1
|
Li B, Xia C, He W, Liu J, Duan R, Ji Z, Pan X, Zhou Y, Yu G, Wang L. The Thyroid Hormone Analog GC-1 Mitigates Acute Lung Injury by Inhibiting M1 Macrophage Polarization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401931. [PMID: 39373388 PMCID: PMC11600256 DOI: 10.1002/advs.202401931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/09/2024] [Indexed: 10/08/2024]
Abstract
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a life-threatening condition with a high mortality rate of ≈40%. Thyroid hormones (THs) play crucial roles in maintaining homeostasis of the cellular microenvironment under stress. The previous studies confirmed that the clinical-stage TH analog GC-1 significantly alleviates pulmonary fibrosis by improving the function of mitochondria in epithelial cells. However, the effects of GC-1 on macrophages in lung injury and the related mechanisms remain unclear. This study evaluated the therapeutic effects of GC-1 in two murine models of lipopolysaccharide (LPS)- or hydrochloric acid (HCl)-induced ALI. Additionally, mouse alveolar macrophages (AMs) and human THP-1-derived macrophages are utilized to investigate the impact of GC-1 on macrophage polarization. GC-1 effectively reduces the inflammatory response and lung injury in ALI mice, as evidenced by neutrophil infiltration, cytokine levels, alveolar fluid clearance, and pulmonary pathology. Notably, GC-1 selectively inhibits M1 macrophage polarization, which may be achieved by impeding NF-κB signaling activation through the DNMT3b-PPARγ-NF-κB pathway in a TH receptor β1 (TRβ1)-dependent manner, consequently suppressing the polarization of macrophages toward the M1 phenotype and overproduction of inflammatory cytokines. Overall, these findings highlight the immunomodulatory property of GC-1 as an anti-inflammatory strategy for ALI/ARDS and inflammation-related diseases.
Collapse
Affiliation(s)
- Bin Li
- Pingyuan LaboratoryState Key Laboratory of Cell Differentiation and RegulationHenan International Joint Laboratory of Pulmonary FibrosisHenan Center for Outstanding Overseas Scientists of Organ FibrosisCollege of Life ScienceHenan Normal UniversityXinxiang453007P. R. China
- College of Chemical and Pharmaceutical EngineeringHuanghuai UniversityZhumadian463000P. R. China
| | - Cong Xia
- Pingyuan LaboratoryState Key Laboratory of Cell Differentiation and RegulationHenan International Joint Laboratory of Pulmonary FibrosisHenan Center for Outstanding Overseas Scientists of Organ FibrosisCollege of Life ScienceHenan Normal UniversityXinxiang453007P. R. China
| | - Wanyu He
- Pingyuan LaboratoryState Key Laboratory of Cell Differentiation and RegulationHenan International Joint Laboratory of Pulmonary FibrosisHenan Center for Outstanding Overseas Scientists of Organ FibrosisCollege of Life ScienceHenan Normal UniversityXinxiang453007P. R. China
| | - Jingyi Liu
- Pingyuan LaboratoryState Key Laboratory of Cell Differentiation and RegulationHenan International Joint Laboratory of Pulmonary FibrosisHenan Center for Outstanding Overseas Scientists of Organ FibrosisCollege of Life ScienceHenan Normal UniversityXinxiang453007P. R. China
| | - Ruoyu Duan
- Pingyuan LaboratoryState Key Laboratory of Cell Differentiation and RegulationHenan International Joint Laboratory of Pulmonary FibrosisHenan Center for Outstanding Overseas Scientists of Organ FibrosisCollege of Life ScienceHenan Normal UniversityXinxiang453007P. R. China
| | - Zhihua Ji
- Pingyuan LaboratoryState Key Laboratory of Cell Differentiation and RegulationHenan International Joint Laboratory of Pulmonary FibrosisHenan Center for Outstanding Overseas Scientists of Organ FibrosisCollege of Life ScienceHenan Normal UniversityXinxiang453007P. R. China
| | - Xiaoyue Pan
- Pingyuan LaboratoryState Key Laboratory of Cell Differentiation and RegulationHenan International Joint Laboratory of Pulmonary FibrosisHenan Center for Outstanding Overseas Scientists of Organ FibrosisCollege of Life ScienceHenan Normal UniversityXinxiang453007P. R. China
| | - Yanlin Zhou
- Pingyuan LaboratoryState Key Laboratory of Cell Differentiation and RegulationHenan International Joint Laboratory of Pulmonary FibrosisHenan Center for Outstanding Overseas Scientists of Organ FibrosisCollege of Life ScienceHenan Normal UniversityXinxiang453007P. R. China
| | - Guoying Yu
- Pingyuan LaboratoryState Key Laboratory of Cell Differentiation and RegulationHenan International Joint Laboratory of Pulmonary FibrosisHenan Center for Outstanding Overseas Scientists of Organ FibrosisCollege of Life ScienceHenan Normal UniversityXinxiang453007P. R. China
| | - Lan Wang
- Pingyuan LaboratoryState Key Laboratory of Cell Differentiation and RegulationHenan International Joint Laboratory of Pulmonary FibrosisHenan Center for Outstanding Overseas Scientists of Organ FibrosisCollege of Life ScienceHenan Normal UniversityXinxiang453007P. R. China
| |
Collapse
|
2
|
Yang L, Fu MF, Wang HY, Sun H. Research Advancements in the Interplay between T3 and Macrophages. Curr Med Sci 2024; 44:883-889. [PMID: 39446284 DOI: 10.1007/s11596-024-2935-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 09/03/2024] [Indexed: 10/25/2024]
Abstract
3,3',5-Triiodo-L-thyronine (T3) is a key endocrine hormone in the human body that plays crucial roles in growth, development, metabolism, and immune function. Macrophages, the key regulatory cells within the immune system, exhibit marked "heterogeneity" and "plasticity", with their phenotype and function subject to modulation by local environmental signals. The interplay between the endocrine and immune systems is well documented. Numerous studies have shown that T3 significantly target macrophages, highlighting them as key cellular components in this interaction. Through the regulation of macrophage function and phenotype, T3 influences immune function and tissue repair in the body. This review comprehensively summarizes the regulatory actions and mechanisms of T3 on macrophages, offering valuable insights into further research of the immunoregulatory effects of T3.
Collapse
Affiliation(s)
- Liu Yang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, 430022, China
| | - Meng-Fei Fu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, 430022, China
| | - Han-Yu Wang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, 430022, China
| | - Hui Sun
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, 430022, China.
| |
Collapse
|
3
|
Stubbs DB, Ruzicka JA, Taylor EW. Modular Polymerase Synthesis and Internal Protein Domain Swapping via Dual Opposed Frameshifts in the Ebola Virus L Gene. Pathogens 2024; 13:829. [PMID: 39452701 PMCID: PMC11510084 DOI: 10.3390/pathogens13100829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Sequence analysis of the Zaire ebolavirus (EBOV) polymerase (L gene) mRNA, using online tools, identified a highly ranked -1 programmed ribosomal frameshift (FS) signal including an ideal slippery sequence heptamer (UUUAAAA), with an overlapping coding region featuring two tandem UGA codons, immediately followed by an RNA region that is the inverse complement (antisense) to a region of the mRNA of the selenoprotein iodothyronine deiodinase II (DIO2). This antisense interaction was confirmed in vitro via electrophoretic gel shift assay, using cDNAs at the EBOV and DIO2 segments. The formation of a duplex between the two mRNAs could trigger the ribosomal frameshift, by mimicking the enhancing role of a pseudoknot structure, while providing access to the selenocysteine insertion sequence (SECIS) element contained in the DIO2 mRNA. This process would allow the -1 frame UGA codons to be recoded as selenocysteine, forming part of a C-terminal module in a low abundance truncated isoform of the viral polymerase, potentially functioning in a redox role. Remarkably, 90 bases downstream of the -1 FS site, an active +1 FS site can be demonstrated, which, via a return to the zero frame, would enable the attachment of the entire C-terminal of the polymerase protein. Using a construct with upstream and downstream reporter genes, spanning a wildtype or mutated viral insert, we show significant +1 ribosomal frameshifting at this site. Acting singly or together, frameshifting at these sites (both of which are highly conserved in EBOV strains) could enable the expression of several modified isoforms of the polymerase. The 3D modeling of the predicted EBOV polymerase FS variants using the AI tool, AlphaFold, reveals a peroxiredoxin-like active site with arginine and threonine residues adjacent to a putative UGA-encoded selenocysteine, located on the back of the polymerase "hand". This module could serve to protect the viral RNA from peroxidative damage.
Collapse
Affiliation(s)
| | | | - Ethan W. Taylor
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, NC 27402-6170, USA; (D.B.S.); (J.A.R.)
| |
Collapse
|
4
|
Beltrão FEDL, Beltrão DCDA, Carvalhal G, Beltrão FLDL, Oliveira JDB, Silva HDS, Teixeira HMP, Rodrigues JL, de Figueiredo CAV, Costa RDS, Hecht F, Vieira GC, Gonçalves MDCR, Bianco AC, Ramos HE. Thr92Ala-DIO2 heterozygosity is associated with skeletal muscle mass and myosteatosis in patients with COVID-19. Eur Thyroid J 2024; 13:e240068. [PMID: 38869458 PMCID: PMC11301567 DOI: 10.1530/etj-24-0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/13/2024] [Indexed: 06/14/2024] Open
Abstract
Introduction The type 2 deiodinase and its Thr92Ala-DIO2 polymorphism have been linked to clinical outcomes in acute lung injury and coronavirus disease 2019 (COVID-19). Objective The objective was to identify a potential association between Thr92Ala-DIO2 polymorphism and body composition (appendicular muscle mass, myosteatosis, and fat distribution) and to determine whether they reflect the severity or mortality associated with the disease. Methods In this prospective cohort study (June-August 2020), 181 patients hospitalized with moderate-to-severe COVID-19 underwent a non-contrast-enhanced computed tomography (CT) of the thorax to assess body composition, laboratory tests, and genotyping for the Thr92Ala-DIO2 polymorphism. Results In total, 181 consecutive patients were stratified into three subgroups according to the genotype: Thr/Thr (n = 64), Thr/Ala (n = 96), and Ala/Ala (n = 21). The prevalence of low muscle area (MA) (< 92 cm²) was 52.5%. Low MA was less frequent in Ala/Thr patients (44.8%) than in Thr/Thr (60.9%) or Ala/Ala patients (61.9%) (P = 0.027). Multivariate logistic regression analysis confirmed that the Thr/Ala allele was associated with a reduced risk of low MA (41% to 69%) and myosteatosis (62% to 72%) compared with Thr/Thr + Ala/Ala (overdominant model). Kaplan-Meier curves showed that patients with low muscle mass and homozygosity had lower survival rates than the other groups. Notably, the heterozygotes with MA ≥92 cm² exhibited the best survival rate. Conclusion Thr92Ala-DIO2 heterozygosity is associated with increased skeletal MA and less myosteatosis in patients with COVID-19. The protective effect of Thr92Ala-DIO2 heterozygosity on COVID-19 mortality is restricted to patients with reduced MA.
Collapse
Affiliation(s)
- Fabyan Esberard de Lima Beltrão
- Lauro Wanderley University Hospital, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
- University Center of João Pessoa – UNIPE, João Pessoa, PB, Brazil
| | - Daniele Carvalhal de Almeida Beltrão
- University Center of João Pessoa – UNIPE, João Pessoa, PB, Brazil
- Post-Graduation Program in Cognitive Neuroscience and Behavior, Psychology Department of the Center of Human Sciences, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Giulia Carvalhal
- Center for Biological and Health Sciences, Federal University of Campina Grande, Campina Grande, Paraíba, Brazil
| | | | - Jocyel de Brito Oliveira
- Bioregulation Department, Health and Science Institut, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Hatilla dos Santos Silva
- Bioregulation Department, Health and Science Institut, Federal University of Bahia, Salvador, Bahia, Brazil
| | | | - Juliana Lopes Rodrigues
- Laboratory of Immunopharmacology and Molecular Biology, Health Sciences Institute, Federal University of Bahia, Brazil
| | | | - Ryan dos Santos Costa
- Laboratory of Immunopharmacology and Molecular Biology, Health Sciences Institute, Federal University of Bahia, Brazil
| | - Fabio Hecht
- The Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Giciane Carvalho Vieira
- Post-Graduation Program in Cognitive Neuroscience and Behavior, Psychology Department of the Center of Human Sciences, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | | | - Antonio C. Bianco
- Section of Endocrinology and Metabolism, Division of the Biological Sciences, University of Chicago, Chicago, Illinois, USA
| | - Helton Estrela Ramos
- Post-Graduate Program in Medicine and Health, Medical School of Medicine, Federal University of Bahia, Salvador, Brazil
- Postgraduate Program in Interactive Processes of Organs and Systems, Health & Science Institute, Federal University of Bahia, Salvador, BA, Brazil
| |
Collapse
|
5
|
Chen Z, Cai D, Xie Y, Zhong J, Wu M, Yang H, Feng J, Lian H, Dou K, Nie Y. Triiodothyronine induces a proinflammatory monocyte/macrophage profile and impedes cardiac regeneration. J Mol Cell Cardiol 2024; 191:7-11. [PMID: 38608929 DOI: 10.1016/j.yjmcc.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Neonatal mouse hearts can regenerate post-injury, unlike adult hearts that form fibrotic scars. The mechanism of thyroid hormone signaling in cardiac regeneration warrants further study. We found that triiodothyronine impairs cardiomyocyte proliferation and heart regeneration in neonatal mice after apical resection. Single-cell RNA-Sequencing on cardiac CD45-positive leukocytes revealed a pro-inflammatory phenotype in monocytes/macrophages after triiodothyronine treatment. Furthermore, we observed that cardiomyocyte proliferation was inhibited by medium from triiodothyronine-treated macrophages, while triiodothyronine itself had no direct effect on the cardiomyocytes in vitro. Our study unveils a novel role of triiodothyronine in mediating the inflammatory response that hinders heart regeneration.
