1
|
Bauer MB, Currie KPM. Serotonin and the serotonin transporter in the adrenal gland. VITAMINS AND HORMONES 2023; 124:39-78. [PMID: 38408804 PMCID: PMC11217909 DOI: 10.1016/bs.vh.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The adrenal glands are key components of the mammalian endocrine system, helping maintain physiological homeostasis and the coordinated response to stress. Each adrenal gland has two morphologically and functionally distinct regions, the outer cortex and inner medulla. The cortex is organized into three concentric zones which secrete steroid hormones, including aldosterone and cortisol. Neural crest-derived chromaffin cells in the medulla are innervated by preganglionic sympathetic neurons and secrete catecholamines (epinephrine, norepinephrine) and neuropeptides into the bloodstream, thereby functioning as the neuroendocrine arm of the sympathetic nervous system. In this article we review serotonin (5-HT) and the serotonin transporter (SERT; SLC6A4) in the adrenal gland. In the adrenal cortex, 5-HT, primarily sourced from resident mast cells, acts as a paracrine signal to stimulate aldosterone and cortisol secretion through 5-HT4/5-HT7 receptors. Medullary chromaffin cells contain a small amount of 5-HT due to SERT-mediated uptake and express 5-HT1A receptors which inhibit secretion. The atypical mechanism of the 5-HT1A receptors and interaction with SERT fine tune this autocrine pathway to control stress-evoked catecholamine secretion. Receptor-independent signaling by SERT/intracellular 5-HT modulates the amount and kinetics of transmitter release from single vesicle fusion events. SERT might also influence stress-evoked upregulation of tyrosine hydroxylase transcription. Transient signaling via 5-HT3 receptors during embryonic development can limit the number of chromaffin cells found in the mature adrenal gland. Together, this emerging evidence suggests that the adrenal medulla is a peripheral hub for serotonergic control of the sympathoadrenal stress response.
Collapse
Affiliation(s)
- Mary Beth Bauer
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, South Broadway, Camden, NJ, United States
| | - Kevin P M Currie
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, South Broadway, Camden, NJ, United States.
| |
Collapse
|
2
|
Sharma A, Rahman G, Gorelik J, Bhargava A. Voltage-Gated T-Type Calcium Channel Modulation by Kinases and Phosphatases: The Old Ones, the New Ones, and the Missing Ones. Cells 2023; 12:461. [PMID: 36766802 PMCID: PMC9913649 DOI: 10.3390/cells12030461] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/14/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Calcium (Ca2+) can regulate a wide variety of cellular fates, such as proliferation, apoptosis, and autophagy. More importantly, changes in the intracellular Ca2+ level can modulate signaling pathways that control a broad range of physiological as well as pathological cellular events, including those important to cellular excitability, cell cycle, gene-transcription, contraction, cancer progression, etc. Not only intracellular Ca2+ level but the distribution of Ca2+ in the intracellular compartments is also a highly regulated process. For this Ca2+ homeostasis, numerous Ca2+ chelating, storage, and transport mechanisms are required. There are also specialized proteins that are responsible for buffering and transport of Ca2+. T-type Ca2+ channels (TTCCs) are one of those specialized proteins which play a key role in the signal transduction of many excitable and non-excitable cell types. TTCCs are low-voltage activated channels that belong to the family of voltage-gated Ca2+ channels. Over decades, multiple kinases and phosphatases have been shown to modulate the activity of TTCCs, thus playing an indirect role in maintaining cellular physiology. In this review, we provide information on the kinase and phosphatase modulation of TTCC isoforms Cav3.1, Cav3.2, and Cav3.3, which are mostly described for roles unrelated to cellular excitability. We also describe possible potential modulations that are yet to be explored. For example, both mitogen-activated protein kinase and citron kinase show affinity for different TTCC isoforms; however, the effect of such interaction on TTCC current/kinetics has not been studied yet.
Collapse
Affiliation(s)
- Ankush Sharma
- Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi 502284, Telangana, India
| | - Ghazala Rahman
- Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi 502284, Telangana, India
| | - Julia Gorelik
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Anamika Bhargava
- Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi 502284, Telangana, India
| |
Collapse
|
3
|
Bardoni R. Serotonergic 5-HT 7 Receptors as Modulators of the Nociceptive System. Curr Neuropharmacol 2023; 21:1548-1557. [PMID: 36453491 PMCID: PMC10472814 DOI: 10.2174/1570159x21666221129101800] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/18/2022] [Accepted: 11/01/2022] [Indexed: 12/03/2022] Open
Abstract
The biogenic amine serotonin modulates pain perception by activating several types of serotonergic receptors, including the 5-HT7 type. These receptors are widely expressed along the pain axis, both peripherally, on primary nociceptors, and centrally, in the spinal cord and the brain. The role of 5-HT7 receptors in modulating pain has been explored in vivo in different models of inflammatory and neuropathic pain. While most studies have reported an antinociceptive effect of 5-HT7 receptor activation, some authors have suggested a pronociceptive action. Differences in pain models, animal species and gender, receptor types, agonists, and route of administration could explain these discrepancies. In this mini-review, some of the main findings concerning the function of 5-HT7 receptors in the pain system have been presented. The expression patterns of the receptors at the different levels of the pain axis, along with the cellular mechanisms involved in their activity, have been described. Alterations in receptor expression and/or function in different pain models and the role of 5-HT7 receptors in controlling pain transmission have also been discussed. Finally, some of the future perspectives in this field have been outlined.
Collapse
Affiliation(s)
- Rita Bardoni
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena, and Reggio Emilia, Modena, Italy
| |
Collapse
|
4
|
Abstract
Recent evidence shows that when ischemic stroke (IS) occurs, the BBB would be destructed, thereby promoting the immune cells to migrate into the brain, suggesting that the immune responses can play a vital role in the pathology of IS. As an essential subpopulation of immunosuppressive T cells, regulatory T (Treg) cells are involved in maintaining immune homeostasis and suppressing immune responses in the pathophysiological conditions of IS. During the past decades, the regulatory role of Treg cells has attracted the interest of numerous researchers. However, whether they are beneficial or detrimental to the outcomes of IS remains controversial. Moreover, Treg cells exert distinctive effects in the different stages of IS. Therefore, it is urgent to elucidate how Treg cells modulate the immune responses induced by IS. In this review, we describe how Treg cells fluctuate and play a role in the regulation of immune responses after IS in both experimental animals and humans, and summarize their biological functions and mechanisms in both CNS and periphery. We also discuss how Treg cells participate in poststroke inflammation and immunodepression and the potential of Treg cells as a novel therapeutic approach.
Collapse
|
5
|
Targeting the T-type calcium channel Cav3.2 in GABAergic arcuate nucleus neurons to treat obesity. Mol Metab 2021; 54:101391. [PMID: 34767997 PMCID: PMC8640109 DOI: 10.1016/j.molmet.2021.101391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVE Cav3.2, a T-type low voltage-activated calcium channel widely expressed throughout the central nervous system, plays a vital role in neuronal excitability and various physiological functions. However, the effects of Cav3.2 on energy homeostasis remain unclear. Here, we examined the role of Cav3.2 expressed by hypothalamic GABAergic neurons in the regulation of food intake and body weight in mice and explored the underlying mechanisms. METHODS Male congenital Cana1h (the gene coding for Cav3.2) global knockout (Cav3.2KO) mice and their wild type (WT) littermates were first used for metabolic phenotyping studies. By using the CRISPR-Cas9 technique, Cav3.2 was selectively deleted from GABAergic neurons in the arcuate nucleus of the hypothalamus (ARH) by specifically overexpressing Cas9 protein and Cav3.2-targeting sgRNAs in ARH Vgat (VgatARH) neurons. These male mutants (Cav3.2KO-VgatARH) were used to determine whether Cav3.2 expressed by VgatARH neurons is required for the proper regulation of energy balance. Subsequently, we used an electrophysiological patch-clamp recording in ex vivo brain slices to explore the impact of Cav3.2KO on the cellular excitability of VgatARH neurons. RESULTS Male Cav3.2KO mice had significantly lower food intake than their WT littermate controls when fed with either a normal chow diet (NCD) or a high-fat diet (HFD). This hypophagia phenotype was associated with increased energy expenditure and decreased fat mass, lean mass, and total body weight. Selective deletion of Cav3.2 in VgatARH neurons resulted in similar feeding inhibition and lean phenotype without changing energy expenditure. These data provides an intrinsic mechanism to support the previous finding on ARH non-AgRP GABA neurons in regulating diet-induced obesity. Lastly, we found that naringenin extract, a predominant flavanone found in various fruits and herbs and known to act on Cav3.2, decreased the firing activity of VgatARH neurons and reduced food intake and body weight. These naringenin-induced inhibitions were fully blocked in Cav3.2KO-VgatARH mice. CONCLUSION Our results identified Cav3.2 expressed by VgatARH neurons as an essential intrinsic modulator for food intake and energy homeostasis, which is a potential therapeutic target in the treatment of obesity.
Collapse
|
6
|
Zhang Y, Qian Z, Jiang D, Sun Y, Gao S, Jiang X, Wang H, Tao J. Neuromedin B receptor stimulation of Cav3.2 T-type Ca 2+ channels in primary sensory neurons mediates peripheral pain hypersensitivity. Theranostics 2021; 11:9342-9357. [PMID: 34646374 PMCID: PMC8490515 DOI: 10.7150/thno.62255] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 09/01/2021] [Indexed: 01/21/2023] Open
Abstract
Background: Neuromedin B (Nmb) is implicated in the regulation of nociception of sensory neurons. However, the underlying cellular and molecular mechanisms remain unknown. Methods: Using patch clamp recording, western blot analysis, immunofluorescent labelling, enzyme-linked immunosorbent assays, adenovirus-mediated shRNA knockdown and animal behaviour tests, we studied the effects of Nmb on the sensory neuronal excitability and peripheral pain sensitivity mediated by Cav3.2 T-type channels. Results: Nmb reversibly and concentration-dependently increased T-type channel currents (IT) in small-sized trigeminal ganglion (TG) neurons through the activation of neuromedin B receptor (NmbR). This NmbR-mediated IT response was Gq protein-coupled, but independent of protein kinase C activity. Either intracellular application of the QEHA peptide or shRNA-mediated knockdown of Gβ abolished the NmbR-induced IT response. Inhibition of protein kinase A (PKA) or AMP-activated protein kinase (AMPK) completely abolished the Nmb-induced IT response. Analysis of phospho-AMPK (p-AMPK) revealed that Nmb significantly activated AMPK, while AMPK inhibition prevented the Nmb-induced increase in PKA activity. In a heterologous expression system, activation of NmbR significantly enhanced the Cav3.2 channel currents, while the Cav3.1 and Cav3.3 channel currents remained unaffected. Nmb induced TG neuronal hyperexcitability and concomitantly induced mechanical and thermal hypersensitivity, both of which were attenuated by T-type channel blockade. Moreover, blockade of NmbR signalling prevented mechanical hypersensitivity in a mouse model of complete Freund's adjuvant-induced inflammatory pain, and this effect was attenuated by siRNA knockdown of Cav3.2. Conclusions: Our study reveals a novel mechanism by which NmbR stimulates Cav3.2 channels through a Gβγ-dependent AMPK/PKA pathway. In mouse models, this mechanism appears to drive the hyperexcitability of TG neurons and induce pain hypersensitivity.
