1
|
Corrêa CAP, Andrade AF, Veronez LC, da Silva KR, Baroni M, Suazo VK, de Paula Gomes Queiroz R, Lira RCP, Chagas PS, Brandalise SR, Yunes JA, Molina CAF, Antonini SRR, Valera ET, Tone LG, Scrideli CA. Analysis of miR-483-3p and miR-630 expression profile in pediatric adrenocortical tumors and the effect of their modulation on adrenal tumorigenesis in vitro. Mol Cell Endocrinol 2024; 594:112371. [PMID: 39278396 DOI: 10.1016/j.mce.2024.112371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Pediatric adrenocortical tumors (ACT) are rare aggressive neoplasms with heterogeneous prognosis. MicroRNA (miRNA) signatures have been associated with cancer diagnosis, treatment response, and outcomes of several types of cancer. However, the role played by miRNAs in pediatric ACT has been poorly explored. In this study, we have evaluated the expression of miR-483-3p and miR-630 in 67 pediatric ACT and 19 non-neoplastic adrenal samples, the effects of the modulations of these miRNAs, and their relationship with the TGF-β pathway in the H295R and H295A cell lines. Deregulation of both miRNAs was related to survival and disease advanced stages and hence to patients' prognosis. Moreover, modified miR-483-3p and miR-630 in vitro expression decreased cell viability and colony formation capacity, changed how some genes of the TGF-β pathway, such as TGFBR1, TGFBR2, and SMAD7, are expressed, and altered Smad3, pSmad3, Smad 2/3, N-cadherin, and Vimentin protein expression. Besides that, when inhibition of the TGF-β pathway was combined with miR-630 overexpression or miR-483-3p silencing, cell viability and colony formation capacity decreased, and protein expression in the TGF-β pathway changed. Together, the data indicate that both miRNAs participate in the TGF-β pathway and are therefore potential markers for predicting the prognosis of patients with pediatric ACT.
Collapse
Affiliation(s)
| | | | - Luciana Chain Veronez
- Department of Pediatrics - Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Mirella Baroni
- Department of Genetics - Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Veridiana Kill Suazo
- Department of Pediatrics - Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Régia Caroline Peixoto Lira
- Department of Genetics - Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Division of General Pathology, Federal University of Triângulo Mineiro, Campus I, Uberaba, MG, 38025-200, Brazil
| | - Pablo Shimaoka Chagas
- Department of Genetics - Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | | | | | | | - Elvis Terci Valera
- Department of Pediatrics - Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Luiz Gonzaga Tone
- Department of Genetics - Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Department of Pediatrics - Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Carlos Alberto Scrideli
- Department of Genetics - Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Department of Pediatrics - Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Brazil.
| |
Collapse
|
2
|
del Valle I, Young MD, Kildisiute G, Ogunbiyi OK, Buonocore F, Simcock IC, Khabirova E, Crespo B, Moreno N, Brooks T, Niola P, Swarbrick K, Suntharalingham JP, McGlacken-Byrne SM, Arthurs OJ, Behjati S, Achermann JC. An integrated single-cell analysis of human adrenal cortex development. JCI Insight 2023; 8:e168177. [PMID: 37440461 PMCID: PMC10443814 DOI: 10.1172/jci.insight.168177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/31/2023] [Indexed: 07/15/2023] Open
Abstract
The adrenal glands synthesize and release essential steroid hormones such as cortisol and aldosterone, but many aspects of human adrenal gland development are not well understood. Here, we combined single-cell and bulk RNA sequencing, spatial transcriptomics, IHC, and micro-focus computed tomography to investigate key aspects of adrenal development in the first 20 weeks of gestation. We demonstrate rapid adrenal growth and vascularization, with more cell division in the outer definitive zone (DZ). Steroidogenic pathways favored androgen synthesis in the central fetal zone, but DZ capacity to synthesize cortisol and aldosterone developed with time. Core transcriptional regulators were identified, with localized expression of HOPX (also known as Hop homeobox/homeobox-only protein) in the DZ. Potential ligand-receptor interactions between mesenchyme and adrenal cortex were seen (e.g., RSPO3/LGR4). Growth-promoting imprinted genes were enriched in the developing cortex (e.g., IGF2, PEG3). These findings reveal aspects of human adrenal development and have clinical implications for understanding primary adrenal insufficiency and related postnatal adrenal disorders, such as adrenal tumor development, steroid disorders, and neonatal stress.
