1
|
Maxwell A, Swanson G, Thy Nguyen A, Hu A, Richards D, You Y, Stephan L, Manaloto M, Liao A, Ding J, Mor G. Hydroquinone impairs trophoblast migration and invasion via AHR-twist-IFITM1 axis. Placenta 2024; 155:88-99. [PMID: 39173312 PMCID: PMC11421844 DOI: 10.1016/j.placenta.2024.07.315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/21/2024] [Accepted: 07/31/2024] [Indexed: 08/24/2024]
Abstract
INTRODUCTION Embryo implantation is a tightly regulated process, critical for a successful pregnancy. After attachment of the blastocyst to the surface epithelium of the endometrium trophoblast migrate from the trophectoderm and invade into the stromal component of endometrium. Alterations on either process will lead to implantation failure or miscarriage. Volatile organic compounds (VOCs) such as benzene induce pregnancy complications, including preterm birth and miscarriages. The mechanism of this effect is unknown. The objective of this study was to elucidate the impact of benzene metabolite, Hydroquinone, on trophoblast function. We tested the hypothesis that Hydroquinone activates the Aryl hydrocarbon receptor (AhR) pathway modulating trophoblast migration and invasion. METHODS First-trimester trophoblast cells (Sw.71) were treated with hydroquinone (6 and 25 μM). Trophoblast migration and invasion was evaluated using a 3D invasion/migration model. Gene expression was quantified by q-PCR and Western blot analysis. RESULTS Hydroquinone impairs trophoblast migration and invasion. This loss is associated with the activation of the AhR pathway which reduced the expression of Twist1and IFITM1. IFITM1 overexpression can rescue impaired trophoblast migration. DISCUSSION Our study highlights that hydroquinone treatment induces the activation of the AhR pathway in trophoblast cells, which impairs trophoblast invasion and migration. We postulate that activation of the AhR pathway in trophoblast suppress Twist1 and a subsequent IFITM1. Thus, the AhR-Twist1-IFITM1 axis represent a critical pathway involved in the regulation of trophoblast migration and it is sensitive to benzene exposure. These findings provide crucial insights into the molecular mechanisms underlying pregnancy complications induced by air pollution.
Collapse
Affiliation(s)
- Anthony Maxwell
- C.S Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, USA
| | - Grace Swanson
- C.S Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, USA
| | - Annie Thy Nguyen
- C.S Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, USA
| | - Anna Hu
- C.S Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, USA
| | - Darby Richards
- C.S Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, USA
| | - Yuan You
- C.S Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, USA
| | - Laura Stephan
- C.S Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, USA
| | - Marcia Manaloto
- C.S Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, USA
| | - Aihua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Jiahui Ding
- C.S Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, USA; Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Gil Mor
- C.S Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, USA; Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
2
|
Huang X, Lin Z, Zheng ZM, Shi JL, Lu KY, Wang JR, Li MQ, Shao J. A Hypoxia-Decidual Macrophage Regulatory Axis in Normal Pregnancy and Spontaneous Miscarriage. Int J Mol Sci 2024; 25:9710. [PMID: 39273657 PMCID: PMC11395248 DOI: 10.3390/ijms25179710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
The significance of hypoxia at the maternal-fetal interface is proven to be self-explanatory in the context of pregnancy. During the first trimester, low oxygen conditions play a crucial role in processes such as angiogenesis, trophoblast invasion and differentiation, and immune regulation. Recently, there has been increasing research on decidual macrophages, which contribute to the maintenance of immune tolerance, placental and fetal vascular development, and spiral artery remodeling, to investigate the effects of hypoxia on their biological behaviors. On these grounds, this review describes the dynamic changes in oxygen levels at the maternal-fetal interface throughout gestation, summarizing current knowledge on how the hypoxic environment sustains a successful pregnancy by regulating retention, differentiation and efferocytosis of decidual macrophages. Additionally, we explore the relationship between spontaneous miscarriages and an abnormal hypoxia-macrophage axis, shedding light on the underlying mechanisms. However, further studies are essential to elucidate these pathways in greater detail and to develop targeted interventions that could improve pregnancy outcomes.
Collapse
Affiliation(s)
- Xu Huang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China
| | - Zhi Lin
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200010, China
| | - Zi-Meng Zheng
- Department of Reproductive Immunology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jia-Lu Shi
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200010, China
| | - Ke-Yu Lu
- Xing Lin College, Nantong University, Nantong 226236, China
| | - Jia-Rui Wang
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200010, China
| | - Ming-Qing Li
- Department of Reproductive Immunology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jun Shao
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200010, China
| |
Collapse
|
3
|
Kim C, Cathey AL, Park S, Watkins DJ, Mukherjee B, Rosario-Pabón ZY, Vélez-Vega CM, Alshawabkeh AN, Cordero JF, Meeker JD. Associations of maternal blood metal concentrations with plasma eicosanoids among pregnant women in Puerto Rico. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172295. [PMID: 38588744 DOI: 10.1016/j.scitotenv.2024.172295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND/AIM Heavy metals are known to induce oxidative stress and inflammation, and the association between metal exposure and adverse birth outcomes is well established. However, there lacks research on biomarker profiles linking metal exposures and adverse birth outcomes. Eicosanoids are lipid molecules that regulate inflammation in the body, and there is growing evidence that suggests associations between plasma eicosanoids and pregnancy outcomes. Eicosanoids may aid our understanding of etiologic birth pathways. Here, we assessed associations between maternal blood metal concentrations with eicosanoid profiles among 654 pregnant women in the Puerto Rico PROTECT birth cohort. METHODS We measured concentrations of 11 metals in whole blood collected at median 18 and 26 weeks of pregnancy, and eicosanoid profiles measured in plasma collected at median 26 weeks. Multivariable linear models were used to regress eicosanoids on metals concentrations. Effect modification by infant sex was explored using interaction terms. RESULTS A total of 55 eicosanoids were profiled. Notably, 12-oxoeicosatetraenoic acid (12-oxoETE) and 15-oxoeicosatetraenoic acid (15-oxoETE), both of which exert inflammatory activities, had the greatest number of significant associations with metal concentrations. These eicosanoids were associated with increased concentrations of Cu, Mn, and Zn, and decreased concentrations of Cd, Co, Ni, and Pb, with the strongest effect sizes observed for 12-oxoETE and Pb (β:-33.5,95 %CI:-42.9,-22.6) and 15-oxoETE and Sn (β:43.2,95 %CI:11.4,84.1). Also, we observed differences in metals-eicosanoid associations by infant sex. Particularly, Cs and Mn had the most infant sex-specific significant associations with eicosanoids, which were primarily driven by female fetuses. All significant sex-specific associations with Cs were inverse among females, while significant sex-specific associations with Mn among females were positive within the cyclooxygenase group but inverse among the lipoxygenase group. CONCLUSION Certain metals were significantly associated with eicosanoids that are responsible for regulating inflammatory responses. Eicosanoid-metal associations may suggest a role for eicosanoids in mediating metal-induced adverse birth outcomes.
Collapse
Affiliation(s)
- Christine Kim
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI, United States
| | - Amber L Cathey
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI, United States
| | - Seonyoung Park
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI, United States
| | - Deborah J Watkins
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI, United States
| | - Bhramar Mukherjee
- University of Michigan School of Public Health, Department of Biostatistics, Ann Arbor, MI, United States
| | - Zaira Y Rosario-Pabón
- University of Puerto Rico Graduate School of Public Health, UPR Medical Sciences Campus, San Juan, Puerto Rico
| | - Carmen M Vélez-Vega
- University of Puerto Rico Graduate School of Public Health, UPR Medical Sciences Campus, San Juan, Puerto Rico
| | | | - José F Cordero
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, United States
| | - John D Meeker
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI, United States.
| |
Collapse
|
4
|
Lestari B, Fukushima T, Utomo RY, Wahyuningsih MSH. Apoptotic and non-apoptotic roles of caspases in placenta physiology and pathology. Placenta 2024; 151:37-47. [PMID: 38703713 DOI: 10.1016/j.placenta.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/12/2024] [Accepted: 03/27/2024] [Indexed: 05/06/2024]
Abstract
Caspases, a family of cysteine proteases, are pivotal regulators of apoptosis, the tightly controlled cell death process crucial for eliminating excessive or unnecessary cells during development, including placental development. Collecting research has unveiled the multifaceted roles of caspases in the placenta, extending beyond apoptosis. Apart from their involvement in placental tissue remodeling via apoptosis, caspases actively participate in essential regulatory processes, such as trophoblast fusion and differentiation, significantly influencing placental growth and functionality. In addition, growing evidence indicates an elevation in caspase activity under pathological conditions like pre-eclampsia (PE) and intrauterine growth restriction (IUGR), leading to excessive cell death as well as inflammation. Drawing from advancements in caspase research and placental development under both normal and abnormal conditions, we examine the significance of caspases in both cell death (apoptosis) and non-cell death-related processes within the placenta. We also discuss potential therapeutics targeting caspase-related pathways for placenta disorders.
Collapse
Affiliation(s)
- Beni Lestari
- Department Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia; Cancer Chemoprevention Research Center, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Toshiaki Fukushima
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Japan.
| | - Rohmad Yudi Utomo
- Cancer Chemoprevention Research Center, Universitas Gadjah Mada, Yogyakarta, Indonesia; Department Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Mae Sri Hartati Wahyuningsih
- Department Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| |
Collapse
|
5
|
Vomstein K, Krog MC, Wrønding T, Nielsen HS. The microbiome in recurrent pregnancy loss - A scoping review. J Reprod Immunol 2024; 163:104251. [PMID: 38718429 DOI: 10.1016/j.jri.2024.104251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/23/2023] [Accepted: 04/22/2024] [Indexed: 06/03/2024]
Abstract
Recurrent pregnancy loss (RPL) is a troubling condition that affects couples worldwide. Despite extensive research efforts, many RPL cases remain unexplained, highlighting the need for novel approaches to unravel its underlying mechanisms. Recent advances in microbiome research have shed light on the potential role of the microbiome in reproductive health and outcomes. Based on a systematic literature research, this review aims to comprehensively explore the current understanding of the microbiome's involvement in RPL, focusing on the vaginal, endometrial, and gut microbiomes. Evidence from the available studies is examined to explain the relationship between the microbiome and RPL. Furthermore, we discuss the diagnostic potential of the microbiome, therapeutic interventions, and future directions in microbiome research for RPL. Understanding the complex interactions between the microbiome and reproductive health holds promise for developing targeted interventions to help patients today diagnosed as unexplained.
Collapse
Affiliation(s)
- Kilian Vomstein
- The Recurrent Pregnancy Loss Unit, The Capital Region, Copenhagen University Hospitals, Hvidovre Hospital, Hvidovre & Rigshospitalet, Copenhagen DK-2650, Denmark; Department of Obstetrics and Gynecology, The Fertility Clinic, Copenhagen University Hospital Hvidovre, DK-2650, Denmark.
| | - Maria C Krog
- The Recurrent Pregnancy Loss Unit, The Capital Region, Copenhagen University Hospitals, Hvidovre Hospital, Hvidovre & Rigshospitalet, Copenhagen DK-2650, Denmark; Department of Clinical Medicine, University of Copenhagen, Denmark; Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen DK-2100, Denmark
| | - Tine Wrønding
- The Recurrent Pregnancy Loss Unit, The Capital Region, Copenhagen University Hospitals, Hvidovre Hospital, Hvidovre & Rigshospitalet, Copenhagen DK-2650, Denmark; Department of Obstetrics and Gynecology, The Fertility Clinic, Copenhagen University Hospital Hvidovre, DK-2650, Denmark
| | - Henriette Svarre Nielsen
- The Recurrent Pregnancy Loss Unit, The Capital Region, Copenhagen University Hospitals, Hvidovre Hospital, Hvidovre & Rigshospitalet, Copenhagen DK-2650, Denmark; Department of Obstetrics and Gynecology, The Fertility Clinic, Copenhagen University Hospital Hvidovre, DK-2650, Denmark; Department of Clinical Medicine, University of Copenhagen, Denmark
| |
Collapse
|
6
|
Adu-Gyamfi EA, Salamah J, Cheeran EA, Lee BK. Bisphenol S moderately decreases the expression of syncytiotrophoblast marker genes and induces apoptosis in human trophoblast lineages. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123259. [PMID: 38159624 DOI: 10.1016/j.envpol.2023.123259] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/07/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Bisphenol S (BPS) is currently used in the manufacturing of several household equipment such as water pipes and food containers. Hence, its entrance into the human body is almost inevitable. The presence of BPS in body fluids has been reported. However, its potential toxicity, especially on human placenta development and pregnancy progression, has not been explored. In this study, we assessed the impacts of BPS on the self-renewal and differentiation potentials of placental stem cells, also known as trophoblast stem cells (TSCs), by exposing them to three different BPS concentrations during their self-renewal and differentiation into syncytiotrophoblast (ST), extravillous trophoblast (EVT), and trophoblast organoids. Interestingly, BPS treatment did not affect the stemness, cell cycle and proliferation of the TSCs but it induced apoptosis in each trophoblast lineage. BPS altered the expression of several fusion-related genes. However, this alteration did not translate into significant morphological defects in the STs and organoids. Moreover, BPS did not impair the differentiation of TSCs into EVTs. These findings suggest that the presence of BPS at the feto-maternal interface may exaggerate trophoblast apoptosis and moderately inhibit the trophoblast fusion pathway to affect placenta development and pregnancy. Our study offers valuable insights into the potential toxicity of BPS on human placenta development, emphasizing the need for epidemiological assessment of the relationship between maternal serum levels of BPS and pregnancy complications.