Collapse
Affiliation(s)
- Ziwei Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Dongcheng Cai
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yifan Xie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Jiajun Zhong
- Department of Cardiac Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Mengge Wu
- Fuwai Central China Cardiovascular Hospital, Animal experimental center of Central, China Subcenter of National Center for Cardiovascular Diseases, Zhengzhou 450046, China
| | - Huijun Yang
- Department of Cardiovascular Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Jie Feng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Hong Lian
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Kefei Dou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China.
| | - Yu Nie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Fuwai Central-China Hospital, Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou 450046, China; Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen 518057, China.
| |
Collapse
|
6
|
Pasciu V, Nieddu M, Sotgiu FD, Baralla E, Berlinguer F. Fecal thyroid hormone metabolites in wild ungulates: a mini-review. Front Vet Sci 2024; 11:1407479. [PMID: 38840625 PMCID: PMC11150844 DOI: 10.3389/fvets.2024.1407479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/09/2024] [Indexed: 06/07/2024] Open
Abstract
This review aims to analyse the fluctuations of fecal thyroid hormone metabolites (FTMs) related to environmental and individual variables in different species of wild ungulates and provide a collection of assay methods. The great advantage of fecal sampling is being completely non-invasive. A systemic search was conducted from 2019 to 2024, using data sources PubMed, Scopus, Web of Science, and the World Wide Web, and ten studies were found on this topic. Three studies used the radioimmunoassay method for FTMs analysis, while the others used a less expensive enzyme-linked immunosorbent assay. Most of these papers validated the method for the species-specific matrix. Related to the studied variables, some authors analysed FTM fluctuations only concerning individual variables, and others in response to both. Temperature and fecal cortisol metabolites (FCMs) were the most studied environmental and individual variables, respectively. Since FTMs are an integrative measure of plasma thyroid hormones, the information obtained from a non-invasive-assay method regarding wild ungulate physiology is becoming of great interest to the scientific community.
Collapse
Affiliation(s)
- Valeria Pasciu
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Maria Nieddu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | | | - Elena Baralla
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | | |
Collapse
|
7
|
Galano-Frutos JJ, Maity R, Iguarbe V, Aínsa JA, Velázquez-Campoy A, Schaible UE, Mamat U, Sancho J. L-Thyroxine and L-thyroxine-based antimicrobials against Streptococcus pneumoniae and other Gram-positive bacteria. Heliyon 2024; 10:e27982. [PMID: 38689973 PMCID: PMC11059415 DOI: 10.1016/j.heliyon.2024.e27982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 05/02/2024] Open
Abstract
Objectives The rise of antibiotic-resistant Streptococcus pneumoniae (Sp) poses a significant global health threat, urging the quest for novel antimicrobial solutions. We have discovered that the human hormone l-thyroxine has antibacterial properties. In order to explore its drugability we perform here the characterization of a series of l-thyroxine analogues and describe the structural determinants influencing their antibacterial efficacy. Method We performed a high-throughput screening of a library of compounds approved for use in humans, complemented with ITC assays on purified Sp-flavodoxin, to pinpoint molecules binding to this protein. Antimicrobial in vitro susceptibility assays of the hit compound (l-thyroxine) as well as of 13 l-thyroxine analogues were done against a panel of Gram-positive and Gram-negative bacteria. Toxicity of compounds on HepG2 cells was also assessed. A combined structure-activity and computational docking analysis was carried out to uncover functional groups crucial for the antimicrobial potency of these compounds. Results Human l-thyroxine binds to Sp-flavodoxin, forming a 1:1 complex of low micromolar Kd. While l-thyroxine specifically inhibited Sp growth, some derivatives displayed activity against other Gram-positive bacteria like Staphylococcus aureus and Enterococcus faecalis, while remaining inactive against Gram-negative pathogens. Neither l-thyroxine nor some selected derivatives exhibited toxicity to HepG2 cells. Conclusions l-thyroxine derivatives targeting bacterial flavodoxins represent a new and promising class of antimicrobials.
Collapse
Affiliation(s)
- Juan José Galano-Frutos
- Institute of Chemical Sciences and Technologies "Giulio Natta" (SCITEC) - CNR, Largo Francesco Vito 1, 00168, Rome, Italy
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Units: BIFI-IQFR (CSIC) and GBsC-CSIC, University of Zaragoza, Zaragoza 50018, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, University of Zaragoza, Zaragoza 50009, Spain
| | - Ritwik Maity
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Units: BIFI-IQFR (CSIC) and GBsC-CSIC, University of Zaragoza, Zaragoza 50018, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, University of Zaragoza, Zaragoza 50009, Spain
| | - Verónica Iguarbe
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Units: BIFI-IQFR (CSIC) and GBsC-CSIC, University of Zaragoza, Zaragoza 50018, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, University of Zaragoza, Zaragoza 50009, Spain
| | - José Antonio Aínsa
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Units: BIFI-IQFR (CSIC) and GBsC-CSIC, University of Zaragoza, Zaragoza 50018, Spain
- Departamento de Microbiología, Pediatría, Radiología y Salud Pública, Facultad de Medicina, University of Zaragoza, Zaragoza 50009, Spain
- CIBER de Enfermedades Respiratorias–CIBERES, Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Adrián Velázquez-Campoy
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Units: BIFI-IQFR (CSIC) and GBsC-CSIC, University of Zaragoza, Zaragoza 50018, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, University of Zaragoza, Zaragoza 50009, Spain
- Aragon Health Research Institute (IIS Aragón), Zaragoza 50009, Spain
- CIBER de Enfermedades Hepáticas y Digestivas CIBERehd, Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Ulrich E. Schaible
- Cellular Microbiology, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center, & Leibniz Research Alliance INFECTIONS, Borstel, Germany
- Biochemical Microbiology & Immunochemistry, University of Lübeck, Lübeck, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel Germany
| | - Uwe Mamat
- Cellular Microbiology, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center, & Leibniz Research Alliance INFECTIONS, Borstel, Germany
| | - Javier Sancho
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Units: BIFI-IQFR (CSIC) and GBsC-CSIC, University of Zaragoza, Zaragoza 50018, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, University of Zaragoza, Zaragoza 50009, Spain
- Aragon Health Research Institute (IIS Aragón), Zaragoza 50009, Spain
| |
Collapse
|
8
|
Sun H, Yu W, Li H, Hu X, Wang X. Bioactive Components of Areca Nut: An Overview of Their Positive Impacts Targeting Different Organs. Nutrients 2024; 16:695. [PMID: 38474823 PMCID: PMC10935369 DOI: 10.3390/nu16050695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Areca catechu L. is a widely cultivated tropical crop in Southeast Asia, and its fruit, areca nut, has been consumed as a traditional Chinese medicinal material for more than 10,000 years, although it has recently attracted widespread attention due to potential hazards. Areca nut holds a significant position in traditional medicine in many areas and ranks first among the four southern medicines in China. Numerous bioactive compounds have been identified in areca nuts, including alkaloids, polyphenols, polysaccharides, and fatty acids, which exhibit diverse bioactive functions, such as anti-bacterial, deworming, anti-viral, anti-oxidant, anti-inflammatory, and anti-tumor effects. Furthermore, they also display beneficial impacts targeting the nervous, digestive, and endocrine systems. This review summarizes the pharmacological functions and underlying mechanisms of the bioactive ingredients in areca nut. This helps to ascertain the beneficial components of areca nut, discover its medicinal potential, and guide the utilization of the areca nut.
Collapse
Affiliation(s)
- Huihui Sun
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (H.S.); (W.Y.); (X.H.)
- Sanya Institute of China Agricultural University, Sanya 572025, China
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100083, China;
| | - Wenzhen Yu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (H.S.); (W.Y.); (X.H.)
| | - Hu Li
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100083, China;
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (H.S.); (W.Y.); (X.H.)
| | - Xiaofei Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (H.S.); (W.Y.); (X.H.)
| |
Collapse
|
9
|
Hoen E, Goossens FM, Falize K, Mayerl S, van der Spek AH, Boelen A. The Differential Effect of a Shortage of Thyroid Hormone Compared with Knockout of Thyroid Hormone Transporters Mct8 and Mct10 on Murine Macrophage Polarization. Int J Mol Sci 2024; 25:2111. [PMID: 38396788 PMCID: PMC10889717 DOI: 10.3390/ijms25042111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/24/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Innate immune cells, including macrophages, are functionally affected by thyroid hormone (TH). Macrophages can undergo phenotypical alterations, shifting between proinflammatory (M1) and immunomodulatory (M2) profiles. Cellular TH concentrations are, among others, determined by TH transporters. To study the effect of TH and TH transporters on macrophage polarization, specific proinflammatory and immunomodulatory markers were analyzed in bone marrow-derived macrophages (BMDMs) depleted of triiodothyronine (T3) and BMDMs with a knockout (KO) of Mct8 and Mct10 and a double KO (dKO) of Mct10/Mct8. Our findings show that T3 is important for M1 polarization, while a lack of T3 stimulates M2 polarization. Mct8 KO BMDMs are unaffected in their T3 responsiveness, but exhibit slight alterations in M2 polarization, while Mct10 KO BMDMs show reduced T3 responsiveness, but unaltered polarization markers. KO of both the Mct8 and Mct10 transporters decreased T3 availability and, contrary to the T3-depleted BMDMs, showed partially increased M1 markers and unaltered M2 markers. These data suggest a role for TH transporters besides transport of TH in BMDMs. This study highlights the complex role of TH transporters in macrophages and provides a new angle on the interaction between the endocrine and immune systems.
Collapse
Affiliation(s)
- Esmée Hoen
- Endocrine Laboratory, Department of Laboratory Medicine, Amsterdam Gastroenterology Endocrinology & Metabolism (AGEM), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (E.H.); (K.F.)
| | - Franka M. Goossens
- Endocrine Laboratory, Department of Laboratory Medicine, Amsterdam Gastroenterology Endocrinology & Metabolism (AGEM), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (E.H.); (K.F.)
| | - Kim Falize
- Endocrine Laboratory, Department of Laboratory Medicine, Amsterdam Gastroenterology Endocrinology & Metabolism (AGEM), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (E.H.); (K.F.)
| | - Steffen Mayerl
- Department of Endocrinology, Diabetes & Metabolism, University Duisburg-Essen, 47057 Essen, Germany
| | - Anne H. van der Spek
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology & Metabolism (AGEM), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Anita Boelen
- Endocrine Laboratory, Department of Laboratory Medicine, Amsterdam Gastroenterology Endocrinology & Metabolism (AGEM), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (E.H.); (K.F.)
| |
Collapse
|
10
|
Mancini A, Silvestrini A, Marcheggiani F, Capobianco E, Silvestri S, Lembo E, Orlando P, Beccia F, Nicolotti N, Panocchia N, Tiano L. Non-Thyroidal Illness in Chronic Renal Failure: Triiodothyronine Levels and Modulation of Extra-Cellular Superoxide Dismutase (ec-SOD). Antioxidants (Basel) 2024; 13:126. [PMID: 38275651 PMCID: PMC10812992 DOI: 10.3390/antiox13010126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Oxidative stress (OS) is implicated in several chronic diseases. Extra-cellular superoxide dismutase (ec-SOD) catalyses the dismutation of superoxide anions with a protective role in endothelial cells. In chronic kidney disease (CKD), OS and thyroid dysfunction (low fT3 syndrome) are frequently present, but their relationship has not yet been investigated. This cohort study evaluated ec-SOD activity in CKD patients during haemodialysis, divided into "acute haemodialytic patients" (AH, 1-3 months of treatment) and "chronic haemodialytic patients" (CH, treated for a longer period). We also evaluated plasmatic total antioxidant capacity (TAC) and its relationships with thyroid hormones. Two basal samples ("basal 1", obtained 3 days after the last dialysis; and "basal 2", obtained 2 days after the last dialysis) were collected. On the same day of basal 2, a sample was collected 5 and 10 min after the standard heparin dose and at the end of the procedure. The ec-SOD values were significantly higher in CH vs. AH in all determinations. Moreover, the same patients had lower TAC values. When the CH patients were divided into two subgroups according to fT3 levels (normal or low), we found significantly lower ec-SOD values in the group with low fT3 in the basal, 5, and 10 min samples. A significant correlation was also observed between fT3 and ec-SOD in the basal 1 samples. These data, confirming OS and low fT3 syndrome in patients with CKD, suggest that low fT3 concentrations can influence ec-SOD activity and could therefore potentially contribute to endothelial oxidative damage in these patients.
