1
|
Zhao P, Du T, Zhou Q, Wang Y. Association of weight-adjusted-waist index with all-cause and cardiovascular mortality in individuals with diabetes or prediabetes: a cohort study from NHANES 2005-2018. Sci Rep 2024; 14:24061. [PMID: 39402084 PMCID: PMC11473727 DOI: 10.1038/s41598-024-74339-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/25/2024] [Indexed: 10/17/2024] Open
Abstract
Weight-adjusted waist index (WWI) is a new marker of central obesity. This study explored the association of WWI with all-cause and cardiovascular disease (CVD) mortality in individuals with diabetes or prediabetes. 6551 participants with diabetes or prediabetes from the National Health and Nutrition Examination Survey (NHANES) records between 2005 and 2018 were included. The association of WWI with all-cause and CVD mortality was assessed using Kaplan-Meier survival analysis, Cox proportional hazards model (Cox regression), and restricted cubic spline (RCS). The predictive value of WWI for mortality was analyzed using time-dependent receiver operating characteristic curves (ROC). There were 1083 all-cause deaths and 360 CVD deaths. Multivariable-adjusted Cox regression analyses showed WWI was positively correlated with the risk of all-cause and CVD mortality in subjects with diabetes or prediabetes. Multivariate-adjusted RCS analyses showed a linear and positive correlation of WWI with all-cause mortality risk, and a nonlinear relationship with CVD mortality, with a threshold of 12.35. The area under the curve (AUC) for 3, 5, and 10-years survival for all-cause mortality was 0.795, 0.792, and 0.812, respectively, and for CVD mortality was 0.815, 0.833, and 0.831, respectively. WWI is a valuable predictor of all-cause mortality risk in patients with diabetes and prediabetes, and a valuable predictor of CVD mortality risk when patients with diabetes and prediabetes are considered as a whole.
Collapse
Affiliation(s)
- Pingping Zhao
- Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Tianqi Du
- Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Qi Zhou
- Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Yirong Wang
- Department of Endocrinology Genetic Metabolism, Gansu Provincial Maternity and Child-care Hospital (Gansu Provincial Central Hospital), Lanzhou, 730000, Gansu, People's Republic of China.
- Lanzhou University, Lanzhou, Gansu, People's Republic of China.
| |
Collapse
|
2
|
Salmons HI, Carstens MF, Limberg AK, Bettencourt JW, Payne AN, Karczewski DC, Ryan ZT, Morrey ME, Sanchez-Sotelo J, Berry DJ, Dudakovic A, Abdel MP. Efficacy of ADIPOR1 and ADIPOR2 peptide-agonist AdipoRon in preventing contracture in a rabbit model of arthrofibrosis. J Orthop Res 2024; 42:1916-1922. [PMID: 38605593 DOI: 10.1002/jor.25853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/19/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024]
Abstract
AdipoRon is an adiponectin receptor 1, 2 (ADIPOR1 and ADIPOR2) agonist with potential antifibrotic effects. Whether AdipoRon can mitigate joint stiffness in a rabbit model of arthrofibrosis is unknown. We examined the efficacy of intravenous (IV) AdipoRon at mitigating contracture in a rabbit model of knee arthrofibrosis. Fifty-six female New Zealand White rabbits were divided into three dosing groups: vehicle (dimethyl sulfoxide, DMSO), 2.5 mg/kg AdipoRon, and 5 mg/kg AdipoRon. AdipoRon, in DMSO, was administered IV preoperatively and for 5 days postoperatively (30 rabbits, Aim 1). AdipoRon was again dosed similarly after Kirschner wire (K-wire) removal at 8 weeks (26 rabbits; Aim 2). The primary outcome of joint passive extension angle (PEA,°) was measured at 8, 10, 12, 16, and 24 weeks following index surgery. At 24 weeks, rabbits were euthanized and limbs were harvested to measure posterior capsular stiffness (N cm/°). In Aim 1, the 5 mg/kg treated rabbits had a significant increase in PEA when compared to controls at 16-week (p < 0.05). In Aim 2, the 5 mg/kg treated rabbits had a significant increase in PEA when compared to controls at 10-week (p < 0.05). In both aims, no significant differences were observed at later time points. Capsular stiffness was no different in any group. We are the first to report the efficacy of IV AdipoRon in a rabbit model of arthrofibrosis. We identified a significant dose-dependent decrease in joint PEA at early time points; however, no differences were observed between groups at later time points. Clinical Significance: The present investigation provided the first assessment of AdipoRon's efficacy in mitigating knee stiffness in the current gold standard rabbit model of arthrofibrosis. Results of this investigation provided further evidence as to the potential role of AdipoRon as a preventative for arthrofibrosis in large mammals.
Collapse
Affiliation(s)
- Harold I Salmons
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Mason F Carstens
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Afton K Limberg
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Ashley N Payne
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Zachary T Ryan
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Mark E Morrey
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Daniel J Berry
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew P Abdel
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
3
|
Li J, Xiao F, Wang S, Fan X, He Z, Yan T, Zhang J, Yang M, Yang D. LncRNAs are involved in regulating ageing and age-related disease through the adenosine monophosphate-activated protein kinase signalling pathway. Genes Dis 2024; 11:101042. [PMID: 38966041 PMCID: PMC11222807 DOI: 10.1016/j.gendis.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 06/15/2023] [Indexed: 07/06/2024] Open
Abstract
A long noncoding RNA (lncRNA) is longer than 200 bp. It regulates various biological processes mainly by interacting with DNA, RNA, or protein in multiple kinds of biological processes. Adenosine monophosphate-activated protein kinase (AMPK) is activated during nutrient starvation, especially glucose starvation and oxygen deficiency (hypoxia), and exposure to toxins that inhibit mitochondrial respiratory chain complex function. AMPK is an energy switch in organisms that controls cell growth and multiple cellular processes, including lipid and glucose metabolism, thereby maintaining intracellular energy homeostasis by activating catabolism and inhibiting anabolism. The AMPK signalling pathway consists of AMPK and its upstream and downstream targets. AMPK upstream targets include proteins such as the transforming growth factor β-activated kinase 1 (TAK1), liver kinase B1 (LKB1), and calcium/calmodulin-dependent protein kinase β (CaMKKβ), and its downstream targets include proteins such as the mechanistic/mammalian target of rapamycin (mTOR) complex 1 (mTORC1), hepatocyte nuclear factor 4α (HNF4α), and silencing information regulatory 1 (SIRT1). In general, proteins function relatively independently and cooperate. In this article, a review of the currently known lncRNAs involved in the AMPK signalling pathway is presented and insights into the regulatory mechanisms involved in human ageing and age-related diseases are provided.
Collapse
Affiliation(s)
- Jiamei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Feng Xiao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Siqi Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiaolan Fan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zhi He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Taiming Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jia Zhang
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610017, China
| | - Mingyao Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Deying Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
4
|
Baldelli S, Aiello G, Mansilla Di Martino E, Campaci D, Muthanna FMS, Lombardo M. The Role of Adipose Tissue and Nutrition in the Regulation of Adiponectin. Nutrients 2024; 16:2436. [PMID: 39125318 PMCID: PMC11313710 DOI: 10.3390/nu16152436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Adipose tissue (AT), composed mainly of adipocytes, plays a critical role in lipid control, metabolism, and energy storage. Once considered metabolically inert, AT is now recognized as a dynamic endocrine organ that regulates food intake, energy homeostasis, insulin sensitivity, thermoregulation, and immune responses. This review examines the multifaceted role of adiponectin, a predominant adipokine released by AT, in glucose and fatty acid metabolism. We explore the regulatory mechanisms of adiponectin, its physiological effects and its potential as a therapeutic target for metabolic diseases such as type 2 diabetes, cardiovascular disease and fatty liver disease. Furthermore, we analyze the impact of various dietary patterns, specific nutrients, and physical activities on adiponectin levels, highlighting strategies to improve metabolic health. Our comprehensive review provides insights into the critical functions of adiponectin and its importance in maintaining systemic metabolic homeostasis.
Collapse
Affiliation(s)
- Sara Baldelli
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy (E.M.D.M.)
- IRCCS San Raffaele Roma, 00166 Rome, Italy
| | - Gilda Aiello
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy (E.M.D.M.)
| | - Eliana Mansilla Di Martino
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy (E.M.D.M.)
| | - Diego Campaci
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy (E.M.D.M.)
| | - Fares M. S. Muthanna
- Pharmacy Department, Faculty of Medicine and Health Sciences, University of Science and Technology-Aden, Alshaab Street, Enmaa City 22003, Yemen
| | - Mauro Lombardo
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy (E.M.D.M.)
| |
Collapse
|
5
|
Sanchis P, Ezequiel-Rodriguez A, Sánchez-Oliver AJ, Suarez-Carmona W, Lopez-Martín S, García-Muriana FJ, González-Jurado JA. Changes in the Expression of Inflammatory Genes Induced by Chronic Exercise in the Adipose Tissue: Differences by Sex. Sports (Basel) 2024; 12:184. [PMID: 39058075 PMCID: PMC11281071 DOI: 10.3390/sports12070184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
The impact of obesity on adipose tissue function is well acknowledged, but the role of physical exercise in regulating inflammatory markers and gene expression in obese individuals remains uncertain. This study aims to investigate the effects of chronic exercise on inflammatory gene expression in adipose tissue and to explore sex differences in response to exercise. The study involved 29 obese participants (13 men, 16 women) aged 38 to 54 years with a mean BMI of 36.05 ± 4.99 kg/m2. Participants underwent an 8-week concurrent training program comprising three weekly sessions of ~60 min each. The sessions included joint mobility exercises, cardiovascular activation, and cardiorespiratory resistance exercises at medium to low intensity. A fine-needle aspiration biopsy of abdominal subcutaneous adipose tissue was performed for gene expression analysis using quantitative polymerase chain reaction (qPCR). The study demonstrated that chronic exercise modulates the expression of pro-inflammatory genes in subcutaneous adipose tissue, particularly ADIPOR2 (p = 0.028), leptin (p = 0.041), and IFNg (p = 0.040) (downregulated). Interestingly, regardless of sex, the exercise programs had an independent effect on pro-inflammatory genes. Overall, this study provides insight into the role of chronic exercise in modulating adipose tissue gene expression in obese individuals. Further research involving both sexes is recommended to tailor exercise interventions for better outcomes.
Collapse
Affiliation(s)
- Paula Sanchis
- Centre for Physical Activity Research, 2100 Copenhagen, Denmark
| | | | | | | | - Sergio Lopez-Martín
- Department of Cell Biology, Faculty of Biology, University of Seville, 41012 Seville, Spain
| | | | - José Antonio González-Jurado
- Faculty of Sport Science, Universidad Pablo de Olavide, 41013 Seville, Spain
- Research Center on Physical and Sports Performance, Universidad Pablo de Olavide, 41013 Seville, Spain
| |
Collapse
|
6
|
Wang Z, Fan H, Wu J. Food-Derived Up-Regulators and Activators of Angiotensin Converting Enzyme 2: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12896-12914. [PMID: 38810024 PMCID: PMC11181331 DOI: 10.1021/acs.jafc.4c01594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
Angiotensin-converting enzyme 2 (ACE2) is a key enzyme in the renin-angiotensin system (RAS), also serving as an amino acid transporter and a receptor for certain coronaviruses. Its primary role is to protect the cardiovascular system via the ACE2/Ang (1-7)/MasR cascade. Given the critical roles of ACE2 in regulating numerous physiological functions, molecules that can upregulate or activate ACE2 show vast therapeutic value. There are only a few ACE2 activators that have been reported, a wide range of molecules, including food-derived compounds, have been reported as ACE2 up-regulators. Effective doses of bioactive peptides range from 10 to 50 mg/kg body weight (BW)/day when orally administered for 1 to 7 weeks. Protein hydrolysates require higher doses at 1000 mg/kg BW/day for 20 days. Phytochemicals and vitamins are effective at doses typically ranging from 10 to 200 mg/kg BW/day for 3 days to 6 months, while Traditional Chinese Medicine requires doses of 1.25 to 12.96 g/kg BW/day for 4 to 8 weeks. ACE2 activation is linked to its hinge-bending region, while upregulation involves various signaling pathways, transcription factors, and epigenetic modulators. Future studies are expected to explore novel roles of ACE2 activators or up-regulators in disease treatments and translate the discovery to bedside applications.
Collapse
Affiliation(s)
- Zihan Wang
- Department
of Agricultural, Food and Nutritional Science, 4-10 Ag/For Building, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
- Cardiovascular
Research Centre, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| | - Hongbing Fan
- Department
of Animal and Food Sciences, University
of Kentucky, Lexington, Kentucky 40546, United States
| | - Jianping Wu
- Department
of Agricultural, Food and Nutritional Science, 4-10 Ag/For Building, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
- Cardiovascular
Research Centre, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| |
Collapse
|
7
|
Fawaz S, Martin Alonso A, Qiu Y, Ramnath R, Stowell-Connolly H, Gamez M, May C, Down C, Coward RJ, Butler MJ, Welsh GI, Satchell SC, Foster RR. Adiponectin Reduces Glomerular Endothelial Glycocalyx Disruption and Restores Glomerular Barrier Function in a Mouse Model of Type 2 Diabetes. Diabetes 2024; 73:964-976. [PMID: 38530908 DOI: 10.2337/db23-0455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 02/26/2024] [Indexed: 03/28/2024]
Abstract
Adiponectin has vascular anti-inflammatory and protective effects. Although adiponectin protects against the development of albuminuria, historically, the focus has been on podocyte protection within the glomerular filtration barrier (GFB). The first barrier to albumin in the GFB is the endothelial glycocalyx (eGlx), a surface gel-like barrier covering glomerular endothelial cells (GEnCs). In diabetes, eGlx dysfunction occurs before podocyte damage; hence, we hypothesized that adiponectin could protect from eGlx damage to prevent early vascular damage in diabetic kidney disease (DKD). Globular adiponectin (gAd) activated AMPK signaling in human GEnCs through AdipoR1. It significantly reduced eGlx shedding and the tumor necrosis factor-α (TNF-α)-mediated increase in syndecan-4 (SDC4) and MMP2 mRNA expression in GEnCs in vitro. It protected against increased TNF-α mRNA expression in glomeruli isolated from db/db mice and against expression of genes associated with glycocalyx shedding (namely, SDC4, MMP2, and MMP9). In addition, gAd protected against increased glomerular albumin permeability (Ps'alb) in glomeruli isolated from db/db mice when administered intraperitoneally and when applied directly to glomeruli (ex vivo). Ps'alb was inversely correlated with eGlx depth in vivo. In summary, adiponectin restored eGlx depth, which was correlated with improved glomerular barrier function, in diabetes. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Sarah Fawaz
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| | - Aldara Martin Alonso
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| | - Yan Qiu
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| | - Raina Ramnath
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| | - Holly Stowell-Connolly
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| | - Monica Gamez
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| | - Carl May
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| | - Colin Down
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| | - Richard J Coward
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| | - Matthew J Butler
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| | - Gavin I Welsh
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| | - Simon C Satchell
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| | - Rebecca R Foster
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| |
Collapse
|
8
|
Zhao YQ, Ren YF, Li BB, Wei C, Yu B. The mysterious association between adiponectin and endometriosis. Front Pharmacol 2024; 15:1396616. [PMID: 38813109 PMCID: PMC11133721 DOI: 10.3389/fphar.2024.1396616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
Adiponectin is a pleiotropic cytokine predominantly derived from adipose tissue. In addition to its role in regulating energy metabolism, adiponectin may also be related to estrogen-dependent diseases, and many studies have confirmed its involvement in mediating diverse biological processes, including apoptosis, autophagy, inflammation, angiogenesis, and fibrosis, all of which are related to the pathogenesis of endometriosis. Although many researchers have reported low levels of adiponectin in patients with endometriosis and suggested that it may serve as a protective factor against the development of the disease. Therefore, the purpose of this review was to provide an up-to-date summary of the roles of adiponectin and its downstream cytokines and signaling pathways in the aforementioned biological processes. Further systematic studies on the molecular and cellular mechanisms of action of adiponectin may provide novel insights into the pathophysiology of endometriosis as well as potential therapeutic targets.