Collapse
Affiliation(s)
- Enoch Appiah Adu-Gyamfi
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY, 12144, USA
| | - Joudi Salamah
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY, 12144, USA
| | - Elisha Ann Cheeran
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY, 12144, USA
| | - Bum-Kyu Lee
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY, 12144, USA.
| |
Collapse
|
7
|
Joseph TT, Schuch V, Hossack DJ, Chakraborty R, Johnson EL. Melatonin: the placental antioxidant and anti-inflammatory. Front Immunol 2024; 15:1339304. [PMID: 38361952 PMCID: PMC10867115 DOI: 10.3389/fimmu.2024.1339304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is an indolamine hormone with many physiological and biological roles. Melatonin is an antioxidant, anti-inflammatory, free radical scavenger, circadian rhythm regulator, and sleep hormone. However, its most popular role is the ability to regulate sleep through the circadian rhythm. Interestingly, recent studies have shown that melatonin is an important and essential hormone during pregnancy, specifically in the placenta. This is primarily due to the placenta's ability to synthesize its own melatonin rather than depending on the pineal gland. During pregnancy, melatonin acts as an antioxidant and anti-inflammatory, which is necessary to ensure a stable environment for both the mother and the fetus. It is an essential antioxidant in the placenta because it reduces oxidative stress by constantly scavenging for free radicals, i.e., maintain the placenta's integrity. In a healthy pregnancy, the maternal immune system is constantly altered to accommodate the needs of the growing fetus, and melatonin acts as a key anti-inflammatory by regulating immune homeostasis during early and late gestation. This literature review aims to identify and summarize melatonin's role as a powerful antioxidant and anti-inflammatory that reduces oxidative stress and inflammation to maintain a favorable homeostatic environment in the placenta throughout gestation.
Collapse
Affiliation(s)
- Tyana T. Joseph
- Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Viviane Schuch
- Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Daniel J. Hossack
- Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Rana Chakraborty
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Erica L. Johnson
- Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| |
Collapse
|
8
|
Erdő-Bonyár S, Simon D, Bajnok A, Nörenberg J, Serény-Litvai T, Várnagy Á, Kovács K, Hantosi E, Mezősi E, Berki T. Physiological Changes in the Levels of Anti-Cytokine Autoantibodies in Early Pregnancy Are Missing in Pregnant Women with Hashimoto's Thyroiditis. J Immunol Res 2023; 2023:5221658. [PMID: 37663050 PMCID: PMC10473897 DOI: 10.1155/2023/5221658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/21/2023] [Accepted: 08/09/2023] [Indexed: 09/05/2023] Open
Abstract
T helper type 1 (Th1) and inflammatory cytokines play essential roles in early pregnancy and also in the pathogenesis of Hashimoto's thyroiditis (HT). Changes in the serum level of autoantibodies to cytokines, which may be able to modulate their availability and actions have been described in several autoimmune disorders. Yet, no data are available on anti-cytokine autoantibodies either during early pregnancy or in patients with HT. The aim of the study was to measure autoantibodies to inflammatory-, Th1- and Th22-cytokines in serum samples in healthy pregnancy (HP) and in pregnant women with HT (HTP). As pathological autoantibodies are hallmarks of HT, in addition we also measured anti-B-cell activator factor (BAFF) autoantibodies. The measurement was carried out with a Luminex multiplex assay and the Luminex MAGPIX Instrument, age-matched healthy women (HC) and women with HT (HT) were used as controls. In the first trimester of HP, anti-TNFα, anti-IL-8, and anti-IFNγ autoantibodies were significantly decreased, while autoantibodies to BAFF were significantly elevated compared to the HC. However, these alterations were not present in the HTP. Moreover, the levels of autoantibodies to IL-22 and TNFα were significantly increased in HTP compared to the HP. All differences in the levels of the investigated autoantibodies could be detected in the first trimester of pregnancies except for anti-IL-22 autoantibodies. According to our results we can conclude that alterations in the levels of autoantibodies to inflammatory and Th1 cytokines are physiological in the first trimester of pregnancy and their disturbance can be associated with autoimmune conditions such as HT.
Collapse
Affiliation(s)
- Szabina Erdő-Bonyár
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs Medical School, Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, Pécs, Hungary
| | - Diána Simon
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs Medical School, Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, Pécs, Hungary
| | - Anna Bajnok
- National Laboratory on Human Reproduction, University of Pécs, Pécs, Hungary
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Department of Obstetrics and Gynecology, Clinical Center, University of Pécs Medical School, Pécs, Hungary
| | - Jasper Nörenberg
- National Laboratory on Human Reproduction, University of Pécs, Pécs, Hungary
- Department of Obstetrics and Gynecology, Clinical Center, University of Pécs Medical School, Pécs, Hungary
| | - Tímea Serény-Litvai
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs Medical School, Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, Pécs, Hungary
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Ákos Várnagy
- National Laboratory on Human Reproduction, University of Pécs, Pécs, Hungary
- Department of Obstetrics and Gynecology, Clinical Center, University of Pécs Medical School, Pécs, Hungary
| | - Kálmán Kovács
- National Laboratory on Human Reproduction, University of Pécs, Pécs, Hungary
- Department of Obstetrics and Gynecology, Clinical Center, University of Pécs Medical School, Pécs, Hungary
| | - Eszter Hantosi
- Department of Obstetrics and Gynecology, Clinical Center, University of Pécs Medical School, Pécs, Hungary
| | - Emese Mezősi
- National Laboratory on Human Reproduction, University of Pécs, Pécs, Hungary
- First Department of Internal Medicine, Clinical Center, University of Pécs Medical School, Pécs, Hungary
| | - Tímea Berki
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs Medical School, Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, Pécs, Hungary
| |
Collapse
|
9
|
Zhou J, Zhao Y, An P, Zhao H, Li X, Xiong Y. Hsa_circ_0002348 regulates trophoblast proliferation and apoptosis through miR-126-3p/BAK1 axis in preeclampsia. J Transl Med 2023; 21:509. [PMID: 37507742 PMCID: PMC10375637 DOI: 10.1186/s12967-023-04240-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/31/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Preeclampsia is a common pregnancy complication characterized by high blood pressure and damage to organs. Abnormal placenta and vascular function can lead to preeclampsia. Accumulating evidence has suggested a potential link between circular RNAs (circRNAs) and preeclampsia. As a placenta and endothelial-expressed circRNA, hsa_circ_0002348, may be promising to be the novel molecular target for preeclampsia. However, the function and mechanism of hsa_circ_0002348 in preeclampsia has not been elucidated. MATERIALS AND METHODS An overlap analysis of two circRNA profiles from placenta and endothelial cells was used to identify a functionally unknown circRNA, hsa_circ_0002348. Quantitative real-time PCR (qRT-PCR) and in situ hybridization (ISH) were used to detect its expression in the trophoblast cells and placental tissues. The mouse model of lipopolysaccharide (LPS)-induced preeclampsia was established to determine the in vivo role of hsa_circ_0002348. RNA immunoprecipitation (RIP), Luciferase reporter assay, qRT-PCR, western blot, gain- and loss-of-function and rescue experiments were conducted to uncover the role of hsa_circ_0002348 and its interaction with miR-126-3p and BAK1 in regulating trophoblast proliferation and apoptosis. Fluorescence in situ hybridization (FISH) and Immunohistochemistry (IHC) were performed to examine the expression of miR-126-3p and BAK1 in mice and human placentas, respectively. RESULTS Hsa_circ_0002348 was significantly increased in the preeclampsia placentas, and positively correlated with the severity of preeclampsia patients' clinical manifestations. Its overexpression exacerbated preeclampsia-like features in the mouse model of LPS-induced preeclampsia. Functionally, hsa_circ_0002348 was found to inhibit trophoblast proliferation and promote trophoblast apoptosis. Mechanistically, hsa_circ_0002348, as an endogenous miR-126-3p sponge, upregulated the expression of BAK1. Additionally, both hsa_circ_0002348 knockdown and miR-126-3p overexpression enhanced the mammalian target of rapamycin (mTOR) and ERK1/2 signaling pathway. CONCLUSIONS Hsa_circ_0002348 might be a novel regulator of trophoblast proliferation and apoptosis through miR-126-3p/BAK1 axis in preeclampsia, which may serve as a potential target for detecting and treating preeclampsia.
Collapse
Affiliation(s)
- Jizi Zhou
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Ying Zhao
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Ping An
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Huanqiang Zhao
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Xiaotian Li
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China.
- Institute of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Yu Xiong
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China.
| |
Collapse
|
10
|
Stenhouse C, Bazer FW, Ashworth CJ. Sexual dimorphism in placental development and function: Comparative physiology with an emphasis on the pig. Mol Reprod Dev 2023; 90:684-696. [PMID: 35466463 DOI: 10.1002/mrd.23573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/31/2022] [Accepted: 04/07/2022] [Indexed: 11/10/2022]
Abstract
Across mammalian species, it has been demonstrated that sex influences birth weight, with males being heavier than females; a characteristic that can be observed from early gestation. Male piglets are more likely to be stillborn and have greater preweaning mortality than their female littermates, despite the additional maternal investment into male fetal growth. Given the conserved nature of the genome between the sexes, it is hypothesized that these developmental differences between males and females are most likely orchestrated by differential placental adaptation. This review summarizes the current understanding of fetal sex-specific differences in placental and endometrial structure and function, with an emphasis on pathways found to be differentially regulated in the pig including angiogenesis, apoptosis, and proliferation. Given the importance of piglet sex in agricultural enterprises, and the potential for skewed litter sex ratios, it is imperative to improve understanding of the relationship between fetal sex and molecular signaling in both the placenta and endometria across gestation.
Collapse
Affiliation(s)
- Claire Stenhouse
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
- Functional Genetics and Development Division, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Cheryl J Ashworth
- Functional Genetics and Development Division, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| |
Collapse
|
11
|
Yu H, Chen L, Du B. Necroptosis in the pathophysiology of preeclampsia. Cell Cycle 2023; 22:1713-1725. [PMID: 37365800 PMCID: PMC10446795 DOI: 10.1080/15384101.2023.2229138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 03/30/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023] Open
Abstract
Necroptosis is a newly-identified form of gene-regulated cell necrosis that is increasingly considered to be a pathway associated with human pathophysiological conditions. Cells undergoing necroptosis exhibit necrotic phenotypes, including disruption of the plasma membrane integrity, organelle swelling, and cytolysis. Accumulating evidence suggests that trophoblast necroptosis plays a complex role in preeclampsia (PE). However, the exact pathogenesis remains unclear. Its unique mechanisms of action in various diseases are expected to provide prospects for the treatment of PE. Therefore, it is necessary to further explore its molecular mechanism in PE in order to identify potential therapeutic options. This review examines the current knowledge regarding the role and mechanisms of necroptosis in PE and provides a theoretical basis for new therapeutic targets for PE.
Collapse
Affiliation(s)
- Hongbiao Yu
- Department of Obstetrics and Gynecology, the Second Clinical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, Sichuan, China
| | - Ling Chen
- Department of Oncology, the Second Clinical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, Sichuan, China
| | - Boyu Du
- Department of Obstetrics and Gynecology, the Second Clinical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, Sichuan, China
| |
Collapse
|
12
|
Chromogranin A: An Endocrine Factor of Pregnancy. Int J Mol Sci 2023; 24:ijms24054986. [PMID: 36902417 PMCID: PMC10002927 DOI: 10.3390/ijms24054986] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/26/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Pregnancy is a state of physiological and hormonal changes. One of the endocrine factors involved in these processes is chromogranin A, an acidic protein produced, among others, by the placenta. Although it has been previously linked to pregnancy, no existing articles have ever managed to clarify the role of this protein regarding this subject. Therefore, the aim of the present study is to gather knowledge of chromogranin A's function with reference to gestation and parturition, clarify elusive information, and, most importantly, to formulate hypotheses for the future studies to verify.
