1
|
Stoccoro A. Epigenetic Mechanisms Underlying Sex Differences in Neurodegenerative Diseases. BIOLOGY 2025; 14:98. [PMID: 39857328 PMCID: PMC11761232 DOI: 10.3390/biology14010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/12/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
Neurodegenerative diseases are characterized by profound differences between females and males in terms of incidence, clinical presentation, and disease progression. Furthermore, there is evidence suggesting that differences in sensitivity to medical treatments may exist between the two sexes. Although the role of sex hormones and sex chromosomes in driving differential susceptibility to these diseases is well-established, the molecular alterations underlying these differences remain poorly understood. Epigenetic mechanisms, including DNA methylation, histone tail modifications, and the activity of non-coding RNAs, are strongly implicated in the pathogenesis of neurodegenerative diseases. While it is known that epigenetic mechanisms play a crucial role in sexual differentiation and that distinct epigenetic patterns characterize females and males, sex-specific epigenetic patterns have been largely overlooked in studies aiming to identify epigenetic alterations associated with neurodegenerative diseases. This review aims to provide an overview of sex differences in epigenetic mechanisms, the role of sex-specific epigenetic processes in the central nervous system, and the main evidence of sex-specific epigenetic alterations in three neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Understanding the sex-related differences of these diseases is essential for developing personalized treatments and interventions that account for the unique epigenetic landscapes of each sex.
Collapse
Affiliation(s)
- Andrea Stoccoro
- Laboratory of Medical Genetics, Department of Translational Research and of New Surgical and Medical Technologies, Medical School, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| |
Collapse
|
2
|
Pinto-Benito D, Bautista-Abad A, Lagunas N, Ontiveros N, Ganchala D, Garcia-Segura LM, Arevalo MA, Grassi D. Tibolone treatment after traumatic brain injury exerts a sex-specific and Y chromosome-dependent regulation of methylation and demethylation enzymes and estrogen receptors in the cerebral cortex. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167532. [PMID: 39366643 DOI: 10.1016/j.bbadis.2024.167532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Affiliation(s)
- Daniel Pinto-Benito
- Cajal Institute, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Alvaro Bautista-Abad
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Autonoma University of Madrid, Calle Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Natalia Lagunas
- Department of Legal Medicine, Psychiatry and Pathology, School of Medicine, Complutense University of Madrid, Ciudad Universitaria, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Nebai Ontiveros
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Autonoma University of Madrid, Calle Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Danny Ganchala
- Cajal Institute, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Luis M Garcia-Segura
- Cajal Institute, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Maria-Angeles Arevalo
- Cajal Institute, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Daniela Grassi
- Cajal Institute, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Anatomy, Histology and Neuroscience, School of Medicine, Autonoma University of Madrid, Calle Arzobispo Morcillo 4, 28029 Madrid, Spain
| |
Collapse
|
3
|
Rubin JB, Abou-Antoun T, Ippolito JE, Llaci L, Marquez CT, Wong JP, Yang L. Epigenetic developmental mechanisms underlying sex differences in cancer. J Clin Invest 2024; 134:e180071. [PMID: 38949020 PMCID: PMC11213507 DOI: 10.1172/jci180071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
Cancer risk is modulated by hereditary and somatic mutations, exposures, age, sex, and gender. The mechanisms by which sex and gender work alone and in combination with other cancer risk factors remain underexplored. In general, cancers that occur in both the male and female sexes occur more commonly in XY compared with XX individuals, regardless of genetic ancestry, geographic location, and age. Moreover, XY individuals are less frequently cured of their cancers, highlighting the need for a greater understanding of sex and gender effects in oncology. This will be necessary for optimal laboratory and clinical cancer investigations. To that end, we review the epigenetics of sexual differentiation and its effect on cancer hallmark pathways throughout life. Specifically, we will touch on how sex differences in metabolism, immunity, pluripotency, and tumor suppressor functions are patterned through the epigenetic effects of imprinting, sex chromosome complement, X inactivation, genes escaping X inactivation, sex hormones, and life history.
Collapse
Affiliation(s)
| | | | - Joseph E. Ippolito
- Department of Radiology
- Department of Biochemistry and Molecular Biophysics
| | - Lorida Llaci
- Deartment of Genetics Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | |
Collapse
|
4
|
Kumar C, Roy JK. Decoding the epigenetic mechanism of mammalian sex determination. Exp Cell Res 2024; 439:114011. [PMID: 38531506 DOI: 10.1016/j.yexcr.2024.114011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/07/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024]
Abstract
Sex determination embodies a dynamic and intricate developmental process wielding significant influence over the destiny of bipotential gonads, steering them towards male or female gonads. Gonadal differentiation and the postnatal manifestation of the gonadal phenotype involve a sophisticated interplay of transcription factors such as SOX9 and FOXL2. Central to this interplay are chromatin modifiers regulating the mutual antagonism during this interplay. In this review, the key findings and knowledge gaps in DNA methylation, histone modification, and non-coding RNA-mediated control throughout mammalian gonadal development are covered. Furthermore, it explores the role of the developing brain in playing a pivotal role in the initiation of gonadogenesis and the subsequent involvement of gonadal hormone/hormone receptor in fine-tuning sexual differentiation. Based on promising facts, the role of the developing brain through the hypothalamic pituitary gonadal axis is explained and suggested as a novel hypothesis. The article also discusses the potential impact of ecological factors on the human epigenome in relation to sex determination and trans-generational epigenetics in uncovering novel genes and mechanisms involved in sex determination and gonadal differentiation. We have subtly emphasized the disruptions in epigenetic regulations contributing to sexual disorders, which further allows us to raise certain questions, decipher approaches for handling these questions and setting up the direction of future research.
Collapse
Affiliation(s)
- Cash Kumar
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| | - Jagat Kumar Roy
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
5
|
Lafta MS, Mwinyi J, Affatato O, Rukh G, Dang J, Andersson G, Schiöth HB. Exploring sex differences: insights into gene expression, neuroanatomy, neurochemistry, cognition, and pathology. Front Neurosci 2024; 18:1340108. [PMID: 38449735 PMCID: PMC10915038 DOI: 10.3389/fnins.2024.1340108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/09/2024] [Indexed: 03/08/2024] Open
Abstract
Increased knowledge about sex differences is important for development of individualized treatments against many diseases as well as understanding behavioral and pathological differences. This review summarizes sex chromosome effects on gene expression, epigenetics, and hormones in relation to the brain. We explore neuroanatomy, neurochemistry, cognition, and brain pathology aiming to explain the current state of the art. While some domains exhibit strong differences, others reveal subtle differences whose overall significance warrants clarification. We hope that the current review increases awareness and serves as a basis for the planning of future studies that consider both sexes equally regarding similarities and differences.
Collapse
Affiliation(s)
- Muataz S. Lafta
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Jessica Mwinyi
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
- Centre for Women’s Mental Health, Uppsala University, Uppsala, Sweden
| | - Oreste Affatato
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
- Centre for Women’s Mental Health, Uppsala University, Uppsala, Sweden
| | - Gull Rukh
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Junhua Dang
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Gerhard Andersson
- Department of Behavioural Sciences and Learning, Linköping University, Linköping, Sweden
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Helgi B. Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Smiley KO, Munley KM, Aghi K, Lipshutz SE, Patton TM, Pradhan DS, Solomon-Lane TK, Sun SED. Sex diversity in the 21st century: Concepts, frameworks, and approaches for the future of neuroendocrinology. Horm Behav 2024; 157:105445. [PMID: 37979209 PMCID: PMC10842816 DOI: 10.1016/j.yhbeh.2023.105445] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 11/20/2023]
Abstract
Sex is ubiquitous and variable throughout the animal kingdom. Historically, scientists have used reductionist methodologies that rely on a priori sex categorizations, in which two discrete sexes are inextricably linked with gamete type. However, this binarized operationalization does not adequately reflect the diversity of sex observed in nature. This is due, in part, to the fact that sex exists across many levels of biological analysis, including genetic, molecular, cellular, morphological, behavioral, and population levels. Furthermore, the biological mechanisms governing sex are embedded in complex networks that dynamically interact with other systems. To produce the most accurate and scientifically rigorous work examining sex in neuroendocrinology and to capture the full range of sex variability and diversity present in animal systems, we must critically assess the frameworks, experimental designs, and analytical methods used in our research. In this perspective piece, we first propose a new conceptual framework to guide the integrative study of sex. Then, we provide practical guidance on research approaches for studying sex-associated variables, including factors to consider in study design, selection of model organisms, experimental methodologies, and statistical analyses. We invite fellow scientists to conscientiously apply these modernized approaches to advance our biological understanding of sex and to encourage academically and socially responsible outcomes of our work. By expanding our conceptual frameworks and methodological approaches to the study of sex, we will gain insight into the unique ways that sex exists across levels of biological organization to produce the vast array of variability and diversity observed in nature.
Collapse
Affiliation(s)
- Kristina O Smiley
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, 639 North Pleasant Street, Morrill IVN Neuroscience, Amherst, MA 01003, USA.
| | - Kathleen M Munley
- Department of Psychology, University of Houston, 3695 Cullen Boulevard, Houston, TX 77204, USA.
| | - Krisha Aghi
- Department of Integrative Biology and Physiology, University of California Los Angeles, 405 Hilgard Ave, Los Angeles, CA 90095, USA.
| | - Sara E Lipshutz
- Department of Biology, Duke University, 130 Science Drive, Durham, NC 27708, USA.
| | - Tessa M Patton
- Bioinformatics Program, Loyola University Chicago, 1032 West Sheridan Road, LSB 317, Chicago, IL 60660, USA.
| | - Devaleena S Pradhan
- Department of Biological Sciences, Idaho State University, 921 South 8th Avenue, Mail Stop 8007, Pocatello, ID 83209, USA.
| | - Tessa K Solomon-Lane
- Scripps, Pitzer, Claremont McKenna Colleges, 925 North Mills Avenue, Claremont, CA 91711, USA.
| | - Simón E D Sun
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
7
|
Abstract
Rapid advances in the neural control of social behavior highlight the role of interconnected nodes engaged in differential information processing to generate behavior. Many innate social behaviors are essential to reproductive fitness and therefore fundamentally different in males and females. Programming these differences occurs early in development in mammals, following gonadal differentiation and copious androgen production by the fetal testis during a critical period. Early-life programming of social behavior and its adult manifestation are separate but yoked processes, yet how they are linked is unknown. This review seeks to highlight that gap by identifying four core mechanisms (epigenetics, cell death, circuit formation, and adult hormonal modulation) that could connect developmental changes to the adult behaviors of mating and aggression. We further propose that a unique social behavior, adolescent play, bridges the preweaning to the postpubertal brain by engaging the same neural networks underpinning adult reproductive and aggressive behaviors.
Collapse
Affiliation(s)
- Margaret M McCarthy
- Department of Pharmacology and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, USA;
| |
Collapse
|
8
|
Halabicky OM, Ji X, Gur RE, Gur RC, Yan C, Chen A, Liu J. Childhood lead exposure and sex-based neurobehavioral functioning in adolescence. Neurotoxicology 2022; 93:1-8. [PMID: 35988749 PMCID: PMC10433489 DOI: 10.1016/j.neuro.2022.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 10/15/2022]
Abstract
It is well documented that childhood lead exposure is associated with long-term decreases in intelligence quotients (IQ). Lesser known is the relationship with neurobehavioral domains, especially in adolescence. This study sought to identify cross-sectional and longitudinal associations between lead exposure and adolescent executive and visual-motor functioning and examine sex-based differences. Participants were 681 children from Jintan, China who had their blood lead levels (BLLs) assessed at age 3-5 years and 12 years old and neurobehavioral functioning assessed through the University of Pennsylvania Computerized Neurocognitive Battery (PennCNB) platform http://www.med.upenn.edu/bbl at 12 years old. Mean BLLs were 6.41 mcg/dl at age 3-5 years and 3.10 mcg/dl at 12. BLLs at 3-5 years and 12 years were used as predictors for the individual neurobehavioral domains in general linear models while controlling for father and mother occupation and education, residence location, age, and adolescent IQ. Models were run separately for males and females. In adjusted models, males BLLs at 3-5 years were associated with increased time to correctly complete tasks in multiple domains including abstraction/flexibility (β = 19.90, 95% CI( 4.26, 35.54) and spatial processing (β = 96.00, 95% CI 6.18, 185.82) at 12 years. For females in adjusted models, BLLs at 3-5 years were associated with increasing time to correctly complete tasks on the episodic memory domain task (β = 34.59, 95% CI 5.33, 63.84) at 12 years. Two adolescent cross-sectional relationships remained in the adjusted models for males only, suggesting a positive association between BLLs and increasing time for correct responses on the attentional domain task (β = 15.08, 95% CI 0.65, 29.51) and decreasing time for correct responses on the episodic memory task (β = -73.49, 95% CI -138.91, -8.06) in males at 12 years. These associations remained with and without controlling for IQ. These results suggest that lead exposure is associated with overall deficits in male and female neurobehavioral functioning, though in different domains and different timing of exposure.
