1
|
Ahn C, Divoux A, Zhou M, Seldin MM, Sparks LM, Whytock KL. An optimized pipeline for high-throughput bulk RNA-Seq deconvolution illustrates the impact of obesity and weight loss on cell composition of human adipose tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614489. [PMID: 39386599 PMCID: PMC11463495 DOI: 10.1101/2024.09.23.614489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Cellular heterogeneity of human adipose tissue, is linked to the pathophysiology of obesity and may impact the response to energy restriction and changes in fat mass. Here, we provide an optimized pipeline to estimate cellular composition in human abdominal subcutaneous adipose tissue (ASAT) from publicly available bulk RNA-Seq using signature profiles from our previously published full-length single nuclei (sn)RNA-Seq of the same depot. Individuals with obesity had greater proportions of macrophages and lower proportions of adipocyte sub-populations and vascular cells compared with lean individuals. Two months of diet-induced weight loss (DIWL) increased the estimated proportions of macrophages; however, two years of DIWL reduced the estimated proportions of macrophages, thereby suggesting a bi-phasic nature of cellular remodeling of ASAT during weight loss. Our optimized high-throughput pipeline facilitates the assessment of composition changes of highly characterized cell types in large numbers of ASAT samples using low-cost bulk RNA-Seq. Our data reveal novel changes in cellular heterogeneity and its association with cardiometabolic health in humans with obesity and following weight loss.
Collapse
Affiliation(s)
- Cheehoon Ahn
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| | - Adeline Divoux
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| | - Mingqi Zhou
- Department of Biological Chemistry and Center for Epigenetics and Metabolism, University of California, Irvine, Irvine, CA, USA
| | - Marcus M Seldin
- Department of Biological Chemistry and Center for Epigenetics and Metabolism, University of California, Irvine, Irvine, CA, USA
| | - Lauren M Sparks
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| | - Katie L Whytock
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| |
Collapse
|
2
|
McClure JJ, McIlroy GD, Symons RA, Clark SM, Cunningham I, Han W, Kania K, Colella F, Rochford JJ, De Bari C, Roelofs AJ. Disentangling the detrimental effects of local from systemic adipose tissue dysfunction on articular cartilage in the knee. Osteoarthritis Cartilage 2024:S1063-4584(24)01312-8. [PMID: 39103079 DOI: 10.1016/j.joca.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 08/07/2024]
Abstract
OBJECTIVE Obesity increases osteoarthritis (OA) risk due to adipose tissue dysfunction with associated metabolic syndrome and excess weight. Lipodystrophy syndromes exhibit systemic metabolic and inflammatory abnormalities similar to obesity without biomechanical overloading. Here, we used lipodystrophy mouse models to investigate the effects of systemic versus intra-articular adipose tissue dysfunction on the knee. METHODS Intra-articular adipose tissue development was studied using reporter mice. Mice with selective lipodystrophy of intra-articular adipose tissue were generated by conditional knockout (cKO) of Bscl2 in Gdf5-lineage cells, and compared with whole-body Bscl2 knockout (KO) mice with generalised lipodystrophy and associated systemic metabolic dysfunction. OA was induced by surgically destabilising the medial meniscus (DMM) and obesity by high-fat diet (HFD). Gene expression was analysed by quantitative RT-PCR and tissues were analysed histologically. RESULTS The infrapatellar fat pad (IFP), in contrast to overlying subcutaneous adipose tissue, developed from a template established from the Gdf5-expressing joint interzone during late embryogenesis, and was populated shortly after birth by adipocytes stochastically arising from Pdgfrα-expressing Gdf5-lineage progenitors. While female Bscl2 KO mice with generalised lipodystrophy developed spontaneous knee cartilage damage, Bscl2 cKO mice with intra-articular lipodystrophy did not, despite the presence of synovial hyperplasia and inflammation of the residual IFP. Furthermore, male Bscl2 cKO mice showed no worse cartilage damage after DMM. However, female Bscl2 cKO mice showed increased susceptibility to the cartilage-damaging effects of HFD-induced obesity. CONCLUSION Our findings emphasise the prevalent role of systemic metabolic and inflammatory effects in impairing cartilage homeostasis, with a modulatory role for intra-articular adipose tissue.
Collapse
Affiliation(s)
- Jessica J McClure
- Arthritis & Regenerative Medicine Laboratory, Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - George D McIlroy
- The Rowett Institute and Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Rebecca A Symons
- Arthritis & Regenerative Medicine Laboratory, Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Susan M Clark
- Arthritis & Regenerative Medicine Laboratory, Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Iain Cunningham
- Arthritis & Regenerative Medicine Laboratory, Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Weiping Han
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A⁎STAR), Singapore
| | - Karolina Kania
- Arthritis & Regenerative Medicine Laboratory, Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Fabio Colella
- Arthritis & Regenerative Medicine Laboratory, Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Justin J Rochford
- The Rowett Institute and Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Cosimo De Bari
- Arthritis & Regenerative Medicine Laboratory, Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Anke J Roelofs
- Arthritis & Regenerative Medicine Laboratory, Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
3
|
Han SM, Nahmgoong H, Yim KM, Kim JB. How obesity affects adipocyte turnover. Trends Endocrinol Metab 2024:S1043-2760(24)00185-1. [PMID: 39095230 DOI: 10.1016/j.tem.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
Cellular turnover is fundamental for tissue homeostasis and integrity. Adipocyte turnover, accounting for 4% of the total cellular mass turnover in humans, is essential for adipose tissue homeostasis during metabolic stress. In obesity, an altered adipose tissue microenvironment promotes adipocyte death. To clear dead adipocytes, macrophages are recruited and form a distinctive structure known as crown-like structure; subsequently, new adipocytes are generated from adipose stem and progenitor cells in the adipogenic niche to replace dead adipocytes. Accumulating evidence indicates that adipocyte death, clearance, and adipogenesis are sophisticatedly orchestrated during adipocyte turnover. In this Review, we summarize our current understandings of each step in adipocyte turnover, discussing its key players and regulatory mechanisms.
Collapse
Affiliation(s)
- Sang Mun Han
- National Leader Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hahn Nahmgoong
- National Leader Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyung Min Yim
- National Leader Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae Bum Kim
- National Leader Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
4
|
Savulescu-Fiedler I, Mihalcea R, Dragosloveanu S, Scheau C, Baz RO, Caruntu A, Scheau AE, Caruntu C, Benea SN. The Interplay between Obesity and Inflammation. Life (Basel) 2024; 14:856. [PMID: 39063610 PMCID: PMC11277997 DOI: 10.3390/life14070856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Obesity is an important condition affecting the quality of life of numerous patients and increasing their associated risk for multiple diseases, including tumors and immune-mediated disorders. Inflammation appears to play a major role in the development of obesity and represents a central point for the activity of cellular and humoral components in the adipose tissue. Macrophages play a key role as the main cellular component of the adipose tissue regulating the chronic inflammation and modulating the secretion and differentiation of various pro- and anti-inflammatory cytokines. Inflammation also involves a series of signaling pathways that might represent the focus for new therapies and interventions. Weight loss is essential in decreasing cardiometabolic risks and the degree of associated inflammation; however, the latter can persist for long after the excess weight is lost, and can involve changes in macrophage phenotypes that can ensure the metabolic adjustment. A clear understanding of the pathophysiological processes in the adipose tissue and the interplay between obesity and chronic inflammation can lead to a better understanding of the development of comorbidities and may ensure future targets for the treatment of obesity.
Collapse
Affiliation(s)
- Ilinca Savulescu-Fiedler
- Department of Internal Medicine, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Razvan Mihalcea
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Serban Dragosloveanu
- Department of Orthopaedics, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
- Department of Orthopaedics and Traumatology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania (C.C.)
- Department of Radiology and Medical Imaging, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 030167 Bucharest, Romania
| | - Radu Octavian Baz
- Clinical Laboratory of Radiology and Medical Imaging, “Sf. Apostol Andrei” County Emergency Hospital, 900591 Constanta, Romania
- Department of Radiology and Medical Imaging, Faculty of Medicine, “Ovidius” University, 900527 Constanta, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania (C.C.)
- Department of Dermatology, “Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Serban Nicolae Benea
- Department of Infectious Diseases, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- “Prof. Dr. Matei Balș” National Institute for Infectious Diseases, 021105 Bucharest, Romania
| |
Collapse
|
5
|
Peng C, Chen J, Wu R, Jiang H, Li J. Unraveling the complex roles of macrophages in obese adipose tissue: an overview. Front Med 2024; 18:205-236. [PMID: 38165533 DOI: 10.1007/s11684-023-1033-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/15/2023] [Indexed: 01/03/2024]
Abstract
Macrophages, a heterogeneous population of innate immune cells, exhibit remarkable plasticity and play pivotal roles in coordinating immune responses and maintaining tissue homeostasis within the context of metabolic diseases. The activation of inflammatory macrophages in obese adipose tissue leads to detrimental effects, inducing insulin resistance through increased inflammation, impaired thermogenesis, and adipose tissue fibrosis. Meanwhile, adipose tissue macrophages also play a beneficial role in maintaining adipose tissue homeostasis by regulating angiogenesis, facilitating the clearance of dead adipocytes, and promoting mitochondrial transfer. Exploring the heterogeneity of macrophages in obese adipose tissue is crucial for unraveling the pathogenesis of obesity and holds significant potential for targeted therapeutic interventions. Recently, the dual effects and some potential regulatory mechanisms of macrophages in adipose tissue have been elucidated using single-cell technology. In this review, we present a comprehensive overview of the intricate activation mechanisms and diverse functions of macrophages in adipose tissue during obesity, as well as explore the potential of drug delivery systems targeting macrophages, aiming to enhance the understanding of current regulatory mechanisms that may be potentially targeted for treating obesity or metabolic diseases.
Collapse
Affiliation(s)
- Chang Peng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Chen
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Rui Wu
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| | - Haowen Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Jia Li
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
6
|
Choi C, Jeong YL, Park KM, Kim M, Kim S, Jo H, Lee S, Kim H, Choi G, Choi YH, Seong JK, Namgoong S, Chung Y, Jung YS, Granneman JG, Hyun YM, Kim JK, Lee YH. TM4SF19-mediated control of lysosomal activity in macrophages contributes to obesity-induced inflammation and metabolic dysfunction. Nat Commun 2024; 15:2779. [PMID: 38555350 PMCID: PMC10981689 DOI: 10.1038/s41467-024-47108-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/20/2024] [Indexed: 04/02/2024] Open
Abstract
Adipose tissue (AT) adapts to overnutrition in a complex process, wherein specialized immune cells remove and replace dysfunctional and stressed adipocytes with new fat cells. Among immune cells recruited to AT, lipid-associated macrophages (LAMs) have emerged as key players in obesity and in diseases involving lipid stress and inflammation. Here, we show that LAMs selectively express transmembrane 4 L six family member 19 (TM4SF19), a lysosomal protein that represses acidification through its interaction with Vacuolar-ATPase. Inactivation of TM4SF19 elevates lysosomal acidification and accelerates the clearance of dying/dead adipocytes in vitro and in vivo. TM4SF19 deletion reduces the LAM accumulation and increases the proportion of restorative macrophages in AT of male mice fed a high-fat diet. Importantly, male mice lacking TM4SF19 adapt to high-fat feeding through adipocyte hyperplasia, rather than hypertrophy. This adaptation significantly improves local and systemic insulin sensitivity, and energy expenditure, offering a potential avenue to combat obesity-related metabolic dysfunction.
Collapse
Affiliation(s)
- Cheoljun Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yujin L Jeong
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Koung-Min Park
- Department of Anatomy and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Minji Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sangseob Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Honghyun Jo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sumin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Heeseong Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Garam Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yoon Ha Choi
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center (KMPC), and Laboratory of Developmental Biology and Genomics, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Sik Namgoong
- Department of Plastic Surgery, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yeonseok Chung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young-Suk Jung
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea.
| | - James G Granneman
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA.
| | - Young-Min Hyun
- Department of Anatomy and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Jong Kyoung Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| | - Yun-Hee Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
7
|
Reinisch I, Michenthaler H, Sulaj A, Moyschewitz E, Krstic J, Galhuber M, Xu R, Riahi Z, Wang T, Vujic N, Amor M, Zenezini Chiozzi R, Wabitsch M, Kolb D, Georgiadi A, Glawitsch L, Heitzer E, Schulz TJ, Schupp M, Sun W, Dong H, Ghosh A, Hoffmann A, Kratky D, Hinte LC, von Meyenn F, Heck AJR, Blüher M, Herzig S, Wolfrum C, Prokesch A. Adipocyte p53 coordinates the response to intermittent fasting by regulating adipose tissue immune cell landscape. Nat Commun 2024; 15:1391. [PMID: 38360943 PMCID: PMC10869344 DOI: 10.1038/s41467-024-45724-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 02/02/2024] [Indexed: 02/17/2024] Open
Abstract
In obesity, sustained adipose tissue (AT) inflammation constitutes a cellular memory that limits the effectiveness of weight loss interventions. Yet, the impact of fasting regimens on the regulation of AT immune infiltration is still elusive. Here we show that intermittent fasting (IF) exacerbates the lipid-associated macrophage (LAM) inflammatory phenotype of visceral AT in obese mice. Importantly, this increase in LAM abundance is strongly p53 dependent and partly mediated by p53-driven adipocyte apoptosis. Adipocyte-specific deletion of p53 prevents LAM accumulation during IF, increases the catabolic state of adipocytes, and enhances systemic metabolic flexibility and insulin sensitivity. Finally, in cohorts of obese/diabetic patients, we describe a p53 polymorphism that links to efficacy of a fasting-mimicking diet and that the expression of p53 and TREM2 in AT negatively correlates with maintaining weight loss after bariatric surgery. Overall, our results demonstrate that p53 signalling in adipocytes dictates LAM accumulation in AT under IF and modulates fasting effectiveness in mice and humans.