Collapse
Affiliation(s)
| | | | - Bing-Bing Li
- College of Integrated Chinese and Western Medicine, Jining Medical University, Jining, Shandong Province, China
| | | | | |
Collapse
|
9
|
Nigro E, Mallardo M, Amicone M, D’Arco D, Riccio E, Marra M, Pasanisi F, Pisani A, Daniele A. Exploring Adiponectin in Autosomal Dominant Kidney Disease: Insight and Implications. Genes (Basel) 2024; 15:484. [PMID: 38674417 PMCID: PMC11050174 DOI: 10.3390/genes15040484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a common monogenic disorder characterized by renal cysts and progressive renal failure. In kidney diseases, adipose tissue undergoes functional changes that have been associated with increased inflammation and insulin resistance mediated by release of adipokines. Adiponectin is involved in various cellular processes, such as energy and inflammatory and oxidative processes. However, it remains to be determined whether adiponectin is involved in the concomitant metabolic dysfunctions present in PKD. In this scenario, we aimed to analyze: (a) PPARγ, ADIPOQ, ADIPOR1 and ADIPOR2 gene variations in 92 ADPKD patients through PCR-Sanger sequencing; and (b) adiponectin levels and its oligomerization state by ELISA and Western Blot. Our results indicated that: (a) 14 patients carried the PPARγ SNP, 29 patients carried the ADIPOQ SNP rs1501299, and 25 patients carried the analyzed ADIPOR1 SNPs. Finally, 82 patients carried ADIPOR2 SNPs; and (b) Adiponectin is statistically lower in ADPKD patients compared to controls, and further statistically lower in ESRD than in non-ESRD patients. An inverse relationship between adiponectin and albumin and between adiponectin and creatinine and a direct relationship between adiponectin and eGFR were found. Interestingly, significantly lower levels of adiponectin were found in patients bearing the ADIPOQ rs1501299 SNP and associated with low levels of eGFR. In conclusion, adiponectin levels and the presence of ADIPOQ rs1501299 genotype are significantly associated with a worse ADPKD phenotype, indicating that both could potentially provide important insights into the disease. Further studies are warranted to understand the pathophysiological role of adiponectin in ADPKD patients.
Collapse
Affiliation(s)
- Ersilia Nigro
- CEINGE-Biotecnologie Avanzate Scarl “Franco Salvatore”, Via G. Salvatore 486, 80145 Naples, Italy; (E.N.); (D.D.)
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche, Farmaceutiche, Università della Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Marta Mallardo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi “Federico II”, Via Pansini 5, 80131 Naples, Italy;
| | - Maria Amicone
- Unità di Nefrologia, Dipartimento di Sanità Pubblica, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy; (M.A.); (E.R.); (A.P.)
| | - Daniela D’Arco
- CEINGE-Biotecnologie Avanzate Scarl “Franco Salvatore”, Via G. Salvatore 486, 80145 Naples, Italy; (E.N.); (D.D.)
| | - Eleonora Riccio
- Unità di Nefrologia, Dipartimento di Sanità Pubblica, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy; (M.A.); (E.R.); (A.P.)
| | - Maurizio Marra
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (M.M.); (F.P.)
| | - Fabrizio Pasanisi
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (M.M.); (F.P.)
| | - Antonio Pisani
- Unità di Nefrologia, Dipartimento di Sanità Pubblica, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy; (M.A.); (E.R.); (A.P.)
| | - Aurora Daniele
- CEINGE-Biotecnologie Avanzate Scarl “Franco Salvatore”, Via G. Salvatore 486, 80145 Naples, Italy; (E.N.); (D.D.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi “Federico II”, Via Pansini 5, 80131 Naples, Italy;
| |
Collapse
|
10
|
Habiba UE, Khan N, Greene DL, Shamim S, Umer A. The therapeutic effect of mesenchymal stem cells in diabetic kidney disease. J Mol Med (Berl) 2024; 102:537-570. [PMID: 38418620 PMCID: PMC10963471 DOI: 10.1007/s00109-024-02432-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
Diabetes mellitus (DM) often causes chronic kidney damage despite best medical practices. Diabetic kidney disease (DKD) arises from a complex interaction of factors within the kidney and the whole body. Targeting specific disease-causing agents using drugs has not been effective in treating DKD. However, stem cell therapies offer a promising alternative by addressing multiple disease pathways and promoting kidney regeneration. Mesenchymal stem cells (MSCs) offer great promise due to their superior accessibility ratio from adult tissues and remarkable modes of action, such as the production of paracrine anti-inflammatory and cytoprotective substances. This review critically evaluates the development of MSC treatment for DKD as it moves closer to clinical application. Results from animal models suggest that systemic MSC infusion may positively impact DKD progression. However, few registered and completed clinical trials exist, and whether the treatments are effective in humans is still being determined. Significant knowledge gaps and research opportunities exist, including establishing the ideal source, dose, and timing of MSC delivery, better understanding of in vivo mechanisms, and developing quantitative indicators to obtain a more significant therapeutic response. This paper reviews recent literature on using MSCs in preclinical and clinical trials in DKD. Potent biomarkers related to DKD are also highlighted, which may help better understand MSCs' action in this disease progression. KEY MESSAGES: Mesenchymal stem cells have anti-inflammatory and paracrine effects in diabetic kidney disease. Mesenchymal stem cells alleviate in animal models having diabetic kidney disease. Mesenchymal stem cells possess promise for the treatment of diabetic kidney disease.
Collapse
Affiliation(s)
- Umm E Habiba
- Pak-American Hospital Pvt. Ltd, Jahangir Multiplex, Peshawar Road, Sector H-13, Islamabad, 44000, Pakistan.
- R3 Medical Research LLC, 10045 East Dynamite Boulevard Suite 260, Scottsdale, AZ, 85262, USA.
| | - Nasar Khan
- Pak-American Hospital Pvt. Ltd, Jahangir Multiplex, Peshawar Road, Sector H-13, Islamabad, 44000, Pakistan.
- R3 Medical Research LLC, 10045 East Dynamite Boulevard Suite 260, Scottsdale, AZ, 85262, USA.
- Bello Bio Labs and Therapeutics (SMC) Pvt. Ltd., Jahangir Multiplex, Peshawar Road, Sector H-13, Islamabad, 44000, Pakistan.
| | - David Lawrence Greene
- Pak-American Hospital Pvt. Ltd, Jahangir Multiplex, Peshawar Road, Sector H-13, Islamabad, 44000, Pakistan
- R3 Medical Research LLC, 10045 East Dynamite Boulevard Suite 260, Scottsdale, AZ, 85262, USA
- Bello Bio Labs and Therapeutics (SMC) Pvt. Ltd., Jahangir Multiplex, Peshawar Road, Sector H-13, Islamabad, 44000, Pakistan
| | - Sabiha Shamim
- Pak-American Hospital Pvt. Ltd, Jahangir Multiplex, Peshawar Road, Sector H-13, Islamabad, 44000, Pakistan
- R3 Medical Research LLC, 10045 East Dynamite Boulevard Suite 260, Scottsdale, AZ, 85262, USA
| | - Amna Umer
- Pak-American Hospital Pvt. Ltd, Jahangir Multiplex, Peshawar Road, Sector H-13, Islamabad, 44000, Pakistan
- R3 Medical Research LLC, 10045 East Dynamite Boulevard Suite 260, Scottsdale, AZ, 85262, USA
| |
Collapse
|
11
|
Wang Z, Shao X, Xu W, Xue B, Zhong S, Yang Q. The relationship between weight-adjusted-waist index and diabetic kidney disease in patients with type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2024; 15:1345411. [PMID: 38559695 PMCID: PMC10978751 DOI: 10.3389/fendo.2024.1345411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Purpose Obesity, particularly abdominal obesity, is seen as a risk factor for diabetic complications. The weight-adjusted-waist index (WWI) is a recently developed index for measuring adiposity. Our goal was to uncover the potential correlation between the WWI index and diabetic kidney disease (DKD) risk. Methods This cross-sectional study included adults with type 2 diabetes mellitus (T2DM) who participated in the NHANES database (2007-2018). The WWI index was calculated as waist circumference (WC, cm) divided by the square root of weight (kg). DKD was diagnosed based on impaired estimated glomerular filtration rate (eGFR<60 mL/min/1.73m2), albuminuria (urinary albumin to urinary creatinine ratio>30 mg/g), or both in T2DM patients. The independent relationship between WWI index and DKD risk was evaluated. Results A total of 5,028 participants with T2DM were included, with an average WWI index of 11.61 ± 0.02. As the quartile range of the WWI index increased, the prevalence of DKD gradually increased (26.76% vs. 32.63% vs. 39.06% vs. 42.96%, P<0.001). After adjusting for various confounding factors, the WWI index was independently associated with DKD risk (OR=1.32, 95%CI:1.12-1.56, P<0.001). The area under the ROC curve (AUC) of the WWI index was higher than that of body mass index (BMI, kg/m2) and WC. Subgroup analysis suggested that the relationship between the WWI index and DKD risk was of greater concern in patients over 60 years old and those with cardiovascular disease. Conclusions Our findings suggest that higher WWI levels are linked to DKD in T2DM patients. The WWI index could be a cost-effective and simple way to detect DKD, but further prospective studies are needed to confirm this.
Collapse
Affiliation(s)
- Zhaoxiang Wang
- Department of Endocrinology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Xuejing Shao
- Department of Endocrinology, Affiliated Wujin Hospital of Jiangsu University, Changzhou, Jiangsu, China
- Department of Endocrinology, Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| | - Wei Xu
- Department of Nephrology, Affiliated Wujin Hospital of Jiangsu University, Changzhou, Jiangsu, China
| | - Bingshuang Xue
- Department of Endocrinology, Affiliated Wujin Hospital of Jiangsu University, Changzhou, Jiangsu, China
- Department of Endocrinology, Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| | - Shao Zhong
- Department of Endocrinology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Qichao Yang
- Department of Endocrinology, Affiliated Wujin Hospital of Jiangsu University, Changzhou, Jiangsu, China
- Department of Endocrinology, Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
12
|
Habiba UE, Khan N, Greene DL, Shamim S, Umer A. The therapeutic effect of mesenchymal stem cells in diabetic kidney disease. J Mol Med (Berl) 2024. [DOI: https:/doi.org/10.1007/s00109-024-02432-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 03/07/2024]
Abstract
Abstract
Diabetes mellitus (DM) often causes chronic kidney damage despite best medical practices. Diabetic kidney disease (DKD) arises from a complex interaction of factors within the kidney and the whole body. Targeting specific disease-causing agents using drugs has not been effective in treating DKD. However, stem cell therapies offer a promising alternative by addressing multiple disease pathways and promoting kidney regeneration. Mesenchymal stem cells (MSCs) offer great promise due to their superior accessibility ratio from adult tissues and remarkable modes of action, such as the production of paracrine anti-inflammatory and cytoprotective substances. This review critically evaluates the development of MSC treatment for DKD as it moves closer to clinical application. Results from animal models suggest that systemic MSC infusion may positively impact DKD progression. However, few registered and completed clinical trials exist, and whether the treatments are effective in humans is still being determined. Significant knowledge gaps and research opportunities exist, including establishing the ideal source, dose, and timing of MSC delivery, better understanding of in vivo mechanisms, and developing quantitative indicators to obtain a more significant therapeutic response. This paper reviews recent literature on using MSCs in preclinical and clinical trials in DKD. Potent biomarkers related to DKD are also highlighted, which may help better understand MSCs’ action in this disease progression.
Key messages
Mesenchymal stem cells have anti-inflammatory and paracrine effects in diabetic kidney disease.
Mesenchymal stem cells alleviate in animal models having diabetic kidney disease.
Mesenchymal stem cells possess promise for the treatment of diabetic kidney disease.
Collapse
|
13
|
Dudakovic A, Limberg AK, Bothun CE, Dilger OB, Bayram B, Bettencourt JW, Salmons HI, Thaler R, Karczewski DC, Owen AR, Iyer VG, Payne AN, Carstens MF, van Wijnen AJ, Berry DJ, Sanchez-Sotelo J, Morrey ME, Abdel MP. AdipoRon reduces TGFβ1-mediated collagen deposition in vitro and alleviates knee stiffness in vivo. J Cell Physiol 2024; 239:e31168. [PMID: 38149794 PMCID: PMC10922972 DOI: 10.1002/jcp.31168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/10/2023] [Accepted: 11/28/2023] [Indexed: 12/28/2023]
Abstract
Arthrofibrosis, which causes joint motion restrictions, is a common complication following total knee arthroplasty (TKA). Key features associated with arthrofibrosis include myofibroblast activation, knee stiffness, and excessive scar tissue formation. We previously demonstrated that adiponectin levels are suppressed within the knee tissues of patients affected by arthrofibrosis and showed that AdipoRon, an adiponectin receptor agonist, exhibited anti-fibrotic properties in human mesenchymal stem cells. In this study, the therapeutic potential of AdipoRon was evaluated on TGFβ1-mediated myofibroblast differentiation of primary human knee fibroblasts and in a mouse model of knee stiffness. Picrosirius red staining revealed that AdipoRon reduced TGFβ1-induced collagen deposition in primary knee fibroblasts derived from patients undergoing primary TKA and revision TKA for arthrofibrosis. AdipoRon also reduced mRNA and protein levels of ACTA2, a key myofibroblast marker. RNA-seq analysis corroborated the anti-myofibrogenic effects of AdipoRon. In our knee stiffness mouse model, 6 weeks of knee immobilization, to induce a knee contracture, in conjunction with daily vehicle (DMSO) or AdipoRon (1, 5, and 25 mg/kg) via intraperitoneal injections were well tolerated based on animal behavior and weight measurements. Biomechanical testing demonstrated that passive extension angles (PEAs) of experimental knees were similar between vehicle and AdipoRon treatment groups in mice evaluated immediately following immobilization. Interestingly, relative to vehicle-treated mice, 5 mg/kg AdipoRon therapy improved the PEA of the experimental knees in mice that underwent 4 weeks of knee remobilization following the immobilization and therapy. Together, these studies revealed that AdipoRon may be an effective therapeutic modality for arthrofibrosis.
