1
|
Ren S, Liu F, Chi M, Liu J, Huang Y, Huang W, Gu W, Yuan Y, Hou S, Chen X, Ma L. Discovery of a selective and potent inhibitor of c-Jun N-terminal kinase 1 with anti-pulmonary fibrosis effect. Bioorg Med Chem Lett 2025; 116:130044. [PMID: 39608686 DOI: 10.1016/j.bmcl.2024.130044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/18/2024] [Accepted: 11/24/2024] [Indexed: 11/30/2024]
Abstract
We synthesized and evaluated a series of derivatives based on the pyrimidine-2,4-diamine scaffold as potential JNK1 inhibitors, incorporating bridging rings and spirocyclic modifications to enhance their inhibitory activity. These compounds were biologically assessed through JNK enzyme inhibition assays and Western Blot analysis. Compounds 13, 14 and 19 demonstrated significant inhibitory activity at both the enzyme and cellular level compared to the lead compound 1 and clinical candidate CC-90001. Notably, 14 exhibited strong inhibitory potency against JNK1 with sub-nanomolar efficacy and suppresses TGF-β-induced epithelial-mesenchymal transition, indicating its potential as a promising candidate for further development as an anti-pulmonary fibrosis agent targeting JNK1.
Collapse
Affiliation(s)
- Shuhua Ren
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Fengling Liu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Man Chi
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jinfeng Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yi Huang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Weiwei Huang
- Hangzhou Matrix Biopharmaceutical Co., Ltd, Hangzhou, Zhejiang 311121, China
| | - Wenjing Gu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yaxia Yuan
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - Shurong Hou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Xiabin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Lei Ma
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
2
|
Blaszczyk K, Jedrzejak AP, Ziojla N, Shcheglova E, Szarafin K, Jankowski A, Beamish CA, Chmielowiec J, Sabek OM, Balasubramanyam A, Patel S, Borowiak M. SPOCK2 controls the proliferation and function of immature pancreatic β-cells through MMP2. Exp Mol Med 2025:10.1038/s12276-024-01380-2. [PMID: 39741186 DOI: 10.1038/s12276-024-01380-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/19/2024] [Accepted: 10/08/2024] [Indexed: 01/02/2025] Open
Abstract
Human pluripotent stem cell-derived β-cells (SC-β-cells) represent an alternative cell source for transplantation in diabetic patients. Although mitogens could in theory be used to expand β-cells, adult β-cells very rarely replicate. In contrast, newly formed β-cells, including SC-β-cells, display higher proliferative capacity and distinct transcriptional and functional profiles. Through bidirectional expression modulation and single-cell RNA-seq, we identified SPOCK2, an ECM protein, as an inhibitor of immature β-cell proliferation. Human β-cells lacking SPOCK2 presented elevated MMP2 expression and activity, leading to β-integrin-FAK-c-JUN pathway activation. Treatment with the MMP2 protein resulted in pronounced short- and long-term SC-β-cell expansion, significantly increasing glucose-stimulated insulin secretion in vitro and in vivo. These findings suggest that SPOCK2 mediates fetal β-cell proliferation and maturation. In summary, we identified a molecular mechanism that specifically regulates SC-β-cell proliferation and function, highlighting a unique signaling milieu of SC-β-cells with promise for the robust derivation of fully functional cells for transplantation.
Collapse
Affiliation(s)
- Katarzyna Blaszczyk
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan, 61-614, Poland
| | - Anna P Jedrzejak
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan, 61-614, Poland
| | - Natalia Ziojla
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan, 61-614, Poland
| | - Ekaterina Shcheglova
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan, 61-614, Poland
| | - Karolina Szarafin
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan, 61-614, Poland
| | - Artur Jankowski
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan, 61-614, Poland
| | - Christine A Beamish
- Department of Surgery, Methodist Research Institute, Houston, TX, 77030, USA
| | - Jolanta Chmielowiec
- Collegium Medicum, University of Warmia and Mazury, Aleja Warszawska 30, Olsztyn, 11-082, Poland
| | - Omaima M Sabek
- Department of Surgery, Methodist Research Institute, Houston, TX, 77030, USA
| | - Ashok Balasubramanyam
- Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Sanjeet Patel
- Keck School of Medicine, University of Southern California, 1975 Zonal Avenue, Los Angeles, CA, 90033, USA
| | - Malgorzata Borowiak
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan, 61-614, Poland.
- Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
Gagnani R, Srivastava M, Suri M, Singh H, Shanker Navik U, Bali A. A focus on c-Jun-N-terminal kinase signaling in sepsis-associated multiple organ dysfunction: Mechanisms and therapeutic strategies. Int Immunopharmacol 2024; 143:113552. [PMID: 39536486 DOI: 10.1016/j.intimp.2024.113552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/19/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Sepsis is a life-threatening condition characterized by a widespread inflammatory response to infection, inevitably leading to multiple organ dysfunctions. Extensive research, both in vivo and in vitro, has revealed key factors contributing to sepsis, such as apoptosis, inflammation, cytokine release, oxidative stress, and systemic stress. The changes observed during sepsis-induced conditions are mainly attributed to altered signal transduction pathways, which play a critical role in cell proliferation, migration, and apoptosis. C-Jun N-terminal kinases, JNKs, and serine/threonine protein kinases in the mitogen-activated super family have gained considerable interest for their contribution to cellular events under sepsis conditions. JNK1 and JNK2 are present in various tissues like the lungs, liver, and intestine, while JNK3 is found in neurons. The JNK pathway plays a crucial role in the signal transduction of cytokines related to sepsis development, notably TNF-α and IL-1β. Activated JNK leads to apoptosis, causing tissue damage and organ dysfunction. Further, JNK activation is significant in several inflammatory conditions. Pharmacologically inhibiting JNK has been shown to prevent sepsis-associated damage across multiple organs, including the lungs, liver, intestines, heart, and kidneys. Multiple signaling pathways have been implicated in sepsis, including JNK/c-Myc, Mst1-JNK, MKK4-JNK, JNK-dependent autophagy, and Sirt1/FoxO3a. The review examines the role of JNK signaling in the development of sepsis-induced multiple-organ dysfunction through specific mechanisms. It also discusses different therapeutic approaches to target JNK. This review emphasizes the potential of JNKs as targets for the development of therapeutic agents for sepsis and the associated specific organ damage.
Collapse
Affiliation(s)
- Riya Gagnani
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India.
| | - Mukul Srivastava
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Manisha Suri
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Harshita Singh
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Uma Shanker Navik
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Anjana Bali
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India.
| |
Collapse
|
4
|
Karakose E, Wang X, Wang P, Carcamo S, Demircioglu D, Lambertini L, Wood O, Kang R, Lu G, Scott DK, Garcia-Ocaña A, Argmann C, Sebra RP, Hasson D, Stewart AF. Cycling alpha cells in regenerative drug-treated human pancreatic islets may serve as key beta cell progenitors. Cell Rep Med 2024; 5:101832. [PMID: 39626675 PMCID: PMC11722108 DOI: 10.1016/j.xcrm.2024.101832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 07/30/2024] [Accepted: 10/30/2024] [Indexed: 12/20/2024]
Abstract
Diabetes results from an inadequate number of insulin-producing human beta cells. There is currently no clinically available effective means to restore beta cell mass in millions of people with diabetes. Although the DYRK1A inhibitors, either alone or in combination with GLP-1 receptor agonists (GLP-1) or transforming growth factor β (TGF-β) superfamily inhibitors (LY), induce beta cell replication and increase beta cell mass, the precise mechanisms of action remain elusive. Here we perform single-cell RNA sequencing on human pancreatic islets treated with a DYRK1A inhibitor, either alone or with GLP-1 or LY. We identify cycling alpha cells as the most responsive cells to DYRK1A inhibition. Lineage trajectory analyses suggest that cycling alpha cells may serve as precursor cells that transdifferentiate into beta cells. Collectively, in addition to enhancing expression of beta cell phenotypic genes in beta cells, our findings suggest that regenerative drugs may be targeting cycling alpha cells in human islets.
Collapse
Affiliation(s)
- Esra Karakose
- Diabetes, Obesity, Metabolism Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Xuedi Wang
- Tisch Cancer Institute Bioinformatics for Next Generation Sequencing (BiNGS) Core, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peng Wang
- Diabetes, Obesity, Metabolism Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Saul Carcamo
- Tisch Cancer Institute Bioinformatics for Next Generation Sequencing (BiNGS) Core, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Deniz Demircioglu
- Tisch Cancer Institute Bioinformatics for Next Generation Sequencing (BiNGS) Core, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Luca Lambertini
- Diabetes, Obesity, Metabolism Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Olivia Wood
- Diabetes, Obesity, Metabolism Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Randy Kang
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Geming Lu
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Donald K Scott
- Diabetes, Obesity, Metabolism Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adolfo Garcia-Ocaña
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carmen Argmann
- Department of Genetics and Genomic Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert P Sebra
- Department of Genetics and Genomic Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dan Hasson
- Tisch Cancer Institute Bioinformatics for Next Generation Sequencing (BiNGS) Core, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrew F Stewart
- Diabetes, Obesity, Metabolism Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
5
|
Huang Y, Liu F, Ren S, Ding Y, Chi M, Huang W, Gu W, Qian H, Yuan Y, Hou S, Chen X, Ma L. Structure Optimization of c-Jun N-terminal Kinase 1 Inhibitors for Treating Idiopathic Pulmonary Fibrosis. J Med Chem 2024; 67:17713-17737. [PMID: 39303278 DOI: 10.1021/acs.jmedchem.4c01764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and lethal lung disease with an elusive etiology. Aberrant activation of c-Jun N-terminal kinase 1 (JNK1) has been implicated in its pathogenesis. Through a combination of structure-based drug design and structure-activity relationship (SAR) optimization, a series of pyrimidine-2,4-diamine scaffold derivatives have been developed as potent JNK1 inhibitors. Compound E1 was identified with low nanomolar JNK1 inhibitory potency (IC50 = 2.7 nM). The introduction of a dimethylamine side chain has significantly enhanced the ability of E1 to inhibit c-Jun phosphorylation, surpassing the clinical candidate CC-90001. Molecular dynamics simulations revealed a binding free energy of -50.46 kcal/mol for E1. Moreover, E1 displayed satisfactory pharmacokinetic properties, with a bioavailability of 69% in rats. Furthermore, compound E1 exerted significant antifibrotic effects in a bleomycin-induced IPF mouse model and prevented a TGF-β-induced epithelial-to-mesenchymal transition in vitro. These findings position E1 as a promising lead for further drug development targeting IPF.
Collapse
Affiliation(s)
- Yi Huang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Fengling Liu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, and Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Shuhua Ren
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yuanqing Ding
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, and Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Man Chi
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, and Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Weiwei Huang
- Hangzhou Matrix Biopharmaceutical Co., Ltd, Hangzhou, Zhejiang 311121, China
| | - Wenjing Gu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Hewen Qian
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yaxia Yuan
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, United States
| | - Shurong Hou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, and Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xiabin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, and Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Lei Ma
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
6
|
Wang P, Wood O, Choleva L, Liu H, Karakose E, Lambertini L, Pillard A, Wu V, Garcia-Ocana A, Scott DK, Kumar K, DeVita RJ, Stewart AF. Select DYRK1A Inhibitors Enhance Both Proliferation and Differentiation in Human Pancreatic Beta Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.17.594179. [PMID: 38798411 PMCID: PMC11118480 DOI: 10.1101/2024.05.17.594179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The small molecule DYRK1A inhibitor, harmine, induces human beta cell proliferation, expands beta cell mass, enhances expression of beta cell phenotypic genes, and improves human beta cell function i n vitro and in vivo . It is unknown whether the "pro-differentiation effect" is a DYRK1A inhibitor class-wide effect. Here we compare multiple commonly studied DYRK1A inhibitors. Harmine, 2-2c and 5-IT increase expression of PDX1, MAFA, NKX6.1, SLC2A2, PCSK1, MAFB, SIX2, SLC2A2, SLC30A8, ENTPD3 in normal and T2D human islets. Unexpectedly, GNF4877, CC-401, INDY, CC-401 and Leucettine fail to induce expression of these essential beta cell molecules. Remarkably, the pro-differentiation effect is independent of DYRK1A inhibition: although silencing DYRK1A induces human beta cell proliferation, it has no effect on differentiation; conversely, harmine treatment enhances beta cell differentiation in DYRK1A-silenced islets. A careful screen of multiple DYRK1A inhibitor kinase candidate targets was unable to identify pro-differentiation pathways. Overall, harmine, 2-2c and 5-IT are unique among DYRK1A inhibitors in their ability to enhance both beta cell proliferation and differentiation. While beta cell proliferation is mediated by DYRK1A inhibition, the pro-differentiation effects of harmine, 2-2c and 5-IT are distinct, and unexplained in mechanistic terms. These considerations have important implications for DYRK1A inhibitor pharmaceutical development.
Collapse
|
7
|
Lee RA, Chopra DG, Nguyen V, Huang XP, Zhang Y, Shariati K, Yiv N, Schugar R, Annes J, Roth B, Ku GM. An shRNA screen in primary human beta cells identifies the serotonin 1F receptor as a negative regulator of survival during transplant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.591950. [PMID: 38746433 PMCID: PMC11092577 DOI: 10.1101/2024.05.01.591950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Islet transplantation can cure type 1 diabetes, but peri-transplant beta cell death limits this procedure to those with low insulin requirements. Improving human beta cell survival or proliferation may make islet transplantation a possibility for more type 1 patients. To identify novel regulators of beta cell survival and proliferation, we conducted a pooled small hairpin RNA (shRNA) screen in primary human beta cells transplanted into immunocompromised mice. shRNAs targeting several cyclin dependent kinase inhibitors were enriched after transplant. Here, we focused on the Gi/o-coupled GPCR, serotonin 1F receptor ( HTR1F, 5-HT 1F ) which our screen identified as a negative regulator of beta cell numbers after transplant. In vitro , 5-HT 1F knockdown induced human beta cell proliferation but only when combined with harmine and exendin-4. In vivo , knockdown of 5-HT 1F reduced beta cell death during transplant. To demonstrate the feasibility of targeting 5-HT 1F in islet transplant, we identified and validated a small molecule 5-HT 1F antagonist. This antagonist increased glucose stimulated insulin secretion from primary human islets and cAMP accumulation in primary human beta cells. Finally, the 5-HT 1F antagonist improved glycemia in marginal mass, human islet transplants into immunocompromised mice. We identify 5-HT 1F as a novel druggable target to improve human beta cell survival in the setting of islet transplantation. One Sentence Summary Serotonin 1F receptor (5-HT 1F ) negatively regulates insulin secretion and beta cell survival during transplant.
