1
|
Hardy M, Chen Y, Baram TZ, Justice NJ. Targeting corticotropin-releasing hormone receptor type 1 (Crhr1) neurons: validating the specificity of a novel transgenic Crhr1-FlpO mouse. Brain Struct Funct 2024; 230:12. [PMID: 39692887 PMCID: PMC11655595 DOI: 10.1007/s00429-024-02879-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/05/2024] [Indexed: 12/19/2024]
Abstract
Corticotropin-releasing hormone (CRH) signaling through its cognate receptors, CRHR1 and CRHR2, contributes to diverse stress-related functions in the mammalian brain. Whereas CRHR2 is predominantly expressed in choroid plexus and blood vessels, CRHR1 is abundantly expressed in neurons in discrete brain regions, including the neocortex, hippocampus and nucleus accumbens. Activation of CRHR1 influences motivated behaviors, emotional states, and learning and memory. However, it is unknown whether alterations in CRHR1 signaling contribute to aberrant motivated behaviors observed, for example, in stressful contexts. These questions require tools to manipulate CRHR1 selectively. Here we describe and validate a novel Crhr1-FlpO mouse. Using bacterial artificial chromosome (BAC) transgenesis, we engineered a transgenic mouse that expresses FlpO recombinase in CRHR1-expressing cells. We used two independent methods to assess the specificity of FlpO to CRHR1-expressing cells. First, we injected Crhr1-FlpO mice with Flp-dependent viruses expressing fluorescent reporter molecules. Additionally, we crossed the Crhr1-FlpO mouse with a transgenic Flp-dependent reporter mouse. CRHR1 and reporter molecules were identified using immunocytochemistry and visualized via confocal microscopy in several brain regions in which CRHR1 expression and function is established. Expression of Flp-dependent viral constructs was highly specific to CRHR1-expressing cells in all regions examined (over 90% co-localization). In accord, robust and specific expression of the Flp-dependent transgenic reporter was observed in a reporter mouse, recapitulating endogenous CRHR1 expression. The Crhr1-FlpO mouse enables selective genetic access to CRHR1-expressing cells within the mouse brain. When combined with Cre-lox or site-specific recombinases, the mouse facilitates intersectional manipulations of CRHR1-expressing neurons.
Collapse
Affiliation(s)
- Mason Hardy
- Department of Anatomy & Neurobiology, University of California-Irvine, Irvine, CA, USA
| | - Yuncai Chen
- Department of Anatomy & Neurobiology, University of California-Irvine, Irvine, CA, USA
| | - Tallie Z Baram
- Department of Anatomy & Neurobiology, University of California-Irvine, Irvine, CA, USA.
- Departments of Pediatrics and Neurology, University of California-Irvine, Irvine, CA, USA.
| | - Nicholas J Justice
- Brown Foundation Institute of Molecular Medicine of McGovern Medical School, University of Texas Health Sciences Center-Houston, Houston, TX, USA
| |
Collapse
|
2
|
Horváth K, Vági P, Juhász B, Kuti D, Ferenczi S, Kovács KJ. Sex Differences in the Neuroendocrine Stress Response: A View from a CRH-Reporting Mouse Line. Int J Mol Sci 2024; 25:12004. [PMID: 39596070 PMCID: PMC11593550 DOI: 10.3390/ijms252212004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Corticotropin-releasing hormone (CRH) neurons within the paraventricular hypothalamic nucleus (PVH) play a crucial role in initiating the neuroendocrine response to stress and are also pivotal in coordination of autonomic, metabolic, and behavioral stress reactions. Although the role of parvocellular CRHPVH neurons in activation of the hypothalamic-pituitary-adrenal (HPA) axis is well established, the distribution and function of CRH-expressing neurons across the whole central nervous system are less understood. Stress responses activate complex neural networks, which differ depending on the type of stressor and on the sex of the individual. Because of the technical difficulties of localizing CRH neurons throughout the rodent brain, several CRH reporter mouse lines have recently been developed. In this study, we used Crh-IRES-Cre;Ai9 reporter mice to examine whether CRH neurons are recruited in a stressor- or sex-specific manner, both within and outside the hypothalamus. In contrast to the clear sexual dimorphism of CRH-mRNA-expressing neurons, quantification of CRH-reporting, tdTomato-positive neurons in different stress-related brain areas revealed only subtle differences between male and female subjects. These results strongly imply that sex differences in CRH mRNA expression occur later in development under the influence of sex steroids and reflects the limitations of using genetic reporter constructs to reveal the current physiological/transcriptional status of a specific neuron population. Next, we compared the recruitment of stress-related, tdTomato-expressing (putative CRH) neurons in male and female Crh-IRES-Cre;Ai9 reporter mice that had been exposed to predator odor. In male mice, fox odor triggered more c-Fos in the CRH neurons of the paraventricular hypothalamic nucleus, central amygdala, and anterolateral bed nucleus of the stria terminalis compared to females. These results indicate that male mice are more sensitive to predator exposure due to a combination of hormonal, environmental, and behavioral factors.
Collapse
Affiliation(s)
- Krisztina Horváth
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Hungarian Research Network, 1083 Budapest, Hungary; (K.H.); (B.J.); (D.K.); (S.F.)
| | - Pál Vági
- Nikon Center of Excellence, Institute of Experimental Medicine, Hungarian Research Network, 1083 Budapest, Hungary;
| | - Balázs Juhász
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Hungarian Research Network, 1083 Budapest, Hungary; (K.H.); (B.J.); (D.K.); (S.F.)
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Dániel Kuti
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Hungarian Research Network, 1083 Budapest, Hungary; (K.H.); (B.J.); (D.K.); (S.F.)
| | - Szilamér Ferenczi
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Hungarian Research Network, 1083 Budapest, Hungary; (K.H.); (B.J.); (D.K.); (S.F.)
| | - Krisztina J. Kovács
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Hungarian Research Network, 1083 Budapest, Hungary; (K.H.); (B.J.); (D.K.); (S.F.)
| |
Collapse
|
3
|
Baram TZ, Birnie MT. Enduring memory consequences of early-life stress / adversity: Structural, synaptic, molecular and epigenetic mechanisms. Neurobiol Stress 2024; 33:100669. [PMID: 39309367 PMCID: PMC11415888 DOI: 10.1016/j.ynstr.2024.100669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/13/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
Adverse early life experiences are strongly associated with reduced cognitive function throughout life. The link is strong in many human studies, but these do not enable assigning causality, and the limited access to the live human brain can impede establishing the mechanisms by which early-life adversity (ELA) may induce cognitive problems. In experimental models, artificially imposed chronic ELA/stress results in deficits in hippocampus dependent memory as well as increased vulnerability to the deleterious effects of adult stress on memory. This causal relation of ELA and life-long memory impairments provides a framework to probe the mechanisms by which ELA may lead to human cognitive problems. Here we focus on the consequences of a one-week exposure to adversity during early postnatal life in the rodent, the spectrum of the ensuing memory deficits, and the mechanisms responsible. We highlight molecular, cellular and circuit mechanisms using convergent trans-disciplinary approaches aiming to enable translation of the discoveries in experimental models to the clinic.
Collapse
Affiliation(s)
- Tallie Z. Baram
- Department of Pediatrics, University of California-Irvine, Irvine, CA, USA
- Department of Anatomy/Neurobiology, University of California-Irvine, Irvine, CA, USA
- Department of Neurology, University of California-Irvine, Irvine, CA, USA
| | - Matthew T. Birnie
- Department of Pediatrics, University of California-Irvine, Irvine, CA, USA
| |
Collapse
|
4
|
Kojima L, Seiriki K, Rokujo H, Nakazawa T, Kasai A, Hashimoto H. Optimization of AAV vectors for transactivator-regulated enhanced gene expression within targeted neuronal populations. iScience 2024; 27:109878. [PMID: 38799556 PMCID: PMC11126825 DOI: 10.1016/j.isci.2024.109878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/03/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Adeno-associated virus (AAV) vectors are potential tools for cell-type-selective gene delivery to the central nervous system. Although cell-type-specific enhancers and promoters have been identified for AAV systems, there is limited information regarding the effects of AAV genomic components on the selectivity and efficiency of gene expression. Here, we offer an alternative strategy to provide specific and efficient gene delivery to a targeted neuronal population by optimizing recombinant AAV genomic components, named TAREGET (TransActivator-Regulated Enhanced Gene Expression within Targeted neuronal populations). We established this strategy in oxytocinergic neurons and showed that the TAREGET enabled sufficient gene expression to label long-projecting axons in wild-type mice. Its application to other cell types, including serotonergic and dopaminergic neurons, was also demonstrated. These results demonstrate that optimization of AAV expression cassettes can improve the specificity and efficiency of cell-type-specific gene expression and that TAREGET can renew previously established cell-type-specific promoters with improved performance.
Collapse
Affiliation(s)
- Leo Kojima
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kaoru Seiriki
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroki Rokujo
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takanobu Nakazawa
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | - Atsushi Kasai
- Systems Neuropharmacology, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
- Molecular Research Center for Children’s Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka 565-0871, Japan
- Institute for Datability Science, Osaka University, Suita, Osaka 565-0871, Japan
- Department of Molecular Pharmaceutical Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
5
|
Tasso M, Kageyama K, Iwasaki Y, Watanuki Y, Niioka K, Takayasu S, Daimon M. Growth differentiation factor-15 stimulates the synthesis of corticotropin-releasing factor in hypothalamic 4B cells. Peptides 2023; 170:171112. [PMID: 37918484 DOI: 10.1016/j.peptides.2023.171112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/11/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023]
Abstract
Growth differentiation factor-15 (GDF15) is a stress-activated cytokine that regulates cell growth and inflammatory and stress responses. We previously reported the role and regulation of GDF15 in pituitary corticotrophs. Dexamethasone increases Gdf15 gene expression levels and production. GDF15 suppresses adrenocorticotropic hormone synthesis in pituitary corticotrophs and subsequently mediates the negative feedback effect of glucocorticoids. Here, we analyzed corticotropin-releasing factor (Crf) promoter activity in hypothalamic 4B cells transfected with promoter-driven luciferase reporter constructs. The effects of time and GDF15 concentration on Crf mRNA levels were analyzed using quantitative real-time polymerase chain reaction. Glial cell-derived neurotrophic factor family receptor α-like (GFRAL) protein is expressed in 4B cells. GDF15 increased Crf promoter activity and Crf mRNA levels in 4B cells. The protein kinase A and C pathways also contributed to the GDF15-induced increase in Crf gene expression. GDF15 stimulates GFRAL, subsequently increasing the phosphorylation of AKT, an extracellular signal-related kinase, and the cAMP response element-binding protein. Therefore, GDF15-dependent pathways may be involved in regulating Crf expression under stressful conditions in hypothalamic cells.
Collapse
Affiliation(s)
- Mizuki Tasso
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Kazunori Kageyama
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan.
| | - Yasumasa Iwasaki
- Suzuka University of Medical Science, 1001-1 Kishioka-cho, Suzuka, Mie 510-0293, Japan
| | - Yutaka Watanuki
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Kanako Niioka
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Shinobu Takayasu
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Makoto Daimon
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| |
Collapse
|
6
|
Kooiker CL, Chen Y, Birnie MT, Baram TZ. Genetic Tagging Uncovers a Robust, Selective Activation of the Thalamic Paraventricular Nucleus by Adverse Experiences Early in Life. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:746-755. [PMID: 37881549 PMCID: PMC10593902 DOI: 10.1016/j.bpsgos.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/26/2023] Open
Abstract
Background Early-life adversity (ELA) is associated with increased risk for mood disorders, including depression and substance use disorders. These disorders are characterized by impaired reward-related behaviors, suggesting compromised operations of reward-related brain circuits. However, the brain regions engaged by ELA that mediate these enduring consequences of ELA remain largely unknown. In an animal model of ELA, we identified aberrant reward-seeking behaviors, a discovery that provides a framework for assessing the underlying circuits. Methods Employing TRAP2 (targeted recombination in active populations) male and female mice, in which neurons activated within a defined time frame are permanently tagged, we compared ELA- and control-reared mice, assessing the quantity and distribution of ELA-related neuronal activation. After validating the TRAP2 results using native c-Fos labeling, we defined the molecular identity of this population of activated neurons. Results We uniquely demonstrated that the TRAP2 system is feasible and efficacious in neonatal mice. Surprisingly, the paraventricular nucleus of the thalamus was robustly and almost exclusively activated by ELA and was the only region distinguishing ELA from typical rearing. Remarkably, a large proportion of ELA-activated paraventricular nucleus of the thalamus neurons expressed CRF1, the receptor for the stress-related peptide, corticotropin-releasing hormone, but these neurons did not express corticotropin-releasing hormone itself. Conclusions The paraventricular nucleus of the thalamus, an important component of reward circuits that is known to encode remote, emotionally salient experiences to influence future motivated behaviors, encodes adverse experiences as remote as those occurring during the early postnatal period and is thus poised to contribute to the enduring deficits in reward-related behaviors consequent to ELA.