Collapse
Affiliation(s)
- Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Afton K. Limberg
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Cole E. Bothun
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Oliver B. Dilger
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Banu Bayram
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | | | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | | | - Aaron R. Owen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Varun G. Iyer
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Ashley N. Payne
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Andre J. van Wijnen
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, VT, USA
| | - Daniel J. Berry
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Mark E. Morrey
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Matthew P. Abdel
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
14
|
Idrizaj E, Nistri S, Nardini P, Baccari MC. Adiponectin affects ileal contractility of mouse preparations. Am J Physiol Gastrointest Liver Physiol 2024; 326:G187-G194. [PMID: 38111974 DOI: 10.1152/ajpgi.00203.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/20/2023]
Abstract
Adiponectin (ADPN) has been reported to induce inhibitory effects on gastric motor activity, which, being a source of peripheral satiety signals, would contribute to the central anorexigenic effects of the hormone in rodents. However, peripheral satiety signals can also originate from the small intestine. Since there are no data on the effects of ADPN in this gut region, the present study aimed to investigate whether ADPN affects murine ileal contractility. Immunofluorescence experiments and Western blot were also performed to reveal the expression of ADPN receptors. Mechanical responses of ileal preparations were recorded in vitro via force-displacement transducers. Preparations showed a tetrodotoxin- and atropine-insensitive spontaneous contractile activity. Electrical field stimulation (EFS) induced tetrodotoxin- and atropine-sensitive contractile responses. ADPN induced a decay of the basal tension and decreased the amplitude of either the spontaneous contractility or the EFS-induced excitatory responses. All ADPN effects were abolished by the nitric oxide (NO) synthesis inhibitor NG-nitro l-arginine. The expression of the ADPN receptor, AdipoR1, but not AdipoR2, was also revealed in enteric glial cells. The present results offer the first evidence that ADPN acts on ileal preparations. The hormone exerts inhibitory effects, likely involving AdipoR1 on enteric glial cells and NO. From a physiological point of view, it could be hypothesized that the depressant action of ADPN on ileal contractility represents an additional peripheral satiety signal which, as also described for the ileal brake, could contribute to the central anorexigenic effects of the hormone.NEW & NOTEWORTHY This study provides the first evidence that adiponectin (ADPN) is able to act on ileal preparations. Functional results demonstrate that the hormone, other than causing a slight decay of the basal tension, depresses the amplitude of both spontaneous contractility and neurally induced excitatory responses of the mouse ileum through the involvement of nitric oxide. The expression of the ADPN receptor AdipoR1 and its localization on glial cells was revealed by Western blot and immunofluorescence analysis.
Collapse
Affiliation(s)
- Eglantina Idrizaj
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Firenze, Italy
| | - Silvia Nistri
- Department of Experimental and Clinical Medicine, Imaging Platform, University of Florence, Firenze, Italy
| | - Patrizia Nardini
- Department of Experimental and Clinical Medicine, Imaging Platform, University of Florence, Firenze, Italy
| | - Maria Caterina Baccari
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Firenze, Italy
| |
Collapse
|
15
|
Mujalli A, Farrash WF, Obaid AA, Khan AA, Almaimani RA, Idris S, Elzubier ME, Khidir EBA, Aslam A, Minshawi F, Alobaidy MA, Alharbi AB, Almasmoum HA, Ghaith M, Alqethami K, Refaat B. Improved Glycaemic Control and Nephroprotective Effects of Empagliflozin and Paricalcitol Co-Therapy in Mice with Type 2 Diabetes Mellitus. Int J Mol Sci 2023; 24:17380. [PMID: 38139208 PMCID: PMC10743534 DOI: 10.3390/ijms242417380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
Herein, we measured the antidiabetic and nephroprotective effects of the sodium-glucose cotransporter-2 inhibitor (empagliflozin; SGLT2i) and synthetic active vitamin D (paricalcitol; Pcal) mono- and co-therapy against diabetic nephropathy (DN). Fifty mice were assigned into negative (NC) and positive (PC) control, SGLT2i, Pcal, and SGLT2i+Pcal groups. Following establishment of DN, SGLT2i (5.1 mg/kg/day) and/or Pcal (0.5 µg/kg/day) were used in the designated groups (5 times/week/day). DN was affirmed in the PC group by hyperglycaemia, dyslipidaemia, polyuria, proteinuria, elevated urine protein/creatinine ratio, and abnormal renal biochemical parameters. Renal SREBP-1 lipogenic molecule, adipokines (leptin/resistin), pro-oxidant (MDA/H2O2), pro-inflammatory (IL1β/IL6/TNF-α), tissue damage (iNOS/TGF-β1/NGAL/KIM-1), and apoptosis (TUNEL/Caspase-3) markers also increased in the PC group. In contrast, renal lipolytic (PPARα/PPARγ), adiponectin, antioxidant (GSH/GPx1/SOD1/CAT), and anti-inflammatory (IL10) molecules decreased in the PC group. Both monotherapies increased insulin levels and mitigated hyperglycaemia, dyslipidaemia, renal and urine biochemical profiles alongside renal lipid regulatory molecules, inflammation, and oxidative stress. While SGLT2i monotherapy showed superior effects to Pcal, their combination demonstrated enhanced remedial actions related to metabolic control alongside renal oxidative stress, inflammation, and apoptosis. In conclusion, SGLT2i was better than Pcal monotherapy against DN, and their combination revealed better nephroprotection, plausibly by enhanced glycaemic control with boosted renal antioxidative and anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Abdulrahman Mujalli
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah P.O. Box 7607, Saudi Arabia
| | - Wesam F. Farrash
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah P.O. Box 7607, Saudi Arabia
| | - Ahmad A. Obaid
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah P.O. Box 7607, Saudi Arabia
| | - Anmar A. Khan
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah P.O. Box 7607, Saudi Arabia
| | - Riyad A. Almaimani
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, Makkah P.O. Box 7607, Saudi Arabia
| | - Shakir Idris
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah P.O. Box 7607, Saudi Arabia
| | - Mohamed E. Elzubier
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, Makkah P.O. Box 7607, Saudi Arabia
| | - Elshiekh Babiker A. Khidir
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah P.O. Box 7607, Saudi Arabia
| | - Akhmed Aslam
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah P.O. Box 7607, Saudi Arabia
| | - Faisal Minshawi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah P.O. Box 7607, Saudi Arabia
| | - Mohammad A. Alobaidy
- Department of Anatomy, Faculty of Medicine, Umm AlQura University, Makkah P.O. Box 7607, Saudi Arabia
| | - Adel B. Alharbi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah P.O. Box 7607, Saudi Arabia
| | - Hussain A. Almasmoum
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah P.O. Box 7607, Saudi Arabia
| | - Mazen Ghaith
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah P.O. Box 7607, Saudi Arabia
| | - Khalid Alqethami
- Department of Laboratory, Al-Noor Specialist Hospital, Makkah P.O. Box 7607, Saudi Arabia
| | - Bassem Refaat
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah P.O. Box 7607, Saudi Arabia
| |
Collapse
|
16
|
Wang Y, Liu T, Cai Y, Liu W, Guo J. SIRT6's function in controlling the metabolism of lipids and glucose in diabetic nephropathy. Front Endocrinol (Lausanne) 2023; 14:1244705. [PMID: 37876546 PMCID: PMC10591331 DOI: 10.3389/fendo.2023.1244705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/21/2023] [Indexed: 10/26/2023] Open
Abstract
Diabetic nephropathy (DN) is a complication of diabetes mellitus (DM) and the main cause of excess mortality in patients with type 2 DM. The pathogenesis and progression of DN are closely associated with disorders of glucose and lipid metabolism. As a member of the sirtuin family, SIRT6 has deacetylation, defatty-acylation, and adenosine diphosphate-ribosylation enzyme activities as well as anti-aging and anticancer activities. SIRT6 plays an important role in glucose and lipid metabolism and signaling, especially in DN. SIRT6 improves glucose and lipid metabolism by controlling glycolysis and gluconeogenesis, affecting insulin secretion and transmission and regulating lipid decomposition, transport, and synthesis. Targeting SIRT6 may provide a new therapeutic strategy for DN by improving glucose and lipid metabolism. This review elaborates on the important role of SIRT6 in glucose and lipid metabolism, discusses the potential of SIRT6 as a therapeutic target to improve glucose and lipid metabolism and alleviate DN occurrence and progression of DN, and describes the prospects for future research.
Collapse
Affiliation(s)
- Ying Wang
- Country Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Tongtong Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuzi Cai
- Country Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Weijing Liu
- Country Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jing Guo
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
17
|
Quan Y, Su P, Shangguan C, Hao H, Yue L, Chen C. Bergenin ameliorates diabetic nephropathy in C57BL/6 J mice by TLR4/MyD88/NF-κB signalling pathway regulation. Toxicol Appl Pharmacol 2023; 475:116633. [PMID: 37482253 DOI: 10.1016/j.taap.2023.116633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
Bergenin (BG) is a polyphenolic substance which has therapeutic potential in the treatment of diabetic nephropathy (DN), a common complication of type II diabetes. However, the mechanisms underlying these effects remain unclear. We studied the protective effects and mechanisms of BG in DN mice, focusing on the TLR4/MyD88/NF-κB signalling pathway. C57BL/6 J mice were used as experiments (n=60), and 10 animals were randomly selected as normal control. The DN model was developed by administering an intraperitoneal injection of streptozotocin (40 mg/kg BW for three days) and a high-fat diet (n=50). BG (20, 40, and 80 mg/kg BW, once a day) was administered orally for four weeks. After BG treatment, the food and water intake of DN mice decreased, blood glucose levels decreased, and insulin resistance reduced. As a result, serum LDL-C, TC, and TG levels decreased; HDL-C levels increased; SOD, CAT, and GSH-Px levels decreased; and MDA levels increased. BG administration reduced AST, ALT, BUN, and CRE levels and inflammatory factors (including TNF-α, MCP-1, IL-1β, and IL-6). Histopathology revealed a significant improvement in pathological damage to the liver, kidney, and spleen of mice treated with BG, and TLR4, MyD88, and NF-κB p65 were down-regulated at both mRNA and protein levels in the BG-treated group. Based on these results, BG therapeutic type II DN by hypoglycaemia, improving liver and kidney function, and anti-oxidative stress; reducing inflammation; and inhibiting the TLR4/MyD88/NF-κB signalling pathway. The results of this study suggest that BG can be used as an effective treatment for type II DN.
Collapse
Affiliation(s)
- Yiheng Quan
- Chinese-German Joint Laboratory for Natural Product Research/Shaanxi Province Key Laboratory of Bio-Resources/QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C./Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, China
| | - Pengchao Su
- Chinese-German Joint Laboratory for Natural Product Research/Shaanxi Province Key Laboratory of Bio-Resources/QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C./Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, China
| | - Chenhong Shangguan
- Chinese-German Joint Laboratory for Natural Product Research/Shaanxi Province Key Laboratory of Bio-Resources/QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C./Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, China
| | - Hao Hao
- Chinese-German Joint Laboratory for Natural Product Research/Shaanxi Province Key Laboratory of Bio-Resources/QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C./Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, China
| | - Lijuan Yue
- Hanzhong Central Hospital, Hanzhong, Shaanxi 723000, China.
| | - Chen Chen
- Chinese-German Joint Laboratory for Natural Product Research/Shaanxi Province Key Laboratory of Bio-Resources/QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C./Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, China.
| |
Collapse
|
18
|
He K, Nie L, Ali T, Liu Z, Li W, Gao R, Zhang Z, Liu J, Dai Z, Xie Y, Zhang Z, Liu G, Dong M, Yu ZJ, Li S, Yang X. Adiponectin deficiency accelerates brain aging via mitochondria-associated neuroinflammation. Immun Ageing 2023; 20:15. [PMID: 37005686 PMCID: PMC10067304 DOI: 10.1186/s12979-023-00339-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 03/10/2023] [Indexed: 04/04/2023]
Abstract
BACKGROUND A wide spectrum of changes occurs in the brain with age, from molecular to morphological aspects, and inflammation accompanied by mitochondria dysfunction is one of the significant factors associated with age. Adiponectin (APN), an essential adipokine in glucose and lipid metabolism, is involved in the aging; however, its role in brain aging has not been adequately explored. Here, we aimed to explore the relationship between APN deficiency and brain aging using multiple biochemical and pharmacological methods to probe APN in humans, KO mice, primary microglia, and BV2 cells. RESULTS We found that declining APN levels in aged human subjects correlated with dysregulated cytokine levels, while APN KO mice exhibited accelerated aging accompanied by learning and memory deficits, anxiety-like behaviors, neuroinflammation, and immunosenescence. APN-deficient mice displayed aggravated mitochondrial dysfunction and HDAC1 upregulation. In BV2 cells, the APN receptor agonist AdipoRon alleviated the mitochondrial deficits and aging markers induced by rotenone or antimycin A. HDAC1 antagonism by Compound 60 (Cpd 60) improved mitochondrial dysfunction and age-related inflammation, as validated in D-galactose-treated APN KO mice. CONCLUSION These findings indicate that APN is a critical regulator of brain aging by preventing neuroinflammation associated with mitochondrial impairment via HDAC1 signaling.
Collapse
Affiliation(s)
- Kaiwu He
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Lulin Nie
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Tahir Ali
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zizhen Liu
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Weifen Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Ruyan Gao
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zena Zhang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Jianjun Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Zhongliang Dai
- Department of Anesthesiology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, 518020, Guangdong, China
- Department of Anesthesiology, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
- Shenzhen Engineering Research Center of Anesthesiology, Shenzhen, 518020, Guangdong, China
| | - Yongmei Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Zaijun Zhang
- Institute of New Drug Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Gongping Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Dong
- Guangzhou International Bio Island, Guangzhou, 510005, Guangdong Province, China
| | - Zhi-Jian Yu
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, The 6Th Affiliated Hospital of Shenzhen University Health Science, Center. No 89, Taoyuan Road, Nanshan District, Shenzhen, 518052, China.