Collapse
|
8
|
Choi J, Cayabyab F, Perez H, Yoshihara E. Scaling Insulin-Producing Cells by Multiple Strategies. Endocrinol Metab (Seoul) 2024; 39:191-205. [PMID: 38572534 PMCID: PMC11066437 DOI: 10.3803/enm.2023.1910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/20/2024] [Accepted: 01/30/2024] [Indexed: 04/05/2024] Open
Abstract
In the quest to combat insulin-dependent diabetes mellitus (IDDM), allogenic pancreatic islet cell therapy sourced from deceased donors represents a significant therapeutic advance. However, the applicability of this approach is hampered by donor scarcity and the demand for sustained immunosuppression. Human induced pluripotent stem cells are a game-changing resource for generating synthetic functional insulin-producing β cells. In addition, novel methodologies allow the direct expansion of pancreatic progenitors and mature β cells, thereby circumventing prolonged differentiation. Nevertheless, achieving practical reproducibility and scalability presents a substantial challenge for this technology. As these innovative approaches become more prominent, it is crucial to thoroughly evaluate existing expansion techniques with an emphasis on their optimization and scalability. This manuscript delineates these cutting-edge advancements, offers a critical analysis of the prevailing strategies, and underscores pivotal challenges, including cost-efficiency and logistical issues. Our insights provide a roadmap, elucidating both the promises and the imperatives in harnessing the potential of these cellular therapies for IDDM.
Collapse
Affiliation(s)
- Jinhyuk Choi
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Fritz Cayabyab
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Harvey Perez
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Eiji Yoshihara
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
9
|
Mu-U-Min RBA, Diane A, Allouch A, Al-Siddiqi HH. Ca 2+-Mediated Signaling Pathways: A Promising Target for the Successful Generation of Mature and Functional Stem Cell-Derived Pancreatic Beta Cells In Vitro. Biomedicines 2023; 11:1577. [PMID: 37371672 DOI: 10.3390/biomedicines11061577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Diabetes mellitus is a chronic disease affecting over 500 million adults globally and is mainly categorized as type 1 diabetes mellitus (T1DM), where pancreatic beta cells are destroyed, and type 2 diabetes mellitus (T2DM), characterized by beta cell dysfunction. This review highlights the importance of the divalent cation calcium (Ca2+) and its associated signaling pathways in the proper functioning of beta cells and underlines the effects of Ca2+ dysfunction on beta cell function and its implications for the onset of diabetes. Great interest and promise are held by human pluripotent stem cell (hPSC) technology to generate functional pancreatic beta cells from diabetic patient-derived stem cells to replace the dysfunctional cells, thereby compensating for insulin deficiency and reducing the comorbidities of the disease and its associated financial and social burden on the patient and society. Beta-like cells generated by most current differentiation protocols have blunted functionality compared to their adult human counterparts. The Ca2+ dynamics in stem cell-derived beta-like cells and adult beta cells are summarized in this review, revealing the importance of proper Ca2+ homeostasis in beta-cell function. Consequently, the importance of targeting Ca2+ function in differentiation protocols is suggested to improve current strategies to use hPSCs to generate mature and functional beta-like cells with a comparable glucose-stimulated insulin secretion (GSIS) profile to adult beta cells.
Collapse
Affiliation(s)
- Razik Bin Abdul Mu-U-Min
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| | - Abdoulaye Diane
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| | - Asma Allouch
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| | - Heba H Al-Siddiqi
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| |
Collapse
|
10
|
Lindberg MF, Deau E, Arfwedson J, George N, George P, Alfonso P, Corrionero A, Meijer L. Comparative Efficacy and Selectivity of Pharmacological Inhibitors of DYRK and CLK Protein Kinases. J Med Chem 2023; 66:4106-4130. [PMID: 36876904 DOI: 10.1021/acs.jmedchem.2c02068] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Dual-specificity, tyrosine phosphorylation-regulated kinases (DYRKs) and cdc2-like kinases (CLKs) play a large variety of cellular functions and are involved in several diseases (cognitive disorders, diabetes, cancers, etc.). There is, thus, growing interest in pharmacological inhibitors as chemical probes and potential drug candidates. This study presents an unbiased evaluation of the kinase inhibitory activity of a library of 56 reported DYRK/CLK inhibitors on the basis of comparative, side-by-side, catalytic activity assays on a panel of 12 recombinant human kinases, enzyme kinetics (residence time and Kd), in-cell inhibition of Thr-212-Tau phosphorylation, and cytotoxicity. The 26 most active inhibitors were modeled in the crystal structure of DYRK1A. The results show a rather large diversity of potencies and selectivities among the reported inhibitors and emphasize the difficulties to avoid "off-targets" in this area of the kinome. The use of a panel of DYRKs/CLKs inhibitors is suggested to analyze the functions of these kinases in cellular processes.
Collapse
Affiliation(s)
| | - Emmanuel Deau
- Perha Pharmaceuticals, Perharidy Peninsula, 29680 Roscoff, France
| | - Jonas Arfwedson
- Perha Pharmaceuticals, Perharidy Peninsula, 29680 Roscoff, France
| | - Nicolas George
- Oncodesign, 25-27 avenue du Québec, 91140 Villebon-sur-Yvette, France
| | - Pascal George
- Perha Pharmaceuticals, Perharidy Peninsula, 29680 Roscoff, France
| | - Patricia Alfonso
- Enzymlogic, Qube Technology Park, C/Santiago Grisolía, 2, 28760 Madrid, Spain
| | - Ana Corrionero
- Enzymlogic, Qube Technology Park, C/Santiago Grisolía, 2, 28760 Madrid, Spain
| | - Laurent Meijer
- Perha Pharmaceuticals, Perharidy Peninsula, 29680 Roscoff, France
| |
Collapse
|
11
|
Yang Y, Fan X, Liu Y, Ye D, Liu C, Yang H, Su Z, Zhang Y, Liu Y. Function and Inhibition of DYRK1A: emerging roles of treating multiple human diseases. Biochem Pharmacol 2023; 212:115521. [PMID: 36990324 DOI: 10.1016/j.bcp.2023.115521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is an evolutionarily conserved protein kinase and the most studied member of the Dual-specificity tyrosine-regulated kinase (DYRK) family. It has been shown that it participates in the development of plenty of diseases, and both the low or high expression of DYRK1A protein could lead to disorder. Thus, DYRK1A is recognized as a key target for the therapy for these diseases, and the studies on natural or synthetic DYRK1A inhibitors have become more and more popular. Here, we provide a comprehensive review for DYRK1A from the structure and function of DYRK1A, the roles of DYRK1A in various types of diseases, including diabetes mellitus, neurodegenerative diseases, and kinds of cancers, and the studies of its natural and synthetic inhibitors.
Collapse
|
12
|
Guo Y, Li L, Yao Y, Li H. Regeneration of Pancreatic β-Cells for Diabetes Therapeutics by Natural DYRK1A Inhibitors. Metabolites 2022; 13:metabo13010051. [PMID: 36676976 PMCID: PMC9865674 DOI: 10.3390/metabo13010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/07/2022] [Accepted: 11/23/2022] [Indexed: 12/31/2022] Open
Abstract
The pathogenesis of diabetes mellitus is characterized by insulin resistance and islet β-cell dysfunction. Up to now, the focus of diabetes treatment has been to control blood glucose to prevent diabetic complications. There is an urgent need to develop a therapeutic approach to restore the mass and function of β-cells. Although exogenous islet cell transplantation has been used to help patients control blood glucose, it is costly and has very narrow application scenario. So far, small molecules have been reported to stimulate β-cell proliferation and expand β-cell mass, increasing insulin secretion. Dual-specificity tyrosine-regulated kinase 1A (DYRK1A) inhibitors can induce human β-cell proliferation in vitro and in vivo, and show great potential in the field of diabetes therapeutics. From this perspective, we elaborated on the mechanism by which DYRK1A inhibitors regulate the proliferation of pancreatic β-cells, and summarized several effective natural DYRK1A inhibitors, hoping to provide clues for subsequent structural optimization and drug development in the future.
Collapse
Affiliation(s)
- Yichuan Guo
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lingqiao Li
- Zhejiang Starry Pharmaceutical Co., Ltd., Taizhou 317306, China
| | - Yuanfa Yao
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
- Correspondence: (Y.Y.); (H.L.)
| | - Hanbing Li
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
- Correspondence: (Y.Y.); (H.L.)
| |
Collapse
|
13
|
Wang P, Karakose E, Argmann C, Wang H, Balev M, Brody RI, Rivas HG, Liu X, Wood O, Liu H, Choleva L, Hasson D, Bernstein E, Paulo JA, Scott DK, Lambertini L, DeCaprio JA, Stewart AF. Disrupting the DREAM complex enables proliferation of adult human pancreatic β cells. J Clin Invest 2022; 132:e157086. [PMID: 35700053 PMCID: PMC9337832 DOI: 10.1172/jci157086] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/09/2022] [Indexed: 11/17/2022] Open
Abstract
Resistance to regeneration of insulin-producing pancreatic β cells is a fundamental challenge for type 1 and type 2 diabetes. Recently, small molecule inhibitors of the kinase DYRK1A have proven effective in inducing adult human β cells to proliferate, but their detailed mechanism of action is incompletely understood. We interrogated our human insulinoma and β cell transcriptomic databases seeking to understand why β cells in insulinomas proliferate, while normal β cells do not. This search reveals the DREAM complex as a central regulator of quiescence in human β cells. The DREAM complex consists of a module of transcriptionally repressive proteins that assemble in response to DYRK1A kinase activity, thereby inducing and maintaining cellular quiescence. In the absence of DYRK1A, DREAM subunits reassemble into the pro-proliferative MMB complex. Here, we demonstrate that small molecule DYRK1A inhibitors induce human β cells to replicate by converting the repressive DREAM complex to its pro-proliferative MMB conformation.
Collapse
Affiliation(s)
- Peng Wang
- Diabetes Obesity Metabolism Institute
- Department of Medicine, and
| | - Esra Karakose
- Diabetes Obesity Metabolism Institute
- Department of Medicine, and
| | - Carmen Argmann
- Department of Genetics and Genomic Sciences, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | - Rachel I. Brody
- Department of Pathology, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hembly G. Rivas
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- The Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Xinyue Liu
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Olivia Wood
- Diabetes Obesity Metabolism Institute
- Department of Medicine, and
| | - Hongtao Liu
- Diabetes Obesity Metabolism Institute
- Department of Medicine, and
| | - Lauryn Choleva
- Diabetes Obesity Metabolism Institute
- Department of Pediatrics
| | - Dan Hasson
- The Tisch Cancer Institute
- Department of Oncological Sciences
- Bioinformatics for Next Generation Sequencing (BiNGS) Shared Resource Facility, and
| | - Emily Bernstein
- The Tisch Cancer Institute
- Department of Oncological Sciences
- The Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Joao A. Paulo
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Donald K. Scott
- Diabetes Obesity Metabolism Institute
- Department of Medicine, and
| | - Luca Lambertini
- Diabetes Obesity Metabolism Institute
- Department of Medicine, and
| | - James A. DeCaprio
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- The Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
14
|
Lee S, Xu H, Van Vleck A, Mawla AM, Li AM, Ye J, Huising MO, Annes JP. β-Cell Succinate Dehydrogenase Deficiency Triggers Metabolic Dysfunction and Insulinopenic Diabetes. Diabetes 2022; 71:1439-1453. [PMID: 35472723 PMCID: PMC9233299 DOI: 10.2337/db21-0834] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/26/2022] [Indexed: 11/20/2022]
Abstract
Mitochondrial dysfunction plays a central role in type 2 diabetes (T2D); however, the pathogenic mechanisms in pancreatic β-cells are incompletely elucidated. Succinate dehydrogenase (SDH) is a key mitochondrial enzyme with dual functions in the tricarboxylic acid cycle and electron transport chain. Using samples from human with diabetes and a mouse model of β-cell-specific SDH ablation (SDHBβKO), we define SDH deficiency as a driver of mitochondrial dysfunction in β-cell failure and insulinopenic diabetes. β-Cell SDH deficiency impairs glucose-induced respiratory oxidative phosphorylation and mitochondrial membrane potential collapse, thereby compromising glucose-stimulated ATP production, insulin secretion, and β-cell growth. Mechanistically, metabolomic and transcriptomic studies reveal that the loss of SDH causes excess succinate accumulation, which inappropriately activates mammalian target of rapamycin (mTOR) complex 1-regulated metabolic anabolism, including increased SREBP-regulated lipid synthesis. These alterations, which mirror diabetes-associated human β-cell dysfunction, are partially reversed by acute mTOR inhibition with rapamycin. We propose SDH deficiency as a contributing mechanism to the progressive β-cell failure of diabetes and identify mTOR complex 1 inhibition as a potential mitigation strategy.
Collapse
Affiliation(s)
- Sooyeon Lee
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA
| | - Haixia Xu
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA
| | - Aidan Van Vleck
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA
| | - Alex M. Mawla
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, Davis, CA
| | - Albert Mao Li
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA
| | - Jiangbin Ye
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA
| | - Mark O. Huising
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, Davis, CA
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, CA
| | - Justin P. Annes
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA
- Stanford ChEM-H and Diabetes Research Center, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
15
|
Wagner BK. Small-molecule discovery in the pancreatic beta cell. Curr Opin Chem Biol 2022; 68:102150. [PMID: 35487100 DOI: 10.1016/j.cbpa.2022.102150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 12/11/2022]
Abstract
The pancreatic beta cell is the only cell type in the body responsible for insulin secretion, and thus plays a unique role in the control of glucose homeostasis. The loss of beta-cell mass and function plays an important role in both type 1 and type 2 diabetes. Thus, using chemical biology to identify small molecules targeting the beta cell could be an important component to developing future therapeutics for diabetes. This strategy provides an attractive path toward increasing beta-cell numbers in vivo. A regenerative strategy involves enhancing proliferation, differentiation, or neogenesis. On the other hand, protecting beta cells from cell death, or improving maturity and function, could preserve beta-cell mass. Here, we discuss the current state of chemical matter available to study beta-cell regeneration, and how they were discovered.
