1
|
Park JY, Ha ES, Lee J, Brun PJ, Kim Y, Chung SS, Hwang D, Lee SA, Park KS. The brown fat-specific overexpression of RBP4 improves thermoregulation and systemic metabolism by activating the canonical adrenergic signaling pathway. Exp Mol Med 2025:10.1038/s12276-025-01411-6. [PMID: 40025173 DOI: 10.1038/s12276-025-01411-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/11/2024] [Accepted: 12/03/2024] [Indexed: 03/04/2025] Open
Abstract
Retinol-binding protein 4 (RBP4), the sole specific carrier for retinol (vitamin A) in circulation, is highly expressed in liver and adipose tissues. Previous studies have demonstrated that RBP4 plays a role in cold-mediated adipose tissue browning and thermogenesis. However, the role of RBP4 in brown adipose tissue and its metabolic significance remain unclear. Here we generated and studied transgenic mice that express human RBP4 (hRBP4), specifically in brown adipocytes (UCP1-RBP4 mice), to better understand these uncertainties. When fed a chow diet, these mice presented significantly lower body weights and fat mass than their littermate controls. The UCP1-RBP4 mice also showed significant improvements in glucose clearance, enhanced energy expenditure and increased thermogenesis in response to a cold challenge. This was associated with increased lipolysis and fatty acid oxidation in brown adipose tissue, which was attributed to the activation of canonical adrenergic signaling pathways. In addition, high-performance liquid chromatography analysis revealed that plasma RBP4 and retinol levels were elevated in the UCP1-RBP4 mice, whereas their hepatic retinol levels decreased in parallel with a chow diet. Steady-state brown fat levels of total retinol were significantly elevated in the UCP1-RBP4 mice, suggesting that their retinol uptake was increased in RBP4-expressing brown adipocytes when fed a chow diet. These findings reveal a critical role for RBP4 in canonical adrenergic signaling that promotes lipid mobilization and oxidation in brown adipocytes, where the harnessed energy is dissipated as heat by adaptive thermogenesis.
Collapse
Affiliation(s)
- Jong Yoen Park
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Eun Sun Ha
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Jimin Lee
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Pierre-Jacques Brun
- Department of Medicine, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Yeri Kim
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Sung Soo Chung
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Daehee Hwang
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Bioinformatics Institute, Bio-MAX, Seoul National University, Seoul, Republic of Korea
| | - Seung-Ah Lee
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea.
- ProGen Co. Ltd., 07789, Seoul, Republic of Korea.
| | - Kyong Soo Park
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea.
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Steinhoff JS, Wagner C, Dähnhardt HE, Košić K, Meng Y, Taschler U, Pajed L, Yang N, Wulff S, Kiefer MF, Petricek KM, Flores RE, Li C, Dittrich S, Sommerfeld M, Guillou H, Henze A, Raila J, Wowro SJ, Schoiswohl G, Lass A, Schupp M. Adipocyte HSL is required for maintaining circulating vitamin A and RBP4 levels during fasting. EMBO Rep 2024; 25:2878-2895. [PMID: 38769419 PMCID: PMC11239848 DOI: 10.1038/s44319-024-00158-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/19/2024] [Accepted: 04/30/2024] [Indexed: 05/22/2024] Open
Abstract
Vitamin A (retinol) is distributed via the blood bound to its specific carrier protein, retinol-binding protein 4 (RBP4). Retinol-loaded RBP4 is secreted into the circulation exclusively from hepatocytes, thereby mobilizing hepatic retinoid stores that represent the major vitamin A reserves in the body. The relevance of extrahepatic retinoid stores for circulating retinol and RBP4 levels that are usually kept within narrow physiological limits is unknown. Here, we show that fasting affects retinoid mobilization in a tissue-specific manner, and that hormone-sensitive lipase (HSL) in adipose tissue is required to maintain serum concentrations of retinol and RBP4 during fasting in mice. We found that extracellular retinol-free apo-RBP4 induces retinol release by adipocytes in an HSL-dependent manner. Consistently, global or adipocyte-specific HSL deficiency leads to an accumulation of retinoids in adipose tissue and a drop of serum retinol and RBP4 during fasting, which affects retinoid-responsive gene expression in eye and kidney and lowers renal retinoid content. These findings establish a novel crosstalk between liver and adipose tissue retinoid stores for the maintenance of systemic vitamin A homeostasis during fasting.
Collapse
Affiliation(s)
- Julia S Steinhoff
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular-Metabolic-Renal Research, Berlin, Germany
| | - Carina Wagner
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Henriette E Dähnhardt
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular-Metabolic-Renal Research, Berlin, Germany
| | - Kristina Košić
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Yueming Meng
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular-Metabolic-Renal Research, Berlin, Germany
| | - Ulrike Taschler
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Laura Pajed
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Na Yang
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular-Metabolic-Renal Research, Berlin, Germany
| | - Sascha Wulff
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular-Metabolic-Renal Research, Berlin, Germany
| | - Marie F Kiefer
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular-Metabolic-Renal Research, Berlin, Germany
| | - Konstantin M Petricek
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular-Metabolic-Renal Research, Berlin, Germany
| | - Roberto E Flores
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular-Metabolic-Renal Research, Berlin, Germany
| | - Chen Li
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular-Metabolic-Renal Research, Berlin, Germany
| | - Sarah Dittrich
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular-Metabolic-Renal Research, Berlin, Germany
| | - Manuela Sommerfeld
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular-Metabolic-Renal Research, Berlin, Germany
| | - Hervé Guillou
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP- PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France
| | - Andrea Henze
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Halle, Germany
- Junior Research Group ProAID, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Jens Raila
- Department of Physiology and Pathophysiology, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Sylvia J Wowro
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular-Metabolic-Renal Research, Berlin, Germany
| | - Gabriele Schoiswohl
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Achim Lass
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| | - Michael Schupp
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular-Metabolic-Renal Research, Berlin, Germany.
| |
Collapse
|
3
|
Ghesmati Z, Rashid M, Fayezi S, Gieseler F, Alizadeh E, Darabi M. An update on the secretory functions of brown, white, and beige adipose tissue: Towards therapeutic applications. Rev Endocr Metab Disord 2024; 25:279-308. [PMID: 38051471 PMCID: PMC10942928 DOI: 10.1007/s11154-023-09850-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 12/07/2023]
Abstract
Adipose tissue, including white adipose tissue (WAT), brown adipose tissue (BAT), and beige adipose tissue, is vital in modulating whole-body energy metabolism. While WAT primarily stores energy, BAT dissipates energy as heat for thermoregulation. Beige adipose tissue is a hybrid form of adipose tissue that shares characteristics with WAT and BAT. Dysregulation of adipose tissue metabolism is linked to various disorders, including obesity, type 2 diabetes, cardiovascular diseases, cancer, and infertility. Both brown and beige adipocytes secrete multiple molecules, such as batokines, packaged in extracellular vesicles or as soluble signaling molecules that play autocrine, paracrine, and endocrine roles. A greater understanding of the adipocyte secretome is essential for identifying novel molecular targets in treating metabolic disorders. Additionally, microRNAs show crucial roles in regulating adipose tissue differentiation and function, highlighting their potential as biomarkers for metabolic disorders. The browning of WAT has emerged as a promising therapeutic approach in treating obesity and associated metabolic disorders. Many browning agents have been identified, and nanotechnology-based drug delivery systems have been developed to enhance their efficacy. This review scrutinizes the characteristics of and differences between white, brown, and beige adipose tissues, the molecular mechanisms involved in the development of the adipocytes, the significant roles of batokines, and regulatory microRNAs active in different adipose tissues. Finally, the potential of WAT browning in treating obesity and atherosclerosis, the relationship of BAT with cancer and fertility disorders, and the crosstalk between adipose tissue with circadian system and circadian disorders are also investigated.
Collapse
Affiliation(s)
- Zeinab Ghesmati
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Rashid
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shabnam Fayezi
- Department of Gynecologic Endocrinology and Fertility Disorders, Women's Hospital, Ruprecht-Karls University of Heidelberg, Heidelberg, Germany
| | - Frank Gieseler
- Division of Experimental Oncology, Department of Hematology and Oncology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Masoud Darabi
- Division of Experimental Oncology, Department of Hematology and Oncology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany.
| |
Collapse
|
4
|
Carrasco AG, Izquierdo-Lahuerta A, Valverde ÁM, Ni L, Flores-Salguero E, Coward RJ, Medina-Gómez G. The protective role of peroxisome proliferator-activated receptor gamma in lipotoxic podocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159329. [PMID: 37156296 DOI: 10.1016/j.bbalip.2023.159329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/16/2023] [Accepted: 04/20/2023] [Indexed: 05/10/2023]
Abstract
Podocytes are specialized epithelial cells that maintain the glomerular filtration barrier. These cells are susceptible to lipotoxicity in the obese state and irreversibly lost during kidney disease leading to proteinuria and renal injury. PPARγ is a nuclear receptor whose activation can be renoprotective. This study examined the role of PPARγ in the lipotoxic podocyte using a PPARγ knockout (PPARγKO) cell line and since the activation of PPARγ by Thiazolidinediones (TZD) is limited by their side effects, it explored other alternative therapies to prevent podocyte lipotoxic damage. Wild-type and PPARγKO podocytes were exposed to the fatty acid palmitic acid (PA) and treated with the TZD (Pioglitazone) and/or the Retinoid X receptor (RXR) agonist Bexarotene (BX). It revealed that podocyte PPARγ is essential for podocyte function. PPARγ deletion reduced key podocyte proteins including podocin and nephrin while increasing basal levels of oxidative and ER stress causing apoptosis and cell death. A combination therapy of low-dose TZD and BX activated both the PPARγ and RXR receptors reducing PA-induced podocyte damage. This study confirms the crucial role of PPARγ in podocyte biology and that their activation in combination therapy of TZD and BX may be beneficial in the treatment of obesity-related kidney disease.
