1
|
Zhou JX, Jie-Zhou, Jin WR, Li JY, Zhang XC, Zhao CY, Lin YY, Wang XY, Yan LF, Kai-Yan, Liu QW. Human amniotic mesenchymal stem cell-islet organoids enhance the efficiency of islet engraftment in a mouse diabetes model. Life Sci 2024; 351:122812. [PMID: 38862063 DOI: 10.1016/j.lfs.2024.122812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/10/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024]
Abstract
AIMS Despite islet transplantation has proved a great potential to become the standard therapy for type 1 diabetes mellitus (T1DM), this approach remains limited by ischemia, hypoxia, and poor revascularization in early post-transplant period as well as inflammation and life-long host immune rejection. Here, we investigate the potential and mechanism of human amniotic mesenchymal stem cells (hAMSCs)-islet organoid to improve the efficiency of islet engraftment in immunocompetent T1DM mice. MAIN METHODS We generated the hAMSC-islet organoid structure through culturing the mixture of hAMSCs and islets on 3-dimensional-agarose microwells. Flow cytometry, whole-body fluorescent imaging, immunofluorescence, Calcein-AM/PI staining, ELISA, and qPCR were used to assess the potential and mechanism of shielding hAMSCs to improve the efficiency of islet transplantation. KEY FINDINGS Transplant of hAMSC-islet organoids results in remarkably better glycemic control, an enhanced glucose tolerance, and a higher β cell mass in vivo compared with control islets. Our results show that hAMSCs shielding provides an immune privileged microenvironment for islets and promotes graft revascularization in vivo. In addition, hAMSC-islet organoids show higher viability and reduced dysfunction after exposure to hypoxia and inflammatory cytokines in vitro. Finally, our results show that shielding with hAMSCs leads to the activation of PKA-CREB-IRS2-PI3K and PKA-PDX1 signaling pathways, up-regulation of SIL1 mRNA levels, and down-regulation of MT1 mRNA levels in β cells, which ultimately promotes the synthesis, folding and secretion of insulin, respectively. SIGNIFICANCE hAMSC-islet organoids can evidently increase the efficiency of islet engraftment and might develop into a promising alternative for the clinical treatment of T1DM.
Collapse
Affiliation(s)
- Jia-Xin Zhou
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China; Institute of Organoid Technology, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China; The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China
| | - Jie-Zhou
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China
| | - Wei-Ran Jin
- Huankui Academy, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China
| | - Jing-Yuan Li
- Normal College, East China University of Technology, Nanchang 330013, PR China
| | - Xiang-Cheng Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China
| | - Chu-Yu Zhao
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China
| | - Ya-Yi Lin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China; Institute of Organoid Technology, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China
| | - Xi-Yan Wang
- Institute of Organoid Technology, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China; School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China
| | - Ling-Fei Yan
- Department of Pathology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China
| | - Kai-Yan
- Department of Pediatrics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China
| | - Quan-Wen Liu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China; Institute of Organoid Technology, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China; The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China.
| |
Collapse
|
2
|
Wei J, Wang Z, Han T, Chen J, Ou Y, Wei L, Zhu X, Wang K, Yan Z, Han YP, Zheng X. Extracellular vesicle-mediated intercellular and interorgan crosstalk of pancreatic islet in health and diabetes. Front Endocrinol (Lausanne) 2023; 14:1170237. [PMID: 37305058 PMCID: PMC10248434 DOI: 10.3389/fendo.2023.1170237] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
Diabetes mellitus (DM) is a systemic metabolic disease with high mortality and morbidity. Extracellular vesicles (EVs) have emerged as a novel class of signaling molecules, biomarkers and therapeutic agents. EVs-mediated intercellular and interorgan crosstalk of pancreatic islets plays a crucial role in the regulation of insulin secretion of β-cells and insulin action in peripheral insulin target tissues, maintaining glucose homeostasis under physiological conditions, and it's also involved in pathological changes including autoimmune response, insulin resistance and β-cell failure associated with DM. In addition, EVs may serve as biomarkers and therapeutic agents that respectively reflect the status and improve function and viability of pancreatic islets. In this review, we provide an overview of EVs, discuss EVs-mediated intercellular and interorgan crosstalk of pancreatic islet under physiological and diabetic conditions, and summarize the emerging applications of EVs in the diagnosis and treatment of DM. A better understanding of EVs-mediated intercellular and interorgan communication of pancreatic islets will broaden and enrich our knowledge of physiological homeostasis maintenance as well as the development, diagnosis and treatment of DM.
Collapse
Affiliation(s)
- Junlun Wei
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenghao Wang
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institute, Stockholm, Sweden
| | - Tingrui Han
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Jiaoting Chen
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Yiran Ou
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Lan Wei
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyue Zhu
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Ke Wang
- Department of Vascular Surgery, University Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhe Yan
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan-Ping Han
- The Center for Growth, Metabolism and Aging, The College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiaofeng Zheng
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Heaton ES, Jin S. Importance of multiple endocrine cell types in islet organoids for type 1 diabetes treatment. Transl Res 2022; 250:68-83. [PMID: 35772687 PMCID: PMC11554285 DOI: 10.1016/j.trsl.2022.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/08/2022] [Accepted: 06/21/2022] [Indexed: 11/21/2022]
Abstract
Almost 50 years ago, scientists developed the bi-hormonal abnormality hypothesis, stating that diabetes is not caused merely by the impaired insulin signaling. Instead, the presence of inappropriate level of glucagon is a prerequisite for the development of type 1 diabetes (T1D). It is widely understood that the hormones insulin and glucagon, secreted by healthy β and α cells respectively, operate in a negative feedback loop to maintain the body's blood sugar levels. Despite this fact, traditional T1D treatments rely solely on exogenous insulin injections. Furthermore, research on cell-based therapies and stem-cell derived tissues tends to focus on the replacement of β cells alone. In vivo, the pancreas is made up of 4 major endocrine cell types, that is, insulin-producing β cells, glucagon-producing α cells, somatostatin-producing δ cells, and pancreatic polypeptide-producing γ cells. These distinct cell types are involved synergistically in regulating islet functions. Therefore, it is necessary to produce a pancreatic islet organoid in vitro consisting of all these cell types that adequately replaces the function of the native islets. In this review, we describe the unique function of each pancreatic endocrine cell type and their interactions contributing to the maintenance of normoglycemia. Furthermore, we detail current sources of whole islets and techniques for their long-term expansion and culture. In addition, we highlight a vast potential of the pancreatic islet organoids for transplantation and diabetes research along with updated new approaches for successful transplantation using stem cell-derived islet organoids.
Collapse
Affiliation(s)
- Emma S Heaton
- Department of Biomedical Engineering, Thomas J. Watson School of Engineering and Applied Sciences, State University of New York at Binghamton, Binghamton, New York
| | - Sha Jin
- Department of Biomedical Engineering, Thomas J. Watson School of Engineering and Applied Sciences, State University of New York at Binghamton, Binghamton, New York; Center of Biomanufacturing for Regenerative Medicine, State University of New York at Binghamton, Binghamton, New York.
| |
Collapse
|
4
|
Lee SM, Kim D, Kwak KM, Khin PP, Lim OK, Kim KW, Kim BJ, Jun HS. Comparison of the Effects of Liraglutide on Islet Graft Survival Between Local and Systemic Delivery. Cell Transplant 2021; 29:963689720971245. [PMID: 33172296 PMCID: PMC7784585 DOI: 10.1177/0963689720971245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Islet transplantation has emerged as a promising treatment for type 1 diabetes mellitus. Liraglutide, a glucagon-like peptide-1 (GLP-1) receptor agonist, protects beta cells after islet transplantation by improving glycemic control through several mechanisms. In this study, we compared the effects of local pretreatment and systemic treatment with liraglutide on islet transplantation in a diabetic mouse model. Streptozotocin (STZ)-induced diabetic C57BL/6 mice were transplanted with syngeneic islets under the kidney capsule. Isolated islets were either locally treated with liraglutide before transplantation or mice were treated systemically by intraperitoneal injection after islet transplantation. Local pretreatment of islets with liraglutide was more effective in increasing body weight, decreasing hemoglobin A1c levels, and lowering blood glucose levels in STZ-diabetic mice transplanted with islets. Local pretreatment was also more effective in increasing insulin secretion and islet survival in STZ-diabetic mice. Histological analysis of the transplantation site revealed fewer apoptotic cells following local pretreatment compared with systemic injection of liraglutide. These findings indicate that liraglutide administered once locally before transplantation might have superior effects on islet preservation than systemic administration.
Collapse
Affiliation(s)
- Song Mi Lee
- College of Pharmacy and Gachon Institute Pharmaceutical Science, Gachon University, Yeonsu-gu, Incheon, Korea.,Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Yeonsu-gu, Incheon, Korea.,Both the authors contributed equally to this article
| | - Donghee Kim
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Yeonsu-gu, Incheon, Korea.,Both the authors contributed equally to this article
| | - Kyung Min Kwak
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Yeonsu-gu, Incheon, Korea
| | - Phyu Phyu Khin
- College of Pharmacy and Gachon Institute Pharmaceutical Science, Gachon University, Yeonsu-gu, Incheon, Korea.,Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Yeonsu-gu, Incheon, Korea
| | - Oh Kyung Lim
- Department of Rehabilitation Medicine, Gachon University Gil Medical Center, Namdong-gu, Incheon, Korea
| | - Kwang-Won Kim
- Department of Internal Medicine, Gachon University Gil Medical Center, Namdong-gu, Incheon, Korea
| | - Byung-Joon Kim
- Department of Internal Medicine, Gachon University Gil Medical Center, Namdong-gu, Incheon, Korea
| | - Hee-Sook Jun
- College of Pharmacy and Gachon Institute Pharmaceutical Science, Gachon University, Yeonsu-gu, Incheon, Korea.,Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Yeonsu-gu, Incheon, Korea.,Gil Medical Research Institute, Gil Hospital, Namdong-gu, Incheon, Korea
| |
Collapse
|
5
|
Aral AM, Zamora R, Barclay D, Yin J, El-Dehaibi F, Erbas VE, Dong L, Zhang Z, Sahin H, Gorantla VS, Vodovotz Y. The Effects of Tacrolimus on Tissue-Specific, Protein-Level Inflammatory Networks in Vascularized Composite Allotransplantation. Front Immunol 2021; 12:591154. [PMID: 34017323 PMCID: PMC8129572 DOI: 10.3389/fimmu.2021.591154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 04/14/2021] [Indexed: 12/26/2022] Open
Abstract
Systems-level insights into inflammatory events after vascularized composite allotransplantation (VCA) are critical to the success of immunomodulatory strategies of these complex procedures. To date, the effects of tacrolimus (TAC) immunosuppression on inflammatory networks in VCA, such as in acute rejection (AR), have not been investigated. We used a systems biology approach to elucidate the effects of tacrolimus on dynamic networks and principal drivers of systemic inflammation in the context of dynamic tissue-specific immune responses following VCA. Lewis (LEW) rat recipients received orthotopic hind limb VCA from fully major histocompatibility complex-mismatched Brown Norway (BN) donors or matched LEW donors. Group 1 (syngeneic controls) received LEW limbs without TAC, and Group 2 (treatment group) received BN limbs with TAC. Time-dependent changes in 27 inflammatory mediators were analyzed in skin, muscle, and peripheral blood using Principal Component Analysis (PCA), Dynamic Bayesian Network (DyBN) inference, and Dynamic Network Analysis (DyNA) to define principal characteristics, central nodes, and putative feedback structures of systemic inflammation. Analyses were repeated on skin + muscle data to construct a "Virtual VCA", and in skin + muscle + peripheral blood data to construct a "Virtual Animal." PCA, DyBN, and DyNA results from individual tissues suggested important roles for leptin, VEGF, various chemokines, the NLRP3 inflammasome (IL-1β, IL-18), and IL-6 after TAC treatment. The chemokines MCP-1, MIP-1α; and IP-10 were associated with AR in controls. Statistical analysis suggested that 24/27 inflammatory mediators were altered significantly between control and TAC-treated rats in peripheral blood, skin, and/or muscle over time. "Virtual VCA" and "Virtual Animal" analyses implicated the skin as a key control point of dynamic inflammatory networks, whose connectivity/complexity over time exhibited a U-shaped trajectory and was mirrored in the systemic circulation. Our study defines the effects of TAC on complex spatiotemporal evolution of dynamic inflammation networks in VCA. We also demonstrate the potential utility of computational analyses to elucidate nonlinear, cross-tissue interactions. These approaches may help define precision medicine approaches to better personalize TAC immunosuppression in VCA recipients.