Collapse
Affiliation(s)
- Ignacio del Valle
- Genetics and Genomic Medicine Research and Teaching Department, University College London (UCL) Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Matthew D. Young
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Gerda Kildisiute
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Olumide K. Ogunbiyi
- Department of Histopathology, Great Ormond Street Hospital for Children National Health Service (NHS) Foundation Trust, London, United Kingdom
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Federica Buonocore
- Genetics and Genomic Medicine Research and Teaching Department, University College London (UCL) Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Ian C. Simcock
- Department of Clinical Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
- National Institute of Health Research (NIHR) Great Ormond Street Biomedical Research Centre, London, United Kingdom
- Population, Policy and Practice Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Eleonora Khabirova
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Berta Crespo
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Nadjeda Moreno
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Tony Brooks
- UCL Genomics, Zayed Centre for Research, UCL Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Paola Niola
- UCL Genomics, Zayed Centre for Research, UCL Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Katherine Swarbrick
- Department of Histopathology, Great Ormond Street Hospital for Children National Health Service (NHS) Foundation Trust, London, United Kingdom
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Jenifer P. Suntharalingham
- Genetics and Genomic Medicine Research and Teaching Department, University College London (UCL) Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Sinead M. McGlacken-Byrne
- Genetics and Genomic Medicine Research and Teaching Department, University College London (UCL) Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Owen J. Arthurs
- Department of Clinical Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
- National Institute of Health Research (NIHR) Great Ormond Street Biomedical Research Centre, London, United Kingdom
- Population, Policy and Practice Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Sam Behjati
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- Department of Paediatrics, University of Cambridge, Cambridge, United Kingdom
| | - John C. Achermann
- Genetics and Genomic Medicine Research and Teaching Department, University College London (UCL) Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| |
Collapse
|
3
|
Steroidogenic Factor 1, a Goldilocks Transcription Factor from Adrenocortical Organogenesis to Malignancy. Int J Mol Sci 2023; 24:ijms24043585. [PMID: 36835002 PMCID: PMC9959402 DOI: 10.3390/ijms24043585] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Steroidogenic factor-1 (SF-1, also termed Ad4BP; NR5A1 in the official nomenclature) is a nuclear receptor transcription factor that plays a crucial role in the regulation of adrenal and gonadal development, function and maintenance. In addition to its classical role in regulating the expression of P450 steroid hydroxylases and other steroidogenic genes, involvement in other key processes such as cell survival/proliferation and cytoskeleton dynamics have also been highlighted for SF-1. SF-1 has a restricted pattern of expression, being expressed along the hypothalamic-pituitary axis and in steroidogenic organs since the time of their establishment. Reduced SF-1 expression affects proper gonadal and adrenal organogenesis and function. On the other hand, SF-1 overexpression is found in adrenocortical carcinoma and represents a prognostic marker for patients' survival. This review is focused on the current knowledge about SF-1 and the crucial importance of its dosage for adrenal gland development and function, from its involvement in adrenal cortex formation to tumorigenesis. Overall, data converge towards SF-1 being a key player in the complex network of transcriptional regulation within the adrenal gland in a dosage-dependent manner.
Collapse
|
4
|
Abstract
Adrenal cortical carcinoma (ACC) is a rare and aggressive malignancy that poses challenging issues regarding the diagnostic workup. Indeed, no presurgical technique or clinical parameters can reliably distinguish between adrenal cortical adenomas, which are more frequent and have a favorable outcome, and ACC, and the final diagnosis largely relies on histopathologic analysis of the surgical specimen. However, even the pathologic assessment of malignancy in an adrenal cortical lesion is not straightforward and requires a combined evaluation of multiple histopathologic features. Starting from the Weiss score, which was developed in 1984, several histopathologic scoring systems have been designed to tackle the difficulties of ACC diagnosis. Dealing with specific histopathologic variants (eg, Liss-Weiss-Bisceglia scoring system for oncocytic ACC) or patient characteristics (eg, Wieneke index in the pediatric setting), these scores remarkably improved the diagnostic workup of ACC and its subtypes. Nevertheless, cases with misleading features or discordant correlations between pathologic findings and clinical behavior still occur. Owing to multicentric collaborative studies integrating morphologic features with ancillary immunohistochemical markers and molecular analysis, ACC has eventually emerged as a multifaceted, heterogenous malignancy, and, while innovative and promising approaches are currently being tested, the future clinical management of patients with ACC will mainly rely on personalized medicine and target-therapy protocols. At the dawn of the new Fifth World Health Organization classification of endocrine tumors, this review will tackle ACC from the pathologist's perspective, thus focusing on the main available diagnostic, prognostic, and predictive tissue-tethered features and biomarkers and providing relevant clinical and molecular correlates.