Collapse
Affiliation(s)
- Bridget K Wagner
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02142, USA.
| |
Collapse
|
16
|
Shcheglova E, Blaszczyk K, Borowiak M. Mitogen Synergy: An Emerging Route to Boosting Human Beta Cell Proliferation. Front Cell Dev Biol 2022; 9:734597. [PMID: 35155441 PMCID: PMC8829426 DOI: 10.3389/fcell.2021.734597] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
Decreased number and function of beta cells are a key aspect of diabetes mellitus (diabetes), a disease that remains an onerous global health problem. Means of restoring beta cell mass are urgently being sought as a potential cure for diabetes. Several strategies, such as de novo beta cell derivation via pluripotent stem cell differentiation or mature somatic cell transdifferentiation, have yielded promising results. Beta cell expansion is another promising strategy, rendered challenging by the very low proliferative capacity of beta cells. Many effective mitogens have been identified in rodents, but the vast majority do not have similar mitogenic effects in human beta cells. Extensive research has led to the identification of several human beta cell mitogens, but their efficacy and specificity remain insufficient. An approach based on the simultaneous application of several mitogens has recently emerged and can yield human beta cell proliferation rates of up to 8%. Here, we discuss recent advances in restoration of the beta cell population, focusing on mitogen synergy, and the contribution of RNA-sequencing (RNA-seq) to accelerating the elucidation of signaling pathways in proliferating beta cells and the discovery of novel mitogens. Together, these approaches have taken beta cell research up a level, bringing us closer to a cure for diabetes.
Collapse
Affiliation(s)
- Ekaterina Shcheglova
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Katarzyna Blaszczyk
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Malgorzata Borowiak
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- *Correspondence: Malgorzata Borowiak, ;
| |
Collapse
|
17
|
Title AC, Karsai M, Mir-Coll J, Grining ÖY, Rufer C, Sonntag S, Forschler F, Jawurek S, Klein T, Yesildag B. Evaluation of the Effects of Harmine on β-cell Function and Proliferation in Standardized Human Islets Using 3D High-Content Confocal Imaging and Automated Analysis. Front Endocrinol (Lausanne) 2022; 13:854094. [PMID: 35860702 PMCID: PMC9289187 DOI: 10.3389/fendo.2022.854094] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/10/2022] [Indexed: 01/09/2023] Open
Abstract
Restoration of β-cell mass through the induction of proliferation represents an attractive therapeutic approach for the treatment of diabetes. However, intact and dispersed primary islets suffer from rapidly deteriorating viability and function ex vivo, posing a significant challenge for their experimental use in proliferation studies. Here, we describe a novel method for the assessment of compound effects on β-cell proliferation and count using reaggregated primary human islets, or islet microtissues (MTs), which display homogeneous size and tissue architecture as well as robust and stable functionality and viability for 4 weeks in culture. We utilized this platform to evaluate the dose-dependent short- and long-term effects of harmine on β-cell proliferation and function. Following compound treatment and EdU incorporation, islet MTs were stained and confocal-imaged for DAPI (nuclear marker), NKX6.1 (β-cell marker), and EdU (proliferation marker), allowing automated 3D-analysis of number of total cells, β-cells, and proliferating β- and non-β-cells per islet MT. In parallel, insulin secretion, intracellular insulin and ATP contents, and Caspase 3/7 activity were analyzed to obtain a comprehensive overview of islet MT function and viability. We observed that 4-day harmine treatment increased β- and non-β-cell proliferation, NKX6.1 expression, and basal and stimulated insulin secretion in a dose-dependent manner, while fold-stimulation of secretion peaked at intermediate harmine doses. Interestingly, 15-day harmine treatment led to a general reduction in harmine's proliferative effects as well as altered dose-dependent trends. The described methodology provides a unique tool for in vitro high-throughput evaluation of short- and long-term changes in human β-cell proliferation, count and fraction along with a variety of functional parameters, in a representative 3D human islet model.
Collapse
Affiliation(s)
| | - Maria Karsai
- Diabetes Research, InSphero AG, Schlieren, Switzerland
| | - Joan Mir-Coll
- Diabetes Research, InSphero AG, Schlieren, Switzerland
| | | | - Chantal Rufer
- Diabetes Research, InSphero AG, Schlieren, Switzerland
| | | | | | - Sayro Jawurek
- Diabetes Research, InSphero AG, Schlieren, Switzerland
| | - Thomas Klein
- Department of Cardio-Metabolic Diseases, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Burcak Yesildag
- Diabetes Research, InSphero AG, Schlieren, Switzerland
- *Correspondence: Burcak Yesildag,
| |
Collapse
|
18
|
Tahtouh T, Durieu E, Villiers B, Bruyère C, Nguyen TL, Fant X, Ahn KH, Khurana L, Deau E, Lindberg MF, Sévère E, Miege F, Roche D, Limanton E, L'Helgoual'ch JM, Burgy G, Guiheneuf S, Herault Y, Kendall DA, Carreaux F, Bazureau JP, Meijer L. Structure-Activity Relationship in the Leucettine Family of Kinase Inhibitors. J Med Chem 2021; 65:1396-1417. [PMID: 34928152 DOI: 10.1021/acs.jmedchem.1c01141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The protein kinase DYRK1A is involved in Alzheimer's disease, Down syndrome, diabetes, viral infections, and leukemia. Leucettines, a family of 2-aminoimidazolin-4-ones derived from the marine sponge alkaloid Leucettamine B, have been developed as pharmacological inhibitors of DYRKs (dual specificity, tyrosine phosphorylation regulated kinases) and CLKs (cdc2-like kinases). We report here on the synthesis and structure-activity relationship (SAR) of 68 Leucettines. Leucettines were tested on 11 purified kinases and in 5 cellular assays: (1) CLK1 pre-mRNA splicing, (2) Threonine-212-Tau phosphorylation, (3) glutamate-induced cell death, (4) autophagy and (5) antagonism of ligand-activated cannabinoid receptor CB1. The Leucettine SAR observed for DYRK1A is essentially identical for CLK1, CLK4, DYRK1B, and DYRK2. DYRK3 and CLK3 are less sensitive to Leucettines. In contrast, the cellular SAR highlights correlations between inhibition of specific kinase targets and some but not all cellular effects. Leucettines deserve further development as potential therapeutics against various diseases on the basis of their molecular targets and cellular effects.
Collapse
Affiliation(s)
- Tania Tahtouh
- Manros Therapeutics & Perha Pharmaceuticals, Perharidy Research Center, 29680 Roscoff, Bretagne, France.,CNRS, 'Protein Phosphorylation and Human Disease' Group, Station Biologique De Roscoff, Place G. Teissier, Bp 74, 29682 Roscoff, Bretagne, France.,College Of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Emilie Durieu
- Manros Therapeutics & Perha Pharmaceuticals, Perharidy Research Center, 29680 Roscoff, Bretagne, France.,CNRS, 'Protein Phosphorylation and Human Disease' Group, Station Biologique De Roscoff, Place G. Teissier, Bp 74, 29682 Roscoff, Bretagne, France
| | - Benoît Villiers
- Manros Therapeutics & Perha Pharmaceuticals, Perharidy Research Center, 29680 Roscoff, Bretagne, France
| | - Céline Bruyère
- Manros Therapeutics & Perha Pharmaceuticals, Perharidy Research Center, 29680 Roscoff, Bretagne, France
| | - Thu Lan Nguyen
- Manros Therapeutics & Perha Pharmaceuticals, Perharidy Research Center, 29680 Roscoff, Bretagne, France.,Institut De Génétique Et De Biologie Moléculaire et Cellulaire, Department of Translational Medicine and Neurogenetics, Université de Strasbourg, CNRS UMR7104 & INSERM U964, 67400 Illkirch, France.,Laboratory of Molecular & Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, New York 10021-6399, United States
| | - Xavier Fant
- CNRS, 'Protein Phosphorylation and Human Disease' Group, Station Biologique De Roscoff, Place G. Teissier, Bp 74, 29682 Roscoff, Bretagne, France
| | - Kwang H Ahn
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N Eagleville Rd, Storrs, Connecticut 06269, United States
| | - Leepakshi Khurana
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N Eagleville Rd, Storrs, Connecticut 06269, United States
| | - Emmanuel Deau
- Manros Therapeutics & Perha Pharmaceuticals, Perharidy Research Center, 29680 Roscoff, Bretagne, France
| | - Mattias F Lindberg
- Manros Therapeutics & Perha Pharmaceuticals, Perharidy Research Center, 29680 Roscoff, Bretagne, France
| | - Elodie Sévère
- Manros Therapeutics & Perha Pharmaceuticals, Perharidy Research Center, 29680 Roscoff, Bretagne, France
| | - Frédéric Miege
- Edelris, Bâtiment Bioserra 1, 60 avenue Rockefeller, 69008 Lyon, France
| | - Didier Roche
- Edelris, Bâtiment Bioserra 1, 60 avenue Rockefeller, 69008 Lyon, France
| | - Emmanuelle Limanton
- Institut des Sciences Chimiques de Rennes ISCR-UMR CNRS 6226, Université de Rennes 1, Campus de Beaulieu, Bât. 10A, CS 74205, 263 Avenue du Général Leclerc, 35042 Rennes Cedex, France
| | - Jean-Martial L'Helgoual'ch
- Institut des Sciences Chimiques de Rennes ISCR-UMR CNRS 6226, Université de Rennes 1, Campus de Beaulieu, Bât. 10A, CS 74205, 263 Avenue du Général Leclerc, 35042 Rennes Cedex, France
| | - Guillaume Burgy
- Manros Therapeutics & Perha Pharmaceuticals, Perharidy Research Center, 29680 Roscoff, Bretagne, France.,Institut des Sciences Chimiques de Rennes ISCR-UMR CNRS 6226, Université de Rennes 1, Campus de Beaulieu, Bât. 10A, CS 74205, 263 Avenue du Général Leclerc, 35042 Rennes Cedex, France
| | - Solène Guiheneuf
- Institut des Sciences Chimiques de Rennes ISCR-UMR CNRS 6226, Université de Rennes 1, Campus de Beaulieu, Bât. 10A, CS 74205, 263 Avenue du Général Leclerc, 35042 Rennes Cedex, France
| | - Yann Herault
- Institut De Génétique Et De Biologie Moléculaire et Cellulaire, Department of Translational Medicine and Neurogenetics, Université de Strasbourg, CNRS UMR7104 & INSERM U964, 67400 Illkirch, France
| | - Debra A Kendall
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N Eagleville Rd, Storrs, Connecticut 06269, United States
| | - François Carreaux
- Institut des Sciences Chimiques de Rennes ISCR-UMR CNRS 6226, Université de Rennes 1, Campus de Beaulieu, Bât. 10A, CS 74205, 263 Avenue du Général Leclerc, 35042 Rennes Cedex, France
| | - Jean-Pierre Bazureau
- Institut des Sciences Chimiques de Rennes ISCR-UMR CNRS 6226, Université de Rennes 1, Campus de Beaulieu, Bât. 10A, CS 74205, 263 Avenue du Général Leclerc, 35042 Rennes Cedex, France
| | - Laurent Meijer
- Manros Therapeutics & Perha Pharmaceuticals, Perharidy Research Center, 29680 Roscoff, Bretagne, France
| |
Collapse
|
19
|
Simonett SP, Shin S, Herring JA, Bacher R, Smith LA, Dong C, Rabaglia ME, Stapleton DS, Schueler KL, Choi J, Bernstein MN, Turkewitz DR, Perez-Cervantes C, Spaeth J, Stein R, Tessem JS, Kendziorski C, Keleş S, Moskowitz IP, Keller MP, Attie AD. Identification of direct transcriptional targets of NFATC2 that promote β cell proliferation. J Clin Invest 2021; 131:e144833. [PMID: 34491912 PMCID: PMC8553569 DOI: 10.1172/jci144833] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 09/02/2021] [Indexed: 12/13/2022] Open
Abstract
The transcription factor NFATC2 induces β cell proliferation in mouse and human islets. However, the genomic targets that mediate these effects have not been identified. We expressed active forms of Nfatc2 and Nfatc1 in human islets. By integrating changes in gene expression with genomic binding sites for NFATC2, we identified approximately 2200 transcriptional targets of NFATC2. Genes induced by NFATC2 were enriched for transcripts that regulate the cell cycle and for DNA motifs associated with the transcription factor FOXP. Islets from an endocrine-specific Foxp1, Foxp2, and Foxp4 triple-knockout mouse were less responsive to NFATC2-induced β cell proliferation, suggesting the FOXP family works to regulate β cell proliferation in concert with NFATC2. NFATC2 induced β cell proliferation in both mouse and human islets, whereas NFATC1 did so only in human islets. Exploiting this species difference, we identified approximately 250 direct transcriptional targets of NFAT in human islets. This gene set enriches for cell cycle-associated transcripts and includes Nr4a1. Deletion of Nr4a1 reduced the capacity of NFATC2 to induce β cell proliferation, suggesting that much of the effect of NFATC2 occurs through its induction of Nr4a1. Integration of noncoding RNA expression, chromatin accessibility, and NFATC2 binding sites enabled us to identify NFATC2-dependent enhancer loci that mediate β cell proliferation.