Collapse
|
7
|
Shao J, Liu Y, Gao D, Tu J, Yang F. Neural Burst Firing and Its Roles in Mental and Neurological Disorders. Front Cell Neurosci 2021; 15:741292. [PMID: 34646123 PMCID: PMC8502892 DOI: 10.3389/fncel.2021.741292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/26/2021] [Indexed: 11/29/2022] Open
Abstract
Neural firing patterns are critical for specific information coding and transmission, and abnormal firing is implicated in a series of neural pathologies. Recent studies have indicated that enhanced burst firing mediated by T-type voltage-gated calcium channels (T-VGCCs) in specific neuronal subtypes is involved in several mental or neurological disorders such as depression and epilepsy, while suppression of T-VGCCs relieve related symptoms. Burst firing consists of groups of relatively high-frequency spikes separated by quiescence. Neurons in a variety of brain areas, including the thalamus, hypothalamus, cortex, and hippocampus, display burst firing, but the ionic mechanisms that generating burst firing and the related physiological functions vary among regions. In this review, we summarize recent findings on the mechanisms underlying burst firing in various brain areas, as well as the roles of burst firing in several mental and neurological disorders. We also discuss the ion channels and receptors that may regulate burst firing directly or indirectly, with these molecules highlighted as potential intervention targets for the treatment of mental and neurological disorders.
Collapse
Affiliation(s)
- Jie Shao
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Yunhui Liu
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Dashuang Gao
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Jie Tu
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Fan Yang
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Stojić-Vukanić Z, Pilipović I, Arsenović-Ranin N, Dimitrijević M, Leposavić G. Sex-specific remodeling of T-cell compartment with aging: Implications for rat susceptibility to central nervous system autoimmune diseases. Immunol Lett 2021; 239:42-59. [PMID: 34418487 DOI: 10.1016/j.imlet.2021.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/12/2021] [Accepted: 08/12/2021] [Indexed: 11/15/2022]
Abstract
The incidence of multiple sclerosis (MS) and susceptibility of animals to experimental autoimmune encephalomyelitis (EAE), the most commonly used experimental model of MS, decrease with aging. Generally, autoimmune diseases develop as the ultimate outcome of an imbalance between damaging immune responses against self and regulatory immune responses (keeping the former under control). Thus, in this review the age-related changes possibly underlying this balance were discussed. Specifically, considering the central role of T cells in MS/EAE, the impact of aging on overall functional capacity (reflecting both overall count and individual functional cell properties) of self-reactive conventional T cells (Tcons) and FoxP3+ regulatory T cells (Tregs), as the most potent immunoregulatory/suppressive cells, was analyzed, as well. The analysis encompasses three distinct compartments: thymus (the primary lymphoid organ responsible for the elimination of self-reactive T cells - negative selection and the generation of Tregs, compensating for imperfections of the negative selection), peripheral blood/lymphoid tissues ("afferent" compartment), and brain/spinal cord tissues ("target" compartment). Given that the incidence of MS and susceptibility of animals to EAE are greater in women/females than in age-matched men/males, sex as independent variable was also considered. In conclusion, with aging, sex-specific alterations in the balance of self-reactive Tcons/Tregs are likely to occur not only in the thymus/"afferent" compartment, but also in the "target" compartment, reflecting multifaceted changes in both T-cell types. Their in depth understanding is important not only for envisaging effects of aging, but also for designing interventions to slow-down aging without any adverse effect on incidence of autoimmune diseases.
Collapse
Affiliation(s)
- Zorica Stojić-Vukanić
- Department of Microbiology and Immunology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Ivan Pilipović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", Belgrade, Serbia
| | - Nevena Arsenović-Ranin
- Department of Microbiology and Immunology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Mirjana Dimitrijević
- Department of Immunology, University of Belgrade - Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, Belgrade, Serbia
| | - Gordana Leposavić
- Department of Pathobiology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia.
| |
Collapse
|
9
|
Diverse functions and mechanisms of regulatory T cell in ischemic stroke. Exp Neurol 2021; 343:113782. [PMID: 34116055 DOI: 10.1016/j.expneurol.2021.113782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/24/2021] [Accepted: 06/05/2021] [Indexed: 12/28/2022]
Abstract
The inflammatory and immune processes are key pathophysiological processes in the ischemic stroke, including leukocyte infiltration and destruction of the blood-brain-barrier (BBB), which further lead to increased post-ischemic inflammation. Regulatory T cells (Tregs) are a specific subset of T lymphocytes that play a pivotal role in suppressing the activation of immune system, maintaining immune homeostasis, and regulating inflammation induced by pathogens and environmental toxins. We would like to discuss the paradox function of Tregs in ischemic stroke. The accumulating data indicate that Tregs are involved in the immune regulation and self-tolerance after ischemic stroke, contributing the outcome of ischemic stroke. Tregs could resist immune response overactivation, and were supposed to be the endogenous regulatory factors to control the immune response of ischemic brain. Although, there are still some controversies and unresolved issues about the functions and mechanisms of Tregs in ischemic stroke. More and more attention has been paid to Tregs in the pathogenesis of ischemic stroke and it might be a potential therapeutic target in the future. In this review, we will summarize the recent findings on the specific functions and mechanisms of Tregs and discuss its potential therapeutic role in ischemic stroke.
Collapse
|
10
|
Barrett PQ, Guagliardo NA, Bayliss DA. Ion Channel Function and Electrical Excitability in the Zona Glomerulosa: A Network Perspective on Aldosterone Regulation. Annu Rev Physiol 2020; 83:451-475. [PMID: 33176563 DOI: 10.1146/annurev-physiol-030220-113038] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aldosterone excess is a pathogenic factor in many hypertensive disorders. The discovery of numerous somatic and germline mutations in ion channels in primary hyperaldosteronism underscores the importance of plasma membrane conductances in determining the activation state of zona glomerulosa (zG) cells. Electrophysiological recordings describe an electrically quiescent behavior for dispersed zG cells. Yet, emerging data indicate that in native rosette structures in situ, zG cells are electrically excitable, generating slow periodic voltage spikes and coordinated bursts of Ca2+ oscillations. We revisit data to understand how a multitude of conductances may underlie voltage/Ca2+ oscillations, recognizing that zG layer self-renewal and cell heterogeneity may complicate this task. We review recent data to understand rosette architecture and apply maxims derived from computational network modeling to understand rosette function. The challenge going forward is to uncover how the rosette orchestrates the behavior of a functional network of conditional oscillators to control zG layer performance and aldosterone secretion.
Collapse
Affiliation(s)
- Paula Q Barrett
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA; , ,
| | - Nick A Guagliardo
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA; , ,
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA; , ,
| |
Collapse
|
11
|
Ito M, Komai K, Nakamura T, Srirat T, Yoshimura A. Tissue regulatory T cells and neural repair. Int Immunol 2020; 31:361-369. [PMID: 30893423 DOI: 10.1093/intimm/dxz031] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 03/19/2019] [Indexed: 12/18/2022] Open
Abstract
Inflammation and immune responses after tissue injury play pivotal roles in the pathology, resolution of inflammation, tissue recovery, fibrosis and remodeling. Regulatory T cells (Tregs) are the cells responsible for suppressing immune responses and can be activated in secondary lymphatic tissues, where they subsequently regulate effector T cell and dendritic cell activation. Recently, Tregs that reside in non-lymphoid tissues, called tissue Tregs, have been shown to exhibit tissue-specific functions that contribute to the maintenance of tissue homeostasis and repair. Unlike other tissue Tregs, the role of Tregs in the brain has not been well elucidated because the number of brain Tregs is very small under normal conditions. However, we found that Tregs accumulate in the brain at the chronic phase of ischemic brain injury and control astrogliosis through secretion of a cytokine, amphiregulin (Areg). Brain Tregs resemble other tissue Tregs in many ways but, unlike the other tissue Tregs, brain Tregs express neural-cell-specific genes such as the serotonin receptor (Htr7) and respond to serotonin. Administering serotonin or selective serotonin reuptake inhibitors (SSRIs) in an experimental mouse model of stroke increases the number of brain Tregs and ameliorates neurological symptoms. Knowledge of brain Tregs will contribute to the understanding of various types of neuroinflammation.
Collapse
Affiliation(s)
- Minako Ito
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Kyoko Komai
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Toshihiro Nakamura
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Tanakorn Srirat
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
12
|
Role of the Serotonin Receptor 7 in Brain Plasticity: From Development to Disease. Int J Mol Sci 2020; 21:ijms21020505. [PMID: 31941109 PMCID: PMC7013427 DOI: 10.3390/ijms21020505] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/18/2022] Open
Abstract
Our knowledge on the plastic functions of the serotonin (5-HT) receptor subtype 7 (5-HT7R) in the brain physiology and pathology have advanced considerably in recent years. A wealth of data show that 5-HT7R is a key player in the establishment and remodeling of neuronal cytoarchitecture during development and in the mature brain, and its dysfunction is linked to neuropsychiatric and neurodevelopmental diseases. The involvement of this receptor in synaptic plasticity is further demonstrated by data showing that its activation allows the rescue of long-term potentiation (LTP) and long-term depression (LTD) deficits in various animal models of neurodevelopmental diseases. In addition, it is becoming clear that the 5-HT7R is involved in inflammatory intestinal diseases, modulates the function of immune cells, and is likely to play a role in the gut-brain axis. In this review, we will mainly focus on recent findings on this receptor’s role in the structural and synaptic plasticity of the mammalian brain, although we will also illustrate novel aspects highlighted in gastrointestinal (GI) tract and immune system.
Collapse
|
13
|
Wang H, Wei Y, Pu Y, Jiang D, Jiang X, Zhang Y, Tao J. Brain-derived neurotrophic factor stimulation of T-type Ca2+ channels in sensory neurons contributes to increased peripheral pain sensitivity. Sci Signal 2019; 12:12/600/eaaw2300. [DOI: 10.1126/scisignal.aaw2300] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although brain-derived neurotrophic factor (BDNF) is implicated in the nociceptive signaling of peripheral sensory neurons, the underlying mechanisms remain largely unknown. Here, we elucidated the effects of BDNF on the neuronal excitability of trigeminal ganglion (TG) neurons and the pain sensitivity of rats mediated by T-type Ca2+ channels. BDNF reversibly and dose-dependently enhanced T-type channel currents through the activation of tropomyosin receptor kinase B (TrkB). Antagonism of phosphatidylinositol 3-kinase (PI3K) but not of its downstream target, the kinase AKT, abolished the BDNF-induced T-type channel response. BDNF application activated p38 mitogen-activated protein kinase (MAPK), and this effect was prevented by inhibition of PI3K but not of protein kinase A (PKA). Antagonism of either PI3K or p38 MAPK prevented the BDNF-induced stimulation of PKA activity, whereas PKA inhibition blocked the BDNF-mediated increase in T-type currents. BDNF increased the rate of action potential firing in TG neurons and enhanced the pain sensitivity of rats to mechanical stimuli. Moreover, inhibition of TrkB signaling abolished the increased mechanical sensitivity in a rat model of chronic inflammatory pain, and this effect was attenuated by either T-type channel blockade or knockdown of the channel Cav3.2. Together, our findings indicate that BDNF enhances T-type currents through the stimulation of TrkB coupled to PI3K-p38-PKA signaling, thereby inducing neuronal hyperexcitability of TG neurons and pain hypersensitivity in rats.