Collapse
Affiliation(s)
- Ali Mubin Aral
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ruben Zamora
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Derek Barclay
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jinling Yin
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Fayten El-Dehaibi
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Vasil E Erbas
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medicalpark Gaziantep Hospital, Gaziantep, Turkey
| | - Liwei Dong
- Plastic and Aesthetic Surgery Department, XiJing Hospital, Xi'an, China
| | - Zhaoxiang Zhang
- Plastic and Aesthetic Surgery Department, XiJing Hospital, Xi'an, China
| | | | - Vijay S Gorantla
- Department of Surgery, Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Medical Center, Winston Salem, NC, United States
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
6
|
Gou W, Wang J, Song L, Kim DS, Cui W, Strange C, Wang H. Alpha-1 antitrypsin suppresses macrophage activation and promotes islet graft survival after intrahepatic islet transplantation. Am J Transplant 2021; 21:1713-1724. [PMID: 33047509 PMCID: PMC8082666 DOI: 10.1111/ajt.16342] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/13/2020] [Accepted: 09/23/2020] [Indexed: 01/25/2023]
Abstract
Alpha-1 antitrypsin (AAT) has protective functions in animal islet transplantation models. While the therapeutic effect of AAT therapy is currently being tested in clinical trials, we investigated the mechanism of AAT protection in a clinically relevant marginal intrahepatic human islet transplantation model. In recipients receiving islets and AAT, 68.9% (20/29) reached normoglycemia, compared to 35.7% (10/28) in those receiving islets only, at 60 days posttransplant (PT). AAT-treated mice had lower serum levels of inflammatory cytokines immediately PT. Reduced M1 macrophages were observed in livers of AAT-treated recipients compared to controls as evidenced by flow cytometry and RNA-seq transcriptional profiling analysis. In vitro AAT suppressed IFN-γ-induced M1 macrophage activation/polarization via suppression of STAT1 phosphorylation and iNOS production. AAT inhibits macrophage activation induced by cytokines or dying islets, and consequently leads to islet cell survival. In a macrophage depletion mouse model, the presence of M1 macrophages in the liver contributed to graft death. AAT, through suppressing macrophage activation, protected transplanted islets from death and dysfunction in the human islet and NOD-SCID mouse model. The protective effect of AAT was confirmed in a major mismatch allogeneic islet transplantation model. Taken together, AAT suppresses liver macrophage activation that contributes to graft survival after transplantation.
Collapse
Affiliation(s)
- Wenyu Gou
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Jingjing Wang
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Lili Song
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Do-Sung Kim
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Wanxing Cui
- MedStar Georgetown University, Washington, District of Columbia
| | - Charlie Strange
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Hongjun Wang
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| |
Collapse
|
7
|
Ethylene carbodiimide-fixed donor splenocytes combined with cordycepin induce long-term protection to mice cardiac allografts. Transpl Immunol 2019; 56:101196. [DOI: 10.1016/j.trim.2019.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/05/2019] [Accepted: 02/07/2019] [Indexed: 11/17/2022]
|
8
|
Huang HH, Harrington S, Stehno-Bittel L. The Flaws and Future of Islet Volume Measurements. Cell Transplant 2018; 27:1017-1026. [PMID: 29954219 PMCID: PMC6158542 DOI: 10.1177/0963689718779898] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/09/2018] [Accepted: 04/01/2018] [Indexed: 11/17/2022] Open
Abstract
When working with isolated islet preparations, measuring the volume of tissue is not a trivial matter. Islets come in a large range of sizes and are often contaminated with exocrine tissue. Many factors complicate the procedure, and yet knowledge of the islet volume is essential for predicting the success of an islet transplant or comparing experimental groups in the laboratory. In 1990, Ricordi presented the islet equivalency (IEQ), defined as one IEQ equaling a single spherical islet of 150 μm in diameter. The method for estimating IEQ was developed by visualizing islets in a microscope, estimating their diameter in 50 μm categories and calculating a total volume for the preparation. Shortly after its introduction, the IEQ was adopted as the standard method for islet volume measurements. It has helped to advance research in the field by providing a useful tool improving the reproducibility of islet research and eventually the success of clinical islet transplants. However, the accuracy of the IEQ method has been questioned for years and many alternatives have been proposed, but none have been able to replace the widespread use of the IEQ. This article reviews the history of the IEQ, and discusses the benefits and failings of the measurement. A thorough evaluation of alternatives for estimating islet volume is provided along with the steps needed to uniformly move to an improved method of islet volume estimation. The lessons learned from islet researchers may serve as a guide for other fields of regenerative medicine as cell clusters become a more attractive therapeutic option.
Collapse
Affiliation(s)
- Han-Hung Huang
- Angelo State University, Texas Tech University System, San Angelo, TX, USA
| | | | - Lisa Stehno-Bittel
- Likarda, LLC, Kansas City, MO, USA
- University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
9
|
Differential inflammatory networks distinguish responses to bone marrow-derived versus adipose-derived mesenchymal stem cell therapies in vascularized composite allotransplantation. J Trauma Acute Care Surg 2017; 83:S50-S58. [PMID: 28452881 DOI: 10.1097/ta.0000000000001489] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Vascularized composite allotransplantation (VCA) is aimed at enabling injured individuals to return to their previous lifestyles. Unfortunately, VCA induces an immune/inflammatory response, which mandates lifelong, systemic immunosuppression, with attendant detrimental effects. Mesenchymal stem cells (MSC)-both adipose-derived (AD-MSC) and bone marrow-derived (BM-MSC)-can reprogram inflammation and have been suggested as an alternative to immunosuppression, but their mechanism of action is as yet not fully elucidated. We sought to gain insights into these mechanisms using a systems biology approach. METHODS PKH26 (red) dye-labeled AD-MSC or BM-MSC were administered intravenously to Lewis rat recipients of mismatched Brown-Norway hindlimb transplants. Short course tacrolimus (FK-506) monotherapy was withdrawn at postoperative day 21. Sera were collected at 4 weeks, 6 weeks, and 18 weeks; assayed for 29 inflammatory/immune mediators; and the resultant data were analyzed using Dynamic Network Analysis (DyNA), Dynamic Bayesian Network (DyBN) inference, and Principal Component Analysis. RESULTS DyNA network complexity decreased with time in AD-MSC rats, but increased in BM-MSC rats. DyBN and Principal Component Analysis suggested mostly different central nodes and principal characteristics, respectively, in AD-MSC versus BM-MSC rats. CONCLUSION AD-MSC and BM-MSC are associated with both overlapping and distinct dynamic networks and principal characteristics of inflammatory/immune mediators in VCA grafts with short-course tacrolimus induction therapy. The decreasing inflammatory complexity of dynamic networks in the presence of AD-MSC supports the previously suggested role for T regulatory cells induced by AD-MSC. The finding of some overlapping and some distinct central nodes and principal characteristics suggests the role of key mediators in the response to VCA in general, as well as potentially differential roles for other mediators ascribed to the actions of the different MSC populations. Thus, combined in vivo/in silico strategies may yield novel means of optimizing MSC therapy for VCA.
Collapse
|
10
|
Lai X, Qiu L, Zhao Y, Yu S, Wang C, Zhang J, Ning F, Chen L, Chen G. Ethylene carbodiimide-fixed donor splenocytes combined with α-1 antitrypsin induce indefinite donor-specific protection to mice cardiac allografts. Transpl Int 2017; 30:305-317. [PMID: 27957767 DOI: 10.1111/tri.12903] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/07/2016] [Accepted: 12/02/2016] [Indexed: 12/17/2022]
Abstract
Peritransplant infusion of ethylene carbodiimide-fixed donor splenocytes (ECDI-SPs) induces protection of islet and cardiac allografts. However, pro-inflammatory cytokine production during the peritransplantation period may negate the effect of ECDI-SPs. Therefore, we hypothesized that blocking pro-inflammatory cytokine secretion while increasing levels of anti-inflammatory cytokines would enhance the tolerance-induced efficacy of ECDI-SPs. The objective of this study was to determine the effectiveness of using ECDI-SPs combined with a short course of α1-antitrypsin (AAT) for induction of tolerance. Using a mice cardiac transplant model, we demonstrated that ECDI-SPs + AAT effectively induced indefinite mice cardiac allograft protection in a donor-specific fashion. This effect was accompanied by modulation of cytokines through decreasing levels of pro-inflammatory cytokines (including IFN-γ, TNF-α, IL-1β, IL-6, IL-17, and IL-23) and increasing levels of anti-inflammatory cytokines (including IL-10, IL-13, and TGF-β), and by inhibition of effector T cells (Teff) and expansion of regulatory T cells (Tregs). Therefore, we concluded that combined ECDI-SPs and AAT appeared to modulate the expression of cytokines and regulate the Teff:Treg balance to create a support milieu for graft protection. Our strategy of combining ECDI-SPs and AAT provides a promising approach for inducing donor-specific transplant tolerance.