Collapse
|
5
|
Lerario AM, Mohan DR, Hammer GD. Update on Biology and Genomics of Adrenocortical Carcinomas: Rationale for Emerging Therapies. Endocr Rev 2022; 43:1051-1073. [PMID: 35551369 PMCID: PMC9695111 DOI: 10.1210/endrev/bnac012] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Indexed: 11/19/2022]
Abstract
The adrenal glands are paired endocrine organs that produce steroid hormones and catecholamines required for life. Adrenocortical carcinoma (ACC) is a rare and often fatal cancer of the peripheral domain of the gland, the adrenal cortex. Recent research in adrenal development, homeostasis, and disease have refined our understanding of the cellular and molecular programs controlling cortical growth and renewal, uncovering crucial clues into how physiologic programs are hijacked in early and late stages of malignant neoplasia. Alongside these studies, genome-wide approaches to examine adrenocortical tumors have transformed our understanding of ACC biology, and revealed that ACC is composed of distinct molecular subtypes associated with favorable, intermediate, and dismal clinical outcomes. The homogeneous transcriptional and epigenetic programs prevailing in each ACC subtype suggest likely susceptibility to any of a plethora of existing and novel targeted agents, with the caveat that therapeutic response may ultimately be limited by cancer cell plasticity. Despite enormous biomedical research advances in the last decade, the only potentially curative therapy for ACC to date is primary surgical resection, and up to 75% of patients will develop metastatic disease refractory to standard-of-care adjuvant mitotane and cytotoxic chemotherapy. A comprehensive, integrated, and current bench-to-bedside understanding of our field's investigations into adrenocortical physiology and neoplasia is crucial to developing novel clinical tools and approaches to equip the one-in-a-million patient fighting this devastating disease.
Collapse
Affiliation(s)
- Antonio Marcondes Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| | - Dipika R Mohan
- Medical Scientist Training Program, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| | - Gary D Hammer
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
- Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| |
Collapse
|
6
|
Karsa M, Ronca E, Bongers A, Mariana A, Moles E, Failes TW, Arndt GM, Cheung LC, Kotecha RS, Kavallaris M, Haber M, Norris MD, Henderson MJ, Xiao L, Somers K. Systematic In Vitro Evaluation of a Library of Approved and Pharmacologically Active Compounds for the Identification of Novel Candidate Drugs for KMT2A-Rearranged Leukemia. Front Oncol 2022; 11:779859. [PMID: 35127484 PMCID: PMC8811472 DOI: 10.3389/fonc.2021.779859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/13/2021] [Indexed: 01/06/2023] Open
Abstract
Patients whose leukemias harbor a rearrangement of the Mixed Lineage Leukemia (MLL/KMT2A) gene have a poor prognosis, especially when the disease strikes in infants. The poor clinical outcome linked to this aggressive disease and the detrimental treatment side-effects, particularly in children, warrant the urgent development of more effective and cancer-selective therapeutics. The aim of this study was to identify novel candidate compounds that selectively target KMT2A-rearranged (KMT2A-r) leukemia cells. A library containing 3707 approved drugs and pharmacologically active compounds was screened for differential activity against KMT2A-r leukemia cell lines versus KMT2A-wild type (KMT2A-wt) leukemia cell lines, solid tumor cells and non-malignant cells by cell-based viability assays. The screen yielded SID7969543, an inhibitor of transcription factor Nuclear Receptor Subfamily 5 Group A Member 1 (NR5A1), that limited the viability of 7 out of 11 KMT2A-r leukemia cell lines including 5 out of 7 lines derived from infants, without affecting KMT2A-wt leukemia cells, solid cancer lines, non-malignant cell lines, or peripheral blood mononuclear cells from healthy controls. The compound also significantly inhibited growth of leukemia cell lines with a CALM-AF10 translocation, which defines a highly aggressive leukemia subtype that shares common underlying leukemogenic mechanisms with KMT2A-r leukemia. SID7969543 decreased KMT2A-r leukemia cell viability by inducing caspase-dependent apoptosis within hours of treatment and demonstrated synergy with established chemotherapeutics used in the treatment of high-risk leukemia. Thus, SID7969543 represents a novel candidate agent with selective activity against CALM-AF10 translocated and KMT2A-r leukemias that warrants further investigation.