Collapse
|
14
|
Blattner KM, Canney DJ, Pippin DA, Blass BE. Pharmacology and Therapeutic Potential of the 5-HT 7 Receptor. ACS Chem Neurosci 2019; 10:89-119. [PMID: 30020772 DOI: 10.1021/acschemneuro.8b00283] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
It is well-documented that serotonin (5-HT) exerts its pharmacological effects through a series of 5-HT receptors. The most recently identified member of this family, 5-HT7, was first identified in 1993. Over the course of the last 25 years, this receptor has been the subject of intense investigation, and it has been demonstrated that 5-HT7 plays an important role in a wide range of pharmacological processes. As a result of these findings, modulation of 5-HT7 activity has been the focus of numerous drug discovery and development programs. This review provides an overview of the roles of 5-HT7 in normal physiology and the therapeutic potential of this interesting drug target.
Collapse
Affiliation(s)
- Kevin M. Blattner
- Temple University School of Pharmacy, Department of Pharmaceutical Sciences, Moulder Center for Drug Discovery Research, 3307 North Broad Street, Philadelphia, Pennsylvania 19140, United States
| | - Daniel J. Canney
- Temple University School of Pharmacy, Department of Pharmaceutical Sciences, Moulder Center for Drug Discovery Research, 3307 North Broad Street, Philadelphia, Pennsylvania 19140, United States
| | - Douglas A. Pippin
- Praeventix, LLC, 665 Stockton Drive, Suite 200H, Exton, Pennsylvania 19341, United States
| | - Benjamin E. Blass
- Temple University School of Pharmacy, Department of Pharmaceutical Sciences, Moulder Center for Drug Discovery Research, 3307 North Broad Street, Philadelphia, Pennsylvania 19140, United States
| |
Collapse
|
15
|
|
16
|
Boyer HG, Wils J, Renouf S, Arabo A, Duparc C, Boutelet I, Lefebvre H, Louiset E. Dysregulation of Aldosterone Secretion in Mast Cell–Deficient Mice. Hypertension 2017; 70:1256-1263. [DOI: 10.1161/hypertensionaha.117.09746] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/08/2017] [Accepted: 09/20/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Hadrien-Gaël Boyer
- From the Normandie Université, UNIROUEN, INSERM U1239, Rouen, France (H.-G.B., J.W., S.R., C.D., I.B., H.L., E.L.); Department of Pharmacology, Institute for Biomedical Research, Rouen University Hospital, France (J.W.); Normandie Université, UNIROUEN, Rouen, France (A.A.); and Department of Endocrinology, Diabetes, and Metabolic Diseases, Institute for Research and Innovation in Biomedicine, University Hospital of Rouen, France (H.L.)
| | - Julien Wils
- From the Normandie Université, UNIROUEN, INSERM U1239, Rouen, France (H.-G.B., J.W., S.R., C.D., I.B., H.L., E.L.); Department of Pharmacology, Institute for Biomedical Research, Rouen University Hospital, France (J.W.); Normandie Université, UNIROUEN, Rouen, France (A.A.); and Department of Endocrinology, Diabetes, and Metabolic Diseases, Institute for Research and Innovation in Biomedicine, University Hospital of Rouen, France (H.L.)
| | - Sylvie Renouf
- From the Normandie Université, UNIROUEN, INSERM U1239, Rouen, France (H.-G.B., J.W., S.R., C.D., I.B., H.L., E.L.); Department of Pharmacology, Institute for Biomedical Research, Rouen University Hospital, France (J.W.); Normandie Université, UNIROUEN, Rouen, France (A.A.); and Department of Endocrinology, Diabetes, and Metabolic Diseases, Institute for Research and Innovation in Biomedicine, University Hospital of Rouen, France (H.L.)
| | - Arnaud Arabo
- From the Normandie Université, UNIROUEN, INSERM U1239, Rouen, France (H.-G.B., J.W., S.R., C.D., I.B., H.L., E.L.); Department of Pharmacology, Institute for Biomedical Research, Rouen University Hospital, France (J.W.); Normandie Université, UNIROUEN, Rouen, France (A.A.); and Department of Endocrinology, Diabetes, and Metabolic Diseases, Institute for Research and Innovation in Biomedicine, University Hospital of Rouen, France (H.L.)
| | - Céline Duparc
- From the Normandie Université, UNIROUEN, INSERM U1239, Rouen, France (H.-G.B., J.W., S.R., C.D., I.B., H.L., E.L.); Department of Pharmacology, Institute for Biomedical Research, Rouen University Hospital, France (J.W.); Normandie Université, UNIROUEN, Rouen, France (A.A.); and Department of Endocrinology, Diabetes, and Metabolic Diseases, Institute for Research and Innovation in Biomedicine, University Hospital of Rouen, France (H.L.)
| | - Isabelle Boutelet
- From the Normandie Université, UNIROUEN, INSERM U1239, Rouen, France (H.-G.B., J.W., S.R., C.D., I.B., H.L., E.L.); Department of Pharmacology, Institute for Biomedical Research, Rouen University Hospital, France (J.W.); Normandie Université, UNIROUEN, Rouen, France (A.A.); and Department of Endocrinology, Diabetes, and Metabolic Diseases, Institute for Research and Innovation in Biomedicine, University Hospital of Rouen, France (H.L.)
| | - Hervé Lefebvre
- From the Normandie Université, UNIROUEN, INSERM U1239, Rouen, France (H.-G.B., J.W., S.R., C.D., I.B., H.L., E.L.); Department of Pharmacology, Institute for Biomedical Research, Rouen University Hospital, France (J.W.); Normandie Université, UNIROUEN, Rouen, France (A.A.); and Department of Endocrinology, Diabetes, and Metabolic Diseases, Institute for Research and Innovation in Biomedicine, University Hospital of Rouen, France (H.L.)
| | - Estelle Louiset
- From the Normandie Université, UNIROUEN, INSERM U1239, Rouen, France (H.-G.B., J.W., S.R., C.D., I.B., H.L., E.L.); Department of Pharmacology, Institute for Biomedical Research, Rouen University Hospital, France (J.W.); Normandie Université, UNIROUEN, Rouen, France (A.A.); and Department of Endocrinology, Diabetes, and Metabolic Diseases, Institute for Research and Innovation in Biomedicine, University Hospital of Rouen, France (H.L.)
| |
Collapse
|
17
|
Rodrigues AL, Brescia M, Koschinski A, Moreira TH, Cameron RT, Baillie G, Beirão PSL, Zaccolo M, Cruz JS. Increase in Ca 2+ current by sustained cAMP levels enhances proliferation rate in GH3 cells. Life Sci 2017; 192:144-150. [PMID: 29183797 DOI: 10.1016/j.lfs.2017.11.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 11/20/2017] [Accepted: 11/24/2017] [Indexed: 12/12/2022]
Abstract
AIMS Ca2+ and cAMP are important intracellular modulators. In order to generate intracellular signals with various amplitudes, as well as different temporal and spatial properties, a tightly and precise control of these modulators in intracellular compartments is necessary. The aim of this study was to evaluate the effects of elevated and sustained cAMP levels on voltage-dependent Ca2+ currents and proliferation in pituitary tumor GH3 cells. MAIN METHODS Effect of long-term exposure to forskolin and dibutyryl-cyclic AMP (dbcAMP) on Ca2+ current density and cell proliferation rate were determined by using the whole-cell patch-clamp technique and real time cell monitoring system. The cAMP levels were assayed, after exposing transfected GH3 cells with the EPAC-1 cAMP sensor to forskolin and dbcAMP, by FRET analysis. KEY FINDINGS Sustained forskolin treatment (24 and 48h) induced a significant increase in total Ca2+ current density in GH3 cells. Accordingly, dibutyryl-cAMP incubation (dbcAMP) also elicited increase in Ca2+ current density. However, the maximum effect of dbcAMP occurred only after 72h incubation, whereas forskolin showed maximal effect at 48h. FRET-experiments confirmed that the time-course to elevate intracellular cAMP was distinct between forskolin and dbcAMP. Mibefradil inhibited the fast inactivating current component selectively, indicating the recruitment of T-type Ca2+ channels. A significant increase on cell proliferation rate, which could be related to the elevated and sustained intracellular levels of cAMP was observed. SIGNIFICANCE We conclude that maintaining high levels of intracellular cAMP will cause an increase in Ca2+ current density and this phenomenon impacts proliferation rate in GH3 cells.
Collapse
Affiliation(s)
- Andréia Laura Rodrigues
- Laboratório CaCIA, Faculdade de Ciências Humanas Sociais e da Saúde, Universidade FUMEC, Brazil.
| | - Marcella Brescia
- Department of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK
| | - Andreas Koschinski
- Department of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK
| | - Thaís Helena Moreira
- Laboratório de Membranas Excitáveis e de Biologia Cardiovascular, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ryan T Cameron
- Institute of Cardiovascular and Medical Sciences, Glasgow University, Glasgow, UK
| | - George Baillie
- Institute of Cardiovascular and Medical Sciences, Glasgow University, Glasgow, UK
| | - Paulo S L Beirão
- Laboratório de Membranas Excitáveis e de Biologia Cardiovascular, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK
| | - Jader S Cruz
- Laboratório de Membranas Excitáveis e de Biologia Cardiovascular, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
18
|
Sankhe S, Manousakidi S, Antigny F, Arthur Ataam J, Bentebbal S, Ruchon Y, Lecerf F, Sabourin J, Price L, Fadel E, Dorfmüller P, Eddahibi S, Humbert M, Perros F, Capuano V. T-type Ca 2+ channels elicit pro-proliferative and anti-apoptotic responses through impaired PP2A/Akt1 signaling in PASMCs from patients with pulmonary arterial hypertension. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1631-1641. [PMID: 28655554 DOI: 10.1016/j.bbamcr.2017.06.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/13/2017] [Accepted: 06/21/2017] [Indexed: 10/19/2022]
Abstract
Idiopathic pulmonary arterial hypertension (iPAH) is characterized by obstructive hyperproliferation and apoptosis resistance of distal pulmonary artery smooth muscle cells (PASMCs). T-type Ca2+ channel blockers have been shown to reduce experimental pulmonary hypertension, although the impact of T-type channel inhibition remains unexplored in PASMCs from iPAH patients. Here we show that T-type channels Cav3.1 and Cav3.2 are present in the lung and PASMCs from iPAH patients and control subjects. The blockade of T-type channels by the specific blocker, TTA-A2, prevents cell cycle progression and PASMCs growth. In iPAH cells, T-type channel signaling fails to activate phosphatase PP2A, leading to an increase in ERK1/2, P38 activation. Moreover, T-type channel signaling is redirected towards the activation of the kinase Akt1, leading to increased expression of the anti-apoptotic protein survivin, and a decrease in the pro-apoptotic mediator FoxO3A. Finally, in iPAH cells, Akt1 is no longer able to regulate caspase 9 activation, whereas T-type channel overexpression reverses PP2A defect in iPAH cells but reinforces the deleterious effects of Akt1 activation. Altogether, these data highlight T-type channel signaling as a strong trigger of the pathological phenotype of PASMCs from iPAH patients (hyper-proliferation/cells survival and apoptosis resistance), suggesting that both T-type channels and PP2A may be promising therapeutic targets for pulmonary hypertension.