Collapse
|
13
|
Zhang H, Zheng Y, Liu X, Zha X, Elsabagh M, Ma Y, Jiang H, Wang H, Wang M. Autophagy attenuates placental apoptosis, oxidative stress and fetal growth restriction in pregnant ewes. ENVIRONMENT INTERNATIONAL 2023; 173:107806. [PMID: 36841186 DOI: 10.1016/j.envint.2023.107806] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Bisphenol A (BPA)-induced oxidative stress (OS) and its potentially associated autophagy and apoptosis have not been studied previously in pregnant ewes. Accordingly, this study investigated the underlying mechanisms of BPA-induced autophagy and apoptosis in the placenta and primary trophoblasts of pregnant ewes exposed to BPA both in vivo and in vitro. In vivo experiment, pregnant Hu ewes (n = 8) were exposed to 5 mg/kg/d of BPA compared to control ewes (n = 8) receiving only corn oil from day 40 through day 110 of gestation. Exposure to BPA during gestation resulted in placental insufficiency, fetal growth restriction (FGR), autophagy, endoplasmic reticulum stress (ERS), mitochondrial dysfunction, OS, and apoptosis in type A placentomes. Regarding in vitro model, primary ovine trophoblasts were exposed to BPA, BPA plus chloroquine (CQ; an autophagy inhibitor) or BPA plus rapamycin (RAP; an autophagy activator) for 12 h. Data illustrated that exposure to BPA enhanced autophagy (ULK1, Beclin-1, LC3, Parkin, and PINK1), ERS (GRP78, CHOP10, ATF4, and ATF6) and apoptosis (Caspase 3, Bcl-2, Bax, P53) but decreased the antioxidant (CAT, Nrf2, HO-1, and NQO1)-related mRNA and protein expressions as well as impaired the mitochondrial function. Moreover, treatment with CQ exacerbated the BPA-mediated OS, mitochondrial dysfunction, apoptosis, and ERS. On the contrary, RAP treatment counteracted the BPA-induced trophoblast dysfunctions mentioned above. Overall, the findings illustrated that BPA exposure could contribute to autophagy in the ovine placenta and trophoblasts and that autophagy, in turn, could alleviate BPA-induced apoptosis, mitochondrial dysfunction, ERS, and OS. These results offer new mechanistic insights into the role of autophagy in mitigating BPA-induced placental dysfunctions and FGR.
Collapse
Affiliation(s)
- Hao Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Yi Zheng
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Xiaoyun Liu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Xia Zha
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Mabrouk Elsabagh
- Department of Animal Production and Technology, Faculty of Agricultural Sciences and Technologies, Nĭgde Ömer Halisdemir University, Nigde 51240, Turkey; Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Yi Ma
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Honghua Jiang
- Department of Pediatrics, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou 225001, PR China.
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China.
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
14
|
Gestational NSAIDs distinctly reprogram cardiac injury in preeclamptic rats: Roles of cyclooxygenase, apoptotic and autophagic trails. Life Sci 2022; 310:121130. [DOI: 10.1016/j.lfs.2022.121130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/15/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
|
15
|
Shao W, Ning W, Liu C, Zou Y, Yao Y, Kang J, Cao Z. Histone Methyltransferase SETD2 Is Required for Porcine Early Embryonic Development. Animals (Basel) 2022; 12:ani12172226. [PMID: 36077946 PMCID: PMC9454584 DOI: 10.3390/ani12172226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Normal early embryonic development is important for ensuring sow fertility. Low quality of in vitro production embryos severely limits extensive application of porcine embryo engineering technologies in animal agriculture and the biomedicine field. Histone H3K36 methyltransferase SETD2 reportedly regulates oocyte maturation and preimplantation embryonic development in mice. However, the specific substrate and function of SETD2 in porcine early embryonic development remains unclear. Here, we show that SETD2 preferentially catalyzes H3K36me3 in porcine early embryos. SETD2 knockdown severely impeded blastocyst cavitation and perturbed normal allocation of inner cell mass and trophectoderm. SETD2 knockdown caused the apoptosis of cells within blastocysts. Therefore, SETD2 is essential for porcine early embryonic development. These findings provide a better understanding of porcine early embryonic development and lay a potential basis for improving the quality of porcine in vitro production embryos. Abstract SET domain-containing 2 (SETD2) is a methyltransferase that can catalyze the di- and tri-methylation of lysine 36 on histone H3 (H3K36me2/me3). SETD2 frequently mediates H3K36me3 modification to regulate both oocyte maturation and preimplantation embryonic development in mice. However, the specific substrate and function of SETD2 in porcine early embryonic development are still unclear. In this study, SETD2 preferentially catalyzed H3K36me3 to regulate porcine early embryonic development. SETD2 mRNA is dynamically expressed during early embryonic development. Functional studies using an RNA interference (RNAi) approach revealed that the expression levels of SETD2 mRNA were effectively knocked down by siRNA microinjection. Immunofluorescence analysis indicated that SETD2 knockdown (KD) did not affect H3K36me2 modification but significantly reduced H3K36me3 levels, suggesting a preferential H3K36me3 recognition of SETD2 in porcine embryos. Furthermore, SETD2 KD significantly reduced blastocyst rate and disrupted allocation between inner cell mass (ICM) and trophectoderm (TE) lineage. The expression levels of key genes important for specification of the first two lineages apparently decreased in SETD2 KD blastocysts. SETD2 KD markedly increased the apoptotic percentage of cells within embryos and altered the expression of pro- and anti-apoptotic genes. Therefore, our data indicate that SETD2 is essential for porcine early embryonic development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zubing Cao
- Correspondence: ; Tel.: +86-551-6578-6537
| |
Collapse
|
16
|
Einenkel R, Ehrhardt J, Zygmunt M, Muzzio DO. Oxygen regulates ILC3 antigen presentation potential and pregnancy-related hormone actions. Reprod Biol Endocrinol 2022; 20:109. [PMID: 35906658 PMCID: PMC9336067 DOI: 10.1186/s12958-022-00979-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022] Open
Abstract
Early pregnancy is marked by placentation and embryogenesis, which take place under physiological low oxygen concentrations. This oxygen condition is crucial for many aspects of placentation, trophoblast function, vascularization and immune function. Recently, a new family of innate lymphoid cells has been found to be expressed at the fetomaternal interface. Among these, type 3 innate lymphoid cells (ILC3) are important antigen presenting cells in the context of MHC-II. The expression of MHC-II on ILC3s during pregnancy is reduced. We tested the hypothesis that low oxygen concentrations reduce the potential of ILC3s to present antigens promoting fetal tolerance.Using an in vitro approach, NCR+ ILC3s generated from cord blood stem cell precursors were incubated under different O2 concentrations in the presence or absence of the pregnancy-related hormones hCG and TGF-β1. The expression of MHC-II, accessory molecules and an activation marker were assessed by flow cytometry. We observed that 1% O2 reduced the expression of the MHC-II molecule HLA-DR as compared to 21% O2 and modulated the relative effects of hCG and TGF-β1.Our data indicate that low oxygen concentrations reduce the antigen presentation potential of NCR+ ILC3s and suggest that it may promote fetal tolerance during the first trimester of pregnancy.
Collapse
Affiliation(s)
- Rebekka Einenkel
- Department of Obstetrics and Gynecology, University Medicine Greifswald, Greifswald, Germany
- Present address: Gynecologic Endocrinology and Reproductive Medicine, University Hospital Bonn, Bonn, Germany
| | - Jens Ehrhardt
- Department of Obstetrics and Gynecology, University Medicine Greifswald, Greifswald, Germany
| | - Marek Zygmunt
- Department of Obstetrics and Gynecology, University Medicine Greifswald, Greifswald, Germany
| | - Damián Oscar Muzzio
- Department of Obstetrics and Gynecology, University Medicine Greifswald, Greifswald, Germany.
| |
Collapse
|
17
|
Ding J, Maxwell A, Adzibolosu N, Hu A, You Y, Liao A, Mor G. Mechanisms of immune regulation by the placenta: Role of type I interferon and interferon-stimulated genes signaling during pregnancy. Immunol Rev 2022; 308:9-24. [PMID: 35306673 PMCID: PMC9189063 DOI: 10.1111/imr.13077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/08/2022] [Accepted: 03/12/2022] [Indexed: 12/18/2022]
Abstract
Pregnancy is a unique condition where the maternal immune system is continuously adapting in response to the stages of fetal development and signals from the environment. The placenta is a key mediator of the fetal/maternal interaction by providing signals that regulate the function of the maternal immune system as well as provides protective mechanisms to prevent the exposure of the fetus to dangerous signals. Bacterial and/or viral infection during pregnancy induce a unique immunological response by the placenta, and type I interferon is one of the crucial signaling pathways in the trophoblast cells. Basal expression of type I interferon-β and downstream ISGs harbors physiological functions to maintain the homeostasis of pregnancy, more importantly, provides the placenta with the adequate awareness to respond to infections. The disruption of type I interferon signaling in the placenta will lead to pregnancy complications and can compromise fetal development. In this review, we focus the important role of placenta-derived type I interferon and its downstream ISGs in the regulation of maternal immune homeostasis and protection against viral infection. These studies are helping us to better understand placental immunological functions and provide a new perspective for developing better approaches to protect mother and fetus during infections.
Collapse
Affiliation(s)
- Jiahui Ding
- C.S Mott center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Anthony Maxwell
- C.S Mott center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
- Department of Physiology, Wayne State University, Detroit, MI, USA
| | - Nicholas Adzibolosu
- C.S Mott center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
- Department of Physiology, Wayne State University, Detroit, MI, USA
| | - Anna Hu
- C.S Mott center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Yuan You
- C.S Mott center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Aihua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Gil Mor
- C.S Mott center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
18
|
Understanding the Immune System in Fetal Protection and Maternal Infections during Pregnancy. J Immunol Res 2022; 2022:7567708. [PMID: 35785037 PMCID: PMC9249541 DOI: 10.1155/2022/7567708] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/20/2022] [Indexed: 11/18/2022] Open
Abstract
The fetal-maternal immune system determines the fate of pregnancy. The trophoblast cells not only give an active response against external stimuli but are also involved in secreting most of the cytokines. These cells have an essential function in fetal acceptance or fetal rejection. Other immune cells also play a pivotal role in carrying out a successful pregnancy. The disruption in this mechanism may lead to harmful effects on pregnancy. The placenta serves as an immune barrier in fetus protection against invading pathogens. Once the infections prevail, they may localize in placental and fetal tissues, and the presence of inflammation due to cytokines may have detrimental effects on pregnancy. Moreover, some pathogens are responsible for congenital fetal anomalies and affect almost all organs of the developing fetus. This review article is designed to address the bacterial and viral infections that threaten pregnancy and their possible outcomes. Moreover, training of the fetal immune system against the exposure of infections and the role of CD49a + NK cells in embryonic development will also be highlighted.
Collapse
|
19
|
The Role of Cytokines in Maintaining the Dynamics of Cell-Cell Interaction between Natural Killer Cells and Trophoblast Cells. Bull Exp Biol Med 2022; 172:622-631. [PMID: 35352255 DOI: 10.1007/s10517-022-05444-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Indexed: 10/18/2022]
Abstract
We analyzed the effect of individual cytokines that are secretory products of placenta typical of the uteroplacental bed. The proinflammatory cytokines IL-6, IFNγ, and IL-1β increased the expression of TGFβR2 molecule by trophoblast cells, while VEGF and PLGF increased the expression of CD45, CD29, and CD54 adhesion molecule by trophoblast cells. The antiinflammatory cytokine IL-4 increased LeptinR expression by trophoblast cells. PMA and TNFα also enhanced the adhesion of NK cells to trophoblast cells. Our findings suggest that NK cells involved CD11a, CD11b, and CD18 molecules during their transmigration through trophoblast, as well as during their transendothelial migration.
Collapse
|
20
|
Li Y, Chen J, Song S. Circ‐OPHN1 suppresses the proliferation, migration, and invasion of trophoblast cells through mediating miR‐558/THBS2 axis. Drug Dev Res 2022; 83:1034-1046. [PMID: 35277867 DOI: 10.1002/ddr.21931] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 11/24/2021] [Accepted: 02/18/2022] [Indexed: 12/25/2022]
Affiliation(s)
- Yu Li
- Department of Obstetrics and Gynecology The Affiliated Hospital of Putian University Putian City Fujian Province China
| | - Jinzao Chen
- Department of Internal Medicine‐Cardiovascular The First Hospital of Putian Putian City Fujian Province China
| | - Shuqin Song
- Department of Obstetrics and Gynecology The Affiliated Hospital of Putian University Putian City Fujian Province China
| |
Collapse
|
21
|
Johansen S, Traynor S, Ebstrup ML, Terp MG, Pedersen CB, Ditzel HJ, Gjerstorff MF. ZBED1 Regulates Genes Important for Multiple Biological Processes of the Placenta. Genes (Basel) 2022; 13:genes13010133. [PMID: 35052473 PMCID: PMC8775481 DOI: 10.3390/genes13010133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/04/2022] [Accepted: 01/11/2022] [Indexed: 02/05/2023] Open
Abstract
The transcription factor ZBED1 is highly expressed in trophoblast cells, but its functions in the processes of trophoblast and placental biology remain elusive. Here, we characterized the role of ZBED1 in trophoblast cell differentiation using an in vitro BeWo cell model. We demonstrate that ZBED1 is enhanced in its expression early after forskolin-induced differentiation of BeWo cells and regulates many of the genes that are differentially expressed as an effect of forskolin treatment. Specifically, genes encoding markers for the differentiation of cytotrophoblast into syncytiotrophoblast and factors essential for trophoblast cell fusion and invasion were negatively regulated by ZBED1, indicating that ZBED1 might be important for maintaining a steady pool of cytotrophoblast cells. In addition, ZBED1 affected genes involved in the regulation of trophoblast cell survival and apoptosis, in agreement with the observed increase in apoptosis upon knockdown of ZBED1 in forskolin-treated BeWo cells. In addition, genes implicated in the differentiation, recruitment, and function of innate immune cells by the placenta were affected by ZBED1, further suggesting a role for this protein in the regulation of maternal immune tolerance. In conclusion, our study implicates ZBED1 in major biological processes of placental biology.