Collapse
Affiliation(s)
- Almudena G Carrasco
- Universidad Rey Juan Carlos, Dpto. de Ciencias Básicas de la Salud, Avda. de Atenas s/n. 28922, Alcorcón, Madrid, Spain
| | - Adriana Izquierdo-Lahuerta
- Universidad Rey Juan Carlos, Dpto. de Ciencias Básicas de la Salud, Avda. de Atenas s/n. 28922, Alcorcón, Madrid, Spain.
| | - Ángela M Valverde
- Institute of Biomedical Research "Alberto Sols" (CSIC-UAM), 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBER-dem), ISCIII, 28029 Madrid, Spain; MEMORISM Research Unit of University Rey Juan Carlos-Institute of Biomedical Research "Alberto Sols" (CSIC), Madrid, Spain
| | - Lan Ni
- Bristol Renal, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Elena Flores-Salguero
- Universidad Rey Juan Carlos, Dpto. de Ciencias Básicas de la Salud, Avda. de Atenas s/n. 28922, Alcorcón, Madrid, Spain
| | - Richard J Coward
- Bristol Renal, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Gema Medina-Gómez
- Universidad Rey Juan Carlos, Dpto. de Ciencias Básicas de la Salud, Avda. de Atenas s/n. 28922, Alcorcón, Madrid, Spain; MEMORISM Research Unit of University Rey Juan Carlos-Institute of Biomedical Research "Alberto Sols" (CSIC), Madrid, Spain.
| |
Collapse
|
5
|
Sahu B, Bal NC. Adipokines from white adipose tissue in regulation of whole body energy homeostasis. Biochimie 2023; 204:92-107. [PMID: 36084909 DOI: 10.1016/j.biochi.2022.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/08/2022] [Accepted: 09/01/2022] [Indexed: 02/06/2023]
Abstract
Diseases originating from altered energy homeostasis including obesity, and type 2 diabetes are rapidly increasing worldwide. Research in the last few decades on animal models and humans demonstrates that the white adipose tissue (WAT) is critical for energy balance and more than just an energy storage site. WAT orchestrates the whole-body metabolism through inter-organ crosstalk primarily mediated by cytokines named "Adipokines". The adipokines influence metabolism and fuel selection of the skeletal muscle and liver thereby fine-tuning the load on WAT itself in physiological conditions like starvation, exercise and cold. In addition, adipokine secretion is influenced by various pathological conditions like obesity, inflammation and diabetes. In this review, we have surveyed the current state of knowledge on important adipokines and their significance in regulating energy balance and metabolic diseases. Furthermore, we have summarized the interplay of pro-inflammatory and anti-inflammatory adipokines in the modulation of pathological conditions.
Collapse
Affiliation(s)
- Bijayashree Sahu
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India.
| | - Naresh C Bal
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
6
|
Yang B, Lu L, Zhou D, Fan W, Barbier-Torres L, Steggerda J, Yang H, Yang X. Regulatory network and interplay of hepatokines, stellakines, myokines and adipokines in nonalcoholic fatty liver diseases and nonalcoholic steatohepatitis. Front Endocrinol (Lausanne) 2022; 13:1007944. [PMID: 36267567 PMCID: PMC9578007 DOI: 10.3389/fendo.2022.1007944] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Abstract
Fatty liver disease is a spectrum of liver pathologies ranging from simple hepatic steatosis to non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), and culminating with the development of cirrhosis or hepatocellular carcinoma (HCC). The pathogenesis of NAFLD is complex and diverse, and there is a lack of effective treatment measures. In this review, we address hepatokines identified in the pathogenesis of NAFLD and NASH, including the signaling of FXR/RXR, PPARα/RXRα, adipogenesis, hepatic stellate cell activation/liver fibrosis, AMPK/NF-κB, and type 2 diabetes. We also highlight the interaction between hepatokines, and cytokines or peptides secreted from muscle (myokines), adipose tissue (adipokines), and hepatic stellate cells (stellakines) in response to certain nutritional and physical activity. Cytokines exert autocrine, paracrine, or endocrine effects on the pathogenesis of NAFLD and NASH. Characterizing signaling pathways and crosstalk amongst muscle, adipose tissue, hepatic stellate cells and other liver cells will enhance our understanding of interorgan communication and potentially serve to accelerate the development of treatments for NAFLD and NASH.
Collapse
Affiliation(s)
- Bing Yang
- Department of Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liqing Lu
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Dongmei Zhou
- Department of Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wei Fan
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Lucía Barbier-Torres
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Justin Steggerda
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Heping Yang
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Xi Yang
- Department of Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
7
|
Flores-Cortez YA, Barragán-Bonilla MI, Mendoza-Bello JM, GonzÁlez-Calixto C, Flores-Alfaro E, Espinoza-Rojo M. Interplay of retinol binding protein 4 with obesity and associated chronic alterations (Review). Mol Med Rep 2022; 26:244. [PMID: 35656886 PMCID: PMC9185696 DOI: 10.3892/mmr.2022.12760] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
Obesity is a multifactorial disease, defined as excessive fat deposition in adipose tissue. Adipose tissue is responsible for the production and secretion of numerous adipokines that induce metabolic disorders. Retinol‑binding protein 4 (RBP4) is an adipokine that transports vitamin A or retinol in the blood. High levels of RBP4 are associated with development of metabolic disease, including obesity, insulin resistance (IR), metabolic syndrome, and type 2 diabetes (T2D). The present review summarizes the role of RBP4 in obesity and associated chronic alterations. Excessive synthesis of RBP4 contributes to inflammatory characteristic of obesity by activation of immune cells and release of proinflammatory cytokines, such as TNFα and ILs, via the Toll‑like receptor/JNK pathway. The retinol‑RBP4 complex inhibits insulin signaling directly in adipocytes by activating Janus kinase 2 (JAK2)/STAT5/suppressor of cytokine signaling 3 signaling. This mechanism is retinol‑dependent and requires vitamin A receptor stimulation by retinoic acid 6 (STRA6). In muscle, RBP4 is associated with increased serine 307 phosphorylation of insulin receptor substrate‑1, which decreases its affinity to PI3K and promotes IR. In the liver, RBP4 increases hepatic expression of phosphoenolpyruvate carboxykinase, which increases production of glucose. Elevated serum RBP4 levels are associated with β‑cell dysfunction in T2D via the STRA6/JAK2/STAT1/insulin gene enhancer protein 1 pathway. By contrast, RBP4 induces endothelial inflammation via the NF‑κB/nicotinamide adenine dinucleotide phosphate oxidase pathway independently of retinol and STRA6, which stimulates expression of proinflammatory molecules, such as vascular cell adhesion molecule 1, E‑selectin, intercellular adhesion molecule 1, monocyte chemoattractant protein 1 and TNFα. RBP4 promotes oxidative stress by decreasing endothelial mitochondrial function; overall, it may serve as a useful biomarker in the diagnosis of obesity and prognosis of associated disease, as well as a potential therapeutic target for treatment of these diseases.
Collapse
Affiliation(s)
- Yaccil Adilene Flores-Cortez
- Laboratory of Molecular Biology and Genomic, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero 39087, Mexico
| | - Martha I. Barragán-Bonilla
- Laboratory of Molecular Biology and Genomic, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero 39087, Mexico
| | - Juan M. Mendoza-Bello
- Laboratory of Molecular Biology and Genomic, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero 39087, Mexico
| | | | - Eugenia Flores-Alfaro
- Laboratory of Clinical and Molecular Epidemiology, Faculty of Biological and Chemical Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero 39087, Mexico
| | - Mónica Espinoza-Rojo
- Laboratory of Molecular Biology and Genomic, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero 39087, Mexico
| |
Collapse
|
8
|
Nono Nankam PA, Blüher M. Retinol-binding protein 4 in obesity and metabolic dysfunctions. Mol Cell Endocrinol 2021; 531:111312. [PMID: 33957191 DOI: 10.1016/j.mce.2021.111312] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022]
Abstract
Excessive increased adipose tissue mass in obesity is associated with numerous co-morbid disorders including increased risk of type 2 diabetes, fatty liver disease, hypertension, dyslipidemia, cardiovascular diseases, dementia, airway disease and some cancers. The causal mechanisms explaining these associations are not fully understood. Adipose tissue is an active endocrine organ that secretes many adipokines, cytokines and releases metabolites. These biomolecules referred to as adipocytokines play a significant role in the regulation of whole-body energy homeostasis and metabolism by influencing and altering target tissues function. Understanding the mechanisms of adipocytokine actions represents a hot topic in obesity research. Among several secreted bioactive signalling molecules from adipose tissue and liver, retinol-binding protein 4 (RBP4) has been associated with systemic insulin resistance, dyslipidemia, type 2 diabetes and other metabolic diseases. Here, we aim to review and discuss the current knowledge on RBP4 with a focus on its role in the pathogenesis of obesity comorbid diseases.
Collapse
Affiliation(s)
- Pamela A Nono Nankam
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Germany.
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Germany; Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Germany
| |
Collapse
|
9
|
Brandão BB, Poojari A, Rabiee A. Thermogenic Fat: Development, Physiological Function, and Therapeutic Potential. Int J Mol Sci 2021; 22:5906. [PMID: 34072788 PMCID: PMC8198523 DOI: 10.3390/ijms22115906] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/30/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
The concerning worldwide increase of obesity and chronic metabolic diseases, such as T2D, dyslipidemia, and cardiovascular disease, motivates further investigations into preventive and alternative therapeutic approaches. Over the past decade, there has been growing evidence that the formation and activation of thermogenic adipocytes (brown and beige) may serve as therapy to treat obesity and its associated diseases owing to its capacity to increase energy expenditure and to modulate circulating lipids and glucose levels. Thus, understanding the molecular mechanism of brown and beige adipocytes formation and activation will facilitate the development of strategies to combat metabolic disorders. Here, we provide a comprehensive overview of pathways and players involved in the development of brown and beige fat, as well as the role of thermogenic adipocytes in energy homeostasis and metabolism. Furthermore, we discuss the alterations in brown and beige adipose tissue function during obesity and explore the therapeutic potential of thermogenic activation to treat metabolic syndrome.