Collapse
Affiliation(s)
| | - Xiaopeng Ji
- School of Nursing, University of Delaware, USA
| | - Raquel E Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, USA
| | - Ruben C Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, USA
| | - Chonghuai Yan
- Division of Environmental Science, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University, China
| | - Aimin Chen
- Department of Biostatistics Epidemiology and Informatics, University of Pennsylvania, USA
| | | |
Collapse
|
9
|
Melino S, Mormone E. On the Interplay Between the Medicine of Hildegard of Bingen and Modern Medicine: The Role of Estrogen Receptor as an Example of Biodynamic Interface for Studying the Chronic Disease's Complexity. Front Neurosci 2022; 16:745138. [PMID: 35712451 PMCID: PMC9196248 DOI: 10.3389/fnins.2022.745138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 04/08/2022] [Indexed: 11/24/2022] Open
Abstract
Introduction Hildegard of Bingen (1098-1179) interpreted the origins of chronic disease highlighting and anticipating, although only in a limited fashion, the importance that complex interactions among numerous genetic, internal milieu and external environmental factors have in determining the disease phenotype. Today, we recognize those factors, capable of mediating the transmission of messages between human body and environment and vice versa, as biodynamic interfaces. Aim We analyzed, in the light of modern scientific evidence, Hildegard of Bingen's medical approach and her original humoral theory in order to identify possible insights included in her medicine that could be referred to in the context of modern evidence-based medicine. In particular, the abbess's humoral theory suggests the identification of biodynamic interfaces with sex hormones and their receptors. Findings We found that the Hildegardian holistic vision of the organism-environment relationship can actually represent a visionary approach to modern endocrinology and that sex hormones, in particular estrogens, could represent an example of a biodynamic interface. Estrogen receptors are found in regions of the brain involved in emotional and cognitive regulation, controlling the molecular mechanism of brain function. Estrogen receptors are involved in the regulation of the hypothalamic-pituitary-adrenal axis and in the epigenetic regulation of responses to physiological, social, and hormonal stimuli. Furthermore, estrogen affects gene methylation on its own and related receptor promoters in discrete regions of the developing brain. This scenario was strikingly perceived by the abbess in the XIIth century, and depicted as a complex interplay among different humors and flegmata that she recognized to be sex specific and environmentally regulated. Viewpoint Considering the function played by hormones, analyzed through the last scientific evidence, and scientific literature on biodynamic interfaces, we could suggest Hildegardian insights and theories as the first attempt to describe the modern holistic, sex-based medicine. Conclusion Hildegard anticipated a concept of pathogenesis that sees a central role for endocrinology in sex-specific disease. Furthermore, estrogens and estrogen receptors could represent a good example of molecular interfaces capable of modulating the interaction between the organism internal milieu and the environmental factors.
Collapse
Affiliation(s)
- Sabrina Melino
- Research Unit of Philosophy of Science and Human Development, Faculty of Science and Technology for Humans and the Environment, University Campus Bio-Medico of Rome, Rome, Italy
| | - Elisabetta Mormone
- Fondazione IRCCS Casa Sollievo della Sofferenza, Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, Foggia, Italy
| |
Collapse
|
10
|
Stockman SL, Kight KE, Bowers JM, McCarthy MM. Neurogenesis in the neonatal rat hippocampus is regulated by sexually dimorphic epigenetic modifiers. Biol Sex Differ 2022; 13:9. [PMID: 35255959 PMCID: PMC8900308 DOI: 10.1186/s13293-022-00418-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/25/2022] [Indexed: 12/04/2022] Open
Abstract
Background Neurogenesis in the hippocampus endures across the lifespan but is particularly prolific during the first postnatal week in the developing rodent brain. The majority of new born neurons are in the dentate gyrus (DG). The number of new neurons born during the first postnatal week in the DG of male rat pups is about double the number in females. In other systems, the rate of cell proliferation is controlled by epigenetic modifications in stem cells. We, therefore, explored the potential impact of DNA methylation and histone acetylation on cell genesis in the developing DG of male and female rats.
Methods Cell genesis was assessed by quantification of BrdU + cells in the DG of neonatal rats following injections on multiple days. Methylation and acetylation were manipulated pharmacologically by injection of well vetted drugs. DNA methylation, histone acetylation and associated enzyme activity were measured using commercially available colorimetric assays. mRNA was quantified by PCR. Multiple group comparisons were made by one- or two-way ANOVA followed by post-hoc tests controlling for multiple comparisons. Two groups were compared by t test. Results We found higher levels of DNA methylation in male DG and treatment with the DNA methylating enzyme inhibitor zebularine reduced the methylation and correspondingly reduced cell genesis. The same treatment had no impact on either measure in females. By contrast, treatment with a histone deacetylase inhibitor, trichostatin-A, increased histone acetylation in the DG of both sexes but increased cell genesis only in females. Females had higher baseline histone deacetylase activity and greater inhibition in response to trichostatin-A treatment. The mRNA levels of the proproliferative gene brain-derived neurotrophic factor were greater in males and reduced by inhibiting both DNA methylation and histone deacetylation only in males.
Conclusions These data reveal a sexually dimorphic epigenetically based regulation of neurogenesis in the DG but the mechanisms establishing the distinct regulation involving DNA methylation in males and histone acetylation in females is unknown. Neurogenesis in the dentate gyrus peaks in the early postnatal period and in the laboratory rat is significantly greater in males than females. Here we report divergent regulation of cell genesis in the neonatal dentate gyrus. DNA methylation is a critical regulator of the higher rates of proliferation in males. Conversely, histone acetylation is essential for cell genesis in females.
Collapse
Affiliation(s)
- S L Stockman
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - K E Kight
- Department of Pharmacology, University of Maryland School of Medicine, 685 W. Baltimore Street, Baltimore, MD, 21201, USA
| | - J M Bowers
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - M M McCarthy
- Department of Pharmacology, University of Maryland School of Medicine, 685 W. Baltimore Street, Baltimore, MD, 21201, USA. .,University of Maryland Baltimore, Program in Neuroscience, Baltimore, MD, 21201, USA.
| |
Collapse
|
11
|
Kaplan G, Xu H, Abreu K, Feng J. DNA Epigenetics in Addiction Susceptibility. Front Genet 2022; 13:806685. [PMID: 35145550 PMCID: PMC8821887 DOI: 10.3389/fgene.2022.806685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/06/2022] [Indexed: 12/22/2022] Open
Abstract
Addiction is a chronically relapsing neuropsychiatric disease that occurs in some, but not all, individuals who use substances of abuse. Relatively little is known about the mechanisms which contribute to individual differences in susceptibility to addiction. Neural gene expression regulation underlies the pathogenesis of addiction, which is mediated by epigenetic mechanisms, such as DNA modifications. A growing body of work has demonstrated distinct DNA epigenetic signatures in brain reward regions that may be associated with addiction susceptibility. Furthermore, factors that influence addiction susceptibility are also known to have a DNA epigenetic basis. In the present review, we discuss the notion that addiction susceptibility has an underlying DNA epigenetic basis. We focus on major phenotypes of addiction susceptibility and review evidence of cell type-specific, time dependent, and sex biased effects of drug use. We highlight the role of DNA epigenetics in these diverse processes and propose its contribution to addiction susceptibility differences. Given the prevalence and lack of effective treatments for addiction, elucidating the DNA epigenetic mechanism of addiction vulnerability may represent an expeditious approach to relieving the addiction disease burden.
Collapse
|
12
|
Rainville JR, Lipuma T, Hodes GE. Translating the Transcriptome: Sex Differences in the Mechanisms of Depression and Stress, Revisited. Biol Psychiatry 2022; 91:25-35. [PMID: 33865609 PMCID: PMC10197090 DOI: 10.1016/j.biopsych.2021.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 12/28/2022]
Abstract
The past decade has produced a plethora of studies examining sex differences in the transcriptional profiles of stress and mood disorders. As we move forward from accepting the existence of extensive molecular sex differences in the brain to exploring the purpose of these sex differences, our approach must become more systemic and less reductionist. Earlier studies have examined specific brain regions and/or cell types. To use this knowledge to develop the next generation of personalized medicine, we need to comprehend how transcriptional changes across the brain and/or the body relate to each other. We provide an overview of the relationships between baseline and depression/stress-related transcriptional sex differences and explore contributions of preclinically identified mechanisms and their impacts on behavior.
Collapse
Affiliation(s)
- Jennifer R Rainville
- Department of Neuroscience, Virginia Polytechnic and State University, Blacksburg, Virginia
| | - Timothy Lipuma
- Department of Neuroscience, Virginia Polytechnic and State University, Blacksburg, Virginia
| | - Georgia E Hodes
- Department of Neuroscience, Virginia Polytechnic and State University, Blacksburg, Virginia.
| |
Collapse
|
13
|
Vazquez MJ, Daza-Dueñas S, Tena-Sempere M. Emerging Roles of Epigenetics in the Control of Reproductive Function: Focus on Central Neuroendocrine Mechanisms. J Endocr Soc 2021; 5:bvab152. [PMID: 34703958 PMCID: PMC8533971 DOI: 10.1210/jendso/bvab152] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Indexed: 12/11/2022] Open
Abstract
Reproduction is an essential function for perpetuation of the species. As such, it is controlled by sophisticated regulatory mechanisms that allow a perfect match between environmental conditions and internal cues to ensure adequate pubertal maturation and achievement of reproductive capacity. Besides classical genetic regulatory events, mounting evidence has documented that different epigenetic mechanisms operate at different levels of the reproductive axis to finely tune the development and function of this complex neuroendocrine system along the lifespan. In this mini-review, we summarize recent evidence on the role of epigenetics in the control of reproduction, with special focus on the modulation of the central components of this axis. Particular attention will be paid to the epigenetic control of puberty and Kiss1 neurons because major developments have taken place in this domain recently. In addition, the putative role of central epigenetic mechanisms in mediating the influence of nutritional and environmental cues on reproductive function will be discussed.
Collapse
Affiliation(s)
- Maria Jesus Vazquez
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), 14004 Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain.,Hospital Universitario Reina Sofia, 14004 Cordoba, Spain
| | - Silvia Daza-Dueñas
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), 14004 Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), 14004 Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain.,Hospital Universitario Reina Sofia, 14004 Cordoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004 Cordoba, Spain.,Institute of Biomedicine, University of Turku, FIN-20520 Turku, Finland
| |
Collapse
|
14
|
Cortes LR, Cisternas CD, Cabahug INKV, Mason D, Ramlall EK, Castillo-Ruiz A, Forger NG. DNA Methylation and Demethylation Underlie the Sex Difference in Estrogen Receptor Alpha in the Arcuate Nucleus. Neuroendocrinology 2021; 112:636-648. [PMID: 34547753 PMCID: PMC8934748 DOI: 10.1159/000519671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/15/2021] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Neurons expressing estrogen receptor (ER) ɑ in the arcuate (ARC) and ventromedial (VMH) nuclei of the hypothalamus sex-specifically control energy homeostasis, sexual behavior, and bone density. Females have more ERɑ neurons in the VMH and ARC than males, and the sex difference in the VMH is eliminated by neonatal treatment with testosterone or a DNA methylation inhibitor. OBJECTIVE Here, we tested the roles of testosterone and DNA methylation/demethylation in development of ERɑ in the ARC. METHODS ERɑ was examined at birth and weaning in mice that received vehicle or testosterone subcutaneously, and vehicle or DNA methyltransferase inhibitor intracerebroventricularly, as neonates. To examine effects of DNA demethylation on the ERɑ cell number in the ARC, mice were treated neonatally with small interfering RNAs against ten-eleven translocase enzymes. The methylation status of the ERɑ gene (Esr1) was determined in the ARC and VMH using pyrosequencing of bisulfite-converted DNA. RESULTS A sex difference in ERɑ in the ARC, favoring females, developed between birth and weaning and was due to programming effects of testosterone. Neonatal inhibition of DNA methylation decreased ERɑ in the ARC of females, and an inhibition of demethylation increased ERɑ in the ARC of males. The promoter region of Esr1 exhibited a small sex difference in percent of total methylation in the ARC (females > males) that was opposite to that in the VMH (males > females). CONCLUSION DNA methylation and demethylation regulate ERɑ cell number in the ARC, and methylation correlates with activation of Esr1 in this region.
