1
|
Zhang K, Li J, Xu J, Shen Z, Lin Y, Zhao C, Lu X, Rui Y, Gao W. RBP4 promotes denervation-induced muscle atrophy through STRA6-dependent pathway. J Cachexia Sarcopenia Muscle 2024; 15:1601-1615. [PMID: 39031684 PMCID: PMC11294031 DOI: 10.1002/jcsm.13518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 04/06/2024] [Accepted: 05/06/2024] [Indexed: 07/22/2024] Open
Abstract
BACKGROUNDS Fat infiltration of skeletal muscle has been recognized as a common feature of many degenerative muscle disorders. Retinol binding protein 4 (RBP4) is an adipokine that has been demonstrated to be correlated with the presence and severity of sarcopenia in the elderly. However, the exact role and the underlying mechanism of RBP4 in muscle atrophy remains unclear. METHODS Denervation-induced muscle atrophy model was constructed in wild-type and RBP4 knockout mice. To modify the expression of RBP4, mice were received intramuscular injection of retinol-free RBP4 (apo-RBP4), retinol-bound RBP4 (holo-RBP4) or oral gavage of RBP4 inhibitor A1120. Holo-RBP4-stimulated C2C12 myotubes were treated with siRNAs or specific inhibitors targeting signalling receptor and transporter of retinol 6 (STRA6)/Janus kinase 2 (JAK2)/Signal transducer and activator of transcription 3 (STAT3) pathway. Fat accumulation, myofibre cross-sectional area, myotube diameter and the expression of muscle atrophy markers and myogenesis markers were analysed. RESULTS The expression levels of RBP4 in skeletal muscles were significantly up-regulated more than 2-fold from 7 days and sustained for 28 days after denervation. Immunofluorescence analysis indicated that increased RBP4 was localized in the infiltrated fatty region in denervated skeletal muscles. Knockout of RBP4 alleviated denervation-induced fatty infiltration and muscle atrophy together with decreased expression of atrophy marker Atrogin-1 and MuRF1 as well as increased expression of myogenesis regulators MyoD and MyoG. By contrast, injection of retinol-bound holo-RBP4 aggregated denervation-induced ectopic fat accumulation and muscle atrophy. Consistently, holo-RBP4 stimulation also had a dose-dependent effect on the reduction of C2C12 myotube diameter and myofibre cross-sectional area, as well as on the increase of Atrogin-1and MuRF1 expression and decrease of MyoD and MyoG expression. Mechanistically, holo-RBP4 treatment increased the expression of its membrane receptor STRA6 (>3-fold) and promoted the phosphorylation of downstream JAK2 and STAT3. Inhibition of STRA6/JAK2/STAT3 pathway either by specific siRNAs or inhibitors could decrease the expression of Atrogin-1 and MuRF1 (>50%) and decrease the expression of MyoD and MyoG (>3-fold) in holo-RBP4-treated C2C12 myotube. RBP4 specific pharmacological antagonist A1120 significantly inhibited the activation of STRA6/JAK2/STAT3 pathway, ameliorated ectopic fat infiltration and protected against denervation-induced muscle atrophy (30% increased myofibre cross-sectional area) in mice. CONCLUSIONS In conclusion, our data reveal that RBP4 promotes fat infiltration and muscle atrophy through a STRA6-dependent and JAK2/STAT3 pathway-mediated mechanism in denervated skeletal muscle. Our results suggest that lowering RBP4 levels might serve as a promising therapeutic approach for prevention and treatment of muscle atrophy.
Collapse
Affiliation(s)
- Kang‐Zhen Zhang
- Department of Geriatrics, Zhongda Hospital, School of MedicineSoutheast UniversityNo. 87 DingjiaqiaoNanjingJiangsuChina
| | - Jia‐Wen Li
- Department of Geriatrics, Zhongda Hospital, School of MedicineSoutheast UniversityNo. 87 DingjiaqiaoNanjingJiangsuChina
| | - Jin‐Shui Xu
- Jiangsu Province Center for Disease Control and PreventionNanjingChina
| | - Zheng‐Kai Shen
- Jiangsu Province Center for Disease Control and PreventionNanjingChina
| | - Yu‐Shuang Lin
- Department of GeriatricsSir Run Run Hospital, Nanjing Medical UniversityNanjingChina
| | - Can Zhao
- Department of GeriatricsSir Run Run Hospital, Nanjing Medical UniversityNanjingChina
| | - Xiang Lu
- Department of GeriatricsSir Run Run Hospital, Nanjing Medical UniversityNanjingChina
| | - Yun‐Feng Rui
- Department of Orthopaedics, Zhongda Hospital, School of MedicineSoutheast UniversityNo. 87 DingjiaqiaoNanjingJiangsuChina
| | - Wei Gao
- Department of Geriatrics, Zhongda Hospital, School of MedicineSoutheast UniversityNo. 87 DingjiaqiaoNanjingJiangsuChina
| |
Collapse
|
2
|
Frisk C, Das S, Eriksson MJ, Walentinsson A, Corbascio M, Hage C, Kumar C, Ekström M, Maret E, Persson H, Linde C, Persson B. Cardiac biopsies reveal differences in transcriptomics between left and right ventricle in patients with or without diagnostic signs of heart failure. Sci Rep 2024; 14:5811. [PMID: 38461325 PMCID: PMC10924960 DOI: 10.1038/s41598-024-56025-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/29/2024] [Indexed: 03/11/2024] Open
Abstract
New or mild heart failure (HF) is mainly caused by left ventricular dysfunction. We hypothesised that gene expression differ between the left (LV) and right ventricle (RV) and secondly by type of LV dysfunction. We compared gene expression through myocardial biopsies from LV and RV of patients undergoing elective coronary bypass surgery (CABG). Patients were categorised based on LV ejection fraction (EF), diastolic function and NT-proBNP into pEF (preserved; LVEF ≥ 45%), rEF (reduced; LVEF < 45%) or normal LV function. Principal component analysis of gene expression displayed two clusters corresponding to LV and RV. Up-regulated genes in LV included natriuretic peptides NPPA and NPPB, transcription factors/coactivators STAT4 and VGLL2, ion channel related HCN2 and LRRC38 associated with cardiac muscle contraction, cytoskeleton, and cellular component movement. Patients with pEF phenotype versus normal differed in gene expression predominantly in LV, supporting that diastolic dysfunction and structural changes reflect early LV disease in pEF. DKK2 was overexpressed in LV of HFpEF phenotype, potentially leading to lower expression levels of β-catenin, α-SMA (smooth muscle actin), and enhanced apoptosis, and could be a possible factor in the development of HFpEF. CXCL14 was down-regulated in both pEF and rEF, and may play a role to promote development of HF.
Collapse
Affiliation(s)
- Christoffer Frisk
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Box 596, 751 24, Uppsala, Sweden
| | - Sarbashis Das
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Box 596, 751 24, Uppsala, Sweden
| | - Maria J Eriksson
- Department of Clinical Physiology, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Anna Walentinsson
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, 431 83, Gothenburg, Sweden
| | - Matthias Corbascio
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 77, Stockholm, Sweden
- Department of Thoracic Surgery, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Camilla Hage
- Department of Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
- Heart and Vascular Theme, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Chanchal Kumar
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, 431 83, Gothenburg, Sweden
- Department of Medicine, Integrated Cardio Metabolic Center (ICMC), Karolinska Institutet, 141 57, Huddinge, Sweden
| | - Mattias Ekström
- Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, 182 88, Stockholm, Sweden
- Department of Cardiology, Danderyd Hospital, 182 88, Stockholm, Sweden
| | - Eva Maret
- Department of Clinical Physiology, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Hans Persson
- Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, 182 88, Stockholm, Sweden
- Department of Cardiology, Danderyd Hospital, 182 88, Stockholm, Sweden
| | - Cecilia Linde
- Department of Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
- Heart and Vascular Theme, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Bengt Persson
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Box 596, 751 24, Uppsala, Sweden.
- Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
3
|
Pazos-Pérez A, Piñeiro-Ramil M, Franco-Trepat E, Alonso-Pérez A, Guillán-Fresco M, Crespo-Golmar A, López-Fagúndez M, Aranda JC, Bravo SB, Jorge-Mora A, Gómez R. The Hepatokine RBP4 Links Metabolic Diseases to Articular Inflammation. Antioxidants (Basel) 2024; 13:124. [PMID: 38275649 PMCID: PMC10812991 DOI: 10.3390/antiox13010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/27/2024] Open
Abstract
OBJECTIVES This study investigates the role of retinol binding protein 4 (RBP4) in an articular context. RBP4, a vitamin A transporter, is linked to various metabolic diseases. METHODS Synovial fluid RBP4 levels were assessed in crystalline arthritis (CA) patients using ELISA. RBP4's impact on articular cell types was analysed in vitro through RT-PCR and flow cytometry. Proteomic analysis was conducted on primary human osteoarthritis chondrocytes (hOACs). RESULTS Synovial fluid RBP4 concentrations in CA patients correlated positively with glucose levels and negatively with synovial leukocyte count and were elevated in hypertensive patients. In vitro, these RBP4 concentrations activated neutrophils, induced the expression of inflammatory factors in hOACs as well as synoviocytes, and triggered proteomic changes consistent with inflammation. Moreover, they increased catabolism and decreased anabolism, mitochondrial dysfunction, and glycolysis promotion. Both in silico and in vitro experiments suggested that RBP4 acts through TLR4. CONCLUSIONS This study identifies relevant RBP4 concentrations in CA patients' synovial fluids, linking them to hypertensive patients with a metabolic disruption. Evidence is provided that RBP4 acts as a DAMP at these concentrations, inducing robust inflammatory, catabolic, chemotactic, and metabolic responses in chondrocytes, synoviocytes, and neutrophils. These effects may explain RBP4-related metabolic diseases' contribution to joint destruction in various rheumatic conditions like CA.
Collapse
Affiliation(s)
- Andrés Pazos-Pérez
- Musculoskeletal Pathology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Clinical Hospital, SERGAS, 15706 Santiago de Compostela, Spain; (A.P.-P.); (M.P.-R.); (E.F.-T.); (A.A.-P.); (M.G.-F.); (A.C.-G.); (M.L.-F.); (S.B.B.); (A.J.-M.)
| | - María Piñeiro-Ramil
- Musculoskeletal Pathology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Clinical Hospital, SERGAS, 15706 Santiago de Compostela, Spain; (A.P.-P.); (M.P.-R.); (E.F.-T.); (A.A.-P.); (M.G.-F.); (A.C.-G.); (M.L.-F.); (S.B.B.); (A.J.-M.)
| | - Eloi Franco-Trepat
- Musculoskeletal Pathology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Clinical Hospital, SERGAS, 15706 Santiago de Compostela, Spain; (A.P.-P.); (M.P.-R.); (E.F.-T.); (A.A.-P.); (M.G.-F.); (A.C.-G.); (M.L.-F.); (S.B.B.); (A.J.-M.)
| | - Ana Alonso-Pérez
- Musculoskeletal Pathology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Clinical Hospital, SERGAS, 15706 Santiago de Compostela, Spain; (A.P.-P.); (M.P.-R.); (E.F.-T.); (A.A.-P.); (M.G.-F.); (A.C.-G.); (M.L.-F.); (S.B.B.); (A.J.-M.)
| | - María Guillán-Fresco
- Musculoskeletal Pathology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Clinical Hospital, SERGAS, 15706 Santiago de Compostela, Spain; (A.P.-P.); (M.P.-R.); (E.F.-T.); (A.A.-P.); (M.G.-F.); (A.C.-G.); (M.L.-F.); (S.B.B.); (A.J.-M.)
| | - Antía Crespo-Golmar
- Musculoskeletal Pathology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Clinical Hospital, SERGAS, 15706 Santiago de Compostela, Spain; (A.P.-P.); (M.P.-R.); (E.F.-T.); (A.A.-P.); (M.G.-F.); (A.C.-G.); (M.L.-F.); (S.B.B.); (A.J.-M.)
| | - Miriam López-Fagúndez
- Musculoskeletal Pathology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Clinical Hospital, SERGAS, 15706 Santiago de Compostela, Spain; (A.P.-P.); (M.P.-R.); (E.F.-T.); (A.A.-P.); (M.G.-F.); (A.C.-G.); (M.L.-F.); (S.B.B.); (A.J.-M.)
| | - Javier Conde Aranda
- Molecular and Cellular Gastroenterology, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Clinical Hospital, SERGAS, 15706 Santiago de Compostela, Spain;
| | - Susana Belen Bravo
- Musculoskeletal Pathology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Clinical Hospital, SERGAS, 15706 Santiago de Compostela, Spain; (A.P.-P.); (M.P.-R.); (E.F.-T.); (A.A.-P.); (M.G.-F.); (A.C.-G.); (M.L.-F.); (S.B.B.); (A.J.-M.)
| | - Alberto Jorge-Mora
- Musculoskeletal Pathology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Clinical Hospital, SERGAS, 15706 Santiago de Compostela, Spain; (A.P.-P.); (M.P.-R.); (E.F.-T.); (A.A.-P.); (M.G.-F.); (A.C.-G.); (M.L.-F.); (S.B.B.); (A.J.-M.)
| | - Rodolfo Gómez
- Musculoskeletal Pathology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Clinical Hospital, SERGAS, 15706 Santiago de Compostela, Spain; (A.P.-P.); (M.P.-R.); (E.F.-T.); (A.A.-P.); (M.G.-F.); (A.C.-G.); (M.L.-F.); (S.B.B.); (A.J.-M.)
| |
Collapse
|
4
|
Daou D, Gillette TG, Hill JA. Inflammatory Mechanisms in Heart Failure with Preserved Ejection Fraction. Physiology (Bethesda) 2023; 38:0. [PMID: 37013947 PMCID: PMC10396273 DOI: 10.1152/physiol.00004.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/27/2023] [Accepted: 04/02/2023] [Indexed: 04/05/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is now the most common form of heart failure and a significant public health concern for which limited effective therapies exist. Inflammation triggered by comorbidity burden is a critical element of HFpEF pathophysiology. Here, we discuss evidence for comorbidity-driven systemic and myocardial inflammation and the mechanistic role of inflammation in pathological myocardial remodeling in HFpEF.