Collapse
Affiliation(s)
- Isabel Reinisch
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
- Institute of Food Nutrition and Health, Department of Health Sciences and Technology, Eidgenössische Technische Hochschule Zürich (ETH), Schwerzenbach, Switzerland
| | - Helene Michenthaler
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Alba Sulaj
- Institute for Diabetes and Cancer, Helmholtz Munich, German Center for Diabetes Research (DZD), Neuherberg, Germany
- Department of Endocrinology, Diabetology, Metabolism and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
| | - Elisabeth Moyschewitz
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Jelena Krstic
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Markus Galhuber
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Ruonan Xu
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Zina Riahi
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Tongtong Wang
- Institute of Food Nutrition and Health, Department of Health Sciences and Technology, Eidgenössische Technische Hochschule Zürich (ETH), Schwerzenbach, Switzerland
| | - Nemanja Vujic
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Melina Amor
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Riccardo Zenezini Chiozzi
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Dagmar Kolb
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
- Core Facility Ultrastructure Analysis, Medical University of Graz, Graz, Austria
| | - Anastasia Georgiadi
- Institute for Diabetes and Cancer, Helmholtz Munich, German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Lisa Glawitsch
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | - Ellen Heitzer
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | - Tim J Schulz
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- University of Potsdam, Institute of Nutritional Science, Nuthetal, Germany
| | - Michael Schupp
- Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Wenfei Sun
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Hua Dong
- Stem Cell Biology and Regenerative Medicine Institute, University of Stanford, Stanford, CA, USA
| | - Adhideb Ghosh
- Institute of Food Nutrition and Health, Department of Health Sciences and Technology, Eidgenössische Technische Hochschule Zürich (ETH), Schwerzenbach, Switzerland
- Functional Genomics Center Zurich, Eidgenössische Technische Hochschule Zürich (ETH), Zurich, Switzerland
| | - Anne Hoffmann
- Helmholtz Institute for Metabolic Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Laura C Hinte
- Laboratory of Nutrition and Metabolic Epigenetics, Institute for Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Ferdinand von Meyenn
- Laboratory of Nutrition and Metabolic Epigenetics, Institute for Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Stephan Herzig
- Institute for Diabetes and Cancer, Helmholtz Munich, German Center for Diabetes Research (DZD), Neuherberg, Germany
- Department of Endocrinology, Diabetology, Metabolism and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
| | - Christian Wolfrum
- Institute of Food Nutrition and Health, Department of Health Sciences and Technology, Eidgenössische Technische Hochschule Zürich (ETH), Schwerzenbach, Switzerland
| | - Andreas Prokesch
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
8
|
Alemany M. The Metabolic Syndrome, a Human Disease. Int J Mol Sci 2024; 25:2251. [PMID: 38396928 PMCID: PMC10888680 DOI: 10.3390/ijms25042251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
This review focuses on the question of metabolic syndrome (MS) being a complex, but essentially monophyletic, galaxy of associated diseases/disorders, or just a syndrome of related but rather independent pathologies. The human nature of MS (its exceptionality in Nature and its close interdependence with human action and evolution) is presented and discussed. The text also describes the close interdependence of its components, with special emphasis on the description of their interrelations (including their syndromic development and recruitment), as well as their consequences upon energy handling and partition. The main theories on MS's origin and development are presented in relation to hepatic steatosis, type 2 diabetes, and obesity, but encompass most of the MS components described so far. The differential effects of sex and its biological consequences are considered under the light of human social needs and evolution, which are also directly related to MS epidemiology, severity, and relations with senescence. The triggering and maintenance factors of MS are discussed, with especial emphasis on inflammation, a complex process affecting different levels of organization and which is a critical element for MS development. Inflammation is also related to the operation of connective tissue (including the adipose organ) and the widely studied and acknowledged influence of diet. The role of diet composition, including the transcendence of the anaplerotic maintenance of the Krebs cycle from dietary amino acid supply (and its timing), is developed in the context of testosterone and β-estradiol control of the insulin-glycaemia hepatic core system of carbohydrate-triacylglycerol energy handling. The high probability of MS acting as a unique complex biological control system (essentially monophyletic) is presented, together with additional perspectives/considerations on the treatment of this 'very' human disease.
Collapse
Affiliation(s)
- Marià Alemany
- Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
9
|
Kim G, Lee J, Ha J, Kang I, Choe W. Endoplasmic Reticulum Stress and Its Impact on Adipogenesis: Molecular Mechanisms Implicated. Nutrients 2023; 15:5082. [PMID: 38140341 PMCID: PMC10745682 DOI: 10.3390/nu15245082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/30/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Endoplasmic reticulum (ER) stress plays a pivotal role in adipogenesis, which encompasses the differentiation of adipocytes and lipid accumulation. Sustained ER stress has the potential to disrupt the signaling of the unfolded protein response (UPR), thereby influencing adipogenesis. This comprehensive review illuminates the molecular mechanisms that underpin the interplay between ER stress and adipogenesis. We delve into the dysregulation of UPR pathways, namely, IRE1-XBP1, PERK and ATF6 in relation to adipocyte differentiation, lipid metabolism, and tissue inflammation. Moreover, we scrutinize how ER stress impacts key adipogenic transcription factors such as proliferator-activated receptor γ (PPARγ) and CCAAT-enhancer-binding proteins (C/EBPs) along with their interaction with other signaling pathways. The cellular ramifications include alterations in lipid metabolism, dysregulation of adipokines, and aged adipose tissue inflammation. We also discuss the potential roles the molecular chaperones cyclophilin A and cyclophilin B play in adipogenesis. By shedding light on the intricate relationship between ER stress and adipogenesis, this review paves the way for devising innovative therapeutic interventions.
Collapse
Affiliation(s)
- Gyuhui Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jiyoon Lee
- Department of Biological Sciences, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30609, USA;
| | - Joohun Ha
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
10
|
Ma Y, Wang Z, Sun J, Tang J, Zhou J, Dong M. Investigating the Diagnostic and Therapeutic Potential of SREBF2-Related Lipid Metabolism Genes in Colon Cancer. Onco Targets Ther 2023; 16:1027-1042. [PMID: 38107762 PMCID: PMC10723182 DOI: 10.2147/ott.s428150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/08/2023] [Indexed: 12/19/2023] Open
Abstract
Purpose Colon cancer is one of the leading causes of death worldwide, and screening of effective molecular markers for the diagnosis is prioritised for prevention and treatment. This study aimed to investigate the diagnostic and predictive potential of genes related to the lipid metabolism pathway, regulated by a protein called sterol-regulatory element-binding transcription Factor 2 (SREBF2), for colon cancer and patient outcomes. Methods We used machine-learning algorithms to identify key genes associated with SREBF2 in colon cancer based on a public database. A nomogram was created to assess the diagnostic value of these genes and validated in the Cancer Genome Atlas. We also analysed the relationship between these genes and the immune microenvironment of colon tumours, as well as the correlation between gene expression and clinicopathological characteristics and prognosis in the China Medical University (CMU) clinical cohort. Results Three genes, 7-dehydrocholesterol reductase (DHCR7), hydroxysteroid 11-beta dehydrogenase 2 (HSD11B2), and Ral guanine nucleotide dissociation stimulator-like 1 (RGL1), were identified as hub genes related to SREBF2 and colon cancer. Using the TCGA dataset, receiver operating characteristic curve analysis showed the area under the curve values of 0.943, 0.976, and 0.868 for DHCR7, HSD11B2, and RGL1, respectively. In the CMU cohort, SREBF2 and DHCR7 expression levels were correlated with TNM stage and tumour invasion depth (P < 0.05), and high DHCR7 expression was related to poor prognosis of colon cancer (P < 0.05). Furthermore, DHCR7 gene expression was positively correlated with the abundance of M0 and M1 macrophages and inversely correlated with the abundance of M2 macrophages, suggesting that the immune microenvironment may play a role in colon cancer surveillance. There was a correlation between SREBF2 and DHCR7 expression across cancers in the TCGA database. Conclusion This study highlights the potential of DHCR7 as a diagnostic marker and therapeutic target for colon cancer.
Collapse
Affiliation(s)
- Yuteng Ma
- Department of Gastrointestinal Surgery, First Hospital of China Medical University, Shenyang, 110001, People’s Republic of China
| | - Zhe Wang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, 110001, People’s Republic of China
| | - Jian Sun
- Department of Gastrointestinal Surgery, First Hospital of China Medical University, Shenyang, 110001, People’s Republic of China
| | - Jingtong Tang
- Department of Gastrointestinal Surgery, First Hospital of China Medical University, Shenyang, 110001, People’s Republic of China
| | - Jianping Zhou
- Department of Gastrointestinal Surgery, First Hospital of China Medical University, Shenyang, 110001, People’s Republic of China
| | - Ming Dong
- Department of Gastrointestinal Surgery, First Hospital of China Medical University, Shenyang, 110001, People’s Republic of China
| |
Collapse
|
11
|
Luk CT, Chan CK, Chiu F, Shi SY, Misra PS, Li YZ, Pollock-Tahiri E, Schroer SA, Desai HR, Sivasubramaniyam T, Cai EP, Krishnamurthy M, Han DJ, Chowdhury A, Aslam R, Yuen DA, Hakem A, Hakem R, Woo M. Dual Role of Caspase 8 in Adipocyte Apoptosis and Metabolic Inflammation. Diabetes 2023; 72:1751-1765. [PMID: 37699387 DOI: 10.2337/db22-1033] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 08/29/2023] [Indexed: 09/14/2023]
Abstract
Caspases are cysteine-aspartic proteases that were initially discovered to play a role in apoptosis. However, caspase 8, in particular, also has additional nonapoptotic roles, such as in inflammation. Adipocyte cell death and inflammation are hypothesized to be initiating pathogenic factors in type 2 diabetes. Here, we examined the pleiotropic role of caspase 8 in adipocytes and obesity-associated insulin resistance. Caspase 8 expression was increased in adipocytes from mice and humans with obesity and insulin resistance. Treatment of 3T3-L1 adipocytes with caspase 8 inhibitor Z-IETD-FMK decreased both death receptor-mediated signaling and targets of nuclear factor κ-light-chain-enhancer of activated B (NF-κB) signaling. We generated novel adipose tissue and adipocyte-specific caspase 8 knockout mice (aP2Casp8-/- and adipoqCasp8-/-). Both males and females had improved glucose tolerance in the setting of high-fat diet (HFD) feeding. Knockout mice also gained less weight on HFD, with decreased adiposity, adipocyte size, and hepatic steatosis. These mice had decreased adipose tissue inflammation and decreased activation of canonical and noncanonical NF-κB signaling. Furthermore, they demonstrated increased energy expenditure, core body temperature, and UCP1 expression. Adipocyte-specific activation of Ikbkb or housing mice at thermoneutrality attenuated improvements in glucose tolerance. These data demonstrate an important role for caspase 8 in mediating adipocyte cell death and inflammation to regulate glucose and energy homeostasis. ARTICLE HIGHLIGHTS Caspase 8 is increased in adipocytes from mice and humans with obesity and insulin resistance. Knockdown of caspase 8 in adipocytes protects mice from glucose intolerance and weight gain on a high-fat diet. Knockdown of caspase 8 decreases Fas signaling, as well as canonical and noncanonical nuclear factor κ-light-chain-enhancer of activated B (NF-κB) signaling in adipose tissue. Improved glucose tolerance occurs via reduced activation of NF-κB signaling and via induction of UCP1 in adipocytes.
