL release. PRL also upregulated calcium transporter expression (e.g., TRPV6 and PMCA1b) in the duodenum of lactating rats. Since excessive calcium absorption could be detrimental to lactating rats, local negative regulator of calcium absorption, e.g., fibroblast growth factor (FGF)-23, should be increased. Immunohistochemistry confirmed the upregulation of FGF-23 protein expression in the duodenal and cecal mucosae of lactating rats, consistent with the enhanced FGF-23 mRNA expression in Caco-2 cells. Bromocriptine abolished this lactation-induced FGF-23 expression. Additionally, FGF-23 could negate PRL-stimulated calcium transport across Caco-2 monolayer. In conclusion, PRL was responsible for the lactation-induced mucosal adaptations, which were associated with compensatory increase in FGF-23 expression probably to prevent calcium hyperabsorption.
Collapse
|
30
|
Diaz de Barboza G, Guizzardi S, Tolosa de Talamoni N. Molecular aspects of intestinal calcium absorption. World J Gastroenterol 2015; 21:7142-7154. [PMID: 26109800 PMCID: PMC4476875 DOI: 10.3748/wjg.v21.i23.7142] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/21/2015] [Accepted: 04/17/2015] [Indexed: 02/06/2023] Open
Abstract
Intestinal Ca2+ absorption is a crucial physiological process for maintaining bone mineralization and Ca2+ homeostasis. It occurs through the transcellular and paracellular pathways. The first route comprises 3 steps: the entrance of Ca2+ across the brush border membranes (BBM) of enterocytes through epithelial Ca2+ channels TRPV6, TRPV5, and Cav1.3; Ca2+ movement from the BBM to the basolateral membranes by binding proteins with high Ca2+ affinity (such as CB9k); and Ca2+ extrusion into the blood. Plasma membrane Ca2+ ATPase (PMCA1b) and sodium calcium exchanger (NCX1) are mainly involved in the exit of Ca2+ from enterocytes. A novel molecule, the 4.1R protein, seems to be a partner of PMCA1b, since both molecules co-localize and interact. The paracellular pathway consists of Ca2+ transport through transmembrane proteins of tight junction structures, such as claudins 2, 12, and 15. There is evidence of crosstalk between the transcellular and paracellular pathways in intestinal Ca2+ transport. When intestinal oxidative stress is triggered, there is a decrease in the expression of several molecules of both pathways that inhibit intestinal Ca2+ absorption. Normalization of redox status in the intestine with drugs such as quercetin, ursodeoxycholic acid, or melatonin return intestinal Ca2+ transport to control values. Calcitriol [1,25(OH)2D3] is the major controlling hormone of intestinal Ca2+ transport. It increases the gene and protein expression of most of the molecules involved in both pathways. PTH, thyroid hormones, estrogens, prolactin, growth hormone, and glucocorticoids apparently also regulate Ca2+ transport by direct action, indirect mechanism mediated by the increase of renal 1,25(OH)2D3 production, or both. Different physiological conditions, such as growth, pregnancy, lactation, and aging, adjust intestinal Ca2+ absorption according to Ca2+ demands. Better knowledge of the molecular details of intestinal Ca2+ absorption could lead to the development of nutritional and medical strategies for optimizing the efficiency of intestinal Ca2+ absorption and preventing osteoporosis and other pathologies related to Ca2+ metabolism.
Collapse
|
31
|
Abstract
For humans and rodents, duodenum is a very important site of calcium absorption since it is exposed to ionized calcium released from dietary complexes by gastric acid. Calcium traverses the duodenal epithelium via both transcellular and paracellular pathways in a vitamin D-dependent manner. After binding to the nuclear vitamin D receptor, 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] upregulates the expression of several calcium transporter genes, e.g., TRPV5/6, calbindin-D9k, plasma membrane Ca(2+)-ATPase1b, and NCX1, thereby enhancing the transcellular calcium transport. This action has been reported to be under the regulation of parathyroid-kidney-intestinal and bone-kidney-intestinal axes, in which the plasma calcium and fibroblast growth factor-23 act as negative feedback regulators, respectively. 1,25(OH)2D3 also modulates the expression of tight junction-related genes and convective water flow, presumably to increase the paracellular calcium permeability and solvent drag-induced calcium transport. However, vitamin D-independent calcium absorption does exist and plays an important role in calcium homeostasis under certain conditions, particularly in neonatal period, pregnancy, and lactation as well as in naturally vitamin D-impoverished subterranean mammals.