Collapse
Affiliation(s)
- Simone Johansen
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (S.J.); (S.T.); (M.L.E.); (M.G.T.); (C.B.P.); (H.J.D.)
| | - Sofie Traynor
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (S.J.); (S.T.); (M.L.E.); (M.G.T.); (C.B.P.); (H.J.D.)
| | - Malene Laage Ebstrup
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (S.J.); (S.T.); (M.L.E.); (M.G.T.); (C.B.P.); (H.J.D.)
| | - Mikkel Green Terp
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (S.J.); (S.T.); (M.L.E.); (M.G.T.); (C.B.P.); (H.J.D.)
| | - Christina Bøg Pedersen
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (S.J.); (S.T.); (M.L.E.); (M.G.T.); (C.B.P.); (H.J.D.)
| | - Henrik Jørn Ditzel
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (S.J.); (S.T.); (M.L.E.); (M.G.T.); (C.B.P.); (H.J.D.)
- Department of Oncology, Odense University Hospital, 5230 Odense, Denmark
- Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, 5230 Odense, Denmark
| | - Morten Frier Gjerstorff
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (S.J.); (S.T.); (M.L.E.); (M.G.T.); (C.B.P.); (H.J.D.)
- Department of Oncology, Odense University Hospital, 5230 Odense, Denmark
- Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, 5230 Odense, Denmark
- Correspondence: ; Tel.: +45-2126-1563
| |
Collapse
|
22
|
Carroll A, Desforges M, Jones CJ, Heazell AE. Morphological and functional changes in placentas from prolonged pregnancies. Placenta 2022; 125:29-35. [DOI: 10.1016/j.placenta.2022.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/23/2021] [Accepted: 01/10/2022] [Indexed: 11/27/2022]
|
23
|
Yang Y, Liu H, Zhao Y, Geng C, Chao L, Hao A. Grim-19 deficiency promotes decidual macrophage autophagy in recurrent spontaneous abortion. Front Endocrinol (Lausanne) 2022; 13:1023194. [PMID: 36387896 PMCID: PMC9641028 DOI: 10.3389/fendo.2022.1023194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022] Open
Abstract
Dysregulation of decidual macrophages leads to the occurrence of recurrent spontaneous abortion (RSA). However, the role of macrophages in RSA occurrence remains unclear. In this study, we found that the expression of Grim-19 was decreased, and the expression of autophagy related proteins Beclin1, LC3B II/I and BNIP3 was markedly upregulated in decidual macrophages of RSA patients compared with the normal pregnancy group. Furthermore, we demonstrated that downregulation of GRIM-19 increased the expression of autophagy related proteins Beclin1, LC3B II/I, BNIP3 and the proinflammatory cytokines IL1B, IL6 and TNFa in uterine mononuclear cells of GRIM-19+/- mice. The proportion of CD45+CD11b+F4/80+LC3B+ cells in GRIM-19+/- mouse uteri was significantly higher than that in WT mouse uteri. In addition, we confirmed that inhibition of Grim-19 by siRNA enhanced the expression of autophagy related proteins in RAW264.7 cells and THP-1 cells. More importantly, downregulation of Grim-19 in RAW264.7 cells promoted the release of proinflammatory cytokines and promoted phagocytic activity, which could be reversed by autophagy blockade. For THP-1-derived macrophages, the results of RNA-seq suggested that Grim-19 mainly modulates immune and inflammatory-related pathways, leading to cytokine production, and thus contributing to inflammation. Therefore, our data reveal that Grim-19 deficiency influences macrophage function, characterized by enhanced proinflammatory cytokines and phagocytic activity, and this might be regulated by autophagy. This may represent a novel mechanism for the occurrence of RSA.
Collapse
Affiliation(s)
- Yang Yang
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Haoran Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Yue Zhao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Chen Geng
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Lan Chao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Aijun Hao
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Aijun Hao,
| |
Collapse
|
24
|
Lokeswara AW, Hiksas R, Irwinda R, Wibowo N. Preeclampsia: From Cellular Wellness to Inappropriate Cell Death, and the Roles of Nutrition. Front Cell Dev Biol 2021; 9:726513. [PMID: 34805141 PMCID: PMC8602860 DOI: 10.3389/fcell.2021.726513] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/07/2021] [Indexed: 12/27/2022] Open
Abstract
Preeclampsia is one of the most common obstetrical complications worldwide. The pathomechanism of this disease begins with abnormal placentation in early pregnancy, which is associated with inappropriate decidualization, vasculogenesis, angiogenesis, and spiral artery remodeling, leading to endothelial dysfunction. In these processes, appropriate cellular deaths have been proposed to play a pivotal role, including apoptosis and autophagy. The proper functioning of these physiological cell deaths for placentation depends on the wellbeing of the trophoblasts, affected by the structural and functional integrity of each cellular component including the cell membrane, mitochondria, endoplasmic reticulum, genetics, and epigenetics. This cellular wellness, which includes optimal cellular integrity and function, is heavily influenced by nutritional adequacy. In contrast, nutritional deficiencies may result in the alteration of plasma membrane, mitochondrial dysfunction, endoplasmic reticulum stress, and changes in gene expression, DNA methylation, and miRNA expression, as well as weakened defense against environmental contaminants, hence inducing a series of inappropriate cellular deaths such as abnormal apoptosis and necrosis, and autophagy dysfunction and resulting in abnormal trophoblast invasion. Despite their inherent connection, the currently available studies examined the functions of each organelle, the cellular death mechanisms and the nutrition involved, both physiologically in the placenta and in preeclampsia, separately. Therefore, this review aims to comprehensively discuss the relationship between each organelle in maintaining the physiological cell death mechanisms and the nutrition involved, and the interconnection between the disruptions in the cellular organelles and inappropriate cell death mechanisms, resulting in poor trophoblast invasion and differentiation, as seen in preeclampsia.
Collapse
Affiliation(s)
- Angga Wiratama Lokeswara
- Faculty of Medicine, Dr. Cipto Mangunkusumo Hospital, University of Indonesia, Jakarta, Indonesia
| | - Rabbania Hiksas
- Faculty of Medicine, Dr. Cipto Mangunkusumo Hospital, University of Indonesia, Jakarta, Indonesia
| | - Rima Irwinda
- Maternal Fetal Division, Department of Obstetrics and Gynaecology, Faculty of Medicine, Dr. Cipto Mangunkusumo Hospital, University of Indonesia, Jakarta, Indonesia
| | - Noroyono Wibowo
- Maternal Fetal Division, Department of Obstetrics and Gynaecology, Faculty of Medicine, Dr. Cipto Mangunkusumo Hospital, University of Indonesia, Jakarta, Indonesia
| |
Collapse
|
25
|
da Silva Castro A, Angeloni MB, de Freitas Barbosa B, de Miranda RL, Teixeira SC, Guirelli PM, de Oliveira FC, José da Silva R, Franco PS, Ribeiro M, Milian ICB, de Oliveira Gomes A, Ietta F, Júnior SF, Mineo TWP, Mineo JR, de Oliveira Simões Alves CM, Ferro EAV. BEWO trophoblast cells and Toxoplasma gondii infection modulate cell death mechanisms in THP-1 monocyte cells by interference in the expression of death receptor and intracellular proteins. Tissue Cell 2021; 73:101658. [PMID: 34597888 DOI: 10.1016/j.tice.2021.101658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 02/07/2023]
Abstract
Crosstalk between trophoblast and monocytes is essential for gestational success, and it can be compromised in congenital toxoplasmosis. Cell death is one of the mechanisms involved in the maintenance of pregnancy, and this study aimed to evaluate the role of trophoblast in the modulation of monocyte cell death in the presence or absence of Toxoplasma gondii infection. THP-1 cells were stimulated with supernatants of BeWo cells and then infected or not with T. gondii. The supernatants were collected and analyzed for the secretion of human Fas ligand, and cells were used to determine cell death and apoptosis, cell death receptor, and intracellular proteins expression. Cell death and apoptosis index were higher in uninfected THP-1 cells stimulated with supernatants of BeWo cells; however, apoptosis index was reduced by T. gondii infection. Macrophage migration inhibitory factor (MIF) and transforming growth factor (TGF)-β1, secreted by BeWo cells, altered the cell death and apoptosis rates in THP-1 cells. In infected THP-1 cells, the expression of Fas/CD95 and secretion of FasL was significantly higher; however, caspase 3 and phosphorylated extracellular-signal-regulated kinase (ERK1/2) were downregulated. Results suggest that soluble factors secreted by BeWo cells induce cell death and apoptosis in THP-1 cells, and Fas/CD95 can be involved in this process. On the other hand, T. gondii interferes in the mechanism of cell death and inhibits THP-1 cell apoptosis, which can be associated with active caspase 3 and phosphorylated ERK1/2. In conclusion, our results showed that human BeWo trophoblast cells and T. gondii infection modulate cell death in human THP-1 monocyte cells.
Collapse
Affiliation(s)
- Andressa da Silva Castro
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, MG, Brazil
| | - Mariana Bodini Angeloni
- School of Medicine, Healthy Sciences Special Academic Unit, University of Goiás-Jataí, Jataí, GO, Brazil
| | - Bellisa de Freitas Barbosa
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, MG, Brazil
| | - Renata Lima de Miranda
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, MG, Brazil
| | - Samuel Cota Teixeira
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, MG, Brazil
| | - Pâmela Mendonça Guirelli
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, MG, Brazil
| | - Fernanda Chaves de Oliveira
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, MG, Brazil
| | - Rafaela José da Silva
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, MG, Brazil
| | - Priscila Silva Franco
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, MG, Brazil
| | - Mayara Ribeiro
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, MG, Brazil
| | - Iliana Claudia Balga Milian
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, MG, Brazil
| | - Angélica de Oliveira Gomes
- Laboratory of Cell Biology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Francesca Ietta
- Department of Life Science, University of Siena, Siena, Italy
| | | | - Tiago Wilson Patriarca Mineo
- Laboratory of Immunoparasitology, Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlândia, MG, Brazil
| | - José Roberto Mineo
- Laboratory of Immunoparasitology, Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlândia, MG, Brazil
| | | | - Eloisa Amália Vieira Ferro
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, MG, Brazil.
| |
Collapse
|
26
|
The impact of Zika virus exposure on the placental proteomic profile. Biochim Biophys Acta Mol Basis Dis 2021; 1868:166270. [PMID: 34582966 DOI: 10.1016/j.bbadis.2021.166270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/12/2021] [Accepted: 09/12/2021] [Indexed: 11/21/2022]
Abstract
Zika virus (ZIKV) infection has caused severe unexpected clinical outcomes in neonates and adults during the recent outbreak in Latin America, particularly in Brazil. Congenital malformations associated with ZIKV have been frequently reported; nevertheless, the mechanism of vertical transmission and the involvement of placental cells remains unclear. In this study, we applied quantitative proteomics analysis in a floating explant model of chorionic villi of human placental tissues incubated with ZIKV and with ZIKV pre-adsorbed with anti-ZIKV envelope protein. Proteomic data are available via ProteomeXchange with identifier PXD025764. Altered levels of proteins were involved in cell proliferation, apoptosis, inflammatory processes, and the integrin-cytoskeleton complex. Antibody-opsonized ZIKV particles differentially modulated the pattern of protein expression in placental cells; this phenomenon may play a pivotal role in determining the course of infection and the role of mixed infections. The expression of specific proteins was also evaluated by immunoperoxidase assays. These data fill gaps in our understanding of early events after ZIKV placental exposure and help identify infection control targets.
Collapse
|
27
|
Yang C, Park S, Song G, Lim W. Inhibition of the cleaved half of tRNA Gly enhances palmitic acid-induced apoptosis in human trophoblasts. J Nutr Biochem 2021; 99:108866. [PMID: 34563666 DOI: 10.1016/j.jnutbio.2021.108866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/11/2021] [Accepted: 09/08/2021] [Indexed: 11/15/2022]
Abstract
Palmitic acid (PA) induces apoptosis in the human trophoblast cell line HTR8/SVneo. However, the molecular mechanism underlying this effect remains unclear. Although small noncoding RNAs are involved in trophoblast growth and invasion during early pregnancy, the functional roles of tRNA-derived species are currently unknown. Therefore, the purpose of this study was to examine the involvement of tRNA-derived species in PA-induced apoptosis in human trophoblasts. In this study, we investigate the expression and function of tRNA-derived stress-induced RNAs (tiRNAs) in HTR8/SVneo. We determined the expression of tiRNAs in HTR8/SVneo cells in response to PA. Then, we transfected inhibitor of target tiRNA in HTR8/SVneo with or without PA to examine the tRNA-derived species-regulated intracellular signal transduction by detecting calcium homeostasis, mitochondrial membrane potential, and signaling proteins. We found that the expression of tRNAGly-derived tiRNAs decreased in PA-treated human trophoblasts. Moreover, inhibition of tiRNAGlyCCC/GCC enhanced the PA-induced apoptosis along with the induction of DNA fragmentation and mitochondrial depolarization. Inhibition of tiRNAGlyCCC/GCC enhanced the expression of endoplasmic reticulum stress-related proteins and increased Ca2+ levels in the cytoplasm and mitochondria. Moreover, the levels of cytochrome c released from the mitochondria were synergistically affected by tiRNAGlyCCC/GCC inhibitor and PA. Furthermore, artificial regulation of ANG inhibited the expression of tiRNAGlyCCC/GCC and similar effects were observed upon the inhibition of tiRNAGlyCCC/GCC in human trophoblasts. These results suggest that tiRNAGlyCCC/GCC might be the molecule via which PA induces its effects in human trophoblasts.