Collapse
Affiliation(s)
- Cynthia T Luk
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, St. Michael's Hospital, Unity Health Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Carmen K Chan
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Felix Chiu
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Sally Yu Shi
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Paraish S Misra
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Yu Zhe Li
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Evan Pollock-Tahiri
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Stephanie A Schroer
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Harsh R Desai
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Tharini Sivasubramaniyam
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Erica P Cai
- Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
| | | | - Daniel J Han
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Apu Chowdhury
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Rukhsana Aslam
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Darren A Yuen
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Anne Hakem
- University Health Network, Toronto, Ontario, Canada
| | | | - Minna Woo
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Division of Endocrinology, Department of Medicine, University Health Network/Sinai Health System, University of Toronto, Toronto, Ontario, Canada
- University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Adipose tissue macrophages and their role in obesity-associated insulin resistance: an overview of the complex dynamics at play. Biosci Rep 2023; 43:232519. [PMID: 36718668 PMCID: PMC10011338 DOI: 10.1042/bsr20220200] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
Obesity, a major global health concern, is characterized by serious imbalance between energy intake and expenditure leading to excess accumulation of fat in adipose tissue (AT). A state of chronic low-grade AT inflammation is prevalent during obesity. The adipose tissue macrophages (ATM) with astounding heterogeneity and complex regulation play a decisive role in mediating obesity-induced insulin resistance. Adipose-derived macrophages were broadly classified as proinflammatory M1 and anti-inflammatory M2 subtypes but recent reports have proclaimed several novel and intermediate profiles, which are crucial in understanding the dynamics of macrophage phenotypes during development of obesity. Lipid-laden hypertrophic adipocytes release various chemotactic signals that aggravate macrophage infiltration into AT skewing toward mostly proinflammatory status. The ratio of M1-like to M2-like macrophages is increased substantially resulting in copious secretion of proinflammatory mediators such as TNFα, IL-6, IL-1β, MCP-1, fetuin-A (FetA), etc. further worsening insulin resistance. Several AT-derived factors could influence ATM content and activation. Apart from being detrimental, ATM exerts beneficial effects during obesity. Recent studies have highlighted the prime role of AT-resident macrophage subpopulations in not only effective clearance of excess fat and dying adipocytes but also in controlling vascular integrity, adipocyte secretions, and fibrosis within obese AT. The role of ATM subpopulations as friend or foe is determined by an intricate interplay of such factors arising within hyperlipidemic microenvironment of obese AT. The present review article highlights some of the key research advances in ATM function and regulation, and appreciates the complex dynamics of ATM in the pathophysiologic scenario of obesity-associated insulin resistance.
Collapse
|
13
|
Hildebrandt X, Ibrahim M, Peltzer N. Cell death and inflammation during obesity: "Know my methods, WAT(son)". Cell Death Differ 2023; 30:279-292. [PMID: 36175539 PMCID: PMC9520110 DOI: 10.1038/s41418-022-01062-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/08/2022] Open
Abstract
Obesity is a state of low-grade chronic inflammation that causes multiple metabolic diseases. During obesity, signalling via cytokines of the TNF family mediate cell death and inflammation within the adipose tissue, eventually resulting in lipid spill-over, glucotoxicity and insulin resistance. These events ultimately lead to ectopic lipid deposition, glucose intolerance and other metabolic complications with life-threatening consequences. Here we review the literature on how inflammatory responses affect metabolic processes such as energy homeostasis and insulin signalling. This review mainly focuses on the role of cell death in the adipose tissue as a key player in metabolic inflammation.
Collapse
Affiliation(s)
- Ximena Hildebrandt
- University of Cologne, Faculty of Medicine, Centre for Molecular Medicine Cologne (CMMC); Department of Translational Genomics and; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Mohamed Ibrahim
- University of Cologne, Faculty of Medicine, Centre for Molecular Medicine Cologne (CMMC); Department of Translational Genomics and; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Nieves Peltzer
- University of Cologne, Faculty of Medicine, Centre for Molecular Medicine Cologne (CMMC); Department of Translational Genomics and; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany.
| |
Collapse
|
14
|
Sun K, Li X, Scherer PE. Extracellular Matrix (ECM) and Fibrosis in Adipose Tissue: Overview and Perspectives. Compr Physiol 2023; 13:4387-4407. [PMID: 36715281 PMCID: PMC9957663 DOI: 10.1002/cphy.c220020] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fibrosis in adipose tissue is a major driver of obesity-related metabolic dysregulation. It is characterized by an overaccumulation of extracellular matrix (ECM) during unhealthy expansion of adipose tissue in response to over nutrition. In obese adipose-depots, hypoxia stimulates multiple pro-fibrotic signaling pathways in different cell populations, thereby inducing the overproduction of the ECM components, including collagens, noncollagenous proteins, and additional enzymatic components of ECM synthesis. As a consequence, local fibrosis develops. The result of fibrosis-induced mechanical stress not only triggers cell necrosis and inflammation locally in adipose tissue but also leads to system-wide lipotoxicity and insulin resistance. A better understanding of the mechanisms underlying the obesity-induced fibrosis will help design therapeutic approaches to reduce or reverse the pathological changes associated with obese adipose tissue. Here, we aim to summarize the major advances in the field, which include newly identified fibrotic factors, cell populations that contribute to the fibrosis in adipose tissue, as well as novel mechanisms underlying the development of fibrosis. We further discuss the potential therapeutic strategies to target fibrosis in adipose tissue for the treatment of obesity-linked metabolic diseases and cancer. © 2023 American Physiological Society. Compr Physiol 13:4387-4407, 2023.
Collapse
Affiliation(s)
- Kai Sun
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Xin Li
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Philipp E. Scherer
- Department of Internal Medicine, Touchstone Diabetes Center, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
- Department of Cell Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| |
Collapse
|
15
|
Ahuja P, Bi X, Ng CF, Tse MCL, Hang M, Pang BPS, Iu ECY, Chan WS, Ooi XC, Sun A, Herlea-Pana O, Liu Z, Yang X, Jiao B, Ma X, Wu KKL, Lee LTO, Cheng KKY, Lee CW, Chan CB. Src homology 3 domain binding kinase 1 protects against hepatic steatosis and insulin resistance through the Nur77-FGF21 pathway. Hepatology 2023; 77:213-229. [PMID: 35363898 DOI: 10.1002/hep.32501] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND AIMS Metabolism in the liver is dysregulated in obesity, contributing to various health problems including steatosis and insulin resistance. While the pathogenesis of lipid accumulation has been extensively studied, the protective mechanism against lipid challenge in the liver remains unclear. Here, we report that Src homology 3 domain binding kinase 1 (SBK1) is a regulator of hepatic lipid metabolism and systemic insulin sensitivity in response to obesity. APPROACH AND RESULTS Enhanced Sbk1 expression was found in the liver of high-fat diet (HFD)-induced obese mice and fatty acid (FA)-challenged hepatocytes. SBK1 knockdown in mouse liver cells augmented FA uptake and lipid accumulation. Similarly, liver-specific SBK1 knockout ( Lsko ) mice displayed more severe hepatosteatosis and higher expression of genes in FA uptake and lipogenesis than the Flox/Flox ( Fl/Fl ) control mice when fed the HFD. The HFD-fed Lsko mice also showed symptoms of hyperglycemia, poor systemic glucose tolerance, and lower insulin sensitivity than the Fl/Fl mice. On the other hand, hepatic Sbk1 overexpression alleviated the high-fructose diet-induced hepatosteatosis, hyperlipidemia, and hyperglycemia in mice. White adipose tissue browning was also observed in hepatic SBK1 -overexpressed mice. Moreover, we found that SBK1 was a positive regulator of FGF21 in the liver during energy surplus conditions. Mechanistically, SBK1 phosphorylates the orphan nuclear receptor 4A1 (Nur77) on serine 344 to promote hepatic FGF21 expression and inhibit the transcription of genes involved in lipid anabolism. CONCLUSIONS Collectively, our data suggest that SBK1 is a regulator of the metabolic adaption against obesity through the Nur77-FGF21 pathway.
Collapse
Affiliation(s)
- Palak Ahuja
- School of Biological Sciences , The University of Hong Kong , Hong Kong SAR , China
| | - Xinyi Bi
- School of Biological Sciences , The University of Hong Kong , Hong Kong SAR , China
| | - Chun Fai Ng
- School of Biological Sciences , The University of Hong Kong , Hong Kong SAR , China
| | | | - Miaojia Hang
- School of Biological Sciences , The University of Hong Kong , Hong Kong SAR , China
| | - Brian Pak Shing Pang
- School of Biological Sciences , The University of Hong Kong , Hong Kong SAR , China
| | - Elsie Chit Yu Iu
- School of Biological Sciences , The University of Hong Kong , Hong Kong SAR , China
| | - Wing Suen Chan
- School of Biological Sciences , The University of Hong Kong , Hong Kong SAR , China
| | - Xin Ci Ooi
- School of Biological Sciences , The University of Hong Kong , Hong Kong SAR , China
| | - Anqi Sun
- School of Biological Sciences , The University of Hong Kong , Hong Kong SAR , China
| | - Oana Herlea-Pana
- Department of Physiology , The University of Oklahoma Health Sciences Center , Oklahoma City , Oklahoma , USA
| | - Zhixue Liu
- Center for Molecular & Translational Medicine , Georgia State University , Atlanta , Georgia , USA
| | - Xiuying Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing , Key Laboratory of Drug Target and Screening Research , Institute of Materia Medica of Peking Union Medical College , Beijing , China
| | - Baowei Jiao
- State Key Laboratory of Genetic Resources and Evolution , Kunming Institute of Zoology , Chinese Academy of Sciences , Kunming , China
| | - Xin Ma
- Cancer Centre , Faculty of Health Sciences , University of Macau , Taipa, Macau , China
| | - Kelvin Ka Lok Wu
- Department of Health Technology and Informatics , The Hong Kong Polytechnic University , Hong Kong SAR , China
| | - Leo Tsz On Lee
- Cancer Centre , Faculty of Health Sciences , University of Macau , Taipa, Macau , China
- MOE Frontiers Science Center for Precision Oncology , University of Macau , Taipa, Macau , China
| | - Kenneth King Yip Cheng
- Department of Health Technology and Informatics , The Hong Kong Polytechnic University , Hong Kong SAR , China
| | - Chi Wai Lee
- School of Biomedical Sciences , The University of Hong Kong , Hong Kong SAR , China
| | - Chi Bun Chan
- School of Biological Sciences , The University of Hong Kong , Hong Kong SAR , China
- State Key Laboratory of Pharmaceutical Biotechnology , The University of Hong Kong , Hong Kong SAR , China
| |
Collapse
|
16
|
Scamfer SR, Lee MD, Hilgendorf KI. Ciliary control of adipocyte progenitor cell fate regulates energy storage. Front Cell Dev Biol 2022; 10:1083372. [PMID: 36561368 PMCID: PMC9763467 DOI: 10.3389/fcell.2022.1083372] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
The primary cilium is a cellular sensory organelle found in most cells in our body. This includes adipocyte progenitor cells in our adipose tissue, a complex organ involved in energy storage, endocrine signaling, and thermogenesis. Numerous studies have shown that the primary cilium plays a critical role in directing the cell fate of adipocyte progenitor cells in multiple adipose tissue types. Accordingly, diseases with dysfunctional cilia called ciliopathies have a broad range of clinical manifestations, including obesity and diabetes. This review summarizes our current understanding of how the primary cilium regulates adipocyte progenitor cell fate in multiple contexts and illustrates the importance of the primary cilium in regulating energy storage and adipose tissue function.
Collapse
Affiliation(s)
| | | | - Keren I. Hilgendorf
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States
| |
Collapse
|
17
|
Zinngrebe J, Fischer-Posovszky P. AcroBATics: how dying brown adipocytes trigger browning. Nat Rev Endocrinol 2022; 18:661-662. [PMID: 36064975 DOI: 10.1038/s41574-022-00743-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Julia Zinngrebe
- Ulm University Medical Center, Department of Pediatrics and Adolescent Medicine, Ulm, Germany
| | | |
Collapse
|
18
|
Chakarov S, Blériot C, Ginhoux F. Role of adipose tissue macrophages in obesity-related disorders. J Exp Med 2022; 219:213212. [PMID: 35543703 PMCID: PMC9098652 DOI: 10.1084/jem.20211948] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 11/04/2022] Open
Abstract
The obesity epidemic has led researchers and clinicians to reconsider the etiology of this disease and precisely decipher its molecular mechanisms. The excessive accumulation of fat by cells, most notably adipocytes, which play a key role in this process, has many repercussions in tissue physiology. Herein, we focus on how macrophages, immune cells well known for their tissue gatekeeping functions, assume fundamental, yet ill-defined, roles in the genesis and development of obesity-related metabolic disorders. We first discuss the determinants of the biology of these cells before introducing the specifics of the adipose tissue environment, while highlighting its heterogeneity. Finally, we detail how obesity transforms both adipose tissue and local macrophage populations. Understanding macrophage diversity and their cross talk with the diverse cell types constituting the adipose tissue environment will allow us to frame the therapeutic potential of adipose tissue macrophages in obesity.