Collapse
Affiliation(s)
- Xingqiang Lai
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Organ Transplantation Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Longhui Qiu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yi Zhao
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shuangjin Yu
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chang Wang
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jin Zhang
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Fen Ning
- Department of Obstetrics, Preterm Birth Prevention and Treatment Research Unit, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lizhong Chen
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Guodong Chen
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| |
Collapse
|
11
|
Pawlick R, Gala-Lopez B, Pepper AR, Abualhassan N, Bruni A, Suzuki K, Rayat G, Elliott JF, Shapiro AMJ. Low energy X-ray (grenz ray) treatment of purified islets prior to allotransplant markedly decreases passenger leukocyte populations. Islets 2017; 9:e1330742. [PMID: 28692319 PMCID: PMC5510618 DOI: 10.1080/19382014.2017.1330742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Grenz rays, or minimally penetrating X-rays, are known to be an effective treatment of certain recalcitrant immune-mediated skin diseases, but their use in modulating allograft rejection has not been tested. We examined the capacity of grenz ray treatment to minimize islet immunogenicity and extend allograft survival in a mouse model. In a preliminary experiment, 1 of 3 immunologically intact animals demonstrated long-term acceptance of their grenz ray treated islet allograft. Further experiments revealed that 28.6% (2 of 7) grenz ray treated islet allografts survived >60 d. A low dose of 20Gy, was important; a 4-fold increase in radiation resulted in rapid graft failure, and transplanting a higher islet mass did not alter this outcome. To determine whether increased islet allograft survival after grenz treatment would be masked by immunosuppression, we treated the recipients with CTLA-4 Ig, and found an additive effect, whereby 17.5% more animals accepted the graft long-term versus those with CTLA-4 Ig alone. Cell viability assays verified that islet integrity was maintained after treatment with 20Gy. As well, through splenocyte infiltration analysis, donor CD4+ T cell populations 24-hours after transplant were decreased by more than16-fold in recipients receiving irradiated islets compared with control. Donor CD8+ T cell populations, although less prevalent, decreased in all treatment groups compared with control. Our results suggest that brief treatment of isolated islets with low energy grenz rays before allotransplantation can significantly reduce passenger leukocytes and promote graft survival, possibly by inducing donor dendritic cells to differentiate toward a tolerogenic phenotype.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/adverse effects
- Antibodies, Monoclonal/therapeutic use
- CTLA-4 Antigen/antagonists & inhibitors
- Cell Survival/radiation effects
- Combined Modality Therapy/adverse effects
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/immunology
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/surgery
- Dose-Response Relationship, Drug
- Dose-Response Relationship, Radiation
- Graft Rejection/immunology
- Graft Rejection/metabolism
- Graft Rejection/pathology
- Graft Rejection/prevention & control
- Graft Survival/drug effects
- Graft Survival/radiation effects
- Hyperglycemia/prevention & control
- Immunosuppression Therapy/adverse effects
- Immunosuppressive Agents/administration & dosage
- Immunosuppressive Agents/adverse effects
- Immunosuppressive Agents/therapeutic use
- Islets of Langerhans/immunology
- Islets of Langerhans/metabolism
- Islets of Langerhans/radiation effects
- Islets of Langerhans Transplantation/adverse effects
- Islets of Langerhans Transplantation/immunology
- Islets of Langerhans Transplantation/pathology
- Leukocytes/immunology
- Leukocytes/metabolism
- Leukocytes/pathology
- Leukocytes/radiation effects
- Male
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Recombinant Proteins/administration & dosage
- Recombinant Proteins/adverse effects
- Recombinant Proteins/therapeutic use
- Tissue Culture Techniques
- X-Rays
Collapse
Affiliation(s)
- Rena Pawlick
- Alberta Diabetes Institute, Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Canadian National Transplant Research Program, Edmonton, AB, Canada
| | - Boris Gala-Lopez
- Alberta Diabetes Institute, Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Canadian National Transplant Research Program, Edmonton, AB, Canada
| | - Andrew R. Pepper
- Alberta Diabetes Institute, Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Canadian National Transplant Research Program, Edmonton, AB, Canada
| | - Nasser Abualhassan
- Alberta Diabetes Institute, Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Canadian National Transplant Research Program, Edmonton, AB, Canada
| | - Antonio Bruni
- Alberta Diabetes Institute, Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Canadian National Transplant Research Program, Edmonton, AB, Canada
| | - Kunimasa Suzuki
- Alberta Diabetes Institute, Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, AB, Canada
| | - Gina Rayat
- Alberta Diabetes Institute, Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - John F. Elliott
- Alberta Diabetes Institute, Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, AB, Canada
- Division of Dermatology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - A. M. James Shapiro
- Alberta Diabetes Institute, Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Canadian National Transplant Research Program, Edmonton, AB, Canada
- Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
- CONTACT A. M. James Shapiro, MD, PhD, FRCS(Eng), FRCSC, DSc (Hon), MSM Professor of Surgery, Director of Clinical Islet Transplant Program, AHFMR Clinical Senior Scholar, Hepatobiliary, Oncology, Pancreatic, Transplant Surgery, Roberts Centre, 2000 College Plaza, Edmonton, Alberta, Canada T6G 2C8
| |
Collapse
|
12
|
Xiang H, Yang C, Xiang T, Wang Z, Ge X, Li F, Su Y, Chen H, Huang X, Zeng Q. Residual β-Cell Function Predicts Clinical Response After Autologous Hematopoietic Stem Cell Transplantation. Stem Cells Transl Med 2016; 5:651-7. [PMID: 27025691 DOI: 10.5966/sctm.2015-0144] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 11/23/2015] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED New strategies of autologous hematopoietic stem cell transplantation (auto-HSCT) have gained much interest for the treatment of type 1 diabetes mellitus. However, assessing the clinical response and residual β-cell function still has limitations. The aim of the study was to select the optimal quantitative index to assess pre-existing β-cell function and to explore its predictive function for clinical response after auto-HSCT therapy. In this study, all of the patients who had undergone auto-HSCT were clustered into a responder group (Δβ-score > 0) and a nonresponder group (Δβ-score ≤ 0). We compared their quantitative metabolic indexes at baseline and performed receiver-operating characteristic (ROC) analysis to analyze the correlations between the indexes and clinical response. Kaplan-Meier analysis was conducted to compare the cumulative response durations in each quartile of the selected indexes. In an average of 15.13 ± 6.15 months of follow-up, 44 of 112 patients achieved a clinical response. The responder group had lower levels of fasting plasma glucose and quantitative insulin sensitivity check index (QUICKI) but higher levels of fasting C-peptide, fasting insulin, and homeostasis model assessments for insulin resistance (HOMA-IR). ROC analysis showed that HOMA-IR had the largest area under the curve (0.756), which was similar to that of QUICKI. Kaplan-Meier analysis further confirmed that the third quartile (1.3371-1.7018) of HOMA-IR or the second quartile (0.3523-0.3657) of QUICKI was preferential for a prolonged response. In conclusion, HOMA-IR and QUICKI could be optimal measurements for β-cell reserves, and they were predictive for the clinical response after auto-HSCT. SIGNIFICANCE The β-score was comprehensive and reliable in evaluating clinical response after autologous hematopoietic stem cell transplantation (HSCT). The homeostasis model assessments for insulin resistance and the quantitative insulin sensitivity check index could serve as precise assessments for residual β-cell function and good predictors of clinical response. They might be used to select optimal clinical trial participants or predict the clinical response after auto-HSCT.
Collapse
Affiliation(s)
- Hang Xiang
- Health Management Institute of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Chao Yang
- Department of Transfusion Medicine, The Second Artillery General Hospital of Chinese People's Liberation Army, Beijing, People's Republic of China
| | - Tianyuan Xiang
- Geriatrics Institute of Xiyuan Hospital, Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Zheng Wang
- Department of Biotherapy of PLA 455 Hospital, Shanghai, People's Republic of China
| | - Xin Ge
- Galactophore Department of the First Affiliated Hospital of Zhengzhou University, Henan, People's Republic of China
| | - Fan Li
- Beijing Key Laboratory of Normal Aging and Geriatrics, Geriatrics Institute of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Yuehan Su
- Department of Biotherapy of PLA 455 Hospital, Shanghai, People's Republic of China
| | - Haixu Chen
- Beijing Key Laboratory of Normal Aging and Geriatrics, Geriatrics Institute of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Xianyong Huang
- Health Management Institute of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Qiang Zeng
- Health Management Institute of Chinese PLA General Hospital, Beijing, People's Republic of China
| |
Collapse
|
13
|
Gene therapy with neurogenin3, betacellulin and SOCS1 reverses diabetes in NOD mice. Gene Ther 2015; 22:876-82. [PMID: 26172077 PMCID: PMC4636470 DOI: 10.1038/gt.2015.62] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 05/18/2015] [Accepted: 06/15/2015] [Indexed: 01/23/2023]
Abstract
Islet transplantation for Type 1 diabetes is limited by a shortage of donor islets and requirement for immunosuppression. We approached this problem by inducing in vivo islet neogenesis in NOD diabetic mice, a model of autoimmune diabetes. We demonstrate that gene therapy with helper-dependent adenovirus (HDAd) carrying neurogenin3, an islet lineage-defining transcription factor and betacellulin, an islet growth factor, leads to the induction of periportal insulin-positive cell clusters in the liver, which are rapidly destroyed. To specifically accord protection to these ‘neo-islets’ from cytokine-mediated destruction, we overexpressed suppressor of cytokine signaling 1 (SOCS1) gene, using a rat insulin promoter in combination with neurogenin3 and betacellulin. With this approach, about half of diabetic mice attained euglycemia sustained for over 4 months, regain glucose tolerance and appropriate glucose-stimulated insulin secretion. Histological analysis revealed periportal islet hormone-expressing ‘neo-islets’ in treated mouse livers. Despite evidence of persistent ‘insulitis’ with activated T-cells, these ‘neo-islets’ persist to maintain euglycemia. This therapy does not affect diabetogenicity of splenocytes, as they retain the ability to transfer diabetes. This study thus provides a proof-of-concept for engineering in vivo islet neogenesis with targeted resistance to cytokine-mediated destruction to provide a long-term reversal of diabetes in NOD mice.
Collapse
|
14
|
Chhabra P, Brayman KL. Overcoming barriers in clinical islet transplantation: current limitations and future prospects. Curr Probl Surg 2014; 51:49-86. [PMID: 24411187 DOI: 10.1067/j.cpsurg.2013.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
15
|
Potter KJ, Westwell-Roper CY, Klimek-Abercrombie AM, Warnock GL, Verchere CB. Death and dysfunction of transplanted β-cells: lessons learned from type 2 diabetes? Diabetes 2014; 63:12-9. [PMID: 24357689 DOI: 10.2337/db12-0364] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
β-Cell replacement by islet transplantation is a potential curative therapy for type 1 diabetes. Despite advancements in islet procurement and immune suppression that have increased islet transplant survival, graft function progressively declines, and many recipients return to insulin dependence within a few years posttransplant. The progressive loss of β-cell function in islet transplants seems unlikely to be explained by allo- and autoimmune-mediated mechanisms alone and in a number of ways resembles β-cell failure in type 2 diabetes. That is, both following transplantation and in type 2 diabetes, islets exhibit decreased first-phase glucose-stimulated insulin secretion, impaired proinsulin processing, inflammation, formation of islet amyloid, signs of oxidative and endoplasmic reticulum stress, and β-cell death. These similarities suggest common mechanisms may underlie loss of insulin production in both type 2 diabetes and islet transplantation and point to the potential for therapeutic approaches used in type 2 diabetes that target the β-cell, such as incretin-based therapies, as adjuncts for immunosuppression in islet transplantation.