Collapse
Affiliation(s)
- Shane P. Simonett
- Biochemistry Department, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Sunyoung Shin
- Department of Mathematical Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Jacob A. Herring
- Nutrition, Dietetics and Food Science Department, Brigham Young University, Provo, Utah, USA
| | - Rhonda Bacher
- Department of Biostatistics, University of Florida, Gainesville, Florida, USA
| | - Linsin A. Smith
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, Illinois, USA
| | - Chenyang Dong
- Department of Biostatistics and Medical Informatics, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Mary E. Rabaglia
- Biochemistry Department, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Donnie S. Stapleton
- Biochemistry Department, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Kathryn L. Schueler
- Biochemistry Department, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Jeea Choi
- Department of Biostatistics and Medical Informatics, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | | | - Daniel R. Turkewitz
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Carlos Perez-Cervantes
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, Illinois, USA
| | - Jason Spaeth
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Jeffery S. Tessem
- Nutrition, Dietetics and Food Science Department, Brigham Young University, Provo, Utah, USA
| | - Christina Kendziorski
- Department of Biostatistics and Medical Informatics, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Sündüz Keleş
- Department of Biostatistics and Medical Informatics, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Ivan P. Moskowitz
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, Illinois, USA
| | - Mark P. Keller
- Biochemistry Department, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Alan D. Attie
- Biochemistry Department, University of Wisconsin–Madison, Madison, Wisconsin, USA
| |
Collapse
|
20
|
Barzowska A, Pucelik B, Pustelny K, Matsuda A, Martyniak A, Stępniewski J, Maksymiuk A, Dawidowski M, Rothweiler U, Dulak J, Dubin G, Czarna A. DYRK1A Kinase Inhibitors Promote β-Cell Survival and Insulin Homeostasis. Cells 2021; 10:2263. [PMID: 34571911 PMCID: PMC8467532 DOI: 10.3390/cells10092263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 11/23/2022] Open
Abstract
The rising prevalence of diabetes is threatening global health. It is known not only for the occurrence of severe complications but also for the SARS-Cov-2 pandemic, which shows that it exacerbates susceptibility to infections. Current therapies focus on artificially maintaining insulin homeostasis, and a durable cure has not yet been achieved. We demonstrate that our set of small molecule inhibitors of DYRK1A kinase potently promotes β-cell proliferation, enhances long-term insulin secretion, and balances glucagon level in the organoid model of the human islets. Comparable activity is seen in INS-1E and MIN6 cells, in isolated mice islets, and human iPSC-derived β-cells. Our compounds exert a significantly more pronounced effect compared to harmine, the best-documented molecule enhancing β-cell proliferation. Using a body-like environment of the organoid, we provide a proof-of-concept that small-molecule-induced human β-cell proliferation via DYRK1A inhibition is achievable, which lends a considerable promise for regenerative medicine in T1DM and T2DM treatment.
Collapse
Affiliation(s)
- Agata Barzowska
- Malopolska Center of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland; (A.B.); (B.P.); (K.P.); (A.M.); (G.D.)
| | - Barbara Pucelik
- Malopolska Center of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland; (A.B.); (B.P.); (K.P.); (A.M.); (G.D.)
| | - Katarzyna Pustelny
- Malopolska Center of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland; (A.B.); (B.P.); (K.P.); (A.M.); (G.D.)
| | - Alex Matsuda
- Malopolska Center of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland; (A.B.); (B.P.); (K.P.); (A.M.); (G.D.)
| | - Alicja Martyniak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; (A.M.); (J.S.); (J.D.)
| | - Jacek Stępniewski
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; (A.M.); (J.S.); (J.D.)
| | - Anna Maksymiuk
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Banacha 1, 02-097 Warszawa, Poland; (A.M.); (M.D.)
| | - Maciej Dawidowski
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Banacha 1, 02-097 Warszawa, Poland; (A.M.); (M.D.)
| | - Ulli Rothweiler
- The Norwegian Structural Biology Centre, Department of Chemistry, UiT, The Arctic University of Norway, N-9037 Tromsø, Norway;
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; (A.M.); (J.S.); (J.D.)
| | - Grzegorz Dubin
- Malopolska Center of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland; (A.B.); (B.P.); (K.P.); (A.M.); (G.D.)
| | - Anna Czarna
- Malopolska Center of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland; (A.B.); (B.P.); (K.P.); (A.M.); (G.D.)
| |
Collapse
|
21
|
Pucelik B, Barzowska A, Dąbrowski JM, Czarna A. Diabetic Kinome Inhibitors-A New Opportunity for β-Cells Restoration. Int J Mol Sci 2021; 22:9083. [PMID: 34445786 PMCID: PMC8396662 DOI: 10.3390/ijms22169083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 01/03/2023] Open
Abstract
Diabetes, and several diseases related to diabetes, including cancer, cardiovascular diseases and neurological disorders, represent one of the major ongoing threats to human life, becoming a true pandemic of the 21st century. Current treatment strategies for diabetes mainly involve promoting β-cell differentiation, and one of the most widely studied targets for β-cell regeneration is DYRK1A kinase, a member of the DYRK family. DYRK1A has been characterized as a key regulator of cell growth, differentiation, and signal transduction in various organisms, while further roles and substrates are the subjects of extensive investigation. The targets of interest in this review are implicated in the regulation of β-cells through DYRK1A inhibition-through driving their transition from highly inefficient and death-prone populations into efficient and sufficient precursors of islet regeneration. Increasing evidence for the role of DYRK1A in diabetes progression and β-cell proliferation expands the potential for pharmaceutical applications of DYRK1A inhibitors. The variety of new compounds and binding modes, determined by crystal structure and in vitro studies, may lead to new strategies for diabetes treatment. This review provides recent insights into the initial self-activation of DYRK1A by tyrosine autophosphorylation. Moreover, the importance of developing novel DYRK1A inhibitors and their implications for the treatment of diabetes are thoroughly discussed. The evolving understanding of DYRK kinase structure and function and emerging high-throughput screening technologies have been described. As a final point of this work, we intend to promote the term "diabetic kinome" as part of scientific terminology to emphasize the role of the synergistic action of multiple kinases in governing the molecular processes that underlie this particular group of diseases.
Collapse
Affiliation(s)
- Barbara Pucelik
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland; (B.P.); (A.B.)
| | - Agata Barzowska
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland; (B.P.); (A.B.)
| | - Janusz M. Dąbrowski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Anna Czarna
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland; (B.P.); (A.B.)
| |
Collapse
|
22
|
Choi JW, Joo JD, In JH, Kim D, Kim Y, Choi ST, Kim JH, Jung HS. The small molecule kobusone can stimulate islet β-cell replication in vivo. J Int Med Res 2021; 49:3000605211032849. [PMID: 34320857 PMCID: PMC8330483 DOI: 10.1177/03000605211032849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To investigate the ability of kobusone to reduce high glucose levels and promote β-cell proliferation. METHODS Four-week-old female db/db mice were assigned to the kobusone (25 mg/kg body weight, intraperitoneally twice a day) or control group (same volume of PBS). Glucose levels and body weight were measured twice a week. After 6 weeks, intraperitoneal glucose tolerance tests and immunohistochemical studies were performed, and insulin levels were determined. The expression of mRNAs involved in cell proliferation, such as PI3K, Akt, cyclin D3 and p57Kip2, was measured by quantitative reverse transcription polymerase chain reaction (RT-qPCR). RESULTS Kobusone reduced blood glucose levels after 3 weeks and more strongly increased serum insulin levels than the vehicle. Immunohistochemistry illustrated that kobusone increased 5-bromo-2'-deoxyuridine incorporation into islet β-cells, suggesting that it can stimulate islet β-cell replication in vivo. RT-qPCR indicated that kobusone upregulated the mRNA expression of PI3K, Akt, and cyclin D3 and downregulated that of p57Kip2. CONCLUSION Our findings suggest that kobusone is a potent pancreatic islet β-cell inducer that has the potential to be developed as an anti-diabetic agent.
Collapse
Affiliation(s)
- Jin Woo Choi
- Department of Anesthesiology and Pain Medicine, St. Vincent's Hospital, The Catholic University of Korea, Suwon, Korea
| | - Jin-Deok Joo
- Department of Anesthesiology and Pain Medicine, St. Vincent's Hospital, The Catholic University of Korea, Suwon, Korea
| | - Jang Hyeok In
- Department of Anesthesiology and Pain Medicine, St. Vincent's Hospital, The Catholic University of Korea, Suwon, Korea
| | - Daewoo Kim
- Department of Anesthesiology and Pain Medicine, St. Vincent's Hospital, The Catholic University of Korea, Suwon, Korea
| | - Yongshin Kim
- Department of Anesthesiology and Pain Medicine, St. Vincent's Hospital, The Catholic University of Korea, Suwon, Korea
| | - Seung Tae Choi
- Department of Anesthesiology and Pain Medicine, St. Vincent's Hospital, The Catholic University of Korea, Suwon, Korea
| | - Jung Han Kim
- Department of Anesthesiology and Pain Medicine, St. Vincent's Hospital, The Catholic University of Korea, Suwon, Korea
| | - Hong Soo Jung
- Department of Anesthesiology and Pain Medicine, St. Vincent's Hospital, The Catholic University of Korea, Suwon, Korea
| |
Collapse
|
23
|
Iorio C, Rourke JL, Wells L, Sakamaki JI, Moon E, Hu Q, Kin T, Screaton RA. Silencing the G-protein coupled receptor 3-salt inducible kinase 2 pathway promotes human β cell proliferation. Commun Biol 2021; 4:907. [PMID: 34302056 PMCID: PMC8302759 DOI: 10.1038/s42003-021-02433-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 07/08/2021] [Indexed: 02/07/2023] Open
Abstract
Loss of pancreatic β cells is the hallmark of type 1 diabetes, for which provision of insulin is the standard of care. While regenerative and stem cell therapies hold the promise of generating single-source or host-matched tissue to obviate immune-mediated complications, these will still require surgical intervention and immunosuppression. Here we report the development of a high-throughput RNAi screening approach to identify upstream pathways that regulate adult human β cell quiescence and demonstrate in a screen of the GPCRome that silencing G-protein coupled receptor 3 (GPR3) leads to human pancreatic β cell proliferation. Loss of GPR3 leads to activation of Salt Inducible Kinase 2 (SIK2), which is necessary and sufficient to drive cell cycle entry, increase β cell mass, and enhance insulin secretion in mice. Taken together, our data show that targeting the GPR3-SIK2 pathway is a potential strategy to stimulate the regeneration of β cells.
Collapse
Affiliation(s)
| | - Jillian L Rourke
- Sunnybrook Research Institute, Toronto, Canada
- Mount Allison University, Sackville, NB, Canada
| | - Lisa Wells
- Sunnybrook Research Institute, Toronto, Canada
| | - Jun-Ichi Sakamaki
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Emily Moon
- Sunnybrook Research Institute, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Queenie Hu
- Sunnybrook Research Institute, Toronto, Canada
| | - Tatsuya Kin
- Clinical Islet Laboratory, University of Alberta Hospital, Edmonton, Canada
| | - Robert A Screaton
- Sunnybrook Research Institute, Toronto, Canada.
- Department of Biochemistry, University of Toronto, Toronto, Canada.
| |
Collapse
|
24
|
Wang P, Karakose E, Choleva L, Kumar K, DeVita RJ, Garcia-Ocaña A, Stewart AF. Human Beta Cell Regenerative Drug Therapy for Diabetes: Past Achievements and Future Challenges. Front Endocrinol (Lausanne) 2021; 12:671946. [PMID: 34335466 PMCID: PMC8322843 DOI: 10.3389/fendo.2021.671946] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/10/2021] [Indexed: 01/02/2023] Open
Abstract
A quantitative deficiency of normally functioning insulin-producing pancreatic beta cells is a major contributor to all common forms of diabetes. This is the underlying premise for attempts to replace beta cells in people with diabetes by pancreas transplantation, pancreatic islet transplantation, and transplantation of beta cells or pancreatic islets derived from human stem cells. While progress is rapid and impressive in the beta cell replacement field, these approaches are expensive, and for transplant approaches, limited by donor organ availability. For these reasons, beta cell replacement will not likely become available to the hundreds of millions of people around the world with diabetes. Since the large majority of people with diabetes have some residual beta cells in their pancreata, an alternate approach to reversing diabetes would be developing pharmacologic approaches to induce these residual beta cells to regenerate and expand in a way that also permits normal function. Unfortunately, despite the broad availability of multiple classes of diabetes drugs in the current diabetes armamentarium, none has the ability to induce regeneration or expansion of human beta cells. Development of such drugs would be transformative for diabetes care around the world. This picture has begun to change. Over the past half-decade, a novel class of beta cell regenerative small molecules has emerged: the DYRK1A inhibitors. Their emergence has tremendous potential, but many areas of uncertainty and challenge remain. In this review, we summarize the accomplishments in the world of beta cell regenerative drug development and summarize areas in which most experts would agree. We also outline and summarize areas of disagreement or lack of unanimity, of controversy in the field, of obstacles to beta cell regeneration, and of challenges that will need to be overcome in order to establish human beta cell regenerative drug therapeutics as a clinically viable class of diabetes drugs.