Collapse
Affiliation(s)
- Antonio Mancini
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy
| | - Andrea Silvestrini
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Fabio Marcheggiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Emmanuele Capobianco
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy
| | - Sonia Silvestri
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Erminia Lembo
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy
| | - Patrick Orlando
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Flavia Beccia
- Section of Hygiene, University Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy
| | - Nicola Nicolotti
- Section of Hygiene, University Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy
| | - Nicola Panocchia
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
11
|
Lou K, Liu S, Zhang F, Sun W, Su X, Bi W, Yin Q, Qiu Y, Zhang Z, Jing M, Ma S. The effect of hyperthyroidism on cognitive function, neuroinflammation, and necroptosis in APP/PS1 mice. J Transl Med 2023; 21:657. [PMID: 37740205 PMCID: PMC10517505 DOI: 10.1186/s12967-023-04511-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/06/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND Increasing evidence has linked the thyroid dysfunction to the pathogenesis of dementia. Evidence from clinical studies has demonstrated that hypothyroidism is related to an increased risk of dementia. But the association of hyperthyroidism with dementia is largely unknown. METHODS We used the adenovirus containing thyrotropin receptor (TSHR) amino acid residues 1-289 (Ad-TSHR289)-induced Graves' disease (GD) phenotype in Alzheimer's disease (AD) model mice (APP/PS1 mice) to evaluate the effect of hyperthyroidism on the cognitive function and β-amyloid (Aβ) accumulation. RESULTS GD mice exhibited a stable long-term hyperthyroidism and cognitive deficits. Single Cell RNA-sequencing analysis indicated that microglia function played a critical role in the pathophysiological processes in GD mice. Neuroinflammation and polarization of microglia (M1/M2 phenotype) and activated receptor-interacting serine/threonine protein kinase 3 (RIPK3)/mixed lineage kinase domain-like pseudo-kinase (MLKL)-mediated necroptosis contributed to the pathological process, including Aβ deposition and neuronal loss. RIPK3 inhibitor could inhibit GD-mediated Aβ accumulation and neuronal loss. CONCLUSIONS Our findings reveal that GD hyperthyroidism aggravates cognitive deficits in AD mice and induces Aβ deposition and neuronal loss by inducing neuroinflammation and RIPK3/MLKL-mediated necroptosis.
Collapse
Affiliation(s)
- Kai Lou
- Department of Endocrinology, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China
| | - Shudong Liu
- Department of Endocrinology, Shandong Rongjun General Hospital, Jinan, 250013, China
| | - Fengxia Zhang
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Wenxiu Sun
- Department of Nursing, Taishan Vocational College of Nursing, Taian, 271000, Shandong, China
| | - Xinhuan Su
- Department of Geriatrics Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Wenkai Bi
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, 250021, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China
| | - Qingqing Yin
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yaxin Qiu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, 250021, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China
| | - Zhenyuan Zhang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, 250021, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China
| | - Mengzhe Jing
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, 250021, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China
| | - Shizhan Ma
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, 250021, Shandong, China.
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China.
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China.
| |
Collapse
|
12
|
Han Z, Chen L, Peng H, Zheng H, Lin Y, Peng F, Fan Y, Xie X, Yang S, Wang Z, Yuan L, Wei X, Chen H. The role of thyroid hormone in the renal immune microenvironment. Int Immunopharmacol 2023; 119:110172. [PMID: 37086678 DOI: 10.1016/j.intimp.2023.110172] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 04/24/2023]
Abstract
Thyroid hormones are essential for proper kidney growth and development. The kidney is not only the organ of thyroid hormone metabolism but also the target organ of thyroid hormone. Kidney disease is a common type of kidney damage, mainly including different types of acute kidney injury, chronic kidney disease, diabetic nephropathy, lupus nephritis, and renal cell carcinoma. The kidney is often damaged by an immune response directed against its antigens or a systemic immune response. A variety of immune cells in the innate and adaptive immune systems, including neutrophils, macrophages, dendritic cells, T lymphocytes, and B lymphocytes, is essential for maintaining immune homeostasis and preventing autoimmune kidney disease. Recent studies have found that thyroid hormone plays an indispensable role in the immune microenvironment of various kidney diseases. Thyroid hormones regulate the activity of neutrophils, and dendritic cells express triiodothyronine receptors. Compared to hypothyroidism, hyperthyroidism has a greater effect on neutrophils. Furthermore, in adaptive immune systems, thyroid hormone may activate T lymphocytes through several underlying mechanisms, such as mediating NF-κB, protein kinase C signalling pathways, and β-adrenergic receptors, leading to increased T lymphocyte activation. The present review discusses the effects of thyroid hormone metabolism regulation in the immune microenvironment on the function of various immune cells, especially neutrophils, macrophages, dendritic cells, T lymphocytes, and B lymphocytes. Although there are not enough data at this stage to conclude the clinical relevance of these findings, thyroid hormone metabolism may influence autoimmune kidney disease by regulating the renal immune microenvironment.
Collapse
Affiliation(s)
- Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liuyan Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongyao Peng
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongying Zheng
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumeng Lin
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Peng
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunhe Fan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiuli Xie
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Simin Yang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhanzhan Wang
- Lianyungang Clinical Medical College of Nanjing Medical University, Lianyungang, China
| | - Lan Yuan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xiuyan Wei
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | | |
Collapse
|
13
|
Lazcano I, Pech-Pool SM, Olvera A, García-Martínez I, Palacios-Pérez S, Orozco A. The importance of thyroid hormone signaling during early development: Lessons from the zebrafish model. Gen Comp Endocrinol 2023; 334:114225. [PMID: 36709002 DOI: 10.1016/j.ygcen.2023.114225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/16/2022] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
The zebrafish is an optimal experimental model to study thyroid hormone (TH) involvement in vertebrate development. The use of state-of-the-art zebrafish genetic tools available for the study of the effect of gene silencing, cell fate decisions and cell lineage differentiation have contributed to a more insightful comprehension of molecular, cellular, and tissue-specific TH actions. In contrast to intrauterine development, extrauterine embryogenesis observed in zebrafish has facilitated a more detailed study of the development of the hypothalamic-pituitary-thyroid axis. This model has also enabled a more insightful analysis of TH molecular actions upon the organization and function of the brain, the retina, the heart, and the immune system. Consequently, zebrafish has become a trendy model to address paradigms of TH-related functional and biomedical importance. We here compilate the available knowledge regarding zebrafish developmental events for which specific components of TH signaling are essential.
Collapse
Affiliation(s)
- I Lazcano
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Campus Juriquilla, Querétaro 76230, Mexico
| | - S M Pech-Pool
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Campus Juriquilla, Querétaro 76230, Mexico
| | - A Olvera
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Campus Juriquilla, Querétaro 76230, Mexico
| | - I García-Martínez
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Campus Juriquilla, Querétaro 76230, Mexico
| | - S Palacios-Pérez
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Campus Juriquilla, Querétaro 76230, Mexico
| | - A Orozco
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Campus Juriquilla, Querétaro 76230, Mexico; Escuela Nacional de Estudios Superiores, Unidad Juriquilla, Universidad Nacional Autónoma de México (UNAM), Campus Juriquilla, Querétaro 76230, Mexico.
| |
Collapse
|
14
|
Sun X, Gao Y, Li Z, He J, Wu Y. Magnetic responsive hydroxyapatite scaffold modulated macrophage polarization through PPAR/JAK-STAT signaling and enhanced fatty acid metabolism. Biomaterials 2023; 295:122051. [PMID: 36812842 DOI: 10.1016/j.biomaterials.2023.122051] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/31/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023]
Abstract
Despite the general observations of bone repair with magnetic cues, the mechanisms of magnetic cues in macrophage response during bone healing have not been systematically investigated. Herein, by introducing magnetic nanoparticles into hydroxyapatite scaffolds, an appropriate and timely transition from proinflammatory (M1) to anti-inflammatory (M2) macrophages during bone healing is achieved. The combined use of proteomics and genomics analysis reveals the underlying mechanism of magnetic cue-mediated macrophage polarization form the perspective of protein corona and intracellular signal transduction. Our results suggest that intrinsically-present magnetic cues in scaffold contribute to the upregulated peroxisome proliferator-activated receptor (PPAR) signals, and the activation of PPAR signal transduction in macrophages results in the downregulation of the Janus Kinase-Signal transducer and activator of transcription (JAK-STAT) signals and the enhancement of fatty acid metabolism, thus facilitating M2 polarization of macrophages. Magnetic cue-dependent changes in macrophage benefit from the upregulation of adsorbed proteins associated with "hormone" and "response to hormone", as well as the downregulation of adsorbed proteins related to "enzyme-linked receptor signaling" in the protein corona. In addition, magnetic scaffolds may also act cooperatively with the exterior magnetic field, showing further inhibition of M1-type polarization. This study demonstrates that magnetic cues play critical roles on M2 polarization, coupling protein corona, intracellular PPAR signals and metabolism.
Collapse
Affiliation(s)
- Xiaoqing Sun
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Yichun Gao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Zhiyu Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Jing He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610064, PR China.
| | - Yao Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610064, PR China.
| |
Collapse
|
15
|
Pasciu V, Sotgiu FD, Nieddu M, Porcu C, Berlinguer F. Measurement of fecal T3 metabolite levels in sheep: Analytical and biological validation of the method. Front Vet Sci 2022; 9:1011651. [PMID: 36504867 PMCID: PMC9733671 DOI: 10.3389/fvets.2022.1011651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
Introduction Biological sample collection from wild and farms animals is often associated with difficulties related to the handling and restraint procedures, and most of the time it could induce stress, altering the welfare and physiological homeostasis. The analysis of fecal T3 metabolites (FTMs) allows to test samples collected in a non-invasive manner, providing several information about the animal's physiological conditions and the effects related to environmental and nutritional variations. This procedure has found wide application in wild species, but less in domestic ones. Methods The aim of this work was to validate the use of an immuno-enzymatic competitive ELISA kit, designed for T3 quantification in human blood serum samples, for the assessment of FTMs in the sheep. For the analytical validation, precision, recovery and parallelism were evaluated; for biological validation the variations of FTMs in relation to age, sex and the physiological status of the animal were determined. Results After a verification of the precision (RSD % < 15%), mean recovery (75%) and parallelism (CV% < 10%), the kit was used to measure FTMs in cyclic, pregnant, and early lactating ewes as well as in rams and ewe lambs. The results showed that FTMs concentrations in pregnant ewes were significantly lower (p < 0.05) than in cyclic and early lactation ones. Furthermore, there were no significant differences in FTMs levels between ewes and rams, while in lambs FTMs levels were higher than in adults (p < 0.001). Conclusion In conclusion the present study demonstrates that FTMs can be reliably and accurately determined in sheep feces, using an ELISA kit formulated for human serum T3 assay. The application of this method in the livestock sector could allow to improve our knowledge about the response of animals to different physiological and environmental conditions, and thus assess their welfare.
Collapse
Affiliation(s)
- Valeria Pasciu
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy,*Correspondence: Valeria Pasciu
| | | | - Maria Nieddu
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - Cristian Porcu
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | | |
Collapse
|
16
|
Unal S, Demirel N, Arslan Z, Tokgoz-Cuni B, Ulubas-Isik D, Bas AY. Umbilical Cord Separation Time and Influencing Factors in Very-Low-Birth-Weight Preterm Neonates. Am J Perinatol 2022; 39:1682-1687. [PMID: 33657638 DOI: 10.1055/s-0041-1726035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE The average time for umbilical cord separation in term neonates is 7 to 10 days. Prematurity, phototherapy, prolonged duration of antibiotic treatment, and parenteral nutrition are other factors which were demonstrated to delay cord separation. In the previous studies including greater premature infants, the time of separation of the umbilical cord was shown to vary 2 to 3 weeks. We aimed to determine the cord separation time and associated factors in very-low-birth-weight (VLBW) infants. STUDY DESIGN In this retrospective study, VLBW infants (birth weight [BW] <1,500 g, gestational age [GA] < 32 weeks) without umbilical catheterization were included. Specific cord care was not applied. The cord separation time, gender, mode of delivery, presence of sepsis, duration of antibiotic treatment, serum free thyroxine, free triiodothyronine (FT3), thyroid-stimulating hormone, lowest leukocyte, polymorphonuclear leukocytes (PMNLs), and platelet counts were recorded. RESULTS The study included 130 infants (GA: 29 ± 2 weeks, BW: 1,196 ± 243 g). Mean cord separation time was 14 ± 5 days, while 95th percentile was 22nd day of life. A positive correlation was demonstrated between duration of antibiotic treatment and cord separation time (p < 0.001, r: 0.505). Cord separation time did not differ regarding gender or mode of delivery. Corrected leukocyte count (p = 0.031, r: -0.190) and PMNL count (p = 0.022, r: -0.201), and serum FT3 level (p = 0.003, r: -0.261) were found to be negatively correlated with cord separation time. The cord separation time was found to be delayed in the presence of sepsis (with sepsis: 18 ± 7 days and without sepsis: 13 ± 3 days; p = 0.008). Sepsis was found to delay the cord separation time beyond second week (odds ratio = 6.30 [95% confidence interval: 2.37-15.62], p < 0.001). CONCLUSION The 95th percentile for cord separation time was 22nd day. Sepsis might be either the reason or the consequence of delayed cord detachment. The exact contribution of low serum FT3 levels to the process of cord separation should be investigated in further studies. KEY POINTS · Mean cord separation time was 14 ± 5 days, while 95th percentile was 22nd day, in VLBW infants.. · Sepsis was found to delay the cord separation time by sixfold beyond second week.. · Serum free triiodothyronine level was negatively correlated with cord separation time..