Collapse
Affiliation(s)
- Mawar Karsa
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- School of Women’s and Children’s Health, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | - Emma Ronca
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | - Angelika Bongers
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | - Anna Mariana
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- Australian Cancer Research Foundation (ACRF) Drug Discovery Centre for Childhood Cancer, Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | - Ernest Moles
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- School of Women’s and Children’s Health, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- Australian Research Council (ARC) Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Centre for Nanomedicine, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | - Timothy W. Failes
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- Australian Cancer Research Foundation (ACRF) Drug Discovery Centre for Childhood Cancer, Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | - Greg M. Arndt
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- School of Women’s and Children’s Health, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- Australian Cancer Research Foundation (ACRF) Drug Discovery Centre for Childhood Cancer, Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | - Laurence C. Cheung
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia
- Curtin Medical School, Curtin University, Perth, WA, Australia
| | - Rishi S. Kotecha
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia
- Curtin Medical School, Curtin University, Perth, WA, Australia
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children’s Hospital, Perth, WA, Australia
- Division of Paediatrics, School of Medicine, University of Western Australia, Perth, WA, Australia
| | - Maria Kavallaris
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- School of Women’s and Children’s Health, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- Australian Research Council (ARC) Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Centre for Nanomedicine, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | - Michelle Haber
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- School of Women’s and Children’s Health, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | - Murray D. Norris
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- School of Women’s and Children’s Health, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- University of New South Wales (UNSW) Centre for Childhood Cancer Research, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | - Michelle J. Henderson
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- School of Women’s and Children’s Health, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | - Lin Xiao
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- School of Women’s and Children’s Health, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | - Klaartje Somers
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- School of Women’s and Children’s Health, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- *Correspondence: Klaartje Somers,
| |
Collapse
|
7
|
Gau M, Suga R, Hijikata A, Kashimada A, Takagi M, Nakagawa R, Takasawa K, Shirai T, Kashimada K, Morio T. A novel variant of NR5A1, p.R350W implicates potential interactions with unknown co-factors or ligands. Front Endocrinol (Lausanne) 2022; 13:1033074. [PMID: 36743925 PMCID: PMC9895113 DOI: 10.3389/fendo.2022.1033074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/29/2022] [Indexed: 01/21/2023] Open
Abstract
INTRODUCTION NR5A1 and NR5A2 belong to an orphan nuclear receptor group, and approximately 60% of their amino acid sequences are conserved. Transcriptional regulation of NR5A receptors depends on interactions with co-factors or unidentified ligands. PURPOSE AND METHODS We employed in vitro and in silico analysis for elucidating the pathophysiology of a novel variant in the ligand-binding domain of NR5A1, p.R350W which was identified from a 46,XY patient with atypical genitalia. RESULTS In the study, [1] reporter assays demonstrated that R350 is essential for NR5A1; [2] 3D model analysis predicted that R350 interacted with endogenous ligands or unknown cofactors rather than stabilizing the structure; [3] R350 is not conserved in NR5A2 but is specifically required for NR5A1; and [4] none of the 22 known missense variants of the ligand binding domain satisfied all the previous conditions [1]-[3], suggesting the unique role of R350 in NR5A1. CONCLUSION Our data suggest that NR5A1 has unidentified endogenous ligands or co-activators that selectively potentiate the transcriptional function of NR5A1 in vivo.
Collapse
Affiliation(s)
- Maki Gau
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryota Suga
- School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Atsushi Hijikata
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Ayako Kashimada
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryuichi Nakagawa
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kei Takasawa
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tsuyoshi Shirai
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Kenichi Kashimada
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
- *Correspondence: Kenichi Kashimada,
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
8
|
Abou Nader N, Boyer A. Adrenal Cortex Development and Maintenance: Knowledge Acquired From Mouse Models. Endocrinology 2021; 162:6362524. [PMID: 34473283 DOI: 10.1210/endocr/bqab187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Indexed: 11/19/2022]
Abstract
The adrenal cortex is an endocrine organ organized into concentric zones that are specialized to produce specific steroid hormones essential for life. The development and maintenance of the adrenal cortex are complex, as a fetal adrenal is first formed from a common primordium with the gonads, followed by its separation in a distinct primordium, the invasion of the adrenal primordium by neural crest-derived cells to form the medulla, and finally its encapsulation. The fetal cortex is then replaced by a definitive cortex, which will establish zonation and be maintained throughout life by regeneration relying on the proliferation, centripetal migration, and differentiation of several stem/progenitor cell populations whose activities are sex-specific. Here, we highlight the advances made, using transgenic mouse models, to delineate the molecular mechanisms regulating these processes.