Collapse
Affiliation(s)
- Peng Wang
- The Diabetes Obesity Metabolism Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Esra Karakose
- The Diabetes Obesity Metabolism Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Lauryn Choleva
- The Division of Pediatric Endocrinology, The Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kunal Kumar
- The Drug Discovery Institute, The Department of Pharmacological Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Robert J. DeVita
- The Drug Discovery Institute, The Department of Pharmacological Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Adolfo Garcia-Ocaña
- The Diabetes Obesity Metabolism Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Andrew F. Stewart
- The Diabetes Obesity Metabolism Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
25
|
Zheng M, Zhang Q, Zhang C, Wu C, Yang K, Song Z, Wang Q, Li C, Zhou Y, Chen J, Li H, Chen L. A natural DYRK1A inhibitor as a potential stimulator for β-cell proliferation in diabetes. Clin Transl Med 2021; 11:e494. [PMID: 34323401 PMCID: PMC8288015 DOI: 10.1002/ctm2.494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/19/2021] [Accepted: 06/23/2021] [Indexed: 01/22/2023] Open
Affiliation(s)
- Mengzhu Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji‐Rongcheng Center for Biomedicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qingzhe Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji‐Rongcheng Center for Biomedicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Chengliang Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji‐Rongcheng Center for Biomedicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Pharmacy, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Canrong Wu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji‐Rongcheng Center for Biomedicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Kaiyin Yang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji‐Rongcheng Center for Biomedicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zhuorui Song
- Wuya College of Innovation, Key Laboratory of Structure‐Based Drug Design & Discovery, Ministry of EducationShenyang Pharmaceutical UniversityShenyangChina
| | - Qiqi Wang
- Wuya College of Innovation, Key Laboratory of Structure‐Based Drug Design & Discovery, Ministry of EducationShenyang Pharmaceutical UniversityShenyangChina
| | - Chen Li
- Wuya College of Innovation, Key Laboratory of Structure‐Based Drug Design & Discovery, Ministry of EducationShenyang Pharmaceutical UniversityShenyangChina
| | - Yirong Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji‐Rongcheng Center for Biomedicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jiachun Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji‐Rongcheng Center for Biomedicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hua Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji‐Rongcheng Center for Biomedicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Wuya College of Innovation, Key Laboratory of Structure‐Based Drug Design & Discovery, Ministry of EducationShenyang Pharmaceutical UniversityShenyangChina
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure‐Based Drug Design & Discovery, Ministry of EducationShenyang Pharmaceutical UniversityShenyangChina
| |
Collapse
|
26
|
Recasens A, Humphrey SJ, Ellis M, Hoque M, Abbassi RH, Chen B, Longworth M, Needham EJ, James DE, Johns TG, Day BW, Kassiou M, Yang P, Munoz L. Global phosphoproteomics reveals DYRK1A regulates CDK1 activity in glioblastoma cells. Cell Death Discov 2021; 7:81. [PMID: 33863878 PMCID: PMC8052442 DOI: 10.1038/s41420-021-00456-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/19/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
Both tumour suppressive and oncogenic functions have been reported for dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A). Herein, we performed a detailed investigation to delineate the role of DYRK1A in glioblastoma. Our phosphoproteomic and mechanistic studies show that DYRK1A induces degradation of cyclin B by phosphorylating CDC23, which is necessary for the function of the anaphase-promoting complex, a ubiquitin ligase that degrades mitotic proteins. DYRK1A inhibition leads to the accumulation of cyclin B and activation of CDK1. Importantly, we established that the phenotypic response of glioblastoma cells to DYRK1A inhibition depends on both retinoblastoma (RB) expression and the degree of residual DYRK1A activity. Moderate DYRK1A inhibition leads to moderate cyclin B accumulation, CDK1 activation and increased proliferation in RB-deficient cells. In RB-proficient cells, cyclin B/CDK1 activation in response to DYRK1A inhibition is neutralized by the RB pathway, resulting in an unchanged proliferation rate. In contrast, complete DYRK1A inhibition with high doses of inhibitors results in massive cyclin B accumulation, saturation of CDK1 activity and cell cycle arrest, regardless of RB status. These findings provide new insights into the complexity of context-dependent DYRK1A signalling in cancer cells.
Collapse
Affiliation(s)
- Ariadna Recasens
- Charles Perkins Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia.
| | - Sean J Humphrey
- Charles Perkins Centre and School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Michael Ellis
- Charles Perkins Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Monira Hoque
- Charles Perkins Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Ramzi H Abbassi
- Charles Perkins Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Brianna Chen
- Charles Perkins Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Mitchell Longworth
- School of Chemistry, Faculty of Science, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Elise J Needham
- Charles Perkins Centre and School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - David E James
- Charles Perkins Centre and School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Terrance G Johns
- Oncogenic Signalling Laboratory, Telethon Kids Institute, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, WA, 6009, Australia
| | - Bryan W Day
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD, 4006, Australia
| | - Michael Kassiou
- School of Chemistry, Faculty of Science, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Pengyi Yang
- Charles Perkins Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia.,Charles Perkins Centre and School of Mathematics and Statistics, Faculty of Science, The University of Sydney, Sydney, NSW, 2006, Australia.,Computational Systems Biology Group, Children's Medical Research Institute, University of Sydney, Westmead, NSW, 2145, Australia
| | - Lenka Munoz
- Charles Perkins Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia.
| |
Collapse
|
27
|
Kumar K, Suebsuwong C, Wang P, Garcia-Ocana A, Stewart AF, DeVita RJ. DYRK1A Inhibitors as Potential Therapeutics for β-Cell Regeneration for Diabetes. J Med Chem 2021; 64:2901-2922. [PMID: 33682417 DOI: 10.1021/acs.jmedchem.0c02050] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
According to the World Health Organization (WHO), 422 million people are suffering from diabetes worldwide. Current diabetes therapies are focused on optimizing blood glucose control to prevent long-term diabetes complications. Unfortunately, current therapies have failed to achieve glycemic targets in the majority of people with diabetes. In this context, regeneration of functional insulin-producing human β-cells in people with diabetes through the use of DYRK1A inhibitor drugs has recently received special attention. Several small molecule DYRK1A inhibitors have been identified that induce human β-cell proliferation in vitro and in vivo. Furthermore, DYRK1A inhibitors have also been shown to synergize β-cell proliferation with other classes of drugs, such as TGFβ inhibitors and GLP-1 receptor agonists. In this perspective, we review the status of DYRK1A as a therapeutic target for β-cell proliferation and provide perspectives on technical and scientific challenges for future translational development.
Collapse
Affiliation(s)
- Kunal Kumar
- Drug Discovery Institute and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Chalada Suebsuwong
- Drug Discovery Institute and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Peng Wang
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Adolfo Garcia-Ocana
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Andrew F Stewart
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Robert J DeVita
- Drug Discovery Institute and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
28
|
Docherty FM, Sussel L. Islet Regeneration: Endogenous and Exogenous Approaches. Int J Mol Sci 2021; 22:ijms22073306. [PMID: 33804882 PMCID: PMC8037662 DOI: 10.3390/ijms22073306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023] Open
Abstract
Both type 1 and type 2 diabetes are characterized by a progressive loss of beta cell mass that contributes to impaired glucose homeostasis. Although an optimal treatment option would be to simply replace the lost cells, it is now well established that unlike many other organs, the adult pancreas has limited regenerative potential. For this reason, significant research efforts are focusing on methods to induce beta cell proliferation (replication of existing beta cells), promote beta cell formation from alternative endogenous cell sources (neogenesis), and/or generate beta cells from pluripotent stem cells. In this article, we will review (i) endogenous mechanisms of beta cell regeneration during steady state, stress and disease; (ii) efforts to stimulate endogenous regeneration and transdifferentiation; and (iii) exogenous methods of beta cell generation and transplantation.
Collapse
|
29
|
Horton TM, Kraemer BR, Annes JP. Protocol for determining zinc-dependent β cell-selective small-molecule delivery in mouse pancreas. STAR Protoc 2021; 2:100263. [PMID: 33490979 PMCID: PMC7806521 DOI: 10.1016/j.xpro.2020.100263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Targeted drug delivery to pancreatic islet β cells is an unmet clinical need. β cells possess a uniquely high Zn2+ concentration, and integrating Zn2+-binding activity into a small molecule can bias drug accumulation and activity toward β cells. This protocol can be used to evaluate a molecule's capacity to chelate islet Zn2+, accumulate in islets, and stimulate β cell-selective replication in mouse pancreas. One obstacle is establishing an LC-MS/MS-based method for compound measurement. Limitations include target compound ionizability and the time-sensitive nature of some experimental assay steps. For complete details on the use and execution of this protocol, please refer to Horton et al. (2019).
Collapse
Affiliation(s)
- Timothy M. Horton
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
- Chemistry, Engineering and Medicine for Human Health (ChEM-H) Institute, Stanford University, Stanford, CA 94305, USA
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Benjamin R. Kraemer
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Justin P. Annes
- Chemistry, Engineering and Medicine for Human Health (ChEM-H) Institute, Stanford University, Stanford, CA 94305, USA
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
30
|
Grynberg K, Ozols E, Mulley WR, Davis RJ, Flavell RA, Nikolic-Paterson DJ, Ma FY. JUN Amino-Terminal Kinase 1 Signaling in the Proximal Tubule Causes Cell Death and Acute Renal Failure in Rat and Mouse Models of Renal Ischemia/Reperfusion Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:817-828. [PMID: 33607044 DOI: 10.1016/j.ajpath.2021.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 10/22/2022]
Abstract
Activation of the JUN amino-terminal kinase (JNK) pathway is prominent in most forms of acute and progressive tubulointerstitial damage, including acute renal ischemia/reperfusion injury (IRI). Two forms of JNK, JNK1 and JNK2, are expressed in the kidney. Systemic administration of pan-JNK inhibitors suppresses renal IRI; however, the contribution of JNK1 versus JNK2, and the specific role of JNK activation in the proximal tubule in IRI, remains unknown. These questions were addressed in rat and mouse models of acute bilateral renal IRI. Administration of the JNK inhibitor, CC-930, substantially reduced the severity of renal failure, tubular damage, and inflammation at 24 hours in a rat IRI model. Additionally, Jnk1-/- mice, but not Jnk2-/- mice, were shown to be significantly protected against acute renal failure, tubular damage, and inflammation in the IRI model. Furthermore, mice with conditional Jnk1 deletion in the proximal tubule also showed considerable protection from IRI-induced renal failure, tubular damage, and inflammation. Finally, primary cultures of Jnk1-/-, but not Jnk2-/-, tubular epithelial cells were protected from oxidant-induced cell death, in association with preventing phosphorylation of proteins (receptor interacting serine/threonine kinase 3 and mixed lineage kinase domain-like pseudokinase) in the necroptosis pathway. In conclusion, JNK1, but not JNK2, plays a specific role in IRI-induced cell death in the proximal tubule, leading to acute renal failure.
Collapse
Affiliation(s)
- Keren Grynberg
- Department of Nephrology, Monash Medical Centre, Clayton, Victoria, Australia; Centre for Inflammatory Diseases, Monash University, Clayton, Victoria, Australia
| | - Elyce Ozols
- Department of Nephrology, Monash Medical Centre, Clayton, Victoria, Australia; Centre for Inflammatory Diseases, Monash University, Clayton, Victoria, Australia
| | - William R Mulley
- Department of Nephrology, Monash Medical Centre, Clayton, Victoria, Australia; Centre for Inflammatory Diseases, Monash University, Clayton, Victoria, Australia
| | - Roger J Davis
- Howard Hughes Medical Institute and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut
| | - David J Nikolic-Paterson
- Department of Nephrology, Monash Medical Centre, Clayton, Victoria, Australia; Centre for Inflammatory Diseases, Monash University, Clayton, Victoria, Australia.
| | - Frank Y Ma
- Department of Nephrology, Monash Medical Centre, Clayton, Victoria, Australia; Centre for Inflammatory Diseases, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
31
|
Li G, Qi W, Li X, Zhao J, Luo M, Chen J. Recent Advances in c-Jun N-Terminal Kinase (JNK) Inhibitors. Curr Med Chem 2021; 28:607-627. [PMID: 32039671 DOI: 10.2174/0929867327666200210144114] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/17/2019] [Accepted: 10/20/2019] [Indexed: 11/22/2022]
Abstract
c-Jun N-Terminal Kinases (JNKs), members of the Mitogen-Activated Protein Kinase (MAPK) signaling pathway, play a key role in the pathogenesis of many diseases including cancer, inflammation, Parkinson's disease, Alzheimer's disease, cardiovascular disease, obesity, and diabetes. Therefore, JNKs represent new and excellent target by therapeutic agents. Many JNK inhibitors based on different molecular scaffolds have been discovered in the past decade. However, only a few of them have advanced to clinical trials. The major obstacle for the development of JNK inhibitors as therapeutic agents is the JNKisoform selectivity. In this review, we describe the recent development of JNK inhibitors, including ATP competitive and ATP non-competitive (allosteric) inhibitors, bidentatebinding inhibitors and dual inhibitors, the challenges, and the future direction of JNK inhibitors as potential therapeutic agents.
Collapse
Affiliation(s)
- Gang Li
- Department of Oncology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan 528300, China
| | - Wenqing Qi
- Department of Pathology, St. Jude Children's Research Hospital, Memphis TN 38105, United States
| | - Xiaoxun Li
- Chengdu Easton Biopharmaceuticals Co., Ltd., Chengdu 611731, China
| | - Jinwu Zhao
- School of Pharmacy, Guangdong Medical University, Songshan Lake Science and Technology Industry Park, Dongguan 523808, China
| | - Meihua Luo
- Department of Oncology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan 528300, China
| | - Jianjun Chen
- Department of Oncology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan 528300, China
| |
Collapse
|
32
|
Rosselot C, Baumel-Alterzon S, Li Y, Brill G, Lambertini L, Katz LS, Lu G, Garcia-Ocaña A, Scott DK. The many lives of Myc in the pancreatic β-cell. J Biol Chem 2021; 296:100122. [PMID: 33239359 PMCID: PMC7949031 DOI: 10.1074/jbc.rev120.011149] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/20/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022] Open
Abstract
Diabetes results from insufficient numbers of functional pancreatic β-cells. Thus, increasing the number of available functional β-cells ex vivo for transplantation, or regenerating them in situ in diabetic patients, is a major focus of diabetes research. The transcription factor, Myc, discovered decades ago lies at the nexus of most, if not all, known proliferative pathways. Based on this, many studies in the 1990s and early 2000s explored the potential of harnessing Myc expression to expand β-cells for diabetes treatment. Nearly all these studies in β-cells used pathophysiological or supraphysiological levels of Myc and reported enhanced β-cell death, dedifferentiation, or the formation of insulinomas if cooverexpressed with Bcl-xL, an inhibitor of apoptosis. This obviously reduced the enthusiasm for Myc as a therapeutic target for β-cell regeneration. However, recent studies indicate that "gentle" induction of Myc expression enhances β-cell replication without induction of cell death or loss of insulin secretion, suggesting that appropriate levels of Myc could have therapeutic potential for β-cell regeneration. Furthermore, although it has been known for decades that Myc is induced by glucose in β-cells, very little is known about how this essential anabolic transcription factor perceives and responds to nutrients and increased insulin demand in vivo. Here we summarize the previous and recent knowledge of Myc in the β-cell, its potential for β-cell regeneration, and its physiological importance for neonatal and adaptive β-cell expansion.