Collapse
|
32
|
Liu W, Liu MR, Zhang H. Expression of TRPV5 and TRPV6 in development of colonic adenocarcinoma. Shijie Huaren Xiaohua Zazhi 2014; 22:5422-5431. [DOI: 10.11569/wcjd.v22.i35.5422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of transient receptor potential cation channel, subfamily V, member 5 (TRPV5) and TRPV6 in the development of colon adenocarcinoma and to discuss the role of TRPV5 and TRPV6 in the carcinogenesis of this malignancy.
METHODS: TRPV5, TRPV6 and Ki-67 expression was examined by immunohistochemical staining, RT-PCR, and Western blot in 20 colonic hyperplastic polyp, 20 colonic adenoma (40 for immunohistochemical staining), 20 colonic adenocarcinoma, and 20 normal colonic mucosal tissues obtained by endoscopic biopsy, surgical resection or endoscopic polypectomy. The relationship between the expression of TRPV6 and TRPV5 and the carcinogenesis of colon adenocarcinoma was then assessed.
RESULTS: TRPV5 and TRPV6 expression was detectable in the normal colon, colonic polyp and colonic cancer tissues, mainly localized in the cytoplasm. The expression of Ki-67 increased with the increase in TRPV5 and TRPV6 expression (P < 0.05). TRPV5 and TRPV6 proteins and mRNAs were weakly or not expressed in normal intestinal mucosa and non-adenoma polyps (P > 0.05), but were highly expressed in colon adenoma and colon adenocarcinoma (P < 0.05). TRPV5 and TRPV6 expression had a significant correlation with histological type (P < 0.05). In the colonic mucosa, TRPV5 expression was lower than TRPV6 expression (P < 0.05).
CONCLUSION: TRPV5 and TRPV6 show high expression in colon adenoma and adenocarcinoma, and Ki-67 expression is correlated with TRPV5 and TRPV6 expression. TRPV5 and TRPV6 might be related with the extent of tissue proliferation and the risk of malignant transformation of polyps. TRPV5 and TRPV6 may play an important role in the carcinogenesis and development of colonic adenocarcinoma.
Collapse
|
33
|
Neradugomma NK, Sainathan S, Baranda J, Subramaniam D, Anant S. Role of Prolactin and Its Receptor in Colorectal Cancer. CURRENT COLORECTAL CANCER REPORTS 2014. [DOI: 10.1007/s11888-014-0248-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
|
35
|
Liu W, Liu MR, Zhang H. Novel calcium ion channels TRPV5 and TRPV6 and gastrointestinal tumors. Shijie Huaren Xiaohua Zazhi 2014; 22:1966-1971. [DOI: 10.11569/wcjd.v22.i14.1966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Transient receptor potential cation channel, subfamily V, member 5 (TRPV5) and TRPV6 are the subfamily members of the transient receptor potential (TRP), representing new highly selective Ca2+ membrane transport channels, which are mainly responsible for active transport of Ca2+ across the cell membrane and participate in regulation of many physiological activities in the body. This paper discusses the structures and electrophysiological properties of TRPV5 and TRPV6, their related factors and their relationship with gastrointestinal tumors, highlighting the role of TRPV5 and TRPV6 in the formation of gastrointestinal tumors.
Collapse
|
36
|
Teerapornpuntakit J, Klanchui A, Karoonuthaisiri N, Wongdee K, Charoenphandhu N. Expression of transcripts related to intestinal ion and nutrient absorption in pregnant and lactating rats as determined by custom-designed cDNA microarray. Mol Cell Biochem 2014; 391:103-16. [PMID: 24519337 DOI: 10.1007/s11010-014-1992-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 01/29/2014] [Indexed: 12/29/2022]
Abstract
In pregnancy and lactation, maternal adaptation for the enhancement of intestinal ion and nutrient absorption is of paramount importance for fetal development and lactogenesis. This nutrient hyperabsorption has been reported to result from upregulation of transporter gene expression, in part, under control of lactogenic hormone prolactin (PRL). Since a number of gene families are responsible for ion and nutrient transport in the rat small intestine, we herein developed a custom-designed cDNA microarray (CalGeneArray) to determine the transcriptome responses of duodenal epithelial cells during these reproductive periods, which was subsequently validated by quantitative real-time PCR. We thus designed 277 oligonucleotide probes to detect 113 transcripts related to ion/nutrient transport, bone/calcium metabolism, paracrine regulator, and cell metabolism. Pregnancy was found to upregulate the expressions of several duodenal transporters, e.g., Trpm6, Trpm7, Glut5, and Trpv6. Pregnant rats subjected to 7-day injection of bromocriptine, an inhibitor of PRL release, showed the increased levels of some other transcripts, e.g., insulin-2 and Cyp27b1, compared to untreated pregnant rats. Bromocriptine also increased the mRNA levels of insulin-2, glucose transporter-1 (Sglt1), and Cyp27b1, while decreasing those of Fgfr2c, Atp1b2, and Cldn19 in early lactation. During late lactation, the levels of eight studied transcripts (i.e., NaPi-IIb, Cyp27b1, Cldn18, Casr, Atp1b2, Xpnpep, Pept1, and Trpm7) were altered. In conclusion, the CalGeneArray was powerful to help reveal that pregnancy and lactation modulated the expression of genes related to duodenal nutrient transport and cell metabolism. Our findings supported the physiological significance of PRL in regulating nutrient absorption during pregnancy and lactation.