Collapse
Affiliation(s)
- Cassandra L. Kooiker
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California
| | - Yuncai Chen
- Department of Pediatrics, University of California Irvine, Irvine, California
| | - Matthew T. Birnie
- Department of Pediatrics, University of California Irvine, Irvine, California
| | - Tallie Z. Baram
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California
- Department of Pediatrics, University of California Irvine, Irvine, California
- Department of Neurology, University of California Irvine, Irvine, California
| |
Collapse
|
7
|
Zhao C, Ries C, Du Y, Zhang J, Sakimura K, Itoi K, Deussing JM. Differential CRH expression level determines efficiency of Cre- and Flp-dependent recombination. Front Neurosci 2023; 17:1163462. [PMID: 37599997 PMCID: PMC10434532 DOI: 10.3389/fnins.2023.1163462] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Corticotropin-releasing hormone expressing (CRH+) neurons are distributed throughout the brain and play a crucial role in shaping the stress responses. Mouse models expressing site-specific recombinases (SSRs) or reporter genes are important tools providing genetic access to defined cell types and have been widely used to address CRH+ neurons and connected brain circuits. Here, we investigated a recently generated CRH-FlpO driver line expanding the CRH system-related tool box. We directly compared it to a previously established and widely used CRH-Cre line with respect to the FlpO expression pattern and recombination efficiency. In the brain, FlpO mRNA distribution fully recapitulates the expression pattern of endogenous Crh. Combining both Crh locus driven SSRs driver lines with appropriate reporters revealed an overall coherence of respective spatial patterns of reporter gene activation validating CRH-FlpO mice as a valuable tool complementing existing CRH-Cre and reporter lines. However, a substantially lower number of reporter-expressing neurons was discerned in CRH-FlpO mice. Using an additional CRH reporter mouse line (CRH-Venus) and a mouse line allowing for conversion of Cre into FlpO activity (CAG-LSL-FlpO) in combination with intersectional and subtractive mouse genetic approaches, we were able to demonstrate that the reduced number of tdTomato reporter expressing CRH+ neurons can be ascribed to the lower recombination efficiency of FlpO compared to Cre recombinase. This discrepancy particularly manifests under conditions of low CRH expression and can be overcome by utilizing homozygous CRH-FlpO mice. These findings have direct experimental implications which have to be carefully considered when targeting CRH+ neurons using CRH-FlpO mice. However, the lower FlpO-dependent recombination efficiency also entails advantages as it provides a broader dynamic range of expression allowing for the visualization of cells showing stress-induced CRH expression which is not detectable in highly sensitive CRH-Cre mice as Cre-mediated recombination has largely been completed in all cells generally possessing the capacity to express CRH. These findings underscore the importance of a comprehensive evaluation of novel SSR driver lines prior to their application.
Collapse
Affiliation(s)
- Chen Zhao
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Clemens Ries
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Ying Du
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jingwei Zhang
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Keiichi Itoi
- Super-Network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Jan M. Deussing
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
8
|
Horváth K, Juhász B, Kuti D, Ferenczi S, Kovács KJ. Recruitment of Corticotropin-Releasing Hormone (CRH) Neurons in Categorically Distinct Stress Reactions in the Mouse Brain. Int J Mol Sci 2023; 24:11736. [PMID: 37511494 PMCID: PMC10380650 DOI: 10.3390/ijms241411736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Corticotropin-releasing hormone (CRH) neurons in the paraventricular hypothalamic nucleus (PVH) are in the position to integrate stress-related information and initiate adaptive neuroendocrine-, autonomic-, metabolic- and behavioral responses. In addition to hypophyseotropic cells, CRH is widely expressed in the CNS, however its involvement in the organization of the stress response is not fully understood. In these experiments, we took advantage of recently available Crh-IRES-Cre;Ai9 mouse line to study the recruitment of hypothalamic and extrahypothalamic CRH neurons in categorically distinct, acute stress reactions. A total of 95 brain regions in the adult male mouse brain have been identified as containing putative CRH neurons with significant expression of tdTomato marker gene. With comparison of CRH mRNA and tdTomato distribution, we found match and mismatch areas. Reporter mice were then exposed to restraint, ether, high salt, lipopolysaccharide and predator odor stress and neuronal activation was revealed by FOS immunocytochemistry. In addition to a core stress system, stressor-specific areas have been revealed to display activity marker FOS. Finally, activation of CRH neurons was detected by colocalization of FOS in tdTomato expressing cells. All stressors resulted in profound activation of CRH neurons in the hypothalamic paraventricular nucleus; however, a differential activation of pattern was observed in CRH neurons in extrahypothalamic regions. This comprehensive description of stress-related CRH neurons in the mouse brain provides a starting point for a systematic functional analysis of the brain stress system and its relation to stress-induced psychopathologies.
Collapse
Affiliation(s)
- Krisztina Horváth
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine Eötvös Loránd Research Network, 1083 Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Balázs Juhász
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine Eötvös Loránd Research Network, 1083 Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Dániel Kuti
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine Eötvös Loránd Research Network, 1083 Budapest, Hungary
| | - Szilamér Ferenczi
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine Eötvös Loránd Research Network, 1083 Budapest, Hungary
| | - Krisztina J Kovács
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine Eötvös Loránd Research Network, 1083 Budapest, Hungary
| |
Collapse
|
9
|
Chudoba R, Dabrowska J. Distinct populations of corticotropin-releasing factor (CRF) neurons mediate divergent yet complementary defensive behaviors in response to a threat. Neuropharmacology 2023; 228:109461. [PMID: 36775096 PMCID: PMC10055972 DOI: 10.1016/j.neuropharm.2023.109461] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
Defensive behaviors in response to a threat are shared across the animal kingdom. Active (fleeing, sheltering) or passive (freezing, avoiding) defensive responses are adaptive and facilitate survival. Selecting appropriate defensive strategy depends on intensity, proximity, temporal threat threshold, and past experiences. Hypothalamic corticotropin-releasing factor (CRF) is a major driver of an acute stress response, whereas extrahypothalamic CRF mediates stress-related affective behaviors. In this review, we shift the focus from a monolithic role of CRF as an anxiogenic peptide to comprehensively dissecting contributions of distinct populations of CRF neurons in mediating defensive behaviors. Direct interrogation of CRF neurons of the central amygdala (CeA) or the bed nucleus of the stria terminalis (BNST) show they drive unconditioned defensive responses, such as vigilance and avoidance of open spaces. Although both populations also contribute to learned fear responses in familiar, threatening contexts, CeA-CRF neurons are particularly attuned to the ever-changing environment. Depending on threat intensities, they facilitate discrimination of salient stimuli predicting manageable threats, and prevent their generalization. Finally, hypothalamic CRF neurons mediate initial threat assessment and active defense such as escape to shelter. Overall, these three major populations of CRF neurons demonstrate divergent, yet complementary contributions to the versatile defense system: heightened vigilance, discriminating salient threats, and active escape, representing three legs of the defense tripod. Despite the 'CRF exhaustion' in the field of affective neuroscience, understanding contributions of specific CRF neurons during adaptive defensive behaviors is needed in order to understand the implications of their dysregulation in fear- and anxiety-related psychiatric disorders. This article is part of the Special Issue on "Fear, Anxiety and PTSD".
Collapse
Affiliation(s)
- Rachel Chudoba
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States; Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States; School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Joanna Dabrowska
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States; Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States; School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States.
| |
Collapse
|
10
|
Power EM, Ganeshan D, Iremonger KJ. Estradiol regulates voltage-gated potassium currents in corticotropin-releasing hormone neurons. J Exp Biol 2023; 226:287072. [PMID: 36805713 PMCID: PMC10038157 DOI: 10.1242/jeb.245222] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/08/2023] [Indexed: 02/22/2023]
Abstract
Corticotropin-releasing hormone (CRH) neurons are the primary neural population controlling the hypothalamic-pituitary-adrenal (HPA) axis and the secretion of adrenal stress hormones. Previous work has demonstrated that stress hormone secretion can be regulated by circulating levels of estradiol. However, the effect of estradiol on CRH neuron excitability is less clear. Here, we show that chronic estradiol replacement following ovariectomy increases two types of potassium channel currents in CRH neurons: fast inactivating voltage-gated A-type K+ channel currents (IA) and non-inactivating M-type K+ channel currents (IM). Despite the increase in K+ currents following estradiol replacement, there was no overall change in CRH neuron spiking excitability assessed with either frequency-current curves or current ramps. Together, these data reveal a complex picture whereby ovariectomy and estradiol replacement differentially modulate distinct aspects of CRH neuron and HPA axis function.
Collapse
Affiliation(s)
- Emmet M Power
- Centre for Neuroendocrinology, Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin9016, New Zealand
| | - Dharshini Ganeshan
- Centre for Neuroendocrinology, Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin9016, New Zealand
| | - Karl J Iremonger
- Centre for Neuroendocrinology, Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin9016, New Zealand
| |
Collapse
|
11
|
Birnie MT, Short AK, de Carvalho GB, Taniguchi L, Gunn BG, Pham AL, Itoga CA, Xu X, Chen LY, Mahler SV, Chen Y, Baram TZ. Stress-induced plasticity of a CRH/GABA projection disrupts reward behaviors in mice. Nat Commun 2023; 14:1088. [PMID: 36841826 PMCID: PMC9968307 DOI: 10.1038/s41467-023-36780-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 02/14/2023] [Indexed: 02/26/2023] Open
Abstract
Disrupted operations of the reward circuit underlie major emotional disorders, including depression, which commonly arise following early life stress / adversity (ELA). However, how ELA enduringly impacts reward circuit functions remains unclear. We characterize a stress-sensitive projection connecting basolateral amygdala (BLA) and nucleus accumbens (NAc) that co-expresses GABA and the stress-reactive neuropeptide corticotropin-releasing hormone (CRH). We identify a crucial role for this projection in executing disrupted reward behaviors provoked by ELA: chemogenetic and optogenetic stimulation of the projection in control male mice suppresses several reward behaviors, recapitulating deficits resulting from ELA and demonstrating the pathway's contributions to normal reward behaviors. In adult ELA mice, inhibiting-but not stimulating-the projection, restores typical reward behaviors yet has little effect in controls, indicating ELA-induced maladaptive plasticity of this reward-circuit component. Thus, we discover a stress-sensitive, reward inhibiting BLA → NAc projection with unique molecular features, which may provide intervention targets for disabling mental illnesses.
Collapse
Affiliation(s)
- Matthew T Birnie
- Department of Pediatrics, University of California-Irvine, Irvine, CA, USA
- Department of Anatomy/Neurobiology, University of California-Irvine, Irvine, CA, USA
| | - Annabel K Short
- Department of Pediatrics, University of California-Irvine, Irvine, CA, USA
- Department of Anatomy/Neurobiology, University of California-Irvine, Irvine, CA, USA
| | - Gregory B de Carvalho
- Department of Anatomy/Neurobiology, University of California-Irvine, Irvine, CA, USA
| | - Lara Taniguchi
- Department of Pediatrics, University of California-Irvine, Irvine, CA, USA
- Department of Anatomy/Neurobiology, University of California-Irvine, Irvine, CA, USA
| | - Benjamin G Gunn
- Department of Anatomy/Neurobiology, University of California-Irvine, Irvine, CA, USA
| | - Aidan L Pham
- Department of Pediatrics, University of California-Irvine, Irvine, CA, USA
- Department of Anatomy/Neurobiology, University of California-Irvine, Irvine, CA, USA
| | - Christy A Itoga
- Department of Anatomy/Neurobiology, University of California-Irvine, Irvine, CA, USA
| | - Xiangmin Xu
- Department of Anatomy/Neurobiology, University of California-Irvine, Irvine, CA, USA
| | - Lulu Y Chen
- Department of Anatomy/Neurobiology, University of California-Irvine, Irvine, CA, USA
| | - Stephen V Mahler
- Department of Neurobiology & Behavior, University of California-Irvine, Irvine, CA, USA
| | - Yuncai Chen
- Department of Pediatrics, University of California-Irvine, Irvine, CA, USA.
- Department of Anatomy/Neurobiology, University of California-Irvine, Irvine, CA, USA.
| | - Tallie Z Baram
- Department of Pediatrics, University of California-Irvine, Irvine, CA, USA.
- Department of Anatomy/Neurobiology, University of California-Irvine, Irvine, CA, USA.
- Department of Neurology, University of California-Irvine, Irvine, CA, USA.
| |
Collapse
|
12
|
Buban KN, Saperstein SE, Oyola MG, Rothwell SW, John Wu T. Alterations in the activation of corticotropin-releasing factor neurons in the paraventricular nucleus following a single or multiple days of sleep restriction. Neurosci Lett 2023; 792:136940. [PMID: 36336086 DOI: 10.1016/j.neulet.2022.136940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
Sleep disturbances are common among disorders associated with hypothalamic pituitary-adrenal (HPA) axis dysfunction, such as depression and anxiety. This comorbidity may partly be the result of the intersection between the role of the HPA axis in mediating the stress response and its involvement in sleep-wake cyclicity. Our previous work has shown that following 20 h of sleep restriction, mice show a blunting of the HPA axis in response to an acute stressor. Furthermore, these responses differ in a sex-dependent manner. This study sought to examine the effect of sleep restriction on corticotropin-releasing factor (CRF)-containing neurons in the paraventricular nucleus (PVN) of the hypothalamus. Male and female Crf-IRES-Cre: Ai14 (Tdtomato) reporter mice were sleep restricted for 20 h daily for either a single or three consecutive days using the modified multiple platform method. These mice allowed the visualization of CRF+ neurons throughout the brain. Animals were subjected to acute restraint stress, and their brains were collected to assess PVN neuronal activation via c-Fos immunohistochemistry. Analyses of cell counts revealed an ablation of the restraint-induced increase in both CRF/c-Fos colocalization and overall c-Fos expression in female mice following both a single day and three days of sleep restriction. Males showed an overall decrease in restraint-induced c-Fos levels following a single day of sleep restriction. However, male mice examined after three days of sleep restriction showed a recovery in PVN-CRF and overall PVN neuronal activation. These data suggest the sex dependent dysregulation in CRF function following sleep restriction.