Collapse
Affiliation(s)
- Carolina Rosselot
- Diabetes Obesity Metabolism Institute, and the Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sharon Baumel-Alterzon
- Diabetes Obesity Metabolism Institute, and the Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yansui Li
- Diabetes Obesity Metabolism Institute, and the Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gabriel Brill
- Diabetes Obesity Metabolism Institute, and the Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Luca Lambertini
- Diabetes Obesity Metabolism Institute, and the Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Liora S Katz
- Diabetes Obesity Metabolism Institute, and the Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Geming Lu
- Diabetes Obesity Metabolism Institute, and the Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Adolfo Garcia-Ocaña
- Diabetes Obesity Metabolism Institute, and the Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| | - Donald K Scott
- Diabetes Obesity Metabolism Institute, and the Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
33
|
Karakose E, Wang H, Inabnet W, Thakker RV, Libutti S, Fernandez-Ranvier G, Suh H, Stevenson M, Kinoshita Y, Donovan M, Antipin Y, Li Y, Liu X, Jin F, Wang P, Uzilov A, Argmann C, Schadt EE, Stewart AF, Scott DK, Lambertini L. Aberrant methylation underlies insulin gene expression in human insulinoma. Nat Commun 2020; 11:5210. [PMID: 33060578 PMCID: PMC7566641 DOI: 10.1038/s41467-020-18839-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 09/16/2020] [Indexed: 12/23/2022] Open
Abstract
Human insulinomas are rare, benign, slowly proliferating, insulin-producing beta cell tumors that provide a molecular "recipe" or "roadmap" for pathways that control human beta cell regeneration. An earlier study revealed abnormal methylation in the imprinted p15.5-p15.4 region of chromosome 11, known to be abnormally methylated in another disorder of expanded beta cell mass and function: the focal variant of congenital hyperinsulinism. Here, we compare deep DNA methylome sequencing on 19 human insulinomas, and five sets of normal beta cells. We find a remarkably consistent, abnormal methylation pattern in insulinomas. The findings suggest that abnormal insulin (INS) promoter methylation and altered transcription factor expression create alternative drivers of INS expression, replacing canonical PDX1-driven beta cell specification with a pathological, looping, distal enhancer-based form of transcriptional regulation. Finally, NFaT transcription factors, rather than the canonical PDX1 enhancer complex, are predicted to drive INS transactivation.
Collapse
Affiliation(s)
- Esra Karakose
- From the Diabetes Obesity and Metabolism Institute, The Department of Surgery, The Department of Pathology, The Department of Genetics and Genomics Sciences and The Institute for Genomics and Multiscale Biology, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - William Inabnet
- From the Diabetes Obesity and Metabolism Institute, The Department of Surgery, The Department of Pathology, The Department of Genetics and Genomics Sciences and The Institute for Genomics and Multiscale Biology, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Rajesh V Thakker
- The Academic Endocrine Unit, University of Oxford, OX3 7LJ, Oxford, UK
| | - Steven Libutti
- The Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA
| | - Gustavo Fernandez-Ranvier
- From the Diabetes Obesity and Metabolism Institute, The Department of Surgery, The Department of Pathology, The Department of Genetics and Genomics Sciences and The Institute for Genomics and Multiscale Biology, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Hyunsuk Suh
- From the Diabetes Obesity and Metabolism Institute, The Department of Surgery, The Department of Pathology, The Department of Genetics and Genomics Sciences and The Institute for Genomics and Multiscale Biology, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Mark Stevenson
- The Academic Endocrine Unit, University of Oxford, OX3 7LJ, Oxford, UK
| | - Yayoi Kinoshita
- From the Diabetes Obesity and Metabolism Institute, The Department of Surgery, The Department of Pathology, The Department of Genetics and Genomics Sciences and The Institute for Genomics and Multiscale Biology, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Michael Donovan
- From the Diabetes Obesity and Metabolism Institute, The Department of Surgery, The Department of Pathology, The Department of Genetics and Genomics Sciences and The Institute for Genomics and Multiscale Biology, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yevgeniy Antipin
- From the Diabetes Obesity and Metabolism Institute, The Department of Surgery, The Department of Pathology, The Department of Genetics and Genomics Sciences and The Institute for Genomics and Multiscale Biology, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Sema4, Stamford, CT, 06902, USA
| | - Yan Li
- The Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Xiaoxiao Liu
- The Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Fulai Jin
- The Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Peng Wang
- From the Diabetes Obesity and Metabolism Institute, The Department of Surgery, The Department of Pathology, The Department of Genetics and Genomics Sciences and The Institute for Genomics and Multiscale Biology, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Andrew Uzilov
- From the Diabetes Obesity and Metabolism Institute, The Department of Surgery, The Department of Pathology, The Department of Genetics and Genomics Sciences and The Institute for Genomics and Multiscale Biology, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Sema4, Stamford, CT, 06902, USA
| | - Carmen Argmann
- From the Diabetes Obesity and Metabolism Institute, The Department of Surgery, The Department of Pathology, The Department of Genetics and Genomics Sciences and The Institute for Genomics and Multiscale Biology, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eric E Schadt
- From the Diabetes Obesity and Metabolism Institute, The Department of Surgery, The Department of Pathology, The Department of Genetics and Genomics Sciences and The Institute for Genomics and Multiscale Biology, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Sema4, Stamford, CT, 06902, USA
| | - Andrew F Stewart
- From the Diabetes Obesity and Metabolism Institute, The Department of Surgery, The Department of Pathology, The Department of Genetics and Genomics Sciences and The Institute for Genomics and Multiscale Biology, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Donald K Scott
- From the Diabetes Obesity and Metabolism Institute, The Department of Surgery, The Department of Pathology, The Department of Genetics and Genomics Sciences and The Institute for Genomics and Multiscale Biology, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Luca Lambertini
- From the Diabetes Obesity and Metabolism Institute, The Department of Surgery, The Department of Pathology, The Department of Genetics and Genomics Sciences and The Institute for Genomics and Multiscale Biology, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
34
|
Bhardwaj VK, Singh R, Sharma J, Das P, Purohit R. Structural based study to identify new potential inhibitors for dual specificity tyrosine-phosphorylation- regulated kinase. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 194:105494. [PMID: 32447145 DOI: 10.1016/j.cmpb.2020.105494] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
Background and Objectives The Dual-specificity tyrosine-phosphorylation regulated kinase-1A (DYRK1A) a serine/threonine kinase that has freshly gained recognition as an essential drug target due to the discovery of its involvement in pathological diseases. The development of new potent inhibitors of DYRK1A would contribute to clarify the molecular mechanisms of associated diseases. It would administer a new lead compound for molecular-targeted protein, which was the primary focus of our study. Methods The library of in-house synthesized pyrrolone-fused benzosuberene (PBS) compounds was docked with DYRK1A receptor. Further, molecular mechanics-Poisson Boltzmann surface area (MM-PBSA) estimations were conducted to confirm our docking outcomes and compared the stability of chosen complexes with the 2C3 (standard molecule) complex. Results This study reports Ligand15, Ligand14, and Ligand11 as potent inhibitors which showed higher ligand efficiency, binding affinity, lipophilic ligand efficiency, and favorable torsion values as compared to 2C3. Conclusion The stated methodologies revealed a unique mechanism of active site binding. The binding interactions within the active site showed that the chosen molecules had notable interactions than the standard molecule, which led to the generation of potential compounds to inhibit DYRK1A.
Collapse
Affiliation(s)
- Vijay Kumar Bhardwaj
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India; Biotechnology division, CSIR-IHBT, Palampur, Himachal Pradesh, 176061, India; Academy of Scientific & Innovative Research (AcSIR), CSIR-IHBT Campus, Palampur, Himachal Pradesh, 176061, India
| | - Rahul Singh
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India; Biotechnology division, CSIR-IHBT, Palampur, Himachal Pradesh, 176061, India
| | - Jatin Sharma
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India; Biotechnology division, CSIR-IHBT, Palampur, Himachal Pradesh, 176061, India
| | - Pralay Das
- Academy of Scientific & Innovative Research (AcSIR), CSIR-IHBT Campus, Palampur, Himachal Pradesh, 176061, India; Natural Product Chemistry and Process Development, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Rituraj Purohit
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India; Biotechnology division, CSIR-IHBT, Palampur, Himachal Pradesh, 176061, India; Academy of Scientific & Innovative Research (AcSIR), CSIR-IHBT Campus, Palampur, Himachal Pradesh, 176061, India.
| |
Collapse
|
35
|
Yoon HR, Balupuri A, Choi KE, Kang NS. Small Molecule Inhibitors of DYRK1A Identified by Computational and Experimental Approaches. Int J Mol Sci 2020; 21:E6826. [PMID: 32957634 PMCID: PMC7554884 DOI: 10.3390/ijms21186826] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 12/30/2022] Open
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is a protein kinase with diverse functions in cell regulation. Abnormal expression and activity of DYRK1A contribute to numerous human malignancies, Down syndrome, and Alzheimer's disease. Notably, DYRK1A has been proposed as a potential therapeutic target for the treatment of diabetes because of its key role in pancreatic β-cell proliferation. Consequently, DYRK1A is an attractive drug target for a variety of diseases. Here, we report the identification of several DYRK1A inhibitors using our in-house topological water network-based approach. All inhibitors were further verified by in vitro assay.
Collapse
Affiliation(s)
| | | | | | - Nam Sook Kang
- Graduate School of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (H.R.Y.); (A.B.); (K.-E.C.)
| |
Collapse
|
36
|
Liu YA, Jin Q, Ding Q, Hao X, Mo T, Yan S, Zou Y, Huang Z, Zhang X, Gao W, Wu TYH, Li C, Bursalaya B, Di Donato M, Zhang YQ, Deaton L, Shen W, Taylor B, Kamireddy A, Harb G, Li J, Jia Y, Schumacher AM, Laffitte B, Glynne R, Pan S, McNamara P, Molteni V, Loren J. A Dual Inhibitor of DYRK1A and GSK3β for β-Cell Proliferation: Aminopyrazine Derivative GNF4877. ChemMedChem 2020; 15:1562-1570. [PMID: 32613743 DOI: 10.1002/cmdc.202000183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/05/2020] [Indexed: 12/14/2022]
Abstract
Loss of β-cell mass and function can lead to insufficient insulin levels and ultimately to hyperglycemia and diabetes mellitus. The mainstream treatment approach involves regulation of insulin levels; however, approaches intended to increase β-cell mass are less developed. Promoting β-cell proliferation with low-molecular-weight inhibitors of dual-specificity tyrosine-regulated kinase 1A (DYRK1A) offers the potential to treat diabetes with oral therapies by restoring β-cell mass, insulin content and glycemic control. GNF4877, a potent dual inhibitor of DYRK1A and glycogen synthase kinase 3β (GSK3β) was previously reported to induce primary human β-cell proliferation in vitro and in vivo. Herein, we describe the lead optimization that lead to the identification of GNF4877 from an aminopyrazine hit identified in a phenotypic high-throughput screening campaign measuring β-cell proliferation.
Collapse
Affiliation(s)
- Yahu A Liu
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Qihui Jin
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Qiang Ding
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Xueshi Hao
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Tingting Mo
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Shanshan Yan
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Yefen Zou
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Zhihong Huang
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Xiaoyue Zhang
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Wenqi Gao
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Tom Y-H Wu
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Chun Li
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Badry Bursalaya
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Michael Di Donato
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - You-Qing Zhang
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Lisa Deaton
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Weijun Shen
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Brandon Taylor
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Anwesh Kamireddy
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - George Harb
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Jing Li
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Yong Jia
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Andrew M Schumacher
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Bryan Laffitte
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Richard Glynne
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Shifeng Pan
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Peter McNamara
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Valentina Molteni
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Jon Loren
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| |
Collapse
|
37
|
Structure-Activity Relationships and Biological Evaluation of 7-Substituted Harmine Analogs for Human β-Cell Proliferation. Molecules 2020; 25:molecules25081983. [PMID: 32340326 PMCID: PMC7221803 DOI: 10.3390/molecules25081983] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/26/2022] Open
Abstract
Recently, we have shown that harmine induces β-cell proliferation both in vitro and in vivo, mediated via the DYRK1A-NFAT pathway. We explore structure-activity relationships of the 7-position of harmine for both DYRK1A kinase inhibition and β-cell proliferation based on our related previous structure-activity relationship studies of harmine in the context of diabetes and β-cell specific targeting strategies. 33 harmine analogs of the 7-position substituent were synthesized and evaluated for biological activity. Two novel inhibitors were identified which showed DYRK1A inhibition and human β-cell proliferation capability. The DYRK1A inhibitor, compound 1-2b, induced β-cell proliferation half that of harmine at three times higher concentration. From these studies we can draw the inference that 7-position modification is limited for further harmine optimization focused on β-cell proliferation and cell-specific targeting approach for diabetes therapeutics.
Collapse
|
38
|
Kumar K, Wang P, Wilson J, Zlatanic V, Berrouet C, Khamrui S, Secor C, Swartz EA, Lazarus MB, Sanchez R, Stewart AF, Garcia-Ocana A, DeVita RJ. Synthesis and Biological Validation of a Harmine-Based, Central Nervous System (CNS)-Avoidant, Selective, Human β-Cell Regenerative Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase A (DYRK1A) Inhibitor. J Med Chem 2020; 63:2986-3003. [PMID: 32003560 PMCID: PMC7388697 DOI: 10.1021/acs.jmedchem.9b01379] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recently, our group identified that harmine is able to induce β-cell proliferation both in vitro and in vivo, mediated via the DYRK1A-NFAT pathway. Since, harmine suffers from a lack of selectivity, both against other kinases and CNS off-targets, we therefore sought to expand structure-activity relationships for harmine's DYRK1A activity, to enhance selectivity for off-targets while retaining human β-cell proliferation activity. We carried out optimization of the 9-N-position of harmine to synthesize 29 harmine-based analogs. Several novel inhibitors showed excellent DYRK1A inhibition and human β-cell proliferation capability. An optimized DYRK1A inhibitor, 2-2c, was identified as a novel, efficacious in vivo lead candidate. 2-2c also demonstrates improved selectivity for kinases and CNS off-targets, as well as in vivo efficacy for β-cell proliferation and regeneration at lower doses than harmine. Collectively, these findings demonstrate that 2-2c is a much improved in vivo lead candidate as compared to harmine for the treatment of diabetes.