Collapse
Affiliation(s)
- Bruna B. Brandão
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA;
| | - Ankita Poojari
- Department of Physiology & Pharmacology, Thomas J. Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, CA 95211, USA;
| | - Atefeh Rabiee
- Department of Physiology & Pharmacology, Thomas J. Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, CA 95211, USA;
| |
Collapse
|
10
|
Gokulakrishnan K, Pandey GK, Sathishkumar C, Sundararajan S, Durairaj P, Manickam N, Mohan V, Balasubramanyam M. Augmentation of RBP4/STRA6 signaling leads to insulin resistance and inflammation and the plausible therapeutic role of vildagliptin and metformin. Mol Biol Rep 2021; 48:4093-4106. [PMID: 34041677 DOI: 10.1007/s11033-021-06420-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/17/2021] [Indexed: 01/25/2023]
Abstract
A role of Retinol Binding Protein-4 (RBP4) in insulin resistance is widely studied. However, there is paucity of information on its receptor viz., Stimulated by Retinoic Acid-6 (STRA6) with insulin resistance. To address this, we investigated the regulation of RBP4/STRA6 expression in 3T3-L1 adipocytes exposed to glucolipotoxicity (GLT) and in visceral adipose tissue (VAT) from high fat diet (HFD) fed insulin-resistant rats. 3T3-L1 adipocytes were subjected to GLT and other experimental maneuvers with and without vildagliptin or metformin. Real-time PCR and western-blot experiments were performed to analyze RBP4, STRA6, PPARγ gene and protein expression. Adipored staining and glucose uptake assay were performed to evaluate lipid and glucose metabolism. Oral glucose tolerance test (OGTT) and Insulin Tolerance Test (ITT) were performed to determine the extent of insulin resistance in HFD fed male Wistar rats. Total serum RBP4 was measured by quantitative sandwich enzyme-linked immunosorbent assay kit. Adipocytes under GLT exhibited significantly increased RBP4/STRA6 expressions and decreased insulin sensitivity/glucose uptake. Vildagliptin and metformin not only restored the above but also decreased the expression of IL-6, NFκB, SOCS-3 along with lipid accumulation. Furthermore, HFD fed rats exhibited significantly increased serum levels of RBP4 along with VAT expression of RBP4, STRA6, PPARγ, IL-6. These molecules were significantly altered by the vildagliptin/ metformin treatment. We conclude that RBP4/STRA6 pathway is primarily involved in mediating inflammation and insulin resistance in adipocytes and visceral adipose tissues under glucolipotoxicity and in insulin resistant rats.
Collapse
Affiliation(s)
- Kuppan Gokulakrishnan
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bengaluru, 560029, India. .,Department of Research Biochemistry, Madras Diabetes Research Foundation, Gopalapuram, Chennai, 600086, India.
| | - Gautam Kumar Pandey
- Department of Research Biochemistry, Madras Diabetes Research Foundation, Gopalapuram, Chennai, 600086, India.,Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, 27514, USA
| | - Chandrakumar Sathishkumar
- Department of Cell and Molecular Biology, Madras Diabetes Research Foundation, Gopalapuram, Chennai, 600086, India
| | - Saravanakumar Sundararajan
- Department of Vascular Biology, Madras Diabetes Research Foundation, Gopalapuram, Chennai, 600086, India
| | - Prabhu Durairaj
- Department of Cell and Molecular Biology, Madras Diabetes Research Foundation, Gopalapuram, Chennai, 600086, India.,Department of Medical and Health Sciences (MHS), SRM Medical College Hospital & Research Centre, SRM Institute of Science and Technology (SRMIST), Kattankulathur, Chennai, 603203, India
| | - Nagaraj Manickam
- Department of Vascular Biology, Madras Diabetes Research Foundation, Gopalapuram, Chennai, 600086, India
| | - Viswanathan Mohan
- Department of Research Biochemistry, Madras Diabetes Research Foundation, Gopalapuram, Chennai, 600086, India
| | - Muthuswamy Balasubramanyam
- Department of Cell and Molecular Biology, Madras Diabetes Research Foundation, Gopalapuram, Chennai, 600086, India.,Department of Medical and Health Sciences (MHS), SRM Medical College Hospital & Research Centre, SRM Institute of Science and Technology (SRMIST), Kattankulathur, Chennai, 603203, India
| |
Collapse
|
11
|
Recinella L, Orlando G, Ferrante C, Chiavaroli A, Brunetti L, Leone S. Adipokines: New Potential Therapeutic Target for Obesity and Metabolic, Rheumatic, and Cardiovascular Diseases. Front Physiol 2020; 11:578966. [PMID: 33192583 PMCID: PMC7662468 DOI: 10.3389/fphys.2020.578966] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022] Open
Abstract
Besides its role as an energy storage organ, adipose tissue can be viewed as a dynamic and complex endocrine organ, which produces and secretes several adipokines, including hormones, cytokines, extracellular matrix (ECM) proteins, and growth and vasoactive factors. A wide body of evidence showed that adipokines play a critical role in various biological and physiological functions, among which feeding modulation, inflammatory and immune function, glucose and lipid metabolism, and blood pressure control. The aim of this review is to summarize the effects of several adipokines, including leptin, diponectin, resistin, chemerin, lipocalin-2 (LCN2), vaspin, omentin, follistatin-like 1 (FSTL1), secreted protein acidic and rich in cysteine (SPARC), secreted frizzled-related protein 5 (SFRP5), C1q/TNF-related proteins (CTRPs), family with sequence similarity to 19 member A5 (FAM19A5), wingless-type inducible signaling pathway protein-1 (WISP1), progranulin (PGRN), nesfatin-1 (nesfatin), visfatin/PBEF/NAMPT, apelin, retinol binding protein 4 (RPB4), and plasminogen activator inhibitor-1 (PAI-1) in the regulation of insulin resistance and vascular function, as well as many aspects of inflammation and immunity and their potential role in managing obesity-associated diseases, including metabolic, osteoarticular, and cardiovascular diseases.
Collapse
Affiliation(s)
| | | | | | | | - Luigi Brunetti
- Department of Pharmacy, Gabriele d’Annunzio University, Chieti, Italy
| | | |
Collapse
|
12
|
Bargagli E, Refini RM, d’Alessandro M, Bergantini L, Cameli P, Vantaggiato L, Bini L, Landi C. Metabolic Dysregulation in Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2020; 21:ijms21165663. [PMID: 32784632 PMCID: PMC7461042 DOI: 10.3390/ijms21165663] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fibroproliferative disorder limited to the lung. New findings, starting from our proteomics studies on IPF, suggest that systemic involvement with altered molecular mechanisms and metabolic disorder is an underlying cause of fibrosis. The role of metabolic dysregulation in the pathogenesis of IPF has not been extensively studied, despite a recent surge of interest. In particular, our studies on bronchoalveolar lavage fluid have shown that the renin–angiotensin–aldosterone system (RAAS), the hypoxia/oxidative stress response, and changes in iron and lipid metabolism are involved in onset of IPF. These processes appear to interact in an intricate manner and to be related to different fibrosing pathologies not directly linked to the lung environment. The disordered metabolism of carbohydrates, lipids, proteins and hormones has been documented in lung, liver, and kidney fibrosis. Correcting these metabolic alterations may offer a new strategy for treating fibrosis. This paper focuses on the role of metabolic dysregulation in the pathogenesis of IPF and is a continuation of our previous studies, investigating metabolic dysregulation as a new target for fibrosis therapy.
Collapse
Affiliation(s)
- Elena Bargagli
- Respiratory Diseases and Lung Transplant Unit, Department of Medical and Surgical Sciences and Neurosciences, University of Siena, 53100 Siena, Italy; (E.B.); (R.M.R.); (M.d.); (L.B.); (P.C.)
| | - Rosa Metella Refini
- Respiratory Diseases and Lung Transplant Unit, Department of Medical and Surgical Sciences and Neurosciences, University of Siena, 53100 Siena, Italy; (E.B.); (R.M.R.); (M.d.); (L.B.); (P.C.)
| | - Miriana d’Alessandro
- Respiratory Diseases and Lung Transplant Unit, Department of Medical and Surgical Sciences and Neurosciences, University of Siena, 53100 Siena, Italy; (E.B.); (R.M.R.); (M.d.); (L.B.); (P.C.)
| | - Laura Bergantini
- Respiratory Diseases and Lung Transplant Unit, Department of Medical and Surgical Sciences and Neurosciences, University of Siena, 53100 Siena, Italy; (E.B.); (R.M.R.); (M.d.); (L.B.); (P.C.)
| | - Paolo Cameli
- Respiratory Diseases and Lung Transplant Unit, Department of Medical and Surgical Sciences and Neurosciences, University of Siena, 53100 Siena, Italy; (E.B.); (R.M.R.); (M.d.); (L.B.); (P.C.)
| | - Lorenza Vantaggiato
- Functional Proteomics Lab, Department Life Sciences, University of Siena, 53100 Siena, Italy; (L.V.); (L.B.)
| | - Luca Bini
- Functional Proteomics Lab, Department Life Sciences, University of Siena, 53100 Siena, Italy; (L.V.); (L.B.)
| | - Claudia Landi
- Respiratory Diseases and Lung Transplant Unit, Department of Medical and Surgical Sciences and Neurosciences, University of Siena, 53100 Siena, Italy; (E.B.); (R.M.R.); (M.d.); (L.B.); (P.C.)
- Functional Proteomics Lab, Department Life Sciences, University of Siena, 53100 Siena, Italy; (L.V.); (L.B.)
- Correspondence: ; Tel.: +39-0577-234-937
| |
Collapse
|
13
|
Mohd MA, Ahmad Norudin NA, Muhammad TST. Transcriptional regulation of retinol binding protein 4 by Interleukin-6 via peroxisome proliferator-activated receptor α and CCAAT/Enhancer binding proteins. Mol Cell Endocrinol 2020; 505:110702. [PMID: 31927097 DOI: 10.1016/j.mce.2020.110702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 01/17/2023]
Abstract
Interleukin-6 (IL-6) is a major mediator of the acute phase response (APR) that regulates the transcription of acute phase proteins (APPs) in the liver. During APR, the plasma levels of negative APPs including retinol binding protein 4 (RBP4) are reduced. Activation of the IL-6 receptor and subsequent signaling pathways leads to the activation of transcription factors, including peroxisome proliferator-activated receptor alpha (PPARα) and CCAAT/enhancer binding protein (C/EBP), which then modulate APP gene expression. The transcriptional regulation of RBP4 by IL-6 is not fully understood. Therefore, this study aimed to elucidate the molecular mechanisms of PPARα and C/EBP isoforms in mediating IL-6 regulation of RBP4 gene expression. IL-6 was shown to reduce the transcriptional activity of RBP4, and functional dissection of the RBP4 promoter further identified the cis-acting regulatory elements that are responsible in mediating the inhibitory effect of IL-6. The binding sites for PPARα and C/EBP present in the RBP4 promoter were predicted at -1079 bp to -1057 bp and -1460 bp to -1439 bp, respectively. The binding of PPARα and C/EBPs to their respective cis-acting elements may lead to antagonistic interactions that modulate the IL-6 regulation of RBP4 promoter activity. Therefore, this study proposed a new mechanism of interaction involving PPARα and different C/EBP isoforms. This interaction is necessary for the regulation of RBP4 gene expression in response to external stimuli, particularly IL-6, during physiological changes.