Collapse
Affiliation(s)
- Katelyn N Buban
- Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Samantha E Saperstein
- Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Mario G Oyola
- Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Stephen W Rothwell
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - T John Wu
- Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
13
|
Chang S, Fermani F, Lao CL, Huang L, Jakovcevski M, Di Giaimo R, Gagliardi M, Menegaz D, Hennrich AA, Ziller M, Eder M, Klein R, Cai N, Deussing JM. Tripartite extended amygdala-basal ganglia CRH circuit drives locomotor activation and avoidance behavior. SCIENCE ADVANCES 2022; 8:eabo1023. [PMID: 36383658 PMCID: PMC9668302 DOI: 10.1126/sciadv.abo1023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
An adaptive stress response involves various mediators and circuits orchestrating a complex interplay of physiological, emotional, and behavioral adjustments. We identified a population of corticotropin-releasing hormone (CRH) neurons in the lateral part of the interstitial nucleus of the anterior commissure (IPACL), a subdivision of the extended amygdala, which exclusively innervate the substantia nigra (SN). Specific stimulation of this circuit elicits hyperactivation of the hypothalamic-pituitary-adrenal axis, locomotor activation, and avoidance behavior contingent on CRH receptor type 1 (CRHR1) located at axon terminals in the SN, which originate from external globus pallidus (GPe) neurons. The neuronal activity prompting the observed behavior is shaped by IPACLCRH and GPeCRHR1 neurons coalescing in the SN. These results delineate a previously unidentified tripartite CRH circuit functionally connecting extended amygdala and basal ganglia nuclei to drive locomotor activation and avoidance behavior.
Collapse
Affiliation(s)
- Simon Chang
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Federica Fermani
- Molecules-Signaling-Development, Max Planck Institute for Biological Intelligence (in foundation), Martinsried, Germany
| | - Chu-Lan Lao
- Collaborative Research Centre/Sonderforschungsbereich (SFB) 870, Viral Vector Facility, Munich, Germany
| | - Lianyun Huang
- Translational Genetics, Helmholtz Pioneer Campus, Helmholtz Zentrum München, Munich, Germany
| | - Mira Jakovcevski
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Rossella Di Giaimo
- Developmental Neurobiology, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Biology, University of Naples Federico II, Naples Italy
| | - Miriam Gagliardi
- Genomics of Complex Diseases, Max Planck Institute of Psychiatry, Munich, Germany
| | - Danusa Menegaz
- Scientific Core Unit Electrophysiology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Alexandru Adrian Hennrich
- Max von Pettenkofer-Institute Virology, Medical Faculty, and Gene Center, Ludwig Maximilians University Munich, Munich, Germany
| | - Michael Ziller
- Scientific Core Unit Electrophysiology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Matthias Eder
- Scientific Core Unit Electrophysiology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Rüdiger Klein
- Molecules-Signaling-Development, Max Planck Institute for Biological Intelligence (in foundation), Martinsried, Germany
| | - Na Cai
- Translational Genetics, Helmholtz Pioneer Campus, Helmholtz Zentrum München, Munich, Germany
| | - Jan M. Deussing
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
14
|
Jiang Z, Chen C, Weiss GL, Fu X, Stelly CE, Sweeten BLW, Tirrell PS, Pursell I, Stevens CR, Fisher MO, Begley JC, Harrison LM, Tasker JG. Stress-induced glucocorticoid desensitizes adrenoreceptors to gate the neuroendocrine response to somatic stress in male mice. Cell Rep 2022; 41:111509. [PMID: 36261014 PMCID: PMC9635929 DOI: 10.1016/j.celrep.2022.111509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/05/2022] [Accepted: 09/23/2022] [Indexed: 11/29/2022] Open
Abstract
Noradrenergic afferents to hypothalamic corticotropin releasing hormone (CRH) neurons provide a major excitatory drive to the hypothalamic-pituitary-adrenal (HPA) axis via α1 adrenoreceptor activation. Noradrenergic afferents are recruited preferentially by somatic, rather than psychological, stress stimuli. Stress-induced glucocorticoids feed back onto the hypothalamus to negatively regulate the HPA axis, providing a critical autoregulatory constraint that prevents glucocorticoid overexposure and neuropathology. Whether negative feedback mechanisms target stress modality-specific HPA activation is not known. Here, we describe a desensitization of the α1 adrenoreceptor activation of the HPA axis following acute stress in male mice that is mediated by rapid glucocorticoid regulation of adrenoreceptor trafficking in CRH neurons. Glucocorticoid-induced α1 receptor trafficking desensitizes the HPA axis to a somatic but not a psychological stressor. Our findings demonstrate a rapid glucocorticoid suppression of adrenergic signaling in CRH neurons that is specific to somatic stress activation, and they reveal a rapid, stress modality-selective glucocorticoid negative feedback mechanism.
Collapse
Affiliation(s)
- Zhiying Jiang
- Cell and Molecular Biology Department, Tulane University, New Orleans, LA 70118, USA
| | - Chun Chen
- Cell and Molecular Biology Department, Tulane University, New Orleans, LA 70118, USA
| | - Grant L Weiss
- Cell and Molecular Biology Department, Tulane University, New Orleans, LA 70118, USA
| | - Xin Fu
- Neuroscience Program, Tulane University, New Orleans, LA 70118, USA; Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| | - Claire E Stelly
- Cell and Molecular Biology Department, Tulane University, New Orleans, LA 70118, USA; Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| | - Brook L W Sweeten
- Cell and Molecular Biology Department, Tulane University, New Orleans, LA 70118, USA; Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| | - Parker S Tirrell
- Neuroscience Program, Tulane University, New Orleans, LA 70118, USA; Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| | - India Pursell
- Neuroscience Program, Tulane University, New Orleans, LA 70118, USA; Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| | - Carly R Stevens
- Cell and Molecular Biology Department, Tulane University, New Orleans, LA 70118, USA
| | - Marc O Fisher
- Neuroscience Program, Tulane University, New Orleans, LA 70118, USA; Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| | - John C Begley
- Neuroscience Program, Tulane University, New Orleans, LA 70118, USA
| | - Laura M Harrison
- Cell and Molecular Biology Department, Tulane University, New Orleans, LA 70118, USA; Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| | - Jeffrey G Tasker
- Cell and Molecular Biology Department, Tulane University, New Orleans, LA 70118, USA; Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA.
| |
Collapse
|
15
|
Ichiyama A, Mestern S, Benigno GB, Scott KE, Allman BL, Muller L, Inoue W. State-dependent activity dynamics of hypothalamic stress effector neurons. eLife 2022; 11:76832. [PMID: 35770968 PMCID: PMC9278954 DOI: 10.7554/elife.76832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/17/2022] [Indexed: 11/30/2022] Open
Abstract
The stress response necessitates an immediate boost in vital physiological functions from their homeostatic operation to an elevated emergency response. However, the neural mechanisms underlying this state-dependent change remain largely unknown. Using a combination of in vivo and ex vivo electrophysiology with computational modeling, we report that corticotropin releasing hormone (CRH) neurons in the paraventricular nucleus of the hypothalamus (PVN), the effector neurons of hormonal stress response, rapidly transition between distinct activity states through recurrent inhibition. Specifically, in vivo optrode recording shows that under non-stress conditions, CRHPVN neurons often fire with rhythmic brief bursts (RB), which, somewhat counterintuitively, constrains firing rate due to long (~2 s) interburst intervals. Stressful stimuli rapidly switch RB to continuous single spiking (SS), permitting a large increase in firing rate. A spiking network model shows that recurrent inhibition can control this activity-state switch, and more broadly the gain of spiking responses to excitatory inputs. In biological CRHPVN neurons ex vivo, the injection of whole-cell currents derived from our computational model recreates the in vivo-like switch between RB and SS, providing direct evidence that physiologically relevant network inputs enable state-dependent computation in single neurons. Together, we present a novel mechanism for state-dependent activity dynamics in CRHPVN neurons.
Collapse
|
16
|
Kreifeldt M, Herman MA, Sidhu H, Okhuarobo A, Macedo GC, Shahryari R, Gandhi PJ, Roberto M, Contet C. Central amygdala corticotropin-releasing factor neurons promote hyponeophagia but do not control alcohol drinking in mice. Mol Psychiatry 2022; 27:2502-2513. [PMID: 35264727 PMCID: PMC9149056 DOI: 10.1038/s41380-022-01496-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 02/11/2022] [Accepted: 02/17/2022] [Indexed: 12/20/2022]
Abstract
Corticotropin-releasing factor (CRF) signaling in the central nucleus of the amygdala (CeA) plays a critical role in rodent models of excessive alcohol drinking. However, the source of CRF acting in the CeA during alcohol withdrawal remains to be identified. In the present study, we hypothesized that CeA CRF interneurons may represent a behaviorally relevant source of CRF to the CeA increasing motivation for alcohol via negative reinforcement. We first observed that Crh mRNA expression in the anterior part of the mouse CeA correlates positively with alcohol intake in C57BL/6J males with a history of chronic binge drinking followed by abstinence and increases upon exposure to chronic intermittent ethanol (CIE) vapor inhalation. We then found that chemogenetic activation of CeA CRF neurons in Crh-IRES-Cre mouse brain slices increases gamma-aminobutyric acid (GABA) release in the medial CeA, in part via CRF1 receptor activation. While chemogenetic stimulation exacerbated novelty-induced feeding suppression (NSF) in alcohol-naïve mice, thereby mimicking the effect of withdrawal from CIE, it had no effect on voluntary alcohol consumption, following either acute or chronic manipulation. Furthermore, chemogenetic inhibition of CeA CRF neurons did not affect alcohol consumption or NSF in chronic alcohol drinkers exposed to air or CIE. Altogether, these findings indicate that CeA CRF neurons produce local release of GABA and CRF and promote hyponeophagia in naïve mice, but do not drive alcohol intake escalation or negative affect in CIE-withdrawn mice. The latter result contrasts with previous findings in rats and demonstrates species specificity of CRF circuit engagement in alcohol dependence.
Collapse
Affiliation(s)
- Max Kreifeldt
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Melissa A Herman
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
- Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA
| | - Harpreet Sidhu
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Agbonlahor Okhuarobo
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
- University of Benin, Faculty of Pharmacy, Department of Pharmacology & Toxicology, Benin City, Nigeria
| | - Giovana C Macedo
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Roxana Shahryari
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Pauravi J Gandhi
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Marisa Roberto
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Candice Contet
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA.
| |
Collapse
|
17
|
Jamieson BB, Kim JS, Iremonger KJ. Cannabinoid and vanilloid pathways mediate opposing forms of synaptic plasticity in corticotropin-releasing hormone neurons. J Neuroendocrinol 2022; 34:e13084. [PMID: 35034400 DOI: 10.1111/jne.13084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 01/18/2023]
Abstract
Activity-dependent release of retrograde signaling molecules form micro-feedback loops to regulate synaptic function in neural circuits. Single neurons can release multiple forms of these signaling molecules, including endocannabinoids and endovanilloids, which act via cannabinoid (CB) receptors and transient receptor potential vanilloid 1 (TRPV1) receptors. In hypothalamic corticotrophin-releasing hormone (CRH) neurons, endocannabinoids acting via CB1 receptors have been shown to play an important role in regulating excitability and hence stress hormone secretion. However, the importance of endovanilloid signaling in CRH neurons is currently unclear. Here, we show that, in response to postsynaptic depolarization, CRH neurons release endocannabinoid/endovanilloid molecules that can activate CB1 and TRPV1 receptors. Activation of CB1 receptors suppresses glutamate neurotransmission whereas activation of TRPV1 enhances spontaneous glutamate transmission. However, the excitatory effects of TRPV1 are normally masked by the inhibitory effects of CB1. When the degradation of the endocannabinoid 2-arachidonoylglycerol (2-AG) was inhibited, this revealed tonic activation of CB1 receptors, suggesting tonic endocannabinoid release. However, we found no evidence for tonic activation of TRPV1 receptors under similar conditions. These findings show that activation of CRH neurons can drive the release of signaling molecules that activate parallel endocannabinoid and endovanilloid receptor pathways to mediate opposing forms of synaptic plasticity.
Collapse
Affiliation(s)
- Bradley B Jamieson
- Centre for Neuroendocrinology, Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Joon S Kim
- Centre for Neuroendocrinology, Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Karl J Iremonger
- Centre for Neuroendocrinology, Department of Physiology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
18
|
Bolton JL, Short AK, Othy S, Kooiker CL, Shao M, Gunn BG, Beck J, Bai X, Law SM, Savage JC, Lambert JJ, Belelli D, Tremblay MÈ, Cahalan MD, Baram TZ. Early stress-induced impaired microglial pruning of excitatory synapses on immature CRH-expressing neurons provokes aberrant adult stress responses. Cell Rep 2022; 38:110600. [PMID: 35354026 PMCID: PMC9014810 DOI: 10.1016/j.celrep.2022.110600] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/10/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022] Open
Abstract
Several mental illnesses, characterized by aberrant stress reactivity, often arise after early-life adversity (ELA). However, it is unclear how ELA affects stress-related brain circuit maturation, provoking these enduring vulnerabilities. We find that ELA increases functional excitatory synapses onto stress-sensitive hypothalamic corticotropin-releasing hormone (CRH)-expressing neurons, resulting from disrupted developmental synapse pruning by adjacent microglia. Microglial process dynamics and synaptic element engulfment were attenuated in ELA mice, associated with deficient signaling of the microglial phagocytic receptor MerTK. Accordingly, selective chronic chemogenetic activation of ELA microglia increased microglial process dynamics and reduced excitatory synapse density to control levels. Notably, selective early-life activation of ELA microglia normalized adult acute and chronic stress responses, including stress-induced hormone secretion and behavioral threat responses, as well as chronic adrenal hypertrophy of ELA mice. Thus, microglial actions during development are powerful contributors to mechanisms by which ELA sculpts the connectivity of stress-regulating neurons, promoting vulnerability to stress and stress-related mental illnesses.