Collapse
Affiliation(s)
- Safietou Sankhe
- INSERM U999, Hôpital Marie Lannelongue, Le Plessis Robinson, France; Univ. Paris-Sud, Faculté de Médecine, Univ. Paris-Saclay, Le Kremlin Bicêtre, France
| | - Sevasti Manousakidi
- INSERM U999, Hôpital Marie Lannelongue, Le Plessis Robinson, France; Univ. Paris-Sud, Faculté de Médecine, Univ. Paris-Saclay, Le Kremlin Bicêtre, France
| | - Fabrice Antigny
- INSERM U999, Hôpital Marie Lannelongue, Le Plessis Robinson, France; Univ. Paris-Sud, Faculté de Médecine, Univ. Paris-Saclay, Le Kremlin Bicêtre, France
| | - Jennifer Arthur Ataam
- INSERM U999, Hôpital Marie Lannelongue, Le Plessis Robinson, France; Univ. Paris-Sud, Faculté de Médecine, Univ. Paris-Saclay, Le Kremlin Bicêtre, France
| | - Sana Bentebbal
- PhyMedExp, Univ. Montpellier, Inserm U1046, cNRS UMR9214.34295 MINSERM U1046, Montpellier, France
| | - Yann Ruchon
- INSERM U999, Hôpital Marie Lannelongue, Le Plessis Robinson, France; Univ. Paris-Sud, Faculté de Médecine, Univ. Paris-Saclay, Le Kremlin Bicêtre, France
| | - Florence Lecerf
- INSERM U999, Hôpital Marie Lannelongue, Le Plessis Robinson, France; Univ. Paris-Sud, Faculté de Médecine, Univ. Paris-Saclay, Le Kremlin Bicêtre, France
| | - Jessica Sabourin
- INSERM UMR-S1180, Univ. Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Laura Price
- National Pulmonary Hypertension Service, Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK
| | - Elie Fadel
- INSERM U999, Hôpital Marie Lannelongue, Le Plessis Robinson, France; Univ. Paris-Sud, Faculté de Médecine, Univ. Paris-Saclay, Le Kremlin Bicêtre, France
| | - Peter Dorfmüller
- INSERM U999, Hôpital Marie Lannelongue, Le Plessis Robinson, France; Univ. Paris-Sud, Faculté de Médecine, Univ. Paris-Saclay, Le Kremlin Bicêtre, France
| | - Saadia Eddahibi
- PhyMedExp, Univ. Montpellier, Inserm U1046, cNRS UMR9214.34295 MINSERM U1046, Montpellier, France
| | - Marc Humbert
- INSERM U999, Hôpital Marie Lannelongue, Le Plessis Robinson, France; Univ. Paris-Sud, Faculté de Médecine, Univ. Paris-Saclay, Le Kremlin Bicêtre, France; AP-HP, Service de pneumologie, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Frédéric Perros
- INSERM U999, Hôpital Marie Lannelongue, Le Plessis Robinson, France; Univ. Paris-Sud, Faculté de Médecine, Univ. Paris-Saclay, Le Kremlin Bicêtre, France
| | - Véronique Capuano
- INSERM U999, Hôpital Marie Lannelongue, Le Plessis Robinson, France; Univ. Paris-Sud, Faculté de Médecine, Univ. Paris-Saclay, Le Kremlin Bicêtre, France.
| |
Collapse
|
19
|
Louiset E, Duparc C, Lenglet S, Gomez-Sanchez CE, Lefebvre H. Role of cAMP/PKA pathway and T-type calcium channels in the mechanism of action of serotonin in human adrenocortical cells. Mol Cell Endocrinol 2017; 441:99-107. [PMID: 27743992 PMCID: PMC5465225 DOI: 10.1016/j.mce.2016.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/30/2016] [Accepted: 10/09/2016] [Indexed: 11/29/2022]
Abstract
In human adrenal, serotonin (5-HT), produced by mast cells located in zona glomerulosa, stimulates production of corticosteroids through a paracrine mechanism involving the 5-HT receptor type 4 (5-HT4). The aim of the present study was to investigate the transduction mechanisms associated with activation of 5-HT4 receptors in human adrenocortical cells. Our results show that 5-HT4 receptors are present in the outer adrenal cortex, both in glomerulosa and fasciculata zonae. In the zona glomerulosa. 5-HT4 receptor was detected both in immunopositive and immunonegative cells for 11β-hydroxylase, an enzyme involved in cortisol synthesis. The data demonstrate that 5-HT4 receptors are positively coupled to adenylyl cyclases and cAMP-dependent protein kinases (PKA). The activation of the cAMP-PKA pathway is associated with calcium influx through T-type calcium channels. Both the adenylyl cyclase/PKA pathway and the calcium influx are involved in 5-HT-induced cortisol secretion.
Collapse
Affiliation(s)
- Estelle Louiset
- Normandie Univ, UNIROUEN, INSERM, DC2N, 76000, Rouen, France
| | - Céline Duparc
- Normandie Univ, UNIROUEN, INSERM, DC2N, 76000, Rouen, France
| | - Sébastien Lenglet
- Unit of Toxicology, University Center of Legal Medicine, CH-1211 Geneva 4, Switzerland
| | - Celso E Gomez-Sanchez
- Endocrine Section, Department of Medicine, G.V. (Sonny) Montgomery VA Medical Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Hervé Lefebvre
- Normandie Univ, UNIROUEN, INSERM, DC2N, 76000, Rouen, France; Department of Endocrinology, Diabetes and Metabolic Diseases, University Hospital of Rouen, Rouen, France.
| |
Collapse
|
20
|
Spät A, Hunyady L, Szanda G. Signaling Interactions in the Adrenal Cortex. Front Endocrinol (Lausanne) 2016; 7:17. [PMID: 26973596 PMCID: PMC4770035 DOI: 10.3389/fendo.2016.00017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/11/2016] [Indexed: 11/30/2022] Open
Abstract
The major physiological stimuli of aldosterone secretion are angiotensin II (AII) and extracellular K(+), whereas cortisol production is primarily regulated by corticotropin (ACTH) in fasciculata cells. AII triggers Ca(2+) release from internal stores that is followed by store-operated and voltage-dependent Ca(2+) entry, whereas K(+)-evoked depolarization activates voltage-dependent Ca(2+) channels. ACTH acts primarily through the formation of cAMP and subsequent protein phosphorylation by protein kinase A. Both Ca(2+) and cAMP facilitate the transfer of cholesterol to mitochondrial inner membrane. The cytosolic Ca(2+) signal is transferred into the mitochondrial matrix and enhances pyridine nucleotide reduction. Increased formation of NADH results in increased ATP production, whereas that of NADPH supports steroid production. In reality, the control of adrenocortical function is a lot more sophisticated with second messengers crosstalking and mutually modifying each other's pathways. Cytosolic Ca(2+) and cGMP are both capable of modifying cAMP metabolism, while cAMP may enhance Ca(2+) release and voltage-activated Ca(2+) channel activity. Besides, mitochondrial Ca(2+) signal brings about cAMP formation within the organelle and this further enhances aldosterone production. Maintained aldosterone and cortisol secretion are optimized by the concurrent actions of Ca(2+) and cAMP, as exemplified by the apparent synergism of Ca(2+) influx (inducing cAMP formation) and Ca(2+) release during response to AII. Thus, cross-actions of parallel signal transducing pathways are not mere intracellular curiosities but rather substantial phenomena, which fine-tune the biological response. Our review focuses on these functionally relevant interactions between the Ca(2+) and the cyclic nucleotide signal transducing pathways hitherto described in the adrenal cortex.
Collapse
Affiliation(s)
- András Spät
- Department of Physiology, Semmelweis University Medical School, Budapest, Hungary
- Laboratory of Molecular Physiology, Hungarian Academy of Sciences, Budapest, Hungary
- *Correspondence: András Spät,
| | - László Hunyady
- Department of Physiology, Semmelweis University Medical School, Budapest, Hungary
- Laboratory of Molecular Physiology, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gergő Szanda
- Department of Physiology, Semmelweis University Medical School, Budapest, Hungary
| |
Collapse
|
21
|
Rossier MF. T-Type Calcium Channel: A Privileged Gate for Calcium Entry and Control of Adrenal Steroidogenesis. Front Endocrinol (Lausanne) 2016; 7:43. [PMID: 27242667 PMCID: PMC4873500 DOI: 10.3389/fendo.2016.00043] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/05/2016] [Indexed: 12/03/2022] Open
Abstract
Intracellular calcium plays a crucial role in modulating a variety of functions such as muscle contraction, hormone secretion, gene expression, or cell growth. Calcium signaling has been however shown to be more complex than initially thought. Indeed, it is confined within cell microdomains, and different calcium channels are associated with different functions, as shown by various channelopathies. Sporadic mutations on voltage-operated L-type calcium channels in adrenal glomerulosa cells have been shown recently to be the second most prevalent genetic abnormalities present in human aldosterone-producing adenoma. The observed modification of the threshold of activation of the mutated channels not only provides an explanation for this gain of function but also reminds us on the importance of maintaining adequate electrophysiological characteristics to make channels able to exert specific cellular functions. Indeed, the contribution to steroid production of the various calcium channels expressed in adrenocortical cells is not equal, and the reason has been investigated for a long time. Given the very negative resting potential of these cells, and the small membrane depolarization induced by their physiological agonists, low threshold T-type calcium channels are particularly well suited for responding under these conditions and conveying calcium into the cell, at the right place for controlling steroidogenesis. In contrast, high threshold L-type channels are normally activated by much stronger cell depolarizations. The fact that dihydropyridine calcium antagonists, specific for L-type channels, are poorly efficient for reducing aldosterone secretion either in vivo or in vitro, strongly supports the view that these two types of channels differently affect steroid biosynthesis. Whether a similar analysis is transposable to fasciculata cells and cortisol secretion is one of the questions addressed in the present review. No similar mutations on L-type or T-type channels have been described yet to affect cortisol secretion or to be linked to the development of Cushing syndrome, but several evidences suggest that the function of T channels is also crucial in fasciculata cells. Putative molecular mechanisms and cellular structural organization making T channels a privileged entry for the "steroidogenic calcium" are also discussed.
Collapse
Affiliation(s)
- Michel F. Rossier
- Service of Clinical Chemistry and Toxicology, Hospital of Valais, Sion, Switzerland
- Department of Human Protein Science, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- *Correspondence: Michel F. Rossier,
| |
Collapse
|
22
|
Liu F, Weng SJ, Yang XL, Zhong YM. Orexin-A potentiates L-type calcium/barium currents in rat retinal ganglion cells. Neuroscience 2015; 305:225-37. [PMID: 26259903 DOI: 10.1016/j.neuroscience.2015.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/27/2015] [Accepted: 08/04/2015] [Indexed: 01/07/2023]
Abstract
Two neuropeptides, orexin-A and orexin-B (also called hypocretin-1 and -2), have been implicated in sleep/wake regulation, feeding behaviors via the activation of two subtypes of G-protein-coupled receptors: orexin 1 and orexin 2 receptors (OX1R and OX2R). While the expression of orexins and orexin receptors is immunohistochemically revealed in retinal neurons, the function of these peptides in the retina is largely unknown. Using whole-cell patch-clamp recordings in rat retinal slices, we demonstrated that orexin-A increased L-type-like barium currents (IBa,L) in ganglion cells (GCs), and the effect was blocked by the selective OX1R antagonist SB334867, but not by the OX2R antagonist TCS OX2 29. The orexin-A effect was abolished by intracellular dialysis of GDP-β-S/GPAnt-2A, a Gq protein inhibitor, suggesting the mediation of Gq. Additionally, during internal dialysis of the phosphatidylinositol (PI)-phospholipase C (PLC) inhibitor U73122, orexin-A did not change the IBa,L of GCs, whereas the orexin-A effect persisted in the presence of the phosphatidylcholine (PC)-PLC inhibitor D609. The orexin-A-induced potentiation was not seen with internal infusion of Ca(2+)-free solution or when inositol 1,4,5-trisphosphate (IP3)-sensitive Ca(2+) release from intracellular stores was blocked by heparin/xestospongins-C. Moreover, the orexin-A effect was mimicked by the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate, but was eliminated when PKC was inhibited by bisindolylmaleimide IV (Bis-IV)/Gö6976. Neither adenosine 3',5'-cyclic monophosphate (cAMP)-protein kinase A (PKA) nor guanosine 3',5'-cyclic monophosphate (cGMP)-protein kinase G (PKG) signaling pathway was likely involved, as orexin-A persisted to potentiate the IBa,L of GCs no matter these two pathways were activated or inhibited. These results suggest that, by activating OX1R, orexin-A potentiates the IBa,L of rat GCs through a distinct Gq/PI-PLC/IP3/Ca(2+)/PKC signaling pathway.