Collapse
|
37
|
Abstract
TRPV6 (former synonyms ECAC2, CaT1, CaT-like) displays several specific features which makes it unique among the members of the mammalian Trp gene family (1) TRPV6 (and its closest relative, TRPV5) are the only highly Ca(2+)-selective channels of the entire TRP superfamily (Peng et al. 1999; Wissenbach et al. 2001; Voets et al. 2004). (2) Translation of Trpv6 initiates at a non-AUG codon, at ACG, located upstream of the annotated AUG, which is not used for initiation (Fecher-Trost et al. 2013). The ACG codon is nevertheless decoded by methionine. Not only a very rare event in eukaryotic biology, the full-length TRPV6 protein existing in vivo comprises an amino terminus extended by 40 amino acid residues compared to the annotated truncated TRPV6 protein which has been used in most studies on TRPV6 channel activity so far. (In the following numbering occurs according to this full-length protein, with the numbers of the so far annotated truncated protein in brackets). (3) Only in humans a coupled polymorphism of Trpv6 exists causing three amino acid exchanges and resulting in an ancestral Trpv6 haplotype and a so-called derived Trpv6 haplotype (Wissenbach et al. 2001). The ancestral allele encodes the amino acid residues C197(157), M418(378) and M721(681) and the derived alleles R197(157), V418(378) and T721(681). The ancestral haplotype is found in all species, the derived Trpv6 haplotype has only been identified in humans, and its frequency increases with the distance to the African continent. Apparently the Trpv6 gene has been a strong target for selection in humans, and its derived variant is one of the few examples showing consistently differences to the orthologues genes of other primates (Akey et al. 2004, 2006; Stajich and Hahn 2005; Hughes et al. 2008). (4) The Trpv6 gene expression is significantly upregulated in several human malignancies including the most common cancers, prostate and breast cancer (Wissenbach et al. 2001; Zhuang et al. 2002; Fixemer et al. 2003; Bolanz et al. 2008). (5) Male mice lacking functional TRPV6 channels are hypo-/infertile making TRPV6 one of the very few channels essential for male fertility (Weissgerber et al. 2011, 2012).
Collapse
Affiliation(s)
- Claudia Fecher-Trost
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421, Homburg, Germany
| | | | | |
Collapse
|
38
|
Tuohimaa P, Wang JH, Khan S, Kuuslahti M, Qian K, Manninen T, Auvinen P, Vihinen M, Lou YR. Gene expression profiles in human and mouse primary cells provide new insights into the differential actions of vitamin D3 metabolites. PLoS One 2013; 8:e75338. [PMID: 24116037 PMCID: PMC3792969 DOI: 10.1371/journal.pone.0075338] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 08/12/2013] [Indexed: 01/08/2023] Open
Abstract
1α,25-Dihydroxyvitamin D3 (1α,25(OH)2D3) had earlier been regarded as the only active hormone. The newly identified actions of 25-hydroxyvitamin D3 (25(OH)D3) and 24R,25-dihydroxyvitamin D3 (24R,25(OH)2D3) broadened the vitamin D3 endocrine system, however, the current data are fragmented and a systematic understanding is lacking. Here we performed the first systematic study of global gene expression to clarify their similarities and differences. Three metabolites at physiologically comparable levels were utilized to treat human and mouse fibroblasts prior to DNA microarray analyses. Human primary prostate stromal P29SN cells (hP29SN), which convert 25(OH)D3 into 1α,25(OH)2D3 by 1α-hydroxylase (encoded by the gene CYP27B1), displayed regulation of 164, 171, and 175 genes by treatment with 1α,25(OH)2D3, 25(OH)D3, and 24R,25(OH)2D3, respectively. Mouse primary Cyp27b1 knockout fibroblasts (mCyp27b1−/−), which lack 1α-hydroxylation, displayed regulation of 619, 469, and 66 genes using the same respective treatments. The number of shared genes regulated by two metabolites is much lower in hP29SN than in mCyp27b1−/−. By using DAVID Functional Annotation Bioinformatics Microarray Analysis tools and Ingenuity Pathways Analysis, we identified the agonistic regulation of calcium homeostasis and bone remodeling between 1α,25(OH)2D3 and 25(OH)D3 and unique non-classical actions of each metabolite in physiological and pathological processes, including cell cycle, keratinocyte differentiation, amyotrophic lateral sclerosis signaling, gene transcription, immunomodulation, epigenetics, cell differentiation, and membrane protein expression. In conclusion, there are three distinct vitamin D3 hormones with clearly different biological activities. This study presents a new conceptual insight into the vitamin D3 endocrine system, which may guide the strategic use of vitamin D3 in disease prevention and treatment.