Collapse
Affiliation(s)
- Daniel Daou
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Thomas G Gillette
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Joseph A Hill
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas, United States
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
5
|
Liu B, Shalamu A, Pei Z, Liu L, Wei Z, Qu Y, Song S, Luo W, Dong Z, Weng X, Ge J. A novel mouse model of heart failure with preserved ejection fraction after chronic kidney disease induced by retinol through JAK/STAT pathway. Int J Biol Sci 2023; 19:3661-3677. [PMID: 37564202 PMCID: PMC10411473 DOI: 10.7150/ijbs.83432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/26/2023] [Indexed: 08/12/2023] Open
Abstract
Heart failure is the leading cardiovascular comorbidity in chronic kidney disease (CKD) patients. Among the types of heart failure according to ejection fraction, heart failure with preserved ejection fraction (HFpEF) is the most common type of heart failure in CKD patients. However, the specific animal model of HFpEF afer CKD is currently missing. In this study, we determined the heart failure characteristics and dynamic progression in CKD mice. Based on these features, we established the practical HFpEF after CKD mouse model using 5/6 subtotal nephrectomy and retinol administration. Active apoptosis, impaired calcium handling, an imbalance between eNOS and oxidative stress and engaged endoplasmic reticulum stress were observed in our model. RNSseq revealed distinct gene expression patterns between HFpEF after CKD and metabolic induced-HFpEF. Furthermore, we revealed the potential mechanism of the pro-HFpEF effect of retinol. Serum accumulation of retinol in CKD prompts myocardial hypertrophy and fibrosis by activating JAK2 and phosphorylating STAT5. Finally, using small molecule inhibitor AC-4-130, we found STAT5 phosphorylation inhibitor may be a potential intervention target for HFpEF after CKD. In conclusion, we provide a novel animal model and a potential drug target for HFpEF intervention in CKD.
Collapse
Affiliation(s)
- Bowen Liu
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, 200000, China
- National Clinical Research for Interventional Medicine, Shanghai, 200000, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Chinese Academy of Medical Sciences, Shanghai, 200000, China
| | - Adilan Shalamu
- National Clinical Research for Interventional Medicine, Shanghai, 200000, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Chinese Academy of Medical Sciences, Shanghai, 200000, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200000, China
| | - Zhiqiang Pei
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, 200000, China
- National Clinical Research for Interventional Medicine, Shanghai, 200000, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Chinese Academy of Medical Sciences, Shanghai, 200000, China
- Department of Cardiology, Taiyuan Central Hospital of Shanxi Medical University, Shanxi, 030000, China
| | - Liwei Liu
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, 200000, China
- National Clinical Research for Interventional Medicine, Shanghai, 200000, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Chinese Academy of Medical Sciences, Shanghai, 200000, China
| | - Zilun Wei
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, 200000, China
- National Clinical Research for Interventional Medicine, Shanghai, 200000, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Chinese Academy of Medical Sciences, Shanghai, 200000, China
| | - Yanan Qu
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, 200000, China
- National Clinical Research for Interventional Medicine, Shanghai, 200000, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Chinese Academy of Medical Sciences, Shanghai, 200000, China
| | - Shuai Song
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, 200000, China
- National Clinical Research for Interventional Medicine, Shanghai, 200000, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Chinese Academy of Medical Sciences, Shanghai, 200000, China
| | - Wei Luo
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, 200000, China
- National Clinical Research for Interventional Medicine, Shanghai, 200000, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Chinese Academy of Medical Sciences, Shanghai, 200000, China
| | - Zhen Dong
- National Clinical Research for Interventional Medicine, Shanghai, 200000, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Chinese Academy of Medical Sciences, Shanghai, 200000, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200000, China
| | - Xinyu Weng
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, 200000, China
- National Clinical Research for Interventional Medicine, Shanghai, 200000, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Chinese Academy of Medical Sciences, Shanghai, 200000, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200000, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, 200000, China
- National Clinical Research for Interventional Medicine, Shanghai, 200000, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Chinese Academy of Medical Sciences, Shanghai, 200000, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200000, China
| |
Collapse
|
6
|
Clemente-Suárez VJ, Redondo-Flórez L, Beltrán-Velasco AI, Martín-Rodríguez A, Martínez-Guardado I, Navarro-Jiménez E, Laborde-Cárdenas CC, Tornero-Aguilera JF. The Role of Adipokines in Health and Disease. Biomedicines 2023; 11:biomedicines11051290. [PMID: 37238961 DOI: 10.3390/biomedicines11051290] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Adipokines are cell-signaling proteins secreted by adipose tissue that has been related to a low-grade state of inflammation and different pathologies. The present review aims to analyze the role of adipokines in health and disease in order to understand the important functions and effects of these cytokines. For this aim, the present review delves into the type of adipocytes and the cytokines produced, as well as their functions; the relations of adipokines in inflammation and different diseases such as cardiovascular, atherosclerosis, mental diseases, metabolic disorders, cancer, and eating behaviors; and finally, the role of microbiota, nutrition, and physical activity in adipokines is discussed. This information would allow for a better understanding of these important cytokines and their effects on body organisms.
Collapse
Affiliation(s)
| | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/Tajo s/n, 28670 Madrid, Spain
| | - Ana Isabel Beltrán-Velasco
- Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, C/del Hostal, 28248 Madrid, Spain
| | | | - Ismael Martínez-Guardado
- BRABE Group, Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, C/del Hostal, 28248 Madrid, Spain
| | | | | | | |
Collapse
|
7
|
Yang HH, Wang X, Li S, Liu Y, Akbar R, Fan GC. Lipocalin family proteins and their diverse roles in cardiovascular disease. Pharmacol Ther 2023; 244:108385. [PMID: 36966973 PMCID: PMC10079643 DOI: 10.1016/j.pharmthera.2023.108385] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/01/2023] [Accepted: 03/13/2023] [Indexed: 04/03/2023]
Abstract
The lipocalin (LCN) family members, a group of small extracellular proteins with 160-180 amino acids in length, can be detected in all kingdoms of life from bacteria to human beings. They are characterized by low similarity of amino acid sequence but highly conserved tertiary structures with an eight-stranded antiparallel β-barrel which forms a cup-shaped ligand binding pocket. In addition to bind small hydrophobic ligands (i.e., fatty acids, odorants, retinoids, and steroids) and transport them to specific cells, lipocalins (LCNs) can interact with specific cell membrane receptors to activate their downstream signaling pathways, and with soluble macromolecules to form the complex. Consequently, LCNs exhibit great functional diversity. Accumulating evidence has demonstrated that LCN family proteins exert multiple layers of function in the regulation of many physiological processes and human diseases (i.e., cancers, immune disorders, metabolic disease, neurological/psychiatric disorders, and cardiovascular disease). In this review, we firstly introduce the structural and sequence properties of LCNs. Next, six LCNs including apolipoprotein D (ApoD), ApoM, lipocalin 2 (LCN2), LCN10, retinol-binding protein 4 (RBP4), and Lipocalin-type prostaglandin D synthase (L-PGDS) which have been characterized so far are highlighted for their diagnostic/prognostic values and their potential effects on coronary artery disease and myocardial infarction injury. The roles of these 6 LCNs in cardiac hypertrophy, heart failure, diabetes-induced cardiac disorder, and septic cardiomyopathy are also summarized. Finally, their therapeutic potential for cardiovascular disease is discussed in each section.
Collapse
Affiliation(s)
- Hui-Hui Yang
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Xiaohong Wang
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Siru Li
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Yueying Liu
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Rubab Akbar
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Guo-Chang Fan
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
8
|
GUAN B, CHEN XQ, LIU Y, ZHOU H, YANG MY, ZHENG HW, LI SJ, CAO J. Causal effects of circulating vitamin levels on the risk of heart failure: a Mendelian randomization study. J Geriatr Cardiol 2023; 20:195-204. [PMID: 37091260 PMCID: PMC10114193 DOI: 10.26599/1671-5411.2023.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
BACKGROUND Observational studies suggest inverse associations between serum vitamin levels and the risk of heart failure (HF). However, the causal effects of vitamins on HF have not been fully elucidated. Here, we conducted a Mendelian randomization (MR) study to investigate the causal associations between genetically determined vitamin levels and HF. METHODS Genetic instrumental variables for circulating vitamin levels, including vitamins A, B, C, D, and E, which were assessed as either absolute or metabolite levels were obtained from public genome-wide association studies. Summary statistics for single-nucleotide-polymorphisms and HF associations were retrieved from the HERMES Consortium (47,309 cases and 930,014 controls) and FinnGen Study (30,098 cases and 229,612 controls). Two-sample MR analyses were implemented to assess the causality between vitamin levels and HF per outcome database, and the results were subsequently combined by meta-analysis. RESULTS Our MR study did not find significant associations between genetically determined circulating vitamin levels and HF risk. For absolute vitamin levels, the odds ratio for HF ranged from 0.97 (95% confidence interval [CI]: 0.85-1.09, P = 0.41) for vitamin C to 1.05 (95% CI: 0.61-1.82, P = 0.85) for vitamin A. For vitamin metabolites, the odds ratio ranged between 0.94 (95% CI: 0.75-1.19, P = 0.62) for α-tocopherol and 1.11 (95% CI: 0.98-1.26, P = 0.09) for γ-tocopherol. CONCLUSION Evidence from our study does not support the causal effects of circulating vitamin levels on HF. Therefore, there may be no direct beneficial effects of vitamin intake on the prevention of primary HF.
Collapse
Affiliation(s)
- Bo GUAN
- Medical School of Chinese PLA General Hospital, Beijing, China
| | - Xiao-Qiang CHEN
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan LIU
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hui ZHOU
- Xiangya School of Nursing, Central South University, Changsha, Hunan, China
| | - Ming-Yan YANG
- Medical School of Chinese PLA General Hospital, Beijing, China
| | - Hong-Wei ZHENG
- Department of Cardiology, Tangshan Gongren Hospital Affiliated to Hebei Medical University, Tangshan, China
| | - Shi-Jun LI
- Geriatric Cardiology Department of the Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
- (CAO J)
| | - Jian CAO
- Geriatric Cardiology Department of the Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
- (LI SJ)
| |
Collapse
|
9
|
Chang CL, Li YR, Wang ZY, Li ML, Jia KY, Sun HX, Wang Q, Zhao C, Lu X, Gao W. Serum Retinol Binding Protein 4 as a Potential Biomarker for Sarcopenia in Older Adults. J Gerontol A Biol Sci Med Sci 2023; 78:34-41. [PMID: 35857418 DOI: 10.1093/gerona/glac151] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Indexed: 01/31/2023] Open
Abstract
Sarcopenia is characterized by progressive loss of muscle mass and function due to aging. Retinol-binding protein 4 (RBP4) is an adipokine with pro-inflammatory effects. However, the change of RBP4 concentration and its role in sarcopenia remains unclear. The aim of this study was to evaluate the association of serum RBP4 level with sarcopenia in the older adults. A total of 816 community-dwelling older adults aged ≥60 years were enrolled. Serum RBP4 was measured by enzyme-linked immunosorbent assay. Appendicular skeletal muscle mass index (ASMI), grip strength, and gait speed were measured. We found that serum RBP4 levels were higher in patients with sarcopenia when compared with those without sarcopenias (44.3 [33.9-57.7] vs 38.0 [28.0-48.4] μg/mL). Receiver operating characteristic curve analysis indicated that the optimal cutoff value of serum RBP4 level that predicted sarcopenia was 38.79 μg/mL with a sensitivity of 67.8% and a specificity of 53.3%. Multivariate logistic regression analysis showed that the subjects with a higher level of RBP4 had a higher risk of sarcopenia (adjusted odds ratio [OR] = 2.036, 95% CI = 1.449-2.861). Serum RBP4 concentration was negatively correlated with grip strength (r = -.098), gait speed (r = -.186), and AMSI (r = -.096). Moreover, serum RBP4 levels were higher in patients with severe sarcopenia when compared with those with moderate sarcopenia (49.0 [37.3-61.2] vs 40.4 [31.3-51.2] μg/mL). Taken together, our results demonstrate that serum RBP4 level is correlated with the risk and severity of sarcopenia in the older adults, indicating that RBP4 might serve as a surrogate biomarker for the screening and evaluation of sarcopenia.
Collapse
Affiliation(s)
- Chen-Lu Chang
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.,Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing, China
| | - Yan-Ru Li
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.,Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing, China
| | - Zhi-Yue Wang
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.,Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing, China
| | - Mei-Lin Li
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.,Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing, China
| | - Kai-Yue Jia
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.,Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing, China
| | - Hui-Xian Sun
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.,Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing, China
| | - Quan Wang
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.,Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing, China
| | - Can Zhao
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.,Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing, China
| | - Xiang Lu
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.,Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing, China
| | - Wei Gao
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.,Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
Zhang Y, Wu J, Dong E, Wang Z, Xiao H. Toll-like receptors in cardiac hypertrophy. Front Cardiovasc Med 2023; 10:1143583. [PMID: 37113698 PMCID: PMC10126280 DOI: 10.3389/fcvm.2023.1143583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/24/2023] [Indexed: 04/29/2023] Open
Abstract
Toll-like receptors (TLRs) are a family of pattern recognition receptors (PRRs) that can identify pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). TLRs play an important role in the innate immune response, leading to acute and chronic inflammation. Cardiac hypertrophy, an important cardiac remodeling phenotype during cardiovascular disease, contributes to the development of heart failure. In previous decades, many studies have reported that TLR-mediated inflammation was involved in the induction of myocardium hypertrophic remodeling, suggesting that targeting TLR signaling might be an effective strategy against pathological cardiac hypertrophy. Thus, it is necessary to study the mechanisms underlying TLR functions in cardiac hypertrophy. In this review, we summarized key findings of TLR signaling in cardiac hypertrophy.