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
- Campbell Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| | - Xifei Yang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.
| |
Collapse
|
19
|
Wang C, Xu M, Feng R, Zhang L, Yin X, Feng R, Liang K, Liu J. Serum isthmin-1 levels are positively and independently correlated with albuminuria in patients with type 2 diabetes mellitus. BMJ Open Diabetes Res Care 2022; 10:10/5/e002972. [PMID: 36126993 PMCID: PMC9490581 DOI: 10.1136/bmjdrc-2022-002972] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Isthmin-1 (Ism-1), as a novel adipokine, plays a role in glucose homeostasis and lipid metabolism. However, the relationship between Ism-1 and type 2 diabetes mellitus (T2DM) remains unclear. This study aims to investigate the association of serum Ism-1 levels with albuminuria and insulin resistance in patients with T2DM and preserved renal function. RESEARCH DESIGN AND METHODS A total of 150 patients with T2DM were recruited. The presence of albuminuria was evaluated by urinary albumin:creatinine ratio (UACR) in first morning urine sample. Serum Ism-1 levels were tested by ELISA. Homeostasis model assessments were used to evaluate insulin resistance. Binary logistic regression and multivariable linear regression analyses were used to assess the association of serum Ism-1 levels with albuminuria. Multivariable linear regression analyses were performed to explore the correlation of serum Ism-1 levels with insulin resistance. RESULTS Compared with the normal-albuminuria and microalbuminuria groups, serum Ism-1 levels were significantly higher in the macroalbuminuria group (p<0.01). Binary logistic regression analyses showed that serum Ism-1 was positively associated with odds of albuminuria even after multiple adjustments (OR=4.766, p=0.013). Serum Ism-1 was positively associated with log10-transformed UACR (β=0.625, p<0.001). However, the associations between serum Ism-1 levels and insulin resistance were not observed in patients with T2DM. CONCLUSIONS Serum Ism-1 levels were positively and independently correlated with the severity of albuminuria in patients with T2DM but not with insulin resistance.
Collapse
Affiliation(s)
- Chuan Wang
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong University, Jinan, Shandong, China
| | - Mingyue Xu
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong University, Jinan, Shandong, China
| | - Ruiying Feng
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong University, Jinan, Shandong, China
| | - Lei Zhang
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong University, Jinan, Shandong, China
| | - Xiaofei Yin
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong University, Jinan, Shandong, China
| | - Ruoqi Feng
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong University, Jinan, Shandong, China
| | - Kai Liang
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong University, Jinan, Shandong, China
| | - Jinbo Liu
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong University, Jinan, Shandong, China
| |
Collapse
|
20
|
Wu R, Luo P, Luo M, Li X, Zhong X, He Q, Zhang J, Zhang Y, Xiong Y, Han P. Genetically predicted adiponectin causally reduces the risk of chronic kidney disease, a bilateral and multivariable mendelian randomization study. Front Genet 2022; 13:920510. [PMID: 35957678 PMCID: PMC9360570 DOI: 10.3389/fgene.2022.920510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background: It is not clarified whether the elevation of adiponectin is the results of kidney damage, or the cause of kidney function injury. To explore the causal association of adiponectin on estimated glomerular filtration rate (eGFR) and chronic kidney disease (CKD), this study was performed.Materials and methods: The genetic association of adiponectin were retrieved from one genome-wide association studies with 39,883 participants. The summary-level statistics regarding the eGFR (133,413 participants) and CKD (12,385 CKD cases and 104,780 controls) were retrieved from the CKDGen consortium in the European ancestry. Single-variable Mendelian randomization (MR), bilateral and multivariable MR analyses were used to verify the causal association between adiponectin, eGFR, and CKD.Results: Genetically predicted adiponectin reduces the risk of CKD (OR = 0.71, 95% CI = 0.57–0.89, p = 0.002) and increases the eGFR (β = 0.014, 95% CI = 0.001–0.026, p = 0.034) by the inverse variance weighting (IVW) estimator. These findings remain consistent in the sensitivity analyses. No heterogeneity and pleiotropy were detected in this study (P for MR-Egger 0.617, P for global test > 0.05, and P for Cochran’s Q statistics = 0.617). The bilateral MR identified no causal association of CKD on adiponectin (OR = 1.01, 95% CI = 0.96–1.07, p = 0.658), nor did it support the association of eGFR on adiponectin (OR = 0.86, 95% CI = 0.68–1.09, p = 0.207) by the IVW estimator. All the sensitivity analyses reported similar findings (p > 0.05). Additionally, after adjusting for cigarette consumption, alcohol consumption, body mass index, low density lipoprotein, and total cholesterol, the ORs for CKD are 0.70 (95% CI = 0.55–0.90, p = 0.005), 0.75 (95% CI = 0.58–0.97, p = 0.027), 0.82 (95% CI = 0.68–0.99, p = 0.039), 0.74 (95% CI = 0.59–0.93, p = 0.011), and 0.79 (95% CI = 0.61–0.95, p = 0.018), respectively.Conclusion: Using genetic data, this study provides novel causal evidence that adiponectin can protect the kidney function and further reduce the risk of CKD.
Collapse
Affiliation(s)
- Ruicheng Wu
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Peiyi Luo
- Department of Nephrology, West China Hospital of Sichuan University, Chengdu, China
- Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, China
| | - Min Luo
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyu Li
- Laboratory of Innovation, Basic Medical Experimental Teaching Centre, Chongqing Medical University, Chongqing, China
| | - Xin Zhong
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Qiang He
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Zhang
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yangchang Zhang
- Department of Epidemiology and Health Statistics, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Yang Xiong
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Han
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Ping Han,
| |
Collapse
|
21
|
Serum Adiponectin Level in Different Stages of Type 2 Diabetic Kidney Disease: A Meta-Analysis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:1863243. [PMID: 35872926 PMCID: PMC9307361 DOI: 10.1155/2022/1863243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022]
Abstract
Background. Biomarkers in predicting the stages of nephropathy associated with type 2 diabetes mellitus are urgent, and adiponectin may be a promising biomarker. This meta-analysis examined the association of serum adiponectin level with the stages of type 2 diabetic nephropathy. Methods. Databases including PubMed, Cochrane Library, EMBASE, China National Knowledge Infrastructure (CNKI), and Wan Fang were searched for published studies on adiponectin and type 2 diabetic kidney disease. The Newcastle-Ottawa scale was used to assess the quality of the literature. STATA 14.0 was used to conduct the statistical analysis. Results. Thirty-four studies with 5254 patients were included in this meta-analysis. The results of this study show that there was no significant difference in serum adiponectin level between normoalbuminuria and the control group (
, 95% CI [-1.23, 0.40]), while serum adiponectin level was positively correlated with the severity of type 2 diabetic kidney disease. The serum adiponectin level in type 2 diabetic kidney disease patients ranks as
. Conclusions. Serum adiponectin level might be an important marker to predict the progression of type 2 diabetic kidney disease.
Collapse
|
22
|
Ganesh V, M M, Palem SP. Adiponectin Can Be an Early Predictable Marker for Type 2 Diabetes Mellitus and Nephropathy. Cureus 2022; 14:e27308. [PMID: 36039271 PMCID: PMC9403389 DOI: 10.7759/cureus.27308] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2022] [Indexed: 11/21/2022] Open
Abstract
Background Several studies have examined serum adiponectin concentrations in prediabetes, newly diagnosed type 2 diabetes mellitus (T2DM), and other types of diabetes associated with the risk of T2DM and diabetic nephropathy (DN); however, the results to date are inconclusive. An aim of the current study is to determine whether adiponectin is a useful marker for the earlier development of T2DM and DN. Methodology This cross-sectional study included 400 subjects. Among the subjects, 100 were prediabetes subjects, 200 were T2DM patients, and the remaining 100 were healthy controls. The biochemical and clinical parameters of all patients were analyzed and the data were recorded. Results The mean levels of adiponectin were significantly lower in prediabetic subjects than in healthy controls (3.22 ± 0.98, 5.36 ± 2.24, p = 0.0001**). Furthermore, the levels of adiponectin were significantly higher in both the groups of T2DM patients when compared to healthy controls (19.85 ± 3.31, 11.83 ± 3.01, and 5.36 ± 2.24, p = 0.0001**). In both diabetic groups, adiponectin was positively correlated with body mass index, glycated hemoglobin, insulin, homeostasis model assessment of insulin resistance, and microalbuminuria, while negatively correlated with estimated glomerular filtration rate. Interestingly, adiponectin had a reversed correlation in the prediabetic group. Conclusion Based on the results, the present study suggests that significantly decreased levels of serum adiponectin in prediabetic subjects might be used as a variable marker for T2DM. Moreover, adiponectin may useful for detecting the early onset of nephropathy, compared to microalbumin, as its concentration was significantly elevated in patients who were newly diagnosed with T2DM without nephropathy.
Collapse
Affiliation(s)
- Veluri Ganesh
- Biochemistry, Aarupadai Veedu Medical College & Hospital, Vinayaka Mission's Research Foundation (Deemed to be University), Salem, IND
| | - Murugan M
- Biochemistry, Aarupadai Veedu Medical College & Hospital, Vinayaka Mission's Research Foundation (Deemed to be University), Salem, IND
| | - Siva Prasad Palem
- Biochemistry, JJM (Jagadguru Jayadeva Murugarajendra) Medical College and Hospital, Davanagere, IND
| |
Collapse
|
23
|
Jia Y, Wu C, Rivera-Piza A, Kim YJ, Lee JH, Lee SJ. Mechanism of Action of Cyanidin 3-O-Glucoside in Gluconeogenesis and Oxidative Stress-Induced Cancer Cell Senescence. Antioxidants (Basel) 2022; 11:antiox11040749. [PMID: 35453434 PMCID: PMC9029247 DOI: 10.3390/antiox11040749] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 02/06/2023] Open
Abstract
Cyanidin-3-O-glucoside (C3G) is a natural anthocyanin abundant in fruits and vegetables that interacts and possibly modulates energy metabolism and oxidative stress. This study investigated the effect of C3G on gluconeogenesis and cancer cell senescence. C3G activates adenosine monophosphate-activated protein kinase (AMPK), a cellular energy sensor involved in metabolism and the aging process. C3G suppressed hepatic gluconeogenesis by reducing the expression of gluconeogenic genes through the phosphorylation inactivation of CRTC2 and HDAC5 coactivators via AMPK. C3G did not directly interact with AMPK but, instead, activated AMPK through the adiponectin receptor signaling pathway, as demonstrated through adiponectin receptor gene knockdown experiments. In addition, C3G increased cellular AMP levels in cultured hepatocytes, and the oral administration of C3G in mice elevated their plasma adiponectin concentrations. These effects collectively contribute to the activation of AMPK. In addition, C3G showed potent antioxidant activity and induced cellular senescence, and apoptosis in oxidative-stress induced senescence in hepatocarcinoma cells. C3G increased senescence-associated β-galactosidase expression, while increasing the expression levels of P16, P21 and P53, key markers of cellular senescence. These findings demonstrate that anthocyanin C3G achieves hypoglycemic effects via AMPK activation and the subsequent suppression of gluconeogenesis and exhibits anti-cancer activity through the induction of apoptosis and cellular senescence.
Collapse
Affiliation(s)
- Yaoyao Jia
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Korea; (Y.J.); (C.W.); (A.R.-P.); (Y.-J.K.); (J.H.L.)
| | - Chunyan Wu
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Korea; (Y.J.); (C.W.); (A.R.-P.); (Y.-J.K.); (J.H.L.)
| | - Adriana Rivera-Piza
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Korea; (Y.J.); (C.W.); (A.R.-P.); (Y.-J.K.); (J.H.L.)
| | - Yeon-Ji Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Korea; (Y.J.); (C.W.); (A.R.-P.); (Y.-J.K.); (J.H.L.)
| | - Ji Hae Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Korea; (Y.J.); (C.W.); (A.R.-P.); (Y.-J.K.); (J.H.L.)
| | - Sung-Joon Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Korea; (Y.J.); (C.W.); (A.R.-P.); (Y.-J.K.); (J.H.L.)
- Department of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
- Correspondence: ; Tel.: +82-2-3290-302
| |
Collapse
|
24
|
Kamel MF, Nassar M, Elbendary A, Mohamed AGA, Abdullah MG, Gomaa HRA, Awad EMI, Mahmoud HH, Elfiki MA, Abdalla NH, Abd Elkareem RM, Soliman AS, Elmessiery RM. The potential use of urinary transferrin, urinary adiponectin, urinary Retinol Binding Protein, and serum zinc alpha 2 glycoprotein levels as novel biomarkers for early diagnosis of diabetic nephropathy: A case-control study. Diabetes Metab Syndr 2022; 16:102473. [PMID: 35405355 DOI: 10.1016/j.dsx.2022.102473] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/20/2022] [Accepted: 03/23/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS The level of albuminuria is used to evaluate diabetic nephropathy (DN). However, to detect or predict the early stages of DN, better biomarkers are needed. METHODS This study is a case-control observational study. 80 Egyptians participated in the study: 60 patients with type 2 diabetes mellitus (T2DM) were divided into three groups (20 patients each), and 20 healthy subjects with matched age and gender were used as controls. Demographic and laboratory data were analyzed. An enzyme-linked immunosorbent assay was used to determine the levels of four biomarkers of DN; urinary adiponectin (ADP), urinary transferrin, serum Zinc Alpha 2 Glycoprotein (ZAG), and urinary Retinol Binding Protein (RBP). RESULTS The levels of DN biomarkers urinary ADP, transferrin, RBP, and serum, ZAG were significantly higher in patients with T2DM than in controls. The ROC curve of the validity of the simultaneous use of all four biomarkers in predicting albuminuria indicates a sensitivity of 90% and a specificity of 90%. The Area Under the Curve (AUC) was 0.948, the 95% confidence interval was 0.998-0.897, and the p-value was 0.001. CONCLUSIONS In patients with T2DM, urine adiponectin, transferrin, RBP, and serum ZAG concentration may be useful biomarkers in the early diagnosis of DN. A further longitudinal prospective study is required to explore the potential utility of these biomarkers.