Collapse
Affiliation(s)
- Muzaida Aminah Mohd
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
| | - Nur Adelina Ahmad Norudin
- Malaysian Institute of Pharmaceuticals and Nutraceuticals, National Institutes of Biotechnology Malaysia, Block 5-A, Halaman Bukit Gambir, 11700, Gelugor, Penang, Malaysia
| | | |
Collapse
|
14
|
Abstract
Obesity is characterized by a state of chronic inflammation in adipose tissue mediated by the secretion of a range of inflammatory cytokines. In comparison to WAT, relatively little is known about the inflammatory status of brown adipose tissue (BAT) in physiology and pathophysiology. Because BAT and brown/beige adipocytes are specialized in energy expenditure they have protective roles against obesity and associated metabolic diseases. BAT appears to be is less susceptible to developing inflammation than WAT. However, there is increasing evidence that inflammation directly alters the thermogenic activity of brown fat by impairing its capacity for energy expenditure and glucose uptake. The inflammatory microenvironment can be affected by cytokines secreted by immune cells as well as by the brown adipocytes themselves. Therefore, pro-inflammatory signals represent an important component of the thermogenic potential of brown and beige adipocytes and may contribute their dysfunction in obesity.
Collapse
Affiliation(s)
- Farah Omran
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Mark Christian
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
- *Correspondence: Mark Christian
| |
Collapse
|
15
|
Herz CT, Kiefer FW. The Transcriptional Role of Vitamin A and the Retinoid Axis in Brown Fat Function. Front Endocrinol (Lausanne) 2020; 11:608. [PMID: 33071960 PMCID: PMC7531533 DOI: 10.3389/fendo.2020.00608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022] Open
Abstract
In recent years, brown adipose tissue (BAT) has gained significance as a metabolic organ dissipating energy through heat production. Promotion of a thermogenic program in fat holds great promise as potential therapeutic tool to counteract weight gain and related sequelae. Current research efforts are aimed at identifying novel pathways regulating brown fat function and the transformation of white adipocytes into BAT-like cells, a process called "browning." Besides numerous genetic factors some circulating molecules can act as mediators of adipose tissue thermogenesis. Vitamin A metabolites, the retinoids, are potent regulators of gene transcription through nuclear receptor signaling and are thus involved in a plethora of metabolic processes. Accumulating evidence links retinoid action to brown fat function and browning of WAT mainly via orchestrating a transcriptional BAT program in adipocytes including expression of key thermogenic genes such as uncoupling protein 1. Here we summarize the current understanding how retinoids play a role in adipose tissue thermogenesis through transcriptional control of thermogenic gene cassettes and potential non-genomic mechanisms.
Collapse
|
16
|
Zhang T, Chen J, Tang X, Luo Q, Xu D, Yu B. Interaction between adipocytes and high-density lipoprotein:new insights into the mechanism of obesity-induced dyslipidemia and atherosclerosis. Lipids Health Dis 2019; 18:223. [PMID: 31842884 PMCID: PMC6913018 DOI: 10.1186/s12944-019-1170-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 12/09/2019] [Indexed: 12/19/2022] Open
Abstract
Obesity is the most common nutritional disorder worldwide and is associated with dyslipidemia and atherosclerotic cardiovascular disease. The hallmark of dyslipidemia in obesity is low high density lipoprotein (HDL) cholesterol (HDL-C) levels. Moreover, the quality of HDL is also changed in the obese setting. However, there are still some disputes on the explanations for this phenomenon. There is increasing evidence that adipose tissue, as an energy storage tissue, participates in several metabolism activities, such as hormone secretion and cholesterol efflux. It can influence overall reverse cholesterol transport and plasma HDL-C level. In obesity individuals, the changes in morphology and function of adipose tissue affect plasma HDL-C levels and HDL function, thus, adipose tissue should be the main target for the treatment of HDL metabolism in obesity. In this review, we will summarize the cross-talk between adipocytes and HDL related to cardiovascular disease and focus on the new insights of the potential mechanism underlying obesity and HDL dysfunction.
Collapse
Affiliation(s)
- Tianhua Zhang
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China
| | - Jin Chen
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China
| | - Xiaoyu Tang
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China
| | - Qin Luo
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China
| | - Danyan Xu
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China
| | - Bilian Yu
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China.
| |
Collapse
|
17
|
Wang F, Chang C, Li R, Zhang Z, Jiang H, Zeng N, Li D, Chen L, Xiao Y, Chen W, Wang Q. Retinol binding protein 4 mediates MEHP-induced glucometabolic abnormalities in HepG2 cells. Toxicology 2019; 424:152236. [DOI: 10.1016/j.tox.2019.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 12/15/2022]
|
18
|
White JD, Dewal RS, Stanford KI. The beneficial effects of brown adipose tissue transplantation. Mol Aspects Med 2019; 68:74-81. [PMID: 31228478 DOI: 10.1016/j.mam.2019.06.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/20/2019] [Accepted: 06/18/2019] [Indexed: 01/02/2023]
Abstract
Obesity is a disease that results from an imbalance between energy intake and energy expenditure. Brown adipose tissue (BAT) is a potential therapeutic target to improve the comorbidities associated with obesity due to its inherent thermogenic capacity and its ability to improve glucose metabolism. Multiple studies have shown that activation of BAT using either pharmacological treatments or cold exposure had an acute effect to increase metabolic function and reduce adiposity. Recent preclinical investigations have explored whether increasing BAT mass or activation through transplantation models could improve glucose metabolism and metabolic health. Successful BAT transplantation models have shown improvements in glucose metabolism and insulin sensitivity, as well as reductions in body mass and decreased adiposity in recipients. BAT transplantation may confer its beneficial effects through several different mechanisms, including endocrine effects via the release of 'batokines'. More recent studies have demonstrated that beige and brown adipocytes isolated from human progenitor cells and transplanted into mouse models result in metabolic improvements similar to transplantation of whole BAT; this could represent a clinically translatable model. In this review we will discuss the impetus for both early and recent investigations utilizing BAT transplantation models, the outcomes of these studies, and review the mechanisms associated with the beneficial effects of BAT transplant to confer improvements in metabolic health.
Collapse
Affiliation(s)
- Joseph D White
- Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Revati S Dewal
- Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Kristin I Stanford
- Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| |
Collapse
|
19
|
Adipose Tissue-Derived Signatures for Obesity and Type 2 Diabetes: Adipokines, Batokines and MicroRNAs. J Clin Med 2019; 8:jcm8060854. [PMID: 31208019 PMCID: PMC6617388 DOI: 10.3390/jcm8060854] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
: Obesity is one of the main risk factors for type 2 diabetes mellitus (T2DM). It is closely related to metabolic disturbances in the adipose tissue that primarily functions as a fat reservoir. For this reason, adipose tissue is considered as the primary site for initiation and aggravation of obesity and T2DM. As a key endocrine organ, the adipose tissue communicates with other organs, such as the brain, liver, muscle, and pancreas, for the maintenance of energy homeostasis. Two different types of adipose tissues-the white adipose tissue (WAT) and brown adipose tissue (BAT)-secrete bioactive peptides and proteins, known as "adipokines" and "batokines," respectively. Some of them have beneficial anti-inflammatory effects, while others have harmful inflammatory effects. Recently, "exosomal microRNAs (miRNAs)" were identified as novel adipokines, as adipose tissue-derived exosomal miRNAs can affect other organs. In the present review, we discuss the role of adipose-derived secretory factors-adipokines, batokines, and exosomal miRNA-in obesity and T2DM. It will provide new insights into the pathophysiological mechanisms involved in disturbances of adipose-derived factors and will support the development of adipose-derived factors as potential therapeutic targets for obesity and T2DM.
Collapse
|
20
|
Cairó M, Campderrós L, Gavaldà-Navarro A, Cereijo R, Delgado-Anglés A, Quesada-López T, Giralt M, Villarroya J, Villarroya F. Parkin controls brown adipose tissue plasticity in response to adaptive thermogenesis. EMBO Rep 2019; 20:embr.201846832. [PMID: 30867164 DOI: 10.15252/embr.201846832] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 02/19/2019] [Accepted: 02/21/2019] [Indexed: 11/09/2022] Open
Abstract
Parkin is an ubiquitin-E3 ligase that acts as a key component of the cellular machinery for mitophagy. We show here that Parkin expression is reciprocally regulated in brown adipose tissue in relation to thermogenic activity. Thermogenic stimuli repress Parkin gene expression via transcriptional mechanisms that are elicited by noradrenergic and PPARα-mediated pathways that involve intracellular lipolysis in brown adipocytes. Parkin-KO mice show over-activated brown adipose tissue thermogenic activity and exhibit improved metabolic parameters, especially when fed a high-fat diet. Deacclimation, which is the return of a cold-adapted mouse to a thermoneutral temperature, dramatically induces mitophagy in brown adipocytes, with a concomitant induction of Parkin levels. We further reveal that Parkin-KO mice exhibit defects in the degradative processing of mitochondrial proteins in brown adipose tissue in response to deacclimation. These results suggest that the transcriptional control of Parkin in brown adipose tissue may contribute to modulating the mitochondrial mass and activity for adaptation to thermogenic requirements.
Collapse
Affiliation(s)
- Montserrat Cairó
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain.,CIBER Fisiopatologia de la Obesidad y Nutrición, Madrid, Spain
| | - Laura Campderrós
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain.,CIBER Fisiopatologia de la Obesidad y Nutrición, Madrid, Spain
| | - Aleix Gavaldà-Navarro
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain.,CIBER Fisiopatologia de la Obesidad y Nutrición, Madrid, Spain
| | - Rubén Cereijo
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain.,CIBER Fisiopatologia de la Obesidad y Nutrición, Madrid, Spain
| | - Alejandro Delgado-Anglés
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Tania Quesada-López
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain.,CIBER Fisiopatologia de la Obesidad y Nutrición, Madrid, Spain
| | - Marta Giralt
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain.,CIBER Fisiopatologia de la Obesidad y Nutrición, Madrid, Spain
| | - Joan Villarroya
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain .,Institut de Recerca Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Francesc Villarroya
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain .,CIBER Fisiopatologia de la Obesidad y Nutrición, Madrid, Spain
| |
Collapse
|
21
|
Villarroya J, Cereijo R, Giralt M, Villarroya F. Secretory Proteome of Brown Adipocytes in Response to cAMP-Mediated Thermogenic Activation. Front Physiol 2019; 10:67. [PMID: 30792664 PMCID: PMC6374321 DOI: 10.3389/fphys.2019.00067] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/21/2019] [Indexed: 11/24/2022] Open
Abstract
Background: The secretory properties of brown adipose tissue are thought to contribute to the association between active brown fat and a healthy metabolic status. Although a few brown adipokines have been identified, a comprehensive knowledge of the brown adipose tissue secretome is lacking. Methods: Here, to examine the effects of thermogenic activation of brown adipocytes on protein secretion, we used isobaric tags for relative and absolute quantification (iTRAQ) analysis to determine how the secreted proteome of brown adipocytes (that detected in cell culture medium) differed in response to cAMP. Results: Our results indicated that 56 secreted proteins were up-regulated in response to cAMP. Of them, nearly half (29) corresponded to extracellular matrix components and regulators. Several previously known adipokines, were also detected. Unexpectedly, we also found five components of the complement system. Only 15 secreted proteins were down-regulated by cAMP; of them three were ECM-related and none was related to the complement system. We observed a partial concordance between the cAMP-regulated release of proteins (both from proteomics and from antibody-based quantification of specific proteins) and the cAMP-mediated regulation of their encoding transcript for the up-regulated secreted proteins. However, a stronger concordance was seen for the down-regulated secreted proteins. Conclusions: The present results highlight the need to investigate previously unrecognized processes such as the role of extracellular matrix in thermogenic activation-triggered brown fat remodeling, as well as the intriguing question of how brown adipocyte-secreted complement factors contribute to the signaling properties of active brown adipose tissue.