Collapse
Affiliation(s)
- Yanan Zhang
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou, China
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University Third Hospital, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Third Hospital, Beijing, China
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Department of Clinical Laboratory, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Jimin Wu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University Third Hospital, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Third Hospital, Beijing, China
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Erdan Dong
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University Third Hospital, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Third Hospital, Beijing, China
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhanli Wang
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou, China
- Department of Clinical Laboratory, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Correspondence: Zhanli Wang Han Xiao
| | - Han Xiao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University Third Hospital, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Third Hospital, Beijing, China
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Correspondence: Zhanli Wang Han Xiao
| |
Collapse
|
11
|
Yuan W, Tian Y, Lin C, Wang Y, Liu Z, Zhao Y, Chen F, Miao X. Pectic polysaccharides derived from Hainan Rauwolfia ameliorate NLR family pyrin domain-containing 3-mediated colonic epithelial cell pyroptosis in ulcerative colitis. Physiol Genomics 2023; 55:27-40. [PMID: 36440907 DOI: 10.1152/physiolgenomics.00081.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Pectic polysaccharides (PPs) could exert functions on ulcerative colitis (UC), which is classified as a nonspecific inflammatory disorder. This study investigated the molecular mechanism of PPs derived from Rauwolfia in UC. First, the dextran sodium sulfate (DSS)-induced mouse colitis models and lipopolysaccharide (LPS)-treated colonic epithelial cell (YAMC) models were established and treated with PP. Subsequently, the effects of PPs on mucosal damages in DSS mice were detected, and the levels of inflammatory cytokines, pyroptosis-related factors, oxidative stress-related markers, and the tight junction-related proteins in the tissues or cells were examined, and the results suggested that PPs ameliorated colonic mucosal damages and cell pyroptosis in DSS mice, and limited colonic epithelial cell pyroptosis in in vitro UC models. Subsequently, the binding relations of retinol-binding protein 4 (RBP4) to miR-124-3p and NLR pyrin domain-containing 3 (NLRP3) were analyzed. miR-124-3p targeted RBP4 and reduced the binding of RBP4 to NLRP3, thus inhibiting NLRP3-mediated pyroptosis. Finally, functional rescue experiments revealed that miR-124-3p suppression or RBP4 overexpression promoted colonic epithelial cell pyroptosis. Collectively, Rauwolfia-derived PPs limited miR-124-3p and targeted RBP4 and reduced the binding potency of RBP4 to NLRP3 to inhibit NLRP3-mediated pyroptosis, resulting in the alleviation of colonic epithelial cell pyroptosis and mucosal damages in UC.
Collapse
Affiliation(s)
- Wei Yuan
- Department of Emergency Surgery, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yuanyuan Tian
- Department of Gastroenterology, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Cheng Lin
- Department of Gastroenterology, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yuxuan Wang
- Department of Gastroenterology, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Zhanju Liu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Ye Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fengying Chen
- Department of Gastroenterology, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xinpu Miao
- Department of Gastroenterology, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
12
|
Zhou J, Lin H, Lv T, Hao J, Zhang H, Sun S, Yang J, Chi J, Guo H. Inappropriate Activation of TLR4/NF-κB is a Cause of Heart Failure. CARDIOVASCULAR INNOVATIONS AND APPLICATIONS 2022. [DOI: 10.15212/cvia.2022.0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Significance: Heart failure, a disease with extremely high incidence, is closely associated with inflammation and oxidative stress. The Toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) pathway plays an important role in the occurrence and development of heart failure.
Recent advances: Previous studies have shown that TLR4/NF-κB causes heart failure by inducing oxidative stress and inflammation; damaging the endothelia; promoting fibrosis; and inducing myocardial hypertrophy, apoptosis, pyroptosis, and autophagy.
Critical issues: Understanding the pathogenesis of heart failure is essential for the treatment of this disease. In this review, we outline the mechanisms underlying TLR4/NF-κB pathway-mediated heart failure and discuss drugs that alleviate heart failure by regulating the TLR4/NF-κB pathway.
Future directions: During TLR4/NF-κB overactivation, interventions targeting specific receptor antagonists may effectively alleviate heart failure, thus providing a basis for the development of new anti-heart failure drugs.
Collapse
Affiliation(s)
- Jiedong Zhou
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, China
| | - Hui Lin
- Department of Cardiology, Shaoxing People’s Hospital Shaoxing Hospital, Shaoxing, China
| | - Tingting Lv
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, China
| | - Jinjin Hao
- Zhejiang University School of Medicine, Hangzhou, China
| | - Hanlin Zhang
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Shimin Sun
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Juntao Yang
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, China
| | - Jufang Chi
- Department of Cardiology, Shaoxing People’s Hospital Shaoxing Hospital, Shaoxing, China
| | - Hangyuan Guo
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, China
| |
Collapse
|
13
|
Chen D, Zhang Y, Yidilisi A, Xu Y, Dong Q, Jiang J. Causal Associations Between Circulating Adipokines and Cardiovascular Disease: A Mendelian Randomization Study. J Clin Endocrinol Metab 2022; 107:e2572-e2580. [PMID: 35134201 PMCID: PMC9113792 DOI: 10.1210/clinem/dgac048] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Observational studies have suggested associations between adipokines and cardiovascular disease (CVD), but the roles of certain adipokines remain controversial, and these associations have not yet been ascertained causally. OBJECTIVE To investigate whether circulating adipokines causally affect the risk of CVD using 2-sample Mendelian randomization (MR). METHODS Independent genetic variants strongly associated with adiponectin, resistin, chemerin, and retinol binding protein 4 (RBP4) were selected from public genome-wide association studies. Summary-level statistics for CVD, including coronary artery disease (CAD), myocardial infarction, atrial fibrillation (AF), heart failure (HF), and stroke and its subtypes were collected. The inverse-variance weighted and Wald ratio methods were used for the MR estimates. The MR pleiotropy residual sum and outlier, weighted median, MR-Egger, leave-one-out analysis, MR Steiger, and colocalization analyses were used in the sensitivity analysis. RESULTS Genetically predicted resistin levels were positively associated with AF risk (odds ratio [OR] 1.09; 95% confidence interval [CI], 1.04-1.13; P = 4.1 × 10-5), which was attenuated to null after adjusting for blood pressure. We observed suggestive associations between higher genetically predicted chemerin levels and an increased risk of CAD (OR 1.27; 95% CI, 1.01-1.60; P = 0.040), higher genetically predicted RBP4 levels and an increased risk of HF (OR 1.14; 95% CI, 1.02-1.27; P = 0.024). There was no causal association between genetically predicted adiponectin levels and CVD risk. CONCLUSIONS Our findings reveal the causal association between resistin and AF, probably acting through blood pressure, and suggest potential causal associations between chemerin and CAD, RBP4, and HF.
Collapse
Affiliation(s)
- Delong Chen
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuxuan Zhang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Abuduwufuer Yidilisi
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Xu
- Department of Cardiology, Ningbo First Hospital, Ningbo, China
| | - Qichao Dong
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Jiang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
14
|
Li J, Yang Y, Wang H, Ma D, Wang H, Chu L, Zhang Y, Gao Y. Baicalein Ameliorates Myocardial Ischemia Through Reduction of Oxidative Stress, Inflammation and Apoptosis via TLR4/MyD88/MAPK S/NF-κB Pathway and Regulation of Ca 2+ Homeostasis by L-type Ca 2+ Channels. Front Pharmacol 2022; 13:842723. [PMID: 35370644 PMCID: PMC8967179 DOI: 10.3389/fphar.2022.842723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
Background: Baicalein (Bai) is the principal ingredient of Scutellaria baicalensis Georgi. Reports concerning the therapeutic advantages in treating cardiovascular diseases have been published. However, its protective mechanism towards myocardial ischemia (MI) is undefined. Objective: The aim of this study was to investigate the protective mechanisms of Bai on mouse and rat models of MI. Methods: Mice were pre-treated with Bai (30 and 60 mg/kg/day) for 7 days followed by subcutaneous injections of isoproterenol (ISO, 85 mg/kg/day) for 2 days to establish the MI model. Electrocardiograms were recorded and serum was used to detect creatine kinase (CK), lactate dehydrogenase (LDH), superoxide dismutase (SOD), catalase (CAT), glutathione (GSH) and malondialdehyde (MDA). Cardiac tissues were used to detect Ca2+ concentration, morphological pathologies, reactive oxygen species (ROS), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). In addition, the expression levels of Bcl-2-associated X (Bax), B cell lymphoma-2 (Bcl-2), Caspase-3, Toll-like receptor-4 (TLR4), myeloid differentiation protein 88 (MyD88), nuclear factor-kappa B (NF-κB), p-p38, p-extracellular signal-regulated kinase1/2 (p-ERK1/2) and c-Jun N-terminal kinase (p-JNK) were assessed by western blots in myocardial tissues. The effects of Bai on L-type Ca2+ currents (ICa-L), contractility and Ca2+ transients in rat isolated cardiomyocytes were monitored by using patch clamp technique and IonOptix system. Moreover, ISO-induced H9c2 myocardial injury was used to detect levels of inflammation and apoptosis. Results: Bai caused an improvement in heart rate, ST-segment and heart coefficients. Moreover, Bai led to a reduction in CK, LDH and Ca2+ concentrations and improved morphological pathologies. Bai inhibited ROS generation and reinstated SOD, CAT and GSH activities in addition to inhibition of replenishing MDA content. Also, expressions of IL-6 and TNF-α in addition to Bax and Caspase-3 were suppressed, while Bcl-2 expression was upregulated. Bai inhibited protein expressions of TLR4/MyD88/MAPKS/NF-κB and significantly inhibited ICa-L, myocyte contraction and Ca2+ transients. Furthermore, Bai caused a reduction in inflammation and apoptosis in H9c2 cells. Conclusions: Bai demonstrated ameliorative actions towards MI, which might have been related to attenuation of oxidative stress, inflammation and apoptosis via suppression of TLR4/MyD88/MAPKS/NF-κB pathway and adjustment of Ca2+ homeostasis via L-type Ca2+ channels.
Collapse
Affiliation(s)
- Jinghan Li
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yakun Yang
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Hua Wang
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Donglai Ma
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Hongfang Wang
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Li Chu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China.,Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yuanyuan Zhang
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yonggang Gao
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
15
|
Shan H, Ji Y, Gu H, Li H, Zhu J, Feng Y, Peng H, You T, Gu X. Elevated Serum Retinol Binding Protein 4 is Associated with the Risk of Diabetic Cardiomyopathy. Rev Cardiovasc Med 2022; 23:115. [PMID: 39076230 PMCID: PMC11273979 DOI: 10.31083/j.rcm2304115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/20/2022] [Accepted: 02/08/2022] [Indexed: 07/31/2024] Open
Abstract
Background Retinol binding protein 4 (RBP4), a biomarker for insulin resistance in type 2 diabetes (DM), is increased in heart failure. This case-control study aims to determine the association between serum RBP4 levels and diabetic cardiomyopathy (DCM). Methods Demographic and clinical data were obtained from 245 DM patients and 102 non-diabetic controls. RBP4 levels were measured using ELISA. The association between RBP4 and DCM was evaluated using multivariate logistic regression and restricted cubic splines (RCS) in DM patients. Results We showed that serum RBP4 levels were higher in DCM patients than in DM patients without DCM or the controls. Multivariate analysis adjusted by age, gender, body mass index, diabetes duration, left ventricular ejection fraction, insulin treatment, triglycerides, low-density lipoprotein cholesterol, estimated glomerular filtration rate, diabetic retinopathy, diabetic nephropathy, diabetic neuropathy and log N-terminal proBNP showed a significant association between RBP4 and DCM (highest vs. lowest tertile OR 16.87, 95% CI: 6.58, 43.23, p < 0.001). RCS displayed a positive linear correlation between RBP4 levels and the risk of DCM in diabetes (p = 0.004). Adding RBP4 to a basic risk model for DCM improved the reclassification (Net reclassification index: 87.86%, 95% CI: 64.4%, 111.32%, p < 0.001). Conclusions The positive association between serum RBP4 and DCM suggested the role of RBP4 as a potential diagnostic biomarker for distinguishing DCM in patients with DM.