Collapse
Affiliation(s)
- Pentti Tuohimaa
- Department of Anatomy, Medical School, University of Tampere, Tampere, Finland
- Department of Clinical Chemistry, Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Jing-Huan Wang
- Department of Anatomy, Medical School, University of Tampere, Tampere, Finland
- Tampere Graduate School in Biomedicine and Biotechnology, University of Tampere, Tampere, Finland
- Drug Discovery Graduate School, University of Turku, Turku, Finland
| | - Sofia Khan
- Institute of Biomedical Technology and BioMediTech, University of Tampere, Tampere, Finland
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Marianne Kuuslahti
- Department of Anatomy, Medical School, University of Tampere, Tampere, Finland
| | - Kui Qian
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Tommi Manninen
- Department of Cell Biology, Medical School, University of Tampere, Tampere, Finland
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Mauno Vihinen
- Institute of Biomedical Technology and BioMediTech, University of Tampere, Tampere, Finland
- Institute of Experimental Medical Science, Lund University, Lund, Sweden
- Tampere University Hospital, Tampere, Finland
| | - Yan-Ru Lou
- Division of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
39
|
Christakos S, Seth T, Hirsch J, Porta A, Moulas A, Dhawan P. Vitamin D Biology Revealed Through the Study of Knockout and Transgenic Mouse Models. Annu Rev Nutr 2013; 33:71-85. [DOI: 10.1146/annurev-nutr-071812-161249] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sylvia Christakos
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, New Jersey 07103;
| | - Tanya Seth
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, New Jersey 07103;
| | - Jennifer Hirsch
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, New Jersey 07103;
| | - Angela Porta
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, New Jersey 07103;
| | - Anargyros Moulas
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, New Jersey 07103;
| | - Puneet Dhawan
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, New Jersey 07103;
| |
Collapse
|
40
|
Wysolmerski JJ. Osteocytes remove and replace perilacunar mineral during reproductive cycles. Bone 2013; 54:230-6. [PMID: 23352996 PMCID: PMC3624069 DOI: 10.1016/j.bone.2013.01.025] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 12/05/2012] [Accepted: 01/11/2013] [Indexed: 11/16/2022]
Abstract
Lactation is associated with an increased demand for calcium and is accompanied by a remarkable cycle of bone loss and recovery that helps to supply calcium and phosphorus for milk production. Bone loss is the result of increased bone resorption that is due, in part, to increased levels of PTHrP and decreased levels of estrogen. However, the regulation of bone turnover during this time is not fully understood. In the 1960s and 1970s many observations were made to suggest that osteocytes could resorb bone and increase the size of their lacunae. This concept became known as osteocytic osteolysis and studies suggested that it occurred in response to parathyroid hormone and/or an increased systemic demand for calcium. However, this concept fell out of favor in the late 1970s when it was established that osteoclasts were the principal bone-resorbing cells. Given that lactation is associated with increased PTHrP levels and negative calcium balance, we recently examined whether osteocytes contribute to bone loss during this time. Our findings suggest that osteocytes can remodel their perilacunar and pericanalicular matrix and that they participate in the liberation of skeletal calcium stores during reproductive cycles. These findings raise new questions about the role of osteocytes in coordinating bone and mineral metabolism during lactation as well as the recovery of bone mass after weaning. It is also interesting to consider whether osteocyte lacunar and canalicular remodeling contribute more broadly to the maintenance of skeletal and mineral homeostasis.