Collapse
Affiliation(s)
- Joan Villarroya
- Departament de Bioquímica i Biomedicina Molecular and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain.,Infectious Diseases Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Rubén Cereijo
- Departament de Bioquímica i Biomedicina Molecular and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Madrid, Spain
| | - Marta Giralt
- Departament de Bioquímica i Biomedicina Molecular and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Madrid, Spain
| | - Francesc Villarroya
- Departament de Bioquímica i Biomedicina Molecular and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Madrid, Spain
| |
Collapse
|
22
|
Abstract
Brown adipokines are regulatory factors secreted by brown and beige adipocytes that exhibit endocrine, paracrine, and autocrine actions. Peptidic and non-peptidic molecules, including miRNAs and lipids, are constituents of brown adipokines. Brown adipose tissue remodeling to meet thermogenic needs is dependent on the secretory properties of brown/beige adipocytes. The association between brown fat activity and a healthy metabolic profile, in relation to energy balance and glucose and lipid homeostasis, is influenced by the endocrine actions of brown adipokines. A comprehensive knowledge of the brown adipocyte secretome is still lacking. Advancements in the identification and characterization of brown adipokines will facilitate therapeutic interventions for metabolic diseases, as these molecules are obvious candidates to therapeutic agents. Moreover, identification of brown adipokines as circulating biomarkers of brown adipose tissue activity may be particularly useful for noninvasive assessment of brown adipose tissue alterations in human pathologies.
Collapse
Affiliation(s)
- Francesc Villarroya
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina, Universitat de Barcelona, Barcelona, Catalonia, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain.
| | - Aleix Gavaldà-Navarro
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina, Universitat de Barcelona, Barcelona, Catalonia, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Marion Peyrou
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina, Universitat de Barcelona, Barcelona, Catalonia, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Joan Villarroya
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - Marta Giralt
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina, Universitat de Barcelona, Barcelona, Catalonia, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| |
Collapse
|
23
|
Affiliation(s)
- Saverio Cinti
- Professor of Human Anatomy, Director, Center of Obesity, University of Ancona (Politecnica delle Marche), Ancona, Italy
| |
Collapse
|
24
|
Chechi K, van Marken Lichtenbelt W, Richard D. Brown and beige adipose tissues: phenotype and metabolic potential in mice and men. J Appl Physiol (1985) 2018; 124:482-496. [PMID: 28302705 PMCID: PMC5867364 DOI: 10.1152/japplphysiol.00021.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/09/2017] [Accepted: 03/13/2017] [Indexed: 01/06/2023] Open
Abstract
With the recent rediscovery of brown fat in adult humans, our outlook on adipose tissue biology has undergone a paradigm shift. While we attempt to identify, recruit, and activate classic brown fat stores in humans, identification of beige fat has also raised the possibility of browning our white fat stores. Whether such transformation of human white fat depots can be achieved to enhance the whole body oxidative potential remains to be seen. Evidence to date, however, largely points toward a major oxidative role only for classic brown fat depots, at least in rodents. White fat stores seem to provide the main fuel for sustaining thermogenesis via lipolysis. Interestingly, molecular markers consistent with both classic brown and beige fat identity can be observed in human supraclavicular depot, thereby complicating the discussion on beige fat in humans. Here, we review the recent advances made in our understanding of brown and beige fat in humans and mice. We further provide an overview of their plausible physiological relevance to whole body energy metabolism.
Collapse
Affiliation(s)
- Kanta Chechi
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Ville de Québec, Quebec , Canada
| | - Wouter van Marken Lichtenbelt
- Department of Human Biology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center , Maastricht , The Netherlands
| | - Denis Richard
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Ville de Québec, Quebec , Canada
| |
Collapse
|
25
|
Tapia P, Fernández-Galilea M, Robledo F, Mardones P, Galgani JE, Cortés VA. Biology and pathological implications of brown adipose tissue: promises and caveats for the control of obesity and its associated complications. Biol Rev Camb Philos Soc 2017; 93:1145-1164. [DOI: 10.1111/brv.12389] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 11/10/2017] [Accepted: 11/14/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Pablo Tapia
- Department of Nutrition, Diabetes and Metabolism, School of Medicine; Pontificia Universidad Católica de Chile, Marcoleta 367; Santiago, 8330024 Chile
| | - Marta Fernández-Galilea
- Department of Nutrition, Diabetes and Metabolism, School of Medicine; Pontificia Universidad Católica de Chile, Marcoleta 367; Santiago, 8330024 Chile
| | - Fermín Robledo
- Department of Nutrition, Diabetes and Metabolism, School of Medicine; Pontificia Universidad Católica de Chile, Marcoleta 367; Santiago, 8330024 Chile
| | - Pablo Mardones
- Research and Innovation Office, School of Engineering; Pontificia Universidad Católica de Chile, Marcoleta 367; Santiago, 8330024 Chile
| | - José E. Galgani
- Department of Nutrition, Diabetes and Metabolism, School of Medicine; Pontificia Universidad Católica de Chile, Marcoleta 367; Santiago, 8330024 Chile
- Departamento Ciencias de la Salud; Carrera de Nutrición y Dietética, Pontificia Universidad Católica de Chile, Marcoleta 367; Santiago, 8330024 Chile
| | - Víctor A. Cortés
- Department of Nutrition, Diabetes and Metabolism, School of Medicine; Pontificia Universidad Católica de Chile, Marcoleta 367; Santiago, 8330024 Chile
| |
Collapse
|
26
|
Villarroya F, Gavaldà-Navarro A, Peyrou M, Villarroya J, Giralt M. The Lives and Times of Brown Adipokines. Trends Endocrinol Metab 2017; 28:855-867. [PMID: 29113711 DOI: 10.1016/j.tem.2017.10.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 12/13/2022]
Abstract
Brown adipose tissue (BAT) is responsible for adaptive non-shivering thermogenesis. Moreover, brown fat secretes regulatory factors, so-called brown adipokines, that have autocrine, paracrine, and endocrine actions. Brown adipokines are either polypeptides or nonpeptidic molecules including lipid molecules and microRNAs. The secretory properties of brown fat are essential for tissue remodeling adaptations to thermogenic necessities. The endocrine properties of brown adipokines are thought to contribute to the association between BAT activity and a healthy metabolic profile in relation to glucose and lipid homeostasis. The identification and characterization of brown adipokines may allow the discovery of circulating biomarkers of BAT activity in humans, and will lead to the development of candidate tools for therapeutic interventions in metabolic diseases.
Collapse
Affiliation(s)
- Francesc Villarroya
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red 'Fisiopatologia de la Obesidad y Nutrición', Madrid, Spain; Institut de Recerca Sant Joan de Déu, Barcelona, Catalonia, Spain.
| | - Aleix Gavaldà-Navarro
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red 'Fisiopatologia de la Obesidad y Nutrición', Madrid, Spain; Institut de Recerca Sant Joan de Déu, Barcelona, Catalonia, Spain
| | - Marion Peyrou
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red 'Fisiopatologia de la Obesidad y Nutrición', Madrid, Spain; Institut de Recerca Sant Joan de Déu, Barcelona, Catalonia, Spain
| | - Joan Villarroya
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain; Institut de Recerca Hospital de la Santa Creu i Sant Pau, Barcelona, Catalonia, Spain
| | - Marta Giralt
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red 'Fisiopatologia de la Obesidad y Nutrición', Madrid, Spain; Institut de Recerca Sant Joan de Déu, Barcelona, Catalonia, Spain
| |
Collapse
|
27
|
Zeitz JO, Most E, Eder K. Effect of dietary conjugated linoleic acid on vitamin A status of lactating rats and their offspring. J Anim Physiol Anim Nutr (Berl) 2017; 102:e374-e379. [DOI: 10.1111/jpn.12755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/24/2017] [Indexed: 12/19/2022]
Affiliation(s)
- J. O. Zeitz
- Institute of Animal Nutrition and Nutritional Physiology; University of Giessen; Giessen Germany
| | - E. Most
- Institute of Animal Nutrition and Nutritional Physiology; University of Giessen; Giessen Germany
| | - K. Eder
- Institute of Animal Nutrition and Nutritional Physiology; University of Giessen; Giessen Germany
| |
Collapse
|
28
|
Shamsi F, Zhang H, Tseng YH. MicroRNA Regulation of Brown Adipogenesis and Thermogenic Energy Expenditure. Front Endocrinol (Lausanne) 2017; 8:205. [PMID: 28878735 PMCID: PMC5572399 DOI: 10.3389/fendo.2017.00205] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 08/07/2017] [Indexed: 12/20/2022] Open
Abstract
Obesity, diabetes, and associated metabolic diseases have become global epidemics. Obesity results from excess accumulation of white fat, while brown and its related beige fat function to dissipate energy as heat, thus counteracting obesity and its related metabolic disorders. Understanding the regulatory mechanisms for both white and brown adipogenesis provides new insights for prevention and treatment of these metabolic diseases. In addition to traditional gene transcription and translation, microRNA (miRNA) represents a new layer of regulatory mechanism in many biological processes and has attracted a great deal of research interests in exploring their roles in physiological and pathophysiological conditions. This review focuses on the recent advances of regulating brown adipogenesis and energy metabolism by miRNAs, aiming to delineate the regulatory principles of miRNAs on this unique aspect of energy homeostasis.