Collapse
Affiliation(s)
- Sezin Unal
- Department of Neonatology, Etlik Zubeyde Hanim Women's Health Teaching and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Nihal Demirel
- Division of Neonatology, Department of Pediatrics, Yildirim Beyazit University Hospital, Ankara, Turkey
| | - Zehra Arslan
- Department of Neonatology, Etlik Zubeyde Hanim Women's Health Teaching and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Betül Tokgoz-Cuni
- Department of Neonatology, Etlik Zubeyde Hanim Women's Health Teaching and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Dilek Ulubas-Isik
- Department of Neonatology, Etlik Zubeyde Hanim Women's Health Teaching and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Ahmet Yagmur Bas
- Division of Neonatology, Department of Pediatrics, Yildirim Beyazit University Hospital, Ankara, Turkey
| |
Collapse
|
17
|
Chen H, Xu M, Huang Y, He J, Ren W. Low triiodothyronine syndrome is associated with stroke-associated pneumonia. Eur J Clin Invest 2022; 52:e13840. [PMID: 35842892 DOI: 10.1111/eci.13840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Stroke-associated pneumonia (SAP) is the most common early consequence in patients suffering from an acute ischaemic stroke (AIS). The purpose of this study was to explore the possible relationship between low triiodothyronine (T3) syndrome and SAP in stroke patients. METHODS This study recruited 2460 consecutive AIS patients. SAP was defined according to the modified Centers for Disease Control and Prevention criteria for hospital-acquired pneumonia. The thyroid hormones levels were measured within 24 h after admission. Low T3 syndrome was characterized as T3 below the lower limit of the reference interval accompanied by normal TSH levels. RESULTS Among the total patients, 336 (13.7%) patients were diagnosed with SAP. SAP in individuals with low T3 syndrome was substantially greater (p < .001) as compared to those without low T3 syndrome. After adjusting for possible confounders, low T3 syndrome (adjusted odds ratio [aOR] = 1.59; 95% confidence interval [CI], 1.20-2.09; p = .001) remained significant in our logistic model. Patients with low T3 syndrome had a higher risk of severe SAP (aOR = 2.17, 95% confidence interval [CI] 1.38-3.44; p = .001). CONCLUSION Low T3 syndrome, independent of recognized risk factors, is a possible risk factor for in-hospital SAP, which can help clinicians in the early detection and treatment of high-risk patients.
Collapse
Affiliation(s)
- Huijun Chen
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Minjie Xu
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yezhi Huang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jincai He
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenwei Ren
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
18
|
Ohba K, Iwaki T. Role of thyroid hormone in an experimental model of atherosclerosis: the potential mediating role of immune response and autophagy. Endocr J 2022; 69:1043-1052. [PMID: 35871569 DOI: 10.1507/endocrj.ej22-0177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Accumulating evidence has revealed that several conditions related to abnormal thyroid hormone status, such as dyslipidemia, hypertension, or hypercoagulable state, can exacerbate atherosclerotic vascular disease. Thyroid hormone effects on vascular smooth muscle cells and endothelial cells have also been studied extensively. However, only limited information is available on thyroid hormone-mediated immune response in current review articles on the pathophysiology of atherosclerosis. This report thus presents an overview of the recent advances in the understanding of the dynamic interactions taking place between thyroid hormone status and immune response in the pathogenesis of atherosclerosis. In particular, we focus on macrophages and T-lymphocytes, which have been recognized as important determinants for the initiation and development of atherosclerosis. Numerous studies have revealed the role of autophagy in immune cells produced in atherosclerosis. In addition, thyroid hormones induce autophagy in several cells and tissues, such as liver, skeletal muscles, lungs, and brown adipose tissue. Our research group, among others, have reported different targets of thyroid hormone-mediated autophagy, including lipid droplets (lipophagy), mitochondria (mitophagy), and aggregated proteins (aggrephagy). Based on these findings, thyroid hormone-mediated autophagy could serve as a novel therapeutic approach for atherosclerosis. We also consider the limitations of the current murine models for studies on atherosclerosis, especially in relation to low-density lipoprotein-cholesterol driven atherosclerotic plaque.
Collapse
Affiliation(s)
- Kenji Ohba
- Medical Education Center, Hamamatsu University School of Medicine, Shizuoka 431-3192, Japan
| | - Takayuki Iwaki
- Department of Pharmacology, Hamamatsu University School of Medicine, Shizuoka 431-3192, Japan
| |
Collapse
|
19
|
López-Mateo I, Rodríguez-Muñoz D, de La Rosa JV, Castrillo A, Alemany S, Aranda A. Regulation of metabolic and transcriptional responses by the thyroid hormone in cellular models of murine macrophages. Front Immunol 2022; 13:923727. [PMID: 35935955 PMCID: PMC9353060 DOI: 10.3389/fimmu.2022.923727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Oncogene-immortalized bone marrow-derived macrophages are considered to be a good model for the study of immune cell functions, but the factors required for their survival and proliferation are still unknown. Although the effect of the thyroid hormones on global metabolic and transcriptional responses in macrophages has not yet been examined, there is increasing evidence that they could modulate macrophage functions. We show here that the thyroid hormone T3 is an absolute requirement for the growth of immortal macrophages. The hormone regulates the activity of the main signaling pathways required for proliferation and anabolic processes, including the phosphorylation of ERK and p38 MAPKs, AKT, ribosomal S6 protein, AMPK and Sirtuin-1. T3 also alters the levels of metabolites controlling transcriptional and post-transcriptional actions in macrophages, and causes widespread transcriptomic changes, up-regulating genes needed for protein synthesis and cell proliferation, while down-regulating genes involved in immune responses and endocytosis, among others. This is not observed in primary bone marrow-derived macrophages, where only p38 and AMPK activation is regulated by T3 and in which the metabolic and transcriptomic effects of the hormone are much weaker. However, the response to IFN-γ is reduced by T3 similarly in immortalized macrophages and in the primary cells, confirming previous results showing that the thyroid hormones can antagonize JAK/STAT-mediated signaling. These results provide new perspectives on the relevant pathways involved in proliferation and survival of macrophage cell culture models and on the crosstalk between the thyroid hormones and the immune system.
Collapse
Affiliation(s)
- Irene López-Mateo
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid, Madrid, Spain
| | - Diego Rodríguez-Muñoz
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan Vladimir de La Rosa
- Unidad de Biomedicina (Unidad Asociada al CSIC), Universidad de las Palmas de Gran Canaria, Las Palmas, Spain
| | - Antonio Castrillo
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid, Madrid, Spain
- Unidad de Biomedicina (Unidad Asociada al CSIC), Universidad de las Palmas de Gran Canaria, Las Palmas, Spain
| | - Susana Alemany
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid, Madrid, Spain
- Unidad de Biomedicina (Unidad Asociada al CSIC), Universidad de las Palmas de Gran Canaria, Las Palmas, Spain
| | - Ana Aranda
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid, Madrid, Spain
- Unidad de Biomedicina (Unidad Asociada al CSIC), Universidad de las Palmas de Gran Canaria, Las Palmas, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Ana Aranda,
| |
Collapse
|
20
|
Stanculescu D, Bergquist J. Perspective: Drawing on Findings From Critical Illness to Explain Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Front Med (Lausanne) 2022; 9:818728. [PMID: 35345768 PMCID: PMC8957276 DOI: 10.3389/fmed.2022.818728] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/11/2022] [Indexed: 12/15/2022] Open
Abstract
We propose an initial explanation for how myalgic encephalomyelitis / chronic fatigue syndrome (ME/CFS) could originate and perpetuate by drawing on findings from critical illness research. Specifically, we combine emerging findings regarding (a) hypoperfusion and endotheliopathy, and (b) intestinal injury in these illnesses with our previously published hypothesis about the role of (c) pituitary suppression, and (d) low thyroid hormone function associated with redox imbalance in ME/CFS. Moreover, we describe interlinkages between these pathophysiological mechanisms as well as “vicious cycles” involving cytokines and inflammation that may contribute to explain the chronic nature of these illnesses. This paper summarizes and expands on our previous publications about the relevance of findings from critical illness for ME/CFS. New knowledge on diagnostics, prognostics and treatment strategies could be gained through active collaboration between critical illness and ME/CFS researchers, which could lead to improved outcomes for both conditions.
Collapse
Affiliation(s)
| | - Jonas Bergquist
- Division of Analytical Chemistry and Neurochemistry, Department of Chemistry - Biomedical Center, Uppsala University, Uppsala, Sweden.,The Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Collaborative Research Centre at Uppsala University, Uppsala, Sweden
| |
Collapse
|
21
|
Wenzek C, Boelen A, Westendorf AM, Engel DR, Moeller LC, Führer D. The interplay of thyroid hormones and the immune system - where we stand and why we need to know about it. Eur J Endocrinol 2022; 186:R65-R77. [PMID: 35175936 PMCID: PMC9010816 DOI: 10.1530/eje-21-1171] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/17/2022] [Indexed: 11/08/2022]
Abstract
Over the past few years, growing evidence suggests direct crosstalk between thyroid hormones (THs) and the immune system. Components of the immune system were proposed to interfere with the central regulation of systemic TH levels. Conversely, THs regulate innate and adaptive immune responses as immune cells are direct target cells of THs. Accordingly, they express different components of local TH action, such as TH transporters or receptors, but our picture of the interplay between THs and the immune system is still incomplete. This review provides a critical overview of current knowledge regarding the interaction of THs and the immune system with the main focus on local TH action within major innate and adaptive immune cell subsets. Thereby, this review aims to highlight open issues which might help to infer the clinical relevance of THs in host defence in the context of different types of diseases such as infection, ischemic organ injury or cancer.
Collapse
Affiliation(s)
- Christina Wenzek
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Anita Boelen
- Endocrine Laboratory, Department of Clinical Chemistry, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Astrid M Westendorf
- Institute for Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Daniel R Engel
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Lars C Moeller
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Dagmar Führer
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Correspondence should be addressed to D Führer;
| |
Collapse
|
22
|
Shepherd R, Kim B, Saffery R, Novakovic B. Triiodothyronine (T3) Induces Limited Transcriptional and DNA Methylation Reprogramming in Human Monocytes. Biomedicines 2022; 10:biomedicines10030608. [PMID: 35327410 PMCID: PMC8945024 DOI: 10.3390/biomedicines10030608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/14/2022] [Accepted: 02/27/2022] [Indexed: 11/16/2022] Open
Abstract
Thyroid hormones have immunomodulatory roles, but their effects on the transcriptome and epigenome of innate immune cell types remain unexplored. In this study, we investigate the effects of triiodothyronine (T3) on the transcriptome and methylome of human monocytes in vitro, both in resting and lipopolysaccharide (LPS)-stimulated conditions. In resting monocytes, 5 µM T3 affected the expression of a small number of monocyte-to-macrophage differentiation-associated genes, including TLR4 (p-value < 0.05, expression fold change >1.5). T3 attenuated a small proportion of monocyte-to-macrophage differentiation-associated DNA methylation changes, while specifically inducing DNA methylation changes at several hundred differentially methylated CpG probes (DMPs) (p-value < 0.05, Δβ > 0.05). In LPS-stimulated monocytes, the presence of T3 attenuated the effect of 27% of LPS-induced DMPs (p-value < 0.05, Δβ > 0.05). Interestingly, co-stimulation with T3 + LPS induced a unique DNA methylation signature that was not observed in the LPS-only or T3-only exposure groups. Our results suggest that T3 induces limited transcriptional and DNA methylation remodeling in genes enriched in metabolism and immune processes and alters the normal in vitro LPS response. The overlap between differentially expressed genes and genes associated with DMPs was minimal; thus, other epigenetic mechanisms may underpin the expression changes. This research provides insight into the complex interplay between thyroid hormones, epigenetic remodeling, and transcriptional dynamics in monocytes.
Collapse
Affiliation(s)
- Rebecca Shepherd
- Molecular Immunity, Infection and Immunity Theme, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia; (R.S.); (B.K.); (R.S.)
| | - Bowon Kim
- Molecular Immunity, Infection and Immunity Theme, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia; (R.S.); (B.K.); (R.S.)
| | - Richard Saffery
- Molecular Immunity, Infection and Immunity Theme, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia; (R.S.); (B.K.); (R.S.)
- Department of Paediatrics, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Boris Novakovic
- Molecular Immunity, Infection and Immunity Theme, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia; (R.S.); (B.K.); (R.S.)