Collapse
Affiliation(s)
- Svetoslav Chakarov
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Camille Blériot
- Institut Gustave Roussy, Batiment de Médecine Moléculaire, Villejuif, France
| | - Florent Ginhoux
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Institut Gustave Roussy, Batiment de Médecine Moléculaire, Villejuif, France.,Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore, Singapore.,Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| |
Collapse
|
19
|
Crosstalk between macrophages and innate lymphoid cells (ILCs) in diseases. Int Immunopharmacol 2022; 110:108937. [PMID: 35779490 DOI: 10.1016/j.intimp.2022.108937] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/15/2022]
Abstract
Innate lymphoid cells (ILCs) and macrophages are tissue-resident cells that play important roles in tissue-immune homeostasis and immune regulation. ILCs are mainly distributed on the barrier surfaces of mammals to ensure immunity or tissue homeostasis following host, microbial, or environmental stimulation. Their complex relationships with different organs enable them to respond quickly to disturbances in environmental conditions and organ homeostasis, such as during infections and tissue damage. Gradually emerging evidence suggests that ILCs also play complex and diverse roles in macrophage development, homeostasis, polarization, inflammation, and viral infection. In turn, macrophages also determine the fate of ILCs to some extent, which indicates that network crossover between these interactions is a key determinant of the immune response. More work is needed to better define the crosstalk of ILCs with macrophages in different tissues and demonstrate how it is affected during inflammation and other diseases. Here, we summarize current research on the functional interactions between ILCs and macrophages and consider the potential therapeutic utility of these interactions for the benefit of human health.
Collapse
|
20
|
Serezani AP, Pascoalino BD, Bazzano J, Vowell KN, Tanjore H, Taylor CJ, Calvi CL, Mccall SA, Bacchetta MD, Shaver CM, Ware LB, Salisbury ML, Banovich NE, Kendall PL, Kropski JA, Blackwell TS. Multi-Platform Single-Cell Analysis Identifies Immune Cell Types Enhanced in Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2022; 67:50-60. [PMID: 35468042 PMCID: PMC9273229 DOI: 10.1165/rcmb.2021-0418oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Immune cells have been implicated in Idiopathic Pulmonary Fibrosis (IPF), but the phenotypes and effector mechanisms of these cells remain incompletely characterized. We performed mass cytometry to quantify immune/inflammatory cell subsets in lungs of 12 patients with IPF and 15 organ donors without chronic lung disease and utilized existing single-cell RNA-sequencing (scRNA-seq) data to investigate transcriptional profiles of immune cells over-represented in IPF. Among myeloid cells, we found increased numbers of alveolar macrophages (AMØs) and dendritic cells (DCs) in IPF, as well as a subset of monocyte-derived DC. In contrast, monocyte-like cells and interstitial macrophages were reduced in IPF. Transcriptomic profiling identified an enrichment for interferon-γ (IFN-γ) response pathways in AMØs and DCs from IPF, as well as antigen processing in DCs and phagocytosis in AMØs. Among T cells, we identified three subset of memory T cells that were increased in IPF, including CD4+ and CD8+ resident memory T cells (TRM), and CD8+ effector memory (TEMRA) cells. The response to IFN-γ pathway was enriched in CD4 TRM and CD8 TRM cells in IPF, along with T cell activation and immune response-regulating signaling pathways. Increased AMØs, DCs, and memory T cells were present in IPF lungs compared to control subjects. In IPF, these cells possess an activation profile indicating increased IFN-γ signaling and up-regulation of adaptive immunity in the lungs. Together, these studies highlight critical features of the immunopathogenesis of IPF.
Collapse
Affiliation(s)
- Ana Pm Serezani
- Vanderbilt University Medical Center, 12328, Medicine, Nashville, Tennessee, United States;
| | | | - Julia Bazzano
- Vanderbilt University Medical Center, 12328, Nashville, Tennessee, United States
| | - Katherine N Vowell
- Vanderbilt University Medical Center, 12328, Nashville, Tennessee, United States
| | - Harikrishna Tanjore
- Vanderbilt University Medical Center, 12328, Medicine, Nashville, Tennessee, United States
| | - Chase J Taylor
- Vanderbilt University Medical Center, 12328, Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Nashville, Tennessee, United States
| | - Carla L Calvi
- Vanderbilt University Medical Center, 12328, Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Nashville, Tennessee, United States
| | - Scott A Mccall
- Vanderbilt University Medical Center, 12328, Medicine, Nashville, Tennessee, United States
| | - Matthew D Bacchetta
- Vanderbilt University Medical Center, 12328, Thoracic and Cardiac Surgery and Biomedical Engineering, Nashville, Tennessee, United States
| | - Ciara M Shaver
- Vanderbilt University Medical Center, 12328, Medicine, Nashville, Tennessee, United States
| | - Lorraine B Ware
- Vanderbilt University, 5718, Department of Internal Medicine, Division of Allergy, Pulmonary, and Critical Care, and Department of Pathology, Microbiology and Immunology, Nashville, Tennessee, United States
| | - Margaret L Salisbury
- Vanderbilt University Medical Center, 12328, Medicine, Nashville, Tennessee, United States
| | - Nicholas E Banovich
- Translational Genomics Research Institute, 10897, Phoenix, Arizona, United States
| | - Peggy L Kendall
- Washington University in St Louis, 7548, Internal Medicine, St Louis, Missouri, United States
| | - Jonathan A Kropski
- Vanderbilt University Medical Center, 12328, Medicine, Nashville, Tennessee, United States
| | - Timothy S Blackwell
- Vanderbilt University Medical Center, 12328, Medicine, Nashville, Tennessee, United States
| |
Collapse
|
21
|
Kislev N, Izgilov R, Adler R, Benayahu D. Exploring the Cell Stemness and the Complexity of the Adipose Tissue Niche. Biomolecules 2021; 11:biom11121906. [PMID: 34944549 PMCID: PMC8699211 DOI: 10.3390/biom11121906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/05/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Adipose tissue is a complex organ composed of different cellular populations, including mesenchymal stem and progenitor cells, adipocytes, and immune cells such as macrophages and lymphocytes. These cellular populations alter dynamically during aging or as a response to pathophysiology such as obesity. Changes in the various inflammatory cells are associated with metabolic complications and the development of insulin resistance, indicating that immune cells crosstalk with the adipocytes. Therefore, a study of the cell populations in the adipose tissue and the extracellular matrix maintaining the tissue niche is important for the knowledge on the regulatory state of the organ. We used a combination of methods to study various parameters to identify the composition of the resident cells in the adipose tissue and evaluate their profile. We analyzed the tissue structure and cells based on histology, immune fluorescence staining, and flow cytometry of cells present in the tissue in vivo and these markers’ expression in vitro. Any shift in cells’ composition influences self-renewal of the mesenchymal progenitors, and other cells affect the functionality of adipogenesis.
Collapse
|
22
|
Saitoh S, Van Wijk K, Nakajima O. Crosstalk between Metabolic Disorders and Immune Cells. Int J Mol Sci 2021; 22:ijms221810017. [PMID: 34576181 PMCID: PMC8469678 DOI: 10.3390/ijms221810017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 12/22/2022] Open
Abstract
Metabolic syndrome results from multiple risk factors that arise from insulin resistance induced by abnormal fat deposition. Chronic inflammation owing to obesity primarily results from the recruitment of pro-inflammatory M1 macrophages into the adipose tissue stroma, as the adipocytes within become hypertrophied. During obesity-induced inflammation in adipose tissue, pro-inflammatory cytokines are produced by macrophages and recruit further pro-inflammatory immune cells into the adipose tissue to boost the immune response. Here, we provide an overview of the biology of macrophages in adipose tissue and the relationship between other immune cells, such as CD4+ T cells, natural killer cells, and innate lymphoid cells, and obesity and type 2 diabetes. Finally, we discuss the link between the human pathology and immune response and metabolism and further highlight potential therapeutic targets for the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Shinichi Saitoh
- Department of Immunology, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan;
| | - Koen Van Wijk
- Research Center for Molecular Genetics, Institute for Promotion of Medical Science Research, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan;
| | - Osamu Nakajima
- Research Center for Molecular Genetics, Institute for Promotion of Medical Science Research, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan;
- Correspondence:
| |
Collapse
|
23
|
Adipose Tissue Immunometabolism and Apoptotic Cell Clearance. Cells 2021; 10:cells10092288. [PMID: 34571937 PMCID: PMC8470283 DOI: 10.3390/cells10092288] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/19/2022] Open
Abstract
The safe removal of apoptotic debris by macrophages—often referred to as efferocytosis—is crucial for maintaining tissue integrity and preventing self-immunity or tissue damaging inflammation. Macrophages clear tissues of hazardous materials from dying cells and ultimately adopt a pro-resolving activation state. However, adipocyte apoptosis is an inflammation-generating process, and the removal of apoptotic adipocytes by so-called adipose tissue macrophages triggers a sequence of events that lead to meta-inflammation and obesity-associated metabolic diseases. Signals that allow apoptotic cells to control macrophage immune functions are complex and involve metabolites released by the apoptotic cells and also metabolites produced by the macrophages during the digestion of apoptotic cell contents. This review provides a concise summary of the adipocyte-derived metabolites that potentially control adipose tissue macrophage immune functions and, hence, may induce or alleviate adipose tissue inflammation.
Collapse
|
24
|
Reyes-Farias M, Fos-Domenech J, Serra D, Herrero L, Sánchez-Infantes D. White adipose tissue dysfunction in obesity and aging. Biochem Pharmacol 2021; 192:114723. [PMID: 34364887 DOI: 10.1016/j.bcp.2021.114723] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/19/2022]
Abstract
Both obesity and aging are associated with the development of metabolic diseases such as type 2 diabetes and cardiovascular disease. Chronic low-grade inflammation of adipose tissue is one of the mechanisms implicated in the progression of these diseases. Obesity and aging trigger adipose tissue alterations that ultimately lead to a pro-inflammatory phenotype of the adipose tissue-resident immune cells. Obesity and aging also share other features such as a higher visceral vs. subcutaneous adipose tissue ratio and a decreased lifespan. Here, we review the common characteristics of obesity and aging and the alterations in white adipose tissue and resident immune cells. We focus on the adipose tissue metabolic derangements in obesity and aging such as inflammation and adipose tissue remodeling.
Collapse
Affiliation(s)
- Marjorie Reyes-Farias
- Department of Endocrinology and Nutrition, Germans Trias i Pujol Research Institute, Barcelona, Spain; Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Julia Fos-Domenech
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Dolors Serra
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Laura Herrero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain.
| | - David Sánchez-Infantes
- Department of Endocrinology and Nutrition, Germans Trias i Pujol Research Institute, Barcelona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain; Department of Health Sciences, Campus Alcorcón, University Rey Juan Carlos (URJC), E-28922 Madrid, Spain.
| |
Collapse
|
25
|
Winn NC, Cottam MA, Wasserman DH, Hasty AH. Exercise and Adipose Tissue Immunity: Outrunning Inflammation. Obesity (Silver Spring) 2021; 29:790-801. [PMID: 33899336 DOI: 10.1002/oby.23147] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/02/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023]
Abstract
Chronic inflammation is considered a precipitating factor and possibly an underlying cause of many noncommunicable diseases, including cardiovascular disease, metabolic diseases, and some cancers. Obesity, which manifests in more than 650 million people worldwide, is the most common chronic inflammatory condition, with visceral adiposity thought to be the major inflammatory hub that links obesity and chronic disease. Adipose tissue (AT) inflammation is triggered or heightened in large part by (1) accelerated immune cell recruitment, (2) reshaping of the AT stromal-immuno landscape (e.g., immune cells, endothelial cells, fibroblasts, adipocyte progenitors), and (3) perturbed AT immune cell function. Exercise, along with diet management, is a cornerstone in promoting weight loss and preventing weight regain. This review focuses on evidence that increased physical activity reduces AT inflammation caused by hypercaloric diets or genetic obesity. The precise cell types and mechanisms responsible for the therapeutic effects of exercise on AT inflammation remain poorly understood. This review summarizes what is known about obesity-induced AT inflammation and immunomodulation and highlights mechanisms by which aerobic exercise combats inflammation by remodeling the AT immune landscape. Furthermore, key areas are highlighted that require future exploration and novel discoveries into the burgeoning field of how the biology of exercise affects AT immunity.