Collapse
Affiliation(s)
- F Liu
- Institute of Neurobiology, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - S-J Weng
- Institute of Neurobiology, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - X-L Yang
- Institute of Neurobiology, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Y-M Zhong
- Institute of Neurobiology, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China.
| |
Collapse
|
23
|
Lefebvre H, Duparc C, Prévost G, Zennaro MC, Bertherat J, Louiset E. Paracrine control of steroidogenesis by serotonin in adrenocortical neoplasms. Mol Cell Endocrinol 2015; 408:198-204. [PMID: 25433205 DOI: 10.1016/j.mce.2014.11.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/18/2014] [Accepted: 11/19/2014] [Indexed: 12/19/2022]
Abstract
Serotonin (5-hydroxytryptamine; 5-HT) is able to activate the hypothalamo-pituitary-adrenal axis via multiple actions at different levels. In the human adrenal gland, 5-HT, released by subcapsular mast cells, stimulates corticosteroid production through a paracrine mode of communication which involves 5-HT receptor type 4 (5-HT4) primarily located in zona glomerulosa. As a result, 5-HT is much more efficient to stimulate aldosterone secretion than cortisol release in vitro and administration of 5-HT4 receptor agonists to healthy individuals is followed by an increase in plasma aldosterone levels without any change in plasma cortisol concentrations. Interestingly, adrenocortical hyperplasias and tumors responsible for corticosteroid hypersecretion exhibit various cellular and molecular defects which tend to reinforce the intraadrenal serotonergic tone. These pathophysiological mechanisms, which are summarized in the present review, include an increase in adrenal 5-HT production and overexpression of 5-HT receptors in adrenal neoplastic tissues. Altogether, these data support the concept of adrenal serotonergic paracrinopathy and suggest that 5-HT and its receptors may constitute valuable targets for pharmacological treatments of primary adrenal diseases.
Collapse
Affiliation(s)
- H Lefebvre
- INSERM, U982, Laboratory of Differentiation & Neuronal and Neuroendocrine Communication, IRIB, University of Rouen, Mont-Saint-Aignan, France; Department of Endocrinology, University Hospital of Rouen, Rouen, France.
| | - C Duparc
- INSERM, U982, Laboratory of Differentiation & Neuronal and Neuroendocrine Communication, IRIB, University of Rouen, Mont-Saint-Aignan, France
| | - G Prévost
- INSERM, U982, Laboratory of Differentiation & Neuronal and Neuroendocrine Communication, IRIB, University of Rouen, Mont-Saint-Aignan, France; Department of Endocrinology, University Hospital of Rouen, Rouen, France
| | - M C Zennaro
- INSERM, UMRS 970, Paris Cardiovascular Research Center, Paris, France
| | - J Bertherat
- Department of Endocrinology, University Hospital Cochin and Cochin Institute, Assistance Publique-Hôpitaux de Paris, Université Paris V, Paris, France
| | - E Louiset
- INSERM, U982, Laboratory of Differentiation & Neuronal and Neuroendocrine Communication, IRIB, University of Rouen, Mont-Saint-Aignan, France
| |
Collapse
|
24
|
Lefebvre H, Duparc C, Prévost G, Bertherat J, Louiset E. Cell-to-cell communication in bilateral macronodular adrenal hyperplasia causing hypercortisolism. Front Endocrinol (Lausanne) 2015; 6:34. [PMID: 25941513 PMCID: PMC4403554 DOI: 10.3389/fendo.2015.00034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 03/02/2015] [Indexed: 12/25/2022] Open
Abstract
It has been well established that, in the human adrenal gland, cortisol secretion is not only controlled by circulating corticotropin but is also influenced by a wide variety of bioactive signals, including conventional neurotransmitters and neuropeptides, released within the cortex by various cell types such as chromaffin cells, neurons, cells of the immune system, adipocytes, and endothelial cells. These different types of cells are present in bilateral macronodular adrenal hyperplasia (BMAH), a rare etiology of primary adrenal Cushing's syndrome, where they appear intermingled with adrenocortical cells in the hyperplastic cortex. In addition, the genetic events, which cause the disease, favor abnormal adrenal differentiation that results in illicit expression of paracrine regulatory factors and their receptors in adrenocortical cells. All these defects constitute the molecular basis for aberrant autocrine/paracrine regulatory mechanisms, which are likely to play a role in the pathophysiology of BMAH-associated hypercortisolism. The present review summarizes the current knowledge on this topic as well as the therapeutic perspectives offered by this new pathophysiological concept.
Collapse
Affiliation(s)
- Hervé Lefebvre
- INSERM Unité 982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Mont-Saint-Aignan, France
- Institute for Research and Innovation in Biomedicine, Rouen University, Mont-Saint-Aignan, France
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Hospital of Rouen, Rouen, France
- *Correspondence: Hervé Lefebvre, Department of Endocrinology, INSERM U982, Institute for Research and Innovation in Biomedicine (IRIB), University Hospital of Rouen, Rouen 76031, France e-mail:
| | - Céline Duparc
- INSERM Unité 982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Mont-Saint-Aignan, France
- Institute for Research and Innovation in Biomedicine, Rouen University, Mont-Saint-Aignan, France
| | - Gaëtan Prévost
- INSERM Unité 982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Mont-Saint-Aignan, France
- Institute for Research and Innovation in Biomedicine, Rouen University, Mont-Saint-Aignan, France
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Hospital of Rouen, Rouen, France
| | - Jérôme Bertherat
- INSERM Unité 1016, Institut Cochin, Paris, France
- Department of Endocrinology and Metabolic Diseases, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Estelle Louiset
- INSERM Unité 982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Mont-Saint-Aignan, France
- Institute for Research and Innovation in Biomedicine, Rouen University, Mont-Saint-Aignan, France
| |
Collapse
|
25
|
Zhang Y, Qin W, Qian Z, Liu X, Wang H, Gong S, Sun YG, Snutch TP, Jiang X, Tao J. Peripheral pain is enhanced by insulin-like growth factor 1 through a G protein-mediated stimulation of T-type calcium channels. Sci Signal 2014; 7:ra94. [DOI: 10.1126/scisignal.2005283] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
26
|
Fülöp L, Rajki A, Katona D, Szanda G, Spät A. Extramitochondrial OPA1 and adrenocortical function. Mol Cell Endocrinol 2013; 381:70-9. [PMID: 23906536 DOI: 10.1016/j.mce.2013.07.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/19/2013] [Accepted: 07/19/2013] [Indexed: 02/06/2023]
Abstract
We have previously described that silencing of the mitochondrial protein OPA1 enhances mitochondrial Ca(2+) signaling and aldosterone production in H295R adrenocortical cells. Since extramitochondrial OPA1 (emOPA1) was reported to facilitate cAMP-induced lipolysis, we hypothesized that emOPA1, via the enhanced hydrolysis of cholesterol esters, augments aldosterone production in H295R cells. A few OPA1 immunopositive spots were detected in ∼40% of the cells. In cell fractionation studies OPA1/COX IV (mitochondrial marker) ratio in the post-mitochondrial fractions was an order of magnitude higher than that in the mitochondrial fraction. The ratio of long to short OPA1 isoforms was lower in post-mitochondrial than in mitochondrial fractions. Knockdown of OPA1 failed to reduce db-cAMP-induced phosphorylation of hormone-sensitive lipase (HSL), Ca(2+) signaling and aldosterone secretion. In conclusion, OPA1 could be detected in the post-mitochondrial fractions, nevertheless, OPA1 did not interfere with the cAMP - PKA - HSL mediated activation of aldosterone secretion.
Collapse
Affiliation(s)
- László Fülöp
- Department of Physiology, Faculty of Medicine, Semmelweis University, Hungary
| | | | | | | | | |
Collapse
|
27
|
The serotonin 5-HT7 receptors: two decades of research. Exp Brain Res 2013; 230:555-68. [PMID: 24042216 DOI: 10.1007/s00221-013-3694-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 08/26/2013] [Indexed: 01/12/2023]
Abstract
Like most neurotransmitters, serotonin possesses a simple structure. However, the pharmacological consequences are more complex and diverse. Serotonin is involved in numerous functions in the human body including the control of appetite, sleep, memory and learning, temperature regulation, mood, behavior, cardiovascular function, muscle contraction, endocrine regulation, and depression. Low levels of serotonin may be associated with several disorders, namely increase in aggressive and angry behaviors, clinical depression, Parkinson's disease, obsessive-compulsive disorder, eating disorders, migraine, irritable bowel syndrome, tinnitus, and bipolar disease. These effects are mediated via different serotonin (5-HT) receptors. In this review, we will focus on the last discovered member of this serotonin receptor family, the 5-HT7 receptor. This receptor belongs to the G protein-coupled receptor superfamily and was cloned two decades ago. Later, different splice variants were described but no major functional differences have been described so far. All 5-HT7 receptor variants are coupled to Gαs proteins and stimulate cAMP formation. Recently, several interacting proteins have been reported, which can influence receptor signaling and trafficking.
Collapse
|
28
|
Bandulik S, Tauber P, Penton D, Schweda F, Tegtmeier I, Sterner C, Lalli E, Lesage F, Hartmann M, Barhanin J, Warth R. Severe hyperaldosteronism in neonatal Task3 potassium channel knockout mice is associated with activation of the intraadrenal renin-angiotensin system. Endocrinology 2013; 154:2712-22. [PMID: 23698720 DOI: 10.1210/en.2013-1101] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Task3 K(+) channels are highly expressed in the adrenal cortex and contribute to the angiotensin II and K(+) sensitivity of aldosterone-producing glomerulosa cells. Adult Task3(-/-) mice display a partially autonomous aldosterone secretion, subclinical hyperaldosteronism, and salt-sensitive hypertension. Here, we investigated the age dependence of the adrenal phenotype of Task3(-/-) mice. Compared with adults, newborn Task3(-/-) mice displayed a severe adrenal phenotype with strongly increased plasma levels of aldosterone, corticosterone, and progesterone. This adrenocortical dysfunction was accompanied by a modified gene expression profile. The most strongly up-regulated gene was the protease renin. Real-time PCR corroborated the strong increase in adrenal renin expression, and immunofluorescence revealed renin-expressing cells in the zona fasciculata. Together with additional factors, activation of the local adrenal renin system is probably causative for the severely disturbed steroid hormone secretion of neonatal Task3(-/-) mice. The changes in gene expression patterns of neonatal Task3(-/-) mice could also be relevant for other forms of hyperaldosteronism.