Collapse
Affiliation(s)
- Kunal Kumar
- Drug Discovery Institute, Icahn School of Medicine at Mount
Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of
Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peng Wang
- Diabetes, Obesity, and Metabolism Institute, Icahn School
of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jessica Wilson
- Diabetes, Obesity, and Metabolism Institute, Icahn School
of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Viktor Zlatanic
- Diabetes, Obesity, and Metabolism Institute, Icahn School
of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Cecilia Berrouet
- Diabetes, Obesity, and Metabolism Institute, Icahn School
of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Susmita Khamrui
- Department of Pharmacological Sciences, Icahn School of
Medicine at Mount Sinai, New York, NY 10029, USA
| | - Cody Secor
- Department of Pharmacological Sciences, Icahn School of
Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ethan A. Swartz
- Diabetes, Obesity, and Metabolism Institute, Icahn School
of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael B. Lazarus
- Drug Discovery Institute, Icahn School of Medicine at Mount
Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of
Medicine at Mount Sinai, New York, NY 10029, USA
| | - Roberto Sanchez
- Drug Discovery Institute, Icahn School of Medicine at Mount
Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of
Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrew F. Stewart
- Diabetes, Obesity, and Metabolism Institute, Icahn School
of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adolfo Garcia-Ocana
- Diabetes, Obesity, and Metabolism Institute, Icahn School
of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert J. DeVita
- Drug Discovery Institute, Icahn School of Medicine at Mount
Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of
Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
39
|
Liu YA, Jin Q, Zou Y, Ding Q, Yan S, Wang Z, Hao X, Nguyen B, Zhang X, Pan J, Mo T, Jacobsen K, Lam T, Wu TYH, Petrassi HM, Bursulaya B, DiDonato M, Gordon WP, Liu B, Baaten J, Hill R, Nguyen-Tran V, Qiu M, Zhang YQ, Kamireddy A, Espinola S, Deaton L, Ha S, Harb G, Jia Y, Li J, Shen W, Schumacher AM, Colman K, Glynne R, Pan S, McNamara P, Laffitte B, Meeusen S, Molteni V, Loren J. Selective DYRK1A Inhibitor for the Treatment of Type 1 Diabetes: Discovery of 6-Azaindole Derivative GNF2133. J Med Chem 2020; 63:2958-2973. [PMID: 32077280 DOI: 10.1021/acs.jmedchem.9b01624] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Autoimmune deficiency and destruction in either β-cell mass or function can cause insufficient insulin levels and, as a result, hyperglycemia and diabetes. Thus, promoting β-cell proliferation could be one approach toward diabetes intervention. In this report we describe the discovery of a potent and selective DYRK1A inhibitor GNF2133, which was identified through optimization of a 6-azaindole screening hit. In vitro, GNF2133 is able to proliferate both rodent and human β-cells. In vivo, GNF2133 demonstrated significant dose-dependent glucose disposal capacity and insulin secretion in response to glucose-potentiated arginine-induced insulin secretion (GPAIS) challenge in rat insulin promoter and diphtheria toxin A (RIP-DTA) mice. The work described here provides new avenues to disease altering therapeutic interventions in the treatment of type 1 diabetes (T1D).
Collapse
Affiliation(s)
- Yahu A Liu
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Qihui Jin
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Yefen Zou
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Qiang Ding
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Shanshan Yan
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Zhicheng Wang
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Xueshi Hao
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Bao Nguyen
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Xiaoyue Zhang
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Jianfeng Pan
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Tingting Mo
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Kate Jacobsen
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Thanh Lam
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Tom Y-H Wu
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - H Michael Petrassi
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Badry Bursulaya
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Michael DiDonato
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - W Perry Gordon
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Bo Liu
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Janine Baaten
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Robert Hill
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Vân Nguyen-Tran
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Minhua Qiu
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - You-Qing Zhang
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Anwesh Kamireddy
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Sheryll Espinola
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Lisa Deaton
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Sukwon Ha
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - George Harb
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Yong Jia
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Jing Li
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Weijun Shen
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Andrew M Schumacher
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Karyn Colman
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Richard Glynne
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Shifeng Pan
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Peter McNamara
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Bryan Laffitte
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Shelly Meeusen
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Valentina Molteni
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Jon Loren
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| |
Collapse
|
40
|
Ackeifi C, Wang P, Karakose E, Manning Fox JE, González BJ, Liu H, Wilson J, Swartz E, Berrouet C, Li Y, Kumar K, MacDonald PE, Sanchez R, Thorens B, DeVita R, Homann D, Egli D, Scott DK, Garcia-Ocaña A, Stewart AF. GLP-1 receptor agonists synergize with DYRK1A inhibitors to potentiate functional human β cell regeneration. Sci Transl Med 2020; 12:eaaw9996. [PMID: 32051230 PMCID: PMC9945936 DOI: 10.1126/scitranslmed.aaw9996] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 08/07/2019] [Accepted: 01/09/2020] [Indexed: 01/25/2023]
Abstract
Glucagon-like peptide-1 receptor (GLP1R) agonists and dipeptidyl peptidase 4 inhibitors are widely prescribed diabetes drugs due to their ability to stimulate insulin secretion from remaining β cells and to reduce caloric intake. Unfortunately, they fail to increase human β cell proliferation. Small-molecule inhibitors of dual-specificity tyrosine-regulated kinase 1A (DYRK1A) are able to induce adult human β cell proliferation, but rates are modest (~2%), and their specificity to β cells is limited. Here, we provide evidence that combining any member of the GLP1R agonist class with any member of the DYRK1A inhibitor class induces a synergistic increase in human β cell replication (5 to 6%) accompanied by an actual increase in numbers of human β cells. GLP1R agonist-DYRK1A inhibitor synergy required combined inhibition of DYRK1A and an increase in cAMP and did not lead to β cell dedifferentiation. These beneficial effects on proliferation were seen in both normal human β cells and β cells derived from individuals with type 2 diabetes. The ability of the GLP1R agonist-DYRK1A inhibitor combination to enhance human β cell proliferation, human insulin secretion, and blood glucose control extended in vivo to studies of human islets transplanted into euglycemic and streptozotocin-diabetic immunodeficient mice. No adverse events were observed in the mouse studies during a 1-week period. Because of the relative β cell specificity of GLP1R agonists, the combination provides an improved, although not complete, degree of human β cell specificity.
Collapse
Affiliation(s)
- Courtney Ackeifi
- Diabetes, Obesity and Metabolism Institute and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peng Wang
- Diabetes, Obesity and Metabolism Institute and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Esra Karakose
- Diabetes, Obesity and Metabolism Institute and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jocelyn E Manning Fox
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Bryan J González
- Naomi Berrie Diabetes Center and Columbia Stem Cell Center, Columbia University, New York, NY 10032, USA
| | - Hongtao Liu
- Diabetes, Obesity and Metabolism Institute and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jessica Wilson
- Diabetes, Obesity and Metabolism Institute and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ethan Swartz
- Diabetes, Obesity and Metabolism Institute and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Cecilia Berrouet
- Diabetes, Obesity and Metabolism Institute and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yansui Li
- Diabetes, Obesity and Metabolism Institute and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kunal Kumar
- Department of Pharmacological Sciences, and Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Patrick E MacDonald
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Roberto Sanchez
- Department of Pharmacological Sciences, and Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bernard Thorens
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland
| | - Robert DeVita
- Department of Pharmacological Sciences, and Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dirk Homann
- Diabetes, Obesity and Metabolism Institute and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dieter Egli
- Naomi Berrie Diabetes Center and Columbia Stem Cell Center, Columbia University, New York, NY 10032, USA
| | - Donald K Scott
- Diabetes, Obesity and Metabolism Institute and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adolfo Garcia-Ocaña
- Diabetes, Obesity and Metabolism Institute and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrew F Stewart
- Diabetes, Obesity and Metabolism Institute and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
41
|
Rosado-Olivieri EA, Aigha II, Kenty JH, Melton DA. Identification of a LIF-Responsive, Replication-Competent Subpopulation of Human β Cells. Cell Metab 2020; 31:327-338.e6. [PMID: 31928884 DOI: 10.1016/j.cmet.2019.12.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/03/2019] [Accepted: 12/16/2019] [Indexed: 10/25/2022]
Abstract
The beta (β)-cell mass formed during embryogenesis is amplified by cell replication during fetal and early postnatal development. Thereafter, β cells become functionally mature, and their mass is maintained by a low rate of replication. For those few β cells that replicate in adult life, it is not known how replication is initiated nor whether this occurs in a specialized subset of β cells. We capitalized on a YAP overexpression system to induce replication of stem-cell-derived β cells and, by single-cell RNA sequencing, identified an upregulation of the leukemia inhibitory factor (LIF) pathway. Activation of the LIF pathway induces replication of human β cells in vitro and in vivo. The expression of the LIF receptor is restricted to a subset of transcriptionally distinct human β cells with increased proliferative capacity. This study delineates novel genetic networks that control the replication of LIF-responsive, replication-competent human β cells.
Collapse
Affiliation(s)
- Edwin A Rosado-Olivieri
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Idil I Aigha
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Education City, Doha, Qatar; Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Education City, Doha, Qatar
| | - Jennifer H Kenty
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Douglas A Melton
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
42
|
Ackeifi C, Swartz E, Kumar K, Liu H, Chalada S, Karakose E, Scott DK, Garcia-Ocaña A, Sanchez R, DeVita RJ, Stewart AF, Wang P. Pharmacologic and genetic approaches define human pancreatic β cell mitogenic targets of DYRK1A inhibitors. JCI Insight 2020; 5:132594. [PMID: 31821176 PMCID: PMC7030849 DOI: 10.1172/jci.insight.132594] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/04/2019] [Indexed: 01/09/2023] Open
Abstract
Small molecule inhibitors of dual specificity, tyrosine phosphorylation-regulated kinase 1A (DYRK1A), including harmine and others, are able to drive human β cell regeneration. While DYRK1A is certainly a target of this class, whether it is the only or the most important target is uncertain. Here, we employ a combined pharmacologic and genetic approach to refine the potential mitogenic targets of the DYRK1A inhibitor family in human islets. A combination of human β cell RNA sequencing, DYRK1A inhibitor kinome screens, pharmacologic inhibitors, and targeted silencing of candidate genes confirms that DYRK1A is a central target. Surprisingly, however, DYRK1B also proves to be an important target: silencing DYRK1A results in an increase in DYRK1B. Simultaneous silencing of both DYRK1A and DYRK1B yields greater β cell proliferation than silencing either individually. Importantly, other potential kinases, such as the CLK and the GSK3 families, are excluded as important harmine targets. Finally, we describe adenoviruses that are able to silence up to 7 targets simultaneously. Collectively, we report that inhibition of both DYRK1A and DYRK1B is required for induction of maximal rates of human β cell proliferation, and we provide clarity for future efforts in structure-based drug design for human β cell regenerative drugs.
Collapse
Affiliation(s)
| | | | - Kunal Kumar
- Drug Discovery Institute, and
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Suebsuwong Chalada
- Drug Discovery Institute, and
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | | | - Roberto Sanchez
- Drug Discovery Institute, and
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Robert J. DeVita
- Drug Discovery Institute, and
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Peng Wang
- Diabetes Obesity Metabolism Institute
| |
Collapse
|
43
|
Allegretti PA, Horton TM, Abdolazimi Y, Moeller HP, Yeh B, Caffet M, Michel G, Smith M, Annes JP. Generation of highly potent DYRK1A-dependent inducers of human β-Cell replication via Multi-Dimensional compound optimization. Bioorg Med Chem 2020; 28:115193. [PMID: 31757680 PMCID: PMC6941846 DOI: 10.1016/j.bmc.2019.115193] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/20/2019] [Accepted: 10/29/2019] [Indexed: 02/07/2023]
Abstract
Small molecule stimulation of β-cell regeneration has emerged as a promising therapeutic strategy for diabetes. Although chemical inhibition of dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A) is sufficient to enhance β-cell replication, current lead compounds have inadequate cellular potency for in vivo application. Herein, we report the clinical stage anti-cancer kinase inhibitor OTS167 as a structurally novel, remarkably potent DYRK1A inhibitor and inducer of human β-cell replication. Unfortunately, OTS167's target promiscuity and cytotoxicity curtails utility. To tailor kinase selectivity towards DYRK1A and reduce cytotoxicity we designed a library of fifty-one OTS167 derivatives based upon a modeled structure of the DYRK1A-OTS167 complex. Indeed, derivative characterization yielded several leads with exceptional DYRK1A inhibition and human β-cell replication promoting potencies but substantially reduced cytotoxicity. These compounds are the most potent human β-cell replication-promoting compounds yet described and exemplify the potential to purposefully leverage off-target activities of advanced stage compounds for a desired application.