Collapse
Affiliation(s)
- Farnaz Shamsi
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, United States
| | - Hongbin Zhang
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, United States
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, United States
- *Correspondence: Yu-Hua Tseng,
| |
Collapse
|
29
|
Abstract
Brown adipose tissue (BAT) is the main site of adaptive thermogenesis and experimental studies have associated BAT activity with protection against obesity and metabolic diseases, such as type 2 diabetes mellitus and dyslipidaemia. Active BAT is present in adult humans and its activity is impaired in patients with obesity. The ability of BAT to protect against chronic metabolic disease has traditionally been attributed to its capacity to utilize glucose and lipids for thermogenesis. However, BAT might also have a secretory role, which could contribute to the systemic consequences of BAT activity. Several BAT-derived molecules that act in a paracrine or autocrine manner have been identified. Most of these factors promote hypertrophy and hyperplasia of BAT, vascularization, innervation and blood flow, processes that are all associated with BAT recruitment when thermogenic activity is enhanced. Additionally, BAT can release regulatory molecules that act on other tissues and organs. This secretory capacity of BAT is thought to be involved in the beneficial effects of BAT transplantation in rodents. Fibroblast growth factor 21, IL-6 and neuregulin 4 are among the first BAT-derived endocrine factors to be identified. In this Review, we discuss the current understanding of the regulatory molecules (the so-called brown adipokines or batokines) that are released by BAT that influence systemic metabolism and convey the beneficial metabolic effects of BAT activation. The identification of such adipokines might also direct drug discovery approaches for managing obesity and its associated chronic metabolic diseases.
Collapse
Affiliation(s)
- Francesc Villarroya
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina, Universitat de Barcelona, Avda Diagonal 643, 08028-Barcelona, Catalonia, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Facultat de Biologia, Universitat de Barcelona, Avda Diagonal 643, 08028-Barcelona, Catalonia, Spain
| | - Rubén Cereijo
- CIBER Fisiopatología de la Obesidad y Nutrición, Facultat de Biologia, Universitat de Barcelona, Avda Diagonal 643, 08028-Barcelona, Catalonia, Spain
| | - Joan Villarroya
- CIBER Fisiopatología de la Obesidad y Nutrición, Facultat de Biologia, Universitat de Barcelona, Avda Diagonal 643, 08028-Barcelona, Catalonia, Spain
| | - Marta Giralt
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina, Universitat de Barcelona, Avda Diagonal 643, 08028-Barcelona, Catalonia, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Facultat de Biologia, Universitat de Barcelona, Avda Diagonal 643, 08028-Barcelona, Catalonia, Spain
| |
Collapse
|
30
|
Codoñer-Franch P, Carrasco-Luna J, Allepuz P, Codoñer-Alejos A, Guillem V. Association of RBP4 genetic variants with childhood obesity and cardiovascular risk factors. Pediatr Diabetes 2016; 17:576-583. [PMID: 26611784 DOI: 10.1111/pedi.12339] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 10/12/2015] [Accepted: 10/23/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Recent data suggest that retinol-binding protein 4 (RBP4) gene variants could be associated with a risk of obesity and its co-morbidities, such as metabolic syndrome, which increases the risk of developing type 2 diabetes mellitus and cardiovascular disease. OBJECTIVES The present study examined the potential association of RBP4 single nucleotide polymorphisms (SNPs) with childhood obesity and its metabolic complications. METHODS Four RBP4 SNPs, rs3758538 (3944A>C), rs3758539 (4406G>A), rs12265684 (12177G>C) and rs34571439 (14684T>G), were genotyped in a population of 180 Spanish Caucasian children (97 obese and 83 normal-weight children). Association of RBP4 SNPs with obesity, metabolic risk factors (blood pressure, triglycerides, high-density lipoprotein cholesterol, insulin resistance) and markers of vascular inflammation, such as high-sensitive C-reactive protein (hs-CRP), was tested. RESULTS We found SNP rs3758538 to be associated with obesity (p = 0.007). Specifically, each copy of the minor allele C was associated with an increased risk of obesity, by more than twofold, in respect of being homozygous for the major allele A (odds ratio = 2.4; 95% confidence interval = 1.2-4.8). The rs3758538 and rs34571439 RBP4 SNPs correlated with plasma RBP4 levels. The SNPs rs12265684 and rs34571439 correlated with plasma triglyceride levels. The rs34571439 was also associated to hs-CRP levels. Marginal association of RBP4 SNPs with plasma high-density lipoprotein levels (rs34571439), blood pressure (rs12265684) and insulin resistance (rs3758539) was also observed. CONCLUSIONS These findings suggest that childhood obesity may be associated with variations in RBP4 gene. The presence of selective SNPs in the RBP4 gene may account for metabolic complications.
Collapse
Affiliation(s)
- Pilar Codoñer-Franch
- Department of Pediatrics, Dr. Peset University Hospital, Valencia, Spain. .,Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia, Spain.
| | - Joaquín Carrasco-Luna
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia, Spain.,Department of Experimental Sciences, Universidad Católica de Valencia, Valencia, Spain
| | - Paula Allepuz
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia, Spain
| | - Alan Codoñer-Alejos
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia, Spain
| | - Vicent Guillem
- Hematology and Medical Oncology Department, Medical Research Institute INCLIVA, Valencia, Spain
| |
Collapse
|
31
|
DiStefano MT, Roth Flach RJ, Senol-Cosar O, Danai LV, Virbasius JV, Nicoloro SM, Straubhaar J, Dagdeviren S, Wabitsch M, Gupta OT, Kim JK, Czech MP. Adipocyte-specific Hypoxia-inducible gene 2 promotes fat deposition and diet-induced insulin resistance. Mol Metab 2016; 5:1149-1161. [PMID: 27900258 PMCID: PMC5123203 DOI: 10.1016/j.molmet.2016.09.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 09/15/2016] [Accepted: 09/19/2016] [Indexed: 12/18/2022] Open
Abstract
Objective Adipose tissue relies on lipid droplet (LD) proteins in its role as a lipid-storing endocrine organ that controls whole body metabolism. Hypoxia-inducible Gene 2 (Hig2) is a recently identified LD-associated protein in hepatocytes that promotes hepatic lipid storage, but its role in the adipocyte had not been investigated. Here we tested the hypothesis that Hig2 localization to LDs in adipocytes promotes adipose tissue lipid deposition and systemic glucose homeostasis. Method White and brown adipocyte-deficient (Hig2fl/fl × Adiponection cre+) and selective brown/beige adipocyte-deficient (Hig2fl/fl × Ucp1 cre+) mice were generated to investigate the role of Hig2 in adipose depots. Additionally, we used multiple housing temperatures to investigate the role of active brown/beige adipocytes in this process. Results Hig2 localized to LDs in SGBS cells, a human adipocyte cell strain. Mice with adipocyte-specific Hig2 deficiency in all adipose depots demonstrated reduced visceral adipose tissue weight and increased glucose tolerance. This metabolic effect could be attributed to brown/beige adipocyte-specific Hig2 deficiency since Hig2fl/fl × Ucp1 cre+ mice displayed the same phenotype. Furthermore, when adipocyte-deficient Hig2 mice were moved to thermoneutral conditions in which non-shivering thermogenesis is deactivated, these improvements were abrogated and glucose intolerance ensued. Adipocyte-specific Hig2 deficient animals displayed no detectable changes in adipocyte lipolysis or energy expenditure, suggesting that Hig2 may not mediate these metabolic effects by restraining lipolysis in adipocytes. Conclusions We conclude that Hig2 localizes to LDs in adipocytes, promoting adipose tissue lipid deposition and that its selective deficiency in active brown/beige adipose tissue mediates improved glucose tolerance at 23 °C. Reversal of this phenotype at thermoneutrality in the absence of detectable changes in energy expenditure, adipose mass, or liver triglyceride suggests that Hig2 deficiency triggers a deleterious endocrine or neuroendocrine pathway emanating from brown/beige fat cells. Hig2 localizes to lipid droplets in adipocytes and promotes adipose tissue lipid deposition. Its selective deficiency in active brown/beige adipose tissue mediates improved glucose tolerance at 23 °C. Metabolic improvements are independent of changes in lipolysis.
Collapse
Key Words
- Adipocyte
- BAT, brown adipose tissue
- FFA, free fatty acid
- GTT, glucose tolerance test
- HFD, high fat diet
- Hig2, Hypoxia-inducible gene 2
- Hypoxia-inducible gene 2 (Hig2)
- ITT, insulin tolerance test
- LD, lipid droplet
- Lipid droplet
- Lipolysis
- NEFA, non-esterified fatty acid
- Obesity
- RER, respiratory exchange ratio
- SGBS, Simpson-Golabi-Behmel syndrome
- SVF, stromal vascular fraction
- TG, triglyceride
- Ucp1, uncoupling protein 1
- WAT, white adipose tissue
- eWAT, epididymal white adipose tissue
- iWAT, inguinal white adipose tissue
Collapse
Affiliation(s)
- Marina T DiStefano
- From the Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Rachel J Roth Flach
- From the Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ozlem Senol-Cosar
- From the Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Laura V Danai
- From the Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Joseph V Virbasius
- From the Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Sarah M Nicoloro
- From the Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Juerg Straubhaar
- From the Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Sezin Dagdeviren
- From the Program in Molecular Medicine and the Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Martin Wabitsch
- From the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm 89075, Germany
| | - Olga T Gupta
- From the Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jason K Kim
- From the Program in Molecular Medicine and the Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Michael P Czech
- From the Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
32
|
Giralt M, Cereijo R, Villarroya F. Adipokines and the Endocrine Role of Adipose Tissues. Handb Exp Pharmacol 2016; 233:265-82. [PMID: 25903415 DOI: 10.1007/164_2015_6] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The last two decades have witnessed a shift in the consideration of white adipose tissue as a mere repository of fat to be used when food becomes scarce to a true endocrine tissue releasing regulatory signals, the so-called adipokines, to the whole body. The control of eating behavior, the peripheral insulin sensitivity, and even the development of the female reproductive system are among the physiological events controlled by adipokines. Recently, the role of brown adipose tissue in human physiology has been recognized. The metabolic role of brown adipose tissue is opposite to white fat; instead of storing fat, brown adipose tissue is a site of energy expenditure via adaptive thermogenesis. There is growing evidence that brown adipose tissue may have its own pattern of secreted hormonal factors, the so-called brown adipokines, having distinctive biological actions on the overall physiological adaptations to enhance energy expenditure.