Collapse
Affiliation(s)
- Nathan C Winn
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Matthew A Cottam
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - David H Wasserman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Mouse Metabolic Phenotyping Center, Nashville, Tennessee, USA
| | - Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
26
|
de Oliveira AM, de Freitas AFS, Costa MDDS, Torres MKDS, Castro YADA, Almeida AMR, Paiva PMG, Carvalho BM, Napoleão TH. Pilosocereus gounellei (Cactaceae) stem extract decreases insulin resistance, inflammation, oxidative stress, and cardio-metabolic risk in diet-induced obese mice. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113327. [PMID: 32871234 DOI: 10.1016/j.jep.2020.113327] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/02/2020] [Accepted: 08/25/2020] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pilosocereus gounellei (xique-xique) is a popular cactus from Caatinga, traditionally used to counter inflammatory processes and indicated as a hypoglycemic agent. Previous studies have shown that mice treated orally with saline extract of P. gounellei stem (containing flavonoids and sugars) showed decreased serum lipid levels. AIM OF THE STUDY In this work, we evaluated whether this extract would have beneficial effects against hyperglycemia and inflammatory status related to obesity in mice fed a high-fat diet (HFD). METHODS Obese animals were treated daily per os with the extract (EXT; 125, 250, and 500 mg/kg), metformin (MET; 400 mg/kg), or saline solution (diet-induced obese, DIO) for 21 days. A group of non-obese animals served as the control. We evaluated lipid profile, glucose and insulin tolerance, atherogenic indices, histological alterations, cytokine levels, and oxidative stress in liver, muscle, and adipose tissue. RESULTS At the end of the experiment, mice from EXT groups showed lower body weight and total cholesterol, LDL-cholesterol, and triglycerides compared with the DIO group; in addition, HDL-cholesterol levels and glucose and insulin tolerance were similar to those of the control group. When compared with the DIO group, the extract-treated mice showed reduction in cardiac risk ratio, atherogenic coefficient, atherogenic index of plasma, and Castelli's Risk Index II; decrease in epididymal fat; reduction in steatosis, collagen deposition, and liver inflammation; lower serum levels of pro-inflammatory cytokines (tumor necrosis factor α, interleukin 6, and monocyte chemoattractant protein-1); inhibited lipid peroxidation; and increased superoxide dismutase levels in liver, muscle, and adipose tissue. CONCLUSION The P. gounellei saline extract was able to improve physiological parameters of obese mice, which highlight the potential of this plant as source of compounds with biotechnological relevance for pharmaceutical industry.
Collapse
Affiliation(s)
- Alisson Macário de Oliveira
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, 50670-420, Recife, Pernambuco, Brazil.
| | - Anderson Felipe Soares de Freitas
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, 50670-420, Recife, Pernambuco, Brazil.
| | - Milena Damasceno de Souza Costa
- Laboratório de Fisiopatologia Experimental, Instituto de Ciências Biológicas, Universidade de Pernambuco, Recife, Pernambuco, Brazil.
| | - Marília Kalinne da Silva Torres
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, 50670-420, Recife, Pernambuco, Brazil; Laboratório de Fisiopatologia Experimental, Instituto de Ciências Biológicas, Universidade de Pernambuco, Recife, Pernambuco, Brazil
| | - Yasmim Alline de Araújo Castro
- Laboratório de Fisiopatologia Experimental, Instituto de Ciências Biológicas, Universidade de Pernambuco, Recife, Pernambuco, Brazil.
| | - Ana Maria Rampeloti Almeida
- Laboratório de Fisiopatologia Experimental, Instituto de Ciências Biológicas, Universidade de Pernambuco, Recife, Pernambuco, Brazil.
| | - Patrícia Maria Guedes Paiva
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, 50670-420, Recife, Pernambuco, Brazil.
| | - Bruno Melo Carvalho
- Laboratório de Fisiopatologia Experimental, Instituto de Ciências Biológicas, Universidade de Pernambuco, Recife, Pernambuco, Brazil.
| | - Thiago Henrique Napoleão
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, 50670-420, Recife, Pernambuco, Brazil.
| |
Collapse
|
27
|
Park J, Sohn JH, Han SM, Park YJ, Huh JY, Choe SS, Kim JB. Adipocytes Are the Control Tower That Manages Adipose Tissue Immunity by Regulating Lipid Metabolism. Front Immunol 2021; 11:598566. [PMID: 33584664 PMCID: PMC7876236 DOI: 10.3389/fimmu.2020.598566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022] Open
Abstract
Accumulating evidence reveals that adipose tissue is an immunologically active organ that exerts multiple impacts on the regulation of systemic energy metabolism. Adipose tissue immunity is modulated by the interactions between adipocytes and various immune cells. Nevertheless, the underlying mechanisms that control inter-cellular interactions between adipocytes and immune cells in adipose tissue have not been thoroughly elucidated. Recently, it has been demonstrated that adipocytes utilize lipid metabolites as a key mediator to initiate and mediate diverse adipose tissue immune responses. Adipocytes present lipid antigens and secrete lipid metabolites to determine adipose immune tones. In addition, the interactions between adipocytes and adipose immune cells are engaged in the control of adipocyte fate and functions upon metabolic stimuli. In this review, we discuss an integrated view of how adipocytes communicate with adipose immune cells using lipid metabolites. Also, we briefly discuss the newly discovered roles of adipose stem cells in the regulation of adipose tissue immunity.
Collapse
Affiliation(s)
- Jeu Park
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Seoul National University, Seoul, South Korea.,Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea.,School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jee Hyung Sohn
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Seoul National University, Seoul, South Korea.,Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea.,School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Sang Mun Han
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Seoul National University, Seoul, South Korea.,Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea.,School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Yoon Jeong Park
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Seoul National University, Seoul, South Korea.,Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea.,School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jin Young Huh
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Seoul National University, Seoul, South Korea.,Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea.,School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Sung Sik Choe
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Seoul National University, Seoul, South Korea.,Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea.,School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jae Bum Kim
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Seoul National University, Seoul, South Korea.,Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea.,School of Biological Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
28
|
Zhao P, Saltiel AR. Interaction of Adipocyte Metabolic and Immune Functions Through TBK1. Front Immunol 2020; 11:592949. [PMID: 33193441 PMCID: PMC7606291 DOI: 10.3389/fimmu.2020.592949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 09/30/2020] [Indexed: 12/19/2022] Open
Abstract
Adipocytes and adipose tissue play critical roles in the regulation of metabolic homeostasis. In obesity and obesity-associated metabolic diseases, immune cells infiltrate into adipose tissues. Interaction between adipocytes and immune cells re-shapes both metabolic and immune properties of adipose tissue and dramatically changes metabolic set points. Both the expression and activity of the non-canonical IKK family member TBK1 are induced in adipose tissues during diet-induced obesity. TBK1 plays important roles in the regulation of both metabolism and inflammation in adipose tissue and thus affects glucose and energy metabolism. Here we review the regulation and functions of TBK1 and the molecular mechanisms by which TBK1 regulates both metabolism and inflammation in adipose tissue. Finally, we discuss the potential of a TBK1/IKKε inhibitor as a new therapy for metabolic diseases.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - Alan R Saltiel
- Department of Medicine, University of California San Diego, La Jolla, CA, United States.,Department of Pharmacology, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
29
|
Lontchi-Yimagou E, Kang S, Goyal A, Zhang K, You JY, Carey M, Jain S, Bhansali S, Kehlenbrink S, Guo P, Rosen ED, Kishore P, Hawkins M. Insulin-sensitizing effects of vitamin D repletion mediated by adipocyte vitamin D receptor: Studies in humans and mice. Mol Metab 2020; 42:101095. [PMID: 33045433 PMCID: PMC7585951 DOI: 10.1016/j.molmet.2020.101095] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 09/26/2020] [Accepted: 10/07/2020] [Indexed: 12/31/2022] Open
Abstract
Objective Adipose tissue inflammation and fibrosis appear to contribute to insulin resistance in obesity. Vitamin D receptor (Vdr) genes are expressed by adipocytes, macrophages, and fibroblasts, all of which could potentially play a role in adipose tissue inflammation and fibrosis. As vitamin D has been shown to have direct anti-inflammatory effects on adipocytes, we determined whether specific vitamin D receptor-mediated effects on adipocytes could impact adipose tissue inflammation and fibrosis and ultimately insulin resistance. Methods We examined the effects of repleting vitamin D in 25(OH)D-deficient, insulin resistant, overweight-to-obese human subjects (n = 19). A comprehensive assessment of whole-body insulin action was undertaken with stepped euglycemic (∼90 mg/dL) hyperinsulinemic clamp studies both before and after the administration of vitamin D or placebo. Adipose tissue fibrosis and inflammation were quantified by real-time rt-PCR and immunofluorescence in subcutaneous abdominal adipose tissue. To determine whether vitamin D's effects are mediated through adipocytes, we conducted hyperinsulinemic clamp studies (4 mU/kg/min) and adipose tissue analysis using an adipocyte-specific vitamin D receptor knockout (VDR-KO) mouse model (adiponectin-Cre + VDR+/fl) following high-fat diet feeding for 12 weeks. Results 25(OH)D repletion was associated with reductions in adipose tissue expression of pro-inflammatory and pro-fibrotic genes, decreased collagen immunofluorescence, and improved hepatic insulin sensitivity in humans. Worsening trends after six months on placebo suggest progressive metabolic effects of 25(OH)D deficiency. Ad-VDR-KO mice mirrored the vitamin D-deficient humans, displaying increased adipose tissue fibrosis and inflammation and hepatic insulin resistance. Conclusions These complementary human and rodent studies support a beneficial role of vitamin D repletion for improving hepatic insulin resistance and reducing adipose tissue inflammation and fibrosis in targeted individuals, likely via direct effects on adipocytes. These studies have far-reaching implications for understanding the role of adipocytes in mediating adipose tissue inflammation and fibrosis and ultimately impacting insulin sensitivity. Vitamin D repletion improved hepatic insulin sensitivity in obese insulin-resistant and vitamin D deficient human. Correcting vitamin D deficiency concomitantly reduced adipose tissue expression of pro-inflammatory and pro-fibrotic genes. Worsening trends in these metabolic parameters were observed following 6 months of uncorrected vitamin D deficiency. Adipocyte-specific depletion of VDR in mice induced adipose tissue inflammation and fibrosis and hepatic insulin resistance.
Collapse
Affiliation(s)
| | - Sona Kang
- Nutritional Sciences and Toxicology Department, University of California, Berkeley, CA 94720-3100, USA
| | | | - Kehao Zhang
- Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jee Y You
- Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Michelle Carey
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Swati Jain
- Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Sylvia Kehlenbrink
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Peng Guo
- Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Evan D Rosen
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Preeti Kishore
- Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
30
|
Saxton SN, Whitley AS, Potter RJ, Withers SB, Grencis R, Heagerty AM. Interleukin-33 rescues perivascular adipose tissue anticontractile function in obesity. Am J Physiol Heart Circ Physiol 2020; 319:H1387-H1397. [PMID: 33035443 DOI: 10.1152/ajpheart.00491.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Perivascular adipose tissue (PVAT) depots are metabolically active and play a major vasodilator role in healthy lean individuals. In obesity, they become inflamed and eosinophil-depleted and the anticontractile function is lost with the development of diabetes and hypertension. Moreover, eosinophil-deficient ΔdblGATA-1 mice lack PVAT anticontractile function and exhibit hypertension. Here, we have investigated the effects of inducing eosinophilia on PVAT function in health and obesity. Control, obese, and ΔdblGATA-1 mice were administered intraperitoneal injections of interleukin-33 (IL-33) for 5 days. Conscious restrained blood pressure was measured, and blood was collected for glucose and plasma measurements. Wire myography was used to assess the contractility of mesenteric resistance arteries. IL-33 injections induced a hypereosinophilic phenotype. Obese animals had significant elevations in blood pressure, blood glucose, and plasma insulin, which were normalized with IL-33. Blood glucose and insulin levels were also lowered in lean treated mice. In arteries from control mice, PVAT exerted an anticontractile effect on the vessels, which was enhanced with IL-33 treatment. In obese mice, loss of PVAT anticontractile function was rescued by IL-33. Exogenous application of IL-33 to isolated arteries induced a rapidly decaying endothelium-dependent vasodilation. The therapeutic effects were not seen in IL-33-treated ΔdblGATA-1 mice, thereby confirming that the eosinophil is crucial. In conclusion, IL-33 treatment restored PVAT anticontractile function in obesity and reversed development of hypertension, hyperglycemia, and hyperinsulinemia. These data suggest that targeting eosinophil numbers in PVAT offers a novel approach to the treatment of hypertension and type 2 diabetes in obesity.NEW & NOTEWORTHY In this study, we have shown that administering IL-33 to obese mice will restore PVAT anticontractile function, and this is accompanied by normalized blood pressure, blood glucose, and plasma insulin. Moreover, the PVAT effect is enhanced in control mice given IL-33. IL-33 induced a hypereosinophilic phenotype in our mice, and the effects of IL-33 on PVAT function, blood pressure, and blood glucose are absent in eosinophil-deficient mice, suggesting that the effects of IL-33 are mediated via eosinophils.