Collapse
Affiliation(s)
- Kathryn J Potter
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | |
Collapse
|
16
|
Zammit NW, Grey ST. Emerging roles for A20 in islet biology and pathology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 809:141-62. [PMID: 25302370 DOI: 10.1007/978-1-4939-0398-6_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A20 is most characteristically described in terms relating to inflammation and inflammatory pathologies. The emerging understanding of inflammation in the etiology of diabetes mellitus lays the framework for considering a central role for A20 in this disease process. Diabetes mellitus is considered a major health issue, and describes a group of common metabolic disorders pathophysiologically characterized by hyperglycemia. Within islets of Langherhans, the endocrine powerhouse of the pancreas, are the insulin-producing pancreatic beta-cells. Loss of beta-cell mass and function to inflammation and apoptosis is a major contributing factor to diabetes. Consequently, restoring functional beta-cell mass via transplantation represents a therapeutic option for diabetes. Unfortunately, transplanted islets also suffers from loss of beta-cell function and mass fueled by a multifactorial inflammatory cycle triggered by islet isolation prior to transplantation, the ischemic environment at transplantation as well as allogeneic or recurrent auto-immune responses. Activation of the transcription factor NF-kappaB is a central mediator of inflammatory mediated beta-cell dysfunction and loss. Accordingly, a plethora of strategies to block NF-kappaB activation in islets and hence limit beta-cell loss have been explored, with mixed success. We propose that the relatively poor efficacy of NF-kappaB blockade in beta-cells is due to concommittant loss of the important, NF-kappaB regulated anti-apoptotic and anti-inflammatory protein A20. A20 has been identified as a beta-cell expressed gene, raising questions about its role in beta-cell development and function, and in beta-cell related pathologies. Involvement of apoptosis, inflammation and NF-kappaB activation as beta-cell factors contributing to the pathophysiology of diabetes, coupled with the knowledge that beta-cells express the A20 gene, implies an important role for A20 in both normal beta-cell biology as well as beta-cell related pathology. Genome wide association studies (GWAS) linking single nucleotide polymorphisms in the A20 gene with the occurrence of diabetes and its complications support this hypothesis. In this chapter we review data supporting the role of A20 in beta-cell health and disease. Furthermore, by way of their specialized function in metabolism, pancreatic beta-cells also provide opportunities to explore the biology of A20 in scenarios beyond inflammation.
Collapse
|
17
|
Mizrahi M, Cal P, Rosenthal M, Ochayon D, Shahaf G, Kaner Z, Kachker P, Lewis EC. Human α1-antitrypsin modifies B-lymphocyte responses during allograft transplantation. Immunology 2013; 140:362-73. [PMID: 23829472 DOI: 10.1111/imm.12149] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Revised: 06/29/2013] [Accepted: 07/01/2013] [Indexed: 12/19/2022] Open
Abstract
B-lymphocyte activities are associated with allograft rejection. Interleukin-10 (IL-10) -expressing B cells, however, exhibit regulatory attributes. Human α1-antitrypsin (hAAT), a clinically available anti-inflammatory circulating glycoprotein that rises during acute-phase responses, promotes semi-mature dendritic cells and regulatory T (Treg) cells during alloimmune responses. Whether B lymphocytes are also targets of hAAT activity has yet to be determined. Here, we examine whether hAAT modulates B-cell responses. In culture, hAAT reduced the lipopolysaccharide-stimulated Ki-67(+) B-cell population, IgM release and surface CD40 levels, but elevated IL-10-producing cells 1.5-fold. In CD40 ligand-stimulated cultures, hAAT promoted a similar trend; reduction in the Ki-67(+) B-cell population and in surface expression of CD86, CD80 and MHCII. hAAT increased interferon-γ-stimulated macrophage B-cell activating factor (BAFF) secretion, and reduced BAFF-receptor levels. Draining lymph nodes of transgenic mice that express circulating hAAT (C57BL/6 background) and that received skin allografts exhibited reduced B-lymphocyte activation compared with wild-type recipients. BSA-vaccinated hAAT transgenic mice exhibited 2.9-fold lower BSA-specific IgG levels, but 2.3-fold greater IgM levels, compared with wild-type mice. Circulating Treg cells were 1.3-fold greater in transgenic hAAT mice, but lower in B-cell knockout (BKO) and chimeric hAAT-BKO mice, compared with wild-type mice. In conclusion, B cells are cellular targets of hAAT. hAAT-induced Treg cell expansion appears to be B-cell-dependent. These changes support the tolerogenic properties of hAAT during immune responses, and suggest that hAAT may be beneficial in pathologies that involve excessive B-cell responses.
Collapse
Affiliation(s)
- Mark Mizrahi
- Faculty of Health Sciences, Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Wang Y, Qi M, McGarrigle JJ, Rady B, Davis M, Vaca P, Oberholzer J. Use of glucagon-like peptide-1 agonists to improve islet graft performance. Curr Diab Rep 2013; 13:723-32. [PMID: 23925432 PMCID: PMC3888204 DOI: 10.1007/s11892-013-0402-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Human islet transplantation is an effective and promising therapy for type I diabetes. However, long-term insulin independence is both difficult to achieve and inconsistent. De novo or early administration of incretin-based drugs is being explored for improving islet engraftment. In addition to its glucose-dependent insulinotropic effects, incretins also lower postprandial glucose excursion by inhibiting glucagon secretion, delaying gastric emptying, and can protect beta-cell function. Incretin therapy has so far proven clinically safe and tolerable with little hypoglycemic risk. The present review aims to highlight the new frontiers in research involving incretins from both in vitro and in vivo animal studies in the field of islet transplant. It also provides an overview of the current clinical status of incretin usage in islet transplantation in the management of type I diabetes.
Collapse
Affiliation(s)
- Yong Wang
- . 312-996-0851(W), 312-996-7913(Fax). Department of Surgery/Transplant, University of Illinois at Chicago, Chicago, IL 60612
| | - Meirigeng Qi
- . 312-996-0530(W), 312-996-7913(Fax). Department of Surgery/Transplant, University of Illinois at Chicago, Chicago, IL 60612
| | - James J. McGarrigle
- . 312-996-8316(W), 312-996-7913(Fax). Department of Surgery/Transplant, University of Illinois at Chicago, Chicago, IL 60612
| | - Brian Rady
- 312-996-8316(W), 312-996-7913(Fax). Department of Surgery/Transplant, University of Illinois at Chicago, Chicago, IL 60612
| | - Maureen Davis
- . 312-996-8316(W), 312-996-7913(Fax). Department of Surgery/Transplant, University of Illinois at Chicago, Chicago, IL 60612
| | - Pilar Vaca
- . 312-996-8316(W), 312-996-7913(Fax). Department of Surgery/Transplant, University of Illinois at Chicago, Chicago, IL 60612
| | - Jose Oberholzer
- . 312-996-6771(W), 312-996-7961(Fax). Department of Surgery/Transplant, University of Illinois at Chicago, Chicago, IL 60612
| |
Collapse
|
19
|
Hu M, Wu J, Zhang GY, Wang YM, Watson D, Yi S, Hawthorne WJ, O'connell PJ, Alexander SI. Selective Depletion of Alloreactive T Cells Leads to Long-Term Islet Allograft Survival across a Major Histocompatibility Complex Mismatch in Diabetic Mice. Cell Transplant 2013; 22:1929-41. [DOI: 10.3727/096368912x658025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Islet cell transplantation as a therapy for type 1 diabetes has been limited by progressive graft loss. Significant immunosuppression including T-cell ablation has been used in an attempt to limit islet rejection. Here, we show that CD3+ lymphocytes depleted of alloreactive T cells selected from a mixed lymphocyte reaction (MLR), where responder BALB/c splenocytes stained with carboxyfluorescein succinimidyl ester (CFSE) were stimulated with irradiated C57BL/6 splenocytes for 5 days, infused into diabetic immunodeficient mice are capable of restoring a broad T-cell repertoire and specifically do not reject islet transplants from the strain (C57BL/6) used in the original depletion. These mice demonstrate reconstitution with CD4+ and CD8+ T cells, the capacity to reject third-party grafts (CBA), and restoration of interferon-γ (IFN-γ) responses to third-party alloantigens. Over time, both forkhead box P3-positive (Foxp3+) T regulatory cells (Tregs) and γδ T cells expand, suggesting a role for peripheral tolerance, in addition to the initial depletion of alloreactive T cells, in long-term islet graft survival. Our results suggest that immune restoration with CD3+ lymphocytes where alloreactive T cells are removed can restore cognate immunity without islet allograft loss and recurrence of diabetes.
Collapse
Affiliation(s)
- M. Hu
- Centre for Kidney Research, the Children's Hospital at Westmead, the University of Sydney, NSW, Australia
- Centre for Transplant and Renal Research, Westmead Millennium Institute, the University of Sydney, NSW, Australia
| | - J. Wu
- Centre for Transplant and Renal Research, Westmead Millennium Institute, the University of Sydney, NSW, Australia
| | - G. Y. Zhang
- Centre for Kidney Research, the Children's Hospital at Westmead, the University of Sydney, NSW, Australia
| | - Y. M. Wang
- Centre for Kidney Research, the Children's Hospital at Westmead, the University of Sydney, NSW, Australia
| | - D. Watson
- Centre for Kidney Research, the Children's Hospital at Westmead, the University of Sydney, NSW, Australia
- Centre for Medical Bioscience, University of Wollongong, NSW, Australia
| | - S. Yi
- Centre for Transplant and Renal Research, Westmead Millennium Institute, the University of Sydney, NSW, Australia
| | - W. J. Hawthorne
- Centre for Transplant and Renal Research, Westmead Millennium Institute, the University of Sydney, NSW, Australia
| | - P. J. O'connell
- Centre for Transplant and Renal Research, Westmead Millennium Institute, the University of Sydney, NSW, Australia
| | - S. I. Alexander
- Centre for Kidney Research, the Children's Hospital at Westmead, the University of Sydney, NSW, Australia
| |
Collapse
|
20
|
Marselli L, Bugliani M, Suleiman M, Olimpico F, Masini M, Petrini M, Boggi U, Filipponi F, Syed F, Marchetti P. β-Cell inflammation in human type 2 diabetes and the role of autophagy. Diabetes Obes Metab 2013; 15 Suppl 3:130-6. [PMID: 24003929 DOI: 10.1111/dom.12152] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 04/18/2013] [Indexed: 12/27/2022]
Abstract
β-Cell failure is crucial for the onset and progression of human type 2 diabetes, and a few studies have suggested that inflammation may play a role. Immune cell infiltration has been reported in subpopulations of islets in some cases of human type 2 diabetes, and altered gene expression of a few cytokines and chemokines has been observed in isolated islets and laser captured β-cells from diabetic subjects. Recent observations on the links between inflammation, apoptosis and autophagy are putting the focus on the possibility that modulating the autophagic processes could protect the β-cells from cytotoxicity induced by inflammatory mediators.