Collapse
Affiliation(s)
- Jessica L Bolton
- Department of Pediatrics, University of California, Irvine, Irvine, CA, USA; Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA, USA.
| | - Annabel K Short
- Department of Pediatrics, University of California, Irvine, Irvine, CA, USA; Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA, USA
| | - Shivashankar Othy
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Cassandra L Kooiker
- Department of Pediatrics, University of California, Irvine, Irvine, CA, USA; Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA, USA
| | - Manlin Shao
- Department of Pediatrics, University of California, Irvine, Irvine, CA, USA; Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA, USA
| | - Benjamin G Gunn
- Department of Pediatrics, University of California, Irvine, Irvine, CA, USA; Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA, USA; Division of Neuroscience, Medical Research Institute, Dundee University, Ninewells Hospital and Medical School, Dundee, UK
| | - Jaclyn Beck
- Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA, USA
| | - Xinglong Bai
- Department of Pediatrics, University of California, Irvine, Irvine, CA, USA; Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA, USA
| | - Stephanie M Law
- Department of Pediatrics, University of California, Irvine, Irvine, CA, USA; Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA, USA
| | - Julie C Savage
- Département de Médecine Moléculaire, Université Laval, Québec City, QC, Canada; Axe Neurosciences, Centre de recherche du CHU de Québec, Québec City, QC, Canada
| | - Jeremy J Lambert
- Division of Neuroscience, Medical Research Institute, Dundee University, Ninewells Hospital and Medical School, Dundee, UK
| | - Delia Belelli
- Division of Neuroscience, Medical Research Institute, Dundee University, Ninewells Hospital and Medical School, Dundee, UK
| | - Marie-Ève Tremblay
- Département de Médecine Moléculaire, Université Laval, Québec City, QC, Canada; Axe Neurosciences, Centre de recherche du CHU de Québec, Québec City, QC, Canada
| | - Michael D Cahalan
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Tallie Z Baram
- Department of Pediatrics, University of California, Irvine, Irvine, CA, USA; Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA, USA; Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
19
|
Short AK, Thai CW, Chen Y, Kamei N, Pham AL, Birnie MT, Bolton JL, Mortazavi A, Baram TZ. Single-Cell Transcriptional Changes in Hypothalamic Corticotropin-Releasing Factor-Expressing Neurons After Early-Life Adversity Inform Enduring Alterations in Vulnerabilities to Stress. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2021; 3:99-109. [PMID: 36712559 PMCID: PMC9874075 DOI: 10.1016/j.bpsgos.2021.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/11/2021] [Accepted: 12/03/2021] [Indexed: 02/01/2023] Open
Abstract
Background Mental health and vulnerabilities to neuropsychiatric disorders involve the interplay of genes and environment, particularly during sensitive developmental periods. Early-life adversity (ELA) and stress promote vulnerabilities to stress-related affective disorders, yet it is unknown how transient ELA dictates lifelong neuroendocrine and behavioral reactions to stress. The population of hypothalamic corticotropin-releasing factor (CRF)-expressing neurons that regulate stress responses is a promising candidate to mediate the long-lasting influences of ELA on stress-related behavioral and hormonal responses via enduring transcriptional and epigenetic mechanisms. Methods Capitalizing on a well-characterized model of ELA, we examined ELA-induced changes in gene expression profiles of CRF-expressing neurons in the hypothalamic paraventricular nucleus of developing male mice. We used single-cell RNA sequencing on isolated CRF-expressing neurons. We determined the enduring functional consequences of transcriptional changes on stress reactivity in adult ELA mice, including hormonal responses to acute stress, adrenal weights as a measure of chronic stress, and behaviors in the looming shadow threat task. Results Single-cell transcriptomics identified distinct and novel CRF-expressing neuronal populations, characterized by both their gene expression repertoire and their neurotransmitter profiles. ELA-provoked expression changes were selective to specific subpopulations and affected genes involved in neuronal differentiation, synapse formation, energy metabolism, and cellular responses to stress and injury. Importantly, these expression changes were impactful, apparent from adrenal hypertrophy and augmented behavioral responses to stress in adulthood. Conclusions We uncover a novel repertoire of stress-regulating CRF cell types differentially affected by ELA and resulting in augmented stress vulnerability, with relevance to the origins of stress-related affective disorders.
Collapse
Affiliation(s)
- Annabel K. Short
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California,Department of Pediatrics, University of California Irvine, Irvine, California
| | - Christina W. Thai
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California
| | - Yuncai Chen
- Department of Pediatrics, University of California Irvine, Irvine, California
| | - Noriko Kamei
- Department of Pediatrics, University of California Irvine, Irvine, California
| | - Aidan L. Pham
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California,Department of Pediatrics, University of California Irvine, Irvine, California
| | - Matthew T. Birnie
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California,Department of Pediatrics, University of California Irvine, Irvine, California
| | - Jessica L. Bolton
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California,Department of Pediatrics, University of California Irvine, Irvine, California
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California
| | - Tallie Z. Baram
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California,Department of Pediatrics, University of California Irvine, Irvine, California,Department of Neurology, University of California Irvine, Irvine, California,Address correspondence to Tallie Z. Baram, M.D., Ph.D.
| |
Collapse
|
20
|
Snyder AE, Silberman Y. Corticotropin releasing factor and norepinephrine related circuitry changes in the bed nucleus of the stria terminalis in stress and alcohol and substance use disorders. Neuropharmacology 2021; 201:108814. [PMID: 34624301 PMCID: PMC8578398 DOI: 10.1016/j.neuropharm.2021.108814] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/12/2021] [Accepted: 09/24/2021] [Indexed: 12/18/2022]
Abstract
Alcohol Use Disorder (AUD) affects around 14.5 million individuals in the United States, with Substance Use Disorder (SUD) affecting an additional 8.3 million individuals. Relapse is a major barrier to effective long-term treatment of this illness with stress often described as a key trigger for a person with AUD or SUD to relapse during a period of abstinence. Two signaling molecules, norepinephrine (NE) and corticotropin releasing factor (CRF), are released during the stress response, and also play important roles in reward behaviors and the addiction process. Within the addiction literature, one brain region in which there has been increasing research focus in recent years is the bed nucleus of the stria terminalis (BNST). The BNST is a limbic structure with numerous cytoarchitecturally and functionally different subregions that has been implicated in drug-seeking behaviors and stress responses. This review focuses on drug and stress-related neurocircuitry changes in the BNST, particularly within the CRF and NE systems, with an emphasis on differences and similarities between the major dorsal and ventral BNST subregions.
Collapse
Affiliation(s)
- Angela E Snyder
- Penn State College of Medicine, Department of Neural and Behavioral Sciences, USA
| | - Yuval Silberman
- Penn State College of Medicine, Department of Neural and Behavioral Sciences, USA.
| |
Collapse
|
21
|
Garcia DuBar S, Cosio D, Korthas H, Van Batavia JP, Zderic SA, Sahibzada N, Valentino RJ, Vicini S. Somatostatin Neurons in the Mouse Pontine Nucleus Activate GABA A Receptor Mediated Synaptic Currents in Locus Coeruleus Neurons. Front Synaptic Neurosci 2021; 13:754786. [PMID: 34675794 PMCID: PMC8524133 DOI: 10.3389/fnsyn.2021.754786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/10/2021] [Indexed: 11/13/2022] Open
Abstract
The pontine nuclei comprising the locus coeruleus (LC) and Barrington’s nucleus (BRN) amongst others form the neural circuitry(s) that coordinates arousal and voiding behaviors. However, little is known about the synaptic connectivity of neurons within or across these nuclei. These include corticotropin-releasing factor (CRF+) expressing neurons in the BRN that control bladder contraction and somatostatin expressing (SST+) neurons whose role in this region has not been discerned. To determine the synaptic connectivity of these neurons, we employed optogenetic stimulation with recordings from BRN and LC neurons in brain stem slices of channelrhodopsin-2 expressing SST or CRF neurons. Optogenetic stimulation of CRF+ BRN neurons of CrfCre;chr2-yfp mice had little effect on either CRF+ BRN neurons, CRF– BRN neurons, or LC neurons. In contrast, in SstCre;chr2-yfp mice light-activated inhibitory postsynaptic currents (IPSCs) were reliably observed in a majority of LC but not BRN neurons. The GABAA receptor antagonist, bicuculline, completely abolished the light-induced IPSCs. To ascertain if these neurons were part of the neural circuitry that controls the bladder, the trans-synaptic tracer, pseudorabies virus (PRV) was injected into the bladder wall of CrfCre;tdTomato or SstCre;tdTomato mice. At 68–72 h post-viral infection, PRV labeled neurons were present only in the BRN, being preponderant in CRF+ neurons with few SST+ BRN neurons labeled from the bladder. At 76 and 96 h post-virus injection, increased labeling was observed in both BRN and LC neurons. Our results suggest SST+ neurons rather than CRF+ neurons in BRN can regulate the activity of LC neurons.
Collapse
Affiliation(s)
- Selena Garcia DuBar
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States
| | - Daniela Cosio
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States
| | - Holly Korthas
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| | - Jason P Van Batavia
- Division of Urology, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Stephen A Zderic
- Division of Urology, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Niaz Sahibzada
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States.,Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| | - Rita J Valentino
- Department of Anesthesiology and Critical Care, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Stefano Vicini
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States.,Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
22
|
Plasticity of intrinsic excitability across the estrous cycle in hypothalamic CRH neurons. Sci Rep 2021; 11:16700. [PMID: 34404890 PMCID: PMC8371084 DOI: 10.1038/s41598-021-96341-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023] Open
Abstract
Stress responses are highly plastic and vary across physiological states. The female estrous cycle is associated with a number of physiological changes including changes in stress responses, however, the mechanisms driving these changes are poorly understood. Corticotropin-releasing hormone (CRH) neurons are the primary neural population controlling the hypothalamic-pituitary-adrenal (HPA) axis and stress-evoked corticosterone secretion. Here we show that CRH neuron intrinsic excitability is regulated over the estrous cycle with a peak in proestrus and a nadir in estrus. Fast inactivating voltage-gated potassium channel (IA) currents showed the opposite relationship, with current density being lowest in proestrus compared to other cycle stages. Blocking IA currents equalized excitability across cycle stages revealing a role for IA in mediating plasticity in stress circuit function over the female estrous cycle.
Collapse
|
23
|
Wang Y, Hu P, Shan Q, Huang C, Huang Z, Chen P, Li A, Gong H, Zhou JN. Single-cell morphological characterization of CRH neurons throughout the whole mouse brain. BMC Biol 2021; 19:47. [PMID: 33722214 PMCID: PMC7962243 DOI: 10.1186/s12915-021-00973-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 02/01/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Corticotropin-releasing hormone (CRH) is an important neuromodulator that is widely distributed in the brain and plays a key role in mediating stress responses and autonomic functions. While the distribution pattern of fluorescently labeled CRH-expressing neurons has been studied in different transgenic mouse lines, a full appreciation of the broad diversity of this population and local neural connectivity can only come from integration of single-cell morphological information as a defining feature. However, the morphologies of single CRH neurons and the local circuits formed by these neurons have not been acquired at brain-wide and dendritic-scale levels. RESULTS We screened the EYFP-expressing CRH-IRES-Cre;Ai32 mouse line to reveal the morphologies of individual CRH neurons throughout the whole mouse brain by using a fluorescence micro-optical sectioning tomography (fMOST) system. Diverse dendritic morphologies and projection fibers of CRH neurons were found in various brain regions. Follow-up reconstructions showed that hypothalamic CRH neurons had the smallest somatic volumes and simplest dendritic branches and that CRH neurons in several brain regions shared a common bipolar morphology. Further investigations of local CRH neurons in the medial prefrontal cortex unveiled somatic depth-dependent morphologies of CRH neurons that exhibited three types of mutual connections: basal dendrites (upper layer) with apical dendrites (layer 3); dendritic-somatic connections (in layer 2/3); and dendritic-dendritic connections (in layer 4). Moreover, hypothalamic CRH neurons were classified into two types according to their somatic locations and characteristics of dendritic varicosities. Rostral-projecting CRH neurons in the anterior parvicellular area had fewer and smaller dendritic varicosities, whereas CRH neurons in the periventricular area had more and larger varicosities that were present within dendrites projecting to the third ventricle. Arborization-dependent dendritic spines of CRH neurons were detected, among which the most sophisticated types were found in the amygdala and the simplest types were found in the hypothalamus. CONCLUSIONS By using the CRH-IRES-Cre;Ai32 mouse line and fMOST imaging, we obtained region-specific morphological distributions of CRH neurons at the dendrite level in the whole mouse brain. Taken together, our findings provide comprehensive brain-wide morphological information of stress-related CRH neurons and may facilitate further studies of the CRH neuronal system.
Collapse
Affiliation(s)
- Yu Wang
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Pu Hu
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Qinghong Shan
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Chuan Huang
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Zhaohuan Huang
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Peng Chen
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Anan Li
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.,Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hui Gong
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China. .,Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Jiang-Ning Zhou
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China. .,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
24
|
Giardino WJ, Pomrenze MB. Extended Amygdala Neuropeptide Circuitry of Emotional Arousal: Waking Up on the Wrong Side of the Bed Nuclei of Stria Terminalis. Front Behav Neurosci 2021; 15:613025. [PMID: 33633549 PMCID: PMC7900561 DOI: 10.3389/fnbeh.2021.613025] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/15/2021] [Indexed: 12/25/2022] Open
Abstract
Sleep is fundamental to life, and poor sleep quality is linked to the suboptimal function of the neural circuits that process and respond to emotional stimuli. Wakefulness ("arousal") is chiefly regulated by circadian and homeostatic forces, but affective mood states also strongly impact the balance between sleep and wake. Considering the bidirectional relationships between sleep/wake changes and emotional dynamics, we use the term "emotional arousal" as a representative characteristic of the profound overlap between brain pathways that: (1) modulate wakefulness; (2) interpret emotional information; and (3) calibrate motivated behaviors. Interestingly, many emotional arousal circuits communicate using specialized signaling molecules called neuropeptides to broadly modify neural network activities. One major neuropeptide-enriched brain region that is critical for emotional processing and has been recently implicated in sleep regulation is the bed nuclei of stria terminalis (BNST), a core component of the extended amygdala (an anatomical term that also includes the central and medial amygdalae, nucleus accumbens shell, and transition zones betwixt). The BNST encompasses an astonishing diversity of cell types that differ across many features including spatial organization, molecular signature, biological sex and hormonal milieu, synaptic input, axonal output, neurophysiological communication mode, and functional role. Given this tremendous complexity, comprehensive elucidation of the BNST neuropeptide circuit mechanisms underlying emotional arousal presents an ambitious set of challenges. In this review, we describe how rigorous investigation of these unresolved questions may reveal key insights to enhancing psychiatric treatments and global psychological wellbeing.