Collapse
Affiliation(s)
- Nour Abou Nader
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Canada
| | - Alexandre Boyer
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Canada
| |
Collapse
|
9
|
Etoposide Triggers Cellular Senescence by Inducing Multiple Centrosomes and Primary Cilia in Adrenocortical Tumor Cells. Cells 2021; 10:cells10061466. [PMID: 34208028 PMCID: PMC8230646 DOI: 10.3390/cells10061466] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 11/17/2022] Open
Abstract
Etoposide (ETO) has been used in treating adrenocortical tumor (ACT) cells. Our previous study showed that ETO inhibits ACT cell growth. In the present study, we show that ETO treatment at IC50 (10 μM) inhibited ACT cell growth by inducing cellular senescence rather than apoptosis. Several markers of cellular senescence, including enlarged nuclei, activated senescence-associated β-galactosidase activity, elevated levels of p53 and p21, and down-regulation of Lamin B1, were observed. We further found that ETO induced multiple centrosomes. The inhibition of multiple centrosomes accomplished by treating cells with either roscovitine or centrinone or through the overexpression of NR5A1/SF-1 alleviated ETO-induced senescence, suggesting that ETO triggered senescence via multiple centrosomes. Primary cilia also played a role in ETO-induced senescence. In the mechanism, DNA-PK-Chk2 signaling was activated by ETO treatment; inhibition of this signaling cascade alleviated multiple ETO-induced centrosomes and primary cilia followed by reducing cellular senescence. In addition to DNA damage signaling, autophagy was also triggered by ETO treatment for centrosomal events and senescence. Importantly, the inactivation of DNA-PK-Chk2 signaling reduced ETO-triggered autophagy; however, the inhibition of autophagy did not affect DNA-PK-Chk2 activation. Thus, ETO activated the DNA-PK-Chk2 cascade to facilitate autophagy. The activated autophagy further induced multiple centrosomes and primary cilia followed by triggering senescence.
Collapse
|
10
|
Akın O, Ataş E, Atasoy İA, Durmaz N, Kartal Ö. Two Subsequent Metachroneus Solid Tumors: Oncocytic Variant Adrenocortical Carcinoma and Rhabdomyosarcoma of Childhood: Case Report and Literature Review. J Clin Res Pediatr Endocrinol 2021; 13:225-231. [PMID: 32539319 PMCID: PMC8186337 DOI: 10.4274/jcrpe.galenos.2020.2020.0060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Most cases of malignancies appear to be sporadic, but some syndromes are associated with malignancies with germline variants. Herein, a child with an unusual association of oncocytic variant adrenocortical carcinoma (ACC) and rhabdomyosarcoma (RMS) was presented. An 18-month-old-boy was admitted with virilization of the genital area, penis enlargement and erection, which had begun six months earlier. Serum total testosterone (457 ng/dL; NR <10), androstenedione (3.35 ng/mL; NR <0.5) and dehydroepiandrosterone-SO4 (206 mcg/dL; NR<35) were above the normal ranges. Right adrenal mass was detected. After adrenalectomy, histopathological examination revealed an oncocytic variant ACC. Three-month after surgery, he then presented with 6x8 cm sized swelling of the left leg. Histopathological examination revealed embryonal RMS. Testing for tumor protein (TP53) variant by DNA sequence analysis was positive; however; fluorescence in situ hybridization analysis was negative. After chemotherapy and local radiotherapy, the patient is in good condition without tumor recurrence. Only about one-third of these tumors have a variant of TP53. This status also applies to other genetic variants related to cancer. However, a significant association of malignancies strongly suggests a problem in tumor suppressor genes or new variants. Another as yet unidentified suppressor gene may also be present and effective in this locus. The occurrence of ACC as a part of a syndrome and positive family history of malignancies in patients are clinically important. These patients and their families should be scanned for genetic abnormalities. The patient with ACC should be followed-up carefully for other tumors to detect malignancy early.
Collapse
Affiliation(s)
- Onur Akın
- University of Health Sciences Turkey, Gülhane Training and Research Hospital, Clinic of Pediatrics, Ankara, Turkey
| | - Erman Ataş
- University of Health Sciences Turkey, Gülhane Training and Research Hospital, Clinic of Pediatrics, Ankara, Turkey,* Address for Correspondence: University of Health Sciences Turkey, Gülhane Training and Research Hospital, Clinic of Pediatrics, Ankara, Turkey Phone: +90 312 304 43 95 E-mail:
| | - İrem Ayşe Atasoy
- University of Health Sciences Turkey, Gülhane Training and Research Hospital, Clinic of Pediatrics, Ankara, Turkey
| | - Nihal Durmaz
- University of Health Sciences Turkey, Gülhane Training and Research Hospital, Clinic of Pediatrics, Ankara, Turkey
| | - Ömer Kartal
- University of Health Sciences Turkey, Gülhane Training and Research Hospital, Clinic of Pediatrics, Ankara, Turkey
| |
Collapse
|
11
|
Sukrithan V, Husain M, Kirschner L, Shah MH, Konda B. Emerging drugs for the treatment of adrenocortical carcinoma. Expert Opin Emerg Drugs 2021; 26:165-178. [PMID: 33896321 DOI: 10.1080/14728214.2021.1920922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Adrenocortical cancer (ACC) is a rare and aggressive disease with a median survival of 14-17 months and 5-year survival of around 20% for advanced disease. Emerging evidence of sub-groups of ACC with specific molecular drivers indicate ACC may be amenable to inhibition of receptor tyrosine kinases involved in growth and angiogenic signaling. A significant subset of patients may also be responsive to immune strategies.Areas covered: This review outlines approaches of targeting upregulated growth pathways including Insulin-like Growth Factor, Vascular Endothelial Growth Factor, Fibroblast Growth Factor and Epidermal Growth Factor Receptor in ACC. Data of immune checkpoint blockade with nivolumab, ipilimumab, pembrolizumab and avelumab is explored in detail. Genomic studies indicate that up to 40% of ACC are driven by dysregulated WNT and glucocorticoid signaling, special focus is placed on emerging drugs in these pathways.Expert opinion: Progress in the treatment of ACC has faced challenges stemming from the rarity of the disease. Given recent advances in the understanding of the molecular pathogenesis of ACC, a window of opportunity has now opened to make significant progress in developing therapeutic options that target key pathways such as excessive glucocorticoid signaling, WNT signaling, cell cycle and immune checkpoints.