Collapse
Affiliation(s)
- Laura R Cortes
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
| | - Carla D Cisternas
- Instituto de Investigación Médica Mercedes y Martín Ferrreyra INIMEC-CONICET-UNC, Córdoba, Argentina
| | | | - Damian Mason
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
| | - Emma K Ramlall
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
| | | | - Nancy G Forger
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
15
|
Rygiel CA, Goodrich JM, Solano-González M, Mercado-García A, Hu H, Téllez-Rojo MM, Peterson KE, Dolinoy DC. Prenatal Lead (Pb) Exposure and Peripheral Blood DNA Methylation (5mC) and Hydroxymethylation (5hmC) in Mexican Adolescents from the ELEMENT Birth Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:67002. [PMID: 34152198 PMCID: PMC8216410 DOI: 10.1289/ehp8507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
BACKGROUND Gestational lead (Pb) exposure can adversely affect offspring health through multiple mechanisms, including epigenomic alterations via DNA methylation (5mC) and hydroxymethylation (5hmC), an intermediate in oxidative demethylation. Most current methods do not distinguish between 5mC and 5hmC, limiting insights into their individual roles. OBJECTIVE Our study sought to identify the association of trimester-specific (T1, T2, T3) prenatal Pb exposure with 5mC and 5hmC levels at multiple cytosine-phosphate-guanine sites within gene regions previously associated with prenatal Pb (HCN2, NINJ2, RAB5A, TPPP) in whole blood leukocytes of children ages 11-18 years of age. METHODS Participants from the Early Life Exposure in Mexico to Environmental Toxicants (ELEMENT) birth cohorts were selected (n=144) for pyrosequencing analysis following oxidative or standard sodium bisulfite treatment. This workflow directly quantifies total methylation (5mC+5hmC) and 5mC only; 5hmC is estimated by subtraction. RESULTS Participants were 51% male, and mean maternal blood lead levels (BLL) were 6.43±5.16μg/dL in Trimester 1 (T1), 5.66±5.21μg/dL in Trimester 2 (T2), and 5.86±4.34μg/dL in Trimester 3 (T3). In addition, 5hmC levels were calculated for HCN2 (mean±standard deviation(SD), 2.08±4.18%), NINJ2 (G/C: 2.01±5.95; GG: 0.90±3.97), RAB5A (0.66±0.80%), and TPPP (1.11±6.67%). Furthermore, 5mC levels were measured in HCN2 (81.3±9.63%), NINJ2 (heterozygotes: 38.6±7.39%; GG homozygotes: 67.3±9.83%), RAB5A (1.41±1.21%), and TPPP (92.5±8.03%). Several significant associations between BLLs and 5mC/5hmC were identified: T1 BLLs with 5mC in HCN2 (β=-0.37, p=0.03) and 5hmC in NINJ2 (β=0.49, p=0.003); T2 BLLs with 5mC in HCN2 (β=0.37, p=0.03) and 5hmC in NINJ2 (β=0.27, p=0.008); and T3 BLLs with 5mC in HCN2 (β=0.50, p=0.01) and NINJ2 (β=-0.35, p=0.004) and 5hmC in NINJ2 (β=0.45, p<0.001). NINJ2 5mC was negatively correlated with gene expression (Pearson r=-0.5, p-value=0.005), whereas 5hmC was positively correlated (r=0.4, p-value=0.04). DISCUSSION These findings suggest there is variable 5hmC in human whole blood and that prenatal Pb exposure is associated with gene-specific 5mC and 5hmC levels at adolescence, providing evidence to consider 5hmC as a regulatory mechanism that is responsive to environmental exposures. https://doi.org/10.1289/EHP8507.
Collapse
Affiliation(s)
- Christine A. Rygiel
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Jaclyn M. Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | | | | | - Howard Hu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | | | - Karen E. Peterson
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Dana C. Dolinoy
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| |
Collapse
|
16
|
Alshammari TK. Sexual dimorphism in pre-clinical studies of depression. Prog Neuropsychopharmacol Biol Psychiatry 2021; 105:110120. [PMID: 33002519 DOI: 10.1016/j.pnpbp.2020.110120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/17/2020] [Accepted: 09/25/2020] [Indexed: 12/21/2022]
Abstract
Although there is a sex bias in the pathological mechanisms exhibited by brain disorders, investigation of the female brain in biomedical science has long been neglected. Use of the male model has generally been the preferred option as the female animal model exhibits both biological variability and hormonal fluctuations. Existing studies that compare behavioral and/or molecular alterations in animal models of brain diseases are generally underrepresented, and most utilize the male model. Nevertheless, in recent years there has been a trend toward the increased inclusion of females in brain studies. However, current knowledge regarding sex-based differences in depression and stress-related disorders is limited. This can be improved by reviewing preclinical studies that highlight sex differences in depression. This paper therefore presents a review of sex-based preclinical studies of depression. These shed light on the discrepancies between males and females regarding the biological mechanisms that underpin mechanistic alterations in the diseased brain. This review also highlights the conclusions drawn by preclinical studies to advance our understanding of mood disorders, encouraging researchers to promote ways of investigating and managing sexually dimorphic disorders.
Collapse
Affiliation(s)
- Tahani K Alshammari
- Department of Pharmacology and Toxicology, Pharmacy College, King Saud University, Saudi Arabia; Prince Naïf Bin Abdul-Aziz Health Research Center, King Saud University, Saudi Arabia.
| |
Collapse
|
17
|
Muhammad JS, Bajbouj K, Shafarin J, Hamad M. Estrogen-induced epigenetic silencing of FTH1 and TFRC genes reduces liver cancer cell growth and survival. Epigenetics 2020; 15:1302-1318. [PMID: 32476555 PMCID: PMC7678938 DOI: 10.1080/15592294.2020.1770917] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/19/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023] Open
Abstract
Estrogen (E2) regulates hundreds of genes involved in cell metabolism and disrupts iron homoeostasis in various cell types. Herein, we addressed whether E2-induced epigenetic modifications are involved in modulating the expression of iron-regulatory genes. Epigenetic status of FTH1 and TFRC genes was assessed in E2-treated cancer cells. E2-induced DNA methylation was associated with decreased FTH1 and TFRC expression in Hep-G2 and Huh7 cells, but not in AGS or MCF7 cells. Demethylation with 5-Aza-2-deoxycytidine upregulated the expression of both these genes in Hep-G2 cells. The expression of DNMT3B, PRMT5, and H4R3me2s increased in E2-treated cells. Chromatin immunoprecipitation showed that E2 treatment recruited PRMT5 and H4R3me2s on FTH1 but not on TFRC. Knockdown of PRMT5, DNMT3B, and Estrogen-receptor alpha rescued FTH1 from E2-induced silencing. However, knockdown of DNMT3B alone blocked the inhibitory effects of E2 on TFRC. Analysis of human liver tissues in publicly available datasets showed that FTH1 and TFRC are highly expressed in primary liver tumours, but a lower expression is associated with better survival. Interestingly, we showed that the silencing of FTH1 and/or TFRC inhibited carcinogenesis in Hep-G2 cells. For the first time, our findings uncovered the novel signalling pathway involved in the protective effects of E2 against liver cancer.
Collapse
Affiliation(s)
- Jibran Sualeh Muhammad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Iron Biology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Khuloud Bajbouj
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Iron Biology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Jasmin Shafarin
- Iron Biology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Mawieh Hamad
- Iron Biology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
18
|
Mat Zaid MH, Abdullah J, Rozi N, Mohamad Rozlan AA, Abu Hanifah S. A Sensitive Impedimetric Aptasensor Based on Carbon Nanodots Modified Electrode for Detection of 17ß-Estradiol. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1346. [PMID: 32664193 PMCID: PMC7407411 DOI: 10.3390/nano10071346] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023]
Abstract
A simple and sensitive aptasensor based on conductive carbon nanodots (CDs) was fabricated for the detection of 17ß-Estradiol (E2). In the present study, the hydrothermal synthesis of carbon nanodots was successfully electrodeposited on a screen-printed electrode (SPE) as a platform for immobilization of 76-mer aptamer probe. The morphology and structure of the nanomaterial were characterized by UV-visible absorption spectra, Fluorescence spectra, Transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). Moreover, cyclic voltammetry and electrochemical impedance spectroscopy were used to investigate the electrochemical performance of the prepared electrodes. Subsequently, impedimetric (EIS) measurements were employed to investigate the relative impedances changes before and after E2 binding, which results in a linear relationship of E2 concentration in the range of 1.0 × 10-7 to 1.0 × 10 -12 M, with a detection limit of 0.5 × 10-12 M. Moreover, the developed biosensor showed high selectivity toward E2 and exhibited excellent discrimination against progesterone (PRG), estriol (E3) and bisphenol A (BPA), respectively. Moreover, the average recovery rate of spiked river water samples with E2 ranged from 98.2% to 103.8%, with relative standard deviations between 1.1% and 3.8%, revealing the potential application of the present biosensor for E2 detection in water samples.
Collapse
Affiliation(s)
- Mohd Hazani Mat Zaid
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Jaafar Abdullah
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor Darul Ehsan, Malaysia
| | - Normazida Rozi
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Aliff Aiman Mohamad Rozlan
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Sharina Abu Hanifah
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Polymer Research Centre, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
19
|
Tolla E, Stevenson TJ. Sex Differences and the Neuroendocrine Regulation of Seasonal Reproduction by Supplementary Environmental Cues. Integr Comp Biol 2020; 60:1506-1516. [PMID: 32869105 DOI: 10.1093/icb/icaa096] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Seasonal rhythms in reproduction are conserved across nature and optimize the timing of breeding to environmental conditions favorable for offspring and parent survival. The primary predictive cue for timing seasonal breeding is photoperiod. Supplementary cues, such as food availability, social signals, and temperature, fine-tune the timing of reproduction. Male and female animals show differences in the sensory detection, neural integration, and physiological responses to the same supplementary cue. The neuroendocrine regulation of sex-specific integration of predictive and supplementary cues is not well characterized. Recent findings indicate that epigenetic modifications underlie the organization of sex differences in the brain. It has also become apparent that deoxyribonucleic acid methylation and chromatin modifications play an important role in the regulation and timing of seasonal rhythms. This article will highlight evidence for sex-specific responses to supplementary cues using data collected from birds and mammals. We will then emphasize that supplementary cues are integrated in a sex-dependent manner due to the neuroendocrine differences established and maintained by the organizational and activational effects of reproductive sex hormones. We will then discuss how epigenetic processes involved in reproduction provide a novel link between early-life organizational effects in the brain and sex differences in the response to supplementary cues.