Collapse
Affiliation(s)
- Sascha Bandulik
- Department of Medical Cell Biology, University of Regensburg, 93053 Regensburg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Modulation of low-voltage-activated T-type Ca²⁺ channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:1550-9. [PMID: 22975282 DOI: 10.1016/j.bbamem.2012.08.032] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/29/2012] [Accepted: 08/30/2012] [Indexed: 12/16/2022]
Abstract
Low-voltage-activated T-type Ca²⁺ channels contribute to a wide variety of physiological functions, most predominantly in the nervous, cardiovascular and endocrine systems. Studies have documented the roles of T-type channels in sleep, neuropathic pain, absence epilepsy, cell proliferation and cardiovascular function. Importantly, novel aspects of the modulation of T-type channels have been identified over the last few years, providing new insights into their physiological and pathophysiological roles. Although there is substantial literature regarding modulation of native T-type channels, the underlying molecular mechanisms have only recently begun to be addressed. This review focuses on recent evidence that the Ca(v)3 subunits of T-type channels, Ca(v)3.1, Ca(v)3.2 and Ca(v)3.3, are differentially modulated by a multitude of endogenous ligands including anandamide, monocyte chemoattractant protein-1, endostatin, and redox and oxidizing agents. The review also provides an overview of recent knowledge gained concerning downstream pathways involving G-protein-coupled receptors. This article is part of a Special Issue entitled: Calcium channels.
Collapse
|
30
|
Watts SW, Morrison SF, Davis RP, Barman SM. Serotonin and blood pressure regulation. Pharmacol Rev 2012; 64:359-88. [PMID: 22407614 DOI: 10.1124/pr.111.004697] [Citation(s) in RCA: 262] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
5-Hydroxytryptamine (5-HT; serotonin) was discovered more than 60 years ago as a substance isolated from blood. The neural effects of 5-HT have been well investigated and understood, thanks in part to the pharmacological tools available to dissect the serotonergic system and the development of the frequently prescribed selective serotonin-reuptake inhibitors. By contrast, our understanding of the role of 5-HT in the control and modification of blood pressure pales in comparison. Here we focus on the role of 5-HT in systemic blood pressure control. This review provides an in-depth study of the function and pharmacology of 5-HT in those tissues that can modify blood pressure (blood, vasculature, heart, adrenal gland, kidney, brain), with a focus on the autonomic nervous system that includes mechanisms of action and pharmacology of 5-HT within each system. We compare the change in blood pressure produced in different species by short- and long-term administration of 5-HT or selective serotonin receptor agonists. To further our understanding of the mechanisms through which 5-HT modifies blood pressure, we also describe the blood pressure effects of commonly used drugs that modify the actions of 5-HT. The pharmacology and physiological actions of 5-HT in modifying blood pressure are important, given its involvement in circulatory shock, orthostatic hypotension, serotonin syndrome and hypertension.
Collapse
Affiliation(s)
- Stephanie W Watts
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824-1317, USA.
| | | | | | | |
Collapse
|
31
|
Hazra R, Guo JD, Ryan SJ, Jasnow AM, Dabrowska J, Rainnie DG. A transcriptomic analysis of type I-III neurons in the bed nucleus of the stria terminalis. Mol Cell Neurosci 2011; 46:699-709. [PMID: 21310239 DOI: 10.1016/j.mcn.2011.01.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 01/14/2011] [Accepted: 01/31/2011] [Indexed: 10/18/2022] Open
Abstract
The activity of neurons in the anterolateral cell group of the bed nucleus of the stria terminalis (BNST(ALG)) plays a critical role in anxiety- and stress-related behaviors. Histochemical studies have suggested that multiple distinct neuronal phenotypes exist in the BNST(ALG). Consistent with this observation, the physiological properties of BNST(ALG) neurons are also heterogeneous, and three distinct cell types can be defined (Types I-III) based primarily on their expression of four key membrane currents, namely I(h), I(A), I(T), and I(K(IR)). Significantly, all four channels are multimeric proteins and can comprise of more than one pore-forming α subunit. Hence, differential expression of α subunits may further diversify the neuronal population. However, nothing is known about the relative expression of these ion channel α subunits in BNST(ALG) neurons. We have addressed this lacuna by combining whole-cell patch-clamp recording together with single-cell reverse transcriptase polymerase chain reaction (scRT-PCR) to assess the mRNA transcript expression for each of the subunits for the four key ion channels in Type I-III neurons of the BNST(ALG.) Here, cytosolic mRNA from single neurons was probed for the expression of transcripts for each of the α subunits of I(h) (HCN1-HCN4), I(T) (Ca(v)3.1-Ca(v)3.3), I(A) (K(v)1.4, K(v)3.4, K(v)4.1-K(v) 4.3) and I(K(IR)) (Kir2.1-Kir2.4). An unbiased hierarchical cluster analysis followed by discriminant function analysis revealed that a positive correlation exists between the physiological and genetic phenotype of BNST(ALG) neurons. Thus, the analysis segregated BNST(ALG) neurons into 3 distinct groups, based on their α subunit mRNA expression profile, which positively correlated with our existing electrophysiological classification (Types I-III). Furthermore, analysis of mRNA transcript expression in Type I-Type III neurons suggested that, whereas Type I and III neurons appear to represent genetically homologous cell populations, Type II neurons may be further subdivided into three genetically distinct subgroups. These data not only validate our original classification scheme, but further refine the classification at the molecular level, and thus identifies novel targets for potential disruption and/or pharmacotherapeutic intervention in stress-related anxiety-like behaviors.
Collapse
Affiliation(s)
- Rimi Hazra
- Department of Psychiatry and Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | | | | | | | | | | |
Collapse
|
32
|
Jiang Q, Bai T, Shen S, Li L, Ding H, Wang P. Increase of cytosolic calcium induced by trichosanthin suppresses cAMP/PKC levels through the inhibition of adenylyl cyclase activity in HeLa cells. Mol Biol Rep 2010; 38:2863-8. [PMID: 21088904 DOI: 10.1007/s11033-010-0432-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 11/08/2010] [Indexed: 10/18/2022]
Abstract
Increase of cytosolic free calcium played a pivotal role in apoptotic cells induced by trichosanthin. However, little is known about the influence of cytosolic calcium increase on adenylyl cyclase activity and intracellular cAMP signaling pathway in HeLa cells. The present study showed that an influx of extracellular Ca2+ initiated by trichosanthin was required for the suppression of adenylyl cyclase activity and decrease of intracellular cAMP level. Furthermore, this inhibition was abolished by activation of PKC rather than PKA. Therefore, our results suggested that increase of cytosolic calcium induced by trichosanthin inhibits cAMP levels via suppression of adenylyl cyclase activity.
Collapse
Affiliation(s)
- Qingsong Jiang
- Department of Prosthodontics, Beijing Stomatological Hospital and School of Stomatology, Capital Medical University, Beijing, 100050, China
| | | | | | | | | | | |
Collapse
|
33
|
Markandeya YS, Fahey JM, Pluteanu F, Cribbs LL, Balijepalli RC. Caveolin-3 regulates protein kinase A modulation of the Ca(V)3.2 (alpha1H) T-type Ca2+ channels. J Biol Chem 2010; 286:2433-44. [PMID: 21084288 DOI: 10.1074/jbc.m110.182550] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Voltage-gated T-type Ca(2+) channel Ca(v)3.2 (α(1H)) subunit, responsible for T-type Ca(2+) current, is expressed in different tissues and participates in Ca(2+) entry, hormonal secretion, pacemaker activity, and arrhythmia. The precise subcellular localization and regulation of Ca(v)3.2 channels in native cells is unknown. Caveolae containing scaffolding protein caveolin-3 (Cav-3) localize many ion channels, signaling proteins and provide temporal and spatial regulation of intracellular Ca(2+) in different cells. We examined the localization and regulation of the Ca(v)3.2 channels in cardiomyocytes. Immunogold labeling and electron microscopy analysis demonstrated co-localization of the Ca(v)3.2 channel and Cav-3 relative to caveolae in ventricular myocytes. Co-immunoprecipitation from neonatal ventricular myocytes or transiently transfected HEK293 cells demonstrated that Ca(v)3.1 and Ca(v)3.2 channels co-immunoprecipitate with Cav-3. GST pulldown analysis confirmed that the N terminus region of Cav-3 closely interacts with Ca(v)3.2 channels. Whole cell patch clamp analysis demonstrated that co-expression of Cav-3 significantly decreased the peak Ca(v)3.2 current density in HEK293 cells, whereas co-expression of Cav-3 did not alter peak Ca(v)3.1 current density. In neonatal mouse ventricular myocytes, overexpression of Cav-3 inhibited the peak T-type calcium current (I(Ca,T)) and adenovirus (AdCa(v)3.2)-mediated increase in peak Ca(v)3.2 current, but did not affect the L-type current. The protein kinase A-dependent stimulation of I(Ca,T) by 8-Br-cAMP (membrane permeable cAMP analog) was abolished by siRNA directed against Cav-3. Our findings on functional modulation of the Ca(v)3.2 channels by Cav-3 is important for understanding the compartmentalized regulation of Ca(2+) signaling during normal and pathological processes.
Collapse
Affiliation(s)
- Yogananda S Markandeya
- Department of Medicine, Cellular and Molecular Arrhythmia Research Program, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
34
|
Costa RR, Varanda WA. Intracellular calcium changes in mice Leydig cells are dependent on calcium entry through T-type calcium channels. J Physiol 2007; 585:339-49. [PMID: 17932157 DOI: 10.1113/jphysiol.2007.137950] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Luteinizing hormone (LH) regulates testosterone synthesis in Leydig cells by inducing an intracellular increase in cAMP concentration. LH also increases the intracellular calcium concentration ([Ca2+]i), dependent on the presence of Ca2+ in the extracellular medium ([Ca2+]e) for its effect. Despite these evidences, the identity of a pathway for calcium entry has remained elusive and the relationship between cAMP and [Ca2+]i has been questioned. Here we show that mice Leydig cells do have an inward Ca2+ current carried by T-type Ca2+ channels. In 10 mm [Ca2+]e, the currents start to be activated at -60 mV, reaching maximal amplitude of 1.8 +/- 0.3 pA pF(-1) at -20 mV. Currents were not modified by Ba2+ or Sr2+, were suppressed in Ca2+-free external solution, and were blocked by 100 microm nickel or 100 microm cadmium. The Ki for Ni2+ is 2.6 microm and concentrations of Cd2+ smaller than 50 microm have a very small effect on the currents. The calcium currents displayed a window centred at -40 mV. The half-voltage (V0.5) of activation is -30.3 mV, whereas the half-voltage steady-state inactivation is -51.1 mV. The deactivation time constant (taudeactivation) is around 3 ms at -35 mV. Confocal microscopy experiments with Fluo-3 loaded cells reveal that both LH and dibutyryl-cAMP (db-cAMP) increase [Ca2+]i. The db-cAMP induced calcium increase was dependent on Ca2+ influx since it was abolished by removal of extracellular Ca2+ and by 400 microm Ni2+. [Ca2+]i increases in regions close to the plasma membrane and in the cell nucleus. Similar effects are seen when Leydig cells are depolarized by withdrawing K+ from the extracellular solution. Altogether, our studies show that Ca2+ influx through T-type Ca2+ channels in the plasma membrane of Leydig cells plays a crucial role in the intracellular calcium concentration changes that follow binding of LH to its receptor.