Collapse
Affiliation(s)
- Vineeth Sukrithan
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University and Arthur G. James Cancer Center, Columbus, Ohio, USA
| | - Marium Husain
- Division of Hematology/Oncology, Department of Internal Medicine, The Ohio State University and Arthur G. James Cancer Center, Columbus, Ohio, USA
| | - Lawrence Kirschner
- Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, The Ohio State University and Arthur G. James Cancer Center, Columbus, Ohio, USA
| | - Manisha H Shah
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University and Arthur G. James Cancer Center, Columbus, Ohio, USA
| | - Bhavana Konda
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University and Arthur G. James Cancer Center, Columbus, Ohio, USA
| |
Collapse
|
12
|
Zambaiti E, Duci M, De Corti F, Gamba P, Dall'Igna P, Ghidini F, Virgone C. Clinical prognostic factors in pediatric adrenocortical tumors: A meta-analysis. Pediatr Blood Cancer 2021; 68:e28836. [PMID: 33306282 DOI: 10.1002/pbc.28836] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/27/2020] [Accepted: 11/14/2020] [Indexed: 12/14/2022]
Abstract
Pediatric adrenocortical tumors (ACT) are rare and sometimes aggressive malignancies, but there is no consensus on the outcome predictors in children. A systematic search of MEDLINE, SCOPUS, Web of Science, and the Cochrane Library for studies from 1994 to 2020 about pediatric ACT was performed. In 42 studies, 1006 patients, aged 0-18 years, were included. The meta-analyses resulted in the following predictors of better outcome: age <4 years (P < .00001), nonsecreting tumors (P = .004), complete surgical resection (P < .00001), tumor volume (P < .0001), tumor weight (P < .00001), tumor maximum diameter (P = .0009), and Stage I disease (P < .00001). Moreover, patients affected by Cushing syndrome showed a worse outcome (P < .0001). International prospective studies should be implemented to standardize clinical prognostic factors evaluation, together with pathological scores, in the stratification of pediatric ACT.
Collapse
Affiliation(s)
- Elisa Zambaiti
- Department of Women's and Children's Health, University Hospital of Padua, Padua, Italy
| | - Miriam Duci
- Department of Women's and Children's Health, University Hospital of Padua, Padua, Italy
| | - Federica De Corti
- Department of Women's and Children's Health, University Hospital of Padua, Padua, Italy
| | - Piergiorgio Gamba
- Department of Women's and Children's Health, University Hospital of Padua, Padua, Italy
| | - Patrizia Dall'Igna
- Department of Emergencies and Organ Transplantation, Azienda Ospedaliero-Universitaria Consorziale Ospedale Pediatrico Giovanni XXIII, Bari, Italy
| | - Filippo Ghidini
- Department of Women's and Children's Health, University Hospital of Padua, Padua, Italy
| | - Calogero Virgone
- Department of Women's and Children's Health, University Hospital of Padua, Padua, Italy
| |
Collapse
|
13
|
Emura N, Wang CM, Yang WH, Yang WH. Steroidogenic Factor 1 (NR5A1) Activates ATF3 Transcriptional Activity. Int J Mol Sci 2020; 21:ijms21041429. [PMID: 32093223 PMCID: PMC7073147 DOI: 10.3390/ijms21041429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 11/16/2022] Open
Abstract
Steroidogenic Factor 1 (SF-1/NR5A1), an orphan nuclear receptor, is important for sexual differentiation and the development of multiple endocrine organs, as well as cell proliferation in cancer cells. Activating transcription factor 3 (ATF3) is a transcriptional repressor, and its expression is rapidly induced by DNA damage and oncogenic stimuli. Since both NR5A1 and ATF3 can regulate and cooperate with several transcription factors, we hypothesized that NR5A1 may interact with ATF3 and plays a functional role in cancer development. First, we found that NR5A1 physically interacts with ATF3. We further demonstrated that ATF3 expression is up-regulated by NR5A1. Moreover, the promoter activity of the ATF3 is activated by NR5A1 in a dose-dependent manner in several cell lines. By mapping the ATF3 promoter as well as the site-directed mutagenesis analysis, we provide evidence that NR5A1 response elements (-695 bp and -665 bp) are required for ATF3 expression by NR5A1. It is well known that the transcriptional activities of NR5A1 are modulated by post-translational modifications, such as small ubiquitin-related modifier (SUMO) modification and phosphorylation. Notably, we found that both SUMOylation and phosphorylation of NR5A1 play roles, at least in part, for NR5A1-mediated ATF3 expression. Overall, our results provide the first evidence of a novel relationship between NR5A1 and ATF3.