Collapse
Affiliation(s)
- Elisabetta Tolla
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Tyler J Stevenson
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
20
|
Fernández R, Ramírez K, Gómez-Gil E, Cortés-Cortés J, Mora M, Aranda G, Zayas ED, Esteva I, Almaraz MC, Guillamon A, Pásaro E. Gender-Affirming Hormone Therapy Modifies the CpG Methylation Pattern of the ESR1 Gene Promoter After Six Months of Treatment in Transmen. J Sex Med 2020; 17:1795-1806. [PMID: 32636163 DOI: 10.1016/j.jsxm.2020.05.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/25/2020] [Accepted: 05/27/2020] [Indexed: 01/15/2023]
Abstract
BACKGROUND Brain sexual differentiation is a process that results from the effects of sex steroids on the developing brain. Evidence shows that epigenetics plays a main role in the formation of enduring brain sex differences and that the estrogen receptor α (ESR1) is one of the implicated genes. AIM To analyze whether the methylation of region III (RIII) of the ESR1 promoter is involved in the biological basis of gender dysphoria. METHODS We carried out a prospective study of the CpG methylation profile of RIII (-1,188 to -790 bp) of the ESR1 promoter using bisulfite genomic sequencing in a cisgender population (10 men and 10 women) and in a transgender population (10 trans men and 10 trans women), before and after 6 months of gender-affirming hormone treatment. Cisgender and transgender populations were matched by geographical origin, age, and sex. DNAs were treated with bisulfite, amplified, cloned, and sequenced. At least 10 clones per individual from independent polymerase chain reactions were sequenced. The analysis of 671 bisulfite sequences was carried out with the QUMA (QUantification tool for Methylation Analysis) program. OUTCOMES The main outcome of this study was RIII analysis using bisulfite genomic sequencing. RESULTS We found sex differences in RIII methylation profiles in cisgender and transgender populations. Cismen showed a higher methylation degree than ciswomen at CpG sites 297, 306, 509, and at the total fragment (P ≤ .003, P ≤ .026, P ≤ .001, P ≤ .006). Transmen showed a lower methylation level than trans women at sites 306, 372, and at the total fragment (P ≤ .0001, P ≤ .018, P ≤ .0107). Before the hormone treatment, transmen showed the lowest methylation level with respect to cisgender and transgender populations, whereas transwomen reached an intermediate methylation level between both the cisgender groups. After the hormone treatment, transmen showed a statistically significant methylation increase, whereas transwomen showed a non-significant methylation decrease. After the hormone treatment, the RIII methylation differences between transmen and transwomen disappeared, and both transgender groups reached an intermediate methylation level between both the cisgender groups. CLINICAL IMPLICATIONS Clinical implications in the hormonal treatment of trans people. STRENGTHS & LIMITATIONS Increasing the number of regions analyzed in the ESR1 promoter and increasing the number of tissues analyzed would provide a better understanding of the variation in the methylation pattern. CONCLUSIONS Our data showed sex differences in RIII methylation patterns in cisgender and transgender populations before the hormone treatment. Furthermore, before the hormone treatment, transwomen and transmen showed a characteristic methylation profile, different from both the cisgender groups. But the hormonal treatment modified RIII methylation in trans populations, which are now more similar to their gender. Therefore, our results suggest that the methylation of RIII could be involved in gender dysphoria. Fernández R, Ramírez K, Gómez-Gil E, et al. Gender-Affirming Hormone Therapy Modifies the CpG Methylation Pattern of the ESR1 Gene Promoter After Six Months of Treatment in Transmen. J Sex Med 2020;17:1795-1806.
Collapse
Affiliation(s)
- Rosa Fernández
- Departamento de Psicología, Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña (UDC), Campus de Elviña, A Coruña, Spain; Instituto de Investigación Biomédica de A Coruña (INIBIC), CHUAC, SERGAS, A Coruña, Spain.
| | - Karla Ramírez
- Departamento de Psicología, Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña (UDC), Campus de Elviña, A Coruña, Spain; Instituto de Investigación Biomédica de A Coruña (INIBIC), CHUAC, SERGAS, A Coruña, Spain
| | - Esther Gómez-Gil
- Unidad de Identidad de Género, Instituto de Neurociencias, Hospital Clínic, I.D.I.B.A.P.S., Barcelona, Spain
| | - Joselyn Cortés-Cortés
- Departamento de Psicología, Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña (UDC), Campus de Elviña, A Coruña, Spain; Instituto de Investigación Biomédica de A Coruña (INIBIC), CHUAC, SERGAS, A Coruña, Spain
| | - Mireia Mora
- Departmento de Endocrinología y Nutrición, Hospital Clínic, Barcelona, Spain
| | - Gloria Aranda
- Departmento de Endocrinología y Nutrición, Hospital Clínic, Barcelona, Spain
| | - Enrique Delgado Zayas
- Departamento de Psicología, Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña (UDC), Campus de Elviña, A Coruña, Spain; Instituto de Investigación Biomédica de A Coruña (INIBIC), CHUAC, SERGAS, A Coruña, Spain
| | - Isabel Esteva
- Servicio de Endocrinología y Nutrición, Unidad de Identidad de Género del Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Mari Cruz Almaraz
- Servicio de Endocrinología y Nutrición, Unidad de Identidad de Género del Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Antonio Guillamon
- Departamento de Psicobiología, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - Eduardo Pásaro
- Departamento de Psicología, Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña (UDC), Campus de Elviña, A Coruña, Spain; Instituto de Investigación Biomédica de A Coruña (INIBIC), CHUAC, SERGAS, A Coruña, Spain
| |
Collapse
|
21
|
Gardini ES, Chen GG, Fiacco S, Mernone L, Willi J, Turecki G, Ehlert U. Differential ESR1 Promoter Methylation in the Peripheral Blood-Findings from the Women 40+ Healthy Aging Study. Int J Mol Sci 2020; 21:E3654. [PMID: 32455834 PMCID: PMC7279168 DOI: 10.3390/ijms21103654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 12/16/2022] Open
Abstract
Background Estrogen receptor α (ERα) contributes to maintaining biological processes preserving health during aging. DNA methylation changes of ERα gene (ESR1) were established as playing a direct role in the regulation of ERα levels. In this study, we hypothesized decreased DNA methylation of ESR1 associated with postmenopause, lower estradiol (E2) levels, and increased age among healthy middle-aged and older women. Methods We assessed DNA methylation of ESR1 promoter region from dried blood spots (DBSs) and E2 from saliva samples in 130 healthy women aged 40-73 years. Results We found that postmenopause and lower E2 levels were associated with lower DNA methylation of a distal regulatory region, but not with DNA methylation of proximal promoters. Conclusion Our results indicate that decreased methylation of ESR1 cytosine-phosphate-guanine island (CpGI) shore may be associated with conditions of lower E2 in older healthy women.
Collapse
Affiliation(s)
- Elena S. Gardini
- Clinical Psychology and Psychotherapy, Department of Psychology, University of Zurich, 8050 Zurich, Switzerland; (E.S.G.); (S.F.); (L.M.); (J.W.)
- University Research Priority Program (URPP) Dynamics of Healthy Aging, University of Zurich, 8050 Zurich, Switzerland
| | - Gary G. Chen
- Douglas Hospital Research Center, McGill University, Montreal, QC H4H 1R3, Canada; (G.G.C.); (G.T.)
| | - Serena Fiacco
- Clinical Psychology and Psychotherapy, Department of Psychology, University of Zurich, 8050 Zurich, Switzerland; (E.S.G.); (S.F.); (L.M.); (J.W.)
- University Research Priority Program (URPP) Dynamics of Healthy Aging, University of Zurich, 8050 Zurich, Switzerland
| | - Laura Mernone
- Clinical Psychology and Psychotherapy, Department of Psychology, University of Zurich, 8050 Zurich, Switzerland; (E.S.G.); (S.F.); (L.M.); (J.W.)
- University Research Priority Program (URPP) Dynamics of Healthy Aging, University of Zurich, 8050 Zurich, Switzerland
| | - Jasmine Willi
- Clinical Psychology and Psychotherapy, Department of Psychology, University of Zurich, 8050 Zurich, Switzerland; (E.S.G.); (S.F.); (L.M.); (J.W.)
- University Research Priority Program (URPP) Dynamics of Healthy Aging, University of Zurich, 8050 Zurich, Switzerland
| | - Gustavo Turecki
- Douglas Hospital Research Center, McGill University, Montreal, QC H4H 1R3, Canada; (G.G.C.); (G.T.)
| | - Ulrike Ehlert
- Clinical Psychology and Psychotherapy, Department of Psychology, University of Zurich, 8050 Zurich, Switzerland; (E.S.G.); (S.F.); (L.M.); (J.W.)
- University Research Priority Program (URPP) Dynamics of Healthy Aging, University of Zurich, 8050 Zurich, Switzerland
| |
Collapse
|
22
|
Rubin JB, Lagas JS, Broestl L, Sponagel J, Rockwell N, Rhee G, Rosen SF, Chen S, Klein RS, Imoukhuede P, Luo J. Sex differences in cancer mechanisms. Biol Sex Differ 2020; 11:17. [PMID: 32295632 PMCID: PMC7161126 DOI: 10.1186/s13293-020-00291-x] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 03/18/2020] [Indexed: 02/07/2023] Open
Abstract
We now know that cancer is many different diseases, with great variation even within a single histological subtype. With the current emphasis on developing personalized approaches to cancer treatment, it is astonishing that we have not yet systematically incorporated the biology of sex differences into our paradigms for laboratory and clinical cancer research. While some sex differences in cancer arise through the actions of circulating sex hormones, other sex differences are independent of estrogen, testosterone, or progesterone levels. Instead, these differences are the result of sexual differentiation, a process that involves genetic and epigenetic mechanisms, in addition to acute sex hormone actions. Sexual differentiation begins with fertilization and continues beyond menopause. It affects virtually every body system, resulting in marked sex differences in such areas as growth, lifespan, metabolism, and immunity, all of which can impact on cancer progression, treatment response, and survival. These organismal level differences have correlates at the cellular level, and thus, males and females can fundamentally differ in their protections and vulnerabilities to cancer, from cellular transformation through all stages of progression, spread, and response to treatment. Our goal in this review is to cover some of the robust sex differences that exist in core cancer pathways and to make the case for inclusion of sex as a biological variable in all laboratory and clinical cancer research. We finish with a discussion of lab- and clinic-based experimental design that should be used when testing whether sex matters and the appropriate statistical models to apply in data analysis for rigorous evaluations of potential sex effects. It is our goal to facilitate the evaluation of sex differences in cancer in order to improve outcomes for all patients.
Collapse
Affiliation(s)
- Joshua B Rubin
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA.
- Department of Neuroscience, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA.
| | - Joseph S Lagas
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Lauren Broestl
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Jasmin Sponagel
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Nathan Rockwell
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Gina Rhee
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Sarah F Rosen
- Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Si Chen
- Department of Biomedical Engineering, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Robyn S Klein
- Department of Neuroscience, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
- Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Princess Imoukhuede
- Department of Biomedical Engineering, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Jingqin Luo
- Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| |
Collapse
|
23
|
Baumbach JL, Zovkic IB. Hormone-epigenome interactions in behavioural regulation. Horm Behav 2020; 118:104680. [PMID: 31927018 DOI: 10.1016/j.yhbeh.2020.104680] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/03/2020] [Accepted: 01/05/2020] [Indexed: 02/06/2023]
Abstract
Interactions between hormones and epigenetic factors are key regulators of behaviour, but the mechanisms that underlie their effects are complex. Epigenetic factors can modify sensitivity to hormones by altering hormone receptor expression, and hormones can regulate epigenetic factors by recruiting epigenetic regulators to DNA. The bidirectional nature of this relationship is becoming increasingly evident and suggests that the ability of hormones to regulate certain forms of behaviour may depend on their ability to induce changes in the epigenome. Moreover, sex differences have been reported for several epigenetic modifications, and epigenetic factors are thought to regulate sexual differentiation of behaviour, although specific mechanisms remain to be understood. Indeed, hormone-epigenome interactions are highly complex and involve both canonical and non-canonical regulatory pathways that may permit for highly specific gene regulation to promote variable forms of behavioural adaptation.