Collapse
Affiliation(s)
- John J Wysolmerski
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, TAC S131, PO Box 208020, New Haven, CT 06520-8020, USA.
| |
Collapse
|
41
|
Abstract
Normal breast epithelial cells and breast cancer cells express the calcium-sensing receptor (CaSR), the master regulator of systemic calcium metabolism. During lactation, activation of the CaSR in mammary epithelial cells downregulates parathyroid hormone-related protein (PTHrP) levels in milk and in the circulation, and increases calcium transport into milk. In contrast, in breast cancer cells the CaSR upregulates PTHrP production. A switch in G-protein usage underlies the opposing effects of the CaSR on PTHrP expression in normal and malignant breast cells. During lactation, the CaSR in normal breast cells coordinates a feedback loop that matches the transport of calcium into milk and maternal calcium metabolism to the supply of calcium. A switch in CaSR G-protein usage during malignant transformation converts this feedback loop into a feed-forward cycle in breast cancer cells that may promote the growth of osteolytic skeletal metastases.
Collapse
Affiliation(s)
- Joshua N Vanhouten
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, TAC S131, Box 208020, New Haven, CT, USA.
| | | |
Collapse
|
42
|
Pludowski P, Holick MF, Pilz S, Wagner CL, Hollis BW, Grant WB, Shoenfeld Y, Lerchbaum E, Llewellyn DJ, Kienreich K, Soni M. Vitamin D effects on musculoskeletal health, immunity, autoimmunity, cardiovascular disease, cancer, fertility, pregnancy, dementia and mortality-a review of recent evidence. Autoimmun Rev 2013; 12:976-89. [PMID: 23542507 DOI: 10.1016/j.autrev.2013.02.004] [Citation(s) in RCA: 527] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 02/28/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND Optimal vitamin D intake and its status are important not only for bone and calcium-phosphate metabolism, but also for overall health and well-being. Vitamin D deficiency and insufficiency as a global health problem are likely to be a risk for wide spectrum of acute and chronic illnesses. METHODS A review of randomized controlled trials, meta-analyses, and other evidence of vitamin D action on various health outcomes. RESULTS Adequate vitamin D status seems to be protective against musculoskeletal disorders (muscle weakness, falls, fractures), infectious diseases, autoimmune diseases, cardiovascular disease, type 1 and type 2 diabetes mellitus, several types of cancer, neurocognitive dysfunction and mental illness, and other diseases, as well as infertility and adverse pregnancy and birth outcomes. Vitamin D deficiency/insufficiency is associated with all-cause mortality. CONCLUSIONS Adequate vitamin D supplementation and sensible sunlight exposure to reach optimal vitamin D status are among the front line factors of prophylaxis for the spectrum of disorders. Supplementation guidance and population strategies for the eradication of vitamin D deficiency must be included in the priorities of physicians, medical professionals and healthcare policy-makers.
Collapse
Affiliation(s)
- Pawel Pludowski
- Department of Biochemistry, Radioimmunology and Experimental Medicine, The Children's Memorial Health Institute, Warsaw, Poland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Hollis BW, Wagner CL. Vitamin D and pregnancy: skeletal effects, nonskeletal effects, and birth outcomes. Calcif Tissue Int 2013; 92:128-39. [PMID: 22623177 DOI: 10.1007/s00223-012-9607-4] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 04/10/2012] [Indexed: 02/08/2023]
Abstract
The function and requirement of vitamin D during pregnancy for both mother and fetus have remained a mystery. This fact was highlighted by The Cochrane Review in 2000, which reported a lack of randomized controlled trials (RCTs) with respect to vitamin D requirements during pregnancy. Unfortunately, during the past decade only a single RCT has been performed with respect to vitamin D requirements during pregnancy. In this review we will discuss vitamin D metabolism during pregnancy as well as the consequences of vitamin D deficiency on skeletal, nonskeletal, and birth outcomes using birth observational data and data from our recent RCT. New RCT data strongly support previous observational studies in that improving nutritional vitamin D status will improve birth outcomes. The new RCT data indicate that 4,000 IU/day vitamin D(3) during pregnancy will "normalize" vitamin D metabolism and improve birth outcomes including primary cesarean section and comorbidities of pregnancy with no risk of side effects.
Collapse
Affiliation(s)
- Bruce W Hollis
- Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, 173 Ashley Ave., Room 313, Charleston, SC 29425, USA.
| | | |
Collapse
|
44
|
Wongdee K, Charoenphandhu N. Regulation of epithelial calcium transport by prolactin: from fish to mammals. Gen Comp Endocrinol 2013; 181:235-40. [PMID: 22814336 DOI: 10.1016/j.ygcen.2012.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Accepted: 07/08/2012] [Indexed: 12/11/2022]
Abstract
Among the reported ∼300 biological actions, the established role of prolactin (PRL) is to act as a vertebrate hypercalcemic hormone that regulates epithelial calcium transport in several organs, such as the gills, intestine, and kidney. In fish, PRL stimulates the branchial calcium transport by increasing the activity of Ca(2+)-ATPase. Although this calciotropic hormone also induces hypercalcemia in amphibians, reptiles and birds, little has been known regarding the underlying mechanism. In contrast, the effects of PRL on the epithelial calcium transport in mammals are well documented. In rodents, PRL has been shown to stimulate the renal tubular calcium reabsorption and intestinal calcium absorption, the latter of which is mediated by the PRL-induced upregulation of calcium transporter gene expression and activities. Recently, we demonstrated that the duodenal calcium absorption in lactating rats was markedly enhanced by the suckling-induced PRL surge, presumably to provide calcium for milk production. The cellular and molecular mechanisms of the PRL-stimulated calcium transport in mammals have been elaborated in this review.