Collapse
Affiliation(s)
- Sophie N Saxton
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom.,The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Alice S Whitley
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Ryan J Potter
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Sarah B Withers
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom.,The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom.,School of Science, Engineering and Environment, University of Salford, Manchester, United Kingdom
| | - Richard Grencis
- The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom.,Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - Anthony M Heagerty
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom.,The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
31
|
Song YC, Lee SE, Jin Y, Park HW, Chun KH, Lee HW. Classifying the Linkage between Adipose Tissue Inflammation and Tumor Growth through Cancer-Associated Adipocytes. Mol Cells 2020; 43:763-773. [PMID: 32759466 PMCID: PMC7528682 DOI: 10.14348/molcells.2020.0118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/16/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022] Open
Abstract
Recently, tumor microenvironment (TME) and its stromal constituents have provided profound insights into understanding alterations in tumor behavior. After each identification regarding the unique roles of TME compartments, non-malignant stromal cells are found to provide a sufficient tumorigenic niche for cancer cells. Of these TME constituents, adipocytes represent a dynamic population mediating endocrine effects to facilitate the crosstalk between cancer cells and distant organs, as well as the interplay with nearby tumor cells. To date, the prevalence of obesity has emphasized the significance of metabolic homeostasis along with adipose tissue (AT) inflammation, cancer incidence, and multiple pathological disorders. In this review, we summarized distinct characteristics of hypertrophic adipocytes and cancer to highlight the importance of an individual's metabolic health during cancer therapy. As AT undergoes inflammatory alterations inducing tissue remodeling, immune cell infiltration, and vascularization, these features directly influence the TME by favoring tumor progression. A comparison between inflammatory AT and progressing cancer could potentially provide crucial insights into delineating the complex communication network between uncontrolled hyperplastic tumors and their microenvironmental components. In turn, the comparison will unravel the underlying properties of dynamic tumor behavior, advocating possible therapeutic targets within TME constituents.
Collapse
Affiliation(s)
- Yae Chan Song
- Department of Biochemistry, College of Life Science and Biotechnology and Yonsei Laboratory Animal Research Center, Yonsei University, Seoul 03722, Korea
- These authors contributed equally to this work
| | - Seung Eon Lee
- Department of Biochemistry, College of Life Science and Biotechnology and Yonsei Laboratory Animal Research Center, Yonsei University, Seoul 03722, Korea
- These authors contributed equally to this work
| | - Young Jin
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul 037, Korea
| | - Hyun Woo Park
- Department of Biochemistry, College of Life Science and Biotechnology and Yonsei Laboratory Animal Research Center, Yonsei University, Seoul 03722, Korea
| | - Kyung-Hee Chun
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul 037, Korea
| | - Han-Woong Lee
- Department of Biochemistry, College of Life Science and Biotechnology and Yonsei Laboratory Animal Research Center, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
32
|
Fischer-Posovszky P, Möller P. [The immune system of adipose tissue: obesity-associated inflammation]. DER PATHOLOGE 2020; 41:224-229. [PMID: 32253498 DOI: 10.1007/s00292-020-00782-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Adipose tissue is an important endocrine organ. Via its secretion products, it cross-talks with other organs of the body and communicates the filling state of its triglyceride stores. Obesity is characterized by the excessive accumulation of body fat and leads to the infiltration and accumulation of immune cells in white adipose tissue. In this review article we introduce the various immune cell populations of adipose tissue and discuss their local and systemic influence.
Collapse
Affiliation(s)
- Pamela Fischer-Posovszky
- Universitätsklinik für Kinder- und Jugendmedizin, Universitätsklinikum Ulm, Eythstr. 24, 89075, Ulm, Deutschland.
| | - Peter Möller
- Institut für Pathologie, Universitätsklinikum Ulm, Ulm, Deutschland
| |
Collapse
|
33
|
Abstract
Adipose tissue (AT) plays a central role in both metabolic health and pathophysiology. Its expansion in obesity results in increased mortality and morbidity, with contributions to cardiovascular disease, diabetes mellitus, fatty liver disease, and cancer. Obesity prevalence is at an all-time high and is projected to be 50% in the United States by 2030. AT is home to a large variety of immune cells, which are critical to maintain normal tissue functions. For example, γδ T cells are fundamental for AT innervation and thermogenesis, and macrophages are required for recycling of lipids released by adipocytes. The expansion of visceral white AT promotes dysregulation of its immune cell composition and likely promotes low-grade chronic inflammation, which has been proposed to be the underlying cause for the complications of obesity. Interestingly, weight loss after obesity alters the AT immune compartment, which may account for the decreased risk of developing these complications. Recent technological advancements that allow molecular investigation on a single-cell level have led to the discovery of previously unappreciated heterogeneity in many organs and tissues. In this review, we will explore the heterogeneity of immune cells within the visceral white AT and their contributions to homeostasis and pathology.
Collapse
Affiliation(s)
- Ada Weinstock
- Department of Medicine, Leon H. Charney Division of Cardiology, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Hernandez Moura Silva
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY, 10016, USA
| | - Kathryn J. Moore
- Department of Medicine, Leon H. Charney Division of Cardiology, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Edward A. Fisher
- Department of Medicine, Leon H. Charney Division of Cardiology, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| |
Collapse
|
34
|
Zachary CB, Burns AJ, Pham LD, Jimenez Lozano JN. Clinical Study Demonstrates that Electromagnetic Muscle Stimulation Does Not Cause Injury to Fat Cells. Lasers Surg Med 2020; 53:70-78. [PMID: 32383824 PMCID: PMC7891655 DOI: 10.1002/lsm.23259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/15/2022]
Abstract
Background and Objectives A previous pre‐clinical study on electromagnetic muscle stimulation (EMMS) suggested that fat cell apoptosis occurs following treatment in a porcine model. While EMMS can induce changes in muscle, the effect on fat tissue is not established. This clinical study sought to assess adipose tissue response to EMMS in comparison to cryolipolysis treatment. Study Design/Materials and Methods Study subjects were recruited prior to abdominoplasty to receive body contouring treatments and subsequently to obtain tissue for histological analysis. Non‐invasive abdominal treatments were delivered using a commercially available (n = 6) or prototype (n = 3) EMMS system or a cryolipolysis system (n = 2). Subjects received a single EMMS treatment (100% intensity for 30 minutes) or a single cryolipolysis treatment (−11°C for 35 minutes) to the abdomen. Superficial and deep (i.e., adjacent to muscle layer) subcutaneous adipose tissue was harvested at set timepoints post‐treatment. The presence or absence of an inflammatory response was evaluated using standard hematoxylin and eosin (H&E) staining. As adipocytes that are destined to become apoptotic cannot be distinguished by traditional H&E staining during the early phases of injury, irreversible fat cell injury was assessed using perilipin immunofluorescence. Results Following H&E histological analysis at 3, 10, 11, and 17 days post‐treatment, no EMMS‐treated samples showed an inflammatory response in either the superficial or deep subcutaneous adipose tissue. For the cryolipolysis‐treated adipose tissue, however, the H&E staining revealed a marked inflammatory response with an influx of neutrophils, lymphocytes, and macrophages at timepoints consistent with previous histological studies. Further, loss of perilipin staining provided clear visual evidence of irreversible fat cell injury in the cryolipolysis‐treated adipose tissue. In contrast, the electromagnetic muscle stimulation‐treated samples showed persistence of perilipin staining of adipose tissue indicating that all fat cells were viable. Conclusion This study failed to demonstrate either fat cell injury or inflammatory response following EMMS treatment. While electromagnetic muscle stimulation may non‐invasively induce muscle changes, this clinical study found no evidence of an impact injurious or otherwise on subcutaneous fat. © 2020 The Authors. Lasers in Surgery and Medicine published by Wiley Periodicals LLC
Collapse
Affiliation(s)
- Christopher B Zachary
- Department of Dermatology, School of Medicine, University of California, Irvine, California, 92697
| | - A Jay Burns
- Private Practice Surgical and Non-Surgical Cosmetic Plastic Surgery, Dallas, Texas, 75225
| | - Linda D Pham
- ZELTIQ Aesthetics, an affiliate of Allergan, plc., Pleasanton, California, 94588
| | | |
Collapse
|
35
|
A STAT3 of Addiction: Adipose Tissue, Adipocytokine Signalling and STAT3 as Mediators of Metabolic Remodelling in the Tumour Microenvironment. Cells 2020; 9:cells9041043. [PMID: 32331320 PMCID: PMC7226520 DOI: 10.3390/cells9041043] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022] Open
Abstract
Metabolic remodelling of the tumour microenvironment is a major mechanism by which cancer cells survive and resist treatment. The pro-oncogenic inflammatory cascade released by adipose tissue promotes oncogenic transformation, proliferation, angiogenesis, metastasis and evasion of apoptosis. STAT3 has emerged as an important mediator of metabolic remodelling. As a downstream effector of adipocytokines and cytokines, its canonical and non-canonical activities affect mitochondrial functioning and cancer metabolism. In this review, we examine the central role played by the crosstalk between the transcriptional and mitochondrial roles of STAT3 to promote survival and further oncogenesis within the tumour microenvironment with a particular focus on adipose-breast cancer interactions.
Collapse
|
36
|
Aldiss P, Lewis JE, Lupini I, Bloor I, Chavoshinejad R, Boocock DJ, Miles AK, Ebling FJP, Budge H, Symonds ME. Exercise Training in Obese Rats Does Not Induce Browning at Thermoneutrality and Induces a Muscle-Like Signature in Brown Adipose Tissue. Front Endocrinol (Lausanne) 2020; 11:97. [PMID: 32265830 PMCID: PMC7099615 DOI: 10.3389/fendo.2020.00097] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/14/2020] [Indexed: 01/08/2023] Open
Abstract
Aim: Exercise training elicits diverse effects on brown (BAT) and white adipose tissue (WAT) physiology in rodents housed below their thermoneutral zone (i.e., 28-32°C). In these conditions, BAT is chronically hyperactive and, unlike human residence, closer to thermoneutrality. Therefore, we set out to determine the effects of exercise training in obese animals at 28°C (i.e., thermoneutrality) on BAT and WAT in its basal (i.e., inactive) state. Methods: Sprague-Dawley rats (n = 12) were housed at thermoneutrality from 3 weeks of age and fed a high-fat diet. At 12 weeks of age half these animals were randomized to 4-weeks of swim-training (1 h/day, 5 days per week). Following a metabolic assessment interscapular and perivascular BAT and inguinal (I)WAT were taken for analysis of thermogenic genes and the proteome. Results: Exercise attenuated weight gain but did not affect total fat mass or thermogenic gene expression. Proteomics revealed an impact of exercise training on 2-oxoglutarate metabolic process, mitochondrial respiratory chain complex IV, carbon metabolism, and oxidative phosphorylation. This was accompanied by an upregulation of multiple proteins involved in skeletal muscle physiology in BAT and an upregulation of muscle specific markers (i.e., Myod1, CkM, Mb, and MyoG). UCP1 mRNA was undetectable in IWAT with proteomics highlighting changes to DNA binding, the positive regulation of apoptosis, HIF-1 signaling and cytokine-cytokine receptor interaction. Conclusion: Exercise training reduced weight gain in obese animals at thermoneutrality and is accompanied by an oxidative signature in BAT which is accompanied by a muscle-like signature rather than induction of thermogenic genes. This may represent a new, UCP1-independent pathway through which BAT physiology is regulated by exercise training.
Collapse
Affiliation(s)
- Peter Aldiss
- The Early Life Research Unit, Division of Child Health, Obstetrics and Gynaecology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Jo E. Lewis
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Irene Lupini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Ian Bloor
- The Early Life Research Unit, Division of Child Health, Obstetrics and Gynaecology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Ramyar Chavoshinejad
- The Early Life Research Unit, Division of Child Health, Obstetrics and Gynaecology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - David J. Boocock
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, United Kingdom
| | - Amanda K. Miles
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, United Kingdom
| | - Francis J. P. Ebling
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Helen Budge
- The Early Life Research Unit, Division of Child Health, Obstetrics and Gynaecology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Michael E. Symonds
- The Early Life Research Unit, Division of Child Health, Obstetrics and Gynaecology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Nottingham Digestive Disease Centre and Biomedical Research Unit, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
37
|
Orliaguet L, Dalmas E, Drareni K, Venteclef N, Alzaid F. Mechanisms of Macrophage Polarization in Insulin Signaling and Sensitivity. Front Endocrinol (Lausanne) 2020; 11:62. [PMID: 32140136 PMCID: PMC7042402 DOI: 10.3389/fendo.2020.00062] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 01/30/2020] [Indexed: 12/11/2022] Open
Abstract
Type-2 diabetes (T2D) is a disease of two etiologies: metabolic and inflammatory. At the cross-section of these etiologies lays the phenomenon of metabolic inflammation. Whilst metabolic inflammation is characterized as systemic, a common starting point is the tissue-resident macrophage, who's successful physiological or aberrant pathological adaptation to its microenvironment determines disease course and severity. This review will highlight the key mechanisms in macrophage polarization, inflammatory and non-inflammatory signaling that dictates the development and progression of insulin resistance and T2D. We first describe the known homeostatic functions of tissue macrophages in insulin secreting and major insulin sensitive tissues. Importantly we highlight the known mechanisms of aberrant macrophage activation in these tissues and the ways in which this leads to impairment of insulin sensitivity/secretion and the development of T2D. We next describe the cellular mechanisms that are known to dictate macrophage polarization. We review recent progress in macrophage bio-energetics, an emerging field of research that places cellular metabolism at the center of immune-effector function. Importantly, following the advent of the metabolically-activated macrophage, we cover the known transcriptional and epigenetic factors that canonically and non-canonically dictate macrophage differentiation and inflammatory polarization. In closing perspectives, we discuss emerging research themes and highlight novel non-inflammatory or non-immune roles that tissue macrophages have in maintaining microenvironmental and systemic homeostasis.