Collapse
Affiliation(s)
- Natsuko Emura
- The United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate 020-8550, Japan;
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA; (C.-M.W.); (W.H.Y.)
| | - Chiung-Min Wang
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA; (C.-M.W.); (W.H.Y.)
| | - William Harry Yang
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA; (C.-M.W.); (W.H.Y.)
| | - Wei-Hsiung Yang
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA; (C.-M.W.); (W.H.Y.)
- Correspondence: ; Tel.: +1-912-721-8203; Fax: +1-912-721-8268
| |
Collapse
|
14
|
Guntiboina VA, Sengupta M, Islam N, Barman S, Biswas SK, Chatterjee U, Mishra PK, Roy P, Mallick MG, Datta C. Diagnostic and prognostic utility of SF1, IGF2 and p57 immunoexpression in pediatric adrenal cortical tumors. J Pediatr Surg 2019; 54:1906-1912. [PMID: 30686519 DOI: 10.1016/j.jpedsurg.2018.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/27/2018] [Accepted: 12/01/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Adrenocortical tumors (ACT) are uncommon in the pediatric age group. Using the standard Weiss criteria in pediatric tumors leads to overdiagnosis. This has led to the development of newer systems such as Weineke criteria. Ki67 labeling index aids in differentiating adenomas from carcinomas. We aim to evaluate the diagnostic and prognostic role of Ki67 labeling index, along with immunoexpression of steroidogenic factor-1, insulin like growth factor 2 and p57, in pediatric ACTs diagnosed using Weineke criteria. METHODS We have studied 25 cases of pediatric ACTs. Immunohistochemical staining for Ki67, SF-1, IGF2 and p57 was done in all cases and the result was correlated with the morphological diagnosis using the Weineke criteria. RESULTS Ki67 labeling index showed complete concordance with the morphological diagnosis. SF-1 and IGF2 showed similar correlation with the diagnosis, with IGF-2 proving to be a more specific marker. Increased Ki67, SF-1 and IGF2 immunostaining also correlated with worse survival. p57 was more specific in determining benign status of a tumor. CONCLUSION SF-1 and IGF2 are highly sensitive markers of malignancy in pediatric ACTs and can be used in combination with Ki67 expression for optimal diagnostic and prognostic assessment of pediatric ACTs. TYPE OF STUDY Prognosis study. LEVEL OF EVIDENCE Level II.
Collapse
Affiliation(s)
- Vinay Anand Guntiboina
- Department of Pathology, Institute of Post Graduate Medical Education & Research, Kolkata, India
| | - Moumita Sengupta
- Department of Pathology, Institute of Post Graduate Medical Education & Research, Kolkata, India
| | - Nelofar Islam
- Department of Pathology, Institute of Post Graduate Medical Education & Research, Kolkata, India
| | - Shibsankar Barman
- Department of Pediatric Surgery, Nil Ratan Sarkar Medical College & Hospital, Kolkata, India
| | - Somak Krishna Biswas
- Department of Pediatric Surgery, Nil Ratan Sarkar Medical College & Hospital, Kolkata, India
| | - Uttara Chatterjee
- Department of Pathology, Institute of Post Graduate Medical Education & Research, Kolkata, India.