- Department of Paediatrics, The University of Melbourne, Parkville, VIC 3052, Australia
- Correspondence:
| |
Collapse
|
23
|
Ferrara SJ, Chaudhary P, DeBell MJ, Marracci G, Miller H, Calkins E, Pocius E, Napier BA, Emery B, Bourdette D, Scanlan TS. TREM2 is thyroid hormone regulated making the TREM2 pathway druggable with ligands for thyroid hormone receptor. Cell Chem Biol 2022; 29:239-248.e4. [PMID: 34375614 PMCID: PMC8818810 DOI: 10.1016/j.chembiol.2021.07.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/03/2021] [Accepted: 07/15/2021] [Indexed: 12/24/2022]
Abstract
Triggering receptor expressed on myeloid cells-2 (TREM2) is a cell surface receptor on macrophages and microglia that senses and responds to disease-associated signals to regulate the phenotype of these innate immune cells. The TREM2 signaling pathway has been implicated in a variety of diseases ranging from neurodegeneration in the central nervous system to metabolic disease in the periphery. Here, we report that TREM2 is a thyroid hormone-regulated gene and its expression in macrophages and microglia is stimulated by thyroid hormone and synthetic thyroid hormone agonists (thyromimetics). Our findings report the endocrine regulation of TREM2 by thyroid hormone, and provide a unique opportunity to drug the TREM2 signaling pathway with orally active small-molecule therapeutic agents.
Collapse
MESH Headings
- Acetates/chemical synthesis
- Acetates/pharmacology
- Animals
- Binding Sites
- Brain/drug effects
- Brain/immunology
- Brain/pathology
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Gene Expression Regulation
- Humans
- Immunity, Innate
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/pathology
- Membrane Glycoproteins/antagonists & inhibitors
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Mice
- Mice, Inbred C57BL
- Microglia/drug effects
- Microglia/immunology
- Microglia/pathology
- Models, Molecular
- Phenols/chemical synthesis
- Phenols/pharmacology
- Phenoxyacetates/pharmacology
- Promoter Regions, Genetic
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- RNA, Messenger/antagonists & inhibitors
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- Receptors, Immunologic/antagonists & inhibitors
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Response Elements
- Retinoid X Receptors/chemistry
- Retinoid X Receptors/genetics
- Retinoid X Receptors/metabolism
- Signal Transduction
- Thyroid Hormones/pharmacology
Collapse
Affiliation(s)
- Skylar J Ferrara
- Department of Chemical Physiology and Biochemistry and Program in Chemical Biology, Oregon Health & Science University, L334, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Priya Chaudhary
- VA Portland Health Care System, Portland, OR 97239, USA; Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Margaret J DeBell
- Department of Chemical Physiology and Biochemistry and Program in Chemical Biology, Oregon Health & Science University, L334, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Gail Marracci
- VA Portland Health Care System, Portland, OR 97239, USA; Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Hannah Miller
- Department of Chemical Physiology and Biochemistry and Program in Chemical Biology, Oregon Health & Science University, L334, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Evan Calkins
- VA Portland Health Care System, Portland, OR 97239, USA; Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Edvinas Pocius
- VA Portland Health Care System, Portland, OR 97239, USA; Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Brooke A Napier
- Department of Biology, Portland State University, OR 97201, USA
| | - Ben Emery
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA; Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR 97239, USA
| | - Dennis Bourdette
- VA Portland Health Care System, Portland, OR 97239, USA; Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Thomas S Scanlan
- Department of Chemical Physiology and Biochemistry and Program in Chemical Biology, Oregon Health & Science University, L334, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
24
|
Yu Z, Tan Y, Luo S, Zhou J, Xu T, Zou J, Ke L, Yu J, Zhang S, Zhou J, Rao P, Li J. Food nanoparticles from rice vinegar: isolation, characterization, and antioxidant activities. NPJ Sci Food 2022; 6:1. [PMID: 35017542 PMCID: PMC8752661 DOI: 10.1038/s41538-021-00118-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 12/06/2021] [Indexed: 01/30/2023] Open
Abstract
Abundant nanostructures have been constantly found in various foods, like vinegar, tea, coffee, and milk. However, these structures largely remain unexplored and even been eliminated for stability reasons in food industry. Here we report the isolation, characterization, and antioxidant activities of food nanoparticles (NPs) carrying polyphenols from Chinese rice vinegar. Using a gel-chromatography-based isolation protocol, the vinegar was separated into three major fractions. They were identified as spherical NPs (P1), lollipop-like NPs (P2) and spherical microparticles (P3) with average hydrodynamic diameter of 210, 245,1643 nm, separately. The former two fractions accounted for the major parts of dry matter in the vinegar. The P1-NPs fraction was composed of proteins, carbohydrates, and a high number of polyphenols (15 wt%), demonstrated potent antioxidant activity as determined by ABTS and ORAC assays. Moreover, they effectively quenched peroxyl free radicals in peritoneal macrophages and promoted cellular growth. The P2 fraction contained majority of organic acids, esters and mineral elements of the vinegar. It demonstrated the NPs are bioactive units of the rice vinegar, inspiring the development of novel functional nanomaterials with nutraceutical and pharmaceutical applications.
Collapse
Affiliation(s)
- Zhaoshuo Yu
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Ying Tan
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Sihao Luo
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Jingru Zhou
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Tianhao Xu
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Jianqiao Zou
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Lijing Ke
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou, 310012, China.
| | - Ji Yu
- Institute of Food Science, Jishou University, Jishou, 416000, Hunan, China
| | - Suyun Zhang
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Jianwu Zhou
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Pingfan Rao
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Jiaxing Li
- Hunan Salt Industry Co., Ltd., Changsha, 410004, China
| |
Collapse
|
25
|
Ng L, Liu Y, Liu H, Forrest D. Cochlear Fibrocyte and Osteoblast Lineages Expressing Type 2 Deiodinase Identified with a Dio2CreERt2 Allele. Endocrinology 2021; 162:bqab179. [PMID: 34436572 PMCID: PMC8475715 DOI: 10.1210/endocr/bqab179] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Indexed: 12/16/2022]
Abstract
Type 2 deiodinase (Dio2) amplifies levels of 3,5,3'-L-triiodothyronine (T3), the active form of thyroid hormone, and is essential for cochlear maturation and auditory development. However, cellular routes for endocrine signaling in the compartmentalized, anatomically complex cochlea are little understood. Dio2 generates T3 from thyroxine (T4), a more abundant thyroid hormone precursor in the circulation, and is dramatically induced in the cochlea before the onset of hearing. The evidence implies that specific Dio2-expressing cell types critically mediate T3 signaling but these cell types are poorly defined because Dio2 is expressed transiently at low levels. Here, using a Dio2CreERt2 knockin that activates a fluorescent reporter, we define Dio2-expressing cochlear cell types at high resolution in male or female mice. Dio2-positive cells were detected in vascularized supporting tissues but not in avascular internal epithelia, indicating segregation of T3-generating and T3-responding tissues. In the spiral ligament and spiral limbus, Dio2-positive fibrocytes clustered around vascular networks that convey T4 into cochlear tissues. In the otic capsule, Dio2-positive osteoblasts localized at cartilage surfaces as the bony labyrinth matures. We corroborated the identities of Dio2-positive lineages by RNA-sequencing of individual cells. The results suggest a previously unrecognized role for fibrocytes in mediating hormonal signaling. We discuss a model whereby fibrocytes mediate paracrine-like control of T3 signaling to the organ of Corti and epithelial target tissues.
Collapse
Affiliation(s)
- Lily Ng
- Laboratory of Endocrinology and Receptor Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ye Liu
- Laboratory of Endocrinology and Receptor Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hong Liu
- Laboratory of Endocrinology and Receptor Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Douglas Forrest
- Laboratory of Endocrinology and Receptor Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
26
|
Beltrão FEDL, Beltrão DCDA, Carvalhal G, Beltrão FEDL, Brito ADS, Capistrano KHRD, Bastos IHDA, Hecht F, Daltro CHDC, Bianco AC, Gonçalves MDCR, Ramos HE. Thyroid Hormone Levels During Hospital Admission Inform Disease Severity and Mortality in COVID-19 Patients. Thyroid 2021; 31:1639-1649. [PMID: 34314259 DOI: 10.1089/thy.2021.0225] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background: Illness severity in patients infected with COVID-19 is variable. Methods: Here, we conducted an observational, longitudinal, and prospective cohort study to investigate serum thyroid hormone (TH) levels in adult COVID-19 patients, admitted between June and August 2020, and to determine whether they reflect the severity or mortality associated with the disease. Results: Two hundred forty-five patients [median age: 62 (49-75) years] were stratified into non-critical (181) and critically ill (64) groups. Fifty-eight patients (23.6%) were admitted to the intensive care unit, and 41 (16.7%) died. Sixteen (6.5%) exhibited isolated low levels of free triiodothyronine (fT3). fT3 levels were lower in critically ill compared with non-critical patients [fT3: 2.82 (2.46-3.29) pg/mL vs. 3.09 (2.67-3.63) pg/mL, p = 0.007]. Serum reverse triiodothyronine (rT3) was mostly elevated but less so in critically ill compared with non-critical patients [rT3: 0.36 (0.28-0.56) ng/mL vs. 0.51 (0.31-0.67) ng/mL, p = 0.001]. The univariate logistic regression revealed correlation between in-hospital mortality and serum fT3 levels (odds ratio [OR]: 0.47; 95% confidence interval [CI 0.29-0.74]; p = 0.0019), rT3 levels (OR: 0.09; [CI 0.01-0.49]; p = 0.006) and the product fT3 × rT3 (OR: 0.47; [CI 0.28-0.74]; p = 0.0026). Serum thyrotropin, free thyroxine, and fT3/rT3 values were not significantly associated with mortality and severity of the disease. A serum cutoff level of fT3 (≤2.6 pg/mL) and rT3 (≤0.38 ng/mL) was associated with 3.46 and 5.94 OR of mortality, respectively. We found three COVID-19 mortality predictors using the area under the receiver operating characteristic (ROC) curve (AUC score): serum fT3 (AUC = 0.66), rT3 (AUC = 0.64), and the product of serum fT3 × rT3 (AUC = 0.70). Non-thyroidal illness syndrome (fT3 < 2.0 pg/mL) was associated with a 7.05 OR of mortality ([CI 1.78-28.3], p = 0.005) and the product rT3 × fT3 ≤ 1.29 with an 8.08 OR of mortality ([CI 3.14-24.2], p < 0.0001). Conclusions: This prospective study reports data on the largest number of hospitalized moderate-to-severe COVID-19 patients and correlates serum TH levels with illness severity, mortality, and other biomarkers to critical illness. The data revealed the importance of early assessment of thyroid function in hospitalized patients with COVID-19, given the good prognostic value of serum fT3, rT3, and fT3 × rT3 product. Further studies are necessary to confirm these observations.
Collapse
Affiliation(s)
- Fabyan Esberard de Lima Beltrão
- Department of Endocrinology, Lauro Wanderley University Hospital, Federal University of Paraíba, João Pessoa, Brazil
- Post-Graduation Program in Nutritional Sciences, Department of Nutrition, Center for Health Sciences, Federal University of Paraíba, João Pessoa, Brazil
- Department of Medicine, Faculty of Medical Sciences, João Pessoa, Brazil
| | | | - Giulia Carvalhal
- Center for Biological and Health Sciences, Federal University of Campina Grande, Campina Grande, Brazil
| | | | - Amanda da Silva Brito
- Department of Endocrinology, Lauro Wanderley University Hospital, Federal University of Paraíba, João Pessoa, Brazil
| | - Kamilla Helen Rodrigues da Capistrano
- Post-Graduation Program in Nutritional Sciences, Department of Nutrition, Center for Health Sciences, Federal University of Paraíba, João Pessoa, Brazil
| | - Isis Henriques de Almeida Bastos
- Post-Graduate Program in Medicine and Health, Medical School of Medicine; Health and Science Institute; Federal University of Bahia, Salvador, Brazil
| | - Fabio Hecht
- The Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carla Hilário da Cunha Daltro
- Post-Graduate Program in Medicine and Health, Medical School of Medicine; Health and Science Institute; Federal University of Bahia, Salvador, Brazil
- Department of Nutrition Sciences; Health and Science Institute; Federal University of Bahia, Salvador, Brazil
| | - Antonio Carlos Bianco
- Section of Endocrinology and Metabolism, Division of the Biological Sciences, University of Chicago, Chicago, Illinois, USA
| | - Maria da Conceição Rodrigues Gonçalves
- Post-Graduation Program in Nutritional Sciences, Department of Nutrition, Center for Health Sciences, Federal University of Paraíba, João Pessoa, Brazil
| | - Helton Estrela Ramos
- Post-Graduate Program in Medicine and Health, Medical School of Medicine; Health and Science Institute; Federal University of Bahia, Salvador, Brazil
- Postgraduate Program in Interactive Processes of Organs and Systems, Health & Science Institute; Health and Science Institute; Federal University of Bahia, Salvador, Brazil
- Bioregulation Department, Health and Science Institute; Federal University of Bahia, Salvador, Brazil
| |
Collapse
|
27
|
Hernandez A, Martinez ME, Ng L, Forrest D. Thyroid Hormone Deiodinases: Dynamic Switches in Developmental Transitions. Endocrinology 2021; 162:bqab091. [PMID: 33963379 PMCID: PMC8248586 DOI: 10.1210/endocr/bqab091] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Indexed: 12/15/2022]
Abstract
Thyroid hormones exert pleiotropic, essential actions in mammalian, including human, development. These actions depend on provision of thyroid hormones in the circulation but also to a remarkable extent on deiodinase enzymes in target tissues that amplify or deplete the local concentration of the primary active form of the hormone T3 (3,5,3'-triiodothyronine), the high affinity ligand for thyroid hormone receptors. Genetic analyses in mice have revealed key roles for activating (DIO2) and inactivating (DIO3) deiodinases in cell differentiation fates and tissue maturation, ultimately promoting neonatal viability, growth, fertility, brain development, and behavior, as well as metabolic, endocrine, and sensory functions. An emerging paradigm is how the opposing activities of DIO2 and DIO3 are coordinated, providing a dynamic switch that controls the developmental timing of a tissue response, often during neonatal and maturational transitions. A second paradigm is how cell to cell communication within a tissue determines the response to T3. Deiodinases in specific cell types, often strategically located near to blood vessels that convey thyroid hormones into the tissue, can regulate neighboring cell types, suggesting a paracrine-like layer of control of T3 action. We discuss deiodinases as switches for developmental transitions and their potential to influence tissue dysfunction in human thyroid disorders.