Collapse
Affiliation(s)
- Changwon Yang
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Sunwoo Park
- Department of Plant & Biomaterials Science, Gyeongsang National University, Jinju-si, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea.
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul, Republic of Korea.
| |
Collapse
|
28
|
Oxidative stress-induced impairment of trophoblast function causes preeclampsia through the unfolded protein response pathway. Sci Rep 2021; 11:18415. [PMID: 34531444 PMCID: PMC8446002 DOI: 10.1038/s41598-021-97799-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/30/2021] [Indexed: 11/30/2022] Open
Abstract
Pre-eclampsia (PE) is a pregnancy-specific disorder, characterized by hypertension and proteinuria. In PE, trophoblasts mediated inadequate remodeling of uterine spiral arteries seem to interrupt uteroplacental blood flow, one of the hallmarks in the early onset of PE (EO-PE). This, in turn, results in placental ischemia–reperfusion injury during hypoxia and reoxygenation episodes, leading to the generation of reactive oxygen species (ROS) and oxidative stress (OS). But still it is debatable if OS is a cause or consequence of PE. In this present study, we have investigated the effects of OS on PE placentae and trophoblast cell functions using BeWo and HTR8/SVneo cell lines. PE placental tissues showed abnormal ultrastructure, high level of reactive oxygen species (ROS) with altered unfolded protein responses (UPR) in compare with term placental tissues. Similar to PE placentae, during OS induction, the trophoblast cells showed altered invasion and migration properties with significantly variable expression of differentiation and invasion markers, e.g., syncytin and MMPs. The effect was rescued by antioxidant, N-acetyl cysteine, thereby implying a ROS-specific effect and in the trophoblast cells, OS triggers UPR pathway through IRE1α-XBP1 axis. Taken together, these findings highlight the harmful effect of unfolded protein response, which was induced due to OS on trophoblast cells and deformed invasion and differentiation programme and can be extended further to clinical settings to identify clinically approved antioxidants during pregnancy as a therapeutic measure to reduce the onset of PE.
Collapse
|
29
|
Adu-Gyamfi EA, Lamptey J, Chen XM, Li FF, Li C, Ruan LL, Yang XN, Liu TH, Wang YX, Ding YB. Iodothyronine deiodinase 2 (DiO 2) regulates trophoblast cell line cycle, invasion and apoptosis; and its downregulation is associated with early recurrent miscarriage. Placenta 2021; 111:54-68. [PMID: 34166926 DOI: 10.1016/j.placenta.2021.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/26/2021] [Accepted: 06/14/2021] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Trophoblast development is a crucial event in placentation and pregnancy complications but its underlying mechanisms remain unclear. Thus, we aimed at investigating the role of DiO2 in trophoblast cell line decisions and assessing its placental villous expression in early recurrent miscarriage (ERM) patients. METHODS The placental villous expression of DiO2 was determined with immunofluorescence. Cell proliferation was measured with the CCK8 kit while cell-cycle and apoptosis were studied with flow-cytometry. Cell migration and invasion were measured with wound-healing and transwell assays, respectively. Gene expression was then assessed with RT-qPCR and western blotting. RESULTS DiO2 is expressed in the CTB, PCT, DCT and STB of the placenta. Its overexpression arrested trophoblast cell line proliferation at the G1 phase of the cell-cycle by downregulating cyclin-D1 and PCNA, while promoting apoptosis via increased caspase-3 activity and inhibition of the AKT and ERK1/2 signaling pathways. Also, it augmented trophoblast cell line migration and invasion via the upregulation of N-cadherin, vimentin, fascin-1, twist-1 and other epithelial-mesenchymal transition genes. DiO2 knockdown elicited the opposite effects. Surprisingly, each of these effects of DiO2 manipulation was not mediated by thyroid hormone metabolism. Assessment of the ERM placental villi revealed a downregulation of DiO2, N-cadherin, vimentin, fascin-1 and twist-1. The expression of E-cadherin remained unchanged in these placentae. DISCUSSION During placentation, DiO2 may inhibit trophoblast proliferation while facilitating their differentiation into an invasive phenotype; and that its downregulation may contribute to the shallow trophoblast invasion that precedes ERM. Hence, DiO2 is a potential therapeutic target against ERM.
Collapse
Affiliation(s)
- Enoch Appiah Adu-Gyamfi
- Department of Genetics, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Jones Lamptey
- Department of Genetics, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xue-Mei Chen
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Fang-Fang Li
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Cong Li
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Ling-Ling Ruan
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xue-Niu Yang
- First Affiliated Hospital of Chongqing Medical University, Chongqing, 400020, People's Republic of China
| | - Tai-Hang Liu
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Ying-Xiong Wang
- Department of Genetics, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Yu-Bin Ding
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
30
|
Kreicberga I, Junga A, Pilmane M. Assessment of apoptosis and appearance of hepatocyte growth factor in placenta at different gestational ages: A cross-sectional study. Int J Reprod Biomed 2021; 19:505-514. [PMID: 34401645 PMCID: PMC8350851 DOI: 10.18502/ijrm.v19i6.9372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 08/10/2020] [Accepted: 10/31/2020] [Indexed: 11/24/2022] Open
Abstract
Background Fetal growth is determined by the interaction between mother and fetus using the placental interface throughout the pregnancy. Objective To research apoptosis and appearance of hepatocyte growth factor (HGF) in placentas of different gestational ages and to describe the anthropometrical and clinical indices of mothers and newborns. Materials and Methods The study material was obtained from 53 human immunodeficiency virus negative pregnant women of legal age without systemic diseases. The staining of placental apoptotic cells was processed by a standard in situ cell death detection kit. The detection of HGF was provided by the ImmunoCruz goat ABC Staining System protocol sc-2023. Relative distribution of positive structures was evaluated using the semiquantitative counting method. Results The mean rank value of the amount of HGF-containing cells (cytotrophoblasts, syncytiotrophoblasts, extravillous trophoblasts, Höfbauer cells, and cells of extraembryonic mesoderm) was 1.61 ± 0.94. Apoptotic cells (cytotrophoblasts, syncytiotrophoblasts, extravillous trophoblasts, and cells of extraembryonic mesoderm) were found in all placental samples of various gestational ages (term 13.00 ± 13.05 and preterm 27.00 ± 18.25); in general, their amount decreased with advancing gestational age of the placenta (p < 0.01). Conclusion Weight of a placenta directly depends on the gestational age and correlates with the main fetal anthropometrical parameters (weight, length, and head and chest circumferences). The decrease in HGF-containing and apoptotic cells with advancing gestation depends on the adaptation potential of the placenta, proving the other ways of cellular disposition.
Collapse
Affiliation(s)
- Ilze Kreicberga
- Institute of Anatomy and Anthropology, Rīga Stradiņš University, Riga, Latvia
| | - Anna Junga
- Institute of Anatomy and Anthropology, Rīga Stradiņš University, Riga, Latvia
| | - Māra Pilmane
- Institute of Anatomy and Anthropology, Rīga Stradiņš University, Riga, Latvia
| |
Collapse
|
31
|
Cannabidiol disrupts apoptosis, autophagy and invasion processes of placental trophoblasts. Arch Toxicol 2021; 95:3393-3406. [PMID: 34302491 DOI: 10.1007/s00204-021-03122-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/15/2021] [Indexed: 01/18/2023]
Abstract
Cannabidiol (CBD) is a constituent of Cannabis sativa without psychotropic activity, whose medical benefits have been recognised. However, little is known about the potential toxic effects of CBD on reproductive health. Placental development involves tightly controlled processes of cell proliferation, differentiation, apoptosis, autophagy and migration/invasion of trophoblast cells. Cannabis use by pregnant women has been increasing, mainly for the relief of nausea associated with the first trimester, which raises great concern. Regarding the crucial role of cytotrophoblast cells (CTs) and extravillous trophoblasts (EVTs) in placentation, the effects of CBD (1-10 µM) were studied, using in vitro model systems BeWo and HTR-8/SVneo cell lines, respectively. CBD causes cell viability loss in a dose-dependent manner, disrupts cell cycle progression and induces apoptosis through the mitochondrial pathway, on both cell models. Moreover, CBD induces autophagy only in HTR-8/SVneo cells, being this process a promoter of apoptosis. Hypoxia-responsive genes HIF1A and SPP1 were also increased in CBD-treated HTR-8/SVneo cells suggesting a role for HIF-1α in the apoptotic and autophagic processes. In addition, CBD was able to decrease HTR-8/SVneo cell migration. Therefore, CBD interferes with trophoblast turnover and placental remodelling, which can have a considerable impact on pregnancy outcome. Thus, from an in vitro perspective our study adds new evidence for the potential negative impact of cannabis use by pregnant women.
Collapse
|
32
|
Stojanovska V, Shah A, Woidacki K, Fischer F, Bauer M, Lindquist JA, Mertens PR, Zenclussen AC. YB-1 Is Altered in Pregnancy-Associated Disorders and Affects Trophoblast in Vitro Properties via Alternation of Multiple Molecular Traits. Int J Mol Sci 2021; 22:ijms22137226. [PMID: 34281280 PMCID: PMC8269420 DOI: 10.3390/ijms22137226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 12/16/2022] Open
Abstract
Cold shock Y-box binding protein-1 (YB-1) coordinates several molecular processes between the nucleus and the cytoplasm and plays a crucial role in cell function. Moreover, it is involved in cancer progression, invasion, and metastasis. As trophoblast cells share similar characteristics with cancer cells, we hypothesized that YB-1 might also be necessary for trophoblast functionality. In samples of patients with intrauterine growth restriction, YB-1 mRNA levels were decreased, while they were increased in preeclampsia and unchanged in spontaneous abortions when compared to normal pregnant controls. Studies with overexpression and downregulation of YB-1 were performed to assess the key trophoblast processes in two trophoblast cell lines HTR8/SVneo and JEG3. Overexpression of YB-1 or exposure of trophoblast cells to recombinant YB-1 caused enhanced proliferation, while knockdown of YB-1 lead to proliferative disadvantage in JEG3 or HTR8/SVneo cells. The invasion and migration properties were affected at different degrees among the trophoblast cell lines. Trophoblast expression of genes mediating migration, invasion, apoptosis, and inflammation was altered upon YB-1 downregulation. Moreover, IL-6 secretion was excessively increased in HTR8/SVneo. Ultimately, YB-1 directly binds to NF-κB enhancer mark in HTR8/SVneo cells. Our data show that YB-1 protein is important for trophoblast cell functioning and, when downregulated, leads to trophoblast disadvantage that at least in part is mediated by NF-κB.
Collapse
Affiliation(s)
- Violeta Stojanovska
- Department of Environmental Immunology, Helmholtz-Centre for Environmental Research-UFZ-, 04318 Leipzig, Germany; (F.F.); (M.B.)
- Correspondence: (V.S.); (A.C.Z.)
| | - Aneri Shah
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (A.S.); (J.A.L.); (P.R.M.)
| | - Katja Woidacki
- Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany;
| | - Florence Fischer
- Department of Environmental Immunology, Helmholtz-Centre for Environmental Research-UFZ-, 04318 Leipzig, Germany; (F.F.); (M.B.)
| | - Mario Bauer
- Department of Environmental Immunology, Helmholtz-Centre for Environmental Research-UFZ-, 04318 Leipzig, Germany; (F.F.); (M.B.)
| | - Jonathan A. Lindquist
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (A.S.); (J.A.L.); (P.R.M.)
| | - Peter R. Mertens
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (A.S.); (J.A.L.); (P.R.M.)
| | - Ana C. Zenclussen
- Department of Environmental Immunology, Helmholtz-Centre for Environmental Research-UFZ-, 04318 Leipzig, Germany; (F.F.); (M.B.)
- Perinatal Immunology, Saxonian Incubator for Clinical Translation, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
- Correspondence: (V.S.); (A.C.Z.)
| |
Collapse
|
33
|
Sanchez-Aranguren L, Nadeem S. Bioenergetics adaptations and redox homeostasis in pregnancy and related disorders. Mol Cell Biochem 2021; 476:4003-4018. [PMID: 34196872 PMCID: PMC8473347 DOI: 10.1007/s11010-021-04215-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 06/21/2021] [Indexed: 12/14/2022]
Abstract
Pregnancy is a challenging physiological process that involves maternal adaptations to the increasing energetics demands imposed by the growing conceptus. Failure to adapt to these requirements may result in serious health complications for the mother and the baby. The mitochondria are biosynthetic and energy-producing organelles supporting the augmented energetic demands of pregnancy. Evidence suggests that placental mitochondria display a dynamic phenotype through gestation. At early stages of pregnancy placental mitochondria are mainly responsible for the generation of metabolic intermediates and reactive oxygen species (ROS), while at later stages of gestation, the placental mitochondria exhibit high rates of oxygen consumption. This review describes the metabolic fingerprint of the placental mitochondria at different stages of pregnancy and summarises key signs of mitochondrial dysfunction in pathological pregnancy conditions, including preeclampsia, gestational diabetes and intrauterine growth restriction (IUGR). So far, the effects of placental-driven metabolic changes governing the metabolic adaptations occurring in different maternal tissues in both, healthy and pathological pregnancies, remain to be uncovered. Understanding the function and molecular aspects of the adaptations occurring in placental and maternal tissue's mitochondria will unveil potential targets for further therapeutic exploration that could address pregnancy-related disorders. Targeting mitochondrial metabolism is an emerging approach for regulating mitochondrial bioenergetics. This review will also describe the potential therapeutic use of compounds with a recognised effect on mitochondria, for the management of preeclampsia.