Collapse
Affiliation(s)
- L Marselli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Insulin-Like growth factor-II (IGF-II) prevents proinflammatory cytokine-induced apoptosis and significantly improves islet survival after transplantation. Transplantation 2013; 95:671-8. [PMID: 23364485 DOI: 10.1097/tp.0b013e31827fa453] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The early loss of functional islet mass (50-70%) due to apoptosis after clinical transplantation contributes to islet allograft failure. Insulin-like growth factor (IGF)-II is an antiapoptotic protein that is highly expressed in β-cells during development but rapidly decreases in postnatal life. METHODS We used an adenoviral (Ad) vector to overexpress IGF-II in isolated rat islets and investigated its antiapoptotic action against exogenous cytokines interleukin-1β- and interferon-γ-induced islet cell death in vitro. Using an immunocompromised marginal mass islet transplant model, the ability of Ad-IGF-II-transduced rat islets to restore euglycemia in nonobese diabetic/severe combined immunodeficient diabetic recipients was assessed. RESULTS Ad-IGF-II transduction did not affect islet viability or function. Ad-IGF-II cytokine-treated islets exhibited decreased cell death (40% ± 2.8%) versus Ad-GFP and untransduced control islets (63.2% ± 2.5% and 53.6% ± 2.3%, respectively). Ad-IGF-II overexpression during cytokine treatment resulted in a marked reduction in terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive apoptotic cells (8.3% ± 1.4%) versus Ad-GFP control (41% ± 4.2%) and untransduced control islets (46.5% ± 6.2%). Western blot analysis confirmed that IGF-II inhibits apoptosis via activation of the phosphatidylinositol 3-kinase/Akt signaling pathway. Transplantation of IGF-II overexpressing islets under the kidney capsule of diabetic mice restored euglycemia in 77.8% of recipients compared with 18.2% and 47.5% of Ad-GFP and untransduced control islet recipients, respectively (P<0.05, log-rank [Mantel-Cox] test). CONCLUSIONS Antiapoptotic IGF-II decreases apoptosis in vitro and significantly improved islet transplant outcomes in vivo. Antiapoptotic gene transfer is a potentially powerful tool to improve islet survival after transplantation.
Collapse
|
22
|
Abstract
Type 1 diabetes mellitus (T1D) is a chronic, multifactorial autoimmune disease that involves the progressive destruction of pancreatic β-cells, ultimately resulting in the loss of insulin production and secretion. The goal of clinical intervention is to prevent or arrest the onset and progression of autoimmunity, reverse β-cell destruction, and restore glycometabolic and immune homeostasis. Despite promising outcomes observed with islet transplantation and advancements in immunomodulatory therapies, the need for an effective cell replacement strategy for curing T1D still persists. Stem cell therapy offers a solution to the cited challenges of islet transplantation. While the regenerative potential of stem cells can be harnessed to make available a self-replenishing supply of glucose-responsive insulin-producing cells, their immunomodulatory properties may potentially be used to prevent, arrest, or reverse autoimmunity, ameliorate innate/alloimmune graft rejection, and prevent recurrence of the disease. Herein, we discuss the therapeutic potential of stem cells derived from a variety of sources for the cure of T1D, for example, embryonic stem cells, induced pluripotent stem cells, bone marrow-derived hematopoietic stem cells, and multipotent mesenchymal stromal cells derived from bone marrow, umbilical cord blood, and adipose tissue. The benefits of combinatorial approaches designed to ensure the successful clinical translation of stem cell therapeutic strategies, such as approaches combining effective stem cell strategies with islet transplantation, immunomodulatory drug regimens, and/or novel bioengineering techniques, are also discussed. To conclude, the application of stem cell therapy in the cure for T1D appears extremely promising.
Collapse
Affiliation(s)
- Preeti Chhabra
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Kenneth L. Brayman
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
23
|
Chhabra P, Linden J, Lobo P, Okusa MD, Brayman KL. The immunosuppressive role of adenosine A2A receptors in ischemia reperfusion injury and islet transplantation. Curr Diabetes Rev 2012; 8:419-33. [PMID: 22934547 PMCID: PMC4209001 DOI: 10.2174/157339912803529878] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 06/15/2012] [Accepted: 06/18/2012] [Indexed: 02/08/2023]
Abstract
Activation of adenosine A2A receptors (A2AR) reduces inflammation by generally inhibiting the activation of pro-inflammatory cells, decreasing endothelial adhesion molecule expression and reducing the release of proinflammatory cytokine mediators. Numerous preclinical studies using selective A2AR agonists, antagonists, A2AR knockout as well as chimeric mice have suggested the therapeutic potential of A2AR agonists for the treatment of ischemia reperfusion injury (IRI) and autoimmune diseases. This review summarizes the immunosuppressive actions of A2AR agonists in murine IRI models of liver, kidney, heart, lung and CNS, and gives details on the cellular effects of A2AR activation in neutrophils, macrophages, dendritic cells, natural killer cells, NKT cells, T effector cells and CD4+CD25+FoxP3+ T regulatory cells. This is discussed in the context of cytokine mediators involved in inflammatory cascades. Whilst the role of adenosine receptor agonists in various models of autoimmune disease has been well-documented, very little information is available regarding the role of A2AR activation in type 1 diabetes mellitus (T1DM). An overview of the pathogenesis of T1DM as well as early islet graft rejection in the immediate peri-transplantation period offers insight regarding the use of A2AR agonists as a beneficial intervention in clinical islet transplantation, promoting islet graft survival, minimizing early islet loss and reducing the number of islets required for successful transplantation, thereby increasing the availability of this procedure to a greater number of recipients. In summary, the use of A2AR agonists as a clinical intervention in IRI and as an adjunct to clinical immunesuppressive regimen in islet transplantation is highlighted.
Collapse
Affiliation(s)
- Preeti Chhabra
- Department of Surgery, University of Virginia School of Medicine, P.O. Box 800709, Charlottesville, VA 22908-0709, USA.
| | | | | | | | | |
Collapse
|
24
|
Chhabra P, Schlegel K, Okusa MD, Lobo PI, Brayman KL. Naturally occurring immunoglobulin M (nIgM) autoantibodies prevent autoimmune diabetes and mitigate inflammation after transplantation. Ann Surg 2012; 256:634-41. [PMID: 22964733 PMCID: PMC3875377 DOI: 10.1097/sla.0b013e31826b4ba9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To investigate whether polyclonal serum naturally occurring immunoglobulin M (nIgM) therapy prevents the onset and progression of autoimmune diabetes and promotes islet allograft survival. BACKGROUND nIgM deficiency is associated with an increased tendency toward autoimmune disease development. Elevated levels of nIgM anti-leukocyte autoantibodies are associated with fewer graft rejections. METHODS Four- to five-week-old female nonobese diabetic (NOD) littermates received intraperitoneal nIgM or phosphate-buffered saline/bovine serum albumin/immunoglobulin G (100 μg followed by 50-75 μg biweekly) until 18 weeks of age. C57BL/6 recipients of 300 BALB/c or 50 C57BL/6 islet grafts received saline or nIgM. RESULTS Eighty percent control mice (n = 30) receiving saline became diabetic by 18 to 20 weeks of age. In contrast, none of 33 of nIgM-treated mice became diabetic (P < 0.0001). Discontinuing therapy resulted in hyperglycemia in only 9 of 33 mice at 22 weeks postdiscontinuation, indicating development of β-cell unresponsiveness. nIgM therapy initiated at 11 weeks of age resulted in hyperglycemia in only 20% of treated animals (n = 20) compared with 80% of controls (P < 0.0001). Treatment of mildly diabetic mice with nIgM (75 μg 3× per week) restored normoglycemia (n = 5), whereas severely diabetic mice required minimal dose islet transplant with nIgM to restore normoglycemia (n = 4). The mean survival time of BALB/c islet allografts transplanted in streptozotocin-induced diabetic C57BL/6 mice was 41.2 ± 3.3 days for nIgM-treated recipients (n = 4, fifth recipient remains normoglycemic) versus 10.2 ± 2.6 days for controls (n = 5) (P < 0.001). Also, after syngeneic transplantation, time taken to return to normoglycemia was 15.4 ± 3.6 days for nIgM-treated recipients (n = 5) and more than 35 days for controls (n = 4). CONCLUSIONS nIgM therapy demonstrates potential in preventing the onset and progression of autoimmune diabetes and in promoting islet graft survival.
Collapse
Affiliation(s)
- Preeti Chhabra
- Department of Surgery, Division of Transplantation, University of Virginia School of Medicine, Charlottesville, VA
| | - Kailo Schlegel
- Department of Medicine, Division of Nephrology, University of Virginia School of Medicine, Charlottesville, VA
| | - Mark D. Okusa
- Department of Medicine, Division of Nephrology, University of Virginia School of Medicine, Charlottesville, VA
| | - Peter I. Lobo
- Department of Medicine, Division of Nephrology, University of Virginia School of Medicine, Charlottesville, VA
| | - Kenneth L. Brayman
- Department of Surgery, Division of Transplantation, University of Virginia School of Medicine, Charlottesville, VA
| |
Collapse
|
25
|
Romano-Keeler J, Weitkamp JH, Moore DJ. Regulatory properties of the intestinal microbiome effecting the development and treatment of diabetes. Curr Opin Endocrinol Diabetes Obes 2012; 19:73-80. [PMID: 22357099 PMCID: PMC3560352 DOI: 10.1097/med.0b013e3283514d43] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The microbiome continues to demonstrate an important role in immune and metabolic programming. This review will focus on the mechanistic implications of recent findings for diabetes pathogenesis and treatment. RECENT FINDINGS Multiple techniques are developing to specify the microbiome. At the same time, new insights have emerged into local interactions of microbial products with human development. New findings demonstrate that key bacteria and their products result in the programming of diabetes-modulating Th17 and regulatory T lymphocytes within and outside the intestine. The role of the bacterial metagenome in programming human metabolism has also revealed new insights. In turn, these findings suggest a framework in which the microbiome may be modified to change the course of diabetes. SUMMARY The microbiome is a key regulator of metabolism and immunity. Specific bacteria and their secreted products are now known to program Th17 and regulatory T-cell development, which may change the course of diabetes. Bacterial genomics are demonstrating important, modifiable roles of bacterial gene products in metabolism. Further understanding of this symbiotic relationship will provide new avenues for intervention in diabetes.
Collapse
Affiliation(s)
- Joann Romano-Keeler
- Mildred Stahlman Division of Neonatology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jöern-Hendrik Weitkamp
- Mildred Stahlman Division of Neonatology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Daniel J. Moore
- Ian Burr Division of Endocrinology and Diabetes, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
26
|
Iglesias I, Valiente L, Shiang KD, Ichii H, Kandeel F, Al-Abdullah IH. The effects of digestion enzymes on islet viability and cellular composition. Cell Transplant 2012; 21:649-55. [PMID: 22236690 DOI: 10.3727/096368911x623826] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The choice of enzyme blend is critical for successful islet isolation. Islet yield, viability, integrity, and function are important factors that influence the outcome of islet transplantation. Liberase HI has been used as a standard enzyme for pancreas digestion and has successfully produced islets that reversed diabetes. However, the replacement of Liberase HI with collagenase NB1 has significantly influenced the process outcome, both in quality and quantity of the isolated islets. The assessment of islet cells by Flow Cytometry (FC) has been reported to be useful for evaluating islet quality. The aim of this study was to assess the isolation outcomes and islet quality when comparing human islet cell processed with Liberase HI and NB1. A total of 66 islet isolations, 46 processed using Liberase HI and 20 using Serva NB1, were retrospectively analyzed. Islet yield, function in vitro, islet cell viability by FC, as well as isolation-related factors were compared. There was no significant difference in donor characteristics such as age and height; however, body mass index (BMI) in the Liberase HI group was significantly higher. There was also no significant difference in prepurification, postisolation, or postculture IEQ or percent recovery between the two groups. Flow data showed Liberase HI preparations had a significantly higher percent of live cells (DAPI(-)) and NG(+)/TMRE(+) when compared to NB1. Stimulation Indices (SI) for Liberase HI (n = 45) showed 3.17 and NB1 (n = 18) 2.71 (p = NS). The results of Annexin V/DAPI staining for live, apoptotic, and necrotic cells were 50.7 ± 2.24%, 14.4 ± 1.02%, and 27.8 ± 1.92% for Liberase HI versus 48.1 ± 1.93%, 12.3 ± 0.92%, and 33.9 ± 2.28% for NB1. Islets isolated using Liberase HI showed higher viable β cells by NG/TMRE staining and decreased necrosis by Annexin V/DAPI staining. FC assessment may be useful for determining the choice of digestion enzyme to maximize viable islets.