Collapse
Affiliation(s)
- Jennet L Baumbach
- Department of Psychology, University of Toronto Mississauga, Mississauga, Canada
| | - Iva B Zovkic
- Department of Psychology, University of Toronto Mississauga, Mississauga, Canada.
| |
Collapse
|
24
|
Cisternas CD, Cortes LR, Golynker I, Castillo-Ruiz A, Forger NG. Neonatal Inhibition of DNA Methylation Disrupts Testosterone-Dependent Masculinization of Neurochemical Phenotype. Endocrinology 2020; 161:5631853. [PMID: 31742329 DOI: 10.1210/endocr/bqz022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/18/2019] [Indexed: 11/19/2022]
Abstract
Many neural sex differences are differences in the number of neurons of a particular phenotype. For example, male rodents have more calbindin-expressing neurons in the medial preoptic area (mPOA) and bed nucleus of the stria terminalis (BNST), and females have more neurons expressing estrogen receptor alpha (ERα) and kisspeptin in the ventromedial nucleus of the hypothalamus (VMH) and the anteroventral periventricular nucleus (AVPV), respectively. These sex differences depend on neonatal exposure to testosterone, but the underlying molecular mechanisms are unknown. DNA methylation is important for cell phenotype differentiation throughout the developing organism. We hypothesized that testosterone causes sex differences in neurochemical phenotype via changes in DNA methylation, and tested this by inhibiting DNA methylation neonatally in male and female mice, and in females given a masculinizing dose of testosterone. Neonatal testosterone treatment masculinized calbindin, ERα and kisspeptin cell number of females at weaning. Inhibiting DNA methylation with zebularine increased calbindin cell number only in control females, thus eliminating sex differences in calbindin in the mPOA and BNST. Zebularine also reduced the sex difference in ERα cell number in the VMH, in this case by increasing ERα neuron number in males and testosterone-treated females. In contrast, the neonatal inhibition of DNA methylation had no effect on kisspeptin cell number. We conclude that testosterone normally increases the number of calbindin cells and reduces ERα cells in males through orchestrated changes in DNA methylation, contributing to, or causing, the sex differences in both cell types.
Collapse
Affiliation(s)
| | - Laura R Cortes
- Neuroscience Institute, Georgia State University, Atlanta, GA
| | - Ilona Golynker
- Neuroscience Institute, Georgia State University, Atlanta, GA
| | | | - Nancy G Forger
- Neuroscience Institute, Georgia State University, Atlanta, GA
| |
Collapse
|
25
|
Gegenhuber B, Tollkuhn J. Signatures of sex: Sex differences in gene expression in the vertebrate brain. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2020; 9:e348. [PMID: 31106965 PMCID: PMC6864223 DOI: 10.1002/wdev.348] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/10/2019] [Accepted: 04/22/2019] [Indexed: 12/13/2022]
Abstract
Women and men differ in disease prevalence, symptoms, and progression rates for many psychiatric and neurological disorders. As more preclinical studies include both sexes in experimental design, an increasing number of sex differences in physiology and behavior have been reported. In the brain, sex-typical behaviors are thought to result from sex-specific patterns of neural activity in response to the same sensory stimulus or context. These differential firing patterns likely arise as a consequence of underlying anatomic or molecular sex differences. Accordingly, gene expression in the brains of females and males has been extensively investigated, with the goal of identifying biological pathways that specify or modulate sex differences in brain function. However, there is surprisingly little consensus on sex-biased genes across studies and only a handful of robust candidates have been pursued in the follow-up experiments. Furthermore, it is not known how or when sex-biased gene expression originates, as few studies have been performed in the developing brain. Here we integrate molecular genetic and neural circuit perspectives to provide a conceptual framework of how sex differences in gene expression can arise in the brain. We detail mechanisms of gene regulation by steroid hormones, highlight landmark studies in rodents and humans, identify emerging themes, and offer recommendations for future research. This article is categorized under: Nervous System Development > Vertebrates: General Principles Gene Expression and Transcriptional Hierarchies > Regulatory Mechanisms Gene Expression and Transcriptional Hierarchies > Sex Determination.
Collapse
Affiliation(s)
- Bruno Gegenhuber
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | | |
Collapse
|
26
|
González SL, Coronel MF, Raggio MC, Labombarda F. Progesterone receptor-mediated actions and the treatment of central nervous system disorders: An up-date of the known and the challenge of the unknown. Steroids 2020; 153:108525. [PMID: 31634489 DOI: 10.1016/j.steroids.2019.108525] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/30/2019] [Accepted: 10/09/2019] [Indexed: 01/04/2023]
Abstract
Progesterone has been shown to exert a wide range of remarkable protective actions in experimental models of central nervous system injury or disease. However, the intimate mechanisms involved in each of these beneficial effects are not fully depicted. In this review, we intend to give the readers a thorough revision on what is known about the participation of diverse receptors and signaling pathways in progesterone-mediated neuroprotective, pro-myelinating and anti-inflammatory outcomes, as well as point out to novel regulatory mechanisms that could open new perspectives in steroid-based therapies.
Collapse
Affiliation(s)
- Susana L González
- Laboratorio de Nocicepción y Dolor Neuropático, Instituto de Biología y Medicina Experimental, CONICET, Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina; Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, C1121ABG Buenos Aires, Argentina.
| | - María F Coronel
- Laboratorio de Nocicepción y Dolor Neuropático, Instituto de Biología y Medicina Experimental, CONICET, Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina; Facultad de Ciencias Biomédicas, Universidad Austral, Presidente Perón 1500, B1629AHJ Pilar, Buenos Aires, Argentina
| | - María C Raggio
- Laboratorio de Nocicepción y Dolor Neuropático, Instituto de Biología y Medicina Experimental, CONICET, Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina
| | - Florencia Labombarda
- Laboratorio de Bioquímica Neuroendócrina, Instituto de Biología y Medicina Experimental, CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina; Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, C1121ABG Buenos Aires, Argentina
| |
Collapse
|
27
|
Okubo K, Miyazoe D, Nishiike Y. A conceptual framework for understanding sexual differentiation of the teleost brain. Gen Comp Endocrinol 2019; 284:113129. [PMID: 30825478 DOI: 10.1016/j.ygcen.2019.02.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/08/2019] [Accepted: 02/26/2019] [Indexed: 12/31/2022]
Abstract
Vertebrate brains are sexually differentiated, giving rise to differences in various physiological and behavioral phenotypes between the sexes. In developing mammals and birds, the neural substrate underlying sex-dependent physiology and behavior undergoes an irreversible process of sexual differentiation due to the effects of perinatal gonadal steroids and sex chromosome complement. The differentiated neural substrate is then activated in the adult by the sex-specific steroid milieu to facilitate the expression of sex-typical phenotypes. However, this well-established concept does not hold for teleost fish, whose sexual phenotypes (behavioral or otherwise) are highly labile throughout life and can be reversed even in adulthood. Indeed, the available evidence suggests that, in teleosts, neither gonadal steroids early in development nor the sex chromosome complement contribute much to brain sexual differentiation; instead, steroids in adulthood serve to both differentiate the neural substrate and activate it to elicit sex-typical phenotypes in a transient and reversible manner. Evidence further suggests that marked sexual dimorphisms and adult steroid-dependent lability in the neural expression of sex steroid receptors constitute the primary molecular basis for sexual differentiation and lability of the teleost brain. The consequent sexually dimorphic but reversible steroid sensitivity in response to the adult steroid milieu may enable the teleost brain to maintain lifelong sexual lability and to undergo phenotypic sex reversal.
Collapse
Affiliation(s)
- Kataaki Okubo
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan.
| | - Daichi Miyazoe
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Yuji Nishiike
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| |
Collapse
|
28
|
Jiang S, Postovit L, Cattaneo A, Binder EB, Aitchison KJ. Epigenetic Modifications in Stress Response Genes Associated With Childhood Trauma. Front Psychiatry 2019; 10:808. [PMID: 31780969 PMCID: PMC6857662 DOI: 10.3389/fpsyt.2019.00808] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022] Open
Abstract
Adverse childhood experiences (ACEs) may be referred to by other terms (e.g., early life adversity or stress and childhood trauma) and have a lifelong impact on mental and physical health. For example, childhood trauma has been associated with posttraumatic stress disorder (PTSD), anxiety, depression, bipolar disorder, diabetes, and cardiovascular disease. The heritability of ACE-related phenotypes such as PTSD, depression, and resilience is low to moderate, and, moreover, is very variable for a given phenotype, which implies that gene by environment interactions (such as through epigenetic modifications) may be involved in the onset of these phenotypes. Currently, there is increasing interest in the investigation of epigenetic contributions to ACE-induced differential health outcomes. Although there are a number of studies in this field, there are still research gaps. In this review, the basic concepts of epigenetic modifications (such as methylation) and the function of the hypothalamic-pituitary-adrenal (HPA) axis in the stress response are outlined. Examples of specific genes undergoing methylation in association with ACE-induced differential health outcomes are provided. Limitations in this field, e.g., uncertain clinical diagnosis, conceptual inconsistencies, and technical drawbacks, are reviewed, with suggestions for advances using new technologies and novel research directions. We thereby provide a platform on which the field of ACE-induced phenotypes in mental health may build.
Collapse
Affiliation(s)
- Shui Jiang
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Lynne Postovit
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Annamaria Cattaneo
- Biological Psychiatric Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Elisabeth B. Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Katherine J. Aitchison
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
29
|
Azcoitia I, Barreto GE, Garcia-Segura LM. Molecular mechanisms and cellular events involved in the neuroprotective actions of estradiol. Analysis of sex differences. Front Neuroendocrinol 2019; 55:100787. [PMID: 31513774 DOI: 10.1016/j.yfrne.2019.100787] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/27/2019] [Accepted: 09/07/2019] [Indexed: 12/12/2022]
Abstract
Estradiol, either from peripheral or central origin, activates multiple molecular neuroprotective and neuroreparative responses that, being mediated by estrogen receptors or by estrogen receptor independent mechanisms, are initiated at the membrane, the cytoplasm or the cell nucleus of neural cells. Estrogen-dependent signaling regulates a variety of cellular events, such as intracellular Ca2+ levels, mitochondrial respiratory capacity, ATP production, mitochondrial membrane potential, autophagy and apoptosis. In turn, these molecular and cellular actions of estradiol are integrated by neurons and non-neuronal cells to generate different tissue protective responses, decreasing blood-brain barrier permeability, oxidative stress, neuroinflammation and excitotoxicity and promoting synaptic plasticity, axonal growth, neurogenesis, remyelination and neuroregeneration. Recent findings indicate that the neuroprotective and neuroreparative actions of estradiol are different in males and females and further research is necessary to fully elucidate the causes for this sex difference.
Collapse
Affiliation(s)
- Iñigo Azcoitia
- Department of Cell Biology, Faculty of Biology, Universidad Complutense de Madrid, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludables (CIBERFES), Instituto de Salud Carlos III, Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain.
| | - George E Barreto
- Department of Biological Sciences, School of Natural Sciences, University of Limerick, Limerick, Ireland.
| | - Luis M Garcia-Segura
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludables (CIBERFES), Instituto de Salud Carlos III, Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain; Instituto Cajal, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain.
| |
Collapse
|
30
|
Cisternas CD, Cortes LR, Bruggeman EC, Yao B, Forger NG. Developmental changes and sex differences in DNA methylation and demethylation in hypothalamic regions of the mouse brain. Epigenetics 2019; 15:72-84. [PMID: 31378140 DOI: 10.1080/15592294.2019.1649528] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
DNA methylation is dynamically modulated during postnatal brain development, and plays a key role in neuronal lineage commitment. This epigenetic mark has also recently been implicated in the development of neural sex differences, many of which are found in the hypothalamus. The level of DNA methylation depends on a balance between the placement of methyl marks by DNA methyltransferases (Dnmts) and their removal, which is catalyzed by ten-eleven translocation (Tet) methylcytosine dioxygenases. Here, we examined developmental changes and sex differences in the expression of Tet and Dnmt enzymes from birth to adulthood in two hypothalamic regions (the preoptic area and ventromedial nucleus) and the hippocampus of mice. We found highest expression of all Tet enzymes (Tet1, Tet2, Tet3) and Dnmts (Dnmt1, Dnmt3a, Dnmt3b) in newborns, despite the fact that global methylation and hydroxymethylation were at their lowest levels at birth. Expression of the Dnmt co-activator, Dnmt3l, followed a pattern opposite to that of the canonical Dnmts (i.e., was very low in newborns and increased with age). Tet enzyme activity was much higher at birth than at weaning in both the hypothalamus and hippocampus, mirroring developmental changes in gene expression. Sex differences in Tet enzyme expression were seen in all brain regions examined during the first week of life, whereas Dnmt expression was more balanced between the sexes. Neonatal testosterone treatment of females only partially masculinized enzyme expression. Thus, Tet expression and activity are elevated during neonatal brain development, and may play important roles in sexual differentiation of the brain.