Collapse
Affiliation(s)
- Lucie Orliaguet
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - Elise Dalmas
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - Karima Drareni
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA, United States
| | - Nicolas Venteclef
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - Fawaz Alzaid
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France
| |
Collapse
|
38
|
Park J, Huh JY, Oh J, Kim JI, Han SM, Shin KC, Jeon YG, Choe SS, Park J, Kim JB. Activation of invariant natural killer T cells stimulates adipose tissue remodeling via adipocyte death and birth in obesity. Genes Dev 2019; 33:1657-1672. [PMID: 31727774 PMCID: PMC6942052 DOI: 10.1101/gad.329557.119] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/18/2019] [Indexed: 12/12/2022]
Abstract
In this study, Park et al. set out to elucidate the mechanism by which adipose-resident invariant natural killer T cells (iNKT) cells impact adipose tissue remodeling in obesity. Using in vitro and ex vivo approaches, the authors found that, in obesity, adipose iNKT cells can kill hypertrophic and pro-inflammatory adipocytes via FasL-Fas-dependent apoptosis, thus providing new insight into the role adipose iNKT cells play in promoting healthy adipose tissue remodeling. In obesity, adipose tissue undergoes dynamic remodeling processes such as adipocyte hypertrophy, hypoxia, immune responses, and adipocyte death. However, whether and how invariant natural killer T (iNKT) cells contribute to adipose tissue remodeling are elusive. In this study, we demonstrate that iNKT cells remove unhealthy adipocytes and stimulate the differentiation of healthy adipocytes. In obese adipose tissue, iNKT cells were abundantly found nearby dead adipocytes. FasL-positive adipose iNKT cells exerted cytotoxic effects to eliminate hypertrophic and pro-inflammatory Fas-positive adipocytes. Furthermore, in vivo adipocyte-lineage tracing mice model showed that activation of iNKT cells by alpha-galactosylceramide promoted adipocyte turnover, eventually leading to potentiation of the insulin-dependent glucose uptake ability in adipose tissue. Collectively, our data propose a novel role of adipose iNKT cells in the regulation of adipocyte turnover in obesity.
Collapse
Affiliation(s)
- Jeu Park
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Jin Young Huh
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Jiyoung Oh
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Jong In Kim
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Sang Mun Han
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Kyung Cheul Shin
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Yong Geun Jeon
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Sung Sik Choe
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Jiyoung Park
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Jae Bum Kim
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
39
|
Nawaz A, Tobe K. M2-like macrophages serve as a niche for adipocyte progenitors in adipose tissue. J Diabetes Investig 2019; 10:1394-1400. [PMID: 31293080 PMCID: PMC6825922 DOI: 10.1111/jdi.13114] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/03/2019] [Indexed: 12/20/2022] Open
Abstract
Adipose tissue (AT) is composed not only of adipocytes, but also of macrophages, endothelial cells and preadipocytes. Macrophages are an important component of AT, and are involved in tissue homeostasis, tissue repair and fibrosis. AT-resident macrophages are categorized into two subtypes, the M1-like and M2-like macrophages. M2-like macrophages are reported to play anti-inflammatory roles, and to be involved in clearing and removal of dying/dead adipocytes, and recruiting adipocyte progenitors (APs). M2-like macrophages are also reported to be involved in the promotion of fibrosis in a transforming growth factor-β-dependent manner. However, the precise roles of M2-like macrophages in the AT have not yet been clearly delineated. Recently, we generated genetically engineered transgenic mice in which CD206+ M2-like macrophages can be conditionally depleted. Unexpectedly, we found that the depletion of CD206+ M2-like macrophages resulted in the enhanced generation of smaller adipocytes, improved insulin sensitivity and proliferation of APs. We further clarified that the CD206+ M2-like macrophages directly interact with the APs to regulate their growth/differentiation and adipogenesis, thereby controlling adiposity and systemic insulin sensitivity. In the present review, we discuss how CD206+ M2-like macrophages provide a niche for APs and maintain glucose homeostasis.
Collapse
Affiliation(s)
- Allah Nawaz
- First Department of Internal MedicineUniversity of ToyamaToyamaJapan
- Department of Metabolism and NutritionUniversity of ToyamaToyamaJapan
| | - Kazuyuki Tobe
- First Department of Internal MedicineUniversity of ToyamaToyamaJapan
| |
Collapse
|
40
|
Saxton SN, Clark BJ, Withers SB, Eringa EC, Heagerty AM. Mechanistic Links Between Obesity, Diabetes, and Blood Pressure: Role of Perivascular Adipose Tissue. Physiol Rev 2019; 99:1701-1763. [PMID: 31339053 DOI: 10.1152/physrev.00034.2018] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Obesity is increasingly prevalent and is associated with substantial cardiovascular risk. Adipose tissue distribution and morphology play a key role in determining the degree of adverse effects, and a key factor in the disease process appears to be the inflammatory cell population in adipose tissue. Healthy adipose tissue secretes a number of vasoactive adipokines and anti-inflammatory cytokines, and changes to this secretory profile will contribute to pathogenesis in obesity. In this review, we discuss the links between adipokine dysregulation and the development of hypertension and diabetes and explore the potential for manipulating adipose tissue morphology and its immune cell population to improve cardiovascular health in obesity.
Collapse
Affiliation(s)
- Sophie N Saxton
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom; School of Environment and Life Sciences, University of Salford, Salford, United Kingdom; and Department of Physiology, VU University Medical Centre, Amsterdam, Netherlands
| | - Ben J Clark
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom; School of Environment and Life Sciences, University of Salford, Salford, United Kingdom; and Department of Physiology, VU University Medical Centre, Amsterdam, Netherlands
| | - Sarah B Withers
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom; School of Environment and Life Sciences, University of Salford, Salford, United Kingdom; and Department of Physiology, VU University Medical Centre, Amsterdam, Netherlands
| | - Etto C Eringa
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom; School of Environment and Life Sciences, University of Salford, Salford, United Kingdom; and Department of Physiology, VU University Medical Centre, Amsterdam, Netherlands
| | - Anthony M Heagerty
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom; School of Environment and Life Sciences, University of Salford, Salford, United Kingdom; and Department of Physiology, VU University Medical Centre, Amsterdam, Netherlands
| |
Collapse
|
41
|
Kim SJ, Feng D, Guillot A, Dai S, Liu F, Hwang S, Parker R, Seo W, He Y, Godlewski G, Jeong WI, Lin Y, Qin X, Kunos G, Gao B. Adipocyte Death Preferentially Induces Liver Injury and Inflammation Through the Activation of Chemokine (C-C Motif) Receptor 2-Positive Macrophages and Lipolysis. Hepatology 2019; 69:1965-1982. [PMID: 30681731 PMCID: PMC6461506 DOI: 10.1002/hep.30525] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/21/2018] [Indexed: 12/16/2022]
Abstract
Adipocyte death occurs under various physiopathological conditions, including obesity and alcohol drinking, and can trigger organ damage particularly in the liver, but the underlying mechanisms remain obscure. To explore these mechanisms, we developed a mouse model of inducible adipocyte death by overexpressing the human CD59 (hCD59) on adipocytes (adipocyte-specific hCD59 transgenic mice). Injection of these mice with intermedilysin (ILY), which rapidly lyses hCD59 expressing cells exclusively by binding to the hCD59 but not mouse CD59, resulted in the acute selective death of adipocytes, adipose macrophage infiltration, and elevation of serum free fatty acid (FFA) levels. ILY injection also resulted in the secondary damage to multiple organs with the strongest injury observed in the liver, with inflammation and hepatic macrophage activation. Mechanistically, acute adipocyte death elevated epinephrine and norepinephrine levels and activated lipolysis pathways in adipose tissue in a chemokine (C-C motif) receptor 2-positive (CCR2+ ) macrophage-dependent manner, which was followed by FFA release and lipotoxicity in the liver. Additionally, acute adipocyte death caused hepatic CCR2+ macrophage activation and infiltration, further exacerbating liver injury. Conclusion: Adipocyte death predominantly induces liver injury and inflammation, which is probably due to the superior sensitivity of hepatocytes to lipotoxicity and the abundance of macrophages in the liver.
Collapse
Affiliation(s)
- Seung-Jin Kim
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adrien Guillot
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shen Dai
- Department of Neuroscience, School of Medicine, Temple University, Philadelphia, PA, USA
| | - Fengming Liu
- Department of Neuroscience, School of Medicine, Temple University, Philadelphia, PA, USA
| | - Seonghwan Hwang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard Parker
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA,NIHR Centre for Liver Research, University of Birmingham, UK
| | - Wonhyo Seo
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yong He
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Grzegorz Godlewski
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892; USA
| | - Won-Il Jeong
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA,Laboratory of Liver Research, Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yuhong Lin
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892; USA
| | - Xuebin Qin
- Department of Neuroscience, School of Medicine, Temple University, Philadelphia, PA, USA
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892; USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA,Corresponding author: Bin Gao, M.D., Ph.D., Laboratory of Liver Diseases, NIAAA/NIH, 5625 Fishers Lane, Bethesda, MD 20892. Tel: 301-443-3998;
| |
Collapse
|
42
|
Role of innate immune cells in metabolism: from physiology to type 2 diabetes. Semin Immunopathol 2019; 41:531-545. [DOI: 10.1007/s00281-019-00736-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 03/15/2019] [Indexed: 12/19/2022]
|
43
|
Silva HM, Báfica A, Rodrigues-Luiz GF, Chi J, Santos PDA, Reis BS, Hoytema van Konijnenburg DP, Crane A, Arifa RDN, Martin P, Mendes DAGB, Mansur DS, Torres VJ, Cadwell K, Cohen P, Mucida D, Lafaille JJ. Vasculature-associated fat macrophages readily adapt to inflammatory and metabolic challenges. J Exp Med 2019; 216:786-806. [PMID: 30862706 PMCID: PMC6446877 DOI: 10.1084/jem.20181049] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 12/10/2018] [Accepted: 02/19/2019] [Indexed: 01/08/2023] Open
Abstract
Silva et al. describe and characterize a population of adipose tissue macrophages (VAMs) that are in close contact with the vasculature and powerfully uptake blood-borne macromolecules. VAMs harbor a repair/detoxifying gene signature and adapt quickly to infections and fasting. Tissue-resident macrophages are the most abundant immune cell population in healthy adipose tissue. Adipose tissue macrophages (ATMs) change during metabolic stress and are thought to contribute to metabolic syndrome. Here, we studied ATM subpopulations in steady state and in response to nutritional and infectious challenges. We found that tissue-resident macrophages from healthy epididymal white adipose tissue (eWAT) tightly associate with blood vessels, displaying very high endocytic capacity. We refer to these cells as vasculature-associated ATMs (VAMs). Chronic high-fat diet (HFD) results in the accumulation of a monocyte-derived CD11c+CD64+ double-positive (DP) macrophage eWAT population with a predominant anti-inflammatory/detoxifying gene profile, but reduced endocytic function. In contrast, fasting rapidly and reversibly leads to VAM depletion, while acute inflammatory stress induced by pathogens transiently depletes VAMs and simultaneously boosts DP macrophage accumulation. Our results indicate that ATM populations dynamically adapt to metabolic stress and inflammation, suggesting an important role for these cells in maintaining tissue homeostasis.