Collapse
Affiliation(s)
- Itzia Iglesias
- Southern California Islet Cell Resources Center, Department of Diabetes, Endocrinology and Metabolism, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA 91010, USA
| | | | | | | | | | | |
Collapse
|
27
|
Chhabra P, Brayman KL. Current status of immunomodulatory and cellular therapies in preclinical and clinical islet transplantation. J Transplant 2011; 2011:637692. [PMID: 22046502 PMCID: PMC3199196 DOI: 10.1155/2011/637692] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Accepted: 07/11/2011] [Indexed: 02/08/2023] Open
Abstract
Clinical islet transplantation is a β-cell replacement strategy that represents a possible definitive intervention for patients with type 1 diabetes, offering substantial benefits in terms of lowering daily insulin requirements and reducing incidences of debilitating hypoglycemic episodes and unawareness. Despite impressive advances in this field, a limiting supply of islets, inadequate means for preventing islet rejection, and the deleterious diabetogenic and nephrotoxic side effects associated with chronic immunosuppressive therapy preclude its wide-spread applicability. Islet transplantation however allows a window of opportunity for attempting various therapeutic manipulations of islets prior to transplantation aimed at achieving superior transplant outcomes. In this paper, we will focus on the current status of various immunosuppressive and cellular therapies that promote graft function and survival in preclinical and clinical islet transplantation with special emphasis on the tolerance-inducing capacity of regulatory T cells as well as the β-cells regenerative capacity of stem cells.
Collapse
Affiliation(s)
- Preeti Chhabra
- Department of Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Kenneth L. Brayman
- Department of Surgery, University of Virginia, Charlottesville, VA 22908, USA
- Division of Transplantation, Department of Surgery, University of Virginia, Charlottesville, VA 22908, USA
- The Center for Cellular Transplantation and Therapeutics, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
28
|
Jahansouz C, Jahansouz C, Kumer SC, Brayman KL. Evolution of β-Cell Replacement Therapy in Diabetes Mellitus: Islet Cell Transplantation. J Transplant 2011; 2011:247959. [PMID: 22013505 PMCID: PMC3195999 DOI: 10.1155/2011/247959] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Accepted: 08/08/2011] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus remains one of the leading causes of morbidity and mortality worldwide. According to the Centers for Disease Control and Prevention, approximately 23.6 million people in the United States are affected. Of these individuals, 5 to 10% have been diagnosed with Type 1 diabetes mellitus (T1DM), an autoimmune disease. Although it often appears in childhood, T1DM may manifest at any age, leading to significant morbidity and decreased quality of life. Since the 1960s, the surgical treatment for diabetes mellitus has evolved to become a viable alternative to insulin administration, beginning with pancreatic transplantation. While islet cell transplantation has emerged as another potential alternative, its role in the treatment of T1DM remains to be solidified as research continues to establish it as a truly viable alternative for achieving insulin independence. In this paper, the historical evolution, procurement, current status, benefits, risks, and ongoing research of islet cell transplantation are explored.
Collapse
Affiliation(s)
- Cyrus Jahansouz
- School of Medicine, University of Virginia, Charlottesville, VA 22102, USA
| | | | | | | |
Collapse
|
29
|
Derivation of insulin producing cells from human endometrial stromal stem cells and use in the treatment of murine diabetes. Mol Ther 2011; 19:2065-71. [PMID: 21878900 DOI: 10.1038/mt.2011.173] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pancreatic islet cell transplantation is an effective approach to treat type 1 diabetes, however the shortage of cadaveric donors and limitations due to rejection require alternative solutions. Multipotent cells derived from the uterine endometrium have the ability to differentiate into mesodermal and ectodermal cellular lineages, suggesting the existence of mesenchymal stem cells in this tissue. We differentiated human endometrial stromal stem cells (ESSC) into insulin secreting cells using a simple and nontransfection protocol. An in vitro protocol was developed and evaluated by assessing the expression of pan β-cell markers, followed by confirmation of insulin secretion. PAX4, PDX1, GLUT2, and insulin, were all increased in differentiated cells compared to controls. Differentiated cells secreted insulin in a glucose responsive manner. In a murine model, differentiated cells were injected into the kidney capsules of diabetic mice and human insulin identified in serum. Within 5 weeks blood glucose levels were stabilized in animals transplanted with differentiated cells, however those treated with undifferentiated cells developed progressive hyperglycemia. Mice transplanted with control cells lost weight and developed cataracts while those receiving insulin producing cells did not. Endometrium provides an easily accessible, renewable, and immunologically identical source of stem cells with potential therapeutic applications in diabetes.
Collapse
|
30
|
Westwell-Roper C, Dai DL, Soukhatcheva G, Potter KJ, van Rooijen N, Ehses JA, Verchere CB. IL-1 blockade attenuates islet amyloid polypeptide-induced proinflammatory cytokine release and pancreatic islet graft dysfunction. THE JOURNAL OF IMMUNOLOGY 2011; 187:2755-65. [PMID: 21813778 DOI: 10.4049/jimmunol.1002854] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Islets from patients with type 2 diabetes exhibit β cell dysfunction, amyloid deposition, macrophage infiltration, and increased expression of proinflammatory cytokines and chemokines. We sought to determine whether human islet amyloid polypeptide (hIAPP), the main component of islet amyloid, might contribute to islet inflammation by recruiting and activating macrophages. Early aggregates of hIAPP, but not nonamyloidogenic rodent islet amyloid polypeptide, caused release of CCL2 and CXCL1 by islets and induced secretion of TNF-α, IL-1α, IL-1β, CCL2, CCL3, CXCL1, CXCL2, and CXCL10 by C57BL/6 bone marrow-derived macrophages. hIAPP-induced TNF-α secretion was markedly diminished in MyD88-, but not TLR2- or TLR4-deficient macrophages, and in cells treated with the IL-1R antagonist (IL-1Ra) anakinra. To determine the significance of IL-1 signaling in hIAPP-induced pancreatic islet dysfunction, islets from wild-type or hIAPP-expressing transgenic mice were transplanted into diabetic NOD/SCID recipients implanted with mini-osmotic pumps containing IL-1Ra (50 mg/kg/d) or saline. IL-1Ra significantly improved the impairment in glucose tolerance observed in recipients of transgenic grafts 8 wk following transplantation. Islet grafts expressing hIAPP contained amyloid deposits in close association with F4/80-expressing macrophages. Transgenic grafts contained 50% more macrophages than wild-type grafts, an effect that was inhibited by IL-1Ra. Our results suggest that hIAPP-induced islet chemokine secretion promotes macrophage recruitment and that IL-1R/MyD88, but not TLR2 or TLR4 signaling is required for maximal macrophage responsiveness to prefibrillar hIAPP. These data raise the possibility that islet amyloid-induced inflammation contributes to β cell dysfunction in type 2 diabetes and islet transplantation.
Collapse
Affiliation(s)
- Clara Westwell-Roper
- Department of Pathology and Laboratory Medicine, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | | | | | | | | | | | | |
Collapse
|
31
|
Improved outcome of islet transplantation in partially pancreatectomized diabetic mice by inhibition of dipeptidyl peptidase-4 with sitagliptin. Pancreas 2011; 40:855-60. [PMID: 21747318 DOI: 10.1097/mpa.0b013e318214832d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Glucagon-like peptide-1 (GLP-1) is known to promote beta cell proliferation, and dipeptidyl peptidase-4 (DPP-4) inhibitor increases GLP-1 levels by preventing its degradation. This study was designed to evaluate the effects of sitagliptin (sita), a DPP-4 inhibitor, on the outcome of islet transplantation (ITx) in diabetic mice after partial pancreatectomy (Px). METHODS A diabetic mouse model was prepared by performing 70% Px in C57BL/6 mice. The diabetic mice were treated with sita, subjected to ITx, or both treated with sita and subjected to ITx. After 12 days of sita treatment, the pancreatic remnants and transplanted islets were histologically examined. RESULTS Dipeptidyl peptidase-4 inhibitor increased the concentration of plasma active GLP-1 regardless of ITx and improved glycemic control in the ITx group. The beta cell mass of the pancreatic remnants increased in the ITx group, and mice that received combined treatment with ITx and sita showed a greater increase in the beta cell mass. Dipeptidyl peptidase-4 inhibitor seems to induce proliferation and inhibit apoptosis of beta cells in pancreatic remnants. CONCLUSIONS The DPP-4 inhibitor favorably affects ITx in partially pancreatectomized diabetic mice by increasing the beta cell mass through cell proliferation and inhibition of beta cell apoptosis.
Collapse
|
32
|
Towards cytoprotection in the peritransplant period. Semin Immunol 2011; 23:209-13. [DOI: 10.1016/j.smim.2011.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 07/10/2011] [Indexed: 01/26/2023]
|
33
|
Juang JH, Kuo CH. Effects of cyclooxygenase-2 inhibitor and adenosine triphosphate-sensitive potassium channel opener in syngeneic mouse islet transplantation. Transplant Proc 2011; 42:4221-4. [PMID: 21168669 DOI: 10.1016/j.transproceed.2010.09.086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 09/22/2010] [Indexed: 10/18/2022]
Abstract
In the initial days after transplantation, islet grafts may be attacked by cytokines via cyclooxygenase-2 (COX-2), producing primary nonfunction. In addition, chronic overstimulation of β-cells may impair insulin secretion. To enhance the function of transplanted islets, the present study investigated the effects of rofecoxib, a COX-2 inhibitor, and NN414 (6-chloro-3-[1-methylcyclopropyl]amino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide), an adenosine triphosphate-sensitive potassium channel opener, on islet transplantation. Male inbred C57BL/6 mice were used as donors and recipients. One hundred fifty islets were isolated via collagenase digestion and density gradient, and syngeneically transplanted under the kidney capsule in mice with streptozotocin-induced diabetes. Recipients were treated with or without rofecoxib, 10 mg/kg/d orally, or with or without NN414, 3 mg/kg/d orally, for 4 weeks. After transplantation, recipient body weight, blood glucose concentration, and intraperitoneal glucose tolerance were measured. The grafted kidney was extracted for determination of insulin content at 4 weeks. In the rofecoxib-treated and NN414-treated groups and both control groups, body weight remained stable, and the blood glucose concentration decreased progressively. However, at 4 weeks after transplantation in the groups treated or not treated with rofecoxib or NN414, no significant difference was observed in recipient body weight, blood glucose concentration, and glucose tolerance or in insulin content of the graft. These data indicate that posttransplantation treatment with rofecoxib or NN414 has no beneficial effect on transplantation outcome in diabetic mouse recipients engrafted with a marginal islet mass.