Collapse
Affiliation(s)
- Kannikar Wongdee
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | | |
Collapse
|
45
|
Shah R, Licata A, Oyesiku NM, Ioachimescu AG. Acromegaly as a cause of 1,25-dihydroxyvitamin D-dependent hypercalcemia: case reports and review of the literature. Pituitary 2012; 15 Suppl 1:S17-22. [PMID: 21188640 DOI: 10.1007/s11102-010-0286-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Growth hormone excess has been associated with hypercalciuria and nephrolithiasis. Hypercalcemia in acromegaly is rare and usually due to coexistent primary hyperparathyroidism. To report two cases of 1,25-dihydroxyvitamin D (1,25 (OH)(2) D)-dependent hypercalcemia in cromegaly. A 50 year-old female with 2 years history of hypercalcemia presented with features of acromegaly. Serum calcium (Ca) was 10.9 mg/dl (8.6-10.2), parathyroid hormone (PTH) 20 pg/ml (10-65), PTH-related peptide undetectable, and 1,25 (OH)(2) D 119 pg/ml (15-75). Insulin-like growth factor 1 (IGF1) was 911 ng/ml (49-292) and growth hormone (GH) 14.5 ng/ml (0.03-10). MRI showed a 1.7 cm pituitary tumor. Transsphenoidal adenectomy (TSA) resulted in normalization of IGF1, GH, Ca, and 1,25 (OH)(2) D (50 pg/ml) and complete tumor resection. A 52-year-old female was diagnosed with visual field deficits on routine exam. MRI showed a 3 cm invasive pituitary macroadenoma. IGF1 was 416 ng/ml (87-238) and GH 75.8 (0-6.0) ng/ml. Incidentally, she was found with high Ca of 10.8 mg/dl (8.9-10.3) associated with PTH 19 pg/ml and 1,25 (OH)(2) D66 pg/ml. Postoperatively, IGF1 and GH remained abnormal (440 and 12.8 ng/ml, respectively), while MRI showed parasellar tumor residue. Ca remained high (10.1-11.1 mg/dl), along with elevated 1,25 (OH)(2) D level (81.3 pg/ml). In both cases, other causes of hypercalcemia were ruled out. We present 2 cases of 1,25 (OH)(2) D-dependent hypercalcemia associated with growth hormone excess. Complete resection of tumor produced biochemical remission of acromegaly and normalization of calcium and 1,25 (OH)(2) D levels, while incomplete resection was associated with persistent 1,25 (OH)(2) D-dependent hypercalcemia. Acromegaly should be considered a cause of 1,25 (OH)(2) D-dependent hypercalcemia.
Collapse
Affiliation(s)
- Reshma Shah
- Division of Endocrinology, Diabetes and Lipids. Department of Medicine, Emory University School of Medicine, 1365 B Clifton Rd NE, Atlanta, GA 30329, USA
| | | | | | | |
Collapse
|
46
|
Tiosano D, Gepstein V. Vitamin D action: lessons learned from hereditary 1,25-dihydroxyvitamin-D-resistant rickets patients. Curr Opin Endocrinol Diabetes Obes 2012; 19:452-9. [PMID: 23128575 DOI: 10.1097/med.0b013e32835a3415] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Hereditary 1,25-dihydroxyvitamin-D [1,25(OH)(2)D(3)]-resistant rickets (HVDRR) is a rare genetic disease caused by generalized resistance to 1,25(OH)(2)D(3). Less than 100 cases are reported in the literature. These patients provide an experiment by nature enabling us to understand the role of vitamin D, especially in light of the ongoing debate concerning normal vitamin D levels and the supplement dosage that should be recommended. This article summarizes the role of vitamin D in calcium absorption, rennin-angiotensin system (RAS), and cardiac state in HVDRR patients. RECENT FINDINGS The precise spectrum of vitamin D activities can now be better evaluated by critical analysis of mouse models with targeted deletion of the gene encoding the vitamin D receptor (VDR). Of special interest is the unraveling of the role of VDR in calcium absorption and cardiac status in VDR-knockout mice. The facts that VDR-knockout mice up-regulate intestinal calcium absorption and skeletal mineralization independently of the VDR during pregnancy and lactation point to the existence of VDR-independent mechanisms that are involved in calcium absorption. The observation that mice with genetic disruption of the 1α-hydroxylase gene or of the VDR gene have an overstimulated RAS and consequently develop high blood pressure and cardiac hypertrophy raised concern about potential risks to the cardiovascular system in HVDRR patients. SUMMARY The current review summarizes the new understanding of the effects of vitamin D on calcium absorption, the RAS, and heart hypertrophy derived from studying HVDRR patients from infancy to their mid-30s.