Collapse
Affiliation(s)
- Haihua Shan
- Department of Anesthesiology, the Second Affiliated Hospital of Soochow University, 215004 Suzhou, Jiangsu, China
| | - Yanjing Ji
- Department of Cardiology, the Second Affiliated Hospital of Soochow University, 215004 Suzhou, Jiangsu, China
| | - Haibo Gu
- Department of Cardiology, the Second Affiliated Hospital of Soochow University, 215004 Suzhou, Jiangsu, China
| | - Hui Li
- Department of Cardiology, the Second Affiliated Hospital of Soochow University, 215004 Suzhou, Jiangsu, China
| | - Jing Zhu
- Department of Cardiology, the Second Affiliated Hospital of Soochow University, 215004 Suzhou, Jiangsu, China
| | - Yu Feng
- Department of Endocrinology, the Second Affiliated Hospital of Soochow University, 215004 Suzhou, Jiangsu, China
| | - Hao Peng
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, 215123 Suzhou, Jiangsu, China
| | - Tao You
- Department of Hematology, the First Affiliated Hospital of Soochow University, 215006 Suzhou, Jiangsu, China
| | - Xiaosong Gu
- Department of Cardiology, the Second Affiliated Hospital of Soochow University, 215004 Suzhou, Jiangsu, China
| |
Collapse
|
16
|
Qian K, Yan X, Xu C, Fang Y, Ma M. Association Between Circulating Retinol-Binding Protein 4 and Adverse Cardiovascular Events in Stable Coronary Artery Disease. Front Cardiovasc Med 2022; 9:829347. [PMID: 35369314 PMCID: PMC8968078 DOI: 10.3389/fcvm.2022.829347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background The predictive role of retinol-binding protein 4 (RBP4) in the adverse prognosis of patients with stable coronary artery disease (CAD) has not been well-defined. We thus conducted this cohort study to investigate the association between circulating RBP4 level and major adverse cardiovascular events (MACEs) in Chinese patients with stable CAD. Methods Patients with stable CAD and serum RBP4 concentration measurement at admission between July 2012 and January 2015 were included. The primary outcome in this study was incident MACEs, which included acute coronary syndrome, heart failure, stroke, peripheral vascular disease, and cardiovascular death. Cox proportional hazards regression was adopted to investigate the association between RBP4 and the incidence of MACEs. Results A total of 840 patients with stable CAD were analyzed. The mean age of patients was 61.2 ± 15.9 years, and 56.1% of them were men. After a median follow-up of 2.3 years, 129 MACEs were observed. Compared to participants exposed to the first quartile of serum RBP4 level, those in the second, the third, and the fourth quartiles had associated hazard ratios (HRs) of 2.38 [95% confidence interval (CI): 1.33-4.26], 2.35 (95% CI: 1.31-4.21), and 2.27 (95% CI: 1.28-4.04) after adjusted for confounders, respectively. Every 5 μg/ml increment in serum RBP4 concentration was associated with an adjusted HR of 1.13 (95% CI: 1.05-1.22) for the occurrence of MACEs. Subgroup analyses suggested no significant modifying effects of baseline characteristics for the association between RBP4 and MACEs in patients with stable CAD. Conclusion Our finding suggested that the higher circulating RBP4 level was significantly associated with an increased risk of MACEs in patients with stable CAD.
Collapse
Affiliation(s)
- Ke Qian
- Department of Emergency, Liyang People's Hospital, Liyang, China
| | - Xin Yan
- Department of General Surgery, Liyang People's Hospital, Liyang, China
| | - Cheng Xu
- Department of Emergency, Liyang People's Hospital, Liyang, China
| | - Yijia Fang
- Department of Emergency, Liyang People's Hospital, Liyang, China
| | - Moshuang Ma
- Department of Emergency, Liyang People's Hospital, Liyang, China
| |
Collapse
|
17
|
Ji Y, Song J, Su T, Gu X. Adipokine Retinol Binding Protein 4 and Cardiovascular Diseases. Front Physiol 2022; 13:856298. [PMID: 35309061 PMCID: PMC8924404 DOI: 10.3389/fphys.2022.856298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 01/31/2022] [Indexed: 01/12/2023] Open
Abstract
The morbidity and mortality of cardiovascular diseases (CVDs) have been increasing year by year all over the world and expanding greatly to the younger population, which becomes the leading causes of death globally that threatens human life safety. Prediction of the occurrence of diseases by using risk related adverse events is crucial for screening and early detection of CVDs. Thus, the discovery of new biomarkers that related to risks of CVDs are of urgent in the field. Retinol-binding protein 4 (RBP4) is a 21-kDa adipokine, mainly secreted by adipocytes. Besides its well-established function in the induction of insulin resistance, it has also been found in recent years to be closely associated with CVDs and other risk factors, such as hypertension, coronary heart disease, heart failure, obesity, and hyperlipidemia. In this review, we mainly focus on the progress of research that establishes the correlation between RBP4 and CVDs and the corresponding major risk factors in recent years.
Collapse
|
18
|
Diaz-Riera E, García-Arguinzonis M, López L, Garcia-Moll X, Badimon L, Padro T. Urinary Proteomic Signature in Acute Decompensated Heart Failure: Advances into Molecular Pathophysiology. Int J Mol Sci 2022; 23:2344. [PMID: 35216460 PMCID: PMC8875709 DOI: 10.3390/ijms23042344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/16/2022] Open
Abstract
Acute decompensated heart failure (ADHF) is a life-threatening clinical syndrome involving multi-organ function deterioration. ADHF results from multifaceted, dysregulated pathways that remain poorly understood. Better characterization of proteins associated with heart failure decompensation is needed to gain understanding of the disease pathophysiology and support a more accurate disease phenotyping. In this study, we used an untargeted mass spectrometry (MS) proteomic approach to identify the differential urine protein signature in ADHF patients and examine its pathophysiological link to disease evolution. Urine samples were collected at hospital admission and compared with a group of healthy subjects by two-dimensional electrophoresis coupled to MALDI-TOF/TOF mass spectrometry. A differential pattern of 26 proteins (>1.5-fold change, p < 0.005), mostly of hepatic origin, was identified. The top four biological pathways (p < 0.0001; in silico analysis) were associated to the differential ADHF proteome including retinol metabolism and transport, immune response/inflammation, extracellular matrix organization, and platelet degranulation. Transthyretin (TTR) was the protein most widely represented among them. Quantitative analysis by ELISA of TTR and its binding protein, retinol-binding protein 4 (RBP4), validated the proteomic results. ROC analysis evidenced that combining RBP4 and TTR urine levels highly discriminated ADHF patients with renal dysfunction (AUC: 0.826, p < 0.001) and significantly predicted poor disease evolution over 18-month follow-up. In conclusion, the MS proteomic approach enabled identification of a specific urine protein signature in ADHF at hospitalization, highlighting changes in hepatic proteins such as TTR and RBP4.
Collapse
Affiliation(s)
- Elisa Diaz-Riera
- Cardiovascular-Program ICCC, Research Institute—Hospital Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain; (E.D.-R.); (M.G.-A.); (L.B.)
- Faculty of Medicine, Universtitat de Barcelona, 08036 Barcelona, Spain
| | - Maísa García-Arguinzonis
- Cardiovascular-Program ICCC, Research Institute—Hospital Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain; (E.D.-R.); (M.G.-A.); (L.B.)
| | - Laura López
- Cardiology Department, Hospital Santa Creu i Sant Pau, 08025 Barcelona, Spain; (L.L.); (X.G.-M.)
| | - Xavier Garcia-Moll
- Cardiology Department, Hospital Santa Creu i Sant Pau, 08025 Barcelona, Spain; (L.L.); (X.G.-M.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Lina Badimon
- Cardiovascular-Program ICCC, Research Institute—Hospital Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain; (E.D.-R.); (M.G.-A.); (L.B.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Cardiovascular Research Chair, UAB, 08025 Barcelona, Spain
| | - Teresa Padro
- Cardiovascular-Program ICCC, Research Institute—Hospital Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain; (E.D.-R.); (M.G.-A.); (L.B.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
19
|
Yan X, Wu L, Gao M, Yang P, Yang J, Deng Y. Omentin inhibits the resistin‑induced hypertrophy of H9c2 cardiomyoblasts by inhibiting the TLR4/MyD88/NF‑κB signaling pathway. Exp Ther Med 2022; 23:292. [PMID: 35340867 DOI: 10.3892/etm.2022.11222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/24/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Xiaoliang Yan
- Department of Cardiothoracic Surgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Lin Wu
- Department of Cardiology, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, Zhejiang 317500, P.R. China
| | - Min Gao
- Department of Cardiovascular Surgery, The Affiliated Cardiovascular Hospital of Shanxi Medical University and Shanxi Cardiovascular Hospital (Institute), Taiyuan, Shanxi 030024, P.R. China
| | - Pengjie Yang
- Department of Cardiovascular Surgery, The Affiliated Cardiovascular Hospital of Shanxi Medical University and Shanxi Cardiovascular Hospital (Institute), Taiyuan, Shanxi 030024, P.R. China
| | - Jinjing Yang
- Department of Cardiology and Central Laboratory, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi 030024, P.R. China
| | - Yongzhi Deng
- Department of Cardiovascular Surgery, The Affiliated Cardiovascular Hospital of Shanxi Medical University and Shanxi Cardiovascular Hospital (Institute), Taiyuan, Shanxi 030024, P.R. China
| |
Collapse
|
20
|
Bayer AL, Alcaide P. MyD88: At the heart of inflammatory signaling and cardiovascular disease. J Mol Cell Cardiol 2021; 161:75-85. [PMID: 34371036 PMCID: PMC8629847 DOI: 10.1016/j.yjmcc.2021.08.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/27/2021] [Accepted: 08/02/2021] [Indexed: 12/20/2022]
Abstract
Cardiovascular disease is a leading cause of death worldwide and is associated with systemic inflammation. In depth study of the cell-specific signaling mechanisms mediating the inflammatory response is vital to improving anti-inflammatory therapies that reduce mortality and morbidity. Cellular damage in the cardiovascular system results in the release of damage associated molecular patterns (DAMPs), also known as "alarmins," which activate myeloid cells through the adaptor protein myeloid differentiation primary response 88 (MyD88). MyD88 is broadly expressed in most cell types of the immune and cardiovascular systems, and its role often differs in a cardiovascular disease context and cell specific manner. Herein we review what is known about MyD88 in the setting of a variety of cardiovascular diseases, discussing cell specific functions and the relative contributions of MyD88-dependent vs. independent alarmin triggered inflammatory signaling. The widespread involvement of these pathways in cardiovascular disease, and their largely unexplored complexity, sets the stage for future in depth mechanistic studies that may place MyD88 in both immune and non-immune cell types as an attractive target for therapeutic intervention in cardiovascular disease.
Collapse
Affiliation(s)
- Abraham L Bayer
- Department of Immunology, Tufts University School of Medicine. 136 Harrison Ave, Boston, MA 02111, United States of America.
| | - Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine. 136 Harrison Ave, Boston, MA 02111, United States of America.
| |
Collapse
|
21
|
Zhang KZ, Shen XY, Wang M, Wang L, Sun HX, Li XZ, Huang JJ, Li XQ, Wu C, Zhao C, Liu JL, Lu X, Gao W. Retinol-Binding Protein 4 Promotes Cardiac Injury After Myocardial Infarction Via Inducing Cardiomyocyte Pyroptosis Through an Interaction With NLRP3. J Am Heart Assoc 2021; 10:e022011. [PMID: 34726071 PMCID: PMC8751920 DOI: 10.1161/jaha.121.022011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background Acute myocardial infarction (AMI) is one of the leading causes of cardiovascular morbidity and mortality worldwide. Pyroptosis is a form of inflammatory cell death that plays a major role in the development and progression of cardiac injury in AMI. However, the underlying mechanisms for the activation of pyroptosis during AMI are not fully elucidated. Methods and Results Here we show that RBP4 (retinol‐binding protein 4), a previous identified proinflammatory adipokine, was increased both in the myocardium of left anterior descending artery ligation‐induced AMI mouse model and in ischemia‐hypoxia‒induced cardiomyocyte injury model. The upregulated RBP4 may contribute to the activation of cardiomyocyte pyroptosis in AMI because overexpression of RBP4 activated NLRP3 (nucleotide‐binding oligomerization domain‐like receptor family pyrin domain‐containing 3) inflammasome, promoted the precursor cleavage of Caspase‐1, and subsequently induced GSDMD (gasdermin‐D)‐dependent pyroptosis. In contrast, knockdown of RBP4 alleviated ischemia‐hypoxia‒induced activation of NLRP3 inflammasome signaling and pyroptosis in cardiomyocytes. Mechanistically, coimmunoprecipitation assay showed that RBP4 interacted directly with NLRP3 in cardiomyocyte, while genetic knockdown or pharmacological inhibition of NLRP3 attenuated RBP4‐induced pyroptosis in cardiomyocytes. Finally, knockdown of RBP4 in heart decreased infarct size and protected against AMI‐induced pyroptosis and cardiac dysfunction in mice. Conclusions Taken together, these findings reveal RBP4 as a novel modulator promoting cardiomyocyte pyroptosis via interaction with NLRP3 in AMI. Therefore, targeting cardiac RBP4 might represent a viable strategy for the prevention of cardiac injury in patients with AMI.