Collapse
Affiliation(s)
- J-H Juang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chang Gung University and Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | | |
Collapse
|
34
|
Cai K, Qi D, Wang O, Chen J, Liu X, Deng B, Qian L, Liu X, Le Y. TNF-α acutely upregulates amylin expression in murine pancreatic beta cells. Diabetologia 2011; 54:617-26. [PMID: 21116608 DOI: 10.1007/s00125-010-1972-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 10/22/2010] [Indexed: 12/28/2022]
Abstract
AIMS/HYPOTHESIS Amylin, a secretory protein mainly produced by pancreatic beta cells, is elevated in the circulation of patients with diseases related to acute and chronic inflammation, including acute pancreatitis, pancreas graft rejection, obesity and insulin resistance. TNF-α is involved in these disorders. We investigated the effect of TNF-α on amylin levels and the underlying mechanisms, using murine pancreatic beta cell line MIN6 and pancreatic islets. METHODS Amylin, proinsulin and prohormone convertase 1/3, 2 (Pc1/3, Pc2 [also known as Pcsk1/3 and Pcsk2, respectively]) mRNA levels, and amylin promoter and nuclear factor κB (NF-κB) activation were examined by real-time PCR and luciferase reporter assay, respectively. Amylin protein level and mitogen-activated protein kinase phosphorylation were detected by western blot. Activator protein 1 (AP1) activation was examined by electrophoretic mobility shift assay (EMSA). RESULTS TNF-α acutely induced amylin expression at the transcriptional level and increased proamylin and the intermediate form of amylin in MIN6 cells and islets. However, it had no effect on proinsulin, Pc1/3 and Pc2 expression. Studies with (1) MIN6 cells treated with inhibitors of MEK1/2, c-Jun-N-terminal kinase (JNK) or protein kinase Cζ (PKC(ζ)), (2) MIN6 cells expressing a c-Jun-dominant negative construct and (3) islets from Fos knockout mice demonstrated that TNF-α induced amylin expression through the PKC(ζ)-extracellular signal-regulated kinase (ERK)/JNK pathways. EMSA showed that (PKC(ζ)), JNK and ERK1/2 were involved in TNF-α-induced AP1 activation, suggesting that TNF-α induces murine amylin expression through the (PKC(ζ)) - ERK1/2 - AP and PKC(ζ) - JNK - AP1 pathways. Further studies showed that TNF-α also induced murine amylin expression through the phosphatidylinositol 3 kinase-NF-κB signalling pathway and enhanced human amylin promoter activation through NF-κB and AP1. CONCLUSIONS/INTERPRETATION TNF-α acutely induces amylin gene expression in beta cells through multiple signalling pathways, possibly contributing to amylin elevation in acute inflammation-related pancreatic disorders.
Collapse
Affiliation(s)
- K Cai
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Inflammation and the balance of Treg and Th17 cells in transplant rejection and tolerance. Curr Opin Organ Transplant 2010; 15:411-5. [PMID: 20613526 DOI: 10.1097/mot.0b013e32833b7929] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Inflammation of the allograft, occurring as a consequence of hypoxia and ischemia/reperfusion injury, adversely influences short-term and long-term transplant outcomes. Thus far, imbalance of tissue-protective Treg and tissue-destructive Th17 cells has been confirmed in a number of tissue-inflammatory states, including autoimmune disease. Hence, benefits of tilting Treg-Th17 equilibrium toward dominance of Tregs may promote transplant tolerance. RECENT FINDINGS Adverse graft inflammation creates extreme resistance to the induction of donor-specific tolerance. Proinflammatory cytokines, when abundantly expressed within the graft and draining lymph nodes, prevent commitment of donor-activated T cells into graft-protective, T-regulatory phenotype, while fostering generation of donor-reactive Th1, Th2 or Th17 effector subsets. In addition, the inflammatory milieu may destabilize the program of both natural and induced Tregs, converting them into inflammatory, effector-like phenotypes. Therefore permanent, Treg-dependent acceptance of an allograft may not be achieved without limiting adverse tissue inflammation. SUMMARY Balance of graft-protective regulatory and graft-destructive effector T cells largely depends on the balance of proinflammatory and anti-inflammatory cytokines in the milieu, in which donor-directed T-cell response occurs. In the absence of proinflammatory cytokines, the constitutive expression of TGF-beta may guide recipient T cells into a tissue-protective, pro-tolerant mode. Therefore, targeting adverse tissue inflammation may represent a powerful means to tilt antidonor immunity towards tolerance.
Collapse
|
36
|
Moore DJ, Zienkiewicz J, Kendall PL, Liu D, Liu X, Veach RA, Collins RD, Hawiger J. In vivo islet protection by a nuclear import inhibitor in a mouse model of type 1 diabetes. PLoS One 2010; 5:e13235. [PMID: 20949090 PMCID: PMC2950856 DOI: 10.1371/journal.pone.0013235] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 09/15/2010] [Indexed: 01/12/2023] Open
Abstract
Background Insulin-dependent Type 1 diabetes (T1D) is a devastating autoimmune disease that destroys beta cells within the pancreatic islets and afflicts over 10 million people worldwide. These patients face life-long risks for blindness, cardiovascular and renal diseases, and complications of insulin treatment. New therapies that protect islets from autoimmune destruction and allow continuing insulin production are needed. Increasing evidence regarding the pathomechanism of T1D indicates that islets are destroyed by the relentless attack by autoreactive immune cells evolving from an aberrant action of the innate, in addition to adaptive, immune system that produces islet-toxic cytokines, chemokines, and other effectors of islet inflammation. We tested the hypothesis that targeting nuclear import of stress-responsive transcription factors evoked by agonist-stimulated innate and adaptive immunity receptors would protect islets from autoimmune destruction. Principal Findings Here we show that a first-in-class inhibitor of nuclear import, cSN50 peptide, affords in vivo islet protection following a 2-day course of intense treatment in NOD mice, which resulted in a diabetes-free state for one year without apparent toxicity. This nuclear import inhibitor precipitously reduces the accumulation of islet-destructive autoreactive lymphocytes while enhancing activation-induced cell death of T and B lymphocytes derived from autoimmune diabetes-prone, non-obese diabetic (NOD) mice that develop T1D. Moreover, in this widely used model of human T1D we noted attenuation of pro-inflammatory cytokine and chemokine production in immune cells. Conclusions These results indicate that a novel form of immunotherapy that targets nuclear import can arrest inflammation-driven destruction of insulin-producing beta cells at the site of autoimmune attack within pancreatic islets during the progression of T1D.
Collapse
Affiliation(s)
- Daniel J Moore
- Department of Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Halley K, Dyson EL, Kaur G, Mital P, Uong PM, Dass B, Crowell SN, Dufour JM. Delivery of a therapeutic protein by immune-privileged Sertoli cells. Cell Transplant 2010; 19:1645-57. [PMID: 20719072 DOI: 10.3727/096368910x516628] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Immune-privileged Sertoli cells survive long term after allogeneic or xenogeneic transplantation without the use of immunosuppressive drugs, suggesting they could be used as a vehicle to deliver therapeutic proteins. As a model to test this, we engineered Sertoli cells to transiently produce basal levels of insulin and then examined their ability to lower blood glucose levels after transplantation into diabetic SCID mice. Mouse and porcine Sertoli cells transduced with a recombinant adenoviral vector containing furin-modified human proinsulin cDNA expressed insulin mRNA and secreted insulin protein. Transplantation of 5-20 million insulin-expressing porcine Sertoli cells into diabetic SCID mice significantly decreased blood glucose levels in a dose-dependent manner, with 20 million Sertoli cells decreasing blood glucose levels to 9.8 ± 2.7 mM. Similar results were obtained when 20 million insulin-positive, BALB/c mouse Sertoli cells were transplanted; blood glucose levels dropped to 6.3 ± 2.4 mM and remained significantly lower for 5 days. To our knowledge, this is the first study to demonstrate Sertoli cells can be engineered to produce and secrete a clinically relevant factor that has a therapeutic effect, thus supporting the concept of using immune-privileged Sertoli cells as a potential vehicle for gene therapy.
Collapse
Affiliation(s)
- Katelyn Halley
- Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Dula SB, Jecmenica M, Wu R, Jahanshahi P, Verrilli GM, Carter JD, Brayman KL, Nunemaker CS. Evidence that low-grade systemic inflammation can induce islet dysfunction as measured by impaired calcium handling. Cell Calcium 2010; 48:133-42. [PMID: 20800281 PMCID: PMC2948622 DOI: 10.1016/j.ceca.2010.07.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 07/08/2010] [Accepted: 07/24/2010] [Indexed: 02/05/2023]
Abstract
In obesity and the early stages of type 2 diabetes (T2D), proinflammatory cytokines are mildly elevated in the systemic circulation. This low-grade systemic inflammation exposes pancreatic islets to these circulating cytokines at much lower levels than seen within the islet during insulitis. These low-dose effects have not been well described. We examined mouse islets treated overnight with a low-dose cytokine combination commonly associated with inflammation (TNF-alpha, IL-1 beta, and IFN-gamma). We then examined islet function primarily using intracellular calcium ([Ca(2+)](i)), a key component of insulin secretion and cytokine signaling. Cytokine-treated islets demonstrated several features that suggested dysfunction including excess [Ca(2+)](i) in low physiological glucose (3mM), reduced responses to glucose stimulation, and disrupted [Ca(2+)](i) oscillations. Interestingly, islets taken from young db/db mice showed similar disruptions in [Ca(2+)](i) dynamics as cytokine-treated islets. Additional studies of control islets showed that the cytokine-induced elevation in basal [Ca(2+)](i) was due to both greater calcium influx through L-type-calcium-channels and reduced endoplasmic reticulum (ER) calcium storage. Many of these cytokine-induced disruptions could be reproduced by SERCA blockade. Our data suggest that chronic low-grade inflammation produces circulating cytokine levels that are sufficient to induce beta-cell dysfunction and may play a contributing role in beta-cell failure in early T2D.