Collapse
Affiliation(s)
- Mahmoud F Kamel
- Internal Medicine Department, Faculty of Medicine, Beni-Suef University, Egypt.
| | - Mahmoud Nassar
- Department of Medicine, Icahn School of Medicine at Mount Sinai / NYC Health+Hospitals, Queens, New York, USA.
| | - Amira Elbendary
- Dermatology Department, Kasr Alainy Faculty of Medicine, Cairo University, Egypt.
| | | | | | | | | | - Heba H Mahmoud
- Internal Medicine Department, Faculty of Medicine, Beni-Suef University, Egypt.
| | - Mohamed A Elfiki
- Internal Medicine Department, Faculty of Medicine, Beni-Suef University, Egypt.
| | - Nilly H Abdalla
- Internal Medicine Department, Faculty of Medicine, Beni-Suef University, Egypt.
| | - Rehab M Abd Elkareem
- Clinical and Chemical Pathology Department, Faculty of Medicine, Beni-Suef University, Egypt.
| | - Ayman S Soliman
- Physiology Department, Faculty of Medicine, Beni-Suef University, Egypt.
| | - Riem M Elmessiery
- Internal Medicine Department, Kasr Alainy Faculty of Medicine, Cairo University, Egypt.
| |
Collapse
|
25
|
The Nephrotoxin Puromycin Aminonucleoside Induces Injury in Kidney Organoids Differentiated from Induced Pluripotent Stem Cells. Cells 2022; 11:cells11040635. [PMID: 35203286 PMCID: PMC8870209 DOI: 10.3390/cells11040635] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/29/2022] [Accepted: 02/09/2022] [Indexed: 11/17/2022] Open
Abstract
Kidney diseases, including acute kidney injury (AKI) and chronic kidney disease (CKD), which can progress to end stage renal disease (ESRD), are a worldwide health burden. Organ transplantation or kidney dialysis are the only effective available therapeutic tools. Therefore, in vitro models of kidney diseases and the development of prospective therapeutic options are urgently needed. Within the kidney, the glomeruli are involved in blood filtration and waste excretion and are easily affected by changing cellular conditions. Puromycin aminonucleoside (PAN) is a nephrotoxin, which can be employed to induce acute glomerular damage and to model glomerular disease. For this reason, we generated kidney organoids from three iPSC lines and treated these with PAN in order to induce kidney injury. Morphological observations revealed the disruption of glomerular and tubular structures within the kidney organoids upon PAN treatment, which were confirmed by transcriptome analyses. Subsequent analyses revealed an upregulation of immune response as well as inflammatory and cell-death-related processes. We conclude that the treatment of iPSC-derived kidney organoids with PAN induces kidney injury mediated by an intertwined network of inflammation, cytoskeletal re-arrangement, DNA damage, apoptosis and cell death. Furthermore, urine-stem-cell-derived kidney organoids can be used to model kidney-associated diseases and drug discovery.
Collapse
|
26
|
Abstract
The global prevalence of non‐alcoholic fatty liver disease (NAFLD) is rising, along with the epidemic of diabesity. NAFLD is present in >70% of individuals with type 2 diabetes. Although the mutually detrimental relationship between NAFLD and type 2 diabetes has been well established, a multitude of recent studies have further shown that type 2 diabetes is closely linked to the development of cirrhosis, hepatocellular carcinoma, liver‐related morbidity and mortality. In contrast, NAFLD also negatively impacts type 2 diabetes both in terms of its incidence and related adverse clinical outcomes, including cardiovascular and chronic kidney diseases. In response to these global health threats, clinical care pathways for NAFLD and guidelines for metabolic dysfunction‐associated fatty liver disease have been developed. Several antidiabetic agents have been evaluated for their potential hepatic benefits with promising results. Furthermore, type 2 diabetes patients are increasingly represented in clinical trials of novel therapeutics for NAFLD. However, despite the wealth of knowledge in NAFLD and type 2 diabetes, lack of awareness of the disease and the potential weight of this problem remains a major challenge, especially among clinicians who are outside the field of hepatology and gastroenterology. This review therefore aimed to provide all diabetes care providers with a summary of the latest evidence that supports NAFLD as an emerging diabetic complication of increasing importance, and to present the current recommendations, focusing on the assessment and therapeutic strategies, on the management of NAFLD among type 2 diabetes patients.
Collapse
Affiliation(s)
- C H Lee
- Department of Medicine, University of Hong Kong, Hong Kong SAR.,State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong SAR
| | - Dtw Lui
- Department of Medicine, University of Hong Kong, Hong Kong SAR
| | - Ksl Lam
- Department of Medicine, University of Hong Kong, Hong Kong SAR.,State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong SAR
| |
Collapse
|
27
|
Sanz-Lamora H, Marrero PF, Haro D, Relat J. A Mixture of Pure, Isolated Polyphenols Worsens the Insulin Resistance and Induces Kidney and Liver Fibrosis Markers in Diet-Induced Obese Mice. Antioxidants (Basel) 2022; 11:120. [PMID: 35052623 PMCID: PMC8772794 DOI: 10.3390/antiox11010120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/29/2021] [Accepted: 01/01/2022] [Indexed: 12/12/2022] Open
Abstract
Obesity is a worldwide epidemic with severe metabolic consequences. Polyphenols are secondary metabolites in plants and the most abundant dietary antioxidants, which possess a wide range of health effects. The most relevant food sources are fruit and vegetables, red wine, black and green tea, coffee, virgin olive oil, and chocolate, as well as nuts, seeds, herbs, and spices. The aim of this work was to evaluate the ability of a pure, isolated polyphenol supplementation to counteract the pernicious metabolic effects of a high-fat diet (HFD). Our results indicated that the administration of pure, isolated polyphenols under HFD conditions for 26 weeks worsened the glucose metabolism in diet-induced obese mice. The data showed that the main target organ for these undesirable effects were the kidneys, where we observed fibrotic, oxidative, and kidney-disease markers. This work led us to conclude that the administration of pure polyphenols as a food supplement would not be advisable. Instead, the ingestion of complete "whole" foods would be the best way to get the health effects of bioactive compounds such as polyphenols.
Collapse
Affiliation(s)
- Hèctor Sanz-Lamora
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (H.S.-L.); (P.F.M.)
- Institute for Nutrition and Food Safety Research, University of Barcelona (INSA-UB), E-08921 Santa Coloma de Gramenet, Spain
| | - Pedro F. Marrero
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (H.S.-L.); (P.F.M.)
- Institute of Biomedicine, University of Barcelona (IBUB), E-08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Diego Haro
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (H.S.-L.); (P.F.M.)
- Institute of Biomedicine, University of Barcelona (IBUB), E-08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Joana Relat
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (H.S.-L.); (P.F.M.)
- Institute for Nutrition and Food Safety Research, University of Barcelona (INSA-UB), E-08921 Santa Coloma de Gramenet, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|
28
|
Zhu Y, Zha F, Tang B, Ji TT, Li XY, Feng L, Bai SJ. Exosomal hsa_circ_0125310 promotes cell proliferation and fibrosis in diabetic nephropathy via sponging miR-422a and targeting the IGF1R/p38 axis. J Cell Mol Med 2021; 26:151-162. [PMID: 34854210 PMCID: PMC8742240 DOI: 10.1111/jcmm.17065] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 12/11/2022] Open
Abstract
Diabetic nephropathy (DN) is still on the rise worldwide, and millions of patients have to be treated through dialysis or transplant because of kidney failure caused by DN. Recent reports have highlighted circRNAs in the treatment of DN. Herein, we aimed to investigate the mechanism by which high glucose‐induced exo‐circ_0125310 promotes diabetic nephropathy progression. circ_0125310 is highly expressed in diabetic nephropathy and exosomes isolated from high glucose‐induced mesangial cells (MCs). High glucose‐induced exosomes promote the proliferation and fibrosis of MCs. However, results showed that the effects of exosomes on MCs can be reversed by the knockdown of circ_0125310. miR‐422a, which targets IGF1R, was the direct target of circ_0125310. circ_0125310 regulated IGF1R/p38 axis by sponging miR‐422a. Exo‐circ_0125310 increased the luciferase activity of the WT‐IGF1R reporter in the dual‐luciferase reporter gene assays and upregulated the expression level of IGF1R and p38. Finally, in vivo research indicated that the overexpression of circ_0125310 promoted the diabetic nephropathy progression. Above results demonstrated that the high glucose‐induced exo‐circ_0125310 promoted cell proliferation and fibrosis in diabetic nephropathy via sponging miR‐422a and targeting the IGF1R/p38 axis.
Collapse
Affiliation(s)
- Yingchun Zhu
- Department of Nephrology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fangfang Zha
- Department of Nephrology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bo Tang
- Department of Nephrology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ting-Ting Ji
- Department of Nephrology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiao-Ying Li
- Department of Nephrology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Linhong Feng
- Department of Nephrology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shou-Jun Bai
- Department of Nephrology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
29
|
Inflammation-Related Biomarkers Are Associated with Heart Failure Severity and Poor Clinical Outcomes in Patients with Non-Ischemic Dilated Cardiomyopathy. Life (Basel) 2021; 11:life11101006. [PMID: 34685378 PMCID: PMC8540264 DOI: 10.3390/life11101006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 12/15/2022] Open
Abstract
Inflammation-related biomarkers are associated with clinical outcomes in mixed-etiology chronic heart failure populations. Inflammation-related markers tend to be higher in ischemic than in non-ischemic dilated cardiomyopathy (NI-DCM) patients, which might impact their prognostic performance in NI-DCM patients. Therefore, we aimed to assess the association of inflammation-related biomarkers with heart failure severity parameters and adverse cardiac events in a pure NI-DCM patient cohort. Fifty-seven patients with NI-DCM underwent endomyocardial biopsy. Biopsies were evaluated by immunohistochemistry for CD3+, CD45ro+, CD68+, CD4+, CD54+, and HLA-DR+ cells. Blood samples were tested for high-sensitivity C-reactive protein (hs-CRP), interleukin-6, tumor necrosis factor-α (TNF-α), soluble urokinase-type plasminogen activator receptor and adiponectin. During a five-year follow-up, twenty-seven patients experienced at least one composite adverse cardiac event: left ventricle assist device implantation, heart transplantation or death. Interleukin-6, TNF-α and adiponectin correlated with heart failure severity parameters. Patients with higher levels of interleukin-6, TNF-α, adiponectin or hs-CRP, or a higher number of CD3+ or CD45ro+ cells, had lower survival rates. Interleukin-6, adiponectin, and CD45ro+ cells were independently associated with poor clinical outcomes. All patients who had interleukin-6, TNF-α and adiponectin concentrations above the threshold experienced an adverse cardiac event. Therefore, a combination of these cytokines can identify high-risk NI-DCM patients.
Collapse
|
30
|
Amatruda M, Gembillo G, Giuffrida AE, Santoro D, Conti G. The Aggressive Diabetic Kidney Disease in Youth-Onset Type 2 Diabetes: Pathogenetic Mechanisms and Potential Therapies. ACTA ACUST UNITED AC 2021; 57:medicina57090868. [PMID: 34577791 PMCID: PMC8467670 DOI: 10.3390/medicina57090868] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/21/2021] [Accepted: 08/22/2021] [Indexed: 02/07/2023]
Abstract
Youth-onset Type 2 Diabetes Mellitus (T2DM) represents a major burden worldwide. In the last decades, the prevalence of T2DM became higher than that of Type 1 Diabetes Mellitus (T1DM), helped by the increasing rate of childhood obesity. The highest prevalence rates of youth-onset T2DM are recorded in China (520 cases/100,000) and in the United States (212 cases/100,000), and the numbers are still increasing. T2DM young people present a strong hereditary component, often unmasked by social and environmental risk factors. These patients are affected by multiple coexisting risk factors, including obesity, hyperglycemia, dyslipidemia, insulin resistance, hypertension, and inflammation. Juvenile T2DM nephropathy occurs earlier in life compared to T1DM-related nephropathy in children or T2DM-related nephropathy in adult. Diabetic kidney disease (DKD) is T2DM major long term microvascular complication. This review summarizes the main mechanisms involved in the pathogenesis of the DKD in young population and the recent evolution of treatment, in order to reduce the risk of DKD progression.
Collapse
Affiliation(s)
- Michela Amatruda
- Unit of Pediatric Nephrology with Dialysis, AOU Policlinic G Martino, University of Messina, 98125 Messina, Italy;
| | - Guido Gembillo
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (G.G.); (A.E.G.); (D.S.)
- Department of Biomedical and Dental Sciences and Morpho-functional Imaging, University of Messina, 98125 Messina, Italy
| | - Alfio Edoardo Giuffrida
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (G.G.); (A.E.G.); (D.S.)
| | - Domenico Santoro
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (G.G.); (A.E.G.); (D.S.)
| | - Giovanni Conti
- Unit of Pediatric Nephrology with Dialysis, AOU Policlinic G Martino, University of Messina, 98125 Messina, Italy;
- Correspondence:
| |
Collapse
|
31
|
Howlader M, Sultana MI, Akter F, Hossain MM. Adiponectin gene polymorphisms associated with diabetes mellitus: A descriptive review. Heliyon 2021; 7:e07851. [PMID: 34471717 PMCID: PMC8387910 DOI: 10.1016/j.heliyon.2021.e07851] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/17/2021] [Accepted: 08/18/2021] [Indexed: 01/24/2023] Open
Abstract
Diabetes is currently a growing concern of the age. Prevention and treatment of diabetes is a global health priority. Adiponectin is an adipocyte derived protein hormone that enhances insulin sensitivity and ameliorates diabetes by enhancing fatty acid oxidation and glucose uptake in skeletal muscle and reducing glucose production in the liver. Low serum adiponectin concentrations are associated with diabetes, central obesity, insulin resistance and metabolic syndrome. Adiponectin gene is located on chromosome 3q27, where a locus of susceptibility to diabetes was mapped. Several cross-sectional studies showed that single nucleotide polymorphisms (SNPs) in adiponectin gene (ADIPOQ) were associated with diabetes. SNPs in ADIPOQ help in assessing the association of common variants with levels of adiponectin and the risk of diabetes. Two common SNPs, rs2241766 and rs1501299, have been linked significantly to type 1 diabetes mellitus which endow the world with a block of haplotypes. Experimental evidences also suggest that rs1501299, rs2241766, rs266729, rs17366743, rs17300539, rs182052, rs822396, rs17846866, rs3774261 and rs822393 are significantly associated with type 2 diabetes mellitus which is the predominant form of the disease. In addition, rs2241766 and rs266729 are extensively associated with gestational diabetes, a condition that develops in women during pregnancy. Therefore not a particular single mutation but a number of SNPs in adiponectin gene could be a risk factor for developing diabetes among the individuals worldwide. This study firmly suggests that adiponectin plays a crucial role in the pathogenesis of type 1, type 2 and gestational diabetes mellitus.