Collapse
Affiliation(s)
- Kang-Zhen Zhang
- Department of Geriatrics Sir Run Run HospitalNanjing Medical University Nanjing China.,Key Laboratory for Aging and Disease Nanjing Medical University Nanjing China.,Department of Geriatrics The Second Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Xi-Yu Shen
- Department of Geriatrics Sir Run Run HospitalNanjing Medical University Nanjing China.,Key Laboratory for Aging and Disease Nanjing Medical University Nanjing China
| | - Man Wang
- Department of Geriatrics Sir Run Run HospitalNanjing Medical University Nanjing China.,Key Laboratory for Aging and Disease Nanjing Medical University Nanjing China
| | - Li Wang
- Department of Geriatrics Sir Run Run HospitalNanjing Medical University Nanjing China.,Key Laboratory for Aging and Disease Nanjing Medical University Nanjing China
| | - Hui-Xian Sun
- Department of Geriatrics Sir Run Run HospitalNanjing Medical University Nanjing China.,Key Laboratory for Aging and Disease Nanjing Medical University Nanjing China
| | - Xiu-Zhen Li
- Key Laboratory for Aging and Disease Nanjing Medical University Nanjing China.,Department of Geriatrics The Second Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Jing-Jing Huang
- Key Laboratory for Aging and Disease Nanjing Medical University Nanjing China.,Department of Geriatrics The Second Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Xiao-Qing Li
- Key Laboratory for Aging and Disease Nanjing Medical University Nanjing China.,Department of Geriatrics The Second Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Cheng Wu
- Key Laboratory for Aging and Disease Nanjing Medical University Nanjing China.,Department of Geriatrics The Second Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Can Zhao
- Department of Geriatrics Sir Run Run HospitalNanjing Medical University Nanjing China.,Key Laboratory for Aging and Disease Nanjing Medical University Nanjing China
| | - Jia-Li Liu
- Department of Geriatrics Sir Run Run HospitalNanjing Medical University Nanjing China.,Key Laboratory for Aging and Disease Nanjing Medical University Nanjing China
| | - Xiang Lu
- Department of Geriatrics Sir Run Run HospitalNanjing Medical University Nanjing China.,Key Laboratory for Aging and Disease Nanjing Medical University Nanjing China.,Department of Geriatrics The Second Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Wei Gao
- Department of Geriatrics Sir Run Run HospitalNanjing Medical University Nanjing China.,Key Laboratory for Aging and Disease Nanjing Medical University Nanjing China
| |
Collapse
|
22
|
Adipose-Derived Lipid-Binding Proteins: The Good, the Bad and the Metabolic Diseases. Int J Mol Sci 2021; 22:ijms221910460. [PMID: 34638803 PMCID: PMC8508731 DOI: 10.3390/ijms221910460] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
Adipose tissue releases a large range of bioactive factors called adipokines, many of which are involved in inflammation, glucose homeostasis and lipid metabolism. Under pathological conditions such as obesity, most of the adipokines are upregulated and considered as deleterious, due to their pro-inflammatory, pro-atherosclerotic or pro-diabetic properties, while only a few are downregulated and would be designated as beneficial adipokines, thanks to their counteracting properties against the onset of comorbidities. This review focuses on six adipose-derived lipid-binding proteins that have emerged as key factors in the development of obesity and diabetes: Retinol binding protein 4 (RBP4), Fatty acid binding protein 4 (FABP4), Apolipoprotein D (APOD), Lipocalin-2 (LCN2), Lipocalin-14 (LCN14) and Apolipoprotein M (APOM). These proteins share structural homology and capacity to bind small hydrophobic molecules but display opposite effects on glucose and lipid metabolism. RBP4 and FABP4 are positively associated with metabolic syndrome, while APOD and LCN2 are ubiquitously expressed proteins with deleterious or beneficial effects, depending on their anatomical site of expression. LCN14 and APOM have been recently identified as adipokines associated with healthy metabolism. Recent findings on these lipid-binding proteins exhibiting detrimental or protective roles in human and murine metabolism and their involvement in metabolic diseases are also discussed.
Collapse
|
23
|
Nono Nankam PA, Blüher M. Retinol-binding protein 4 in obesity and metabolic dysfunctions. Mol Cell Endocrinol 2021; 531:111312. [PMID: 33957191 DOI: 10.1016/j.mce.2021.111312] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022]
Abstract
Excessive increased adipose tissue mass in obesity is associated with numerous co-morbid disorders including increased risk of type 2 diabetes, fatty liver disease, hypertension, dyslipidemia, cardiovascular diseases, dementia, airway disease and some cancers. The causal mechanisms explaining these associations are not fully understood. Adipose tissue is an active endocrine organ that secretes many adipokines, cytokines and releases metabolites. These biomolecules referred to as adipocytokines play a significant role in the regulation of whole-body energy homeostasis and metabolism by influencing and altering target tissues function. Understanding the mechanisms of adipocytokine actions represents a hot topic in obesity research. Among several secreted bioactive signalling molecules from adipose tissue and liver, retinol-binding protein 4 (RBP4) has been associated with systemic insulin resistance, dyslipidemia, type 2 diabetes and other metabolic diseases. Here, we aim to review and discuss the current knowledge on RBP4 with a focus on its role in the pathogenesis of obesity comorbid diseases.
Collapse
Affiliation(s)
- Pamela A Nono Nankam
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Germany.
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Germany; Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Germany
| |
Collapse
|
24
|
Huang R, Bai X, Li X, Wang X, Zhao L. Retinol-Binding Protein 4 Activates STRA6, Provoking Pancreatic β-Cell Dysfunction in Type 2 Diabetes. Diabetes 2021; 70:449-463. [PMID: 33199363 DOI: 10.2337/db19-1241] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 11/05/2020] [Indexed: 11/13/2022]
Abstract
Pancreatic β-cell dysfunction plays a decisive role in the progression of type 2 diabetes. Retinol-binding protein 4 (RBP4) is a prominent adipokine in type 2 diabetes, although its effect on β-cell function remains elusive, and the underlying mechanisms are unknown. Here, we found that elevated circulating RBP4 levels were inversely correlated with pancreatic β-cell function in db/db mice across different glycemic stages. RBP4 directly suppressed glucose-stimulated insulin secretion (GSIS) in primary isolated islets and INS-1E cells in a dose- and time-dependent manner. RBP4 transgenic (RBP4-Tg) overexpressing mice showed a dynamic decrease of GSIS, which appeared as early as 8 weeks old, preceding the impairment of insulin sensitivity and glucose tolerance. Islets isolated from RBP4-Tg mice showed a significant decrease of GSIS. Mechanistically, we demonstrated that the stimulated by retinoic acid 6 (STRA6), RBP4's only known specific membrane receptor, is expressed in β-cells and mediates the inhibitory effect of RBP4 on insulin synthesis through the Janus kinase 2/STAT1/ISL-1 pathway. Moreover, decreasing circulating RBP4 level could effectively restore β-cell dysfunction and ameliorate hyperglycemia in db/db mice. These observations revealed a role of RBP4 in pancreatic β-cell dysfunction, which provides new insight into the diabetogenic effect of RBP4.
Collapse
Affiliation(s)
- Rong Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health and Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, People's Republic of China
| | - Xinxiu Bai
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health and Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, People's Republic of China
| | - Xueyan Li
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health and Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, People's Republic of China
| | - Xiaohui Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health and Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, People's Republic of China
| | - Lina Zhao
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health and Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, People's Republic of China
| |
Collapse
|
25
|
Wang D, Feng D, Wang Y, Dong P, Wang Y, Zhong L, Li B, Fu J, Xiao X, Speakman JR, Li M, Gao S. Angiopoietin-Like Protein 8/Leptin Crosstalk Influences Cardiac Mass in Youths With Cardiometabolic Risk: The BCAMS Study. Front Endocrinol (Lausanne) 2021; 12:788549. [PMID: 35145478 PMCID: PMC8821093 DOI: 10.3389/fendo.2021.788549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/16/2021] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVES The link between excess adiposity and left ventricular hypertrophy is multifaceted with sparse data among youths. Given that adipokines/hepatokines may influence lipid metabolism in myocardium, we aimed to investigate the relation of the novel hepatokine angiopoietin-like protein 8 (ANGPTL8) and other adipokines with cardiac structure in a cohort of youths and explore to what extent these adipokines/hepatokines affect cardiac structure through lipids. METHODS A total of 551 participants (aged 15-28 years) from the Beijing Child and Adolescent Metabolic Syndrome Study (BCAMS) cohort underwent echocardiographic measurements plus a blood draw assayed for five adipokines/hepatokines including adiponectin, leptin, retinol binding protein 4, fibroblast growth protein 21 and ANGPTL8. RESULTS Both ANGPTL8 (β = -0.68 g/m2.7 per z-score, P= 0.015) and leptin (β = -1.04 g/m2.7 per z-score, P= 0.036) were significantly inversely associated with left ventricular mass index (LVMI) independent of classical risk factors. Total cholesterol and low-density lipoprotein cholesterol significantly mediated the ANGPTL8-LVMI association (proportion: 19.0% and 17.1%, respectively), while the mediation effect of triglyceride on the ANGPTL8-LVMI relationship was strongly moderated by leptin levels, significantly accounting for 20% of the total effect among participants with higher leptin levels. Other adipokines/hepatokines showed no significant association with LVMI after adjustment for body mass index. CONCLUSIONS Our findings suggest ANGPTL8, particularly interacting with leptin, might have a protective role in cardiac remodeling among youths with risk for metabolic syndrome. Our results offer insights into the pathogenesis of the cardiomyopathy and the potential importance of tissue-tissue crosstalk in these effects.
Collapse
Affiliation(s)
- Dongmei Wang
- Department of Endocrinology, National Health Commission (NHC) Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Dan Feng
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yuhan Wang
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Peiyu Dong
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yonghui Wang
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ling Zhong
- Department of Endocrinology, National Health Commission (NHC) Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Bo Li
- Department of Endocrinology, National Health Commission (NHC) Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Junling Fu
- Department of Endocrinology, National Health Commission (NHC) Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xinhua Xiao
- Department of Endocrinology, National Health Commission (NHC) Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - John R. Speakman
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ming Li
- Department of Endocrinology, National Health Commission (NHC) Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Ming Li, ; Shan Gao,
| | - Shan Gao
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- *Correspondence: Ming Li, ; Shan Gao,
| |
Collapse
|
26
|
Alshubrami S, Al-Regaiey K, Alfadda AA, Iqbal M. Impact of Gastric Sleeve Surgery on Plasma Retinol Binding Protein 4 and Adipsin Levels in Healthy Male Population. Pak J Med Sci 2020; 36:1495-1499. [PMID: 33235563 PMCID: PMC7674898 DOI: 10.12669/pjms.36.7.2329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objectives Bariatric surgery provides most substantial and sustainable weight loss measures in individuals with obesity. Caloric restriction is not only intervention, changes in hormonal secretions are also leading contributory mechanisms to reduce body weight and improve the glycaemic control. The aim of this study was to evaluate the impact of gastric sleeve surgery on plasma retinol binding protein 4 (RBP4) and adipsin levels among Saudi male obese population. Methods This prospective study was conducted in the Departments of Physiology and Surgery, College of Medicine, King Saud University. Thirty-three obese (BMI>38.3) male patients age ranged from 25 to 50 years were recruited. RBP4 and adipsin levels were analyzed before and 6-12 months after gastric sleeve surgery by ELISA along with plasma glucose, insulin, HOMA-IR and lipid profile. Results Circulating RBP4 levels were not significantly changed by bariatric surgery (4382.85±40.35 ng before, and 4393.28±33.13 ng after surgery, p=0.842), neither did adipsin (2949.68±46.86 pg before, and 2917.90±41.90 pg after surgery, p=0.535). Segregation of study participants into two age groups, 25-35 and 35-50 years of age, revealed that before surgery older age group (35-50) had higher RBP4 levels compared to younger group (25-35) (p=0.016). However, after surgery RBP4 levels were decreased in older group but not to a significant level (p=0.174). In younger age group after surgery, there was a near significant increase in RBP4 levels (p=0.052). There were no significant changes in RBP4 levels in both age groups after surgery (p=0.461). For adipsin, there were no significant differences before and after surgery in both age groups. Insulin, BMI and HOMA-IR index were decreased after surgery, however there was no correlation with RBP4 and adipsin levels. Conclusions The present study findings do not suggest a role for RBP4 and adipsin in the improvement of insulin sensitivity in Saudi male obese population after gastric sleeve surgery. However, a decrease in RBP4 levels in older individuals after surgery needs further investigations to understand its effect on weight and glycemic control.
Collapse
Affiliation(s)
- Suad Alshubrami
- Suad Alshubrami Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia. Current Address: Director of Academic and Training Affairs Continuous Professional, King Salman Specialist Hospital, Hail, Saudi Arabia
| | - Khalid Al-Regaiey
- Khalid Al-Regaiey Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Assim A Alfadda
- Assim A. Alfadda Obesity Research Center, Department of Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
27
|
Xiao Z, Kong B, Yang H, Dai C, Fang J, Qin T, Huang H. Key Player in Cardiac Hypertrophy, Emphasizing the Role of Toll-Like Receptor 4. Front Cardiovasc Med 2020; 7:579036. [PMID: 33324685 PMCID: PMC7725871 DOI: 10.3389/fcvm.2020.579036] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022] Open
Abstract
Toll-like receptor 4 (TLR4), a key pattern recognition receptor, initiates the innate immune response and leads to chronic and acute inflammation. In the past decades, accumulating evidence has implicated TLR4-mediated inflammatory response in regulation of myocardium hypertrophic remodeling, indicating that regulation of the TLR4 signaling pathway may be an effective strategy for managing cardiac hypertrophy's pathophysiology. Given TLR4's significance, it is imperative to review the molecular mechanisms and roles underlying TLR4 signaling in cardiac hypertrophy. Here, we comprehensively review the current knowledge of TLR4-mediated inflammatory response and its interaction ligands and co-receptors, as well as activation of various intracellular signaling. We also describe the associated roles in promoting immune cell infiltration and inflammatory mediator secretion, that ultimately cause cardiac hypertrophy. Finally, we provide examples of some of the most promising drugs and new technologies that have the potential to attenuate TLR4-mediated inflammatory response and prevent or reverse the ominous cardiac hypertrophy outcomes.