Collapse
Affiliation(s)
- Arturo Hernandez
- Department of Molecular Medicine, Maine Medical Center Research Institute, Maine Health, Scarborough, Maine 04074, USA
- Department of Medicine, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine 04469, USA
| | - M Elena Martinez
- Department of Molecular Medicine, Maine Medical Center Research Institute, Maine Health, Scarborough, Maine 04074, USA
| | - Lily Ng
- National Institute of Diabetes and Digestive and Kidney Diseases, Laboratory of Endocrinology and Receptor Biology, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Douglas Forrest
- National Institute of Diabetes and Digestive and Kidney Diseases, Laboratory of Endocrinology and Receptor Biology, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
28
|
Abstract
The non-thyroidal illness syndrome (NTIS) was first reported in the 1970s as a remarkable ensemble of changes in serum TH (TH) concentrations occurring in probably any severe illness. Ever since, NTIS has remained an intriguing phenomenon not only because of the robustness of the decrease in serum triiodothyronine (T3), but also by its clear correlation with morbidity and mortality. In recent years, it has become clear that (parenteral) feeding in patients with critical illness should be taken into account as a major determinant not only of NTIS but also of clinical outcome. Moreover, both experimental animal and clinical studies have shown that tissue TH concentrations during NTIS do not necessarily reflect serum low TH concentrations and may decrease, remain unaltered, or even increase according to the organ and type of illness studied. These differential changes now have a solid basis in molecular studies on organ-specific TH transporters, receptors and deiodinases. Finally, the role of inflammatory pathways in these non-systemic changes has begun to be clarified. A fascinating role for TH metabolism in innate immune cells, including neutrophils and monocytes/macrophages, was reported in recent years, but there is no evidence at this early stage that this may be a determinant of susceptibility to infections. Although endocrinologists have been tempted to correct NTIS by TH supplementation, there is at present insufficient evidence that this is beneficial. Thus, there is a clear need for adequately powered randomized clinical trials (RCT) with clinically relevant endpoints to fill this knowledge gap.
Collapse
Affiliation(s)
- E Fliers
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - A Boelen
- Endocrine Laboratory, Department of Clinical Chemistry, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
29
|
Devalraju KP, Tripathi D, Neela VSK, Paidipally P, Radhakrishnan RK, Singh KP, Ansari MS, Jaeger M, Netea-Maier RT, Netea MG, Park S, Cheng SY, Valluri VL, Vankayalapati R. Reduced thyroxine production in young household contacts of tuberculosis patients increases active tuberculosis disease risk. JCI Insight 2021; 6:e148271. [PMID: 34236051 PMCID: PMC8410087 DOI: 10.1172/jci.insight.148271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/26/2021] [Indexed: 12/03/2022] Open
Abstract
In the current study, we followed 839 household contacts (HHCs) of tuberculosis (TB) patients for 2 years and identified the factors that enhanced the development of TB. Fourteen of the 17 HHCs who progressed to TB were in the 15- to 30-year-old age group. At baseline (the “0“ time point, when all the individuals were healthy), the concentration of the thyroid hormone thyroxine (T4) was lower, and there were increased numbers of Tregs in PBMCs of TB progressors. At baseline, PBMCs from TB progressors stimulated with early secretory antigenic target 6 (ESAT-6) and 10 kDa culture filtrate antigen (CFP-10) produced less IL-1α. Thyroid hormones inhibited Mycobacterium tuberculosis (Mtb) growth in macrophages in an IL-1α–dependent manner. Mtb-infected Thra1PV/+ (mutant thyroid hormone receptor) mice had increased mortality and reduced IL-1α production. Our findings suggest that young HHCs who exhibit decreased production of thyroid hormones are at high risk of developing active TB disease.
Collapse
Affiliation(s)
- Kamakshi Prudhula Devalraju
- Immunology and Molecular Biology Department, Bhagwan Mahavir Medical Research Centre, Hyderabad, Telangana, India
| | - Deepak Tripathi
- Department of Pulmonary Immunology, Center for Biomedical Research, University of Texas Health Science Center, Tyler, Texas, USA
| | - Venkata Sanjeev Kumar Neela
- Immunology and Molecular Biology Department, Bhagwan Mahavir Medical Research Centre, Hyderabad, Telangana, India
| | - Padmaja Paidipally
- Department of Pulmonary Immunology, Center for Biomedical Research, University of Texas Health Science Center, Tyler, Texas, USA
| | - Rajesh Kumar Radhakrishnan
- Department of Pulmonary Immunology, Center for Biomedical Research, University of Texas Health Science Center, Tyler, Texas, USA
| | - Karan P Singh
- Department of Epidemiology and Biostatistics, School of Community and Rural Health, University of Texas Health Science Center, Tyler, Texas, USA
| | - Mohammad Soheb Ansari
- Immunology and Molecular Biology Department, Bhagwan Mahavir Medical Research Centre, Hyderabad, Telangana, India
| | - Martin Jaeger
- Department of Internal Medicine, Division of Endocrinology, and.,Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Sunmi Park
- Laboratory of Molecular Biology, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Sheue-Yann Cheng
- Laboratory of Molecular Biology, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Vijaya Lakshmi Valluri
- Immunology and Molecular Biology Department, Bhagwan Mahavir Medical Research Centre, Hyderabad, Telangana, India
| | - Ramakrishna Vankayalapati
- Department of Pulmonary Immunology, Center for Biomedical Research, University of Texas Health Science Center, Tyler, Texas, USA
| |
Collapse
|
30
|
Grondman I, de Nooijer AH, Antonakos N, Janssen NAF, Mouktaroudi M, Leventogiannis K, Medici M, Smit JWA, van Herwaarden AE, Joosten LAB, van der Veerdonk FL, Pickkers P, Kox M, Jaeger M, Netea MG, Giamarellos-Bourboulis EJ, Netea-Maier RT. The Association of TSH and Thyroid Hormones With Lymphopenia in Bacterial Sepsis and COVID-19. J Clin Endocrinol Metab 2021; 106:1994-2009. [PMID: 33713408 PMCID: PMC7989224 DOI: 10.1210/clinem/dgab148] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Indexed: 11/19/2022]
Abstract
CONTEXT Lymphopenia is a key feature of immune dysfunction in patients with bacterial sepsis and coronavirus disease 2019 (COVID-19) and is associated with poor clinical outcomes, but the cause is largely unknown. Severely ill patients may present with thyroid function abnormalities, so-called nonthyroidal illness syndrome, and several studies have linked thyrotropin (thyroid stimulating hormone, TSH) and the thyroid hormones thyroxine (T4) and 3,5,3'-triiodothyronine (T3) to homeostatic regulation and function of lymphocyte populations. OBJECTIVE This work aimed to test the hypothesis that abnormal thyroid function correlates with lymphopenia in patients with severe infections. METHODS A retrospective analysis of absolute lymphocyte counts, circulating TSH, T4, free T4 (FT4), T3, albumin, and inflammatory biomarkers was performed in 2 independent hospitalized study populations: bacterial sepsis (n = 224) and COVID-19 patients (n = 161). A subgroup analysis was performed in patients with severe lymphopenia and normal lymphocyte counts. RESULTS Only T3 significantly correlated (ρ = 0.252) with lymphocyte counts in patients with bacterial sepsis, and lower concentrations were found in severe lymphopenic compared to nonlymphopenic patients (n = 56 per group). Severe lymphopenic COVID-19 patients (n = 17) showed significantly lower plasma concentrations of TSH, T4, FT4, and T3 compared to patients without lymphopenia (n = 18), and demonstrated significantly increased values of the inflammatory markers interleukin-6, C-reactive protein, and ferritin. Remarkably, after 1 week of follow-up, the majority (12 of 15) of COVID-19 patients showed quantitative recovery of their lymphocyte numbers, whereas TSH and thyroid hormones remained mainly disturbed. CONCLUSION Abnormal thyroid function correlates with lymphopenia in patients with severe infections, like bacterial sepsis and COVID-19, but future studies need to establish whether a causal relationship is involved.
Collapse
Affiliation(s)
- Inge Grondman
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Aline H de Nooijer
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nikolaos Antonakos
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Nico A F Janssen
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maria Mouktaroudi
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Marco Medici
- Department of Internal Medicine, Division of Endocrinology, Radboud University Nijmegen, GA, Nijmegen, the Netherlands
- Academic Center for Thyroid Diseases and Departments of Internal Medicine and Epidemiology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Jan W A Smit
- Department of Internal Medicine, Division of Endocrinology, Radboud University Nijmegen, GA, Nijmegen, the Netherlands
| | | | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frank L van der Veerdonk
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter Pickkers
- Department of Intensive Care Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Immunology and Metabolism, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Matthijs Kox
- Department of Intensive Care Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Immunology and Metabolism, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Martin Jaeger
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Intensive Care Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Romana T Netea-Maier
- Department of Internal Medicine, Division of Endocrinology, Radboud University Nijmegen, GA, Nijmegen, the Netherlands
- Corresponding author (and to whom reprints should be addressed): Romana Netea-Maier, MD PhD, Department of Internal Medicine, Division of Endocrinology, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA, Nijmegen, The Netherlands, Tel: +31-24-3614599, Email
| |
Collapse
|
31
|
Stanculescu D, Larsson L, Bergquist J. Theory: Treatments for Prolonged ICU Patients May Provide New Therapeutic Avenues for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Front Med (Lausanne) 2021; 8:672370. [PMID: 34026797 PMCID: PMC8137963 DOI: 10.3389/fmed.2021.672370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/01/2021] [Indexed: 12/20/2022] Open
Abstract
We here provide an overview of treatment trials for prolonged intensive care unit (ICU) patients and theorize about their relevance for potential treatment of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Specifically, these treatment trials generally target: (a) the correction of suppressed endocrine axes, notably through a "reactivation" of the pituitary gland's pulsatile secretion of tropic hormones, or (b) the interruption of the "vicious circle" between inflammation, oxidative and nitrosative stress (O&NS), and low thyroid hormone function. There are significant parallels in the treatment trials for prolonged critical illness and ME/CFS; this is consistent with the hypothesis of an overlap in the mechanisms that prevent recovery in both conditions. Early successes in the simultaneous reactivation of pulsatile pituitary secretions in ICU patients-and the resulting positive metabolic effects-could indicate an avenue for treating ME/CFS. The therapeutic effects of thyroid hormones-including in mitigating O&NS and inflammation and in stimulating the adreno-cortical axis-also merit further studies. Collaborative research projects should further investigate the lessons from treatment trials for prolonged critical illness for solving ME/CFS.
Collapse
Affiliation(s)
| | - Lars Larsson
- Basic and Clinical Muscle Biology, Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Jonas Bergquist
- Analytical Chemistry and Neurochemistry, Department of Chemistry–Biomedical Center, Uppsala University, Uppsala, Sweden
- The Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Collaborative Research Centre at Uppsala University, Uppsala, Sweden
| |
Collapse
|
32
|
Fröhlich E, Wahl R. Physiological Role and Use of Thyroid Hormone Metabolites - Potential Utility in COVID-19 Patients. Front Endocrinol (Lausanne) 2021; 12:587518. [PMID: 33981284 PMCID: PMC8109250 DOI: 10.3389/fendo.2021.587518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 03/31/2021] [Indexed: 01/09/2023] Open
Abstract
Thyroxine and triiodothyronine (T3) are classical thyroid hormones and with relatively well-understood actions. In contrast, the physiological role of thyroid hormone metabolites, also circulating in the blood, is less well characterized. These molecules, namely, reverse triiodothyronine, 3,5-diiodothyronine, 3-iodothyronamine, tetraiodoacetic acid and triiodoacetic acid, mediate both agonistic (thyromimetic) and antagonistic actions additional to the effects of the classical thyroid hormones. Here, we provide an overview of the main factors influencing thyroid hormone action, and then go on to describe the main effects of the metabolites and their potential use in medicine. One section addresses thyroid hormone levels in corona virus disease 19 (COVID-19). It appears that i) the more potently-acting molecules T3 and triiodoacetic acid have shorter half-lives than the less potent antagonists 3-iodothyronamine and tetraiodoacetic acid; ii) reverse T3 and 3,5-diiodothyronine may serve as indicators for metabolic dysregulation and disease, and iii) Nanotetrac may be a promising candidate for treating cancer, and resmetirom and VK2809 for steatohepatitis. Further, the use of L-T3 in the treatment of severely ill COVID-19 patients is critically discussed.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tuebingen, Tuebingen, Germany
- Center for Medical Research, Medical University Graz, Graz, Austria
| | - Richard Wahl
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tuebingen, Tuebingen, Germany
| |
Collapse
|
33
|
Stanculescu D, Larsson L, Bergquist J. Hypothesis: Mechanisms That Prevent Recovery in Prolonged ICU Patients Also Underlie Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Front Med (Lausanne) 2021; 8:628029. [PMID: 33585528 PMCID: PMC7876311 DOI: 10.3389/fmed.2021.628029] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
Here the hypothesis is advanced that maladaptive mechanisms that prevent recovery in some intensive care unit (ICU) patients may also underlie Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Specifically, these mechanisms are: (a) suppression of the pituitary gland's pulsatile secretion of tropic hormones, and (b) a "vicious circle" between inflammation, oxidative and nitrosative stress (O&NS), and low thyroid hormone function. This hypothesis should be investigated through collaborative research projects.