Collapse
|
25
|
Deviant reporter expression and P2X4 passenger gene overexpression in the soluble EGFP BAC transgenic P2X7 reporter mouse model. Sci Rep 2020; 10:19876. [PMID: 33199725 PMCID: PMC7669894 DOI: 10.1038/s41598-020-76428-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
The ATP-gated P2X7 receptor is highly expressed in microglia and has been involved in diverse brain diseases. P2X7 effects were also described in neurons and astrocytes but its localisation and function in these cell types has been challenging to demonstrate in situ. BAC transgenic mouse lines have greatly advanced neuroscience research and two BAC-transgenic P2X7 reporter mouse models exist in which either a soluble EGFP (sEGFP) or an EGFP-tagged P2X7 receptor (P2X7-EGFP) is expressed under the control of a BAC-derived P2rx7 promoter. Here we evaluate both mouse models and find striking differences in both P2X expression levels and EGFP reporter expression patterns. Most remarkably, the sEGFP model overexpresses a P2X4 passenger gene and sEGFP shows clear neuronal localisation but appears to be absent in microglia. Preliminary functional analysis in a status epilepticus model suggests functional consequences of the observed P2X receptor overexpression. In summary, an aberrant EGFP reporter pattern and possible effects of P2X4 and/or P2X7 protein overexpression need to be considered when working with this model. We further discuss reasons for the observed differences and possible caveats in BAC transgenic approaches.
Collapse
|
26
|
McCullough KM, Chatzinakos C, Hartmann J, Missig G, Neve RL, Fenster RJ, Carlezon WA, Daskalakis NP, Ressler KJ. Genome-wide translational profiling of amygdala Crh-expressing neurons reveals role for CREB in fear extinction learning. Nat Commun 2020; 11:5180. [PMID: 33057013 PMCID: PMC7560654 DOI: 10.1038/s41467-020-18985-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023] Open
Abstract
Fear and extinction learning are adaptive processes caused by molecular changes in specific neural circuits. Neurons expressing the corticotropin-releasing hormone gene (Crh) in central amygdala (CeA) are implicated in threat regulation, yet little is known of cell type-specific gene pathways mediating adaptive learning. We translationally profiled the transcriptome of CeA Crh-expressing cells (Crh neurons) after fear conditioning or extinction in mice using translating ribosome affinity purification (TRAP) and RNAseq. Differential gene expression and co-expression network analyses identified diverse networks activated or inhibited by fear vs extinction. Upstream regulator analysis demonstrated that extinction associates with reduced CREB expression, and viral vector-induced increased CREB expression in Crh neurons increased fear expression and inhibited extinction. These findings suggest that CREB, within CeA Crh neurons, may function as a molecular switch that regulates expression of fear and its extinction. Cell-type specific translational analyses may suggest targets useful for understanding and treating stress-related psychiatric illness.
Collapse
Affiliation(s)
- Kenneth M McCullough
- McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
| | - Chris Chatzinakos
- McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
| | - Jakob Hartmann
- McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
| | - Galen Missig
- McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
| | - Rachael L Neve
- Gene Transfer Core, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Robert J Fenster
- McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
| | - William A Carlezon
- McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
| | - Nikolaos P Daskalakis
- McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA.
| | - Kerry J Ressler
- McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA.
| |
Collapse
|
27
|
CRH Promotes the Neurogenic Activity of Neural Stem Cells in the Adult Hippocampus. Cell Rep 2020; 29:932-945.e7. [PMID: 31644914 DOI: 10.1016/j.celrep.2019.09.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 01/17/2018] [Accepted: 09/12/2019] [Indexed: 02/07/2023] Open
Abstract
Local cues in the adult neurogenic niches dynamically regulate homeostasis in neural stem cells, whereas their identity and associated molecular mechanisms remain poorly understood. Here, we show that corticotropin-releasing hormone (CRH), the major mediator of mammalian stress response and a key neuromodulator in the adult brain, is necessary for hippocampal neural stem cell (hiNSC) activity under physiological conditions. In particular, we demonstrate functionality of the CRH/CRH receptor (CRHR) system in mouse hiNSCs and conserved expression in humans. Most important, we show that genetic deficiency of CRH impairs hippocampal neurogenesis, affects spatial memory, and compromises hiNSCs' responsiveness to environmental stimuli. These deficits have been partially restored by virus-mediated CRH expression. Additionally, we provide evidence that local disruption of the CRH/CRHR system reduces neurogenesis, while exposure of adult hiNSCs to CRH promotes neurogenic activity via BMP4 suppression. Our findings suggest a critical role of CRH in adult neurogenesis, independently of its stress-related systemic function.
Collapse
|
28
|
Mukai Y, Nagayama A, Itoi K, Yamanaka A. Identification of substances which regulate activity of corticotropin-releasing factor-producing neurons in the paraventricular nucleus of the hypothalamus. Sci Rep 2020; 10:13639. [PMID: 32788592 PMCID: PMC7424526 DOI: 10.1038/s41598-020-70481-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/30/2020] [Indexed: 12/24/2022] Open
Abstract
The stress response is a physiological system for adapting to various internal and external stimuli. Corticotropin-releasing factor-producing neurons in the paraventricular nucleus of the hypothalamus (PVN-CRF neurons) are known to play an important role in the stress response as initiators of the hypothalamic-pituitary-adrenal axis. However, the mechanism by which activity of PVN-CRF neurons is regulated by other neurons and bioactive substances remains unclear. Here, we developed a screening method using calcium imaging to identify how physiological substances directly affect the activity of PVN-CRF neurons. We used acute brain slices expressing a genetically encoded calcium indicator in PVN-CRF neurons using CRF-Cre recombinase mice and an adeno-associated viral vector under Cre control. PVN-CRF neurons were divided into ventral and dorsal portions. Bath application of candidate substances revealed 12 substances that increased and 3 that decreased intracellular calcium concentrations. Among these substances, angiotensin II and histamine mainly increased calcium in the ventral portion of the PVN-CRF neurons via AT1 and H1 receptors, respectively. Conversely, carbachol mainly increased calcium in the dorsal portion of the PVN-CRF neurons via both nicotinic and muscarinic acetylcholine receptors. Our method provides a precise and reliable means of evaluating the effect of a substance on PVN-CRF neuronal activity.
Collapse
Affiliation(s)
- Yasutaka Mukai
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, 464-8601, Japan.,Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.,CREST, JST, Honcho, Kawaguchi, Saitama, 332-0012, Japan.,JSPS Research Fellowship for Young Scientists, Tokyo, 102-0083, Japan
| | - Ayako Nagayama
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, 464-8601, Japan.,Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Keiichi Itoi
- Department of Neuroendocrinology, Graduate School of Medicine, Tohoku University, Sendai, 980-8575, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, 464-8601, Japan. .,Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan. .,CREST, JST, Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
29
|
Salimando GJ, Hyun M, Boyt KM, Winder DG. BNST GluN2D-Containing NMDA Receptors Influence Anxiety- and Depressive-like Behaviors and ModulateCell-Specific Excitatory/Inhibitory Synaptic Balance. J Neurosci 2020; 40:3949-3968. [PMID: 32277042 PMCID: PMC7219300 DOI: 10.1523/jneurosci.0270-20.2020] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 02/26/2020] [Indexed: 12/23/2022] Open
Abstract
Excitatory signaling mediated by NMDARs has been shown to regulate mood disorders. However, current treatments targeting NMDAR subtypes have shown limited success in treating patients, highlighting a need for alternative therapeutic targets. Here, we identify a role for GluN2D-containing NMDARs in modulating emotional behaviors and neural activity in the bed nucleus of the stria terminalis (BNST). Using a GluN2D KO mouse line (GluN2D-/-), we assessed behavioral phenotypes across tasks modeling emotional behavior. We then used a combination of ex vivo electrophysiology and in vivo fiber photometry to assess changes in BNST plasticity, cell-specific physiology, and cellular activity profiles. GluN2D-/- male mice exhibit evidence of exacerbated negative emotional behavior, and a deficit in BNST synaptic potentiation. We also found that GluN2D is functionally expressed on corticotropin-releasing factor (CRF)-positive BNST cells implicated in driving negative emotional states, and recordings in mice of both sexes revealed increased excitatory and reduced inhibitory drive onto GluN2D-/- BNST-CRF cells ex vivo and increased activity in vivo Using a GluN2D conditional KO line (GluN2Dflx/flx) to selectively delete the subunit from the BNST, we find that BNST-GluN2Dflx/flx male mice exhibit increased depressive-like behaviors, as well as altered NMDAR function and increased excitatory drive onto BNST-CRF neurons. Together, this study supports a role for GluN2D-NMDARs in regulating emotional behavior through their influence on excitatory signaling in a region-specific manner, and suggests that these NMDARs may serve as a novel target for selectively modulating glutamate signaling in stress-responsive structures and cell populations.SIGNIFICANCE STATEMENT Excitatory signaling mediated through NMDARs plays an important role in shaping emotional behavior; however, the receptor subtypes/brain regions through which this occurs are poorly understood. Here, we demonstrate that loss of GluN2D-containing NMDARs produces an increase in anxiety- and depressive-like behaviors in mice, deficits in BNST synaptic potentiation, and increased activity in BNST-CRF neurons known to drive negative emotional behavior. Further, we determine that deleting GluN2D in the BNST leads to increased depressive-like behaviors and increased excitatory drive onto BNST-CRF cells. Collectively, these results demonstrate a role for GluN2D-NMDARs in regulating the activity of stress-responsive structures and neuronal populations in the adult brain, suggesting them as a potential target for treating negative emotional states in mood-related disorders.
Collapse
Affiliation(s)
- Gregory J Salimando
- Department of Molecular Physics & Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, 37212
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee, 37212
- Vanderbilt University Medical Center, Vanderbilt Kennedy Center, Nashville, Tennessee, 37203
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, Tennessee, 37232
| | - Minsuk Hyun
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, 02115
| | - Kristen M Boyt
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, 27599
| | - Danny G Winder
- Department of Molecular Physics & Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, 37212
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee, 37212
- Vanderbilt University Medical Center, Vanderbilt Kennedy Center, Nashville, Tennessee, 37203
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, Tennessee, 37232
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, 37212
- Department of Psychiatry & Behavioral Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee, 37212
| |
Collapse
|
30
|
Matovic S, Ichiyama A, Igarashi H, Salter EW, Sunstrum JK, Wang XF, Henry M, Kuebler ES, Vernoux N, Martinez-Trujillo J, Tremblay ME, Inoue W. Neuronal hypertrophy dampens neuronal intrinsic excitability and stress responsiveness during chronic stress. J Physiol 2020; 598:2757-2773. [PMID: 32347541 DOI: 10.1113/jp279666] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/17/2020] [Indexed: 01/16/2023] Open
Abstract
KEY POINTS The hypothalamic-pituitary-adrenal (HPA) axis habituates to repeated stress exposure. We studied hypothalamic corticotropin-releasing hormone (CRH) neurons that form the apex of the HPA axis in a mouse model of stress habituation using repeated restraint. The intrinsic excitability of CRH neurons decreased after repeated stress in a time course that coincided with the development of HPA axis habituation. This intrinsic excitability plasticity co-developed with an expansion of surface membrane area, which increased a passive electric load and dampened membrane depolarization in response to the influx of positive charge. We report a novel structure-function relationship for intrinsic excitability plasticity as a neural correlate for HPA axis habituation. ABSTRACT Encountering a stressor immediately activates the hypothalamic-pituitary-adrenal (HPA) axis, but this stereotypic stress response also undergoes experience-dependent adaptation. Despite the biological and clinical importance, how the brain adjusts stress responsiveness in the long term remains poorly understood. We studied hypothalamic corticotropin-releasing hormone neurons that form the apex of the HPA axis in a mouse model of stress habituation using repeated restraint. Using patch-clamp electrophysiology in acute slices, we found that the intrinsic excitability of these neurons substantially decreased after daily repeated stress in a time course that coincided with their loss of stress responsiveness in vivo. This intrinsic excitability plasticity co-developed with an expansion of surface membrane area, which increased a passive electric load, and dampened membrane depolarization in response to the influx of positive charge. Multiphoton imaging and electron microscopy revealed that repeated stress augmented ruffling of the plasma membrane, suggesting an ultrastructural plasticity that may efficiently accommodate the membrane area expansion. Overall, we report a novel structure-function relationship for intrinsic excitability plasticity as a neural correlate for adaptation of the neuroendocrine stress response.
Collapse
Affiliation(s)
- Sara Matovic
- Robarts Research Institute, University of Western Ontario.,Neuroscience Program, University of Western Ontario
| | - Aoi Ichiyama
- Neuroscience Program, University of Western Ontario
| | | | - Eric W Salter
- Robarts Research Institute, University of Western Ontario.,Current address: University of Toronto
| | | | - Xue Fan Wang
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario
| | - Mathilde Henry
- Axe Neurosciences, CRCHU de Quebec-Université Laval.,Current address: INRAE, Univ. Bordeaux, Bordeaux INP, Nutrineuro, UMR 1286, Bordeaux, F-33000, France
| | - Eric S Kuebler
- Robarts Research Institute, University of Western Ontario
| | | | - Julio Martinez-Trujillo
- Robarts Research Institute, University of Western Ontario.,Neuroscience Program, University of Western Ontario.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario
| | - Marie-Eve Tremblay
- Axe Neurosciences, CRCHU de Quebec-Université Laval.,Département de médecine moléculaire, Université Laval.,Division of Medical Sciences, University of Victoria
| | - Wataru Inoue
- Robarts Research Institute, University of Western Ontario.,Neuroscience Program, University of Western Ontario.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario
| |
Collapse
|
31
|
Ito H, Sales AC, Fry CH, Kanai AJ, Drake MJ, Pickering AE. Probabilistic, spinally-gated control of bladder pressure and autonomous micturition by Barrington's nucleus CRH neurons. eLife 2020; 9:56605. [PMID: 32347794 PMCID: PMC7217699 DOI: 10.7554/elife.56605] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/28/2020] [Indexed: 12/27/2022] Open
Abstract
Micturition requires precise control of bladder and urethral sphincter via parasympathetic, sympathetic and somatic motoneurons. This involves a spino-bulbospinal control circuit incorporating Barrington’s nucleus in the pons (Barr). Ponto-spinal glutamatergic neurons that express corticotrophin-releasing hormone (CRH) form one of the largest Barr cell populations. BarrCRH neurons can generate bladder contractions, but it is unknown whether they act as a simple switch or provide a high-fidelity pre-parasympathetic motor drive and whether their activation can actually trigger voids. Combined opto- and chemo-genetic manipulations along with multisite extracellular recordings in urethane anaesthetised CRHCre mice show that BarrCRH neurons provide a probabilistic drive that generates co-ordinated voids or non-voiding contractions depending on the phase of the micturition cycle. CRH itself provides negative feedback regulation of this process. These findings inform a new inferential model of autonomous micturition and emphasise the importance of the state of the spinal gating circuit in the generation of voiding.