Collapse
Affiliation(s)
- Carla D Cisternas
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA
| | - Laura R Cortes
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA
| | - Emily C Bruggeman
- Department of Human Genetics, Emory School of Medicine, Atlanta, GA, USA
| | - Bing Yao
- Department of Human Genetics, Emory School of Medicine, Atlanta, GA, USA
| | - Nancy G Forger
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
31
|
Post-translational histone modifications and their interaction with sex influence normal brain development and elaboration of neuropsychiatric disorders. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1968-1981. [DOI: 10.1016/j.bbadis.2018.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/05/2018] [Accepted: 10/08/2018] [Indexed: 02/06/2023]
|
32
|
Keller SM, Doherty TS, Roth TL. Pharmacological manipulation of DNA methylation normalizes maternal behavior, DNA methylation, and gene expression in dams with a history of maltreatment. Sci Rep 2019; 9:10253. [PMID: 31311968 PMCID: PMC6635500 DOI: 10.1038/s41598-019-46539-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 06/25/2019] [Indexed: 01/02/2023] Open
Abstract
The quality of parental care received during development profoundly influences an individual's phenotype, including that of maternal behavior. We previously found that female rats with a history of maltreatment during infancy mistreat their own offspring. One proposed mechanism through which early-life experiences influence behavior is via epigenetic modifications. Indeed, our lab has identified a number of brain epigenetic alterations in female rats with a history of maltreatment. Here we sought to investigate the role of DNA methylation in aberrant maternal behavior. We administered zebularine, a drug known to alter DNA methylation, to dams exposed during infancy to the scarcity-adversity model of low nesting resources, and then characterized the quality of their care towards their offspring. First, we replicate that dams with a history of maltreatment mistreat their own offspring. Second, we show that maltreated-dams treated with zebularine exhibit lower levels of adverse care toward their offspring. Third, we show that administration of zebularine in control dams (history of nurturing care) enhances levels of adverse care. Lastly, we show altered methylation and gene expression in maltreated dams normalized by zebularine. These findings lend support to the hypothesis that epigenetic alterations resulting from maltreatment causally relate to behavioral outcomes.
Collapse
Affiliation(s)
- Samantha M Keller
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Tiffany S Doherty
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Tania L Roth
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
33
|
Gegenhuber B, Tollkuhn J. Sex Differences in the Epigenome: A Cause or Consequence of Sexual Differentiation of the Brain? Genes (Basel) 2019; 10:genes10060432. [PMID: 31181654 PMCID: PMC6627918 DOI: 10.3390/genes10060432] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 12/19/2022] Open
Abstract
Females and males display differences in neural activity patterns, behavioral responses, and incidence of psychiatric and neurological diseases. Sex differences in the brain appear throughout the animal kingdom and are largely a consequence of the physiological requirements necessary for the distinct roles of the two sexes in reproduction. As with the rest of the body, gonadal steroid hormones act to specify and regulate many of these differences. It is thought that transient hormonal signaling during brain development gives rise to persistent sex differences in gene expression via an epigenetic mechanism, leading to divergent neurodevelopmental trajectories that may underlie sex differences in disease susceptibility. However, few genes with a persistent sex difference in expression have been identified, and only a handful of studies have employed genome-wide approaches to assess sex differences in epigenomic modifications. To date, there are no confirmed examples of gene regulatory elements that direct sex differences in gene expression in the brain. Here, we review foundational studies in this field, describe transcriptional mechanisms that could act downstream of hormone receptors in the brain, and suggest future approaches for identification and validation of sex-typical gene programs. We propose that sexual differentiation of the brain involves self-perpetuating transcriptional states that canalize sex-specific development.
Collapse
Affiliation(s)
- Bruno Gegenhuber
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| | - Jessica Tollkuhn
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
34
|
Goldberg X, Serra-Blasco M, Vicent-Gil M, Aguilar E, Ros L, Arias B, Courtet P, Palao D, Cardoner N. Childhood maltreatment and risk for suicide attempts in major depression: a sex-specific approach. Eur J Psychotraumatol 2019; 10:1603557. [PMID: 31105902 PMCID: PMC6507860 DOI: 10.1080/20008198.2019.1603557] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 01/14/2023] Open
Abstract
Background: Childhood maltreatment increases the risk of suicide attempts in the general population, possibly having similar effects among patients with major depressive disorder (MDD). The few studies that have addressed this association have been restricted to specific populations (e.g. treatment-resistant depression, personality disorders) and have rarely taken sex into account. Objective: To examine the impact of childhood maltreatment on suicide attempts among MDD patients above and beyond other risk factors and potential confounders, while considering potential sex-specific effects. Methods: The study assessed 165 patients with a principal diagnosis of MDD. Neurological alterations, psychiatric comorbidities, and drug abuse were reasons for exclusion. Logistic regressions using the whole sample, and divided by sex, were run to test the association between childhood maltreatment and history of suicide attempts, controlling for symptom severity, comorbidities, and treatment-resistant depression. Results: There was a significant and clinically relevant association between childhood maltreatment and history of suicide attempts in the total sample. Patients with childhood maltreatment were 3.01 times more likely to present a history of suicide attempts than patients without childhood maltreatment. A family history of psychiatric disorders also contributed to the variance of attempted suicide, but its interaction with childhood maltreatment was not statistically significant. When testing the model separately, the effect of childhood maltreatment on suicide attempts remained for females, whereas for males, age of MDD onset and Childhood Trauma Questionnaire minimization-denial scale were predictive variables. Conclusions: Childhood maltreatment is a clear predictor of suicidal behaviour among MDD patients, and this effect remains significant after controlling for potential confounders. Also, the sex of patients emerges as a relevant factor that may model the mechanisms underlying the prediction of suicide attempts. Since suicide is the main cause of premature death among MDD patients, interventions targeting childhood maltreatment should be included in preventive and clinical strategies.
Collapse
Affiliation(s)
- Ximena Goldberg
- Mental Health Department, Neuroscience and Mental Health Research Area, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, CIBERSAM, Sabadell, Spain
| | - Maria Serra-Blasco
- Mental Health Department, Neuroscience and Mental Health Research Area, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, CIBERSAM, Sabadell, Spain
| | - Muriel Vicent-Gil
- Mental Health Department, Neuroscience and Mental Health Research Area, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, CIBERSAM, Sabadell, Spain
- Department de Psiquiatria, Institut d’Investigació Biomèdica Sant-Pau (IIB-Sant Pau), CIBERSAM, Barcelona, Spain
| | - Eva Aguilar
- Mental Health Department, Neuroscience and Mental Health Research Area, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, CIBERSAM, Sabadell, Spain
| | - Laura Ros
- Mental Health Department, Neuroscience and Mental Health Research Area, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, CIBERSAM, Sabadell, Spain
| | - Barbara Arias
- Departament Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, CIBERSAM, Barcelona, Spain
| | - Philippe Courtet
- Department of Emergency Psychiatry and Acute Care, CHU Montpellier, Hopital Lapeyronie, INSERM Unit 1061, University of Montpellier, Montpellier, France
| | - Diego Palao
- Mental Health Department, Neuroscience and Mental Health Research Area, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, CIBERSAM, Sabadell, Spain
| | - Narcís Cardoner
- Mental Health Department, Neuroscience and Mental Health Research Area, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, CIBERSAM, Sabadell, Spain
| |
Collapse
|
35
|
Aylwin CF, Toro CA, Shirtcliff E, Lomniczi A. Emerging Genetic and Epigenetic Mechanisms Underlying Pubertal Maturation in Adolescence. JOURNAL OF RESEARCH ON ADOLESCENCE : THE OFFICIAL JOURNAL OF THE SOCIETY FOR RESEARCH ON ADOLESCENCE 2019; 29:54-79. [PMID: 30869843 DOI: 10.1111/jora.12385] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The adolescent transition begins with the onset of puberty which, upstream in the brain, is initiated by the gonadotropin-releasing hormone (GnRH) pulse generator that activates the release of peripheral sex hormones. Substantial research in human and animal models has revealed a myriad of cellular networks and heritable genes that control the GnRH pulse generator allowing the individual to begin the process of reproductive competence and sexual maturation. Here, we review the latest knowledge in neuroendocrine pubertal research with emphasis on genetic and epigenetic mechanisms underlying the pubertal transition.
Collapse
|
36
|
Cortes LR, Cisternas CD, Forger NG. Does Gender Leave an Epigenetic Imprint on the Brain? Front Neurosci 2019; 13:173. [PMID: 30872999 PMCID: PMC6400866 DOI: 10.3389/fnins.2019.00173] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/13/2019] [Indexed: 01/21/2023] Open
Abstract
The words “sex” and “gender” are often used interchangeably in common usage. In fact, the Merriam-Webster dictionary offers “sex” as the definition of gender. The authors of this review are neuroscientists, and the words “sex” and “gender” mean very different things to us: sex is based on biological factors such as sex chromosomes and gonads, whereas gender has a social component and involves differential expectations or treatment by conspecifics, based on an individual’s perceived sex. While we are accustomed to thinking about “sex” and differences between males and females in epigenetic marks in the brain, we are much less used to thinking about the biological implications of gender. Nonetheless, careful consideration of the field of epigenetics leads us to conclude that gender must also leave an epigenetic imprint on the brain. Indeed, it would be strange if this were not the case, because all environmental influences of any import can epigenetically change the brain. In the following pages, we explain why there is now sufficient evidence to suggest that an epigenetic imprint for gender is a logical conclusion. We define our terms for sex, gender, and epigenetics, and describe research demonstrating sex differences in epigenetic mechanisms in the brain which, to date, is mainly based on work in non-human animals. We then give several examples of how gender, rather than sex, may cause the brain epigenome to differ in males and females, and finally consider the myriad of ways that sex and gender interact to shape gene expression in the brain.
Collapse
Affiliation(s)
- Laura R Cortes
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Carla D Cisternas
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Nancy G Forger
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
37
|
Ikeda Y, Kato-Inui T, Tagami A, Maekawa M. Expression of progesterone receptor, estrogen receptors α and β, and kisspeptin in the hypothalamus during perinatal development of gonad-lacking steroidogenic factor-1 knockout mice. Brain Res 2019; 1712:167-179. [PMID: 30776325 DOI: 10.1016/j.brainres.2019.02.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/25/2019] [Accepted: 02/12/2019] [Indexed: 11/30/2022]
Abstract
Gonadal hormones contribute to brain sexual differentiation. We analyzed expression of progesterone receptor (PR), estrogen receptor-α (ERα), ERβ, and kisspeptin, in the preoptic area (POA) and/or the arcuate nucleus (ARC), in gonad-lacking steroidogenic factor-1 knockout (KO) mice during perinatal development. At postnatal-day (P) 0-P7, POA PR levels were higher in wild-type (WT) males compared with WT females, while those in KO males were lower than in WT males and similar to those in WT and KO females. At P14-P21, PR levels in all groups increased similarly. POA ERα levels were similar in all groups at embryonic-day (E) 15.5-P14. Those in WT but not KO males reduced during postnatal development to be significantly lower compared with females at P21. POA ERβ levels were higher in WT males than in WT females, while those in KO males were lower than in WT males and similar to those in WT and KO females at P0-P21. POA kisspeptin expression was female-biased in WT mice, while levels in KO females were lower compared with WT females and similar to those in WT and KO males. ARC kisspeptin levels were equivalent among groups at E15.5-P0. At P7-P21, ARC levels in WT but not KO males became lower compared with WT females. Diethylstilbestrol exposure during P0-P6 and P7-P13 increased POA PR and ERβ, and decreased POA ERα and ARC kisspeptin levels at P7 and/or P14 in both sexes of KO mice. These data further understanding of gonadal hormone action on neuronal marker expression during brain sexual development.