Collapse
Affiliation(s)
- Roberta Ribeiro Costa
- Department of Physiology, School of Medicine of Ribeirão Preto/University of São Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirão Preto/São Paulo Brazil
| | | |
Collapse
|
35
|
Hammack SE, Mania I, Rainnie DG. Differential Expression of Intrinsic Membrane Currents in Defined Cell Types of the Anterolateral Bed Nucleus of the Stria Terminalis. J Neurophysiol 2007; 98:638-56. [PMID: 17537902 DOI: 10.1152/jn.00382.2007] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The anterolateral group of the bed nucleus of the stria terminalis (BNSTALG) plays a critical role in a diverse array of behaviors, although little is known of the physiological properties of neurons in this region. Using whole cell patch-clamp recordings from rat BNSTALG slices in vitro, we describe three distinct physiological cell types. Type I neurons were characterized by the presence of a depolarizing sag in response to hyperpolarizing current injection that resembled activation of the hyperpolarization-activated cation current Ih and a regular firing pattern in response to depolarizing current injection. Type II neurons exhibited the same depolarizing sag in response to hyperpolarizing current injection, but burst-fired in response to depolarizing current injection, which was indicative of the activation of the low-threshold calcium current IT. Type III neurons did not exhibit a depolarizing sag in response to hyperpolarizing current injection, but instead exhibited a fast time-independent rectification that became more pronounced with increased amplitude of hyperpolarizing current injection, and was indicative of activation of the inwardly rectifying potassium current IK(IR). Type III neurons also exhibited a regular firing pattern in response to depolarizing current. Using voltage-clamp analysis we further characterized the primary active currents that shaped the physiological properties of these distinct cell types, including Ih, IT, IK(IR), the voltage-dependent potassium current IA, and the persistent sodium current INaP. The functional relevance of each cell type is discussed in relation to prior anatomical studies, as well as how these currents may interact to modulate neuronal activity within the BNSTALG.
Collapse
Affiliation(s)
- Sayamwong E Hammack
- Department of Psychiatry and Behavioral Science, Center for Behavioral Neuroscience, Emory University, Atlanta, Georgia 30329, USA
| | | | | |
Collapse
|
36
|
Abstract
Monoamines, including serotonin (5-HT), have traditionally been associated with short-term signaling pathways in neurons, such as the modulation of cAMP and Ca(2+) levels. In contrast, neuronal growth factors, such as neurotrophins, have been traditionally associated with signaling pathways, such as those for activation of extracellular-regulated kinase (ERK) and Akt (protein kinase B), which are known to induce long-term protective changes. It has therefore been unclear how antidepressants that increase serotonin (5-HT), induce such changes as hippocampal neuroprotection and neurogenesis. It has been hypothesized, that the actions of 5-HT may be mediated indirectly through increased synthesis of peptide growth factors. However, there is increasing evidence that some subtypes of 5-HT receptors can directly couple to activation of the ERK and Akt pathways. Such coupling suggests a more direct potential role for 5-HT in mediating the long-term actions induced by antidepressants.
Collapse
Affiliation(s)
- Daniel S Cowen
- Department of Psychiatry, University of Medicine and Dentistry of New Jersey - Robert Wood Johnson Medical School, New Brunswick, New Jersey 08901, USA.
| |
Collapse
|
37
|
Llamas B, Contesse V, Guyonnet-Duperat V, Vaudry H, Mormède P, Moisan MP. QTL mapping for traits associated with stress neuroendocrine reactivity in rats. Mamm Genome 2006; 16:505-15. [PMID: 16151695 DOI: 10.1007/s00335-005-0022-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Accepted: 04/06/2005] [Indexed: 12/15/2022]
Abstract
In the present study we searched for quantitative trait loci (QTLs) that affect neuroendocrine stress responses in a 20-min restraint stress paradigm using Brown-Norway (BN) and Wistar-Kyoto-Hyperactive (WKHA) rats. These strains differed in their hypothalamic-pituitary-adrenal axis (plasma ACTH and corticosterone levels, thymus, and adrenal weights) and in their renin-angiotensin-aldosterone system reactivity (plasma renin activity, aldosterone concentration). We performed a whole-genome scan on a F2 progeny derived from a WKHA x BN intercross, which led to the identification of several QTLs linked to plasma renin activity (Sr6, Sr8, Sr11, and Sr12 on chromosomes RNO2, 3, 19, and 8, respectively), plasma aldosterone concentration (Sr7 and Sr9 on RNO2 and 5, respectively), and thymus weight (Sr10, Sr13, and Srl4 on RNO5, 10, and 16, respectively). The type 1b angiotensin II receptor gene (Agtrlb) maps within the confidence intervals of QTLs on RNO2 linked to plasma renin activity (Sr6, highly significant; LOD = 5.0) and to plasma aldosterone level (Sr7, suggestive; LOD = 2.0). In vitro studies of angiotensin II-induced release of aldosterone by adrenal glomerulosa cells revealed a lower receptor potency (log EC50 = -8.16 +/- 0.11 M) and efficiency (Emax = 453.3 +/- 25.9 pg/3 x 10(4) cells/24 h) in BN than in WKHA (log EC50 = -10.66 +/- 0.18 M; Emax = 573.1 +/- 15.3 pg/3 x 10(4) cells/24 h). Moreover, differences in Agtr1b mRNA abundance and sequence reinforce the putative role of the Agtr1b gene in the differential plasma renin stress reactivity between the two rat strains.
Collapse
Affiliation(s)
- Bastien Llamas
- Laboratoire Neurogénétique et Stress, INSERM U471/INRA UMR1243, Université Victor Segalen Bordeaux 2, Institut François Magendie, Rue Camille Saint Saens, 33077 Bordeaux cedex, France
| | | | | | | | | | | |
Collapse
|
38
|
Norum JH, Méthi T, Mattingly RR, Levy FO. Endogenous expression and protein kinase A-dependent phosphorylation of the guanine nucleotide exchange factor Ras-GRF1 in human embryonic kidney 293 cells. FEBS J 2005; 272:2304-16. [PMID: 15853814 DOI: 10.1111/j.1742-4658.2005.04658.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have previously reported the Ras-dependent activation of the mitogen-activated protein kinases p44 and p42, also termed extracellular signal-regulated kinases (ERK)1 and 2 (ERK1/2), mediated through Gs-coupled serotonin receptors transiently expressed in human embryonic kidney (HEK) 293 cells. Whereas Gi- and Gq-coupled receptors have been shown to activate Ras through the guanine nucleotide exchange factor (GEF) called Ras-GRF1 (CDC25Mm) by binding of Ca2+/calmodulin to its N-terminal IQ domain, the mechanism of Ras activation through Gs-coupled receptors is not fully understood. We report the endogenous expression of Ras-GRF1 in HEK293 cells. Serotonin stimulation of HEK293 cells transiently expressing Gs-coupled 5-HT7 receptors induced protein kinase A-dependent phosphorylation of the endogenous human Ras-GRF1 on Ser927 and of transfected mouse Ras-GRF1 on Ser916. Ras-GRF1 overexpression increased basal and serotonin-stimulated ERK1/2 phosphorylation. Mutations of Ser916 inhibiting (Ser916Ala) or mimicking (Ser916Asp/Glu) phosphorylation did not alter these effects. However, the deletion of amino acids 1-225, including the Ca2+/calmodulin-binding IQ domain, from Ras-GRF1 reduced both basal and serotonin-stimulated ERK1/2 phosphorylation. Furthermore, serotonin treatment of HEK293 cells stably expressing 5-HT7 receptors increased [Ca2+]i, and the serotonin-induced ERK1/2 phosphorylation was Ca2+-dependent. Therefore, both cAMP and Ca2+ may contribute to the Ras-dependent ERK1/2 activation after 5-HT7 receptor stimulation, through activation of a guanine nucleotide exchange factor with activity towards Ras.
Collapse
|
39
|
Lepailleur A, Bureau R, Lemaître S, Dauphin F, Lancelot JC, Contesse V, Lenglet S, Delarue C, Vaudry H, Rault S. Molecular design based on 3D pharmacophores. Applications to 5-HT7 receptors. ACTA ACUST UNITED AC 2005; 44:1148-52. [PMID: 15154784 DOI: 10.1021/ci030036l] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A definition of a pharmacophore for the 5-HT7 antagonists was carried out by searching the common chemical features of selective antagonists from the literature. A molecular design is described by analyzing the differences between this new pharmacophore and three other 3D serotonin pharmacophores previously described. This comparison led to the synthesis of a new series of potent 5-HT7 antagonists.
Collapse
Affiliation(s)
- Alban Lepailleur
- Centre d'Etudes et de Recherche sur le Médicament de Normandie, Université de Caen, 5 rue Vaubénard, 14032 Caen, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Johnson-Farley NN, Kertesy SB, Dubyak GR, Cowen DS. Enhanced activation of Akt and extracellular-regulated kinase pathways by simultaneous occupancy of Gq-coupled 5-HT2A receptors and Gs-coupled 5-HT7A receptors in PC12 cells. J Neurochem 2005; 92:72-82. [PMID: 15606897 DOI: 10.1111/j.1471-4159.2004.02832.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The most commonly prescribed antidepressants, the serotonin (5-HT) selective reuptake inhibitors, increase 5-HT without targeting specific receptors. Yet, little is known about the interaction of multiple receptor subtypes expressed by individual neurons. Specifically, the effect of increases in cAMP induced by Gs-coupled 5-HT receptor subtypes on the signaling pathways modulated by other receptor subtypes has not been studied. We have, therefore, examined the activation of the extracellular-regulated kinase (ERK) and Akt pathways by Gs-coupled 5-HT7A receptors and Gq-coupled 5-HT2A receptors, which are co-expressed in discrete brain regions. Agonists for both receptors were found to activate ERK and Akt in transfected PC12 cells. 5-HT2A receptor-mediated activation of the two pathways was found to be Ca2+-dependent. In contrast, 5-HT7A receptor-mediated activation of Akt required increases in both [cAMP] and intracellular [Ca2+], while activation of ERK was inhibited by Ca2+. The activation of ERK and Akt stimulated by simultaneous treatment of cells with 5-HT2A and 5-HT7A receptor agonists was found to be at least additive. Cell-permeable cAMP analogs mimicked 5-HT7A receptor agonists in enhancing 5-HT2A receptor-mediated activation of ERK and Akt. A role was identified for the cAMP-guanine exchange factor, Epac, in this augmentation of ERK, but not Akt, activation. Our finding of enhanced activation of neuroprotective Akt and ERK pathways by simultaneous occupancy of 5-HT2A and 5-HT7A receptors may also be relevant to the interaction of other neuronally expressed Gq- and Gs-coupled receptors.
Collapse
MESH Headings
- Amphetamines/pharmacology
- Animals
- Enzyme Activation/drug effects
- Enzyme Activation/physiology
- Extracellular Signal-Regulated MAP Kinases/metabolism
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- GTP-Binding Protein alpha Subunits, Gq-G11/pharmacology
- GTP-Binding Protein alpha Subunits, Gs/metabolism
- GTP-Binding Protein alpha Subunits, Gs/physiology
- MAP Kinase Signaling System/drug effects
- MAP Kinase Signaling System/physiology
- PC12 Cells
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-akt
- Rats
- Receptor, Serotonin, 5-HT2A/metabolism
- Receptor, Serotonin, 5-HT2A/physiology
- Receptors, Serotonin/metabolism
- Receptors, Serotonin/physiology
- Serotonin/pharmacology
- Serotonin 5-HT2 Receptor Agonists
Collapse
Affiliation(s)
- Nadine N Johnson-Farley
- Department of Psychiatry, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08901, USA
| | | | | | | |
Collapse
|
41
|
Euskirchen G, Royce TE, Bertone P, Martone R, Rinn JL, Nelson FK, Sayward F, Luscombe NM, Miller P, Gerstein M, Weissman S, Snyder M. CREB binds to multiple loci on human chromosome 22. Mol Cell Biol 2004; 24:3804-14. [PMID: 15082775 PMCID: PMC387762 DOI: 10.1128/mcb.24.9.3804-3814.2004] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cyclic AMP-responsive element-binding protein (CREB) is an important transcription factor that can be activated by hormonal stimulation and regulates neuronal function and development. An unbiased, global analysis of where CREB binds has not been performed. We have mapped for the first time the binding distribution of CREB along an entire human chromosome. Chromatin immunoprecipitation of CREB-associated DNA and subsequent hybridization of the associated DNA to a genomic DNA microarray containing all of the nonrepetitive DNA of human chromosome 22 revealed 215 binding sites corresponding to 192 different loci and 100 annotated potential gene targets. We found binding near or within many genes involved in signal transduction and neuronal function. We also found that only a small fraction of CREB binding sites lay near well-defined 5' ends of genes; the majority of sites were found elsewhere, including introns and unannotated regions. Several of the latter lay near novel unannotated transcriptionally active regions. Few CREB targets were found near full-length cyclic AMP response element sites; the majority contained shorter versions or close matches to this sequence. Several of the CREB targets were altered in their expression by treatment with forskolin; interestingly, both induced and repressed genes were found. Our results provide novel molecular insights into how CREB mediates its functions in humans.