Collapse
Affiliation(s)
| | - Lars Larsson
- Basic and Clinical Muscle Biology, Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Jonas Bergquist
- Analytical Chemistry and Neurochemistry, Department of Chemistry – Biomedical Center, Uppsala University, Uppsala, Sweden
- The Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Collaborative Research Centre at Uppsala University, Uppsala, Sweden
| |
Collapse
|
34
|
Ferrara SJ, Chaudhary P, DeBell MJ, Marracci G, Miller H, Calkins E, Pocius E, Napier BA, Emery B, Bourdette D, Scanlan TS. TREM2 is thyroid hormone regulated making the TREM2 pathway druggable with ligands for thyroid hormone receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33532772 DOI: 10.1101/2021.01.25.428149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Triggering receptor expressed on myeloid cells-2 (TREM2) is a cell surface receptor on macrophages and microglia that senses and responds to disease associated signals to regulate the phenotype of these innate immune cells. The TREM2 signaling pathway has been implicated in a variety of diseases ranging from neurodegeneration in the central nervous system to metabolic disease in the periphery. We report here that TREM2 is a thyroid hormone regulated gene and its expression in macrophages and microglia is stimulated by thyroid hormone. Both endogenous thyroid hormone and sobetirome, a synthetic thyroid hormone agonist drug, suppress pro-inflammatory cytokine production from myeloid cells including macrophages that have been treated with the SARS-CoV-2 spike protein which produces a strong, pro-inflammatory phenotype. Thyroid hormone agonism was also found to induce phagocytic behavior in microglia, a phenotype consistent with activation of the TREM2 pathway. The thyroid hormone antagonist NH-3 blocks the anti-inflammatory effects of thyroid hormone agonists and suppresses microglia phagocytosis. Finally, in a murine experimental autoimmune encephalomyelitis (EAE) multiple sclerosis model, treatment with Sob-AM2, a CNS-penetrating sobetirome prodrug, results in increased Trem2 expression in disease lesion resident myeloid cells which correlates with therapeutic benefit in the EAE clinical score and reduced damage to myelin. Our findings represent the first report of endocrine regulation of TREM2 and provide a unique opportunity to drug the TREM2 signaling pathway with orally active small molecule therapeutic agents.
Collapse
|
35
|
De Luca R, Davis PJ, Lin HY, Gionfra F, Percario ZA, Affabris E, Pedersen JZ, Marchese C, Trivedi P, Anastasiadou E, Negro R, Incerpi S. Thyroid Hormones Interaction With Immune Response, Inflammation and Non-thyroidal Illness Syndrome. Front Cell Dev Biol 2021; 8:614030. [PMID: 33553149 PMCID: PMC7859329 DOI: 10.3389/fcell.2020.614030] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022] Open
Abstract
The interdependence between thyroid hormones (THs), namely, thyroxine and triiodothyronine, and immune system is nowadays well-recognized, although not yet fully explored. Synthesis, conversion to a bioactive form, and release of THs in the circulation are events tightly supervised by the hypothalamic-pituitary-thyroid (HPT) axis. Newly synthesized THs induce leukocyte proliferation, migration, release of cytokines, and antibody production, triggering an immune response against either sterile or microbial insults. However, chronic patho-physiological alterations of the immune system, such as infection and inflammation, affect HPT axis and, as a direct consequence, THs mechanism of action. Herein, we revise the bidirectional crosstalk between THs and immune cells, required for the proper immune system feedback response among diverse circumstances. Available circulating THs do traffic in two distinct ways depending on the metabolic condition. Mechanistically, internalized THs form a stable complex with their specific receptors, which, upon direct or indirect binding to DNA, triggers a genomic response by activating transcriptional factors, such as those belonging to the Wnt/β-catenin pathway. Alternatively, THs engage integrin αvβ3 receptor on cell membrane and trigger a non-genomic response, which can also signal to the nucleus. In addition, we highlight THs-dependent inflammasome complex modulation and describe new crucial pathways involved in microRNA regulation by THs, in physiological and patho-physiological conditions, which modify the HPT axis and THs performances. Finally, we focus on the non-thyroidal illness syndrome in which the HPT axis is altered and, in turn, affects circulating levels of active THs as reported in viral infections, particularly in immunocompromised patients infected with human immunodeficiency virus.
Collapse
Affiliation(s)
- Roberto De Luca
- Department of Neurology, Center for Life Science, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Paul J. Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, United States
- Albany Medical College, Albany, NY, United States
| | - Hung-Yun Lin
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, United States
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Fabio Gionfra
- Department of Sciences, University “Roma Tre,” Rome, Italy
| | | | | | - Jens Z. Pedersen
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Cinzia Marchese
- Department of Experimental Medicine, University “La Sapienza,” Rome, Italy
| | - Pankaj Trivedi
- Department of Experimental Medicine, University “La Sapienza,” Rome, Italy
| | - Eleni Anastasiadou
- Department of Experimental Medicine, University “La Sapienza,” Rome, Italy
| | - Roberto Negro
- National Institute of Gastroenterology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) “S. de Bellis” Research Hospital, Castellana Grotte, Italy
| | - Sandra Incerpi
- Department of Sciences, University “Roma Tre,” Rome, Italy
| |
Collapse
|
36
|
van der Spek AH, Fliers E, Boelen A. Thyroid Hormone and Deiodination in Innate Immune Cells. Endocrinology 2021; 162:6016930. [PMID: 33275661 DOI: 10.1210/endocr/bqaa200] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Indexed: 02/07/2023]
Abstract
Thyroid hormone has recently been recognized as an important determinant of innate immune cell function. Highly specialized cells of the innate immune system, including neutrophils, monocytes/macrophages, and dendritic cells, are capable of identifying pathogens and initiating an inflammatory response. They can either phagocytose and kill microbes, or recruit other innate or adaptive immune cells to the site of inflammation. Innate immune cells derive from the hematopoietic lineage and are generated in the bone marrow, from where they can be recruited into the blood and tissues in the case of infection. The link between the immune and endocrine systems is increasingly well established, and recent studies have shown that innate immune cells can be seen as important thyroid hormone target cells. Tight regulation of cellular thyroid hormone availability and action is performed by thyroid hormone transporters, receptors, and the deiodinase enzymes. Innate immune cells express all these molecular elements of intracellular thyroid hormone metabolism. Interestingly, there is recent evidence for a causal relationship between cellular thyroid hormone status and innate immune cell function. This review describes the effects of modulation of intracellular thyroid hormone metabolism on innate immune cell function, specifically neutrophils, macrophages, and dendritic cells, with a special focus on the deiodinase enzymes. Although there are insufficient data at this stage for conclusions on the clinical relevance of these findings, thyroid hormone metabolism may partially determine the innate immune response and, by inference, the clinical susceptibility to infections.
Collapse
Affiliation(s)
- Anne H van der Spek
- Amsterdam UMC, University of Amsterdam, Endocrine Laboratory, Department of Clinical Chemistry, Amsterdam Gastroenterology Endocrinology & Metabolism, AZ Amsterdam, the Netherlands
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology & Metabolism, AZ Amsterdam, the Netherlands
| | - Eric Fliers
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology & Metabolism, AZ Amsterdam, the Netherlands
| | - Anita Boelen
- Amsterdam UMC, University of Amsterdam, Endocrine Laboratory, Department of Clinical Chemistry, Amsterdam Gastroenterology Endocrinology & Metabolism, AZ Amsterdam, the Netherlands
| |
Collapse
|
37
|
Hypothyroidism impairs the host immune response during the acute phase of Chagas disease. Immunobiology 2020; 225:152024. [PMID: 33227693 DOI: 10.1016/j.imbio.2020.152024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/20/2020] [Accepted: 10/18/2020] [Indexed: 11/24/2022]
Abstract
Diseases associated with thyroid hypofunction have been the subject of studies in infectious models, since several authors have demonstrated a pivotal role of iodinated hormones (thyroxine and triiodothyronine) in the modulation of immune effector responses. Using a model of hypothyroidism induced by anti-thyroid drug, we investigated the influence of hypothyroidism in the course of acute Trypanosoma cruzi infection. For this, male Hannover Wistar rats were challenged with methimazole for 21 days (0.02% in drinking water), and water for control counterparts. After confirmation of the hypothyroidism, rats were intraperitoneally challenged with 1x105 blood trypomastigotes of the Y strain of T. cruzi. Our findings suggest that hypothyroidism impairs animal weight gain, but does not affect the health of essential organs. Interestingly, infected hypothyroid animals had a significant increase in thymic cell death, with consequent drop in lymphocyte frequency in whole blood (evaluated on the 11th day of infection). Analyzing the percentage of immune cells in the spleen, we found a strong influence of hypothyroidism as a negative regulator of B cells, and antigenic ability of macrophages (RT1b expression) in the course of the experimental chagasic infection. Enhanced serum IL-17A concentration was induced by T. cruzi infection, but hypothyroidism impaired the production of this mediator as seen in infected hypothyroid animals. Taken together, our work suggests for the first time that hypothyroidism may adversely interfere with the modulation of effective immunity in the early phase of Chagas' disease.
Collapse
|
38
|
Rubingh J, van der Spek A, Fliers E, Boelen A. The Role of Thyroid Hormone in the Innate and Adaptive Immune Response during Infection. Compr Physiol 2020; 10:1277-1287. [PMID: 32969509 DOI: 10.1002/cphy.c200003] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the past decades, there has been growing evidence for a functional interaction between the thyroid hormone and the immune system. This article provides an overview of the mechanisms by which thyroid hormones affect the innate and adaptive immune response during infection. The influence of thyroid hormone on the most important players of the innate [neutrophils, macrophages, natural killer (NK) cells, and dendritic cells (DCs)] and adaptive immune system (B- and T-lymphocytes) is reviewed here based on both clinical and preclinical studies. The effects of modulation of the immune system by drugs, such as monoclonal antibodies, tyrosine kinase inhibitors, and interferons on thyroid function, are beyond the scope of this article. Thyroid hormones regulate the activity of neutrophils which is reflected by higher numbers of neutrophils outside the bloodstream and enhanced activity of the respiratory burst following stimulation with thyroid hormone. Hyperthyroidism affects neutrophil function to a larger extent than hypothyroidism. In addition to neutrophil function, macrophage function is strongly affected by thyroid hormones, with triiodothyronine having a pro-inflammatory effect in these cells. NK cell proliferation and cytotoxic activity are also dependent on thyroid hormone levels. Finally, thyroid hormones enhance DC proliferation and maturation. In the adaptive immune system, a hyperthyroid state leads to increased activation of lymphocytes. This effect of thyroid hormone is mediated by various factors including NF-κB and protein kinase C signaling pathways and the β-adrenergic receptor. In general, a hyperthyroid state leads to a more activated immune system whereas hypothyroidism leads to a less activated immune system. © 2020 American Physiological Society. Compr Physiol 10:1277-1287, 2020.