Collapse
Affiliation(s)
- Mithu Howlader
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Mst Irin Sultana
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Farzana Akter
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Md. Murad Hossain
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| |
Collapse
|
32
|
Lindfors S, Polianskyte-Prause Z, Bouslama R, Lehtonen E, Mannerla M, Nisen H, Tienari J, Salmenkari H, Forsgård R, Mirtti T, Lehto M, Groop PH, Lehtonen S. Adiponectin receptor agonist AdipoRon ameliorates renal inflammation in diet-induced obese mice and endotoxin-treated human glomeruli ex vivo. Diabetologia 2021; 64:1866-1879. [PMID: 33987714 PMCID: PMC8245393 DOI: 10.1007/s00125-021-05473-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/01/2021] [Indexed: 11/10/2022]
Abstract
AIMS/HYPOTHESIS Chronic low-grade inflammation with local upregulation of proinflammatory molecules plays a role in the progression of obesity-related renal injury. Reduced serum concentration of anti-inflammatory adiponectin may promote chronic inflammation. Here, we investigated the potential anti-inflammatory and renoprotective effects and mechanisms of action of AdipoRon, an adiponectin receptor agonist. METHODS Wild-type DBA/2J mice were fed with high-fat diet (HFD) supplemented or not with AdipoRon to model obesity-induced metabolic endotoxaemia and chronic low-grade inflammation and we assessed changes in the glomerular morphology and expression of proinflammatory markers. We also treated human glomeruli ex vivo and human podocytes in vitro with AdipoRon and bacterial lipopolysaccharide (LPS), an endotoxin upregulated in obesity and diabetes, and analysed the secretion of inflammatory cytokines, activation of inflammatory signal transduction pathways, apoptosis and migration. RESULTS In HFD-fed mice, AdipoRon attenuated renal inflammation, as demonstrated by reduced expression of glomerular activated NF-κB p65 subunit (NF-κB-p65) (70%, p < 0.001), TNFα (48%, p < 0.01), IL-1β (51%, p < 0.001) and TGFβ (46%, p < 0.001), renal IL-6 and IL-4 (21% and 20%, p < 0.05), and lowered glomerular F4/80-positive macrophage infiltration (31%, p < 0.001). In addition, AdipoRon ameliorated HFD-induced glomerular hypertrophy (12%, p < 0.001), fibronectin accumulation (50%, p < 0.01) and podocyte loss (12%, p < 0.001), and reduced podocyte foot process effacement (15%, p < 0.001) and thickening of the glomerular basement membrane (18%, p < 0.001). In cultured podocytes, AdipoRon attenuated the LPS-induced activation of the central inflammatory signalling pathways NF-κB-p65, c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38-MAPK) (30%, 36% and 22%, respectively, p < 0.001), reduced the secretion of TNFα (32%, p < 0.01), and protected against podocyte apoptosis and migration. In human glomeruli ex vivo, AdipoRon reduced the LPS-induced secretion of inflammatory cytokines IL-1β, IL-18, IL-6 and IL-10. CONCLUSIONS/INTERPRETATION AdipoRon attenuated the renal expression of proinflammatory cytokines in HFD-fed mice and LPS-stimulated human glomeruli, which apparently contributed to the amelioration of glomerular inflammation and injury. Mechanistically, based on assays on cultured podocytes, AdipoRon reduced LPS-induced activation of the NF-κB-p65, JNK and p38-MAPK pathways, thereby impelling the decrease in apoptosis, migration and secretion of TNFα. We conclude that the activation of the adiponectin receptor by AdipoRon is a potent strategy to attenuate endotoxaemia-associated renal inflammation.
Collapse
Affiliation(s)
- Sonja Lindfors
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Zydrune Polianskyte-Prause
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Rim Bouslama
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Eero Lehtonen
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Miia Mannerla
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Harry Nisen
- Abdominal Center, Urology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jukka Tienari
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Hanne Salmenkari
- Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Richard Forsgård
- Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tuomas Mirtti
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Markku Lehto
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Per-Henrik Groop
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Sanna Lehtonen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Department of Pathology, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
33
|
Wang J, Xiang H, Lu Y, Wu T, Ji G. New progress in drugs treatment of diabetic kidney disease. Biomed Pharmacother 2021; 141:111918. [PMID: 34328095 DOI: 10.1016/j.biopha.2021.111918] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 02/08/2023] Open
Abstract
Diabetic kidney disease (DKD) is not only one of the main complications of diabetes, but also the leading cause of the end-stage renal disease (ESRD). The occurrence and development of DKD have always been a serious clinical problem that leads to the increase of morbidity and mortality and the severe damage to the quality of life of human beings. Controlling blood glucose, blood pressure, blood lipids, and improving lifestyle can help slow the progress of DKD. In recent years, with the extensive research on the pathological mechanism and molecular mechanism of DKD, there are more and more new drugs based on this, such as new hypoglycemic drugs sodium-glucose cotransporter 2 (SGLT2) inhibitors, glucagon-like peptide-1 (GLP-1) inhibitors, and dipeptidyl peptidase-4 (DPP-4) inhibitors with good efficacy in clinical treatment. Besides, there are some newly developed drugs, including protein kinase C (PKC) inhibitors, advanced glycation end product (AGE) inhibitors, aldosterone receptor inhibitors, endothelin receptor (ETR) inhibitors, transforming growth factor-β (TGF-β) inhibitors, Rho kinase (ROCK) inhibitors and so on, which show positive effects in animal or clinical trials and bring hope for the treatment of DKD. In this review, we sort out the progress in the treatment of DKD in recent years, the research status of some emerging drugs, and the potential drugs for the treatment of DKD in the future, hoping to provide some directions for clinical treatment of DKD.
Collapse
Affiliation(s)
- Junmin Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongjiao Xiang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yifei Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
34
|
Li Y, Song B, Ruan C, Xue W, Zhao J. AdipoRon Attenuates Hypertension-Induced Epithelial-Mesenchymal Transition and Renal Fibrosis via Promoting Epithelial Autophagy. J Cardiovasc Transl Res 2021; 14:538-545. [PMID: 33025271 DOI: 10.1007/s12265-020-10075-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022]
Abstract
Hypertension-induced epithelial-mesenchymal transition (EMT) is a major mechanism of renal fibrosis. Adiponectin protects against hypertension-induced target organ damage. AdipoRon is an orally active synthetic adiponectin receptor agonist. However, it is unclear whether AdipoRon could attenuate EMT and renal fibrosis in hypertensive mice. C57BJ/6J mice were utilized to induce DOCA-salt-sensitive hypertensive model. Hypertension results in an altered adiponectin expression and promotes EMT in the kidney. In vitro, AdipoRon inhibits aldosterone (Aldo)-induced EMT and promotes autophagic flux in HK-2 epithelial cells. Mechanically, AdipoRon activates AMPK/ULK1 pathway in epithelial cells. Blockade of AMPK activation, as well as inhibition of autophagy, blocks the effects of AdipoRon on Aldo-induced EMT. Moreover, AdipoRon treatment promotes autophagy and improves renal fibrosis in DOCA-salt-hypertensive mice. Our data suggest that AdipoRon could be a potential therapeutic option to prevent renal fibrosis in hypertensive patients. Graphical abstract.
Collapse
Affiliation(s)
- Yan Li
- Department of Cardiology, RuiJin Hospital/LuWan Branch, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Bei Song
- Department of General Practice, RuiJin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Chengchao Ruan
- State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - WenJie Xue
- Huangpu District Bansongyuan Road Health Service Center, Shanghai, China.
| | - Jianrong Zhao
- Department of Cardiology, RuiJin Hospital/LuWan Branch, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
35
|
Piani F, Melena I, Tommerdahl KL, Nokoff N, Nelson RG, Pavkov ME, van Raalte DH, Cherney DZ, Johnson RJ, Nadeau KJ, Bjornstad P. Sex-related differences in diabetic kidney disease: A review on the mechanisms and potential therapeutic implications. J Diabetes Complications 2021; 35:107841. [PMID: 33423908 PMCID: PMC8007279 DOI: 10.1016/j.jdiacomp.2020.107841] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 02/08/2023]
Abstract
Sexual dimorphism may play a key role in the pathogenesis of diabetic kidney disease (DKD) and explain differences observed in disease phenotypes, responses to interventions, and disease progression between men and women with diabetes. Therefore, omitting the consideration of sex as a biological factor may result in delayed diagnoses and suboptimal therapies. This review will summarize the effects of sexual dimorphism on putative metabolic and molecular mechanisms underlying DKD, and the potential implications of these differences on therapeutic interventions. To successfully implement precision medicine, we require a better understanding of sexual dimorphism in the pathophysiologic progression of DKD. Such insights can unveil sex-specific therapeutic targets that have the potential to maximize efficacy while minimizing adverse events.
Collapse
Affiliation(s)
- Federica Piani
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, CO, USA; Department of Medicine and Surgery Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy; Department of Medicine, Division of Nephrology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Isabella Melena
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kalie L Tommerdahl
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, CO, USA; Department of Medicine, Division of Nephrology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Natalie Nokoff
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Robert G Nelson
- Chronic Kidney Disease Section, Phoenix Epidemiology and Clinical Research Branch, NIDDK, Phoenix, AZ, USA
| | - Meda E Pavkov
- Division of Diabetes Translation, Center for Disease Control and Prevention, Atlanta, GA, USA
| | - Daniël H van Raalte
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Center, location VUmc, Amsterdam, the Netherlands
| | - David Z Cherney
- Department of Medicine, Division of Nephrology, University of Toronto School of Medicine, Toronto, Ontario, Canada
| | - Richard J Johnson
- Department of Medicine, Division of Nephrology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kristen J Nadeau
- Department of Medicine, Division of Nephrology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Petter Bjornstad
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, CO, USA; Department of Medicine, Division of Nephrology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
36
|
Horton WB, Barrett EJ. Microvascular Dysfunction in Diabetes Mellitus and Cardiometabolic Disease. Endocr Rev 2021; 42:29-55. [PMID: 33125468 PMCID: PMC7846151 DOI: 10.1210/endrev/bnaa025] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Indexed: 02/07/2023]
Abstract
This review takes an inclusive approach to microvascular dysfunction in diabetes mellitus and cardiometabolic disease. In virtually every organ, dynamic interactions between the microvasculature and resident tissue elements normally modulate vascular and tissue function in a homeostatic fashion. This regulation is disordered by diabetes mellitus, by hypertension, by obesity, and by dyslipidemia individually (or combined in cardiometabolic disease), with dysfunction serving as an early marker of change. In particular, we suggest that the familiar retinal, renal, and neural complications of diabetes mellitus are late-stage manifestations of microvascular injury that begins years earlier and is often abetted by other cardiometabolic disease elements (eg, hypertension, obesity, dyslipidemia). We focus on evidence that microvascular dysfunction precedes anatomic microvascular disease in these organs as well as in heart, muscle, and brain. We suggest that early on, diabetes mellitus and/or cardiometabolic disease can each cause reversible microvascular injury with accompanying dysfunction, which in time may or may not become irreversible and anatomically identifiable disease (eg, vascular basement membrane thickening, capillary rarefaction, pericyte loss, etc.). Consequences can include the familiar vision loss, renal insufficiency, and neuropathy, but also heart failure, sarcopenia, cognitive impairment, and escalating metabolic dysfunction. Our understanding of normal microvascular function and early dysfunction is rapidly evolving, aided by innovative genetic and imaging tools. This is leading, in tissues like the retina, to testing novel preventive interventions at early, reversible stages of microvascular injury. Great hope lies in the possibility that some of these interventions may develop into effective therapies.
Collapse
Affiliation(s)
- William B Horton
- Division of Endocrinology and Metabolism, Department of Medicine
| | - Eugene J Barrett
- Division of Endocrinology and Metabolism, Department of Medicine.,Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
37
|
Zhang Z, Ni L, Zhang L, Zha D, Hu C, Zhang L, Feng H, Wei X, Wu X. Empagliflozin Regulates the AdipoR1/p-AMPK/p-ACC Pathway to Alleviate Lipid Deposition in Diabetic Nephropathy. Diabetes Metab Syndr Obes 2021; 14:227-240. [PMID: 33500643 PMCID: PMC7822229 DOI: 10.2147/dmso.s289712] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/24/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Abnormal lipid deposition in the progress of diabetic nephropathy (DN) plays an important role in a number of studies that have shown that SGLT2 inhibitor (SGLT2i) empagliflozin plays an important role in lipid metabolism, but its mechanism is still unclear. METHODS We aimed to explore the effect of empagliflozin on lipid levels in kidney cancer patients with DN and postoperative patients without DN kidney carcinoma; the patients with DN showed ectopic lipid deposition. In type 2 diabetes model mice induced by streptozotocin (STZ) and a high-fat diet, combined AMPK plus empagliflozin or empagliflozin inhibitor plus compound C was applied, followed by analyses of the blood, urine and kidney indexes to observe the correlation between SGLT2i and AMPK and lipid metabolism in diabetic kidney disease. We determined whether DN in patients with renal tubular atrophy involved lipid metabolism. RESULTS In clinical specimens, the adiponectin receptor AdipoR1 was reduced, and the phosphorylation acetyl-CoA carboxylase (p-ACC) was increased. In vitro and in vivo pathological immunofluorescence and Western blotting confirmed that, under the condition of high glucose, malpighian tubules displayed ectopic lipid deposition and expressed related lipid parameters accompanied by fibrosis. Empagliflozin intervention reduced lipid deposition fibrosis and renal tubular atrophy, and the addition of compound C promoted disease progression. Moreover, siAdipoR1 transfection proved that AdipoR1 affected P-AMPK and then p-ACC affected lipid metabolism in renal tubular cells. CONCLUSION According to the above experimental results, empagliflozin could reduce lipid metabolism of DN through AdipoR1/P-AMPK/P-ACC pathway and delay DN progress.
Collapse
Affiliation(s)
- Zhiqin Zhang
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan430071, People’s Republic of China
| | - Lihua Ni
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan430071, People’s Republic of China
| | - Lian Zhang
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan430071, People’s Republic of China
| | - Dongqing Zha
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan430071, People’s Republic of China
| | - Chun Hu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan430071, People’s Republic of China
| | - Lingli Zhang
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan430071, People’s Republic of China
| | - Huiling Feng
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan430071, People’s Republic of China
| | - Xiaobao Wei
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan430071, People’s Republic of China
| | - Xiaoyan Wu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan430071, People’s Republic of China
- Correspondence: Xiaoyan Wu Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan430071, People’s Republic of ChinaTel +86 15972935798 Email
| |
Collapse
|
38
|
Przybyciński J, Dziedziejko V, Puchałowicz K, Domański L, Pawlik A. Adiponectin in Chronic Kidney Disease. Int J Mol Sci 2020; 21:ijms21249375. [PMID: 33317050 PMCID: PMC7764041 DOI: 10.3390/ijms21249375] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022] Open
Abstract
Adiponectin is the adipokine associated with insulin sensitization, reducing liver gluconeogenesis, and increasing fatty acid oxidation and glucose uptake. Adiponectin is present in the kidneys, mainly in the arterial endothelium and smooth muscle cells, as well as in the capillary endothelium, and might be considered as a marker of many negative factors in chronic kidney disease. The last few years have brought a rising body of evidence that adiponectin is a multipotential protein with anti-inflammatory, metabolic, anti-atherogenic, and reactive oxygen species (ROS) protective actions. Similarly, adiponectin has shown many positive and direct actions in kidney diseases, and among many kidney cells. Data from large cross-sectional and cohort studies showed a positive correlation between serum adiponectin and mortality in chronic kidney disease. This suggests a complex interaction between local adiponectin action, comorbidities, and uremic milieu. In this review we discuss the role of adiponectin in chronic kidney disease.