Collapse
Affiliation(s)
| | - Sarah Nadeem
- College of Health and Life Sciences, Aston Medical School, Aston University, Birmingham, UK
| |
Collapse
|
34
|
Chen S, Yin Q, Hu H, Chen Q, Huang Q, Zhong M. AOPPs induce HTR-8/SVneo cell apoptosis by downregulating the Nrf-2/ARE/HO-1 anti-oxidative pathway: Potential implications for preeclampsia. Placenta 2021; 112:1-8. [PMID: 34237527 DOI: 10.1016/j.placenta.2021.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/29/2021] [Accepted: 06/14/2021] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Advanced oxidation protein products (AOPPs), which are novel markers of oxidant-mediated protein damage, are prevalent in numerous diseases. We previously demonstrated that AOPPs act as a new class of pathogenic mediators in preeclampsia by causing trophoblast damage and dysfunction. Herein, we explored whether AOPPs could regulate the Nrf-2/ARE/HO-1 anti-oxidative pathway to facilitate the progression of preeclampsia. METHODS To investigate the pathophysiology of preeclampsia, we evaluated the effects of AOPPs on trophoblast damage, apoptotic proteins, and Nrf-2/ARE/HO-1 anti-oxidative pathway expression, as well as their underlying mechanisms. RESULTS AOPPs directly increased the expression of apoptotic proteins and significantly inhibited the expression of Nrf-2/ARE/HO-1 pathway in trophoblasts. Nrf-2 silencing aggravated the AOPPs-induced cell apoptosis in vitro by activating p53 and caspase cascade, whereas Nrf-2 overexpression had the opposite effect. Moreover, Nrf-2 exerted cytoprotective effects by increasing HO-1. DISCUSSION These findings suggest that AOPPs induce trophoblast apoptosis by triggering p53 and caspase activation via inhibition of the Nrf-2/ARE/HO-1 anti-oxidative pathway. Hence, Nrf-2/ARE/HO-1 pathway activation plays a protective role in AOPPs-induced cell apoptosis; thus, holding potential as a therapeutic target against preeclampsia.
Collapse
Affiliation(s)
- Shuying Chen
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qian Yin
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haoyue Hu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qian Chen
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qitao Huang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mei Zhong
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
35
|
Yin Y, Qu L, Zhu D, Wu Y, Zhou X. Effect of SOCS3 on apoptosis of human trophoblasts via adjustment of the JAK2/STAT3 signaling pathway in preterm birth. Transl Pediatr 2021; 10:1637-1646. [PMID: 34295778 PMCID: PMC8261589 DOI: 10.21037/tp-21-39] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/12/2021] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The expression of suppressor of cytokine signaling 3 (SOCS3) was induced by interleukin-6 (IL-6) in preterm placental tissues. However, its role in IL-6 induced apoptosis of trophoblast cells derived from preterm placental tissues remains to be elucidated. METHODS Primary cytotrophoblasts from human preterm placental tissues were used to stably knock down and overexpress the level of SOCS3 by corresponding lentiviral vectors and the expression of SOCS3 was validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot. The effect of SOCS3 overexpression or knockdown on the proliferation and apoptosis of IL-6 treated human cytotrophoblasts were determined by Cell Counting Kit-8 (CCK8) assay and Annexin-V/Propidium Iodide (PI) double-staining assay, respectively. Based on it, we detected the proteins associated with the Janus Tyrosine Kinase (JAK)/Signal Transducer and Activator of Transcription (STAT) pathway and apoptosis, such as JAK2, p-JAK2, STAT3, p-STAT3, B-cell lymphoma-2 (Bcl-2) and BCL2-associated X (Bax) by Western blot. RESULTS IL-6-treatment resulted in significant apoptosis of human cytotrophoblasts. Overexpressing SOCS3 in the cytotrophoblasts reduced cell apoptosis, while the knockdown of SCOS3 had the opposite effects. Further analyses showed that SOCS3 overexpression inhibited JAK2 and STAT3 phosphorylation, which was induced by IL-6 stimulation. CONCLUSIONS SOCS3 plays a protective role in human preterm placental tissue-derived cytotrophoblasts from IL-6 induced apoptosis by feedback inhibition of JAK2/STAT3 signaling.
Collapse
Affiliation(s)
- Yin Yin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lin Qu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dicong Zhu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Yang Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
36
|
Lin P, Lai X, Wu L, Liu W, Lin S, Ye J. Network analysis reveals important genes in human placenta. J Obstet Gynaecol Res 2021; 47:2607-2615. [PMID: 34005840 DOI: 10.1111/jog.14820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 03/22/2021] [Accepted: 04/25/2021] [Indexed: 12/19/2022]
Abstract
AIM To determine which genes are important in placenta by network analysis. METHODS Placenta expressing genes were screened from RNA-Seq data. Protein-protein interaction data were downloaded from STRING (v11.0) database. Google PageRank (PR) algorithm was used to identify important placental genes from protein interaction network. Six placental disease-related datasets were downloaded from NCBI GEO database, and the differential expression of the 99 genes was identified. RESULTS We calculated PR for each placenta expressing gene and defined the top 99 genes with high PR as important genes. GAPDH has the highest PR. The 99 genes had different expression pattern in placental cell types. FN1 is up-regulated in 8 w EVT compared to 8 w CTB and 24 w EVT compared to 8 w EVT. HSPA4 is down-regulated in 8 w EVT compared to 8 w CTB and 24 w EVT compared to 8 w EVT. MIB2, TLR4, and UBB are consistently changed in preeclampsia (PE). UBB and ACTG1 were identified to be down-regulated in fetal growth restriction (FGR). SOD1 is down-regulated in preterm birth placenta. CONCLUSION Our findings confirmed that the importance of these genes in placenta-related diseases, and provide new candidates (MIB2, UBB, ACTG1, and SOD1) for placenta-related disease diagnosis and treatment.
Collapse
Affiliation(s)
- Peihong Lin
- Department of Gynaecology and Obstetrics, Fuzhou First Hospital Affiliated to Fujian Medical University, Fuzhou, China
| | - Xuedan Lai
- Department of Gynaecology and Obstetrics, Fuzhou First Hospital Affiliated to Fujian Medical University, Fuzhou, China
| | - Ling Wu
- Department of Gynaecology and Obstetrics, Fuzhou First Hospital Affiliated to Fujian Medical University, Fuzhou, China
| | - Wei Liu
- Department of Bioinformatics, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shiqiang Lin
- Department of Bioinformatics, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jianwen Ye
- Department of Gynaecology and Obstetrics, Fuzhou First Hospital Affiliated to Fujian Medical University, Fuzhou, China
| |
Collapse
|
37
|
Kovács P, Joó JG, Tamás V, Molnár Z, Burik-Hajas D, Bódis J, Kornya L. The role of apoptosis in the complex pathogenesis of the most common obstetrics and gynaecology diseases. Physiol Int 2021; 107:106-119. [PMID: 32491289 DOI: 10.1556/2060.2020.00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/07/2020] [Indexed: 11/19/2022]
Abstract
Purpose We aimed to assess the etiological role of apoptotic genes Bcl-2 and Bax in the background of major obstetric and gynaecological diseases. Methods Placental tissue samples were collected from 101 pregnancies with intrauterine growth restriction and 104 pregnancies with premature birth with 140 controll samples from term, eutrophic newborns. In addition, gene expression assessment of the genes Bax and Bcl-2 was performed in 101 uterine leiomyoma tissue samples at our disposal with 110 control cases. Gene expression levels were assessed by PCR method. Results The expression of the Bcl-2 gene was decreased in placental samples with intrauterine growth restriction. Significant overexpression of the proapoptotic Bax gene was detected in samples from premature infants. Antiapoptotic Bcl-2 gene expression was found to be significantly increased in fibroid tissues. Conclusion Apoptosis plays a crucial role in the development of the most common OB/GYN conditions. Decrease in the placental expression of the antiapoptotic gene Bcl-2 may upset the balance of programmed cell death.
Collapse
Affiliation(s)
- P Kovács
- 1Clinical Research Units Hungary, Miskolc, Hungary.,2Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, Pécs, Hungary
| | - József Gábor Joó
- 2Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, Pécs, Hungary.,3First Department of Obstetrics and Gynaecology, Semmelweis University, Budapest, Hungary
| | - V Tamás
- 2Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, Pécs, Hungary
| | - Z Molnár
- 2Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, Pécs, Hungary
| | - D Burik-Hajas
- 2Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, Pécs, Hungary
| | - J Bódis
- 2Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, Pécs, Hungary.,4Hungarian Academy of Sciences, University of Pécs (MTA-PTE), Human Reproduction Scientific Research Group, University of Pécs, Pécs, Hungary
| | - L Kornya
- 2Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, Pécs, Hungary.,5Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| |
Collapse
|
38
|
Anti-Apoptotic Effect of Apelin in Human Placenta: Studies on BeWo Cells and Villous Explants from Third-Trimester Human Pregnancy. Int J Mol Sci 2021; 22:ijms22052760. [PMID: 33803239 PMCID: PMC7967155 DOI: 10.3390/ijms22052760] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/19/2022] Open
Abstract
Previously, we demonstrated the expression of apelin and G-protein-coupled receptor APJ in human placenta cell lines as well as its direct action on placenta cell proliferation and endocrinology. The objective of this study was to examine the effect of apelin on placenta apoptosis in BeWo cells and villous explants from the human third trimester of pregnancy. The BeWo cells and villous explants were incubated with apelin (2 and 20 ng/mL) alone or with staurosporine for 24 to 72 h. First, we analysed the dose- and time-dependent effect of apelin on the expression of apoptotic factors on the mRNA level by real-time PCR and on the protein level using Western blot. Next, we checked caspase 3 and 7 activity by Caspase-Glo 3/7, DNA fragmentation by the Cell Death Detection ELISA kit and oxygen consumption by the MitoXpress-Xtra Oxygen Consumption assay. We found that apelin increased the expression of pro-survival and decreased proapoptotic factors on mRNA and protein levels in both BeWo cells and villous explants. Additionally, apelin inhibited caspase 3 and 7 activity and DNA fragmentation in staurosporine-induced apoptosis as also attenuated oxidative stress by increasing extracellular oxygen consumption. The antiapoptotic effect of apelin in BeWo cells was mediated by the APJ receptor and mitogen-activated protein kinase (ERK1/2/MAP3/1) and protein kinase B (AKT). The obtained results showed the antiapoptotic effect of apelin on trophoblast cells, suggesting its participation in the development of the placenta.
Collapse
|
39
|
Chen D, Xu L, Wu J, Liang H, Liang Y, Liu G. Downregulating miR-96-5p promotes proliferation, migration, and invasion, and inhibits apoptosis in human trophoblast cells via targeting DDAH1. Reprod Biol 2021; 21:100474. [PMID: 33360846 DOI: 10.1016/j.repbio.2020.100474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/12/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023]
Abstract
Several microRNAs (miRs) have been found to have modulating effects on trophoblast functions, yet the biological role and function of miR-96-5p and its interaction with Dimethylarginine Dimethylaminohydrolase 1 (DDAH1) remained poorly understood. After lentivirus transfection, the proliferation, migration, invasion and apoptosis of human trophoblast cells HTR-8/SVneo and SGHPL-4 were determined by Cell Counting Kit-8 (CCK-8) assay, scratch assay, Transwell, and flow cytometry, respectively. Relative expressions of miR-96-5p, DDAH1, and apoptosis-related proteins (B-cell lymphoma 2, Bcl-2; Bcl-2-associated X protein, Bax; cleaved (C) caspase-3) were detected via quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot as needed. The target gene of miR-96-5p and their potential binding sites were predicted using TargetScan V7.2 and confirmed by dual-luciferase reporter assay. MiR-96-5p downregulation promoted proliferation, migration and invasion, suppressed apoptosis, and decreased miR-96-5p expression in trophoblast cells in vitro, while miR-96-5p upregulation had the opposite effects. DDAH1 was recognized as a target gene of miR-96-5p, and silencing DDAH1 reversed the effects of miR-96-5p downregulation on the proliferation, migration, invasion and apoptosis of trophoblast cells as well as the expressions of apoptosis-related proteins. MiR-96-5p downregulation promotes proliferation, migration, and invasion, and suppresses apoptosis in human trophoblast cells in vitro via targeting DDAH1, which provides evidence for the implication of miR-96-5p in the functional modulation of trophoblasts.