Collapse
Affiliation(s)
- Ghia Euskirchen
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8005, USA>
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Spät A, Hunyady L. Control of aldosterone secretion: a model for convergence in cellular signaling pathways. Physiol Rev 2004; 84:489-539. [PMID: 15044681 DOI: 10.1152/physrev.00030.2003] [Citation(s) in RCA: 329] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aldosterone secretion by glomerulosa cells is stimulated by angiotensin II (ANG II), extracellular K(+), corticotrophin, and several paracrine factors. Electrophysiological, fluorimetric, and molecular biological techniques have significantly clarified the molecular action of these stimuli. The steroidogenic effect of corticotrophin is mediated by adenylyl cyclase, whereas potassium activates voltage-operated Ca(2+) channels. ANG II, bound to AT(1) receptors, acts through the inositol 1,4,5-trisphosphate (IP(3))-Ca(2+)/calmodulin system. All three types of IP(3) receptors are coexpressed, rendering a complex control of Ca(2+) release possible. Ca(2+) release is followed by both capacitative and voltage-activated Ca(2+) influx. ANG II inhibits the background K(+) channel TASK and Na(+)-K(+)-ATPase, and the ensuing depolarization activates T-type (Ca(v)3.2) Ca(2+) channels. Activation of protein kinase C by diacylglycerol (DAG) inhibits aldosterone production, whereas the arachidonate released from DAG in ANG II-stimulated cells is converted by lipoxygenase to 12-hydroxyeicosatetraenoic acid, which may also induce Ca(2+) signaling. Feedback effects and cross-talk of signal-transducing pathways sensitize glomerulosa cells to low-intensity stimuli, such as physiological elevations of [K(+)] (< or =1 mM), ANG II, and ACTH. Ca(2+) signaling is also modified by cell swelling, as well as receptor desensitization, resensitization, and downregulation. Long-term regulation of glomerulosa cells involves cell growth and proliferation and induction of steroidogenic enzymes. Ca(2+), receptor, and nonreceptor tyrosine kinases and mitogen-activated kinases participate in these processes. Ca(2+)- and cAMP-dependent phosphorylation induce the transfer of the steroid precursor cholesterol from the cytoplasm to the inner mitochondrial membrane. Ca(2+) signaling, transferred into the mitochondria, stimulates the reduction of pyridine nucleotides.
Collapse
Affiliation(s)
- András Spät
- Dept. of Physiology, Semmelweis University, Faculty of Medicine, PO Box 259, H-1444 Budapest, Hungary.
| | | |
Collapse
|
43
|
Lin SL, Johnson-Farley NN, Lubinsky DR, Cowen DS. Coupling of neuronal 5-HT7 receptors to activation of extracellular-regulated kinase through a protein kinase A-independent pathway that can utilize Epac. J Neurochem 2003; 87:1076-85. [PMID: 14622088 DOI: 10.1046/j.1471-4159.2003.02076.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The roles of 3',5'-cyclic adenosine monophosphate (cAMP) and protein kinase A in 5-hydroxytryptamine (5-HT)7 receptor-mediated activation of extracellular-regulated kinase (ERK) were studied in cultured hippocampal neurons and transfected PC12 cells. Activation of ERK by neuronal Gs-coupled receptors has been thought to proceed through a protein kinase A-dependent pathway. In fact we identified coupling of 5-HT7 receptors to activation of adenylyl cyclase and protein kinase A. However, no inhibition of agonist-stimulated ERK activation was found when cells were treated with H-89 and KT5720 at concentrations sufficient to completely inhibit activation of protein kinase A. However, activation of ERK was found to be sensitive to the adenylyl cyclase inhibitor 9-(tetrahydrofuryl)-adenine, suggesting a possible role for a cAMP-guanine nucleotide exchange factor (cAMP-GEF). Co-treatment of cells with 8-(4-chlorophenylthio)-2'-O-methyladenosine 3',5'-cyclic monophosphate, a direct activator of the cAMP-GEFs Epac1 and 2, reversed the inhibition of agonist-stimulated ERK activation induced by adenylyl cyclase inhibition. Additionally, over-expression of Epac1 enhanced 5-HT7 receptor-mediated activation of ERK. These results demonstrate that the activation of ERK mediated by neuronal Gs-coupled receptors can proceed through cAMP-dependent pathways that utilize cAMP-GEFs rather than protein kinase A.
Collapse
Affiliation(s)
- Stanley L Lin
- Department of Psychiatry, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, 125 Paterson Street, Piscataway, NJ 08901, USA
| | | | | | | |
Collapse
|
44
|
Ferron L, Capuano V, Ruchon Y, Deroubaix E, Coulombe A, Renaud JF. Angiotensin II Signaling Pathways Mediate Expression of Cardiac T-Type Calcium Channels. Circ Res 2003; 93:1241-8. [PMID: 14615287 DOI: 10.1161/01.res.0000106134.69300.b7] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent studies indicate that cardiac T-type Ca
2+
current (
I
CaT
) reappears in hypertrophied ventricular cells. The aim of this study was to investigate the role of angiotensin II (Ang II), a major inducer of cardiac hypertrophy, in the reexpression of T-type channel in left ventricular hypertrophied myocytes. We induced cardiac hypertrophy in rats by abdominal aorta stenosis for 12 weeks and thereafter animals were treated for 2 weeks with losartan (12 mg/kg per day), an antagonist of type 1 Ang II receptors (AT
1
). In hypertrophied myocytes, we showed that the reexpressed
I
CaT
is generated by the Ca
V
3.1 and Ca
V
3.2 subunits. After losartan treatment,
I
CaT
density decreased from 0.40±0.05 pA/pF (n=26) to 0.20±0.03 pA/pF (n=27,
P
<0.01), affecting Ca
V
3.1- and Ca
V
3.2-related currents. The amount of Ca
V
3.1 mRNA increased during hypertrophy and retrieved its nonhypertrophic level after losartan treatment, whereas the amount of Ca
V
3.2 mRNA was unaffected by stenosis. In cultured newborn ventricular cells, chronic Ang II application (0.1 μmol/L) also increased
I
CaT
density and Ca
V
3.1 mRNA amount. UO126, a mitogen-activated protein kinase kinase-1/2 (MEK1/2) inhibitor, reduced Ang II–increased
I
CaT
density and Ca
V
3.1 mRNA amount. Bosentan, an endothelin (ET) receptor antagonist, reduced Ang II–increased
I
CaT
density without affecting the amount of Ca
V
3.1 mRNA. Finally, cotreatment with bosentan and UO126 abolished the Ang II–increased
I
CaT
density. Our results show that AT
1
-activated MEK pathway and autocrine ET-activated independent MEK pathway upregulate T-type channel expression. Ang II–increased of
I
CaT
density observed in hypertrophied myocytes may play a role in the pathogenesis of Ca
2+
overload and arrhythmias seen in cardiac pathology.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Angiotensin II/physiology
- Angiotensin Receptor Antagonists
- Animals
- Animals, Newborn
- Bosentan
- Butadienes/pharmacology
- Calcium Channels, T-Type/genetics
- Calcium Channels, T-Type/physiology
- Calcium-Calmodulin-Dependent Protein Kinases/antagonists & inhibitors
- Calcium-Calmodulin-Dependent Protein Kinases/metabolism
- Cardiomegaly/etiology
- Cardiomegaly/genetics
- Cardiomegaly/physiopathology
- Constriction, Pathologic/complications
- Dose-Response Relationship, Drug
- Endothelin Receptor Antagonists
- Endothelin-1/pharmacology
- Enzyme Inhibitors/pharmacology
- Flavonoids/pharmacology
- Gene Expression
- Losartan/pharmacology
- Male
- Membrane Potentials/drug effects
- Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors
- Mitogen-Activated Protein Kinase Kinases/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/physiology
- Nickel/pharmacology
- Nitriles/pharmacology
- Oligopeptides/pharmacology
- Peptides, Cyclic/pharmacology
- Piperidines/pharmacology
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Receptors, Angiotensin/physiology
- Receptors, Endothelin/physiology
- Signal Transduction
- Sulfonamides/pharmacology
Collapse
Affiliation(s)
- Laurent Ferron
- CNRS UMR 8078, Remodelage Tissulaire et Fonctionnel, Hôpital Marie Lannelongue, 133 avenue de la Résistance, 92350 Le Plessis Robinson, France.
| | | | | | | | | | | |
Collapse
|
45
|
Lenglet S, Louiset E, Delarue C, Vaudry H, Contesse V. Involvement of T-type calcium channels in the mechanism of action of 5-HT in rat glomerulosa cells: a novel signaling pathway for the 5-HT7 receptor. Endocr Res 2002; 28:651-5. [PMID: 12530678 DOI: 10.1081/erc-120016981] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We have previously demonstrated that, in rat, the stimulatory effect of 5-HT on aldosterone secretion is mediated through a 5-HT7 receptor subtype. The aim of the present study was to characterize the transduction mechanisms associated with activation of native 5-HT7 receptors. 5-HT induced a dose-dependent increase in cAMP production in rat glomerulosa cells. Pretreatment of cells with the adenylyl cyclase (AC) inhibitor SQ 22536 or the protein kinase A (PKA) inhibitor H-89 markedly attenuated the effect of 5-HT on aldosterone secretion. Administration of 5-HT in the vicinity of glomerulosa cells induced a robust increase in cytosolic calcium concentration ([Ca2+]i) and this effect was abrogated by the T-type calcium channel blocker mibefradil. Patch-clamp studies confirmed that 5-HT activated a T-type calcium current. H-89 attenuated both the [Ca2+]i response and the activation of T-type calcium current induced by 5-HT. Reduction of extracellular calcium concentration in the medium or administration of mibefradil caused a marked reduction of the maximum effect (Emax) of 5-HT on aldosterone secretion. These data demonstrate that activation of native 5-HT7 receptors stimulates cAMP formation, which in turn provokes calcium influx through T-type calcium channels. Both the activation of the AC/PKA pathway and the calcium influx are involved in 5-HT-induced aldosterone secretion.
Collapse
Affiliation(s)
- S Lenglet
- European Institute for Peptide Research (IFRMP 23), Laboratory of Cellular and Molecular Neuroendocrinology, INSERM U413, UA CNRS, University of Rouen, 76821 Mont-Saint-Aignan, France.
| | | | | | | | | |
Collapse
|