Collapse
Affiliation(s)
- Hiroki Ito
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom.,Department of Urology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Anna C Sales
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Christopher H Fry
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Anthony J Kanai
- Department of Medicine and Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, United States
| | - Marcus J Drake
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom.,Bristol Urology Institute, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Anthony E Pickering
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom.,Anaesthetic, Pain and Critical Care research group, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
32
|
Beyeler A, Dabrowska J. Neuronal diversity of the amygdala and the bed nucleus of the stria terminalis. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2020; 26:63-100. [PMID: 32792868 DOI: 10.1016/b978-0-12-815134-1.00003-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Anna Beyeler
- Neurocentre Magendie, French National Institutes of Health (INSERM) unit 1215, Neurocampus of Bordeaux University, Bordeaux, France
| | - Joanna Dabrowska
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
33
|
Pati D, Harden SW, Sheng W, Kelly KB, de Kloet AD, Krause EG, Frazier CJ. Endogenous oxytocin inhibits hypothalamic corticotrophin-releasing hormone neurones following acute hypernatraemia. J Neuroendocrinol 2020; 32:e12839. [PMID: 32133707 PMCID: PMC7384450 DOI: 10.1111/jne.12839] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/24/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022]
Abstract
Significant prior evidence indicates that centrally acting oxytocin robustly modulates stress responsiveness and anxiety-like behaviour, although the neural mechanisms behind these effects are not entirely understood. A plausible neural basis for oxytocin-mediated stress reduction is via inhibition of corticotrophin-releasing hormone (CRH) neurones in the paraventricular nucleus of the hypothalamus (PVN) that regulate activation of the hypothalamic-pituitary-adrenal axis. Previously, we have shown that, following s.c. injection of 2.0 mol L-1 NaCl, oxytocin synthesising neurones are activated in the rat PVN, an oxytocin receptor (Oxtr)-dependent inhibitory tone develops on a subset of parvocellular neurones and stress-mediated increases in plasma corticosterone levels are blunted. In the present study, we utilised transgenic male CRH-reporter mice to selectively target PVN CRH neurones for whole-cell recordings. These experiments reveal that acute salt loading produces tonic inhibition of PVN CRH neurones through a mechanism that is largely independent of synaptic activity. Further studies reveal that a subset of CRH neurones within the PVN synthesise mRNA for Oxtr(s). Salt induced Oxtr-dependent inhibitory tone was eliminated in individual PVN CRH neurones filled with GDP-β-S. Additional electrophysiological studies suggest that reduced excitability of PVN CRH neurones in salt-loaded animals is associated with increased activation of inwardly rectifying potassium channels. Nevertheless, substantial effort to recapitulate the core effects of salt loading by activating Oxtr(s) with an exogenous agonist produced mixed results. Collectively, these results enhance our understanding of how oxytocin receptor-mediated signalling modulates the function of CRH neurones in the PVN.
Collapse
Affiliation(s)
- Dipanwita Pati
- Department of Pharmacodynamics, College of Pharmacy,
University of Florida
| | - Scott W. Harden
- Department of Pharmacodynamics, College of Pharmacy,
University of Florida
| | | | - Kyle B. Kelly
- Department of Pharmacodynamics, College of Pharmacy,
University of Florida
| | - Annette D. de Kloet
- Department of Physiology and Functional Genomics, College
of Medicine, University of Florida
| | - Eric G. Krause
- Department of Pharmacodynamics, College of Pharmacy,
University of Florida
| | - Charles J. Frazier
- Department of Pharmacodynamics, College of Pharmacy,
University of Florida
- Department of Neuroscience, College of Medicine, University
of Florida
- Corresponding author: Charles J.
Frazier, Ph.D., Associate Professor and University of Florida Term Professor,
Department of Pharmacodynamics, College of Pharmacy, University of Florida,
JHMHC Box 100487, Room P1-20, 1345 Center Drive, Gainesville, FL 32610, USA,
| |
Collapse
|
34
|
Distribution of D1 and D2 receptor- immunoreactive neurons in the paraventricular nucleus of the hypothalamus in the rat. J Chem Neuroanat 2019; 98:97-103. [DOI: 10.1016/j.jchemneu.2019.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022]
|
35
|
Snyder AE, Salimando GJ, Winder DG, Silberman Y. Chronic Intermittent Ethanol and Acute Stress Similarly Modulate BNST CRF Neuron Activity via Noradrenergic Signaling. Alcohol Clin Exp Res 2019; 43:1695-1701. [PMID: 31141179 DOI: 10.1111/acer.14118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/15/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Relapse is a critical barrier to effective long-term treatment of alcoholism, and stress is often cited as a key trigger to relapse. Numerous studies suggest that stress-induced reinstatement to drug-seeking behaviors is mediated by norepinephrine (NE) and corticotropin-releasing factor (CRF) signaling interactions in the bed nucleus of the stria terminalis (BNST), a brain region critical to many behavioral and physiologic responses to stressors. Here, we sought to directly examine the effects of NE on BNST CRF neuron activity and determine whether these effects may be modulated by chronic intermittent EtOH (CIE) exposure or a single restraint stress. METHODS Adult male CRF-tomato reporter mice were treatment-naïve, or either exposed to CIE for 2 weeks or to a single 1-hour restraint stress. Effects of application of exogenous NE on BNST CRF neuron activity were assessed via whole-cell patch-clamp electrophysiological techniques. RESULTS We found that NE depolarized BNST CRF neurons in naïve mice in a β-adrenergic receptor (AR)-dependent mechanism. CRF neurons from CIE- or stress-exposed mice had significantly elevated basal resting membrane potential compared to naïve mice. Furthermore, CIE and stress individually disrupted the ability of NE to depolarize CRF neurons, suggesting that both stress and CIE utilize β-AR signaling to modulate BNST CRF neurons. Neither stress nor CIE altered the ability of exogenous NE to inhibit evoked glutamatergic transmission onto BNST CRF neurons as shown in naïve mice, a mechanism previously shown to be α-AR-dependent. CONCLUSIONS Altogether, these findings suggest that stress and CIE interact with β-AR signaling to modulate BNST CRF neuron activity, potentially disrupting the α/β-AR balance of BNST CRF neuronal excitability. Restoration of α/β-AR balance may lead to novel therapies for the alleviation of many stress-related disorders.
Collapse
Affiliation(s)
- Angela E Snyder
- From the, Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | - Gregory J Salimando
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, Tennessee.,Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tennessee.,Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee.,Vanderbilt J.F. Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Danny G Winder
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, Tennessee.,Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tennessee.,Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee.,Vanderbilt J.F. Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Yuval Silberman
- From the, Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
36
|
Zhang S, Lv F, Yuan Y, Fan C, Li J, Sun W, Hu J. Whole-Brain Mapping of Monosynaptic Afferent Inputs to Cortical CRH Neurons. Front Neurosci 2019; 13:565. [PMID: 31213976 PMCID: PMC6558184 DOI: 10.3389/fnins.2019.00565] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/16/2019] [Indexed: 01/02/2023] Open
Abstract
Corticotropin-releasing hormone (CRH) is a critical neuropeptide modulating the mammalian stress response. It is involved in many functional activities within various brain regions, among which there is a subset of CRH neurons occupying a considerable proportion of the cortical GABAergic interneurons. Here, we utilized rabies virus-based monosynaptic retrograde tracing system to map the whole-brain afferent presynaptic partners of the CRH neurons in the anterior cingulate cortex (ACC). We find that the ACC CRH neurons integrate information from the cortex, thalamus, hippocampal formation, amygdala, and also several other midbrain and hindbrain nuclei. Furthermore, our results reveal that ACC CRH neurons receive direct inputs from two neuromodulatory systems, the basal forebrain cholinergic neurons and raphe serotoninergic neurons. These findings together expand our knowledge about the connectivity of the cortical GABAergic neurons and also provide a basis for further investigation of the circuit function of cortical CRH neurons.
Collapse
Affiliation(s)
- Shouhua Zhang
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fei Lv
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- iHuman Institute, ShanghaiTech University, Shanghai, China
- Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Yuan Yuan
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Chengyu Fan
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
| | - Jiang Li
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Wenzhi Sun
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
- iHuman Institute, ShanghaiTech University, Shanghai, China
- Chinese Institute for Brain Research, Beijing, China
| | - Ji Hu
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
37
|
Itoga CA, Chen Y, Fateri C, Echeverry PA, Lai JM, Delgado J, Badhon S, Short A, Baram TZ, Xu X. New viral-genetic mapping uncovers an enrichment of corticotropin-releasing hormone-expressing neuronal inputs to the nucleus accumbens from stress-related brain regions. J Comp Neurol 2019; 527:2474-2487. [PMID: 30861133 DOI: 10.1002/cne.24676] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/14/2019] [Accepted: 03/04/2019] [Indexed: 12/18/2022]
Abstract
Corticotropin-releasing hormone (CRH) is an essential, evolutionarily-conserved stress neuropeptide. In addition to hypothalamus, CRH is expressed in brain regions including amygdala and hippocampus where it plays crucial roles in modulating the function of circuits underlying emotion and cognition. CRH+ fibers are found in nucleus accumbens (NAc), where CRH modulates reward/motivation behaviors. CRH actions in NAc may vary by the individual's stress history, suggesting roles for CRH in neuroplasticity and adaptation of the reward circuitry. However, the origin and extent of CRH+ inputs to NAc are incompletely understood. We employed viral genetic approaches to map both global and CRH+ projection sources to NAc in mice. We injected into NAc variants of a new designer adeno-associated virus that permits robust retrograde access to NAc-afferent projection neurons. Cre-dependent viruses injected into CRH-Cre mice enabled selective mapping of CRH+ afferents. We employed anterograde AAV1-directed axonal tracing to verify NAc CRH+ fiber projections and established the identity of genetic reporter-labeled cells via validated antisera against native CRH. We quantified the relative contribution of CRH+ neurons to total NAc-directed projections. Combined retrograde and anterograde tracing identified the paraventricular nucleus of the thalamus, bed nucleus of stria terminalis, basolateral amygdala, and medial prefrontal cortex as principal sources of CRH+ projections to NAc. CRH+ NAc afferents were selectively enriched in NAc-projecting brain regions involved in diverse aspects of the sensing, processing and memory of emotionally salient events. These findings suggest multiple, complex potential roles for the molecularly-defined, CRH-dependent circuit in modulation of reward and motivation behaviors.
Collapse
Affiliation(s)
- Christy A Itoga
- Department of Anatomy and Neurobiology, School of Medicine, University of California-Irvine, Irvine, California
| | - Yuncai Chen
- Department of Anatomy and Neurobiology, School of Medicine, University of California-Irvine, Irvine, California.,Department of Pediatrics, School of Medicine, University of California-Irvine, Irvine, California
| | - Cameron Fateri
- Department of Anatomy and Neurobiology, School of Medicine, University of California-Irvine, Irvine, California
| | - Paula A Echeverry
- Department of Anatomy and Neurobiology, School of Medicine, University of California-Irvine, Irvine, California
| | - Jennifer M Lai
- Department of Anatomy and Neurobiology, School of Medicine, University of California-Irvine, Irvine, California
| | - Jasmine Delgado
- Department of Anatomy and Neurobiology, School of Medicine, University of California-Irvine, Irvine, California
| | - Shapatur Badhon
- Department of Anatomy and Neurobiology, School of Medicine, University of California-Irvine, Irvine, California
| | - Annabel Short
- Department of Anatomy and Neurobiology, School of Medicine, University of California-Irvine, Irvine, California.,Department of Pediatrics, School of Medicine, University of California-Irvine, Irvine, California
| | - Tallie Z Baram
- Department of Anatomy and Neurobiology, School of Medicine, University of California-Irvine, Irvine, California.,Department of Pediatrics, School of Medicine, University of California-Irvine, Irvine, California
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California-Irvine, Irvine, California.,Department of Biomedical Engineering, University of California, Irvine, California.,Department of Microbiology and Molecular Genetics, University of California, Irvine, California
| |
Collapse
|
38
|
Bittar TP, Nair BB, Kim JS, Chandrasekera D, Sherrington A, Iremonger KJ. Corticosterone mediated functional and structural plasticity in corticotropin-releasing hormone neurons. Neuropharmacology 2019; 154:79-86. [PMID: 30771372 DOI: 10.1016/j.neuropharm.2019.02.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/22/2019] [Accepted: 02/12/2019] [Indexed: 01/01/2023]
Abstract
Corticosteroid stress hormones drive a multitude of adaptations in the brain. Hypothalamic corticotropin-releasing hormone (CRH) neurons control the circulating levels of corticosteroid stress hormones in the body and are themselves highly sensitive to corticosteroids. CRH neurons have been shown to undergo various adaptions in response to acute stress hormone elevations. However, their structural and physiological changes under chronically elevated corticosterone are less clear. To address this, we determined the structural and functional changes in CRH neurons in the paraventricular nucleus of the hypothalamus following 14 days of corticosterone treatment. We find that prolonged corticosterone elevation reduces CRH neuron intrinsic excitability as measured by summation of subthreshold postsynaptic depolarisations and spiking output. We find that under normal conditions, CRH neurons have a relatively compact and simple dendritic arbor, with a low density of somatic and dendritic spines. Interestingly, the axon originated from a proximal dendrite close to the soma in approximately half of the CRH neurons reconstructed. While prolonged elevation in corticosterone levels did not result in any changes to gross dendritic morphology, it induced a significant reduction in both somatic and dendritic spine density. Together these data reveal the morphological features of hypothalamic CRH neurons and highlight their capacity to undergo functional and morphological plasticity in response to chronic corticosterone elevations. This article is part of the Special Issue entitled 'Hypothalamic Control of Homeostasis'.