Collapse
Affiliation(s)
- Danling Chen
- Department of Obstetrics, Guangdong Women and Children Hospital, China
| | - LinLi Xu
- Department of Obstetrics, Guangdong Women and Children Hospital, China
| | - Jinhua Wu
- Department of Obstetrics, Guangdong Women and Children Hospital, China
| | - Haiying Liang
- Department of Obstetrics, Guangdong Women and Children Hospital, China
| | - Yuemei Liang
- Department of Obstetrics, Guangdong Women and Children Hospital, China
| | - Guocheng Liu
- Department of Obstetrics, Guangdong Women and Children Hospital, China.
| |
Collapse
|
40
|
Kasture V, Sahay A, Joshi S. Cell death mechanisms and their roles in pregnancy related disorders. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 126:195-225. [PMID: 34090615 DOI: 10.1016/bs.apcsb.2021.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Autophagy and apoptosis are catabolic pathways essential for homeostasis. They play a crucial role for normal placental and fetal development. These cell death mechanisms are exaggerated in placental disorders such as preeclampsia, intrauterine growth restriction (IUGR) and gestational diabetes mellitus (GDM). Apoptosis is widely studied, highly controlled and regulated whereas; autophagy is an orderly degradation and recycling of the cellular components. Cellular senescence may be initiated by a variety of stimuli, including hypoxia, oxidative stress, reduction in survival signals and nutrition deprivation. Apoptosis is regulated by two types of pathways intrinsic and extrinsic. Extrinsic pathway is initiated by apoptosis inducing cells such as macrophages, natural killer cells whereas; intrinsic pathway is initiated in response to DNA damage, cell injury and lack of oxygen. In autophagy, the cell or organelles undergo lysosomal degradation. Placental apoptosis increases as the gestation progresses while autophagy plays a role in trophoblast differentiation and invasion. In pregnancy disorders like preeclampsia and IUGR, proapoptotic markers such as caspase 3, 8, BAX are higher and antiapoptotic markers like Bcl-2 are lower. In GDM, apoptotic markers are reduced resulting in increased placental mass and fetal macrosomia. Apoptosis in the pathological pregnancies is also influenced by the reduced levels of micronutrients and long chain polyunsaturated fatty acids resulting in disturbed placental biology. This chapter describes the role of various key molecular events involved in cellular senescence and the various factors influencing them. This will help identify future therapeutic strategies for better management of these processes.
Collapse
Affiliation(s)
- Vaishali Kasture
- Department of Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Akriti Sahay
- Department of Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Sadhana Joshi
- Department of Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India.
| |
Collapse
|
41
|
PFKFB3 regulates lipopolysaccharide-induced excessive inflammation and cellular dysfunction in HTR-8/Svneo cells: Implications for the role of PFKFB3 in preeclampsia. Placenta 2021; 106:67-78. [PMID: 33684599 DOI: 10.1016/j.placenta.2021.02.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/13/2021] [Accepted: 02/21/2021] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Preeclampsia is characterized by overactive inflammation at the uteroplacental interface, leading to trophoblasts dysfunction. 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase 3 (PFKFB3) is a crucial glycolytic regulator which has recently been found to participate in the pathological inflammatory states. This study aimed to investigate the role of PFKFB3 in the inflammation-induced damage in trophoblasts, and elucidate the underlying mechanisms. METHODS Immunohistochemistry, qRT-PCR, and Western blot analysis (WB) were used to detect the expression of PFKFB3 in preeclamptic and normal placentas. Lipopolysaccharide (LPS)-induced HTR8/SVneo cells were established as the in vitro model to simulate the overactive inflammation at the uteroplacental interface of PE, which were subsequently transfected with PFKFB3 siRNA. The expression of PFKFB3, NF-κB-p-p65, phosphorylation states of NF-κB-p65, ICAM-1, Bcl-2, BAX, and MMP2 were detected by WB. qRT-PCR was used to detect the expression of TNF-α and IL-1β. The ICAM-1 expression was also reflected by monocyte adhesion assay. Reactive Oxygen Species (ROS) levels were detected by DCFH-DA (2,7-Dichlorodi-hydrofluorescein diacetate). Apoptosis was detected using Annexin V-FITC staining. Migration and invasion were measured by wound-healing and transwell assays. RESULTS PFKFB3 was up-regulated in the preeclamptic placenta. In LPS-treated HTR-8/Svneo cells, the inhibition of PFKFB3 blocked the NF-κB signal pathway, thereby downregulating the expression of proinflammatory cytokines and adhesion molecules, meanwhile, PFKFB3 knockdown significantly alleviated monocyte adhesion, oxidative stress, apoptosis, and reinstated migration and invasive capacity. DISCUSSION PFKFB3 controls the LPS-induced inflammation via the NF-κB pathway and impacts trophoblasts function such as adhesion, oxidative stress, apoptosis, migration, and invasion, thereby potentially participating in the preeclamptic etiopathogenesis.
Collapse
|
42
|
Spence T, Allsopp PJ, Yeates AJ, Mulhern MS, Strain JJ, McSorley EM. Maternal Serum Cytokine Concentrations in Healthy Pregnancy and Preeclampsia. J Pregnancy 2021; 2021:6649608. [PMID: 33680514 PMCID: PMC7925069 DOI: 10.1155/2021/6649608] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/21/2021] [Accepted: 01/28/2021] [Indexed: 12/16/2022] Open
Abstract
The maternal immune response is essential for successful pregnancy, promoting immune tolerance to the fetus while maintaining innate and adaptive immunity. Uncontrolled, increased proinflammatory responses are a contributing factor to the pathogenesis of preeclampsia. The Th1/Th2 cytokine shift theory, characterised by bias production of Th2 anti-inflammatory cytokine midgestation, was frequently used to reflect the maternal immune response in pregnancy. This theory is simplistic as it is based on limited information and does not consider the role of other T cell subsets, Th17 and Tregs. A range of maternal peripheral cytokines have been measured in pregnancy cohorts, albeit the changes in individual cytokine concentrations across gestation is not well summarised. Using available data, this review was aimed at summarising changes in individual maternal serum cytokine concentrations throughout healthy pregnancy and evaluating their association with preeclampsia. We report that TNF-α increases as pregnancy progresses, IL-8 decreases in the second trimester, and IL-4 concentrations remain consistent throughout gestation. Lower second trimester IL-10 concentrations may be an early predictor for developing preeclampsia. Proinflammatory cytokines (TNF-α, IFN-γ, IL-2, IL-8, and IL-6) are significantly elevated in preeclampsia. More research is required to determine the usefulness of using cytokines, particularly IL-10, as early biomarkers of pregnancy health.
Collapse
Affiliation(s)
- Toni Spence
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Philip J. Allsopp
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Alison J. Yeates
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Maria S. Mulhern
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - J. J. Strain
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Emeir M. McSorley
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| |
Collapse
|
43
|
Guo H, Wang Y, Jia W, Liu L. MiR-133a-3p relieves the oxidative stress induced trophoblast cell apoptosis through the BACH1/Nrf2/HO-1 signaling pathway. Physiol Res 2021; 70:67-78. [PMID: 33453713 DOI: 10.33549/physiolres.934506] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Preeclampsia (PE) is a major cause of the pregnancy morbidity and mortality over the world. Disorganized placentation caused by trophoblast cell abnormity is one of main risk factors to induce PE. MiR-133a-3p has been shown to contain regulatory effects on oxidative stress in the cardiomyocytes. But the effects of miR-133a-3p on oxidative stress-induced apoptosis in the trophoblast cells remain unknown. In this study, trophoblast HTR-8/SVneo cells were transfected with miR-133a-3p mimics and inhibitor. H2O2 (250 microM) treatment of cells was adopted to induce oxidative stress. A series of typical molecular and cellular experiments was subsequently performed in order to investigate this issue. It was found that miR-133a-3p overexpression attenuated the oxidative stress induced by H2O2 through reduced ROS and MDA levels and enhanced antioxidase activities in the trophoblast cells. Overexpressed miR-133a-3p was shown to relieve the oxidative stress-induced apoptosis of HTR-8/SVneo cells. At molecular levels, a direct binding effect of miR-133a-3p on BACH1 was verified. Moreover, miR-133a-3p overexpression also enhanced BACH1 downstream Nrf2/HO-1 signaling to activate antioxidant genes. It is collectively demonstrated that miR-133a-3p can relieve the oxidative stress-induced apoptosis in the trophoblast cells through the BACH1/Nrf2/HO-1 signaling pathway via targeting BACH1 directly. This regulatory mechanism of miR-133a-3p in the trophoblast cells under oxidative stress may give a new perspective for oxidative stress-induced trophoblast cell abnormality and be useful to study more pathological mechanisms of PE.
Collapse
Affiliation(s)
- H Guo
- Department of Obstetrics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China.
| | | | | | | |
Collapse
|
44
|
Guo H, Wang Y, Liu D. Silibinin ameliorats H 2O 2-induced cell apoptosis and oxidative stress response by activating Nrf2 signaling in trophoblast cells. Acta Histochem 2020; 122:151620. [PMID: 33068964 DOI: 10.1016/j.acthis.2020.151620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023]
Abstract
Preeclampsia is a pregnancy-specific syndrome and is one of the major causes of maternal mortality around the world. Cell apoptosis and oxidative stress are involved in development of preeclampsia. Silibinin has been known with anti-inflammatory, anti-oxidative and anti-tumor roles. In this study, hydrogen peroxide (H2O2) administration induced apoptosis in HTR-8/SVneo trophoblast cells, evidenced by decreased level of Bcl-2 and increased levels of Bax and cleaved caspase-3. Western blot and JC-1 staining revealed that H2O2 led to decline of mitochondrial membrane potential (Δψm) and release of cytochrome C from mitochondria to cytoplasm. H2O2 also resulted in reactive oxygen species production and oxidative stress response, evidenced by elevated levels of malondialdehyde, and reduced activity of superoxide dismutase and glutathione peroxidase. Silibinin suppressed H2O2-induced apoptosis, decrease of Δψm and oxidative stress response. In addition, immunofluorescent staining and electrophoretic mobility shift assay demonstrated that H2O2 enhanced expression and nuclear translocation of nuclear factor-erythroid 2-like 2 (Nrf2), and the expression levels of heme oxygenases-1 and quinone oxidoreductase 1 were increased, suggesting the activation of Nrf2 signaling. The activity of Nrf2 signaling was further promoted by silibinin administration. Interestingly, the effect of silibinin on apoptosis and oxidative stress was abolished by interference RNA of Nrf2. In conclusion, we demonstrated that silibinin ameliorated H2O2-induced apoptosis and oxidative stress response by activating Nrf2 signaling in trophoblast cells. These findings may provide novel insights for treatment of preeclampsia.
Collapse
|
45
|
Loch-Caruso R, Korte CS, Hogan KA, Liao S, Harris C. Tert-Butyl Hydroperoxide Stimulated Apoptosis Independent of Prostaglandin E 2 and IL-6 in the HTR-8/SVneo Human Placental Cell Line. Reprod Sci 2020; 27:2104-2114. [PMID: 32542535 DOI: 10.1007/s43032-020-00231-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/10/2020] [Accepted: 06/03/2020] [Indexed: 01/05/2023]
Abstract
Significant gaps exist in our knowledge of how cellular redox status, sometimes referred to as oxidative stress, impacts placental trophoblasts. The present study used tert-butyl hydroperoxide (TBHP) as a known generator of reactive oxygen species (ROS) in the extravillous trophoblast cell line HTR-8/SVneo to examine the role of cellular redox disruption of prostaglandin E2 (PGE2) and the cytokine IL-6 in cell death. Cells were exposed to 0, 12.5, 25, or 50 μM TBHP for 4, 8, and 24 h to ascertain effects on cell viability, caspase 3/7 activity, PGE2 release, PTGS2 mRNA expression, and IL-6 release. Experiments with inhibitors included the cyclooxygenase inhibitor indomethacin, mitogen-activated protein kinase inhibitors (PD169316, U0126, or SP600125), or treatments to counter expected consequences of TBHP-stimulated generation of ROS (deferoxamine [DFO], butylated hydroxyanisole [BHA], and N,N'-diphenyl-1,4-phenylenediamine [DPPD]) using 24-h exposure to 50 μM TBHP. Cell viability, measured by ATP content, decreased 24% relative to controls with a 24-h exposure to 50 μM TBHP, but not at lower TBHP concentrations nor at earlier time points. Exposure to 50 μM TBHP increased caspase 3/7 activity, an indicator of apoptosis, after 8 and 24 h. Antioxidant treatment markedly reduced TBHP-stimulated caspase 3/7 activity, PGE2 release, and IL-6 release. TBHP-stimulated IL-6 release was blocked by PD169316 but unaltered by indomethacin. These data suggest that TBHP-stimulated IL-6 release and caspase 3/7 activation were independent of PGE2 yet were interrupted by treatments with known antioxidant properties, providing new insight into relationships between PGE2, IL-6, and apoptosis under conditions of chemically induced cellular oxidation.