Collapse
Affiliation(s)
- Yayoi Ikeda
- Department of Anatomy, Aichi-Gakuin University School of Dentistry, Nagoya, Japan.
| | - Tomoko Kato-Inui
- Koeki Zaidan Hojin Tokyo-to Igaku Sogo Kenkyujo, Regenerative Medicine Project 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, Japan
| | - Ayako Tagami
- Department of Anatomy, Aichi-Gakuin University School of Dentistry, Nagoya, Japan
| | - Mamiko Maekawa
- Department of Anatomy, Aichi-Gakuin University School of Dentistry, Nagoya, Japan
| |
Collapse
|
38
|
Aylwin CF, Vigh-Conrad K, Lomniczi A. The Emerging Role of Chromatin Remodeling Factors in Female Pubertal Development. Neuroendocrinology 2019; 109:208-217. [PMID: 30731454 PMCID: PMC6794153 DOI: 10.1159/000497745] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/06/2019] [Indexed: 12/21/2022]
Abstract
To attain sexual competence, all mammalian species go through puberty, a maturational period during which body growth and development of secondary sexual characteristics occur. Puberty begins when the diurnal pulsatile gonadotropin-releasing hormone (GnRH) release from the hypothalamus increases for a prolonged period of time, driving the adenohypophysis to increase the pulsatile release of luteinizing hormone with diurnal periodicity. Increased pubertal GnRH secretion does not appear to be driven by inherent changes in GnRH neuronal activity; rather, it is induced by changes in transsynaptic and glial inputs to GnRH neurons. We now know that these changes involve a reduction in inhibitory transsynaptic inputs combined with increased transsynaptic and glial excitatory inputs to the GnRH neuronal network. Although the pubertal process is known to have a strong genetic component, during the last several years, epigenetics has been implicated as a significant regulatory mechanism through which GnRH release is first repressed before puberty and is involved later on during the increase in GnRH secretion that brings about the pubertal process. According to this concept, a central target of epigenetic regulation is the transcriptional machinery of neurons implicated in stimulating GnRH release. Here, we will briefly review the hormonal changes associated with the advent of female puberty and the role that excitatory transsynaptic inputs have in this process. In addition, we will examine the 3 major groups of epigenetic modifying enzymes expressed in the neuroendocrine hypothalamus, which was recently shown to be involved in pubertal development and progression.
Collapse
Affiliation(s)
- Carlos Francisco Aylwin
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University (OHSU), Beaverton, Oregon, USA
| | - Katinka Vigh-Conrad
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University (OHSU), Beaverton, Oregon, USA
| | - Alejandro Lomniczi
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University (OHSU), Beaverton, Oregon, USA,
| |
Collapse
|
39
|
Zhang X, Ji M, Tan X, Yu K, Liu X, Li N, Yu Z. Impairment of ovaries by 2,3,7,8-tetrachlorobenzo-p-dioxin (TCDD) exposure in utero associated with BMP15 and GDF9 in the female offspring rat. Toxicology 2018; 410:16-25. [PMID: 30172648 DOI: 10.1016/j.tox.2018.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 08/08/2018] [Accepted: 08/27/2018] [Indexed: 11/24/2022]
Abstract
2,3,7,8-Tetrachlorobenzo-p-dioxin (TCDD) exposure in utero had been shown to affect ovarian development and functions. However, its mechanism remained unknown. In this study, to investigate the effect of maternal exposure to TCDD on ovaries, the pregnant Sprague Dawley (SD) rats were treated with TCDD (100 ng/kg or 500 ng/kg) or only vehicle and corn oil on the day 8-14 of gestation through the gavage with a stainless-steel feeding needle (once a day). The vaginal opening and estrous cycle of female offspring rats (F1) were monitored twice a day. The ovarian histology, follicle counts, real-time PCR, western blotting and DNA methylation analysis about Gdf9 and Bmp15 were carried out in F1 rats. The results showed that exposure to TCDD (especially the dose of 500 ng/kg) in utero on GD8-14 might change the ovary weight, the concentration of E2 and FSH, the estrous cycles and the numbers of primordial and secondary follicles of the offspring rats. In addition, the mRNA and protein expression of GDF9 and BMP15 was down-regulated, while the methylation patterns of Gdf9 and Bmp15 were not affected. In conclusion, maternal exposure to TCDD could affect the ovary development and functions which were possibly associated with down-regulation of mRNA and protein expression of GDF9 and BMP15. However, the down-regulation was not related to the pattern of methylation of Gdf9 and Bmp15.
Collapse
Affiliation(s)
- Xiuli Zhang
- Public Health College of Zhengzhou University, No. 100 of Science Road, Zhengzhou, 450001, China; The First Affiliated Hospital of Zhengzhou University, No. 1 of Jianshe East Road, Zhengzhou, 450052, China
| | - Mengmeng Ji
- Public Health College of Zhengzhou University, No. 100 of Science Road, Zhengzhou, 450001, China
| | - Xuemei Tan
- Public Health College of Zhengzhou University, No. 100 of Science Road, Zhengzhou, 450001, China
| | - Kailun Yu
- Public Health College of Zhengzhou University, No. 100 of Science Road, Zhengzhou, 450001, China
| | - Xiaozhuan Liu
- Henan Provincial Peoples Hospital, No. 7 of Weiwu Road, Zhengzhou, 450001, China
| | - Ning Li
- Henan Agricultural University, No. 63 of Agricultural Road, Zhengzhou, 450002, China
| | - Zengli Yu
- Public Health College of Zhengzhou University, No. 100 of Science Road, Zhengzhou, 450001, China.
| |
Collapse
|
40
|
Abstract
Sexual differentiation of brain and behavior is largely a hormonally driven process occurring perinatally in rodents and prenatally in primates. Considered early life programming, this process occurs at a time when the brain is remarkably immature and often does not manifest until reproductive maturity, raising the question of how brief hormonal exposure early in life could have such an enduring effect. Epigenetic modifications that occur early and persist into adulthood is one feasible explanation. Sufficient evidence exists to confirm that there are indeed epigenetic changes to specific brain regions induced by steroid hormones in males to differentiate them from females, but whether they persist into adulthood is unclear. Regardless, there are strong correlations between early epigenetic changes and adult brain and behavior. Moreover, although generally referred to as a permanent process, there is evidence that adult sex-typic behaviors are malleable and even reversible in mammals under certain conditions and these may be a function of epigenetic maintenance of gene expression that impacts behavior.
Collapse
Affiliation(s)
- Margaret M McCarthy
- University of Maryland School of Medicine and Program in Neuroscience, 655 W. Baltimore St., Baltimore MD 21201
| |
Collapse
|
41
|
Polanska K, Hanke W, Pawlas N, Wesolowska E, Jankowska A, Jagodic M, Mazej D, Dominowska J, Grzesiak M, Mirabella F, Chiarotti F, Calamandrei G. Sex-Dependent Impact of Low-Level Lead Exposure during Prenatal Period on Child Psychomotor Functions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15102263. [PMID: 30332762 PMCID: PMC6210236 DOI: 10.3390/ijerph15102263] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/09/2018] [Accepted: 10/12/2018] [Indexed: 12/18/2022]
Abstract
The impact of exposure to lead on child neurodevelopment has been well established. However, sex differences in vulnerability are still not fully explained. We aimed at evaluating the effect of a low-level lead exposure, as measured between 20 to 24 weeks of pregnancy and in cord blood, on developmental scores up to 24 months of age in 402 children from the Polish Mother and Child Cohort (REPRO_PL). Additionally, sex-dependent susceptibility to lead at this very early stage of psychomotor development was assessed. The blood lead levels were analyzed using inductively coupled plasma mass spectrometry (ICP-MS). In order to estimate the children’s neurodevelopment, the Bayley Scales of Infant and Toddler Development was applied. The geometric mean (GM) for blood lead level during 20–24 weeks of pregnancy was 0.99 ± 0.15 µg/dL and, in the cord blood, it was 0.96 ± 0.16 µg/dL. There was no statistically significant impact of lead exposure during prenatal period on the girls’ psychomotor abilities. Among the boys, we observed lower scores for cognitive functions, along with increasing cord blood lead levels (β = −2.07; p = 0.04), whereas the results for the language and motor abilities were not statistically significant (p > 0.05). Our findings show that fetal exposure to very low lead levels might affect early cognitive domain, with boys being more susceptible than girls. Education on health, higher public awareness, as well as intervention programs, along with relevant regulations, are still needed to reduce risks for the vulnerable population subgroups.
Collapse
Affiliation(s)
- Kinga Polanska
- Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine, 91-348 Lodz, Poland.
| | - Wojciech Hanke
- Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine, 91-348 Lodz, Poland.
| | - Natalia Pawlas
- Chair and Department of Pharmacology, Medical University of Silesia, School of Medicine with Division of Dentistry in Zabrze, 41 808 Zabrze, Poland.
| | - Ewelina Wesolowska
- Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine, 91-348 Lodz, Poland.
| | - Agnieszka Jankowska
- Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine, 91-348 Lodz, Poland.
| | - Marta Jagodic
- Department of Environmental Sciences, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia.
| | - Darja Mazej
- Department of Environmental Sciences, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia.
| | - Jolanta Dominowska
- Department of Teaching Midwifery, Medical University of Lodz, 90-419 Lodz, Poland.
| | - Mariusz Grzesiak
- Obstetrics, Perinatology and Gynecology Department, Polish Mother's Memorial Hospital Research Institute, 93-338 Lodz, Poland.
| | - Fiorino Mirabella
- Center for Behavioral Sciences and Mental Health, National Institute of Health, I-00161 Rome, Italy.
| | - Flavia Chiarotti
- Center for Behavioral Sciences and Mental Health, National Institute of Health, I-00161 Rome, Italy.
| | - Gemma Calamandrei
- Center for Behavioral Sciences and Mental Health, National Institute of Health, I-00161 Rome, Italy.
| |
Collapse
|
42
|
Rudzinskas SA, Mong JA. Methamphetamine alters DNMT and HDAC activity in the posterior dorsal medial amygdala in an ovarian steroid-dependent manner. Neurosci Lett 2018; 683:125-130. [PMID: 29944893 PMCID: PMC6102075 DOI: 10.1016/j.neulet.2018.06.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/14/2018] [Accepted: 06/22/2018] [Indexed: 11/18/2022]
Abstract
Methamphetamine (Meth) is a psychomotor stimulant associated with increased sexual drive and risky sexual behaviors in both men and women. Females are comparatively understudied, despite the fact that are just as likely as men to use methamphetamine. Importantly, Meth-associated sexual behaviors put female-users at a greater risk for unplanned pregnancies, and increase the risk of psychiatric co-morbidities such as depression. Our work in a rodent model has demonstrated that in the presence of the ovarian steroids, estradiol (EB) and progesterone (P), methamphetamine facilitates the activation of neurons of in the Medial Amygdala (MePD) and Ventromedial Nucleus of the Hypothalamus (VMN), nuclei that are integral to female sexual behavior. As methamphetamine has been previously associated with epigenetic changes in males, we hypothesized that methamphetamine may facilitate sexual motivation in females by modulating the amount of epigenetic enzymatic activity in the VMN and MePD. To test this hypothesis, histone deacetylase (HDAC) and DNA methyltransferase (DNMT) activity was quantitated in both the VMN and MePD in the presence and absence of methamphetamine in femalerats who were ovariectomized (OVX), or OVXed and hormone replaced with EB + P. DMNT1 and DNMT3B protein levels were also assessed. Our results show that methamphetamine alters DNMT and HDAC activity in the MePD in an ovarian steroid-dependent fashion. Both methamphetamine alone and EB + P alone significantly reduce DNMT enzymatic activity in an OVX female, but do not further decrease activity when both are given in combination. In contrast, no changes in HDAC or DNMT activity were seen in the VMN regardless of treatment, but the amount of DNMT3b after methamphetamine was significantly altered depending on the presence or absence of ovarian steroids. Taken together, these results support the hypothesis that methamphetamine induces change on an epigenetic level in female rats in both a hormone and nucleus dependent manner, and suggests epigenetic changes may play a role in methamphetamine's mechanism to facilitate the sexual motivation.