Collapse
Affiliation(s)
- Dov Tiosano
- Pediatric Endocrinology, Meyer Children's Hospital, Rambam Healthcare Campus, Haifa, Israel.
| | | |
Collapse
|
47
|
Shapses SA, Sukumar D, Schneider SH, Schlussel Y, Brolin RE, Taich L. Hormonal and dietary influences on true fractional calcium absorption in women: role of obesity. Osteoporos Int 2012; 23:2607-14. [PMID: 22282301 PMCID: PMC4016952 DOI: 10.1007/s00198-012-1901-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 11/18/2011] [Indexed: 10/14/2022]
Abstract
UNLABELLED The goal in this study was to examine the hormonal and dietary predictors of true fractional Ca absorption (TFCA) in adult women and to determine whether TFCA differs due to body weight. Results showed that TFCA is higher in obese individuals and dietary fat, estradiol, and 1,25-dihydroxy vitamin D are the most significant positive predictors of TFCA in adult women. INTRODUCTION Calcium absorption is an important determinant of calcium balance and is influenced by several factors. Previous studies have identified that age, intake of protein, fat and fiber, and hormones such as 1, 25-dihyroxyvitamin D (1,25(OH)(2)D(3)) influence absorption. The determinants of TFCA using the double isotope method, the gold standard estimate of absorption, have not been examined previously in adult women nor has the role of obesity been addressed. METHODS In this study, we examined the hormonal and dietary predictors of TFCA in adult women with a wide range of age, body weights, and nutrient intake. TFCA was measured using dual stable isotope ((42)Ca and (43)Ca) technique. Serum was analyzed for bone-regulating hormones, and dietary information was obtained through food records. The independent dietary factors and hormonal predictors (25-hydroxyvitamin D, 1,25(OH)(2)D(3), parathyroid hormone, and estradiol) of TFCA were analyzed using multiple regression analysis. RESULTS Two hundred twenty-nine women aged 54 ± 11 years old (24-75 years) and with BMI of 31 ± 7.0 kg/m(2) were eligible and were categorized into tertiles of body mass index (BMI) into leaner, overweight, and obese. In the entire group of women, total fat intake, estradiol, and 1,25(OH)(2)D(3) are significant positive predictors (p < 0.05). As expected, age is a significant negative predictor of TFCA (R (2) = 26%). TFCA is higher in obese women compared to non-obese women (p < 0.05). CONCLUSION Together, these data show that dietary fat is the most significant positive predictor of TFCA which may have implications for dietary intake for non-obese individuals who are more likely to have lower and potentially compromised Ca absorption.
Collapse
Affiliation(s)
- S A Shapses
- Department of Nutritional Sciences, Rutgers University, 96 Lipman Drive, New Brunswick, NJ 08901-8525, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
Calcium is the most abundant cation in the human body, of which approximately 99% occurs in bone, contributing to its rigidity and strength. Bone also functions as a reservoir of Ca for its role in multiple physiologic and biochemical processes. This article aims to provide a thorough understanding of the absorptive mechanisms and factors affecting these processes to enable one to better appreciate an individual's Ca needs, and to provide a rationale for correcting Ca deficiencies. An overview of Ca requirements and suggested dosing regimens is presented, with discussion of various Ca preparations and potential toxicities of Ca treatment.