Collapse
Affiliation(s)
- Hernandez Moura Silva
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY
| | - André Báfica
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY.,Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.,Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY
| | - Gabriela Flavia Rodrigues-Luiz
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Jingyi Chi
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY
| | - Patricia d'Emery Alves Santos
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY
| | - Bernardo S Reis
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY
| | | | - Audrey Crane
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY
| | - Raquel Duque Nascimento Arifa
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY
| | - Patricia Martin
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY
| | - Daniel Augusto G B Mendes
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Daniel Santos Mansur
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Victor J Torres
- Department of Microbiology, New York University School of Medicine, New York, NY
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY.,Department of Microbiology, New York University School of Medicine, New York, NY
| | - Paul Cohen
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY
| | - Juan J Lafaille
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY .,Department of Pathology, New York University School of Medicine, New York, NY
| |
Collapse
|
44
|
Abstract
Adipose tissue remains a cryptic organ. The ubiquitous presence of adipocytes, the different fat pads in distinct anatomical locations, the many different types of fat, in each case with their distinct precursor populations, and the ability to interchange into other types of fat cells or even de-differentiate altogether, offers a staggering amount of complexity to the adipose tissue organ as a whole. Adipose tissue holds the key to improving our understanding of systemic metabolic homeostasis. As such, understanding adipose tissue physiology offers the basis for a mechanistic understanding of the pathophysiology of diabetes. This review presents some of the lesser known aspects of this fascinating tissue, which consistently still offers much opportunity for the discovery of novel targets for pharmacological intervention.
Collapse
Affiliation(s)
- Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390-8549, USA.
| |
Collapse
|
45
|
Weiss RA, Bernardy J. Induction of fat apoptosis by a non-thermal device: Mechanism of action of non-invasive high-intensity electromagnetic technology in a porcine model. Lasers Surg Med 2018; 51:47-53. [PMID: 30549290 PMCID: PMC6590311 DOI: 10.1002/lsm.23039] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2018] [Indexed: 12/30/2022]
Abstract
Objectives While controlled thermal changes in subcutaneous tissue have been used to trigger apoptosis of fat cells and have been proven clinically efficacious, another mechanism of electromagnetic stress suggests that fat apoptosis could be achieved by a non‐thermal manner as well. This animal model study investigates the use of a non‐invasive high‐intensity magnetic field device to induce apoptosis in fat cells. Methods Yorkshire pigs (N = 2) received one treatment (30 minutes) in the abdominal area using a High‐Intensity Focused Electromagnetic (HIFEM) device. Punch biopsy samples of fat tissue and blood samples were collected at the baseline, 1 and 8 hours after the treatment. Biopsy samples were sectioned and evaluated for the levels of an apoptotic index (AI) by the TUNEL method. Statistical significance was examined using the rANOVA and Tukey's test (α 5%). Biopsy samples were also assessed for molecular biomarkers. Blood samples were evaluated to determine changes related to fat and muscle metabolism. Free fatty acids (FFA), triacylglycerol (TG), glycerol and glucose (Glu) were used as the main biomarkers of fat metabolism. Creatinine, creatinine kinase (CK), lactate dehydrogenase (LDH) and interleukin 6 (IL6) served as the main biomarkers to evaluate muscle metabolism. Results In treated pigs, a statistically significant increase in the apoptotic index (AI) (P = 1.17E‐4) was observed. A significant difference was found between AI at baseline (AI = 18.75%) and 8‐hours post‐treatment (AI = 35.95%). Serum levels of fat and muscle metabolism indicated trends (FFA −0.32 mmol · l−1, −28.1%; TG −0.24 mmol · l−1, −51.8%; Glycerol −5.68 mg · l−1, −54.8%; CK +67.58 μkat · l−1, +227.8%; LDH +4.9 μkat · l−1,+35.4%) suggesting that both adipose and muscle tissue were affected by HIFEM treatment. No adverse events were noted to skin and surrounding tissue. Conclusions Application of a high‐intensity electromagnetic field in a porcine model results in adipocyte apoptosis. The analysis of serum levels suggests that HIFEM treatment influences fat and muscle metabolism. Lasers Surg. Med. 51:47–53, 2019. © 2018 The Authors. Lasers in Surgery and Medicine Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Robert A Weiss
- Maryland Laser Skin, & Vein Institute, Hunt Valley, Maryland
| | - Jan Bernardy
- Veterinary Research Institute, Brno, Czech Republic
| |
Collapse
|
46
|
Russo L, Lumeng CN. Properties and functions of adipose tissue macrophages in obesity. Immunology 2018; 155:407-417. [PMID: 30229891 DOI: 10.1111/imm.13002] [Citation(s) in RCA: 411] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 12/12/2022] Open
Abstract
The expansion of adipose tissue (AT) in obesity is accompanied by the accumulation of immune cells that contribute to a state of low-grade, chronic inflammation and dysregulated metabolism. Adipose tissue macrophages (ATMs) represent the most abundant class of leukocytes in AT and are involved in the regulation of several regulatory physiological processes, such as tissue remodeling and insulin sensitivity. With progressive obesity, ATMs are key mediators of meta-inflammation, insulin resistance and impairment of adipocyte function. While macrophage recruitment from blood monocytes is a critical component of the generation of AT inflammation, new studies have revealed a role for ATM proliferation in the early stages of obesity and in sustaining AT inflammation. In addition, studies have revealed a more complex range of macrophage activation states than the previous M1/M2 model, and the existence of different macrophage profiles between human and animal models. This review will summarize the current understanding of the regulatory mechanisms of ATM function in relation to obesity, type 2 diabetes, depot of origin, and to other leukocytes such as AT dendritic cells, with hopes of emphasizing the regulatory nodes that can potentially be targeted to prevent and treat obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Lucia Russo
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Carey N Lumeng
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, USA.,Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
47
|
Wehrhan F, Büttner-Herold M, Distel L, Ries J, Moebius P, Preidl R, Geppert CI, Neukam FW, Kesting M, Weber M. Galectin 3 expression in regional lymph nodes and lymph node metastases of oral squamous cell carcinomas. BMC Cancer 2018; 18:823. [PMID: 30115022 PMCID: PMC6097288 DOI: 10.1186/s12885-018-4726-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 08/06/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Neck dissection is standard in surgical management of oral squamous cell carcinomas (oscc). However, the immunologic link between primary tumor and lymph nodes is insufficiently understood. Galectin 3 (Gal3) promotes M2 polarization of macrophages and contributes to immunosuppression. The current study analyzes the association between Gal3 expression in regional lymph nodes of oscc with histomorphologic parameters (T-, N-, L- Pn-stage, grading) of the primary tumor. Additionally, Gal3 expression is correlated with markers of macrophage polarization (M1 vs. M2). METHODS Preoperative diagnostic biopsies (n = 26), tumor resection specimens (n = 34), tumor-free lymph nodes (n = 28) and lymph node metastases (n = 10) of T1/T2 oscc patients were immunohistochemically analyzed for Gal3 and macrophage marker (CD68, CD11c, CD163 and MRC1) expression. The number of positive cells and the expression ratios were quantitatively assessed. RESULTS High Gal3 expression in tumor-free regional lymph nodes was significantly (p < 0.05) associated with increased tumor size. The epithelial compartment of lymph node metastases showed a significantly (p < 0.05) increased Gal3 expression compared to biopsies and tumor resection specimens. Cell density of M2 macrophages was significantly (p < 0.05) and positively correlated with the number of Gal3 expressing cells in lymph nodes and tumor specimens. CONCLUSION Gal3 expression in regional lymph nodes might be associated with oscc progression. The increased Gal3 expression in regional lymph nodes of larger tumors underlines the need of immunomodulatory treatment concepts in early-stage oscc. Blocking of Gal3 might be a therapeutic option in oral cancer.
Collapse
Affiliation(s)
- Falk Wehrhan
- Department of Oral and Maxillofacial Surgery, Friedrich-Alexander University Erlangen-Nürnberg, Glueckstrasse 11, 91054, Erlangen, Germany
| | - Maike Büttner-Herold
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Luitpold Distel
- Department of Radiation Oncology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Jutta Ries
- Department of Oral and Maxillofacial Surgery, Friedrich-Alexander University Erlangen-Nürnberg, Glueckstrasse 11, 91054, Erlangen, Germany
| | - Patrick Moebius
- Department of Oral and Maxillofacial Surgery, Friedrich-Alexander University Erlangen-Nürnberg, Glueckstrasse 11, 91054, Erlangen, Germany
| | - Raimund Preidl
- Department of Oral and Maxillofacial Surgery, Friedrich-Alexander University Erlangen-Nürnberg, Glueckstrasse 11, 91054, Erlangen, Germany
| | - Carol I Geppert
- Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Friedrich W Neukam
- Department of Oral and Maxillofacial Surgery, Friedrich-Alexander University Erlangen-Nürnberg, Glueckstrasse 11, 91054, Erlangen, Germany
| | - Marco Kesting
- Department of Oral and Maxillofacial Surgery, Friedrich-Alexander University Erlangen-Nürnberg, Glueckstrasse 11, 91054, Erlangen, Germany
| | - Manuel Weber
- Department of Oral and Maxillofacial Surgery, Friedrich-Alexander University Erlangen-Nürnberg, Glueckstrasse 11, 91054, Erlangen, Germany.
| |
Collapse
|
48
|
Wilson CH, Kumar S. Caspases in metabolic disease and their therapeutic potential. Cell Death Differ 2018; 25:1010-1024. [PMID: 29743560 PMCID: PMC5988802 DOI: 10.1038/s41418-018-0111-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/26/2018] [Accepted: 03/22/2018] [Indexed: 12/13/2022] Open
Abstract
Caspases, a family of cysteine-dependent aspartate-specific proteases, are central to the maintenance of cellular and organismal homoeostasis by functioning as key mediators of the inflammatory response and/or apoptosis. Both metabolic inflammation and apoptosis play a central role in the pathogenesis of metabolic disease such as obesity and the progression of nonalcoholic steatohepatisis (NASH) to more severe liver disease. Obesity and nonalcoholic fatty liver disease (NAFLD) are the leading global health challenges associated with the development of numerous comorbidities including insulin resistance, type-2 diabetes and early mortality. Despite the high prevalence, current treatment strategies including lifestyle, dietary, pharmaceutical and surgical interventions, are often limited in their efficacy to manage or treat obesity, and there are currently no clinical therapies for NAFLD/NASH. As mediators of inflammation and cell death, caspases are attractive therapeutic targets for the treatment of these metabolic diseases. As such, pan-caspase inhibitors that act by blocking apoptosis have reached phase I/II clinical trials in severe liver disease. However, there is still a lack of knowledge of the specific and differential functions of individual caspases. In addition, cross-talk between alternate cell death pathways is a growing concern for long-term caspase inhibition. Evidence is emerging of the important cell-death-independent, non-apoptotic functions of caspases in metabolic homoeostasis that may be of therapeutic value. Here, we review the current evidence for roles of caspases in metabolic disease and discuss their potential targeting as a therapeutic strategy.
Collapse
Affiliation(s)
- Claire H Wilson
- Centre for Cancer Biology, University of South Australia & SA Pathology, Adelaide, SA, 5001, Australia.
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia & SA Pathology, Adelaide, SA, 5001, Australia.
| |
Collapse
|
49
|
Sex-based differences in phagocyte metabolic profile in rats with monosodium glutamate-induced obesity. Sci Rep 2018; 8:5419. [PMID: 29615659 PMCID: PMC5882925 DOI: 10.1038/s41598-018-23664-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/14/2018] [Indexed: 12/16/2022] Open
Abstract
The important component of obesity pathogenesis is inflammatory activation of innate immune cells within adipose tissue and in other body locations. Both the course of obesity and innate immune reactivity are characterized by sex-associated differences. The aim of the work was a comparative investigation of metabolic profiles of phagocytes from different locations in male and female rats with MSG-induced obesity. The administration of monosodium glutamate (MSG) caused obesity, with sex-associated differences, that was more severe in male rats. Obesity was associated with pro-inflammatory activation of CD14+ phagocytes from adipose tissue in female, but not in male rats, which was demonstrated by decreased phagocytosis activity along with increased ROS generation. Phagocytes from the peritoneal cavity and peripheral blood of obese female rats exhibited neutral metabolic profile, whereas those cells from obese male rats displayed a pro-inflammatory metabolic profile. Thus, the manifestation of obesity-induced inflammation was characterized by different patterns of metabolic profile of phagocytes in male and female rats. Identified immune cell characteristics expand our knowledge of obesity immunobiology and may help to develop more effective preventive and therapeutic interventions for obese patients of different sexes.
Collapse
|
50
|
Abstract
Adipose tissue is a special tissue environment due to its high lipid content. Adipose tissue macrophages (ATMs) help maintain adipose tissue homeostasis in steady state by clearing dead adipocytes. However, adipose tissue changes drastically during obesity, resulting in a state of chronic low grade inflammation and a shift in the adipose immune landscape. In this review we will discuss how these changes influence the polarization of ATMs.
Collapse
Affiliation(s)
- Leen Catrysse
- VIB Center for Inflammation Research, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Geert van Loo
- VIB Center for Inflammation Research, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium.
| |
Collapse
|