Collapse
Affiliation(s)
- Sarah A Rudzinskas
- Program in Neuroscience, University of Maryland, Baltimore, School of Medicine, Baltimore, MD, 21201, United States; Department of Pharmacology, University of Maryland, Baltimore, School of Medicine, Baltimore, MD, 21201, United States.
| | - Jessica A Mong
- Program in Neuroscience, University of Maryland, Baltimore, School of Medicine, Baltimore, MD, 21201, United States; Department of Pharmacology, University of Maryland, Baltimore, School of Medicine, Baltimore, MD, 21201, United States
| |
Collapse
|
43
|
Giatti S, Garcia-Segura LM, Barreto GE, Melcangi RC. Neuroactive steroids, neurosteroidogenesis and sex. Prog Neurobiol 2018; 176:1-17. [PMID: 29981391 DOI: 10.1016/j.pneurobio.2018.06.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/25/2018] [Accepted: 06/30/2018] [Indexed: 12/12/2022]
Abstract
The nervous system is a target and a source of steroids. Neuroactive steroids are steroids that target neurons and glial cells. They include hormonal steroids originated in the peripheral glands, steroids locally synthesized by the neurons and glial cells (neurosteroids) and synthetic steroids, some of them used in clinical practice. Here we review the mechanisms of synthesis, metabolism and action of neuroactive steroids, including the role of epigenetic modifications and the mitochondria in their sex specific actions. We examine sex differences in neuroactive steroid levels under physiological conditions and their role in the establishment of sex dimorphic structures in the nervous system and sex differences in its function. In addition, particular attention is paid to neuroactive steroids under pathological conditions, analyzing how pathology alters their levels and their role as neuroprotective factors, considering the influence of sex in both cases.
Collapse
Affiliation(s)
- Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Luis M Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Roberto C Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
44
|
Abstract
Puberty involves a series of morphological, physiological and behavioural changes during the last part of the juvenile period that culminates in the attainment of fertility. The activation of the pituitary-gonadal axis by increased hypothalamic secretion of gonadotrophin-releasing hormone (GnRH) is an essential step in the process. The current hypothesis postulates that a loss of transsynaptic inhibition and a rise in excitatory inputs are responsible for the activation of GnRH release. Similarly, a shift in the balance in the expression of puberty activating and puberty inhibitory genes exists during the pubertal transition. In addition, recent evidence suggests that the epigenetic machinery controls this genetic balance, giving rise to the tantalising possibility that epigenetics serves as a relay of environmental signals known for many years to modulate pubertal development. Here, we review the contribution of epigenetics as a regulatory mechanism in the hypothalamic control of female puberty.
Collapse
Affiliation(s)
- C A Toro
- Primate Genetics Section/Division of Neuroscience, Oregon National Primate Research Center/Oregon Health & Science University, Beaverton, OR, USA
| | - C F Aylwin
- Primate Genetics Section/Division of Neuroscience, Oregon National Primate Research Center/Oregon Health & Science University, Beaverton, OR, USA
| | - A Lomniczi
- Primate Genetics Section/Division of Neuroscience, Oregon National Primate Research Center/Oregon Health & Science University, Beaverton, OR, USA
| |
Collapse
|
45
|
Weaver SR, Hernandez LL. Could use of Selective Serotonin Reuptake Inhibitors During Lactation Cause Persistent Effects on Maternal Bone? J Mammary Gland Biol Neoplasia 2018; 23:5-25. [PMID: 29603039 DOI: 10.1007/s10911-018-9390-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/13/2018] [Indexed: 02/07/2023] Open
Abstract
The lactating mammary gland elegantly coordinates maternal homeostasis to provide calcium for milk. During lactation, the monoamine serotonin regulates the synthesis and release of various mammary gland-derived factors, such as parathyroid hormone-related protein (PTHrP), to stimulate bone resorption. Recent evidence suggests that bone mineral lost during prolonged lactation is not fully recovered following weaning, possibly putting women at increased risk of fracture or osteoporosis. Selective Serotonin Reuptake Inhibitor (SSRI) antidepressants have also been associated with reduced bone mineral density and increased fracture risk. Therefore, SSRI exposure while breastfeeding may exacerbate lactational bone loss, compromising long-term bone health. Through an examination of serotonin and calcium homeostasis during lactation, lactational bone turnover and post-weaning recovery of bone mineral, and the effect of peripartum depression and SSRI on the mammary gland and bone, this review will discuss the hypothesis that peripartum SSRI exposure causes persistent reductions in bone mineral density through mammary-derived PTHrP signaling with bone.
Collapse
Affiliation(s)
- Samantha R Weaver
- Endocrine and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Laura L Hernandez
- Department of Dairy Science, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
46
|
McCarthy MM, Herold K, Stockman SL. Fast, furious and enduring: Sensitive versus critical periods in sexual differentiation of the brain. Physiol Behav 2018; 187:13-19. [PMID: 29101011 PMCID: PMC5844806 DOI: 10.1016/j.physbeh.2017.10.030] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/28/2017] [Accepted: 10/29/2017] [Indexed: 11/19/2022]
Abstract
Understanding critical periods in brain development and how they impact adult functioning is a primary goal of neuroscience. The sexual differentiation of the brain is a unique critical period in that it is initiated by endogenous production of a critical signaling molecule in only one sex, testosterone in fetal males. Females, by contrast, do not produce testosterone but are highly responsive to it and remain sensitive to its masculinizing effects well past the close of the critical period in males. Compared to other well characterized critical periods, such as those for the visual system or barrel cortex, the masculinization of the brain is telescoped into a few short days and initiated prenatally. The slightly longer and postnatal sensitive period in females provides a valuable tool for understanding this challenging but fundamental developmental process.
Collapse
Affiliation(s)
- Margaret M McCarthy
- Department of Pharmacology and Program in Neuroscience, University of Maryland School of Medicine, 655 W. Baltimore ST, Baltimore, MD 21201, United States.
| | - Kevin Herold
- Department of Pharmacology and Program in Neuroscience, University of Maryland School of Medicine, 655 W. Baltimore ST, Baltimore, MD 21201, United States
| | - Sara L Stockman
- Department of Pharmacology and Program in Neuroscience, University of Maryland School of Medicine, 655 W. Baltimore ST, Baltimore, MD 21201, United States
| |
Collapse
|
47
|
Singh G, Singh V, Wang ZX, Voisin G, Lefebvre F, Navenot JM, Evans B, Verma M, Anderson DW, Schneider JS. Effects of developmental lead exposure on the hippocampal methylome: Influences of sex and timing and level of exposure. Toxicol Lett 2018; 290:63-72. [PMID: 29571894 DOI: 10.1016/j.toxlet.2018.03.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/15/2018] [Accepted: 03/19/2018] [Indexed: 12/21/2022]
Abstract
Developmental lead (Pb) exposure results in persistent cognitive/behavioral impairments as well as an elevated risk for developing a variety of diseases in later life. Environmental exposures during development can result in a variety of epigenetic changes, including alterations in DNA methylation, that can influence gene expression patterns and affect the function and development of the nervous system. The present promoter-based methylation microarray profiling study explored the extent to which developmental Pb exposure may modify the methylome of a brain region, hippocampus, known to be sensitive to the effects of Pb exposure. Male and female Long Evans rats were exposed to 0 ppm, 150 ppm, 375 ppm, or 750 ppm Pb through perinatal exposures (gestation through lactation), early postnatal exposures (birth through weaning), or long-term postnatal exposures (birth through postnatal day 55). Results showed a significant contribution of sex to the hippocampal methylome and effects of Pb exposure level, with non-linear dose response effects on methylation. Surprisingly, the developmental period of exposure contributed only a small amount of variance to the overall data and gene ontology (GO) analysis revealed the largest number of overrepresented GO terms in the groups with the lowest level of exposure. The highest number of significant differentially methylated regions was found in females exposed to Pb at the lowest exposure level. Our data reinforce the significant effect that low level Pb exposure may have on gene-specific DNA methylation patterns in brain and that this occurs in a sex-dependent manner.
Collapse
Affiliation(s)
- G Singh
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| | - V Singh
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Zi-Xuan Wang
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - G Voisin
- Atelerics S.E.N.C, Montreal, QC, Canada
| | - F Lefebvre
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada
| | - J-M Navenot
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - B Evans
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - M Verma
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - D W Anderson
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - J S Schneider
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
48
|
Singh G, Singh V, Sobolewski M, Cory-Slechta DA, Schneider JS. Sex-Dependent Effects of Developmental Lead Exposure on the Brain. Front Genet 2018; 9:89. [PMID: 29662502 PMCID: PMC5890196 DOI: 10.3389/fgene.2018.00089] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/02/2018] [Indexed: 11/23/2022] Open
Abstract
The role of sex as an effect modifier of developmental lead (Pb) exposure has until recently received little attention. Lead exposure in early life can affect brain development with persisting influences on cognitive and behavioral functioning, as well as, elevated risks for developing a variety of diseases and disorders in later life. Although both sexes are affected by Pb exposure, the incidence, manifestation, and severity of outcomes appears to differ in males and females. Results from epidemiologic and animal studies indicate significant effect modification by sex, however, the results are not consistent across studies. Unfortunately, only a limited number of human epidemiological studies have included both sexes in independent outcome analyses limiting our ability to draw definitive conclusions regarding sex-differentiated outcomes. Additionally, due to various methodological differences across studies, there is still not a good mechanistic understanding of the molecular effects of lead on the brain and the factors that influence differential responses to Pb based on sex. In this review, focused on prenatal and postnatal Pb exposures in humans and animal models, we discuss current literature supporting sex differences in outcomes in response to Pb exposure and explore some of the ideas regarding potential molecular mechanisms that may contribute to sex-related differences in outcomes from developmental Pb exposure. The sex-dependent variability in outcomes from developmental Pb exposure may arise from a combination of complex factors, including, but not limited to, intrinsic sex-specific molecular/genetic mechanisms and external risk factors including sex-specific responses to environmental stressors which may act through shared epigenetic pathways to influence the genome and behavioral output.
Collapse
Affiliation(s)
- Garima Singh
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Vikrant Singh
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Deborah A. Cory-Slechta
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Jay S. Schneider
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
49
|
Doherty TS, Roth TL. Epigenetic Landscapes of the Adversity-Exposed Brain. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 157:1-19. [PMID: 29933946 DOI: 10.1016/bs.pmbts.2017.11.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It is understood that adversity during development has the power to alter behavioral trajectories, and the role of the epigenome in that relationship is currently under intense investigation. Several studies in both nonhuman animals and humans have established a link between early adversity and epigenetic regulation of genes heavily implicated in the stress response, plasticity and cognition, and psychiatric disorders such as depression and anxiety. Thus the relatively recent surge of studies centering on the epigenetic outcomes of stress has great potential to inform treatments and interventions for psychiatric disorder precipitated by early adversity. Here we review what we know and what we do not know, and suggest approaches to help further elucidate the relationship between early adversity, epigenetics, and behavior.
Collapse
Affiliation(s)
| | - Tania L Roth
- University of Delaware, Newark, DE, United States.
| |
Collapse
|
50
|
Forger NG. Past, present and future of epigenetics in brain sexual differentiation. J Neuroendocrinol 2018; 30. [PMID: 28585265 DOI: 10.1111/jne.12492] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/22/2017] [Accepted: 06/01/2017] [Indexed: 12/12/2022]
Abstract
Sexual differentiation has long been considered "epigenetic", although the meaning of that word has shifted over time. Here, we track the evolution of ideas about epigenetics in sexual differentiation, and identify principles that have emerged from recent studies. Experiments manipulating a particular epigenetic mechanism during neonatal life demonstrate a role for both histone acetylation and DNA methylation in the development of sex differences in the brain and behaviour of rodents. In addition, hormone-dependent sex differences in the number of neurones of a particular phenotype may be programmed by differences in DNA methylation early in life. Genome-wide studies suggest that many effects of neonatal testosterone on the brain methylome do not emerge until adulthood, and there may be sex biases in the use of epigenetic marks that do not correlate with differences in gene expression. In other words, even when the transcription of a gene does not differ between males and females, the epigenetic underpinnings of that expression may differ. Finally, recent evidence suggests that sex differences in epigenetic marks may primarily serve to make gene expression more similar in males and females. We discuss the implications of these findings for understanding sex differences in susceptibility to disease, and point to recent conceptual and technical advances likely to influence the field going forward.
Collapse
Affiliation(s)
- N G Forger
- Center for Behavioral Neuroscience, Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| |
Collapse
|