Collapse
Affiliation(s)
- Paul A Allegretti
- Department of Medicine and Division of Endocrinology, Stanford University, Stanford, CA 94305, USA; Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Timothy M Horton
- Department of Medicine and Division of Endocrinology, Stanford University, Stanford, CA 94305, USA; Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA; Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Yassan Abdolazimi
- Department of Medicine and Division of Endocrinology, Stanford University, Stanford, CA 94305, USA
| | - Hannah P Moeller
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA; Department of Medicine and Division of Endocrinology, Stanford University, Stanford, CA 94305, USA
| | - Benjamin Yeh
- Department of Medicine and Division of Endocrinology, Stanford University, Stanford, CA 94305, USA
| | - Matthew Caffet
- Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Guillermina Michel
- Department of Medicine and Division of Endocrinology, Stanford University, Stanford, CA 94305, USA
| | - Mark Smith
- Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Justin P Annes
- Department of Medicine and Division of Endocrinology, Stanford University, Stanford, CA 94305, USA; Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA; Stanford Diabetes Research Center, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
44
|
Wang P, Karakose E, Liu H, Swartz E, Ackeifi C, Zlatanic V, Wilson J, González BJ, Bender A, Takane KK, Ye L, Harb G, Pagliuca F, Homann D, Egli D, Argmann C, Scott DK, Garcia-Ocaña A, Stewart AF. Combined Inhibition of DYRK1A, SMAD, and Trithorax Pathways Synergizes to Induce Robust Replication in Adult Human Beta Cells. Cell Metab 2019; 29:638-652.e5. [PMID: 30581122 PMCID: PMC6402958 DOI: 10.1016/j.cmet.2018.12.005] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 08/03/2018] [Accepted: 11/30/2018] [Indexed: 01/13/2023]
Abstract
Small-molecule inhibitors of dual-specificity tyrosine-regulated kinase 1A (DYRK1A) induce human beta cells to proliferate, generating a labeling index of 1.5%-3%. Here, we demonstrate that combined pharmacologic inhibition of DYRK1A and transforming growth factor beta superfamily (TGFβSF)/SMAD signaling generates remarkable further synergistic increases in human beta cell proliferation (average labeling index, 5%-8%, and as high as 15%-18%), and increases in both mouse and human beta cell numbers. This synergy reflects activation of cyclins and cdks by DYRK1A inhibition, accompanied by simultaneous reductions in key cell-cycle inhibitors (CDKN1C and CDKN1A). The latter results from interference with the basal Trithorax- and SMAD-mediated transactivation of CDKN1C and CDKN1A. Notably, combined DYRK1A and TGFβ inhibition allows preservation of beta cell differentiated function. These beneficial effects extend from normal human beta cells and stem cell-derived human beta cells to those from people with type 2 diabetes, and occur both in vitro and in vivo.
Collapse
Affiliation(s)
- Peng Wang
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Esra Karakose
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hongtao Liu
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ethan Swartz
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Courtney Ackeifi
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Viktor Zlatanic
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jessica Wilson
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bryan J González
- Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA
| | - Aaron Bender
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Karen K Takane
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lillian Ye
- Semma Therapeutics, Cambridge, MA 02142, USA
| | - George Harb
- Semma Therapeutics, Cambridge, MA 02142, USA
| | | | - Dirk Homann
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dieter Egli
- Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA
| | - Carmen Argmann
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Donald K Scott
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adolfo Garcia-Ocaña
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrew F Stewart
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
45
|
Horton TM, Allegretti PA, Lee S, Moeller HP, Smith M, Annes JP. Zinc-Chelating Small Molecules Preferentially Accumulate and Function within Pancreatic β Cells. Cell Chem Biol 2019; 26:213-222.e6. [PMID: 30527998 PMCID: PMC6386607 DOI: 10.1016/j.chembiol.2018.10.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/21/2018] [Accepted: 10/22/2018] [Indexed: 12/27/2022]
Abstract
Diabetes is a hyperglycemic condition characterized by pancreatic β-cell dysfunction and depletion. Whereas methods for monitoring β-cell function in vivo exist, methods to deliver therapeutics to β cells are lacking. We leveraged the rare ability of β cells to concentrate zinc to preferentially trap zinc-binding molecules within β cells, resulting in β-cell-targeted compound delivery. We determined that zinc-rich β cells and islets preferentially accumulated TSQ (6-methoxy-8-p-toluenesulfonamido-quinoline) in a zinc-dependent manner compared with exocrine pancreas. Next, we asked whether appending a zinc-chelating moiety onto a β-cell replication-inducing compound was sufficient to confer preferential β-cell accumulation and activity. Indeed, the hybrid compound preferentially accumulated within rodent and human islets in a zinc-dependent manner and increased the selectivity of replication-promoting activity toward β cells. These data resolve the fundamental question of whether intracellular accumulation of zinc-chelating compounds is influenced by zinc content. Furthermore, application of this principle yielded a proof-of-concept method for β-cell-targeted drug delivery and bioactivity.
Collapse
Affiliation(s)
- Timothy M Horton
- Department of Medicine and Division of Endocrinology, Stanford University, Stanford, CA 94305, USA; Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Chemistry, Engineering and Medicine for Human Health (ChEM-H) Research Institute, Stanford, CA 94305, USA
| | - Paul A Allegretti
- Department of Medicine and Division of Endocrinology, Stanford University, Stanford, CA 94305, USA; Chemistry, Engineering and Medicine for Human Health (ChEM-H) Research Institute, Stanford, CA 94305, USA
| | - Sooyeon Lee
- Department of Medicine and Division of Endocrinology, Stanford University, Stanford, CA 94305, USA
| | - Hannah P Moeller
- Department of Medicine and Division of Endocrinology, Stanford University, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Mark Smith
- Chemistry, Engineering and Medicine for Human Health (ChEM-H) Research Institute, Stanford, CA 94305, USA; Medicinal Chemistry Knowledge Center, Stanford CHEM-H, Stanford University, Stanford, CA 94305, USA
| | - Justin P Annes
- Department of Medicine and Division of Endocrinology, Stanford University, Stanford, CA 94305, USA; Chemistry, Engineering and Medicine for Human Health (ChEM-H) Research Institute, Stanford, CA 94305, USA; Stanford Diabetes Research Center, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
46
|
Akbib S, Stichelmans J, Stangé G, Ling Z, Assefa Z, Hellemans KH. Glucocorticoids and checkpoint tyrosine kinase inhibitors stimulate rat pancreatic beta cell proliferation differentially. PLoS One 2019; 14:e0212210. [PMID: 30779812 PMCID: PMC6380609 DOI: 10.1371/journal.pone.0212210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/29/2019] [Indexed: 12/27/2022] Open
Abstract
Cell therapy for diabetes could benefit from the identification of small-molecule compounds that increase the number of functional pancreatic beta cells. Using a newly developed screening assay, we previously identified glucocorticoids as potent stimulators of human and rat beta cell proliferation. We now compare the stimulatory action of these steroid hormones to a selection of checkpoint tyrosine kinase inhibitors that were also found to activate the cell cycle-in beta cells and analyzed their respective effects on DNA-synthesis, beta cell numbers and expression of cell cycle regulators. Our data using glucocorticoids in combination with a receptor antagonist, mifepristone, show that 48h exposure is sufficient to allow beta cells to pass the cell cycle restriction point and to become committed to cell division regardless of sustained glucocorticoid-signaling. To reach the end-point of mitosis another 40h is required. Within 14 days glucocorticoids stimulate up to 75% of the cells to undergo mitosis, which indicates that these steroid hormones act as proliferation competence-inducing factors. In contrast, by correlating thymidine-analogue incorporation to changes in absolute cell numbers, we show that the checkpoint kinase inhibitors, as compared to glucocorticoids, stimulate DNA-synthesis only during a short time-window in a minority of cells, insufficient to give a measurable increase of beta cell numbers. Glucocorticoids, but not the kinase inhibitors, were also found to induce changes in the expression of checkpoint regulators. Our data, using checkpoint kinase-specific inhibitors further point to a role for Chk1 and Cdk1 in G1/S transition and progression of beta cells through the cell cycle upon stimulation with glucocorticoids.
Collapse
Affiliation(s)
- Sarah Akbib
- Unit Diabetes Pathology and Therapy, Diabetes Research Cluster, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jordy Stichelmans
- Unit Diabetes Pathology and Therapy, Diabetes Research Cluster, Vrije Universiteit Brussel, Brussels, Belgium
| | - Geert Stangé
- Unit Diabetes Pathology and Therapy, Diabetes Research Cluster, Vrije Universiteit Brussel, Brussels, Belgium
| | - Zhidong Ling
- Unit Diabetes Pathology and Therapy, Diabetes Research Cluster, Vrije Universiteit Brussel, Brussels, Belgium
- Beta Cell Bank, University Hospital Brussels, Brussels, Belgium
| | - Zerihun Assefa
- Unit Diabetes Pathology and Therapy, Diabetes Research Cluster, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karine H. Hellemans
- Unit Diabetes Pathology and Therapy, Diabetes Research Cluster, Vrije Universiteit Brussel, Brussels, Belgium
- Center for Beta Cell Therapy in Diabetes, Brussels, Belgium
| |
Collapse
|
47
|
Xu J, Jia YF, Tapadar S, Weaver JD, Raji IO, Pithadia DJ, Javeed N, García AJ, Choi DS, Matveyenko AV, Oyelere AK, Shin CH. Inhibition of TBK1/IKKε Promotes Regeneration of Pancreatic β-cells. Sci Rep 2018; 8:15587. [PMID: 30349097 PMCID: PMC6197228 DOI: 10.1038/s41598-018-33875-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/01/2018] [Indexed: 12/18/2022] Open
Abstract
β-cell proliferation induction is a promising therapeutic strategy to restore β-cell mass. By screening small molecules in a transgenic zebrafish model of type 1 diabetes, we identified inhibitors of non-canonical IκB kinases (IKKs), TANK-binding kinase 1 (TBK1) and IκB kinase ε (IKKε), as enhancers of β-cell regeneration. The most potent β-cell regeneration enhancer was a cinnamic acid derivative (E)-3-(3-phenylbenzo[c]isoxazol-5-yl)acrylic acid (PIAA), which, acting through the cAMP-dependent protein kinase A (PKA), stimulated β-cell-specific proliferation by increasing cyclic AMP (cAMP) levels and mechanistic target of rapamycin (mTOR) activity. A combination of PIAA and cilostamide, an inhibitor of β-cell-enriched cAMP hydrolyzing enzyme phosphodiesterase (PDE) 3, enhanced β-cell proliferation, whereas overexpression of PDE3 blunted the mitogenic effect of PIAA in zebrafish. PIAA augmented proliferation of INS-1β-cells and β-cells in mammalian islets including human islets with elevation in cAMP levels and insulin secretion. PIAA improved glycemic control in streptozotocin (STZ)-induced diabetic mice with increases in β-cell proliferation, β-cell area, and insulin content in the pancreas. Collectively, these data reveal an evolutionarily conserved and critical role of TBK1/IKKε suppression in expanding functional β-cell mass.
Collapse
Affiliation(s)
- Jin Xu
- School of Biological Sciences and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Yun-Fang Jia
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Subhasish Tapadar
- School of Chemistry and Biochemistry and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jessica D Weaver
- Woodruff School of Mechanical Engineering and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Idris O Raji
- School of Chemistry and Biochemistry and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Deeti J Pithadia
- School of Biological Sciences and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Naureen Javeed
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - Andrés J García
- Woodruff School of Mechanical Engineering and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Aleksey V Matveyenko
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - Adegboyega K Oyelere
- School of Chemistry and Biochemistry and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Chong Hyun Shin
- School of Biological Sciences and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA. .,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
48
|
Kumar K, Wang P, Sanchez R, Swartz EA, Stewart AF, DeVita RJ. Development of Kinase-Selective, Harmine-Based DYRK1A Inhibitors that Induce Pancreatic Human β-Cell Proliferation. J Med Chem 2018; 61:7687-7699. [PMID: 30059217 PMCID: PMC6350255 DOI: 10.1021/acs.jmedchem.8b00658] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
DYRK1A has been implicated as an important drug target in various therapeutic areas, including neurological disorders and oncology. DYRK1A has more recently been shown to be involved in pathways regulating human β-cell proliferation, thus making it a potential therapeutic target for both Type 1 and Type 2 diabetes. Our group, using a high-throughput phenotypic screen, identified harmine that is able to induce β-cell proliferation both in vitro and in vivo. Since harmine has suboptimal kinase selectivity, we sought to expand structure-activity relationships for harmine's DYRK1A activity, to enhance selectivity, while retaining human β-cell proliferation capability. We carried out the optimization of the 1-position of harmine and synthesized 15 harmine analogues. Six compounds showed excellent DYRK1A inhibition with IC50 in the range of 49.5-264 nM. Two compounds, 2-2 and 2-8, exhibited excellent human β-cell proliferation at doses of 3-30 μM, and compound 2-2 showed improved kinase selectivity as compared to harmine.
Collapse
Affiliation(s)
- Kunal Kumar
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Peng Wang
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Roberto Sanchez
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Ethan A Swartz
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Andrew F. Stewart
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Robert J. DeVita
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
49
|
Kumar K, Man-Un Ung P, Wang P, Wang H, Li H, Andrews MK, Stewart AF, Schlessinger A, DeVita RJ. Novel selective thiadiazine DYRK1A inhibitor lead scaffold with human pancreatic β-cell proliferation activity. Eur J Med Chem 2018; 157:1005-1016. [PMID: 30170319 PMCID: PMC6396881 DOI: 10.1016/j.ejmech.2018.08.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 12/24/2022]
Abstract
The Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase 1A (DYRK1A) is an enzyme that has been implicated as an important drug target in various therapeutic areas, including neurological disorders (Down syndrome, Alzheimer's disease), oncology, and diabetes (pancreatic β-cell expansion). Current small molecule DYRK1A inhibitors are ATP-competitive inhibitors that bind to the kinase in an active conformation. As a result, these inhibitors are promiscuous, resulting in pharmacological side effects that limit their therapeutic applications. None are in clinical trials at this time. In order to identify a new DYRK1A inhibitor scaffold, we constructed a homology model of DYRK1A in an inactive, DFG-out conformation. Virtual screening of 2.2 million lead-like compounds from the ZINC database, followed by in vitro testing of selected 68 compounds revealed 8 hits representing 5 different chemical classes. We chose to focus on one of the hits from the computational screen, thiadiazine 1 which was found to inhibit DYRK1A with IC50 of 9.41 μM (Kd = 7.3 μM). Optimization of the hit compound 1, using structure-activity relationship (SAR) analysis and in vitro testing led to the identification of potent thiadiazine analogs with significantly improved binding as compared to the initial hit (Kd = 71-185 nM). Compound 3-5 induced human β-cell proliferation at 5 μM while showing selectivity for DYRK1A over DYRK1B and DYRK2 at 10 μM. This newly developed DYRK1A inhibitor scaffold with unique kinase selectivity profiles has potential to be further optimized as novel therapeutics for diabetes.
Collapse
Affiliation(s)
- Kunal Kumar
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Peter Man-Un Ung
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Peng Wang
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Hui Wang
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Hailing Li
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Mary K Andrews
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Andrew F Stewart
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Avner Schlessinger
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Robert J DeVita
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|