Collapse
Affiliation(s)
- Jarosław Przybyciński
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.P.); (L.D.)
| | - Violetta Dziedziejko
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (V.D.); (K.P.)
| | - Kamila Puchałowicz
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (V.D.); (K.P.)
| | - Leszek Domański
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.P.); (L.D.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Correspondence: ; Tel.: +48-91-4661611
| |
Collapse
|
39
|
A Potential Theragnostic Regulatory Axis for Arthrofibrosis Involving Adiponectin (ADIPOQ) Receptor 1 and 2 (ADIPOR1 and ADIPOR2), TGFβ1, and Smooth Muscle α-Actin (ACTA2). J Clin Med 2020; 9:jcm9113690. [PMID: 33213041 PMCID: PMC7698546 DOI: 10.3390/jcm9113690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
(1) Background: Arthrofibrosis is a common cause of patient debility and dissatisfaction after total knee arthroplasty (TKA). The diversity of molecular pathways involved in arthrofibrosis disease progression suggest that effective treatments for arthrofibrosis may require a multimodal approach to counter the complex cellular mechanisms that direct disease pathogenesis. In this study, we leveraged RNA-seq data to define genes that are suppressed in arthrofibrosis patients and identified adiponectin (ADIPOQ) as a potential candidate. We hypothesized that signaling pathways activated by ADIPOQ and the cognate receptors ADIPOR1 and ADIPOR2 may prevent fibrosis-related events that contribute to arthrofibrosis. (2) Methods: Therefore, ADIPOR1 and ADIPOR2 were analyzed in a TGFβ1 inducible cell model for human myofibroblastogenesis by both loss- and gain-of-function experiments. (3) Results: Treatment with AdipoRon, which is a small molecule agonist of ADIPOR1 and ADIPOR2, decreased expression of collagens (COL1A1, COL3A1, and COL6A1) and the myofibroblast marker smooth muscle α-actin (ACTA2) at both mRNA and protein levels in basal and TGFβ1-induced cells. (4) Conclusions: Thus, ADIPOR1 and ADIPOR2 represent potential drug targets that may attenuate the pathogenesis of arthrofibrosis by suppressing TGFβ-dependent induction of myofibroblasts. These findings also suggest that AdipoRon therapy may reduce the development of arthrofibrosis by mediating anti-fibrotic effects in joint capsular tissues.
Collapse
|
40
|
Hua Y, Herder C, Kalhoff H, Buyken AE, Esche J, Krupp D, Wudy SA, Remer T. Inflammatory mediators in the adipo-renal axis: leptin, adiponectin, and soluble ICAM-1. Am J Physiol Renal Physiol 2020; 319:F469-F475. [PMID: 32744085 DOI: 10.1152/ajprenal.00257.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A lower 24-h urine pH (24h-pH), i.e., a higher renal excretion of free protons, at a given acid load to the body, denotes a reduction in the kidney's capacity for net acid excretion (NAE). There is increasing evidence, not only for patients with type 2 diabetes but also for healthy individuals, that higher body fatness or waist circumference (WC) has a negative impact on renal function to excrete acids (NAE). We hypothesized that adiposity-related inflammation molecules might mediate this relation between adiposity and renal acid excretion function. Twelve biomarkers of inflammation were measured in fasting blood samples from 162 adult participants (18-25 yr old) of the Dortmund Nutritional and Anthropometric Longitudinally Designed (DONALD) study who had undergone anthropometric measurements and collected 24-h urine samples. Both Baron and Kenny's (B&K's) steps to test mediation and causal mediation analysis were conducted to examine the potential mediatory roles of biomarkers of inflammation in the WC-24-h pH relationship after strictly controlling for laboratory-measured NAE. In B&K's mediation analysis, leptin, soluble intercellular adhesion molecule 1 (sICAM-1), and adiponectin significantly associated with the outcome 24-h pH and attenuated the WC-pH relation. In agreement herewith, causal mediation analysis estimated the "natural indirect effects" of WC on 24-h pH via leptin (P = 0.01) and adiponectin (P = 0.03) to be significant, with a trend for sICAM-1 (P = 0.09). The calculated proportions mediated by leptin, adiponectin, and sICAM-1 were 64%, 23%, and 12%, respectively. Both mediation analyses identified an inflammatory cytokine (leptin) and an anti-inflammatory cytokine (adiponectin) along with sICAM-1 as being potentially involved in mediating adiposity-related influences on renal acid excretion capacity.
Collapse
Affiliation(s)
- Yifan Hua
- DONALD Study Center, Department of Nutritional Epidemiology, Institute of Nutrition and Food Science, University of Bonn, Dortmund, Germany
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich-Heine University Düsseldorf, Germany.,German Center for Diabetes Research, München-Neuherberg, Germany.,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | | | - Anette E Buyken
- Department of Sports and Health, Institute of Nutrition, Consumption and Health, University of Paderborn, Paderborn Germany
| | - Jonas Esche
- DONALD Study Center, Department of Nutritional Epidemiology, Institute of Nutrition and Food Science, University of Bonn, Dortmund, Germany
| | - Danika Krupp
- DONALD Study Center, Department of Nutritional Epidemiology, Institute of Nutrition and Food Science, University of Bonn, Dortmund, Germany
| | - Stefan A Wudy
- Laboratory for Translational Hormone Analysis in Pediatric Endocrinology, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany
| | - Thomas Remer
- DONALD Study Center, Department of Nutritional Epidemiology, Institute of Nutrition and Food Science, University of Bonn, Dortmund, Germany
| |
Collapse
|
41
|
Wang P, Liang Y, Chen K, Yau SY, Sun X, Cheng KKY, Xu A, So KF, Li A. Potential Involvement of Adiponectin Signaling in Regulating Physical Exercise-Elicited Hippocampal Neurogenesis and Dendritic Morphology in Stressed Mice. Front Cell Neurosci 2020; 14:189. [PMID: 32774242 PMCID: PMC7381385 DOI: 10.3389/fncel.2020.00189] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022] Open
Abstract
Adiponectin, a cytokine secreted by mature adipocytes, proves to be neuroprotective. We have previously reported that running triggers adiponectin up-regulation which subsequently promotes generation of hippocampal neurons and thereby alleviates depression-like behaviors in non-stressed mice. However, under the stressing condition, whether adiponectin could still exert antidepressant-like effects following exercise remained unexplored. In this study, by means of repeated corticosterone injections to mimic stress insult and voluntary wheel running as physical exercise intervention, we examined whether exercise-elicited antidepressive effects might involve adiponectin's regulation on hippocampal neurogenesis and dendritic plasticity in stressed mice. Here we show that repeated injections of corticosterone inhibited hippocampal neurogenesis and impaired dendritic morphology of neurons in the dentate gyrus of both wild-type and adiponectin-knockout mice comparably, which subsequently evoked depression-like behaviors. Voluntary wheel running attenuated corticosterone-suppressed neurogenesis and enhanced dendritic plasticity in the hippocampus, ultimately reducing depression-like behaviors in wild-type, but not adiponectin-knockout mice. We further demonstrate that such proneurogenic effects were potentially achieved through activation of the AMP-dependent kinase (AMPK) pathway. Our study provides the first evidence that adiponectin signaling is essential for physical exercise-triggered effects on stress-elicited depression by retaining the normal proliferation of neural progenitors and dendritic morphology of neurons in the hippocampal dentate gyrus, which may depend on activation of the AMPK pathway.
Collapse
Affiliation(s)
- Pingjie Wang
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Joint International Research Laboratory of CNS Regeneration Ministry of Education, Jinan University, Guangzhou, China
| | - Yiyao Liang
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Joint International Research Laboratory of CNS Regeneration Ministry of Education, Jinan University, Guangzhou, China
| | - Kai Chen
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Joint International Research Laboratory of CNS Regeneration Ministry of Education, Jinan University, Guangzhou, China
| | - Suk-Yu Yau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Xin Sun
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Joint International Research Laboratory of CNS Regeneration Ministry of Education, Jinan University, Guangzhou, China
| | - Kenneth King-Yip Cheng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Aimin Xu
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.,Department of Pharmacy and Pharmacology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.,State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong
| | - Kwok-Fai So
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Joint International Research Laboratory of CNS Regeneration Ministry of Education, Jinan University, Guangzhou, China.,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong.,Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ang Li
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Joint International Research Laboratory of CNS Regeneration Ministry of Education, Jinan University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
42
|
Zorena K, Jachimowicz-Duda O, Ślęzak D, Robakowska M, Mrugacz M. Adipokines and Obesity. Potential Link to Metabolic Disorders and Chronic Complications. Int J Mol Sci 2020; 21:E3570. [PMID: 32443588 PMCID: PMC7278967 DOI: 10.3390/ijms21103570] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/19/2022] Open
Abstract
The World Health Organization (WHO) has recognized obesity as one of the top ten threats to human health. It is estimated that the number of obese and overweight people worldwide exceeds the number of those who are undernourished. Obesity is not only a state of abnormally increased adipose tissue in the body, but also of increased release of biologically active adipokines. Adipokines released into the circulating blood, due to their specific receptors on the surface of target cells, act as classic hormones affecting the metabolism of tissues and organs. What is more, adipokines and cytokines may decrease the insulin sensitivity of tissues and induce inflammation and development of chronic complications. Certainly, it can be stated that in an era of a global obesity pandemic, adipokines may gain more and more importance as regards their use in the diagnostic evaluation and treatment of diseases. An extensive search for materials on the role of white, brown and perivascular fatty tissue and obesity-related metabolic and chronic complications was conducted online using PubMed, the Cochrane database and Embase.
Collapse
Affiliation(s)
- Katarzyna Zorena
- Department of Immunobiology and Environment Microbiology, Medical University of Gdańsk, Dębinki 7, 80-211 Gdańsk, Poland
| | - Olga Jachimowicz-Duda
- Independent Public Specialized Health Care Center in Lębork, Department of Internal Diseases, Węgrzynowicza 13, 84-300 Lębork, Poland;
| | - Daniel Ślęzak
- Department of Emergency Medicine, Faculty of Health Sciences, Medical University of Gdańsk, Smoluchowskiego 17, 80-214 Gdańsk, Poland;
| | - Marlena Robakowska
- Department of Public Health & Social Medicine, Faculty of Health Sciences, Medical University of Gdańsk, Al. Zwycięctwa 42a, 80-210 Gdańsk, Poland;
| | - Małgorzata Mrugacz
- Department of Ophthalmology and Eye Rehabilitation, Medical University of Bialystok, Kilinskiego 1, 15-089 Białystok, Poland;
| |
Collapse
|
43
|
Opazo-Ríos L, Mas S, Marín-Royo G, Mezzano S, Gómez-Guerrero C, Moreno JA, Egido J. Lipotoxicity and Diabetic Nephropathy: Novel Mechanistic Insights and Therapeutic Opportunities. Int J Mol Sci 2020; 21:E2632. [PMID: 32290082 PMCID: PMC7177360 DOI: 10.3390/ijms21072632] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023] Open
Abstract
Lipotoxicity is characterized by the ectopic accumulation of lipids in organs different from adipose tissue. Lipotoxicity is mainly associated with dysfunctional signaling and insulin resistance response in non-adipose tissue such as myocardium, pancreas, skeletal muscle, liver, and kidney. Serum lipid abnormalities and renal ectopic lipid accumulation have been associated with the development of kidney diseases, in particular diabetic nephropathy. Chronic hyperinsulinemia, often seen in type 2 diabetes, plays a crucial role in blood and liver lipid metabolism abnormalities, thus resulting in increased non-esterified fatty acids (NEFA). Excessive lipid accumulation alters cellular homeostasis and activates lipogenic and glycogenic cell-signaling pathways. Recent evidences indicate that both quantity and quality of lipids are involved in renal damage associated to lipotoxicity by activating inflammation, oxidative stress, mitochondrial dysfunction, and cell-death. The pathological effects of lipotoxicity have been observed in renal cells, thus promoting podocyte injury, tubular damage, mesangial proliferation, endothelial activation, and formation of macrophage-derived foam cells. Therefore, this review examines the recent preclinical and clinical research about the potentially harmful effects of lipids in the kidney, metabolic markers associated with these mechanisms, major signaling pathways affected, the causes of excessive lipid accumulation, and the types of lipids involved, as well as offers a comprehensive update of therapeutic strategies targeting lipotoxicity.
Collapse
Affiliation(s)
- Lucas Opazo-Ríos
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain; (L.O.-R.); (G.M.-R.); (C.G.-G.); (J.E.)
| | - Sebastián Mas
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain; (L.O.-R.); (G.M.-R.); (C.G.-G.); (J.E.)
| | - Gema Marín-Royo
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain; (L.O.-R.); (G.M.-R.); (C.G.-G.); (J.E.)
| | - Sergio Mezzano
- Laboratorio de Nefrología, Facultad de Medicina, Universidad Austral de Chile, 5090000 Valdivia, Chile;
| | - Carmen Gómez-Guerrero
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain; (L.O.-R.); (G.M.-R.); (C.G.-G.); (J.E.)
| | - Juan Antonio Moreno
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, 14004 Cordoba, Spain
- Hospital Universitario Reina Sofía, 14004 Cordoba, Spain
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain; (L.O.-R.); (G.M.-R.); (C.G.-G.); (J.E.)
| |
Collapse
|
44
|
Lee CH, Lui DTW, Cheung CYY, Fong CHY, Yuen MMA, Chow WS, Woo YC, Xu A, Lam KSL. Higher Circulating Adiponectin Concentrations Predict Incident Cancer in Type 2 Diabetes - The Adiponectin Paradox. J Clin Endocrinol Metab 2020; 105:5740218. [PMID: 32072163 DOI: 10.1210/clinem/dgaa075] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/18/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Despite the beneficial cardiometabolic effects of adiponectin demonstrated in preclinical studies, paradoxically higher circulating adiponectin concentrations have been found in epidemiological studies to be associated with incident cardiovascular events, renal outcomes, and mortality in patients with diabetes. On the other hand, diabetes is also associated with an increased risk of cancer. Here, we investigated prospectively the association between circulating adiponectin concentrations and incident cancer using a cohort of exclusively individuals with type 2 diabetes. MATERIALS AND METHODS Baseline serum adiponectin concentrations were measured in 5658 participants recruited from the Hong Kong West Diabetes Registry. The associations of circulating adiponectin concentrations with incident cancer and cancer-related deaths were evaluated using multivariable Cox regression analysis, with hazard ratio (HR) for adiponectin referring to the respective risk per doubling of serum adiponectin concentration. RESULTS Over a median-follow up of 6.5 years, 7.53% and 3% of participants developed cancer and had cancer-related deaths, respectively. Serum adiponectin concentrations were significantly higher in those who had incident cancer (9.8 μg/mL vs 9.1 μg/mL, P < 0.001) and cancer-related deaths (11.5 μg/mL vs 9.3 μg/mL, P < 0.001) compared with those without. Moreover, in multivariable analyses, serum adiponectin concentration was independently associated with both incident cancer (hazard ratio, 1.19; 95% confidence interval, 1.05-1.35; P = 0.006) and cancer-related deaths (hazard ratio, 1.23; 95% confidence interval, 1.03-1.47; P = 0.024). CONCLUSIONS Higher serum adiponectin concentration was independently associated with incident cancer and cancer-related deaths in type 2 diabetes, indicating that adiponectin paradox can be observed in another major diabetic complication in addition to cardiovascular and kidney diseases.