Collapse
Affiliation(s)
- Rita Loch-Caruso
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, 48109-2029, USA.
| | - Cassandra S Korte
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, 48109-2029, USA.,College of Arts and Sciences, Lynn University, Boca Raton, FL, 33431, USA
| | - Kelly A Hogan
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, 48109-2029, USA.,Mayo Clinic, Rochester, MN, 55905, USA
| | - Sarah Liao
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, 48109-2029, USA.,Ardent Mills LCC, Denver, CO, 80202, USA
| | - Craig Harris
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, 48109-2029, USA
| |
Collapse
|
46
|
Kwan STC, Kezer CA, Helfrich KK, Saini N, Huebner SM, Flentke GR, Kling PJ, Smith SM. Maternal iron nutriture modulates placental development in a rat model of fetal alcohol spectrum disorder. Alcohol 2020; 84:57-66. [PMID: 31734307 DOI: 10.1016/j.alcohol.2019.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 12/20/2022]
Abstract
Prenatal alcohol exposure (PAE) causes developmental abnormalities known as fetal alcohol spectrum disorder (FASD). Maternal iron status modulates the severity of these defects in the offspring. Because the placenta is central in supporting fetal development, we investigated whether maternal iron status similarly modulates alcohol's effects in the placenta. We hypothesized that PAE causes placental insufficiency by decreasing placental weight and efficiency, and we hypothesized that these are worsened by maternal iron deficiency (ID) and alleviated by dietary iron fortification (IF). We also determined whether altered placental iron flux and inflammatory balance contribute to placental insufficiency. Pregnant Long-Evans rats consumed an iron-deficient (ID; 2-6 ppm), iron-sufficient (IS; 100 ppm), or iron-fortified (IF; 500 ppm) diet. Alcohol (5 g/kg body weight) or isocaloric maltodextrin (MD) was gavaged daily from gestational day (GD) 13.5-19.5. Placental outcomes were evaluated on GD20.5. PAE reduced fetal weight (p < 0.0001), placental weight (p = 0.0324), and placental efficiency (p = 0.0043). PAE downregulated placental transferrin receptor (p = 0.0032); it also altered placental Il1b and Tnf expression and the Il6:Il10 ratio (p = 0.0337, 0.0300, and 0.0034, respectively) to generate a response favoring inflammation. ID-PAE further reduced fetal growth and placental efficiency and induced a heightened pro-inflammatory placental profile. IF did not rescue the alcohol-reduced fetal weight, but it normalized placental efficiency and decreased placental inflammation. These placental cytokines correlated with fetal and placental growth, and explained 45% of the variability in fetal weight and 20% of the variability in placental efficiency. In summary, alcohol induces placental insufficiency and is associated with a pro-inflammatory cytokine profile exacerbated by maternal ID and mitigated by maternal IF. Because the placenta is closely linked to intrauterine growth, the placental insufficiency reported here may correlate with the lower birth weights in a subgroup of individuals who experienced PAE.
Collapse
Affiliation(s)
- Sze Ting Cecilia Kwan
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, 28081, United States
| | - Camille A Kezer
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, 53706, United States
| | - Kaylee K Helfrich
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, 28081, United States
| | - Nipun Saini
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, 28081, United States
| | - Shane M Huebner
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, 53706, United States
| | - George R Flentke
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, 28081, United States
| | - Pamela J Kling
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, 53715, United States
| | - Susan M Smith
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, 28081, United States; Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, 53706, United States.
| |
Collapse
|
47
|
Lekva T, Sugulle M, Moe K, Redman C, Dechend R, Staff AC. Multiplex Analysis of Circulating Maternal Cardiovascular Biomarkers Comparing Preeclampsia Subtypes. Hypertension 2020; 75:1513-1522. [PMID: 32336238 DOI: 10.1161/hypertensionaha.119.14580] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Preeclampsia, a hypertensive pregnancy disorder, links to increased long-term maternal cardiovascular disease (CVD). The risk is further increased with early-onset preeclampsia (EPE) and delivery of a growth-restricted child. We hypothesized that circulating biomarkers associated with CVD risk differed between preeclampsia subtypes and controls. We compared EPE; n=37, delivery <week 34, late-onset preeclampsia (LPE); n=29, delivery ≥week 34, and normotensive controls (n=49) using Olink Proseek multiplex CVD I assay (targeting 92 biomarkers). We stratified analysis to uteroplacental spiral artery acute atherosis presence in preeclampsia patients, sharing morphological similarities with atherosclerosis. We found 47 CVD-related biomarkers differing between the groups, 42 markers between normotensive controls and EPE, 28 markers between normotensive controls and LPE, and 9 markers between EPE and LPE. Among these 9 markers, ST2 (ST2 protein), MMP (matrix metalloproteinase) 1, MMP3, and fractalkine (CX3CL1) were uniquely dysregulated in EPE. Principal component (PC) analysis of the differing markers identified 4 clusters (named PC1-PC4) that largely separated the preeclampsia and control groups as well as pregnancies with low and high circulating PlGF (placental growth factor). The combination of the single markers PlGF, ST2, MMP1, MMP3, and CX3CL1 had a high discriminatory property to differentiate between EPE and LPE. Preeclampsia with acute atherosis or with fetal growth restriction could be differentiated by Olink biomarkers as compared with preeclampsia without these features. We identified specific CVD-related biomarkers in pregnancy depending on preeclampsia subtypes and uteroplacental acute atherosis. Assessment of these pregnancy measured biomarkers' relation to long-term cardiovascular dysfunction and hard end points is warranted.
Collapse
Affiliation(s)
- Tove Lekva
- From the Department of Obstetrics and Gynecology, Oslo University Hospital, Ullevål, Norway (T.L., M.S., K.M., A.C.S.).,Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Norway (T.L.)
| | - Meryam Sugulle
- From the Department of Obstetrics and Gynecology, Oslo University Hospital, Ullevål, Norway (T.L., M.S., K.M., A.C.S.).,Faculty of Medicine, University of Oslo, Norway (M.S., K.M., A.C.S.)
| | - Kjartan Moe
- From the Department of Obstetrics and Gynecology, Oslo University Hospital, Ullevål, Norway (T.L., M.S., K.M., A.C.S.).,Faculty of Medicine, University of Oslo, Norway (M.S., K.M., A.C.S.).,Department of Gynecology and Obstetrics, Bærum Hospital, Vestre Viken HF, Norway (K.M.)
| | | | - Ralf Dechend
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max-Delbruck Center for Molecular Medicine, Germany (R.D.).,Department of Cardiology and Nephrology, HELIOS-Klinikum, Berlin, Germany (R.D.)
| | - Anne Cathrine Staff
- From the Department of Obstetrics and Gynecology, Oslo University Hospital, Ullevål, Norway (T.L., M.S., K.M., A.C.S.).,Faculty of Medicine, University of Oslo, Norway (M.S., K.M., A.C.S.)
| |
Collapse
|
48
|
Cappelletti M, Presicce P, Kallapur SG. Immunobiology of Acute Chorioamnionitis. Front Immunol 2020; 11:649. [PMID: 32373122 PMCID: PMC7177011 DOI: 10.3389/fimmu.2020.00649] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 03/23/2020] [Indexed: 12/19/2022] Open
Abstract
Acute chorioamnionitis is characterized by neutrophilic infiltration and inflammation at the maternal fetal interface. It is a relatively common complication of pregnancy and can have devastating consequences including preterm labor, maternal infections, fetal infection/inflammation, fetal lung, brain, and gastrointestinal tract injury. In this review, we will discuss current understanding of the pathogenesis, immunobiology, and mechanisms of this condition. Most commonly, acute chorioamnionitis is a result of ascending infection with relatively low-virulence organisms such as the Ureaplasma species. Furthermore, recent vaginal microbiome studies suggest that there is a link between vaginal dysbiosis, vaginal inflammation, and ascending infection. Although less common, microorganisms invading the maternal-fetal interface via hematogenous route (e.g., Zika virus, Cytomegalovirus, and Listeria) can cause placental villitis and severe fetal inflammation and injury. We will provide an overview of the knowledge gleaned from different animal models of acute chorioamnionitis and the role of different immune cells in different maternal-fetal compartments. Lastly, we will discuss how infectious agents can break the maternal tolerance of fetal allograft during pregnancy and highlight the novel future therapeutic approaches.
Collapse
Affiliation(s)
- Monica Cappelletti
- Divisions of Neonatology and Developmental Biology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, United States
| | - Pietro Presicce
- Divisions of Neonatology and Developmental Biology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, United States
| | - Suhas G Kallapur
- Divisions of Neonatology and Developmental Biology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
49
|
Mohammadpour-Gharehbagh A, Jahantigh D, Eskandari M, Sadegh MH, Nematollahi MH, Rezaei M, Rasouli A, Eskandari F, Heydarabad MZ, Teimoori B, Salimi S. Genetic and epigenetic analysis of the BAX and BCL2 in the placenta of pregnant women complicated by preeclampsia. Apoptosis 2020; 24:301-311. [PMID: 30701356 DOI: 10.1007/s10495-018-1501-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The current study examined the effects of BAX and BCL2 polymorphisms and methylation as well as mRNA expression on susceptibility to PE. After delivery, the placentas were collected from 92 women with PE, as well as 106 normotensive pregnant women. The BAX rs4645878 and BCL2 rs2279115 polymorphisms were genotyped by the PCR-RFLP method. Methylation-specific PCR (MSP) was used for analysis of promoter methylation. mRNA expression was assayed by Quantitative RT-PCR. In addition, in silico analysis was performed by bioinformatics tools. There was no relationship between PE and placental BAX rs4645878 and BCL2 rs2279115 polymorphisms. The groups were not significantly different regarding the promoter methylation of BAX gene. Nonetheless, the MM status of BCL2 promoter had a significantly higher frequency in the PE group and was associated with 2.7-fold higher risk of PE (OR = 2.7, 95% CI = 1.3-5.6; P = 0.01). The relative mRNA expression of BCL2 was decreased in the placentas of PE women (P < 0.0001). The expression of BAX gene was not significantly different between the two groups. There was no association between placental BAX rs4645878 and BCL2 rs2279115 polymorphisms and mRNA expression levels. In silico analysis indicated that BAX rs4645878 and BCL2 rs2279115 polymorphisms were located in the core recognition site of different transcription factors and these substitutions of wild allele resulted in the loss and/ or change of these binding sites and subsequently may alter BCL2 and BAX expression. This study showed that the BAX and BCL2 polymorphisms and BAX promoter methylation were not associated with PE risk. The BCL2 promoter methylation was associated with lower BCL2 expression and higher PE susceptibility.
Collapse
Affiliation(s)
- Abbas Mohammadpour-Gharehbagh
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.,Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Danial Jahantigh
- Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| | - Moein Eskandari
- Department of Laboratory Sciences, School of Paramedical Sciences, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mahdiyeh Harati Sadegh
- Department of Genetics, Fars Science and Research Branch, Islamic Azad University, Marvdasht, Iran.,Department of Genetics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | | | - Mahnaz Rezaei
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.,Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ava Rasouli
- Department of Laboratory Sciences, School of Paramedical Sciences, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Fatemeh Eskandari
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.,Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | | | - Batool Teimoori
- Department of Obstetrics and Gynecology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Saeedeh Salimi
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran. .,Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran. .,Department of Clinical Biochemistry, School of Medicine, and Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| |
Collapse
|
50
|
El-Shershaby AEFM, Lashein FEDM, Seleem AA, Ahmed AA. Toxicological potential of penconazole on early embryogenesis of white mice Mus musculus in either pre- or post-implantation exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:9943-9956. [PMID: 31927727 DOI: 10.1007/s11356-020-07637-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
The present investigation was conducted to evaluate the effect of penconazole (PEN) fungicide on early embryogenesis of white mice. In the first experiment, 48 pregnant females were divided into different groups; the first group is control (G1). The second group (G2) was treated daily with PEN (30-, 20-, 10-, 5-mg/kg BW). The third group (G3) was treated with PEN (5-mg/kg BW; day after the other day). The fourth group (G4) was treated with PEN (2.5-mg/kg BW daily) during pre-implantation stage (from the 1st to the 4th day of gestation). The fifth group (G5) was treated with PEN (2.5-mg/kg BW daily) during post-implantation (from the 5th to the 8th day of gestation). The pregnant females were sacrificed at the 14th day of gestation. In the second experiment, 63 pregnant females were classified into control, PEN-treated during pre-implantation period (2.5-mg/kg BW), and PEN-administered during post-implantation period (2.5-mg/kg BW). Each group was sacrificed at stages E6.5, E7.5, E8.5, E9.5, E11.5, E14.5, and E18.5. The high doses of PEN in the first experiment showed failed pregnancy, foetoresorption, and embryo disorganization. High doses of PEN induce alterations in the uterus tissue at the level of histology and immunohistochemistry for the expression of TGFβ2, TNFR2, Caspase 10, and HSP70. The low doses of PEN in the second experiment showed upregulated expression of TGFβ2, TNFR2, Caspase 10, and HSP70 at stages E6.5 and E7.5. In conclusion, PEN was found to alter the suitable uterine environment for proper implantation and development at the levels of histological and immunohistochemical that could create a risk during the full course of embryogenesis.
Collapse
Affiliation(s)
| | | | - Amin A Seleem
- Zoology Department, Faculty of Science, Sohag University, Sohag, Egypt.
| | - Abeer A Ahmed
- Zoology Department, Faculty of Science, Sohag University, Sohag, Egypt
| |
Collapse
|