Collapse
Affiliation(s)
- Stacey B. Dula
- Department of Medicine, University of Virginia, Charlottesville, VA
| | - Mladen Jecmenica
- Department of Surgery, University of Virginia, Charlottesville, VA
| | - Runpei Wu
- Department of Medicine, University of Virginia, Charlottesville, VA
| | - Pooya Jahanshahi
- Department of Medicine, University of Virginia, Charlottesville, VA
| | | | | | | | | |
Collapse
|
39
|
Wei D, Li J, Shen M, Jia W, Chen N, Chen T, Su D, Tian H, Zheng S, Dai Y, Zhao A. Cellular production of n-3 PUFAs and reduction of n-6-to-n-3 ratios in the pancreatic beta-cells and islets enhance insulin secretion and confer protection against cytokine-induced cell death. Diabetes 2010; 59:471-8. [PMID: 19933995 PMCID: PMC2809969 DOI: 10.2337/db09-0284] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To evaluate the direct impact of n-3 polyunsaturated fatty acids (n-3 PUFAs) on the functions and viability of pancreatic beta-cells. RESEARCH DESIGN AND METHODS We developed an mfat-1 transgenic mouse model in which endogenous production of n-3 PUFAs was achieved through overexpressing a C. elegans n-3 fatty acid desaturase gene, mfat-1. The islets and INS-1 cells expressing mfat-1 were analyzed for insulin secretion and viability in response to cytokine treatment. RESULTS The transgenic islets contained much higher levels of n-3 PUFAs and lower levels of n-6 PUFAs than the wild type. Insulin secretion stimulated by glucose, amino acids, and glucagon-like peptide-1 (GLP-1) was significantly elevated in the transgenic islets. When challenged with tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), and gamma-interferon (IFN-gamma), the transgenic islets completely resisted cytokine-induced cell death. Adenoviral transduction of mfat-1 gene in wild-type islets and in INS-1 cells led to acute changes in the cellular levels of n-3- and n-6 PUFAs and recapitulated the results in the transgenic islets. The expression of mfat-1 led to decreased production of prostaglandin E(2) (PGE(2)), which in turn contributed to the elevation of insulin secretion. We further found that cytokine-induced activation of NF-kappaB and extracellular signal-related kinase 1/2 (ERK(1/2)) was significantly attenuated and that the expression of pancreatic duodenal hemeobox-1 (PDX-1), glucokinase, and insulin-1 was increased as a result of n-3 PUFA production. CONCLUSIONS Stable cellular production of n-3 PUFAs via mfat-1 can enhance insulin secretion and confers strong resistance to cytokine-induced beta-cell destruction. The utility of mfat-1 gene in deterring type 1 diabetes should be further explored in vivo.
Collapse
Affiliation(s)
- Dong Wei
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Endocrinology, the Second People's Hospital of Chengdu, Chengdu, China
| | - Jie Li
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Endocrinology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Miaoda Shen
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Surgery, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Wei Jia
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Nuoqi Chen
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Tao Chen
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Endocrinology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Dongming Su
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Haoming Tian
- Department of Endocrinology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Shusen Zheng
- Department of Surgery, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yifan Dai
- The Center of Metabolic Disease Research, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Allan Zhao
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania
- The Center of Metabolic Disease Research, Nanjing Medical University, Nanjing, Jiangsu Province, China
- Corresponding author: Allan Zhao,
| |
Collapse
|
40
|
Carter JD, Dula SB, Corbin KL, Wu R, Nunemaker CS. A practical guide to rodent islet isolation and assessment. Biol Proced Online 2009; 11:3-31. [PMID: 19957062 PMCID: PMC3056052 DOI: 10.1007/s12575-009-9021-0] [Citation(s) in RCA: 202] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 10/22/2009] [Indexed: 11/25/2022] Open
Abstract
Pancreatic islets of Langerhans secrete hormones that are vital to the regulation of blood glucose and are, therefore, a key focus of diabetes research. Purifying viable and functional islets from the pancreas for study is an intricate process. This review highlights the key elements involved with mouse and rat islet isolation, including choices of collagenase, the collagenase digestion process, purification of islets using a density gradient, and islet culture conditions. In addition, this paper reviews commonly used techniques for assessing islet viability and function, including visual assessment, fluorescent markers of cell death, glucose-stimulated insulin secretion, and intracellular calcium measurements. A detailed protocol is also included that describes a common method for rodent islet isolation that our laboratory uses to obtain viable and functional mouse islets for in vitro study of islet function, beta-cell physiology, and in vivo rodent islet transplantation. The purpose of this review is to serve as a resource and foundation for successfully procuring and purifying high-quality islets for research purposes.
Collapse
Affiliation(s)
- Jeffrey D Carter
- Department of Medicine, Division of Endocrinology, University of Virginia, P.O. Box 801413, Charlottesville, VA, 22908, USA
- DERC Cell and Islet Isolation Core Facility, University of Virginia, Charlottesville, VA, USA
| | - Stacey B Dula
- Department of Medicine, Division of Endocrinology, University of Virginia, P.O. Box 801413, Charlottesville, VA, 22908, USA
| | - Kathryn L Corbin
- Department of Medicine, Division of Endocrinology, University of Virginia, P.O. Box 801413, Charlottesville, VA, 22908, USA
- DERC Cell and Islet Isolation Core Facility, University of Virginia, Charlottesville, VA, USA
| | - Runpei Wu
- Department of Medicine, Division of Endocrinology, University of Virginia, P.O. Box 801413, Charlottesville, VA, 22908, USA
| | - Craig S Nunemaker
- Department of Medicine, Division of Endocrinology, University of Virginia, P.O. Box 801413, Charlottesville, VA, 22908, USA
- DERC Cell and Islet Isolation Core Facility, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
41
|
Yechoor V, Liu V, Paul A, Lee J, Buras E, Ozer K, Samson S, Chan L. Gene therapy with neurogenin 3 and betacellulin reverses major metabolic problems in insulin-deficient diabetic mice. Endocrinology 2009; 150:4863-73. [PMID: 19819964 PMCID: PMC2775983 DOI: 10.1210/en.2009-0527] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Insulin deficiency in type 1 diabetes leads to disruptions in glucose, lipid, and ketone metabolism with resultant hyperglycemia, hyperlipidemia, and ketonemia. Exogenous insulin and hepatic insulin gene therapy cannot mimic the robust glucose-stimulated insulin secretion (GSIS) from native pancreatic islets. Gene therapy of streptozotocin-diabetic mice with neurogenin 3 (Ngn3) and betacellulin (Btc) leads to the induction of periportal oval cell-derived neo-islets that exhibit GSIS. We hence hypothesized that this gene therapy regimen may lead to a complete correction of the glucose and lipid metabolic abnormalities associated with insulin deficiency; we further hypothesized that the neo-islets formed in response to Ngn3-Btc gene delivery may display an ultrastructure and transcription profile similar to that of pancreatic islets. We injected streptozotocin-diabetic mice with helper-dependent adenoviral vectors carrying Ngn3 and Btc, which restored GSIS and reversed hyperglycemia in these animals. The treatment also normalized hepatic glucose secretion and reversed ketonemia. Furthermore, it restored hepatic glycogen content and reinstated hepatic lipogenesis-related gene transcripts back to nondiabetic levels. By transmission electron microscopy, the neo-islets displayed electron-dense granules that were similar in appearance to those in pancreatic islets. Finally, using RNA obtained by laser capture microdissection of the periportal neo-islets and normal pancreatic islets, we found that the neo-islets and pancreatic islets exhibited a very similar transcription profile on microarray-based transcriptome analysis. Taken together, this indicates that Ngn3-Btc gene therapy corrects the underlying dysregulated glucose and lipid metabolism in insulin-deficient diabetic mice by inducing neo-islets in the liver that are similar to pancreatic islets in structure and gene expression profile.
Collapse
Affiliation(s)
- Vijay Yechoor
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, One Baylor Plaza, R614, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Scholz H, Lund T, Dahle MK, Collins JL, Korsgren O, Wang JE, Foss A. The synthetic liver X receptor agonist GW3965 reduces tissue factor production and inflammatory responses in human islets in vitro. Diabetologia 2009; 52:1352-62. [PMID: 19415233 DOI: 10.1007/s00125-009-1366-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 03/16/2009] [Indexed: 10/20/2022]
Abstract
AIMS/HYPOTHESIS Optimising islet culture conditions may be one strategy for reducing islet loss prior to, and immediately after, islet transplantation. Liver X receptor (LXR) agonism has previously been shown to increase insulin release from pancreatic islets and reduce inflammation in leucocytes. Our aim was to investigate whether the synthetic LXR agonist GW3965 could modulate the inflammatory status of human pancreatic islets. METHODS Levels of pro-inflammatory cytokines and tissue factor in isolated human islets were determined by TaqMan low density array and/or real-time quantitative RT-PCR (mRNA levels) and enzyme immunoassay (EIA) (protein levels). Islet viability was measured using intracellular ATP content, ADP/ATP ratio, mitochondrial dehydrogenase activity (XTT assay) and insulin secretion in a dynamic glucose-challenge model. Apoptosis was determined by EIA measurement of histone-DNA complexes present in cytoplasm and by assaying caspase-3/-7 activity. RESULTS Treatment of LPS-stimulated human islets with the synthetic LXR agonist GW3965 (1 micromol/l) for 24 h reduced mRNA and protein levels of selected pro-inflammatory cytokines (IL-8, monocyte chemotactic protein-1 and tissue factor). Moreover, GW3965 had no adverse effect on insulin secretion, islet viability or apoptosis. No excess of lipid accumulation could be detected with the dosage and exposure time used. CONCLUSIONS/INTERPRETATION LXR activation suppresses inflammation in human islets in vitro without adverse effects on islet viability. Short-term moderate activation of LXR prior to islet transplantation may represent a possible strategy for improving post-transplant islet survival.
Collapse
Affiliation(s)
- H Scholz
- Institute for Surgical Research, Oslo University Hospital, Sognsvannsveien 20, Oslo, Norway.
| | | | | | | | | | | | | |
Collapse
|
43
|
Berney T. Islet culture and counter-culture. Commentary on: Effect of short-term culture on functional and stress-related parameters in isolated human islets by Ihm et al. Transpl Int 2009; 22:531-3. [PMID: 19459231 DOI: 10.1111/j.1432-2277.2008.00794.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Thierry Berney
- Cell Isolation and Transplantation Center, University of Geneva School of Medicine, and the Division of Visceral/Transplantation Surgery, Geneva University Hospitals, Geneva, Switzerland.
| |
Collapse
|
44
|
Abstract
Human islet research is crucial to understanding the cellular biology of the pancreas in developing therapeutic options for diabetes patients and in attempting to prevent the development of this disease. The national Islet Cell Resource Center Consortium provides human pancreatic islets for diabetes research while simultaneously addressing the need to improve islet isolation and transplantation technologies. Since its inception in 2001, the consortium has supplied 297.6 million islet equivalents to 151 national and international scientists for use in clinical and laboratory projects. Data on the volume, quality, and frequency of shipments substantiate the importance of human islets for diabetes research, as do the number of funded grants for beta-cell projects and publications produced as a direct result of islets supplied by this resource. Limitations in using human islets are discussed, along with the future of islet distribution centers. The information presented here is instructive to clinicians, basic science investigators, and policy makers who determine the availability of funding for such work. Organ procurement coordinators also may find the information useful in explaining to donor families why research consent is so valuable.
Collapse
Affiliation(s)
- John S Kaddis
- Department of Information Sciences, City of Hope National Medical Center, 1500 E Duarte Rd, Duarte, CA 91010-3000, USA.
| | | | | | | | | | | |
Collapse
|