Collapse
Affiliation(s)
- Thibault P Bittar
- Centre for Neuroendocrinology, Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Betina B Nair
- Centre for Neuroendocrinology, Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Joon S Kim
- Centre for Neuroendocrinology, Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Dhananjie Chandrasekera
- Centre for Neuroendocrinology, Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Aidan Sherrington
- Centre for Neuroendocrinology, Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Karl J Iremonger
- Centre for Neuroendocrinology, Department of Physiology, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
39
|
Centanni SW, Morris BD, Luchsinger JR, Bedse G, Fetterly TL, Patel S, Winder DG. Endocannabinoid control of the insular-bed nucleus of the stria terminalis circuit regulates negative affective behavior associated with alcohol abstinence. Neuropsychopharmacology 2019; 44:526-537. [PMID: 30390064 PMCID: PMC6333805 DOI: 10.1038/s41386-018-0257-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/19/2018] [Accepted: 10/21/2018] [Indexed: 01/04/2023]
Abstract
Negative affect is a core symptom domain associated with an array of neurological and psychiatric disorders and is only partially targeted by current therapies, highlighting the need for better, more targeted treatment options. This study focuses on negative affective symptoms associated with prolonged alcohol abstinence, one of the leading causes of relapse. Using a mouse model of chronic alcohol consumption followed by forced abstinence (CDFA), prolonged alcohol abstinence increased c-fos expression and spontaneous glutamatergic neurotransmission in the dorsal bed nucleus of the stria terminalis (dBNST), a region heavily implicated in negative affect in both humans and rodents. Further, pharmacologically enhancing endogenous cannabinoids (eCB) with JZL184 prevents abstinence-induced increases in dBNST neuronal activity, underscoring the therapeutic potential of drugs targeting the brain's eCB system. Next, we used a channelrhodopsin-assisted mapping strategy to identify excitatory inputs to the dBNST that could contribute to CDFA-induced negative affect. We identified the insular cortex (insula), a region involved in regulating interoception, as a dense, functional, eCB-sensitive input to the dBNST. Using a chemogenetic strategy to locally mimic eCB signaling, we demonstrate that the insula strongly influences the CDFA behavioral phenotype and dBNST neuronal activity. Lastly, we used an anterograde strategy for transynaptic targeting of Cre expression in combination with a Gq-DREADD to selectively recruit dBNST neurons receiving insula projections. Chemogenetic recruitment of these neurons mimicked behavioral and c-fos responses observed in CDFA. Collectively, this study supports a role for the insula-BNST neural circuit in negative affective disturbances and highlights the therapeutic potential of the eCB system for treating negative affective disorders.
Collapse
Affiliation(s)
- Samuel W Centanni
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt J.F. Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Bridget D Morris
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Joseph R Luchsinger
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt J.F. Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Gaurav Bedse
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt J.F. Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tracy L Fetterly
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt J.F. Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sachin Patel
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt J.F. Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Danny G Winder
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Vanderbilt J.F. Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
40
|
Dedic N, Chen A, Deussing JM. The CRF Family of Neuropeptides and their Receptors - Mediators of the Central Stress Response. Curr Mol Pharmacol 2018; 11:4-31. [PMID: 28260504 PMCID: PMC5930453 DOI: 10.2174/1874467210666170302104053] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 11/26/2015] [Accepted: 08/03/2016] [Indexed: 12/12/2022]
Abstract
Background: Dysregulated stress neurocircuits, caused by genetic and/or environmental changes, underlie the development of many neuropsychiatric disorders. Corticotropin-releasing factor (CRF) is the major physiological activator of the hypothalamic-pituitary-adrenal (HPA) axis and conse-quently a primary regulator of the mammalian stress response. Together with its three family members, urocortins (UCNs) 1, 2, and 3, CRF integrates the neuroendocrine, autonomic, metabolic and behavioral responses to stress by activating its cognate receptors CRFR1 and CRFR2. Objective: Here we review the past and current state of the CRF/CRFR field, ranging from pharmacologi-cal studies to genetic mouse models and virus-mediated manipulations. Results: Although it is well established that CRF/CRFR1 signaling mediates aversive responses, includ-ing anxiety and depression-like behaviors, a number of recent studies have challenged this viewpoint by revealing anxiolytic and appetitive properties of specific CRF/CRFR1 circuits. In contrast, the UCN/CRFR2 system is less well understood and may possibly also exert divergent functions on physiol-ogy and behavior depending on the brain region, underlying circuit, and/or experienced stress conditions. Conclusion: A plethora of available genetic tools, including conventional and conditional mouse mutants targeting CRF system components, has greatly advanced our understanding about the endogenous mecha-nisms underlying HPA system regulation and CRF/UCN-related neuronal circuits involved in stress-related behaviors. Yet, the detailed pathways and molecular mechanisms by which the CRF/UCN-system translates negative or positive stimuli into the final, integrated biological response are not completely un-derstood. The utilization of future complementary methodologies, such as cell-type specific Cre-driver lines, viral and optogenetic tools will help to further dissect the function of genetically defined CRF/UCN neurocircuits in the context of adaptive and maladaptive stress responses.
Collapse
Affiliation(s)
- Nina Dedic
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstr, 2-10, 80804 Munich. Germany
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstr, 2-10, 80804 Munich. Germany
| | - Jan M Deussing
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstr, 2-10, 80804 Munich. Germany
| |
Collapse
|
41
|
α 2A-Adrenergic Receptor Activation Decreases Parabrachial Nucleus Excitatory Drive onto BNST CRF Neurons and Reduces Their Activity In Vivo. J Neurosci 2018; 39:472-484. [PMID: 30478032 DOI: 10.1523/jneurosci.1035-18.2018] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 10/18/2018] [Accepted: 11/19/2018] [Indexed: 11/21/2022] Open
Abstract
Stress contributes to numerous psychiatric disorders. Corticotropin releasing factor (CRF) signaling and CRF neurons in the bed nucleus of the stria terminalis (BNST) drive negative affective behaviors, thus agents that decrease activity of these cells may be of therapeutic interest. Here, we show that acute restraint stress increases cFos expression in CRF neurons in the mouse dorsal BNST, consistent with a role for these neurons in stress-related behaviors. We find that activation of α2A-adrenergic receptors (ARs) by the agonist guanfacine reduced cFos expression in these neurons both in stressed and unstressed conditions. Further, we find that α- and β-ARs differentially regulate excitatory drive onto these neurons. Pharmacological and channelrhodopsin-assisted mapping experiments suggest that α2A-ARs specifically reduce excitatory drive from parabrachial nucleus (PBN) afferents onto CRF neurons. Given that the α2A-AR is a Gi-linked GPCR, we assessed the impact of activating the Gi-coupled DREADD hM4Di in the PBN on restraint stress regulation of BNST CRF neurons. CNO activation of PBN hM4Di reduced stress-induced Fos in BNST Crh neurons. Further, using Prkcd as an additional marker of BNST neuronal identity, we uncovered a female-specific upregulation of the coexpression of Prkcd/Crh in BNST neurons following stress, which was prevented by ovariectomy. These findings show that stress activates BNST CRF neurons, and that α2A-AR activation suppresses the in vivo activity of these cells, at least in part by suppressing excitatory drive from PBN inputs onto CRF neurons.SIGNIFICANCE STATEMENT Stress is a major variable contributing to mood disorders. Here, we show that stress increases activation of BNST CRF neurons that drive negative affective behavior. We find that the clinically well tolerated α2A-AR agonist guanfacine reduces activity of these cells in vivo, and reduces excitatory PBN inputs onto these cells ex vivo Additionally, we uncover a novel sex-dependent coexpression of Prkcd with Crh in female BNST neurons after stress, an effect abolished by ovariectomy. These results demonstrate input-specific interactions between norepinephrine and CRF, and point to an action by which guanfacine may reduce negative affective responses.
Collapse
|
42
|
Hyper-diversity of CRH interneurons in mouse hippocampus. Brain Struct Funct 2018; 224:583-598. [PMID: 30456559 DOI: 10.1007/s00429-018-1793-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/09/2018] [Indexed: 12/20/2022]
Abstract
Hippocampal inhibitory interneurons comprise an anatomically, neurochemically and electrophysiologically diverse population of cells that are essential for the generation of the oscillatory activity underlying hippocampal spatial and episodic memory processes. Here, we aimed to characterize a population of interneurons that express the stress-related neuropeptide corticotropin-releasing hormone (CRH) within existing interneuronal categories through the use of combined electrophysiological and immunocytochemical approaches. Focusing on CA1 strata pyramidale and radiatum of mouse hippocampus, CRH interneurons were found to exhibit a heterogeneous neurochemical phenotype with parvalbumin, cholecystokinin and calretinin co-expression observed to varying degrees. In contrast, CRH and somatostatin were never co-expressed. Electrophysiological categorization identified heterogeneous firing pattern of CRH neurons, with two distinct subtypes within stratum pyramidale and stratum radiatum. Together, these findings indicate that CRH-expressing interneurons do not segregate into any single distinct subtype of interneuron using conventional criteria. Rather our findings suggest that CRH is likely co-expressed in subpopulations of previously described hippocampal interneurons. In addition, the observed heterogeneity suggests that distinct CRH interneuron subtypes may have specific functional roles in the both physiological and pathophysiological hippocampal processes.
Collapse
|
43
|
Deussing JM, Chen A. The Corticotropin-Releasing Factor Family: Physiology of the Stress Response. Physiol Rev 2018; 98:2225-2286. [DOI: 10.1152/physrev.00042.2017] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The physiological stress response is responsible for the maintenance of homeostasis in the presence of real or perceived challenges. In this function, the brain activates adaptive responses that involve numerous neural circuits and effector molecules to adapt to the current and future demands. A maladaptive stress response has been linked to the etiology of a variety of disorders, such as anxiety and mood disorders, eating disorders, and the metabolic syndrome. The neuropeptide corticotropin-releasing factor (CRF) and its relatives, the urocortins 1–3, in concert with their receptors (CRFR1, CRFR2), have emerged as central components of the physiological stress response. This central peptidergic system impinges on a broad spectrum of physiological processes that are the basis for successful adaptation and concomitantly integrate autonomic, neuroendocrine, and behavioral stress responses. This review focuses on the physiology of CRF-related peptides and their cognate receptors with the aim of providing a comprehensive up-to-date overview of the field. We describe the major molecular features covering aspects of gene expression and regulation, structural properties, and molecular interactions, as well as mechanisms of signal transduction and their surveillance. In addition, we discuss the large body of published experimental studies focusing on state-of-the-art genetic approaches with high temporal and spatial precision, which collectively aimed to dissect the contribution of CRF-related ligands and receptors to different levels of the stress response. We discuss the controversies in the field and unravel knowledge gaps that might pave the way for future research directions and open up novel opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Jan M. Deussing
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany; and Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany; and Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
44
|
Walker LC, Cornish LC, Lawrence AJ, Campbell EJ. The effect of acute or repeated stress on the corticotropin releasing factor system in the CRH-IRES-Cre mouse: A validation study. Neuropharmacology 2018; 154:96-106. [PMID: 30266597 DOI: 10.1016/j.neuropharm.2018.09.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 08/31/2018] [Accepted: 09/22/2018] [Indexed: 12/18/2022]
Abstract
Corticotropin releasing factor (CRF) is a key component of stress responsivity, modulating related behaviors including anxiety and reward. Difficulties identifying CRF neurons, using traditional approaches including immunohistochemistry, has led to the development of a number of transgenic CRF reporter mice. The Crh-IRES-Cre::Ai14 (tdTomato) reporter mouse is increasing in popularity as a useful tool to assess the localization, connectivity and function of CRF neurons in various stress-related behaviors. However, without proper characterization of reporter expression, the in vivo and in vitro manifestations resulting from the manipulation of these cells must be interpreted with caution. Here we mapped the distribution of tdTomato-expressing CRF cells throughout the rostro-caudal extent of the Crh-IRES-Cre::Ai14 mouse brain. To determine if reporter expression faithfully reproduced native CRF expression, we assessed the colocalization of CRF expression with tdTomato reporter expression across several brain regions. Good concordance was observed in the extended amygdala and paraventricular nucleus of the hypothalamus (PVN), while discrepancies were observed within the lateral hypothalamus and hippocampus. Finally, we examined the activation of CRF neurons in Crh-IRES-Cre::Ai14 mice in response to different types of stressors using Fos immunohistochemistry. Acute psychological (swim) and pharmacological (yohimbine) stress stimulated Fos-protein expression in PVN CRF neurons. Interestingly though, exposure to four daily restraint stress sessions followed by a novel acute stressor did not further recruit CRF neurons across any brain region examined. Our results highlight the importance of thoroughly characterizing reporter mice before use and suggest that acute versus repeated stress may differentially impact the CRF system. This article is part of the Special Issue entitled 'Hypothalamic Control of Homeostasis'.