Collapse
Affiliation(s)
- Julia Rubingh
- Department of Clinical Chemistry, Endocrine Laboratory, Amsterdam Gastroenterology Endocrinology & Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Anne van der Spek
- Department of Clinical Chemistry, Endocrine Laboratory, Amsterdam Gastroenterology Endocrinology & Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Eric Fliers
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology & Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Anita Boelen
- Department of Clinical Chemistry, Endocrine Laboratory, Amsterdam Gastroenterology Endocrinology & Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
39
|
Nock S, Johann K, Harder L, Wirth EK, Renko K, Hoefig CS, Kracke V, Hackler J, Engelmann B, Rauner M, Köhrle J, Schomburg L, Homuth G, Völker U, Brabant G, Mittag J. CD5L Constitutes a Novel Biomarker for Integrated Hepatic Thyroid Hormone Action. Thyroid 2020; 30:908-923. [PMID: 32183611 DOI: 10.1089/thy.2019.0635] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: Pathological conditions of the thyroid hormone (TH) system are routinely diagnosed by using serum concentrations of thyrotropin (TSH), which is sufficient in most cases. However, in certain conditions, such as resistance to TH due to mutations in THRB (RTHb) or TSH-releasing pituitary adenoma (TSHoma), TSH may be insufficient for a correct diagnosis, even in combination with serum TH concentrations. Likewise, under TH replacement therapy, these parameters can be misleading and do not always allow optimal treatment. Hence, additional biomarkers to assess challenging clinical conditions would be highly beneficial. Methods: Data from untargeted multi-omics analyses of plasma samples from experimental thyrotoxicosis in human and mouse were exploited to identify proteins that might represent possible biomarkers of TH function. Subsequent mouse studies were used to identify the tissue of origin and the involvement of the two different TH receptors (TR). For in-depth characterization of the underlying cellular mechanisms, primary mouse cells were used. Results: The analysis of the plasma proteome data sets revealed 16 plasma proteins that were concordantly differentially abundant under thyroxine treatment compared with euthyroid controls across the two species. These originated predominantly from liver, spleen, and bone. Independent studies in a clinical cohort and different mouse models identified CD5L as the most robust putative biomarker under different serum TH states and treatment periods. In vitro studies revealed that CD5L originates from proinflammatory M1 macrophages, which are similar to liver-residing Kupffer cells, and is regulated by an indirect mechanism requiring the secretion of a yet unknown factor from hepatocytes. In agreement with the role of TRα1 in immune cells and the TRβ-dependent hepatocyte-derived signaling, the in vivo regulation of Cd5l expression depended on both TR isoforms. Conclusion: Our results identify several novel targets of TH action in serum, with CD5L as the most robust marker. Although further studies will be needed to validate the specificity of these targets, CD5L seems to be a promising candidate to assess TH action in hepatocyte-macrophage crosstalk.
Collapse
Affiliation(s)
- Sebastian Nock
- Department of Molecular Endocrinology, Center of Brain, Behavior and Metabolism, Institute for Endocrinology and Diabetes, University of Lübeck, Lübeck, Germany
| | - Kornelia Johann
- Department of Molecular Endocrinology, Center of Brain, Behavior and Metabolism, Institute for Endocrinology and Diabetes, University of Lübeck, Lübeck, Germany
| | - Lisbeth Harder
- Department of Molecular Endocrinology, Center of Brain, Behavior and Metabolism, Institute for Endocrinology and Diabetes, University of Lübeck, Lübeck, Germany
| | - Eva Katrin Wirth
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, CVK, Berlin, Germany
- Medizinische Klinik für Endokrinologie und Stoffwechselmedizin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - Kostja Renko
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, CVK, Berlin, Germany
| | - Carolin S Hoefig
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, CVK, Berlin, Germany
| | - Vanessa Kracke
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Julian Hackler
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, CVK, Berlin, Germany
| | - Beatrice Engelmann
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Martina Rauner
- Department of Medicine III; Technische Universität Dresden Medical Center, Dresden, Germany
- Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany
| | - Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, CVK, Berlin, Germany
| | - Lutz Schomburg
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, CVK, Berlin, Germany
| | - Georg Homuth
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Georg Brabant
- Department of Molecular Endocrinology, Center of Brain, Behavior and Metabolism, Institute for Endocrinology and Diabetes, University of Lübeck, Lübeck, Germany
| | - Jens Mittag
- Department of Molecular Endocrinology, Center of Brain, Behavior and Metabolism, Institute for Endocrinology and Diabetes, University of Lübeck, Lübeck, Germany
| |
Collapse
|
40
|
Gan S, Yang M, Fan L, Xie L, Xu Y, Wang B, Xu T, Yu L, Ma J, Chen W. Triiodothyronine Attenuates Silica-Induced Oxidative Stress, Inflammation, and Apoptosis via Thyroid Hormone Receptor α in Differentiated THP-1 Macrophages. Chem Res Toxicol 2020; 33:1256-1265. [PMID: 32223187 DOI: 10.1021/acs.chemrestox.0c00018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Alveolar macrophage (AM) injury and inflammatory response are key processes in pathological damage caused by silica. However, the role of triiodothyronine (T3) in silica-induced AM oxidative stress, inflammation, and mitochondrial apoptosis remained unknown. To investigate the possible effects and underlying mechanism of T3 in silica-induced macrophage damage, differentiated human acute monocytic leukemia cells (THP-1) were exposed to different silica concentrations (0, 50, 100, 200, and 400 μg/mL) for 24 h. Additionally, silica-activated THP-1 macrophages were treated with gradient-dose T3 (0, 5, 10, 20, and 40 nM) for 24 h. To illuminate the potential mechanism, we used short hairpin RNA to knock down the thyroid hormone receptor α (TRα) in the differentiated THP-1 macrophages. The results showed that T3 decreased lactate dehydrogenase and reactive oxygen species levels, while increasing cell viability and superoxide dismutase in silica-induced THP-1 macrophages. In addition, silica increased the expression of interleukin 1 beta (IL-1β), interleukin 6 (IL-6), and tumor necrosis factor-α (TNF-α), and T3 treatment reduced those pro-inflammatory cytokines secretion. Compared with silica-alone treated groups, cells treated with silica and T3 restored the mitochondrial membrane potential loss and had reduced levels of cytochrome c and cleaved caspase-3 expressions. Lastly, we observed that TRα-knockdown inhibited the protective effects of T3 silica-induced THP-1 macrophages. Together, these findings revealed that T3 could serve as a potential therapeutic target for protection against silica-induced oxidative stress, inflammatory response, and mitochondrial apoptosis, which are mediated by the activation of the T3/TRα signal pathway.
Collapse
Affiliation(s)
- Shiming Gan
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Meng Yang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lieyang Fan
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Xie
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yiju Xu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bin Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tao Xu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Linling Yu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jixuan Ma
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
41
|
Langouche L, Jacobs A, Van den Berghe G. Nonthyroidal Illness Syndrome Across the Ages. J Endocr Soc 2019; 3:2313-2325. [PMID: 31745528 PMCID: PMC6853682 DOI: 10.1210/js.2019-00325] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023] Open
Abstract
In conditions of acute illness, patients present with reduced plasma T3 concentrations without a concomitant rise in TSH. In contrast, plasma concentrations of the inactive hormone rT3 increase, whereas plasma concentrations of T4 remain low-normal. This constellation of changes, referred to as nonthyroidal illness syndrome (NTIS), is present across all ages, from preterm neonates and over-term critically ill infants and children to critically ill adults. Although the severity of illness strongly correlates with the severity of the NTIS phenotype, the causality of this association remains debated, and pathophysiological mechanisms remain incompletely understood. In the acute phase of illness, NTIS appears to be caused predominantly by an increased peripheral inactivation of thyroid hormones, in which reduced nutritional intake plays a role. Current evidence suggests that these acute peripheral changes are part of a beneficial adaptation of the body to reduce expenditure of energy and to activate the innate immune response, which is important for survival. In contrast, in more severely ill and prolonged critically ill patients, an additional central suppression of the thyroid hormone axis alters and further aggravates the NTIS phenotype. Recent studies suggest that this central suppression may not be adaptive. Whether treatment of this central component of NTIS in prolonged critically ill patients, with the use of hypothalamic releasing factors, improves outcome remains to be investigated in large randomized control trials.
Collapse
Affiliation(s)
- Lies Langouche
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven University Hospital, Leuven, Belgium
| | - An Jacobs
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven University Hospital, Leuven, Belgium
| | - Greet Van den Berghe
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven University Hospital, Leuven, Belgium
| |
Collapse
|
42
|
Jacobs A, Derese I, Vander Perre S, van Puffelen E, Verstraete S, Pauwels L, Verbruggen S, Wouters P, Langouche L, Garcia Guerra G, Joosten K, Vanhorebeek I, Van den Berghe G. Non-Thyroidal Illness Syndrome in Critically Ill Children: Prognostic Value and Impact of Nutritional Management. Thyroid 2019; 29:480-492. [PMID: 30760183 PMCID: PMC6457888 DOI: 10.1089/thy.2018.0420] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Non-thyroidal illness (NTI), which occurs with fasting and in response to illness, is characterized by thyroid hormone inactivation with low triiodothyronine (T3) and high reverse T3 (rT3), followed by suppressed thyrotropin (TSH). Withholding supplemental parenteral nutrition early in pediatric critical illness (late-PN), thus accepting low/no macronutrient intake up to day 8 in the pediatric intensive care unit (PICU), accelerated recovery compared to initiating supplemental parenteral nutrition early (early-PN). Whether NTI is harmful or beneficial in pediatric critical illness and how it is affected by a macronutrient deficit remains unclear. This study investigated the prognostic value of NTI, the impact of late-PN on NTI, and whether such impact explains or counteracts the outcome benefit of late-PN in critically ill children. METHODS This preplanned secondary analysis of the Early versus Late Parenteral Nutrition in the Pediatric Intensive Care Unit randomized controlled trial quantified serum TSH, total thyroxine (T4), T3, and rT3 concentrations in 982 patients upon PICU admission versus 64 matched healthy children and in 772 propensity score-matched early-PN and late-PN patients upon admission and at day 3 or last PICU day for shorter PICU stay. Associations between thyroid hormone concentrations upon admission and outcome, as well as impact of late-PN on NTI in relation with outcome, were assessed with univariable analyses and multivariable logistic regression, linear regression, or Cox proportional hazard analysis, adjusted for baseline risk factors. RESULTS Upon PICU admission, critically ill children revealed lower TSH, T4, T3, and T3/rT3 and higher rT3 than healthy children (p < 0.0001). A more pronounced NTI upon admission, with low T4, T3, and T3/rT3 and high rT3 was associated with higher mortality and morbidity. Late-PN further reduced T4, T3, and T3/rT3 and increased rT3 (p ≤ 0.001). Statistically, the further lowering of T4 by late-PN reduced the outcome benefit (p < 0.0001), whereas the further lowering of T3/rT3 explained part of the outcome benefit of late-PN (p ≤ 0.004). This effect was greater for infants than for older children. CONCLUSION In critically ill children, the peripheral inactivation of thyroid hormone, characterized by a decrease in T3/rT3, which is further accentuated by low/no macronutrient intake, appears beneficial. In contrast, the central component of NTI attributable to suppressed TSH, evidenced by the decrease in T4, seems to be a harmful response to critical illness. Whether treating the central component with TSH releasing hormone infusion in the PICU is beneficial requires further investigation.
Collapse
Affiliation(s)
- An Jacobs
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven University Hospital, Leuven, Belgium
| | - Inge Derese
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven University Hospital, Leuven, Belgium
| | - Sarah Vander Perre
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven University Hospital, Leuven, Belgium
| | - Esther van Puffelen
- Intensive Care, Department of Pediatrics and Pediatric Surgery, Erasmus Medical Center, Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Sören Verstraete
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven University Hospital, Leuven, Belgium
| | - Lies Pauwels
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven University Hospital, Leuven, Belgium
| | - Sascha Verbruggen
- Intensive Care, Department of Pediatrics and Pediatric Surgery, Erasmus Medical Center, Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Pieter Wouters
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven University Hospital, Leuven, Belgium
| | - Lies Langouche
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven University Hospital, Leuven, Belgium
| | - Gonzalo Garcia Guerra
- Department of Pediatrics, Intensive Care Unit, University of Alberta, Stollery Children's Hospital, Edmonton, Canada
| | - Koen Joosten
- Intensive Care, Department of Pediatrics and Pediatric Surgery, Erasmus Medical Center, Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Ilse Vanhorebeek
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven University Hospital, Leuven, Belgium
| | - Greet Van den Berghe
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven University Hospital, Leuven, Belgium
- Address correspondence to: Greet Van den Berghe, MD, Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, Leuven 3000, Belgium
| |
Collapse
|
43
|
Montesinos MDM, Pellizas CG. Thyroid Hormone Action on Innate Immunity. Front Endocrinol (Lausanne) 2019; 10:350. [PMID: 31214123 PMCID: PMC6558108 DOI: 10.3389/fendo.2019.00350] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/15/2019] [Indexed: 12/31/2022] Open
Abstract
The interplay between thyroid hormone action and the immune system has been established in physiological and pathological settings. However, their connection is complex and still not completely understood. The thyroid hormones (THs), 3,3',5,5' tetraiodo-L-thyroxine (T4) and 3,3',5-triiodo-L-thyronine (T3) play essential roles in both the innate and adaptive immune responses. Despite much research having been carried out on this topic, the available data are sometimes difficult to interpret or even contradictory. Innate immune cells act as the first line of defense, mainly involving granulocytes and natural killer cells. In turn, antigen presenting cells, macrophages and dendritic cells capture, process and present antigens (self and foreign) to naïve T lymphocytes in secondary lymphoid tissues for the development of adaptive immunity. Here, we review the cellular and molecular mechanisms involved in T4 and T3 effects on innate immune cells. An overview of the state-of-the-art of TH transport across the target cell membrane, TH metabolism inside these cells, and the genomic and non-genomic mechanisms involved in the action of THs in the different innate immune cell subsets is included. The present knowledge of TH effects as well as the thyroid status on innate immunity helps to understand the complex adaptive responses achieved with profound implications in immunopathology, which include inflammation, cancer and autoimmunity, at the crossroads of the immune and endocrine systems.
Collapse
|