Collapse
Affiliation(s)
- Zheng Xiao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Bin Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Hongjie Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Chang Dai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jin Fang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Tianyou Qin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
28
|
Han X, Liu P, Liu M, Wei Z, Fan S, Wang X, Sun S, Chu L. [6]-Gingerol Ameliorates ISO-Induced Myocardial Fibrosis by Reducing Oxidative Stress, Inflammation, and Apoptosis through Inhibition of TLR4/MAPKs/NF-κB Pathway. Mol Nutr Food Res 2020; 64:e2000003. [PMID: 32438504 DOI: 10.1002/mnfr.202000003] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 04/30/2020] [Indexed: 12/15/2022]
Abstract
SCOPE [6]-Gingerol is one of the primary pungent constituents of ginger. While [6]-gingerol has many pharmacological effects, its benefits for myocardial fibrosis, including its exact role and underlying mechanisms, remain largely unexplored. The present study is designed to characterize the cardio-protective effects of [6]-gingerol in myocardial fibrosis mice and possible underlying mechanisms. METHODS AND RESULTS Mice are subcutaneously injected with isoproterenol (ISO, 10 mg kg-1 ) and gavaged with [6]-gingerol (10, 20 mg kg-1 day-1 ) for 14 days. Pathological alterations, fibrosis, oxidative stress, inflammation response, and apoptosis are examined. In ISO-induced myocardial fibrosis, [6]-gingerol treatment decreases the J-point, heart rate, cardiac weight index, left ventricle weight index, creatine kinase (CK), and lactate dehydrogenase serum levels, calcium concentration, reactive oxygen species, malondialdehyde, and glutathione disulfide (GSSG), and increases levels of superoxide dismutase, catalase, glutathione, and GSH/GSSG. Further, [6]-gingerol improved ISO-induced morphological pathologies, inhibited inflammation and apoptosis, and suppressed the toll-like receptor-4 (TLR4)/mitogen-activated protein kinases (MAPKs)/nuclear factor κB (NF-κB) signaling pathways. CONCLUSION The protective effect of [6]-gingerol in mice with ISO-induced myocardial fibrosis may be related to the inhibition of oxidative stress, inflammation, and apoptosis, potentially through the TLR4/MAPKs/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xue Han
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China.,Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, Hebei, 050091, China
| | - Panpan Liu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Miaomiao Liu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Ziheng Wei
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Sen Fan
- School of Mechanical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, 050018, China
| | - Xiangting Wang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Shijiazhuang, Hebei, 050200, China.,School of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Shijiang Sun
- Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Li Chu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China.,Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Shijiazhuang, Hebei, 050200, China
| |
Collapse
|
29
|
Si Y, Liu J, Han C, Wang R, Liu T, Sun L. The correlation of retinol-binding protein-4 and lipoprotein combine index with the prevalence and diagnosis of acute coronary syndrome. Heart Vessels 2020; 35:1494-1501. [PMID: 32449048 PMCID: PMC7502440 DOI: 10.1007/s00380-020-01627-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/15/2020] [Indexed: 12/14/2022]
Abstract
Retinol-binding protein-4 (RBP-4) along with the lipid profile plays crucial roles in Acute coronary syndrome (ACS). The study aimed to investigate the correlation of RBP-4, lipoprotein combine index (LCI), and RBP-4 + LCI with ACS. 163 ACS and 77 non-CAD in patients were consecutively enrolled in this study. The serum level of RBP-4 was measured via enzyme-linked immunosorbent assay. LCI was calculated using the formula: total cholesterol × triglyceride × low-density lipoprotein cholesterol/high-density lipoprotein cholesterol. RBP-4 ≥4 ng/ml, LCI ≥16 and LCI ≥16 + RBP-4 ≥4 ng/ml were new independent risk factors of ACS, and OR value of LCI ≥16 + RBP-4 ≥4 ng/ml was higher than that of RBP-4 and LCI combined (all p < 0.05). The AUC for LCI + RBP-4 was higher than that for LCI and RBP-4 individually. The risk of high LCI in 1 lesion vessel was greater than those of 2 or ≥3 lesion vessels (all p < 0.05). In 1 lesion vessel or ≥3 lesion vessels group, the risk associated with LCI and RBP-4 combined was higher than the risk of LCI or RBP-4 alone (all p < 0.05). The risk of hypertension, diabetes mellitus, smoking and history of MI increased with numbers of vessels lesion (all p < 0.05). Increase in RBP-4 and LCI values were found to be independent risk factors for ACS, and the risk of the combined rise in LCI and RBP-4 values was higher than LCI or RBP-4 alone. The combined tests of LCI and RBP-4 might be a potential diagnostic marker for ACS.
Collapse
Affiliation(s)
- Yueqiao Si
- Department of Cardiology, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, Hebei, China
| | - Jingyi Liu
- Department of Cardiology, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, Hebei, China
| | - Chao Han
- Department of Cardiology, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, Hebei, China
| | - Ruijuan Wang
- Department of Cardiology, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, Hebei, China
| | - Tong Liu
- Department of Cardiology, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, Hebei, China
| | - Lixian Sun
- Department of Cardiology, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, Hebei, China.
| |
Collapse
|
30
|
Li J, Fan Q, Cai H, Deng J, Ming F, Li J, Zeng M, Ma M, Zhao P, Liang Q, Jia J, Zhang S, Zhang L. Identification of RBP4 from bighead carp (Hypophthalmichthys nobilis) / silver carp (Hypophthalmichthys molitrix) and effects of CpG ODN on RBP4 expression under A. hydrophila challenge. FISH & SHELLFISH IMMUNOLOGY 2020; 100:476-488. [PMID: 32209398 DOI: 10.1016/j.fsi.2020.03.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/23/2020] [Accepted: 03/18/2020] [Indexed: 06/10/2023]
Abstract
Retinol-binding protein 4 (RBP4) is known as a highly conserved adipokine for immune activation. Aeromonas hydrophila (A. hydrophila) is the most common zoonotic pathogen in aquaculture, which causes serious economic losses to aquaculture, especially to bighead carp (Hypophthalmichthys nobilis, H. nobilis) and silver carp (Hypophthalmichthys molitrix, H. molitrix). Recent studies along with our previous findings have shown that synthetic oligodeoxynucleotides containing CpG motifs (CpG ODN) can play a good role in aquatic animals against infection. In order to clarify the relationship between CpG ODN and RBP4 under A. hydrophila infection, firstly, full-length RBP4 cDNAs from H. nobilis and H. molitrix were cloned. And characteristics of RBP4, including sequence and structure, tissue distribution and genetic evolution were analyzed. In addition, mRNA expression levels of RBP4, cytokine, toll-like receptors (TLRs), morbidity and survival rates of H. nobilis and H. molitrix were observed post CpG ODN immunization or following challenge. The results indicated that hn/hm_RBP4 (RBP4 genes obtained from H. nobilis and H. molitrix) had the highest homology with Megalobrama amblycephala. Distribution data showed that the expression level of hn_RBP4 mRNA was higher than that of hm_RBP4. After CpG ODN immunization followed by A.hydrophila challenge, significantly higher survival was observed in both carps, together with up-regulated RBP4 expression. Meanwhile, hn/hm_IL-1β level was relatively flat (and decreased), hn/hm_IFN-γ, hn/hm_TLR4 and hn/hm_TLR9 levels increased significantly, but hn/hm_STRA6 showed no significant change, compared with control. Moreover, CpG ODN immunization could induce stronger immune protective responses (higher IFN-γ/gentle IL-1β level and lower morbidity/higher survival rate) against A. hydrophila in H. nobilis, along with higher RBP4 level, when compared with that in H. molitrix. These results demonstrated that RBP4 was well involved in the immune protection of CpG ODN. Based on the results, we speculated that in the case of A. hydrophila infection, TLR9 signaling pathway was activated by CpG ODN. Subsequently, CpG ODN up-regulated RBP4, and RBP4 activated TLR4 signaling pathway. Then TLR4 and TLR9 synergistically improved the anti-infection responses. Our findings have good significance for improving resistance to pathogen infection in freshwater fish.
Collapse
Affiliation(s)
- Jiaoqing Li
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Qin Fan
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Haiming Cai
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Jinbo Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Feiping Ming
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Jiayi Li
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Min Zeng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Miaopeng Ma
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Peijing Zhao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Qianyi Liang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Junhao Jia
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Shuxia Zhang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Linghua Zhang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, 510642, China.
| |
Collapse
|
31
|
Novel adipokine associated with OA: retinol binding protein 4 (RBP4) is produced by cartilage and is correlated with MMPs in osteoarthritis patients. Inflamm Res 2020; 69:415-421. [PMID: 32095874 PMCID: PMC7078149 DOI: 10.1007/s00011-020-01326-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 12/11/2022] Open
Abstract
Objective Retinol binding protein 4 (RBP4) is a member of the lipocalin family and a vitamin A carrier in the blood. More recently, RBP4 has been described as an adipokine that is involved in insulin resistance and metabolic syndrome (MetS). As obesity, MetS and some adipokines contribute to the pathogenesis of osteoarthritis (OA), we investigated RBP4 in patients with OA. Materials and methods Cartilage, synovial fluid and blood samples were collected from 100 OA patients undergoing total knee replacement surgery. Primary chondrocytes and cartilage tissue were cultured to measure the RBP4 expression. The concentrations of RBP4, other adipokines (adipsin, adiponectin, leptin and resistin) and biomarkers of OA (COMP, MMP-1, MMP-3 and YKL-40) were measured by immunoassay, and gene expression was measured by next-generation RNA sequencing. Results The OA cartilage samples released RBP4 into the culture medium, and the levels correlated positively with the expression of the adipokines adipsin, adiponectin, leptin and resistin. RBP4 was the most prominently expressed of these adipokines in the OA chondrocytes, and the expression of the RBP4 receptors STRA6 (stimulated by retinoic acid gene homologue 6) and TLR4 (Toll-like receptor 4) was also detected. Within the cartilage culture medium, RBP4 showed a positive correlation with MMP-1, MMP-3 and YKL-40. RBP4 was also present in the synovial fluid from the OA patients and correlated positively with the concentrations of RBP4 found in the plasma and the cartilage culture medium. Plasma RBP4 concentrations also showed a positive correlation with MMP-3 and adipsin. Conclusions We show here, for the first time, that RBP4 is produced within OA joints and that it is associated with increased levels of adipokines and MMPs. The results suggest a role for RBP4 in the pathogenesis of OA and as a possible target for the disease-modifying drugs for the treatment of OA.
Collapse
|
32
|
Li XZ, Zhang KZ, Yan JJ, Wang L, Wang Y, Shen XY, Sun HX, Liu L, Zhao C, He HW, Wang LS, Gao W, Lu X. Serum retinol-binding protein 4 as a predictor of cardiovascular events in elderly patients with chronic heart failure. ESC Heart Fail 2020; 7:542-550. [PMID: 31965727 PMCID: PMC7160478 DOI: 10.1002/ehf2.12591] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/03/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022] Open
Abstract
AIMS RBP4 is an adipokine with adverse effects on cardiovascular system. Increased circulating retinol-binding protein 4 (RBP4) has been linked to chronic heart failure (CHF). However, whether elevated RBP4 is correlated with a poor prognosis in elderly patients with CHF remains unclear. The aim of this study was to evaluate the prognostic value of serum RBP4 in elderly patients with CHF. METHODS AND RESULTS We enrolled 934 consecutive elderly patients (aged 60 years and older) with CHF and 138 age-matched and sex-matched control subjects in a prospective cohort study and explored the association of serum RBP4 levels with the clinical outcomes using multivariate Cox regression analyses. Serum RBP4 levels were elevated in CHF patients when compared with controls (46.66 ± 12.38 μg/mL vs. 40.71 ± 7.2 μg/mL, P < 0.001). Patients with the highest RBP4 concentrations had higher N terminal pro brain natriuretic peptide (NT-proBNP) levels but lower left ventricular eject fraction (LVEF) and estimated glomerular filtration rate (P < 0.001). Serum RBP4 levels were increased as the New York Heart Association functional class increased and LVEF decreased (P < 0.001) and were negatively correlated with LVEF (r = -0.154, P < 0.001) but positively correlated with NT-proBNP levels (r = 0.074, P = 0.023). Multivariate Cox regression analysis suggested that log RBP4 was an independent predictor for major adverse cardiac event(s) [hazard ratio (HR) = 2.61, 95% confidence interval (CI) = 1.19-5.70], together with age, male, LVEF, log NT-proBNP, and estimated glomerular filtration rate. Moreover, log RBP4 was also an independent predictor for cardiovascular mortality (HR = 2.24, 95% CI = 1.35-5.39) and CHF rehospitalization (HR = 2.54, 95% CI = 1.09-5.60) even after adjustment for the established adverse prognostic factors for CHF. The Kaplan-Meier survival curves showed that high concentration of RBP4 was a prognostic indicator of major adverse cardiac event(s) in patients with CHF. CONCLUSIONS Our findings demonstrate for the first time that elevated serum RBP4 is correlated with worse outcome in elderly patients with CHF.
Collapse
Affiliation(s)
- Xiu-Zhen Li
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Avenue, Nanjing, 211166, Jiangsu Province, China.,Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing, China.,Department of Cardiology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kang-Zhen Zhang
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Avenue, Nanjing, 211166, Jiangsu Province, China.,Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing, China.,Department of Cardiology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jian-Jun Yan
- Department of Cardiology, Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Li Wang
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Avenue, Nanjing, 211166, Jiangsu Province, China.,Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing, China
| | - Yue Wang
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Avenue, Nanjing, 211166, Jiangsu Province, China.,Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing, China
| | - Xi-Yu Shen
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Avenue, Nanjing, 211166, Jiangsu Province, China.,Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing, China
| | - Hui-Xian Sun
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Avenue, Nanjing, 211166, Jiangsu Province, China.,Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing, China
| | - Li Liu
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Avenue, Nanjing, 211166, Jiangsu Province, China.,Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing, China
| | - Can Zhao
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Avenue, Nanjing, 211166, Jiangsu Province, China.,Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing, China
| | - Hui-Wei He
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Avenue, Nanjing, 211166, Jiangsu Province, China.,Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing, China
| | - Lian-Sheng Wang
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Gao
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Avenue, Nanjing, 211166, Jiangsu Province, China.,Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing, China
| | - Xiang Lu
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Avenue, Nanjing, 211166, Jiangsu Province, China.,Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing, China
| |
Collapse
|
33
|
Abstract
Accumulating knowledge on the biology and function of the adipose tissue has led to a major shift in our understanding of its role in health and disease. The adipose tissue is now recognized as a crucial regulator of cardiovascular health, mediated by the secretion of several bioactive products, including adipocytokines, microvesicles and gaseous messengers, with a wide range of endocrine and paracrine effects on the cardiovascular system. The adipose tissue function and secretome are tightly controlled by complex homeostatic mechanisms and local cell-cell interactions, which can become dysregulated in obesity. Systemic or local inflammation and insulin resistance lead to a shift in the adipose tissue secretome from anti-inflammatory and anti-atherogenic towards a pro-inflammatory and pro-atherogenic profile. Moreover, the interplay between the adipose tissue and the cardiovascular system is bidirectional, with vascular-derived and heart-derived signals directly affecting adipose tissue biology. In this Review, we summarize the current knowledge of the biology and regional variability of adipose tissue in humans, deciphering the complex molecular mechanisms controlling the crosstalk between the adipose tissue and the cardiovascular system, and their possible clinical translation. In addition, we highlight the latest developments in adipose tissue imaging for cardiovascular risk stratification and discuss how therapeutic targeting of the adipose tissue can improve prevention and treatment of cardiovascular disease.