Collapse
Affiliation(s)
- Chi Ho Lee
- Department of Medicine, University of Hong Kong, Hong Kong SAR
- Research Center of Heart, Brain, Hormone and Healthy Aging, University of Hong Kong, Hong Kong SAR
- State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong SAR
| | - David T W Lui
- Department of Medicine, University of Hong Kong, Hong Kong SAR
| | | | - Carol H Y Fong
- Department of Medicine, University of Hong Kong, Hong Kong SAR
| | | | - Wing Sun Chow
- Department of Medicine, University of Hong Kong, Hong Kong SAR
| | - Yu Cho Woo
- Department of Medicine, University of Hong Kong, Hong Kong SAR
| | - Aimin Xu
- Department of Medicine, University of Hong Kong, Hong Kong SAR
- Research Center of Heart, Brain, Hormone and Healthy Aging, University of Hong Kong, Hong Kong SAR
- State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong SAR
| | - Karen S L Lam
- Department of Medicine, University of Hong Kong, Hong Kong SAR
- Research Center of Heart, Brain, Hormone and Healthy Aging, University of Hong Kong, Hong Kong SAR
- State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong SAR
| |
Collapse
|
45
|
Pandurangan SB, Al-Maiman SA, Al-Harbi LN, Alshatwi AA. Beneficial Fatty Acid Ratio of Salvia hispanica L. (Chia Seed) Potentially Inhibits Adipocyte Hypertrophy, and Decreases Adipokines Expression and Inflammation in Macrophage. Foods 2020; 9:foods9030368. [PMID: 32235695 PMCID: PMC7143507 DOI: 10.3390/foods9030368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/10/2020] [Accepted: 03/15/2020] [Indexed: 12/15/2022] Open
Abstract
The present study aimed to determine the role of Salvia hispanica L., (chia seed) fatty acid content in adipocyte lipid accumulation and human macrophage immunoregulatory potential. Chia seed fatty acid was extracted using hexane by the cold percolation method. A gas chromatography-mass spectrometry (GC-MS) analysis showed a 3:1 ratio of omega 3 and omega 6 fatty acid composition and it was more beneficial for human health. We treated it with increasing concentrations (0–6.4 μg/mL) of chia seed fatty acid extract to determine the cytotoxicity on the preadipocytes and macrophage; no significant cytotoxicity was observed. Chia seed, in 0.2 and 0.4 μg/mL doses, significantly arrested adipocyte hypertrophy and macrophage foam cell development. The gene expression levels of adipocyte confirmed the increased expression of adipocyte mitochondrial thermogenesis related genes, such as uncoupling protein-1 (UCP-1), peroxisome proliferator activated receptor gamma coactivator 1 alpha (PPARγC1α) and PR domain containing 16 (PRDM16); and the down regulated expression of the lipid synthesis related gene sterol regulatory element binding of protein-1c (SREBP-1c). In addition, adipogenesis related genes, such as the proliferator activated receptor γ (PPARγ) and CCAAT/enhancer binding protein (C/EBPα) expressions, have been down regulated by chia seed treatment. Macrophage treated with chia seed-treated adipocyte condition media significantly inhibited the obesity associated inflammatory genes and protein expression levels, such as monocyte chemo attractant protein-1 (MCP-1), prostaglandins E2, interleukin-6, plasminogen activator inhibitor-1 (PAI-1) and tumor necrosis factor-α (TNF-α). In conclusion, a 3:1 ratio of omega 3 and omega 6 fatty acid composition of chia seed fatty acid content potentially inhibits lipid accumulation, and enhanced fatty acid oxidation, via UCP-1 and PRDM16 expression. Macrophage recruitment to adipocyte and the development of obesity associated inflammation was suppressed by chia seeds.
Collapse
Affiliation(s)
| | | | | | - Ali A. Alshatwi
- Correspondence: ; Tel.: +966-504236535 or +966-46-93319 (Office)
| |
Collapse
|
46
|
Jing H, Tang S, Lin S, Liao M, Chen H, Fan Y, Zhou J. Adiponectin in renal fibrosis. Aging (Albany NY) 2020; 12:4660-4672. [PMID: 32065783 PMCID: PMC7093169 DOI: 10.18632/aging.102811] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 01/25/2020] [Indexed: 04/11/2023]
Abstract
Renal fibrosis is an inevitable consequence of parenchymal scarring and is the common final pathway that mediates almost all progressive renal diseases. Adiponectin, a hormone produced by adipose tissue, possesses potent anti-insulin, anti-inflammatory, and anti-fibrotic properties. Reportedly, adiponectin serves as an important messenger that facilitates complex interactions between adipose tissue and other metabolically related organs. In recent years, a growing body of evidence supports adiponectin involvement in renal fibrosis. These studies provide a deeper understanding of the molecular mechanism of action of adiponectin in renal fibrosis and also offer a potential preventive and therapeutic target for renal fibrosis. In this review, the physiological role of adiponectin is briefly introduced, and then the mechanism of adiponectin-mediated renal fibrosis and the related signaling pathways are described. Finally, we summarize the findings regarding the clinical value of adiponectin in renal fibrotic diseases and prospected its application potential.
Collapse
Affiliation(s)
- Huan Jing
- The Third Affiliated Hospital of Southern Medical University, Zunyi Medical University, Guangzhou, Guangdong Province, China
| | - Simin Tang
- The Third Affiliated Hospital of Southern Medical University, Zunyi Medical University, Guangzhou, Guangdong Province, China
| | - Sen Lin
- The First People’s Hospital of Foshan, Foshan, Guangdong Province, China
| | - Meijuan Liao
- The First People’s Hospital of Foshan, Foshan, Guangdong Province, China
| | - Hongtao Chen
- Guangzhou Eighth People's Hospital, Guangzhou, Guangdong Province, China
| | - Youling Fan
- Panyu Central Hospital, Panyu, Guangzhou, Guangdong Province, China
| | - Jun Zhou
- The Third Affiliated Hospital of Southern Medical University, Zunyi Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
47
|
Hausmann J, Waechtershaeuser A, Behnken I, Aksan A, Blumenstein I, Brenner M, Loitsch SM, Stein J. The role of adipokines in the improvement of diabetic and cardiovascular risk factors within a 52-week weight-loss programme for obesity. Obes Res Clin Pract 2019; 13:440-447. [PMID: 31591082 DOI: 10.1016/j.orcp.2019.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 01/01/2023]
|
48
|
Wang G, Ouyang J, Li S, Wang H, Lian B, Liu Z, Xie L. The analysis of risk factors for diabetic nephropathy progression and the construction of a prognostic database for chronic kidney diseases. J Transl Med 2019; 17:264. [PMID: 31409386 PMCID: PMC6693179 DOI: 10.1186/s12967-019-2016-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/05/2019] [Indexed: 12/12/2022] Open
Abstract
Background Diabetic nephropathy (DN) affects about 40% of diabetes mellitus (DM) patients and is the leading cause of chronic kidney disease (CKD) and end-stage renal disease (ESRD) all over the world, especially in high- and middle-income countries. Most DN has been present for years before it is diagnosed. Currently, the treatment of DN is mainly to prevent or delay disease progression. Although many important molecules have been discovered in hypothesis-driven research over the past two decades, advances in DN management and new drug development have been very limited. Moreover, current animal/cell models could not replicate all the features of human DN, while the development of Epigenetics further demonstrates the complexity of the mechanism of DN progression. To capture the key pathways and molecules that actually affect DN progression from numerous published studies, we collected and analyzed human DN prognostic markers (independent risk factors for DN progression). Methods One hundred and fifty-one DN prognostic markers were collected manually by reading 2365 papers published between 01/01/2002 and 12/15/2018. One hundred and fifteen prognostic markers of other four common CKDs were also collected. GO and KEGG enrichment analysis was done using g:Profiler, and a relationship network was built based on the KEGG database. Tissue origin distribution was derived mainly from The Human Protein Atlas (HPA), and a database of these prognostic markers was constructed using PHP Version 5.5.15 and HTML5. Results Several pathways were significantly enriched corresponding to different end point events. It is shown that the TNF signaling pathway plays a role through the process of DN progression and adipocytokine signaling pathway is uniquely enriched in ESRD. Molecules, such as TNF, IL6, SOD2, etc. are very important for DN progression, among which, it seems that “AGER” plays a pivotal role in the mechanism. A database, dbPKD, was constructed containing all the collected prognostic markers. Conclusions This study developed a database for all prognostic markers of five common CKDs, offering some bioinformatics analyses of DN prognostic markers, and providing useful insights towards understanding the fundamental mechanism of human DN progression and for identifying new therapeutic targets. Electronic supplementary material The online version of this article (10.1186/s12967-019-2016-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gang Wang
- Division of Nephrology, Jinling Hospital, Southern Medical University, Nanjing, 210016, China.,National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210016, China
| | - Jian Ouyang
- Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai, 201203, China
| | - Shen Li
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210016, China
| | - Hui Wang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210016, China
| | - Baofeng Lian
- Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai, 201203, China
| | - Zhihong Liu
- Division of Nephrology, Jinling Hospital, Southern Medical University, Nanjing, 210016, China. .,National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210016, China.
| | - Lu Xie
- Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai, 201203, China.
| |
Collapse
|
49
|
Kuo IC, Wu PH, Lin HYH, Niu SW, Huang JC, Hung CC, Chiu YW, Chen HC. The association of adiponectin with metabolic syndrome and clinical outcome in patients with non-diabetic chronic kidney disease. PLoS One 2019; 14:e0220158. [PMID: 31323071 PMCID: PMC6641197 DOI: 10.1371/journal.pone.0220158] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/09/2019] [Indexed: 02/07/2023] Open
Abstract
Adiponectin is the most abundant circulating adipokine, and it has insulin-sensitizing and anti-inflammatory properties. Although it has been speculated that kidney function decline associated with elevated adiponectin is attributable to decreased renal clearance and compensatory responses to adiponectin resistance, it is unclear how elevated adiponectin affects clinical outcomes in chronic kidney disease (CKD) patients and whether the effects are the same as those in the general population. Therefore, the aim of this study is to examine whether the association between serum adiponectin levels and clinical outcomes in non-diabetic CKD patients is independent of adiposity and metabolic syndrome. We enrolled 196 non-diabetic CKD patients with eGFR ranging between 10 and 60 mL/min/1.73 m2, these patients were divided into two groups based on the presence of metabolic syndrome. The primary endpoint was all-cause mortality or renal events (renal failure requiring renal replacement therapy [RRT] or 50% reduction in eGFR). During the mean follow-up period of 5 years, 48 (24.5%) incident cases of end-stage renal disease (ESRD) were observed, and 33 (16.8%) deaths occurred. The mean eGFR was 29.8 ± 12.8 mL/min/1.73m2. The baseline median adiponectin concentration in the cohort was 29.4(interquartile range, 13.3-108.7) μg/ml. Adiponectin levels were inversely related to body mass index (BMI) (r = -0.29; P < 0.001) and waist circumference (r = -0.35; P < 0.001). In the fully adjusted Cox regression model, the hazard ratios (HRs) were 2.08 (95% confidence interval [CI], 1.08-4.02; P = 0.03) for RRT and 1.66 (95% CI, 1.03-2.65; P = 0.04) for composite renal outcome. The risks remained consistent within different subgroups. However, no association was observed with mortality risk. In conclusion, higher adiponectin levels are associated with a higher risk of ESRD independent of conventional risk factors, BMI, and metabolic syndrome components.
Collapse
Affiliation(s)
- I-Ching Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ping-Hsun Wu
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hugo You-Hsien Lin
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sheng-Wen Niu
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jiun-Chi Huang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Internal Medicine, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chi-Chih Hung
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- * E-mail: (CCH); (YWC)
| | - Yi-Wen Chiu
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- * E-mail: (CCH); (YWC)
| | - Hung-Chun Chen
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
50
|
Lee JY, Yang JW, Han BG, Choi SO, Kim JS. Adiponectin for the treatment of diabetic nephropathy. Korean J Intern Med 2019; 34:480-491. [PMID: 31048658 PMCID: PMC6506734 DOI: 10.3904/kjim.2019.109] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/13/2019] [Indexed: 12/12/2022] Open
Abstract
The metabolic burden caused by hyperglycemia can result in direct and immediate metabolic injuries, such as oxidative stress and tissue inflammation, in the kidney. Furthermore, chronic hyperglycemia can lead to substantial structural changes such as formation of advanced glycation end-products, glomerular and tubular hypertrophy, and tissue fibrosis. Glomerular hypertrophy renders podocytes vulnerable to increased glomerular filtration, leading to podocyte instability and loss. Thus, prevention of glomerular hypertrophy and attenuation of glomerular hyperfiltration may have therapeutic potential for diabetic nephropathy (DN). Adiponectin is an adipokine that improves insulin sensitivity in obesity-related metabolic disorders, including diabetes, but its efficacy is unknown. Moreover, the recently developed adiponectin receptor agonist, AdipoRon, shows therapeutic potential for DN. In this review, we focus on the role of glomerular hypertrophy in the pathogenesis of DN and discuss the role of adiponectin in its prevention.
Collapse
Affiliation(s)
- Jun Young Lee
- Division of Nephrology, Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Jae Won Yang
- Division of Nephrology, Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Byoung Geun Han
- Division of Nephrology, Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Seung Ok Choi
- Division of Nephrology, Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Jae Seok Kim
- Division of Nephrology, Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
- Correspondence to Jae Seok Kim, M.D. Division of Nephrology, Department of Internal Medicine, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju 26426, Korea Tel: +82-33-741-0509 Fax: +82-33-731-5884 E-mail:
| |
Collapse
|