Collapse
Affiliation(s)
- Marta Giralt
- Departament de Bioquímica i Biologia Molecular, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Rubén Cereijo
- Departament de Bioquímica i Biologia Molecular, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Francesc Villarroya
- Departament de Bioquímica i Biologia Molecular, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain. .,CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain.
| |
Collapse
|
33
|
Abstract
Vitamin A, retinol, circulates in blood bound to retinol binding protein (RBP). In some tissues, the retinol-RBP complex (holo-RBP) is recognized by a membrane receptor, termed STRA6, which mediates uptake of retinol into cells. Recent studies have revealed that, in addition to serving as a retinol transporter, STRA6 is a ligand-activated cell surface signaling receptor that, upon binding of holo-RBP activates JAK/STAT signaling, culminating in the induction of STAT target genes. It has further been shown that retinol transport and cell signaling by STRA6 are critically interdependent and that both are coupled to intracellular vitamin A metabolism. The molecular mechanism of action of STRA6 and its associated machinery is beginning to be revealed, but further work is needed to identify and characterize the complete range of genes and associated signaling cascades that are regulated by STRA6 in different tissues. An understanding of STRA6 is clinically relevant, as for example, it has been shown to be hyper- activated in obese animals, leading to insulin resistance. A potential role for STRA6 in other pathologies, including cancer, awaits further investigation.
Collapse
Affiliation(s)
- Noa Noy
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA.
| |
Collapse
|
34
|
Brown adipose tissue: a potential target in the fight against obesity and the metabolic syndrome. Clin Sci (Lond) 2015; 129:933-49. [DOI: 10.1042/cs20150339] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BAT (brown adipose tissue) is the main site of thermogenesis in mammals. It is essential to ensure thermoregulation in newborns. It is also found in (some) adult humans. Its capacity to oxidize fatty acids and glucose without ATP production contributes to energy expenditure and glucose homoeostasis. Brown fat activation has thus emerged as an attractive therapeutic target for the treatment of obesity and the metabolic syndrome. In the present review, we integrate the recent advances on the metabolic role of BAT and its relation with other tissues as well as its potential contribution to fighting obesity and the metabolic syndrome.
Collapse
|
35
|
A functional proteomics approach to the comprehension of sarcoidosis. J Proteomics 2015; 128:375-87. [PMID: 26342673 DOI: 10.1016/j.jprot.2015.08.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 07/30/2015] [Accepted: 08/19/2015] [Indexed: 12/22/2022]
Abstract
Pulmonary sarcoidosis (Sar) is an idiopathic disease histologically typified by non-caseating epitheliod cell sarcoid granulomas. A cohort of 37 Sar patients with chronic persistent pulmonary disease was described in this study. BAL protein profiles from 9 of these Sar patients were compared with those from 8 smoker (SC) and 10 no-smoker controls (NSC) by proteomic approach. Principal Component Analysis was performed to clusterize the samples in the corresponding conditions highlighting a differential pattern profiles primarily in Sar than SC. Spot identification reveals thirty-four unique proteins involved in lipid, mineral, and vitamin Dmetabolism, and immuneregulation of macrophage function. Enrichment analysis has been elaborated by MetaCore, revealing 14-3-3ε, α1-antitrypsin, GSTP1, and ApoA1 as "central hubs". Process Network as well as Pathway Maps underline proteins involved in immune response and inflammation induced by complement system, innate inflammatory response and IL-6signalling. Disease Biomarker Network highlights Tuberculosis and COPD as pathologies that share biomarkers with sarcoidosis. In conclusion, Sar protein expression profile seems more similar to that of NSC than SC, conversely to other ILDs. Moreover, Disease Biomarker Network revealed several common features between Sar and TB, exhorting to orientate the future proteomics investigations also in comparative BALF analysis of Sar and TB.
Collapse
|
36
|
Martínez-Fernández L, Laiglesia LM, Huerta AE, Martínez JA, Moreno-Aliaga MJ. Omega-3 fatty acids and adipose tissue function in obesity and metabolic syndrome. Prostaglandins Other Lipid Mediat 2015. [PMID: 26219838 DOI: 10.1016/j.prostaglandins.2015.07.003] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The n-3 long-chain polyunsaturated fatty acids (n-3 PUFAs) such as eicosapentaenoic (EPA) and docosahexaenoic (DHA) have been reported to improve obesity-associated metabolic disorders including chronic inflammation, insulin resistance and dyslipidaemia. Growing evidence exits about adipose tissue as a target in mediating the beneficial effects of these marine n-3 PUFAs in adverse metabolic syndrome manifestations. Therefore, in this manuscript we focus in reviewing the current knowledge about effects of marine n-3 PUFAs on adipose tissue metabolism and secretory functions. This scope includes n-3 PUFAs actions on adipogenesis, lipogenesis and lipolysis as well as on fatty acid oxidation and mitochondrial biogenesis. The effects of n-3 PUFAs on adipose tissue glucose uptake and insulin signaling are also summarized. Moreover, the roles of peroxisome proliferator-activated receptor γ (PPARγ) and AMPK activation in mediating n-3 PUFAs actions on adipose tissue functions are discussed. Finally, the mechanisms underlying the ability of n-3 PUFAs to prevent and/or ameliorate adipose tissue inflammation are also revised, focusing on the role of n-3 PUFAs-derived specialized proresolving lipid mediators such as resolvins, protectins and maresins.
Collapse
Affiliation(s)
- Leyre Martínez-Fernández
- Department of Nutrition, Food Science and Physiology, School of Pharmacy, University of Navarra, Spain; Centre for Nutrition Research, School of Pharmacy, University of Navarra, Spain
| | - Laura M Laiglesia
- Department of Nutrition, Food Science and Physiology, School of Pharmacy, University of Navarra, Spain; Centre for Nutrition Research, School of Pharmacy, University of Navarra, Spain
| | - Ana E Huerta
- Department of Nutrition, Food Science and Physiology, School of Pharmacy, University of Navarra, Spain; Centre for Nutrition Research, School of Pharmacy, University of Navarra, Spain
| | - J Alfredo Martínez
- Department of Nutrition, Food Science and Physiology, School of Pharmacy, University of Navarra, Spain; Centre for Nutrition Research, School of Pharmacy, University of Navarra, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - María J Moreno-Aliaga
- Department of Nutrition, Food Science and Physiology, School of Pharmacy, University of Navarra, Spain; Centre for Nutrition Research, School of Pharmacy, University of Navarra, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.
| |
Collapse
|
37
|
Noy N. Signaling by retinol and its serum binding protein. Prostaglandins Leukot Essent Fatty Acids 2015; 93:3-7. [PMID: 25481334 PMCID: PMC4323939 DOI: 10.1016/j.plefa.2014.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 10/10/2014] [Accepted: 10/20/2014] [Indexed: 01/13/2023]
Abstract
Vitamin A, retinol, circulates in blood bound to retinol-binding protein (RBP) which, in turn, associates with transthyretin (TTR) to form a retinol-RBP-TTR ternary complex. At some tissues, retinol-bound (holo-) RBP is recognized by a membrane protein termed STRA6, which transports retinol from extracellular RBP into cells and, concomitantly, activates a JAK2/STAT3/5 signaling cascade that culminates in induction of STAT target genes. STRA6-mediated retinol transport and cell signaling are critically inter-dependent, and they both require the presence of cellular retinol-binding protein 1 (CRBP1), an intracellular retinol acceptor, as well as a retinol-metabolizing enzyme such as lecithin:retinol acyltransferase (LRAT). STRA6 thus functions as a "cytokine signaling transporter" which couples vitamin A homeostasis and metabolism to cell signaling, thereby regulating gene transcription. Recent studies provided molecular level insights into the mode of action of this unique protein.
Collapse
Affiliation(s)
- Noa Noy
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic Foundation, and Department of Nutrition, Case Western Reserve University School of Medicine, 9500 Euclid Ave., Cleveland, OH 44195, USA.
| |
Collapse
|
38
|
Bloor ID, Symonds ME. Sexual dimorphism in white and brown adipose tissue with obesity and inflammation. Horm Behav 2014; 66:95-103. [PMID: 24589990 DOI: 10.1016/j.yhbeh.2014.02.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 02/18/2014] [Accepted: 02/20/2014] [Indexed: 12/24/2022]
Abstract
This article is part of a Special Issue "Energy Balance". Obesity and its associated comorbidities remain at epidemic levels globally and show no signs of abatement in either adult or child populations. White adipose tissue has long been established as an endocrine signalling organ possessing both metabolic and immune functions. This role can become dysregulated following excess adiposity caused by adipocyte hypertrophy and hyperplasia. In contrast, brown adipose tissue (BAT) is only present in comparatively small amounts in the body but can significantly impact on heat production, and thus could prevent excess white adiposity. Obesity and associated risk factors for adverse metabolic health are not only linked with enlarged fat mass but also are dependent on its anatomical deposition. In addition, numerous studies have revealed a disparity in white adipose tissue deposition prior to and during the development of obesity between the sexes. Females therefore tend to develop a greater abundance of femoral and gluteal subcutaneous fat whereas males exhibit more central adiposity. In females, lower body subcutaneous adipose tissue depots appear to possess a greater capacity for lipid storage, enhanced lipolytic flux and hyperplastic tissue remodelling compared to visceral adipocytes. These differences are acknowledged to contribute to the poorer metabolic and inflammatory profiles observed in males. Importantly, the converse outcomes between sexes disappear after the menopause, suggesting a role for sex hormones within the onset of metabolic complications with obesity. This review further considers how BAT impacts upon on the relationship between excess adiposity, gender, inflammation and endocrine signalling and could thus ultimately be a target to prevent obesity.
Collapse
Affiliation(s)
- Ian D Bloor
- Early Life Research Unit, Division of Child Health, Obstetrics and Gynaecology, School of Medicine, The University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Michael E Symonds
- Early Life Research Unit, Division of Child Health, Obstetrics and Gynaecology, School of Medicine, The University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK.
| |
Collapse
|
39
|
Carta G, Murru E, Cordeddu L, Ortiz B, Giordano E, Belury MA, Quadro L, Banni S. Metabolic interactions between vitamin A and conjugated linoleic acid. Nutrients 2014; 6:1262-72. [PMID: 24667133 PMCID: PMC3967192 DOI: 10.3390/nu6031262] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 03/04/2014] [Accepted: 03/10/2014] [Indexed: 01/06/2023] Open
Abstract
Lipid-soluble molecules share several aspects of their physiology due to their common adaptations to a hydrophilic environment, and may interact to regulate their action in a tissue-specific manner. Dietary conjugated linoleic acid (CLA) is a fatty acid with a conjugated diene structure that is found in low concentrations in ruminant products and available as a nutritional supplement. CLA has been shown to increase tissue levels of retinol (vitamin A alcohol) and its sole specific circulating carrier protein retinol-binding protein (RBP or RBP4). However, the precise mechanism of this action has not been elucidated yet. Here, we provide a summary of the current knowledge in this specific area of research and speculate that retinol and CLA may compete for catabolic pathways modulated by the activity of PPAR-α and RXR heterodimer. We also present preliminary data that may position PPAR-α at the crossroads between the metabolism of lipids and vitamin A.