Collapse
|
34
|
Bakshi S, Schmidt HM, Baskin AE, Croniger CM, Thompson CL, Bonfield T, Fletcher D, Berger NA. Sexual dimorphism in developmental and diet-dependent circulating retinol binding protein 4. Obes Sci Pract 2018; 4:526-534. [PMID: 30574346 PMCID: PMC6298211 DOI: 10.1002/osp4.301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 08/22/2018] [Accepted: 08/26/2018] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE Retinol binding protein 4 (RBP4) transports vitamin A (Retinol) in the blood and contributes mechanistically to the linkage between obesity, insulin resistance and associated comorbidities including type 2 diabetes mellitus, coronary artery and neoplastic diseases. Circulating RBP4 levels have variably been associated with body mass and gender differences. Many of these differences have been demonstrated after limited dietary interventions, and/or at single unique time points. This study investigated the impact of sex and age as biologic variables as well as high versus low fat diets on development of obesity, RBP4 levels and insulin resistance in C57BL/6J mice. METHODS Male and female C57BL/6J mice were fed for 400 days with either low or high fat diets. Female mice were also evaluated on same diets after ovariectomy or sham ovariectomy. Mice were monitored for changes in weight, circulating levels RBP4, glucose and insulin at 100-day intervals and also by 2-hour glucose tolerance tests. RESULTS All mice on low or high fat diets gained weight. Mice on high fat diets showed significantly greater weight gain than those on low fat. Male mice showed significantly greater weight gain compared with females on corresponding diet. Male mice compared with females already showed significantly higher RBP4 levels even before starting diets. Sex differences were maintained for more than 1 year. Gender differences in RBP4 were associated with significant differences in development of glucose intolerance and insulin resistance. CONCLUSIONS Male compared with female C57BL/6J mice show significant gender differences in circulating RBP4 levels from 6 weeks of age, extending more than 1 year. Gender differences in RBP4 may be mechanistically associated with protection against glucose intolerance and insulin resistance. Targeting RBP4 pathways could be useful to disrupt gender differences in insulin resistance and disparities in comorbidities.
Collapse
Affiliation(s)
- S. Bakshi
- Departments of Biochemistry, Case Comprehensive Cancer CenterCase Western Reserve University School of MedicineClevelandOHUSA
| | - H. M. Schmidt
- Departments of Genetics and Genome Sciences, Case Comprehensive Cancer CenterCase Western Reserve University School of MedicineClevelandOHUSA
| | - A. E. Baskin
- Departments of Genetics and Genome Sciences, Case Comprehensive Cancer CenterCase Western Reserve University School of MedicineClevelandOHUSA
| | - C. M. Croniger
- Departments of Nutrition, Case Comprehensive Cancer CenterCase Western Reserve University School of MedicineClevelandOHUSA
| | - C. L. Thompson
- Departments of Nutrition, Case Comprehensive Cancer CenterCase Western Reserve University School of MedicineClevelandOHUSA
| | - T. Bonfield
- Departments of Pediatrics, Case Comprehensive Cancer CenterCase Western Reserve University School of MedicineClevelandOHUSA
| | - D. Fletcher
- Departments of Pediatrics, Case Comprehensive Cancer CenterCase Western Reserve University School of MedicineClevelandOHUSA
| | - N. A. Berger
- Departments of Biochemistry, Case Comprehensive Cancer CenterCase Western Reserve University School of MedicineClevelandOHUSA
- Departments of Genetics and Genome Sciences, Case Comprehensive Cancer CenterCase Western Reserve University School of MedicineClevelandOHUSA
- Departments of Medicine, Case Comprehensive Cancer CenterCase Western Reserve University School of MedicineClevelandOHUSA
- Center for Science, Health and SocietyCase Western Reserve University School of MedicineClevelandOHUSA
| |
Collapse
|
35
|
Yuan F, Zhang L, Cao Y, Gao W, Zhao C, Fang Y, Zahedi K, Soleimani M, Lu X, Fang Z, Yang Q. Spermidine/spermine N1-acetyltransferase-mediated polyamine catabolism regulates beige adipocyte biogenesis. Metabolism 2018; 85:298-304. [PMID: 29715464 PMCID: PMC7269456 DOI: 10.1016/j.metabol.2018.04.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/05/2018] [Accepted: 04/23/2018] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Cold and β3-adrenergic receptor (AR) agonists activate beige adipocyte biogenesis in white adipose tissue (WAT). The two stimuli also induce expression of inflammatory cytokines in WAT. The low-grade inflammation may further promote WAT browning. However, the mechanisms to reconcile these two biological processes remain to be elucidated. In this study, we aim to investigate the roles of the rate-limiting polyamine catabolic enzyme spermidine/spermine N1-acetyltransferase (SAT1) in regulating beige adipocyte biogenesis and inflammation. METHODS Adipose-specific SAT1 knockout mice (SAT1-aKO) were generated by crossing adiponectin-cre to SAT1-lox/lox mice. Metabolic phenotype was investigated. Primary pre-adipocytes were isolated from inguinal WAT (iWAT) and differentiated to adipocytes for studying beige adipocyte biogenesis. RESULT The expression and enzymatic activity of SAT1 were up-regulated in iWAT upon cold and β3-AR stimulation. SAT1-aKO mice developed late-onset obesity on a high-fat diet with impaired cold-induced beige adipocyte biogenesis and energy expenditure. RNA-seq analysis of iWAT from cold-challenged SAT1-aKO mice revealed that, in addition to beige adipocyte biogenesis signatures, the immune response markers were highly enriched among reduced genes. In cultured adipocytes, SAT1 overexpression or pharmacological activation with N1, N11-diethylnorspermine (DENSpm) elevated oxygen consumption and increased the expression of beige adipocyte marker UCP1 and PGC-1α. DENSpm treatment of adipocytes also increased the expression of inflammatory genes. SAT1 activation enhanced hydrogen peroxide production in adipocytes. Antioxidant N-acetylcysteine abrogated the elevated UCP1 expression and reversed some inflammatory genes induced by SAT1 activation. CONCLUSIONS SAT1 activation plays a key role in cold and β3-AR agonist-induced beige adipocyte biogenesis and low-grade inflammation.
Collapse
Affiliation(s)
- Fang Yuan
- First Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; Department of Medicine, Physiology and Biophysics, Diabetes Center, Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA
| | - Lin Zhang
- Department of Medicine, Physiology and Biophysics, Diabetes Center, Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA; College of Animal Science, South China Agricultural University, Guangzhou 512642, China
| | - Yang Cao
- Department of Medicine, Physiology and Biophysics, Diabetes Center, Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA
| | - Wei Gao
- Department of Medicine, Physiology and Biophysics, Diabetes Center, Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA; Department of Geriatrics, Sir Run Run Shaw Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Can Zhao
- Department of Medicine, Physiology and Biophysics, Diabetes Center, Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA; Department of Geriatrics, Sir Run Run Shaw Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Yuan Fang
- First Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; Department of Medicine, Physiology and Biophysics, Diabetes Center, Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA
| | - Kamyar Zahedi
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Cincinnati College of Medicine, USA
| | - Manoocher Soleimani
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Cincinnati College of Medicine, USA
| | - Xiang Lu
- Department of Geriatrics, Sir Run Run Shaw Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Zhuyuan Fang
- First Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China.
| | - Qin Yang
- Department of Medicine, Physiology and Biophysics, Diabetes Center, Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
36
|
Li KL, Lin YC. PM2.5 induced cardiac hypertrophy via CREB/GSK3b/SOS1 pathway and metabolomics alterations. Oncotarget 2018; 9:30748-30760. [PMID: 30112104 PMCID: PMC6089393 DOI: 10.18632/oncotarget.25479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 05/07/2018] [Indexed: 02/01/2023] Open
Abstract
The particle matter with diameter less 2.5μm (PM2.5) easier to adsorb toxic substance, and interfere with pulmonary gas exchange. In this study, cardioprotective effects of low molecular weight (LMW) fucoidan in cardiac hypertrophy subjects induced by PM2.5 exposure was conducted by measuring QT interval, Blood pressure, cardiac structure, metabolites and proteins expression in different organs. After PM2.5 exposure, increase in blood pressure, abnormal cardiac function (Prolongation of Action Potential Duration and QT Interval), and structral remodeling (cardiac hypertrophy and fibrosis) were recorded. Fucoidan supplement in consecutive 28 days can reduce the damage to myocardial injury caused by PM2.5. Clearance effect of fucoidan in serum, heart, kidney, lung and liver was found due to organic and inorganic compounds reduced SOS1, CREB, GSK3b, and GRB2 protein level were changed under PM2.5 exposure. Whereas, only CREB level was reduced after fucoidan treatment. Metabolic alteration was also determined that PM2.5 severely damage cardiac tissue and compromise its function. After treatment with fucoidan, the cardiac function was significantly recovered. Our finding demonstrated that LMW could enhance the cardiac status of mice with PM2.5 exposures by rescued QT interval prolongation, action potential and cardiac hypertrophy, and cardiac fibrosis decline.
Collapse
Affiliation(s)
- Kuan-Lun Li
- Graduate Institute of Biotechnology, Chinese Culture University, Taipei, Taiwan
| | - Yen-Chang Lin
- Graduate Institute of Biotechnology, Chinese Culture University, Taipei, Taiwan
| |
Collapse
|
37
|
Majerczyk M, Choręza P, Mizia-Stec K, Bożentowicz-Wikarek M, Brzozowska A, Arabzada H, Owczarek AJ, Szybalska A, Grodzicki T, Więcek A, Olszanecka-Glinianowicz M, Chudek J. Plasma Level of Retinol-Binding Protein 4, N-Terminal proBNP and Renal Function in Older Patients Hospitalized for Heart Failure. Cardiorenal Med 2018; 8:237-248. [PMID: 29972826 DOI: 10.1159/000489403] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/18/2018] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND/AIM Elevated plasma concentration of retinol-binding protein 4 (RBP4) has recently emerged as a potential new risk factor for cardiovascular diseases, including hypertension (HT) and coronary artery disease (CAD). Limited data suggest that RBP4 promotes inflammatory damage to cardiomyocytes and participates in the development of heart failure (HF). This study aimed to analyze the relationship between concentrations of plasma RBP4 and serum N-terminal proBNP (NT-proBNP), a powerful biomarker of left ventricle dysfunction, in the older Polish population. METHODS The study sample consisted of 2,826 (1,487 men) participants of the PolSenior study, aged 65 years and older, including a subgroup hospitalized for HF (n = 282). In all subjects, plasma concentrations of RBP4, interleukin-6 (IL-6), serum level of NT-proBNP, and hs-CRP were measured. Additionally, BMI, estimated glomerular filtration rate (eGFR), and HOMA-IR were calculated. The prevalence of HT, CAD, atrial fibrillation (AF), and medication were considered as potential confounders. RESULTS Similar RBP4 levels were found in subjects with NT-proBNP < 125 and ≥125 ng/mL, with and without AF, and in the subgroups hospitalized for HF with and without AF. Regression analysis revealed no association between log10(NT-proBNP) and log10(RBP4). Plasma levels of RBP4 were increased by HT occurrence and diuretic therapy, while diminished with regard to female gender, age, eGFR values, AF, and IL-6 levels. CONCLUSION Our results show that RBP4 is affected by GFR but cannot be considered as an independent biomarker of heart muscle dysfunction.