Collapse
Affiliation(s)
- Ronald D Emkey
- Pennsylvania Regional Center for Arthritis & Osteoporosis Research, 1200 Broadcasting Road, Suite 200, Wyomissing, PA 19610, USA.
| | | |
Collapse
|
49
|
Haglund F, Lu M, Vukojević V, Nilsson IL, Andreasson A, Džabić M, Bränström R, Höög A, Juhlin CC, Larsson C. Prolactin receptor in primary hyperparathyroidism--expression, functionality and clinical correlations. PLoS One 2012; 7:e36448. [PMID: 22606260 PMCID: PMC3350524 DOI: 10.1371/journal.pone.0036448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 04/04/2012] [Indexed: 12/11/2022] Open
Abstract
Background Primary hyperparathyroidism (PHPT) is an endocrine disorder most commonly affecting women, suggesting a role for female hormones and/or their receptors in parathyroid adenomas. We here investigated the prolactin receptor (PRLr) which is associated with tumours of the breast and other organs. Methodology/Principal Findings PRLr expression was investigated in a panel of 37 patients with sporadic parathyroid tumours and its functionality in cultured parathyroid tumour cells. In comparison with other tissues and breast cancer cells, high levels of prolactin receptor gene (PRLR) transcripts were demonstrated in parathyroid tissues. PRLr products of 60/70 kDa were highly expressed in all parathyroid tumours. In addition varying levels of the 80 kDa PRLr isoform, with known proliferative activity, were demonstrated. In parathyroid tumours, PRLr immunoreactivity was observed in the cytoplasm (in all cases, n = 36), cytoplasmic granulae (n = 16), the plasma membrane (n = 12) or enlarged lysosomes (n = 4). In normal parathyroid rim (n = 28), PRLr was uniformly expressed in the cytoplasm and granulae. In in vitro studies of short-term cultured human parathyroid tumour cells, prolactin stimulation was associated with significant transcriptional changes in JAK/STAT, RIG-I like receptor and type II interferon signalling pathways as documented by gene expression profiling. Moreover, PRLR gene expression in parathyroid tumours was inversely correlated with the patients’ plasma calcium levels. Conclusions We demonstrate that the prolactin receptor is highly abundant in human parathyroid tissues and that PRLr isoforms expression and PRLr subcellular localisation are altered in parathyroid tumours. Responsiveness of PRLr to physiological levels of prolactin was observed in the form of increased PTH secretion and altered gene transcription with significant increase of RIG-I like receptor, JAK-STAT and Type II interferon signalling pathways. These data suggest a role of the prolactin receptor in parathyroid adenomas.
Collapse
Affiliation(s)
- Felix Haglund
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Khuituan P, Teerapornpuntakit J, Wongdee K, Suntornsaratoon P, Konthapakdee N, Sangsaksri J, Sripong C, Krishnamra N, Charoenphandhu N. Fibroblast growth factor-23 abolishes 1,25-dihydroxyvitamin D₃-enhanced duodenal calcium transport in male mice. Am J Physiol Endocrinol Metab 2012; 302:E903-13. [PMID: 22275752 DOI: 10.1152/ajpendo.00620.2011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Despite being widely recognized as the important bone-derived phosphaturic hormone, whether fibroblast growth factor (FGF)-23 modulated intestinal calcium absorption remained elusive. Since FGF-23 could reduce the circulating level of 1,25-dihydroxyvitamin D₃ [1,25(OH)₂D₃], FGF-23 probably compromised the 1,25(OH)₂D₃-induced intestinal calcium absorption. FGF-23 may also exert an inhibitory action directly through FGF receptors (FGFR) in the intestinal cells. Herein, we demonstrated by Ussing chamber technique that male mice administered 1 μg/kg 1,25(OH)₂D₃ sc daily for 3 days exhibited increased duodenal calcium absorption, which was abolished by concurrent intravenous injection of recombinant mouse FGF-23. This FGF-23 administration had no effect on the background epithelial electrical properties, i.e., short-circuit current, transepithelial potential difference, and resistance. Immunohistochemical evidence of protein expressions of FGFR isoforms 1-4 in mouse duodenal epithelial cells suggested a possible direct effect of FGF-23 on the intestine. This was supported by the findings that FGF-23 directly added to the serosal compartment of the Ussing chamber and completely abolished the 1,25(OH)₂D₃-induced calcium absorption in the duodenal tissues taken from the 1,25(OH)₂D₃-treated mice. However, direct FGF-23 exposure did not decrease the duodenal calcium absorption without 1,25(OH)₂D₃ preinjection. The observed FGF-23 action was mediated by MAPK/ERK, p38 MAPK, and PKC. Quantitative real-time PCR further showed that FGF-23 diminished the 1,25(OH)₂D₃-induced upregulation of TRPV5, TRPV6, and calbindin-D(9k), but not PMCA(1b) expression in the duodenal epithelial cells. In conclusion, besides being a phosphatonin, FGF-23 was shown to be a novel calcium-regulating hormone that acted directly on the mouse intestine, thereby compromising the 1,25(OH)₂D₃-induced calcium absorption.
Collapse
Affiliation(s)
- Pissared Khuituan
- Center of Calcium and Bone Research, Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | | | | | | | | | | | | | | |
Collapse
|