Collapse
Affiliation(s)
- Gianfranca Carta
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, S.S. 554, km. 4500, Monserrato, Cagliari 09042, Italy.
| | - Elisabetta Murru
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, S.S. 554, km. 4500, Monserrato, Cagliari 09042, Italy.
| | - Lina Cordeddu
- Department of Bioscience and Nutrition, Karolinska Institute, Stockholm 141 83, Sweden.
| | - Berenice Ortiz
- Gerstner Sloan-Kettering Graduate School in Biomedical Sciences, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| | - Elena Giordano
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, Madrid 28049, Spain.
| | - Martha A Belury
- Department of Human Nutrition, Ohio State University, Columbus, OH 43210, USA.
| | - Loredana Quadro
- Department of Food Science and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA.
| | - Sebastiano Banni
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, S.S. 554, km. 4500, Monserrato, Cagliari 09042, Italy.
| |
Collapse
|
40
|
Mirzaei K, Hossein-nezhad A, Keshavarz SA, Koohdani F, Saboor-Yaraghi AA, Hosseini S, Eshraghian MR, Djalali M. Crosstalk between circulating peroxisome proliferator-activated receptor gamma, adipokines and metabolic syndrome in obese subjects. Diabetol Metab Syndr 2013; 5:79. [PMID: 24330836 PMCID: PMC3878851 DOI: 10.1186/1758-5996-5-79] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 12/06/2013] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Peroxisome proliferator-activated receptor gamma (PPARγ) has direct and indirect function in adipokines production process. We aimed to assess the possible influence of circulating PPARγ on relative risk of metabolic syndrome and also examine the association between circulating PPARγ and adipokines levels among obese subjects. METHODS A total of 96 obese subjects (body mass index (BMI) ≥30) were included in the current cross-sectional study. We assessed the body composition with the use of Body Composition Analyzer BC-418MA - Tanita. The MetS (metabolic syndrome) was defined based on the National Cholesterol Education Program Adult Treatment Panel III. All baseline blood samples were obtained following an overnight fasting. Serum concentrations of adipokines including Retinol binding protein 4 (RBP4), omentin-1, vaspin, progranulin, nesfatin-1 and circulating PPARγ was measured with the use of an enzyme-linked immunosorbent assay method. Statistical analyses were performed using software package used for statistical analysis (SPSS). RESULTS We found main association between circulating PPARγ and body composition in obese population. The risk of metabolic syndrome in subjects with higher concentration of PPARγ was 1.9 fold in compared with lower concentration of PPARγ after adjustment for age, sex and BMI. There was significant association between PPARγ and adipokines, specially nesfatin-1 and progranulin. Defined adipokines pattern among participants demonstrated the markedly higher concentration of vaspin, RBP4 and nesfatin-1 in participants with MetS compared to non-MetS subjects. CONCLUSIONS It appears all of studied adipokines might have association with PPARγ level and might simultaneously be involve in some common pathway to make susceptible obese subjects for MetS.
Collapse
Affiliation(s)
- Khadijeh Mirzaei
- Cellular and Molecular Nutrition Department, School of Nutritional Science and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Hossein-nezhad
- Tehran University of Medical Sciences, Tehran, Iran
- Department of Medicine, Section of Endocrinology, Nutrition, and Diabetes, Vitamin D, Skin and Bone Research Laboratory, Boston University Medical Center, Boston, Massachusetts, United States of America
| | - Seyed Ali Keshavarz
- Clinical Nutrition Department, School of Nutritional Science and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Fariba Koohdani
- Cellular and Molecular Nutrition Department, School of Nutritional Science and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Saboor-Yaraghi
- Cellular and Molecular Nutrition Department, School of Nutritional Science and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Hosseini
- Clinical Nutrition Department, School of Nutritional Science and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Eshraghian
- Department of Biostatistics and Epidemiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Djalali
- Cellular and Molecular Nutrition Department, School of Nutritional Science and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Abstract
White adipose tissue is recognized as both a site of energy storage and an endocrine organ that produces a myriad of endocrine factors called adipokines. Brown adipose tissue (BAT) is the main site of nonshivering thermogenesis in mammals. The amount and activity of brown adipocytes are associated with protection against obesity and associated metabolic alterations. These effects of BAT are traditionally attributed to its capacity for the oxidation of fatty acids and glucose to sustain thermogenesis. However, recent data suggest that the beneficial effects of BAT could involve a previously unrecognized endocrine role through the release of endocrine factors. Several signaling molecules with endocrine properties have been found to be released by brown fat, especially under conditions of thermogenic activation. Moreover, experimental BAT transplantation has been shown to improve glucose tolerance and insulin sensitivity mainly by influencing hepatic and cardiac function. It has been proposed that these effects are due to the release of endocrine factors by brown fat, such as insulin-like growth factor I, interleukin-6, or fibroblast growth factor-21. Further research is needed to determine whether brown fat plays an endocrine role and, if so, to comprehensively identify which endocrine factors are released by BAT. Such research may reveal novel clues for the observed association between brown adipocyte activity and a healthy metabolic profile, and it could also enlarge a current view of potential therapeutic tools for obesity and associated metabolic diseases.
Collapse
|
42
|
Ong KL, Rye KA, O'Connell R, Jenkins AJ, Brown C, Xu A, Sullivan DR, Barter PJ, Keech AC. Long-term fenofibrate therapy increases fibroblast growth factor 21 and retinol-binding protein 4 in subjects with type 2 diabetes. J Clin Endocrinol Metab 2012; 97:4701-8. [PMID: 23144467 DOI: 10.1210/jc.2012-2267] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
CONTEXT Fenofibrate is a peroxisome proliferator-activated receptor (PPAR)-α agonist that showed beneficial effects on total cardiovascular risk in patients with type 2 diabetes in the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study. OBJECTIVE This study aimed to investigate the long-term effect of fenofibrate therapy on three novel biomarkers of cardiovascular risk, namely adipocyte-fatty acid-binding protein (A-FABP), fibroblast growth factor 21 (FGF21), and retinol-binding protein 4 (RBP4), which are all downstream targets of PPAR-α or PPAR-γ, in patients with type 2 diabetes. DESIGN, SETTING, AND PATIENTS A total of 216 patients (108 in the fenofibrate group and 108 in the placebo group) were randomly selected from the FIELD study cohort. A-FABP, FGF21, and RBP4 levels were measured in serum samples at both baseline and the fifth year of the study. RESULTS Relative to the placebo group, the changes of serum FGF21 and RBP4 levels were 85% (P < 0.001) and 10% (P = 0.032) higher in the fenofibrate group, respectively, over 5 yr. Fenofibrate treatment had no detectable effect on serum A-FABP level (P > 0.05). The effect of fenofibrate treatment on serum FGF21, but not RBP4, remained significant after adjusting for fenofibrate-induced changes in glycosylated hemoglobin, total cholesterol, triglycerides, apolipoprotein A-II, fibrinogen, plasma creatinine, and homocysteine (P = 0.002). CONCLUSIONS Long-term fenofibrate treatment could increase serum FGF21 levels over 5 yr in patients with type 2 diabetes. Additional studies are needed to investigate the potential role of FGF21 in the fenofibrate-mediated reduction of cardiovascular risk.
Collapse
Affiliation(s)
- Kwok Leung Ong
- Lipid Research Group, Heart Research Institute, Sydney, New South Wales 2042, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ding J, Sackmann-Sala L, Kopchick JJ. Mouse models of growth hormone action and aging: a proteomic perspective. Proteomics 2012; 13:674-85. [PMID: 23019135 DOI: 10.1002/pmic.201200271] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 07/19/2012] [Accepted: 07/27/2012] [Indexed: 12/12/2022]
Abstract
Growth hormone (GH) is a protein secreted by the anterior pituitary and circulates throughout the body to exert important actions on growth and metabolism. GH stimulates the secretion of insulin-like growth factor-I (IGF-I) that mediates some of the growth promoting actions of GH. The GH/IGF-I axis has recently been recognized as important in terms of longevity in organisms ranging from Caenorhabditis elegans to mice. For example, GH transgenic mice possess short lifespans while GH receptor null (GHR-/-) mice have extended longevity. Thus, the actions of GH (or IGF-I) or lack thereof impact the aging process. In this review, we summarize the proteomic analyses of plasma and white adipose tissue in these two mouse models of GH action, i.e. GH transgenic and GHR-/- mice. At the protein level, we wanted to establish novel plasma biomarkers of GH action as a function of age and to determine differences in adipose tissue depots. We have shown that these proteomic approaches have not only confirmed several known physiological actions of GH, but also resulted in novel protein biomarkers and targets that may be indicative of the aging process and/or new functions of GH. These results may generate new directions for GH and/or aging research.
Collapse
Affiliation(s)
- Juan Ding
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
44
|
Transthyretin blocks retinol uptake and cell signaling by the holo-retinol-binding protein receptor STRA6. Mol Cell Biol 2012; 32:3851-9. [PMID: 22826435 DOI: 10.1128/mcb.00775-12] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Vitamin A is secreted from cellular stores and circulates in blood bound to retinol-binding protein (RBP). In turn, holo-RBP associates in plasma with transthyretin (TTR) to form a ternary RBP-retinol-TTR complex. It is believed that binding to TTR prevents the loss of RBP by filtration in the kidney. At target cells, holo-RBP is recognized by STRA6, a plasma membrane protein that serves a dual role: it mediates uptake of retinol from extracellular RBP into cells, and it functions as a cytokine receptor that, upon binding holo-RBP, triggers a JAK/STAT signaling cascade. We previously showed that STRA6-mediated signaling underlies the ability of RBP to induce insulin resistance. However, the role that TTR, the binding partner of holo-RBP in blood, plays in STRA6-mediated activities remained unknown. Here we show that TTR blocks the ability of holo-RBP to associate with STRA6 and thereby effectively suppresses both STRA6-mediated retinol uptake and STRA6-initiated cell signaling. Consequently, TTR protects mice from RBP-induced insulin resistance, reflected by reduced phosphorylation of insulin receptor and glucose tolerance tests. The data indicate that STRA6 functions only under circumstances where the plasma RBP level exceeds that of TTR and demonstrate that, in addition to preventing the loss of RBP, TTR plays a central role in regulating holo-RBP/STRA6 signaling.
Collapse
|