Collapse
Affiliation(s)
- Marcin Majerczyk
- Pathophysiology Unit, Department of Pathophysiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland.,Department of Cardiology, District Hospital in Zakopane, Zakopane, Poland
| | - Piotr Choręza
- Department of Statistics, Department of Instrumental Analysis, School of Pharmacy and Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Katarzyna Mizia-Stec
- First Department of Cardiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Maria Bożentowicz-Wikarek
- Pathophysiology Unit, Department of Pathophysiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Aniceta Brzozowska
- Health Promotion and Obesity Management Unit, Department of Pathophysiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Habibullah Arabzada
- Pathophysiology Unit, Department of Pathophysiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Aleksander J Owczarek
- Department of Statistics, Department of Instrumental Analysis, School of Pharmacy and Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | | | - Tomasz Grodzicki
- Department of Internal Medicine and Gerontology, Jagiellonian University Medical College, Krakow, Poland
| | - Andrzej Więcek
- Department of Nephrology, Transplantation and Internal Medicine, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Magdalena Olszanecka-Glinianowicz
- Health Promotion and Obesity Management Unit, Department of Pathophysiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Jerzy Chudek
- Pathophysiology Unit, Department of Pathophysiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland.,Department of Internal Diseases and Oncological Chemotherapy, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
38
|
von Jeinsen B, Short MI, Xanthakis V, Carneiro H, Cheng S, Mitchell GF, Vasan RS. Association of Circulating Adipokines With Echocardiographic Measures of Cardiac Structure and Function in a Community-Based Cohort. J Am Heart Assoc 2018; 7:e008997. [PMID: 29929991 PMCID: PMC6064918 DOI: 10.1161/jaha.118.008997] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/01/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Adipokines mediate cardiometabolic risk associated with obesity but their role in the pathogenesis of obesity-associated heart failure remains uncertain. We investigated the associations between circulating adipokine concentrations and echocardiographic measures in a community-based sample. METHODS AND RESULTS We evaluated 3514 Framingham Heart Study participants (mean age 40 years, 53.8% women) who underwent routine echocardiography and had select circulating adipokines measured, ie, leptin, soluble leptin receptor, fatty acid-binding protein 4, retinol-binding protein 4, fetuin-A, and adiponectin. We used multivariable linear regression, adjusting for known correlates (including weight), to relate adipokine concentrations (independent variables) to the following echocardiographic measures (dependent variables): left ventricular mass index, left atrial diameter in end systole, fractional shortening, and E/e'. In multivariable-adjusted analysis, left ventricular mass index was inversely related to circulating leptin and fatty acid-binding protein 4 concentrations but positively related to retinol-binding protein 4 and leptin receptor levels (P≤0.002 for all). Left atrial end-systolic dimension was inversely related to leptin but positively related to retinol-binding protein 4 concentrations (P≤0.0001). E/e' was inversely related to leptin receptor levels (P=0.0002). We observed effect modification by body weight for select associations (leptin receptor and fatty acid-binding protein 4 with left ventricular mass index, and leptin with left atrial diameter in end systole; P<0.05 for interactions). Fractional shortening was not associated with any of the adipokines. No echocardiographic trait was associated with fetuin-A or adiponectin concentrations. CONCLUSIONS In our cross-sectional study of a large, young to middle-aged, relatively healthy community-based sample, key indices of subclinical cardiac remodeling were associated with higher or lower circulating concentrations of prohypertrophic and antihypertrophic adipokines in a context-specific manner. These observations may offer insights into the pathogenesis of the cardiomyopathy of obesity.
Collapse
Affiliation(s)
- Beatrice von Jeinsen
- Boston University's and National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA
| | - Meghan I Short
- Boston University's and National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA
- Section of Preventive Medicine and Epidemiology, Departments of Medicine, Biostatistics and Epidemiology, Boston University Schools of Medicine and Public Health, Boston, MA
| | - Vanessa Xanthakis
- Boston University's and National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA
- Section of Preventive Medicine and Epidemiology, Departments of Medicine, Biostatistics and Epidemiology, Boston University Schools of Medicine and Public Health, Boston, MA
| | - Herman Carneiro
- Boston University's and National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA
- Section of Preventive Medicine and Epidemiology, Departments of Medicine, Biostatistics and Epidemiology, Boston University Schools of Medicine and Public Health, Boston, MA
| | - Susan Cheng
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | | | - Ramachandran S Vasan
- Boston University's and National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA
- Section of Preventive Medicine and Epidemiology, Departments of Medicine, Biostatistics and Epidemiology, Boston University Schools of Medicine and Public Health, Boston, MA
| |
Collapse
|
39
|
Cao Y, Matsubara T, Zhao C, Gao W, Peng L, Shan J, Liu Z, Yuan F, Tang L, Li P, Guan Z, Fang Z, Lu X, Huang H, Yang Q. Antisense oligonucleotide and thyroid hormone conjugates for obesity treatment. Sci Rep 2017; 7:9307. [PMID: 28839185 PMCID: PMC5571112 DOI: 10.1038/s41598-017-09598-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/21/2017] [Indexed: 12/27/2022] Open
Abstract
Using the principle of antibody-drug conjugates that deliver highly potent cytotoxic agents to cancer cells for cancer therapy, we here report the synthesis of antisense-oligonucleotides (ASO) and thyroid hormone T3 conjugates for obesity treatment. ASOs primarily target fat and liver with poor penetrance to other organs. Pharmacological T3 treatment increases energy expenditure and causes weight loss, but is contraindicated for obesity treatment due to systemic effects on multiple organs. We hypothesize that ASO-T3 conjugates may knock down target genes and enrich T3 action in fat and liver. Two established ASOs are tested. Nicotinamide N-methyltransferase (NNMT)-ASO prevents diet-induced obesity in mice. Apolipoprotein B (ApoB)-ASO is an FDA approved drug for treating familial hypercholesterolemia. NNMT-ASO and ApoB-ASO are chemically conjugated with T3 using a non-cleavable sulfo-SMCC linker. Both NNMT-ASO-T3 (NAT3) and ApoB-ASO-T3 (AAT3) enhance thyroid hormone receptor activity. Treating obese mice with NAT3 or AAT3 decreases adiposity and increases lean mass. ASO-T3 enhances white fat browning, decreases genes for fatty acid synthesis in liver, and shows limited effects on T3 target genes in heart and muscle. Furthermore, AAT3 augments LDL cholesterol-lowering effects of ApoB-ASO. Therefore, ASO and hormone/drug conjugation may provide a novel strategy for obesity and hyperlipidemia treatment.
Collapse
Affiliation(s)
- Yang Cao
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, Center for Epigenetics and Metabolism, University of California Irvine, Irvine, California, 92697, USA
| | - Tomoko Matsubara
- Department of Kinesiology & Physiology, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina 27834, USA.,Japan Society for the Promotion of Science, Tokyo, 1020083, Japan
| | - Can Zhao
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, Center for Epigenetics and Metabolism, University of California Irvine, Irvine, California, 92697, USA.,Department of Geriatrics, the Second Affiliated Hospital, Nanjing Medical University, Nanjing, 211166, China
| | - Wei Gao
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, Center for Epigenetics and Metabolism, University of California Irvine, Irvine, California, 92697, USA.,Department of Geriatrics, Sir Run Run Shaw Hospital, Nanjing Medical University, Nanjing, 211166, China
| | - Linxiu Peng
- Medical Metabolomics Center, Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jinjun Shan
- Medical Metabolomics Center, Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhengxia Liu
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, Center for Epigenetics and Metabolism, University of California Irvine, Irvine, California, 92697, USA.,Department of Geriatrics, the Second Affiliated Hospital, Nanjing Medical University, Nanjing, 211166, China
| | - Fang Yuan
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, Center for Epigenetics and Metabolism, University of California Irvine, Irvine, California, 92697, USA.,Department of Cardiology, the First Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Lingyi Tang
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, Center for Epigenetics and Metabolism, University of California Irvine, Irvine, California, 92697, USA.,Department of Cardiology, the First Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Peixin Li
- Department of Kinesiology & Physiology, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina 27834, USA.,Department of Comprehensive Surgery, Medical and Health Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhibin Guan
- Department of Chemistry, University of California, Irvine, 92697, California, USA
| | - Zhuyuan Fang
- Department of Cardiology, the First Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Xiang Lu
- Department of Geriatrics, Sir Run Run Shaw Hospital, Nanjing Medical University, Nanjing, 211166, China
| | - Hu Huang
- Department of Kinesiology & Physiology, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina 27834, USA.
| | - Qin Yang
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, Center for Epigenetics and Metabolism, University of California Irvine, Irvine, California, 92697, USA.
| |
Collapse
|
40
|
Yang J, Wang Z, Chen DL. Shikonin ameliorates isoproterenol (ISO)-induced myocardial damage through suppressing fibrosis, inflammation, apoptosis and ER stress. Biomed Pharmacother 2017; 93:1343-1357. [PMID: 28753907 DOI: 10.1016/j.biopha.2017.06.086] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 06/07/2017] [Accepted: 06/23/2017] [Indexed: 12/31/2022] Open
Abstract
Shikonin, isolated from the roots of herbal plant Lithospermum erythrorhizon, is a naphthoquinone. It has been reported to exert beneficial anti-inflammatory effects and anti-oxidant properties in various diseases. Isoproterenol (ISO) has been widely used to establish cardiac injury in vivo and in vitro. However, shikonin function in ISO-induced cardiac injury remains uncertain. In our study, we attempted to investigate the efficiency and possible molecular mechanism of shikonin in cardiac injury treatment induced by ISO. In vivo, C57BL6 mice were subcutaneously injected with 5mg/kg ISO to induce heart failure. And mice were given a gavage of shikonin (2 or 4mg/kg/d, for four weeks). Cardiac function, fibrosis indices, inflammation response, apoptosis and endoplasmic reticulum (ER) stress were calculated. Pathological alterations, fibrosis-, inflammation-, apoptosis- and ER stress-related molecules were examined. In ISO-induced cardiac injury, shikonin significantly ameliorated heart function, decreased myocardial fibrosis, suppressed inflammation, attenuated apoptosis and ER stress through impeding collagen accumulation, Toll like receptor 4/nuclear transcription factor κB (TLR4/NF-κB), Caspase-3 and glucose-regulated protein 78 (GRP78) signaling pathways activity, relieving heart failure in vivo. Also, in vitro, shikonin attenuated ISO-induced cardiac muscle cells by reducing fibrosis, inflammation, apoptosis and ER stress. Our findings indicated that shikonin treatment attenuated ISO-induced heart injury, providing an effective therapeutic strategy for heart failure treatment for future.
Collapse
Affiliation(s)
- Jun Yang
- Department of Cardiology, The First People's Hospital of Yunnan Province, No. 157 Jinbi Road, Kunming 650000, China
| | - Zhao Wang
- Department of Surgery, The First People's Hospital of Yunnan Province, No. 157 Jinbi Road, Kunming 650000, China
| | - Dong-Lin Chen
- Department of Cardiology, Qujing Traditional Chinese Medicine Hospital, No. 8 Jiaotong Road, Qujing 655000, China.
| |
Collapse
|
41
|
Liu L, Jiang Y, Curtiss E, Fukuchi KI, Steinle JJ. TLR4 regulates insulin-resistant proteins to increase apoptosis in the mouse retina. Inflamm Res 2017; 66:993-997. [PMID: 28681194 DOI: 10.1007/s00011-017-1080-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/14/2017] [Accepted: 06/28/2017] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE AND DESIGN Work in multiple organs has suggested that toll-like receptor 4 (TLR4) may play a role in insulin resistance. Additional studies have shown a negative role for TLR4 on retinal health. We have previously reported that β-adrenergic receptors can regulate both TLR4 signal transduction, as well as insulin signaling in the retina and in retinal endothelial cells. Thus, we hypothesized that TLR4 would regulate retinal insulin signaling. MATERIALS AND METHODS We used endothelial cell-specific TLR4 knockout mice, as well as TLR4-overexpressing mice for these studies. METHODS Western blotting and ELISA analyses were done for investigations of insulin receptor, insulin receptor substrate 1 (IRS-1) serine 307, and Akt phosphorylation, as well as cleaved caspase 3 levels in the mouse retina. RESULTS We found that loss of TLR4 led to increased insulin receptor and Akt phosphorylation, as well as decreased IRS-1Ser307 levels. In support of these results, TLR4 overexpression decreased insulin signaling and the cleavage of caspase 3. CONCLUSIONS Therefore, these results suggest that TLR4 plays a key role in insulin signaling in the retina. Reduction of TLR4 levels may be protective to the retina.
Collapse
Affiliation(s)
- Li Liu
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, 9314 Scott Hall, Detroit, MI, 48202, USA
| | - Youde Jiang
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, 9314 Scott Hall, Detroit, MI, 48202, USA
| | - Elizabeth Curtiss
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, 9314 Scott Hall, Detroit, MI, 48202, USA
| | - Ken-Ichiro Fukuchi
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | - Jena J Steinle
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, 9314 Scott Hall, Detroit, MI, 48202, USA. .,Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
42
|
Choline ameliorates cardiovascular damage by improving vagal activity and inhibiting the inflammatory response in spontaneously hypertensive rats. Sci Rep 2017; 7:42553. [PMID: 28225018 PMCID: PMC5320519 DOI: 10.1038/srep42553] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/10/2017] [Indexed: 11/17/2022] Open
Abstract
Autonomic dysfunction and abnormal immunity lead to systemic inflammatory responses, which result in cardiovascular damage in hypertension. The aim of this report was to investigate the effects of choline on cardiovascular damage in hypertension. Eight-week-old male spontaneously hypertensive rats (SHRs) and Wistar-Kyoto rats were intraperitoneally injected with choline or vehicle (8 mg/kg/day). After 8 weeks, choline restored the cardiac function of the SHRs, as evidenced by decreased heart rate, systolic blood pressure, left ventricle systolic pressure, and ±dp/dtmax and increased ejection fraction and fractional shortening. Choline also ameliorated the cardiac hypertrophy of the SHRs, as indicated by reduced left ventricle internal dimensions and decreased cardiomyocyte cross-sectional area. Moreover, choline improved mesenteric arterial function and preserved endothelial ultrastructure in the SHRs. Notably, the protective effect of choline may be due to its anti-inflammatory effect. Choline downregulated expression of interleukin (IL)-6 and tumour necrosis factor-α and upregulated IL-10 in the mesenteric arteries of SHRs, possibly because of the inhibition of Toll-like receptor 4. Furthermore, choline restored baroreflex sensitivity and serum acetylcholine level in SHRs, thus indicating that choline improved vagal activity. This study suggests that choline elicits cardiovascular protective effects and may be useful as a potential adjunct therapeutic approach for hypertension.
Collapse
|
43
|
Takano APC, Munhoz CD, Moriscot AS, Gupta S, Barreto-Chaves MLM. S100A8/MYD88/NF-қB: a novel pathway involved in cardiomyocyte hypertrophy driven by thyroid hormone. J Mol Med (Berl) 2017; 95:671-682. [DOI: 10.1007/s00109-017-1511-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 01/02/2017] [Accepted: 01/18/2017] [Indexed: 01/25/2023]
|