Collapse
Affiliation(s)
- Leigh C Walker
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, 3052, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, 3010, Australia
| | - Lara C Cornish
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, 3052, Australia
| | - Andrew J Lawrence
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, 3052, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, 3010, Australia
| | - Erin J Campbell
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, 3052, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
45
|
Deussing JM, Arzt E. P2X7 Receptor: A Potential Therapeutic Target for Depression? Trends Mol Med 2018; 24:736-747. [PMID: 30093269 DOI: 10.1016/j.molmed.2018.07.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 02/07/2023]
Abstract
Depression is a prime contributor to global disease burden with 300 million affected patients worldwide. The persistent lack of progress with regards to pharmacotherapy stands in stark contrast to the pandemic magnitude of the disease. Alterations of inflammatory pathways in depressed patients, including altered circulating pro-inflammatory cytokines, have been put forward as a potential pathophysiological mechanism. The P2X7 receptor (P2X7R) plays an important role regulating the release of interleukin-1β and other cytokines. Comprehensive investigation of the P2X7R Gln460Arg missense mutation (rs2230912), which has been associated with major depression and bipolar disorder, has substantially contributed to validate P2X7R as a potential genetic risk factor. We propose that P2X7R is a putative target with good prospects for therapeutic intervention in depressive disorders.
Collapse
Affiliation(s)
- Jan M Deussing
- Molecular Neurogenetics, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany.
| | - Eduardo Arzt
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society; and University of Buenos Aires, Argentina, Godoy Cruz 2390, C1425FQD Buenos Aires, Argentina
| |
Collapse
|
46
|
Hunt AJ, Dasgupta R, Rajamanickam S, Jiang Z, Beierlein M, Chan CS, Justice NJ. Paraventricular hypothalamic and amygdalar CRF neurons synapse in the external globus pallidus. Brain Struct Funct 2018; 223:2685-2698. [PMID: 29569009 PMCID: PMC5997534 DOI: 10.1007/s00429-018-1652-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 03/16/2018] [Indexed: 12/16/2022]
Abstract
Stress evokes directed movement to escape or hide from potential danger. Corticotropin-releasing factor (CRF) neurons are highly activated by stress; however, it remains unclear how this activity participates in stress-evoked movement. The external globus pallidus (GPe) expresses high levels of the primary receptor for CRF, CRFR1, suggesting the GPe may serve as an entry point for stress-relevant information to reach basal ganglia circuits, which ultimately gate motor output. Indeed, projections from CRF neurons are present within the GPe, making direct contact with CRFR1-positive neurons. CRFR1 expression is heterogenous in the GPe; prototypic GPe neurons selectively express CRFR1, while arkypallidal neurons do not. Moreover, CRFR1-positive GPe neurons are excited by CRF via activation of CRFR1, while nearby CRFR1-negative neurons do not respond to CRF. Using monosynaptic rabies viral tracing techniques, we show that CRF neurons in the stress-activated paraventricular nucleus of the hypothalamus (PVN), central nucleus of the amygdala (CeA), and bed nucleus of the stria terminalis (BST) make synaptic connections with CRFR1-positive neurons in the GPe an unprecedented circuit connecting the limbic system with the basal ganglia. CRF neurons also make synapses on Npas1 neurons, although the majority of Npas1 neurons are arkypallidal and do not express CRFR1. Interestingly, prototypic and arkypallidal neurons receive different patterns of innervation from CRF-rich nuclei. Hypothalamic CRF neurons preferentially target prototypic neurons, while amygdalar CRF neurons preferentially target arkypallidal neurons, suggesting that these two inputs to the GPe may have different impacts on GPe output. Together, these data describe a novel neural circuit by which stress-relevant information carried by the limbic system signals in the GPe via CRF to influence motor output.
Collapse
Affiliation(s)
- Albert J Hunt
- The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, Center for Metabolic and Degenerative Diseases, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Graduate Program in Neuroscience, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Rajan Dasgupta
- Department of Neurobiology and Anatomy, McGovern Medical School, Houston, TX, 77030, USA
- Graduate Program in Neuroscience, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Shivakumar Rajamanickam
- The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, Center for Metabolic and Degenerative Diseases, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Zhiying Jiang
- The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, Center for Metabolic and Degenerative Diseases, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Michael Beierlein
- Department of Neurobiology and Anatomy, McGovern Medical School, Houston, TX, 77030, USA
- Graduate Program in Neuroscience, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - C Savio Chan
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Nicholas J Justice
- The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, Center for Metabolic and Degenerative Diseases, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- Graduate Program in Neuroscience, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
47
|
Kelly EA, Fudge JL. The neuroanatomic complexity of the CRF and DA systems and their interface: What we still don't know. Neurosci Biobehav Rev 2018; 90:247-259. [PMID: 29704516 PMCID: PMC5993645 DOI: 10.1016/j.neubiorev.2018.04.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 04/14/2018] [Accepted: 04/15/2018] [Indexed: 12/28/2022]
Abstract
Corticotropin-releasing factor (CRF) is a neuropeptide that mediates the stress response. Long known to contribute to regulation of the adrenal stress response initiated in the hypothalamic-pituitary axis (HPA), a complex pattern of extrahypothalamic CRF expression is also described in rodents and primates. Cross-talk between the CRF and midbrain dopamine (DA) systems links the stress response to DA regulation. Classically CRF + cells in the extended amygdala and paraventricular nucleus (PVN) are considered the main source of this input, principally targeting the ventral tegmental area (VTA). However, the anatomic complexity of both the DA and CRF system has been increasingly elaborated in the last decade. The DA neurons are now recognized as having diverse molecular, connectional and physiologic properties, predicted by their anatomic location. At the same time, the broad distribution of CRF cells in the brain has been increasingly delineated using different species and techniques. Here, we review updated information on both CRF localization and newer conceptualizations of the DA system to reconsider the CRF-DA interface.
Collapse
Affiliation(s)
- E A Kelly
- University of Rochester, School of Medicine and Dentistry, The Ernest J Del Monte Institute for Neuroscience, Department of Neuroscience, Rochester, NY, United States
| | - J L Fudge
- University of Rochester, School of Medicine and Dentistry, The Ernest J Del Monte Institute for Neuroscience, Department of Neuroscience, Rochester, NY, United States; University of Rochester, School of Medicine and Dentistry, The Ernest J Del Monte Institute for Neuroscience, Department of Psychiatry, Rochester, NY, United States.
| |
Collapse
|
48
|
Russell AL, Richardson MR, Bauman BM, Hernandez IM, Saperstein S, Handa RJ, Wu TJ. Differential Responses of the HPA Axis to Mild Blast Traumatic Brain Injury in Male and Female Mice. Endocrinology 2018; 159:2363-2375. [PMID: 29701827 DOI: 10.1210/en.2018-00203] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/19/2018] [Indexed: 12/20/2022]
Abstract
Traumatic brain injury (TBI) affects 10 million people worldwide, annually. TBI is linked to increased risk of psychiatric disorders. TBI, induced by explosive devices, has a unique phenotype. Over one-third of people exposed to blast-induced TBI (bTBI) have prolonged neuroendocrine deficits, shown by anterior pituitary dysfunction. Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis is linked to increased risk for psychiatric disorders. Not only is there limited information on how the HPA axis responds to mild bTBI (mbTBI), sex differences are understudied. We examined central and peripheral HPA axis reactivity, 7 to 10 days after mbTBI in male and female mice. Males exposed to mbTBI had increased restraint-induced serum corticosterone (CORT), but attenuated restraint-induced corticotropin-releasing factor (CRF)/c-Fos-immunoreactivity (ir) in the paraventricular nucleus of the hypothalamus (PVN). Females displayed an opposite response, with attenuated restraint-induced CORT and enhanced restraint-induced PVN CRF/c-Fos-ir. We examined potential mechanisms underlying this dysregulation and found that mbTBI did not affect pituitary (pro-opiomelanocortin and CRF receptor subtype 1) or adrenal (11β-hydroxylase, 11β-dehydrogenase 1, and melanocortin 2 receptor) gene expression. mbTBI did not alter mineralocorticoid or glucocorticoid gene expression in the PVN or relevant limbic structures. In females, but not males, mbTBI decreased c-Fos-ir in non-neuroendocrine (presumably preautonomic) CRF neurons in the PVN. Whereas we demonstrated a sex-dependent link to stress dysregulation of preautonomic neurons in females, we hypothesize that mbTBI may disrupt limbic pathways involved in HPA axis coordination in males. Overall, mbTBI altered the HPA axis in a sex-dependent manner, highlighting the importance of developing therapies to target individual strategies that males and females use to cope with mbTBI.
Collapse
Affiliation(s)
- Ashley L Russell
- Program in Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - M Riley Richardson
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Bradly M Bauman
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Ian M Hernandez
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Samantha Saperstein
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Robert J Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - T John Wu
- Program in Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
49
|
Dedic N, Kühne C, Jakovcevski M, Hartmann J, Genewsky AJ, Gomes KS, Anderzhanova E, Pöhlmann ML, Chang S, Kolarz A, Vogl AM, Dine J, Metzger MW, Schmid B, Almada RC, Ressler KJ, Wotjak CT, Grinevich V, Chen A, Schmidt MV, Wurst W, Refojo D, Deussing JM. Chronic CRH depletion from GABAergic, long-range projection neurons in the extended amygdala reduces dopamine release and increases anxiety. Nat Neurosci 2018; 21:803-807. [PMID: 29786085 DOI: 10.1038/s41593-018-0151-z] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 04/10/2018] [Indexed: 12/12/2022]
Abstract
The interplay between corticotropin-releasing hormone (CRH) and the dopaminergic system has predominantly been studied in addiction and reward, while CRH-dopamine interactions in anxiety are scarcely understood. We describe a new population of CRH-expressing, GABAergic, long-range-projecting neurons in the extended amygdala that innervate the ventral tegmental area and alter anxiety following chronic CRH depletion. These neurons are part of a distinct CRH circuit that acts anxiolytically by positively modulating dopamine release.
Collapse
Affiliation(s)
- Nina Dedic
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Claudia Kühne
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Mira Jakovcevski
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jakob Hartmann
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany.,Department of Psychiatry, Harvard Medical School and McLean Hospital, Belmont, MA, USA
| | - Andreas J Genewsky
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Karina S Gomes
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany.,Laboratory of Neuropsychopharmacology, Paulista State University, Araraquara, Brazil
| | - Elmira Anderzhanova
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Max L Pöhlmann
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Simon Chang
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Adam Kolarz
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Annette M Vogl
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Julien Dine
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Michael W Metzger
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Bianca Schmid
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Rafael C Almada
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School and McLean Hospital, Belmont, MA, USA
| | - Carsten T Wotjak
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Valery Grinevich
- Schaller Research Group on Neuropeptides, German Cancer Research Center, Central Institute of Mental Health, University of Heidelberg, Heidelberg, Germany
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Mathias V Schmidt
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, Munich, Germany.,Technische Universität München, Chair of Developmental Genetics, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Site Munich, Munich, Germany
| | - Damian Refojo
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany.,Instituto de Investigacion en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Jan M Deussing
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany.
| |
Collapse
|
50
|
Gunn BG, Cox CD, Chen Y, Frotscher M, Gall CM, Baram TZ, Lynch G. The Endogenous Stress Hormone CRH Modulates Excitatory Transmission and Network Physiology in Hippocampus. Cereb Cortex 2018; 27:4182-4198. [PMID: 28460009 PMCID: PMC6248689 DOI: 10.1093/cercor/bhx103] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Indexed: 01/06/2023] Open
Abstract
Memory is strongly influenced by stress but underlying mechanisms are unknown. Here, we
used electrophysiology, neuroanatomy, and network simulations to probe the role of the
endogenous, stress-related neuropeptide corticotropin-releasing hormone (CRH) in
modulating hippocampal function. We focused on neuronal excitability and the incidence of
sharp waves (SPWs), a form of intrinsic network activity associated with memory
consolidation. Specifically, we blocked endogenous CRH using 2 chemically distinct
antagonists of the principal hippocampal CRH receptor, CRHR1. The antagonists caused a
modest reduction of spontaneous excitatory transmission onto CA3 pyramidal cells,
mediated, in part by effects on IAHP. This was accompanied by a decrease in the
incidence but not amplitude of SPWs, indicating that the synaptic actions of CRH are
sufficient to alter the output of a complex hippocampal network. A biophysical model of
CA3 described how local actions of CRH produce macroscopic consequences including the
observed changes in SPWs. Collectively, the results provide a first demonstration of the
manner in which subtle synaptic effects of an endogenously released neuropeptide influence
hippocampal network level operations and, in the case of CRH, may contribute to the
effects of acute stress on memory.
Collapse
Affiliation(s)
- B. G. Gunn
- Department of Pediatrics, University of
California-Irvine, Irvine, CA, USA
| | - C. D. Cox
- Department of Anatomy/Neurobiology, University of
California-Irvine, Irvine, CA, USA
| | - Y. Chen
- Department of Pediatrics, University of
California-Irvine, Irvine, CA, USA
- Department of Anatomy/Neurobiology, University of
California-Irvine, Irvine, CA, USA
| | - M. Frotscher
- ZMNH, Institute for Structural
Neurobiology, D-20251 Hamburg,
Germany
| | - C. M. Gall
- Department of Anatomy/Neurobiology, University of
California-Irvine, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of
California-Irvine, Irvine, CA, USA
| | - T. Z. Baram
- Department of Pediatrics, University of
California-Irvine, Irvine, CA, USA
- Department of Anatomy/Neurobiology, University of
California-Irvine, Irvine, CA, USA
- Department of Neurology, University of
California-Irvine, Irvine, CA, USA
- Address correspondence to Prof. T. Z. Baram, Departments of Pediatrics;
Anatomy & Neurobiology; Neurology, University of California-Irvine, Medical Sciences
I, ZOT: 4475, Irvine, CA 92697-4475, USA.
| | - G. Lynch
- Department of Anatomy/Neurobiology, University of
California-Irvine, Irvine, CA, USA
- Department of Psychiatry and Human Behavior, University
of California-Irvine, Irvine, CA, USA
| |
Collapse
|