| | - Prafulla Kumar Mishra
- Department of Pediatric Surgery, Nil Ratan Sarkar Medical College & Hospital, Kolkata, India
| | - Paromita Roy
- Department of Pathology, Tata Medical Centre, Kolkata, India
| | - Mamata Guha Mallick
- Department of Pathology, Institute of Post Graduate Medical Education & Research, Kolkata, India
| | - Chhanda Datta
- Department of Pathology, Institute of Post Graduate Medical Education & Research, Kolkata, India
| |
Collapse
|
15
|
Sanders K, van Staalduinen GJ, Uijens MCM, Mol JA, Teske E, Slob A, Hesselink JW, Kooistra HS, Galac S. Molecular markers of prognosis in canine cortisol-secreting adrenocortical tumours. Vet Comp Oncol 2019; 17:545-552. [PMID: 31301217 PMCID: PMC6899893 DOI: 10.1111/vco.12521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 01/15/2023]
Abstract
Hypercortisolism is caused by a cortisol‐secreting adrenocortical tumour (ACT) in approximately 15%‐20% of cases in dogs. Little is known about which molecular markers are associated with malignant behaviour of canine ACTs. The objective of this study was to identify molecular markers of prognosis, which could be useful to refine prognostic prediction and to identify potential treatment targets. Cortisol‐secreting ACTs were included from 40 dogs, of which follow‐up information was available. The ACTs were classified as low risk of recurrence tumours (LRT; n = 14) or moderate‐high risk of recurrence tumours (MHRT; n = 26), based on the novel histopathological Utrecht score. Normal adrenals (NAs) were included from 11 healthy dogs as reference material. The mRNA expression of 14 candidate genes was analysed in the 40 ACTs and in 11 NAs with quantitative RT‐PCR. The genes' expression levels were statistically compared between NAs, LRTs and MHRTs. Univariate and multivariate analyses were performed to determine the association of the genes' expression levels with survival. Seven genes were differentially expressed between NAs and ACTs, of which pituitary tumour‐transforming gene‐1 (PTTG1) and topoisomerase II alpha (TOP2A) were also differentially expressed between LRTs and MHRTs. In survival analyses, high expression levels of Steroidogenic factor‐1 (SF‐1), PTTG1 and TOP2A were significantly associated with poor survival. In conclusion, we have identified several genes that are part of the molecular signature of malignancy in canine ACTs. These findings can be used to refine prognostic prediction, but also offer insights for future studies on druggable targets.
Collapse
Affiliation(s)
- Karin Sanders
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Gerjanne J van Staalduinen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Maarten C M Uijens
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Jan A Mol
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Erik Teske
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Adri Slob
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Jan Willem Hesselink
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Hans S Kooistra
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Sara Galac
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
16
|
Meinsohn MC, Smith OE, Bertolin K, Murphy BD. The Orphan Nuclear Receptors Steroidogenic Factor-1 and Liver Receptor Homolog-1: Structure, Regulation, and Essential Roles in Mammalian Reproduction. Physiol Rev 2019; 99:1249-1279. [DOI: 10.1152/physrev.00019.2018] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nuclear receptors are intracellular proteins that act as transcription factors. Proteins with classic nuclear receptor domain structure lacking identified signaling ligands are designated orphan nuclear receptors. Two of these, steroidogenic factor-1 (NR5A1, also known as SF-1) and liver receptor homolog-1 (NR5A2, also known as LRH-1), bind to the same DNA sequences, with different and nonoverlapping effects on targets. Endogenous regulation of both is achieved predominantly by cofactor interactions. SF-1 is expressed primarily in steroidogenic tissues, LRH-1 in tissues of endodermal origin and the gonads. Both receptors modulate cholesterol homeostasis, steroidogenesis, tissue-specific cell proliferation, and stem cell pluripotency. LRH-1 is essential for development beyond gastrulation and SF-1 for genesis of the adrenal, sexual differentiation, and Leydig cell function. Ovary-specific depletion of SF-1 disrupts follicle development, while LRH-1 depletion prevents ovulation, cumulus expansion, and luteinization. Uterine depletion of LRH-1 compromises decidualization and pregnancy. In humans, SF-1 is present in endometriotic tissue, where it regulates estrogen synthesis. SF-1 is underexpressed in ovarian cancer cells and overexpressed in Leydig cell tumors. In breast cancer cells, proliferation, migration and invasion, and chemotherapy resistance are regulated by LRH-1. In conclusion, the NR5A orphan nuclear receptors are nonredundant factors that are crucial regulators of a panoply of biological processes, across multiple reproductive tissues.
Collapse
Affiliation(s)
- Marie-Charlotte Meinsohn
- Centre de Recherche en Reproduction et Fertilité, Université de Montréal, St-Hyacinthe, Québec, Canada
| | - Olivia E. Smith
- Centre de Recherche en Reproduction et Fertilité, Université de Montréal, St-Hyacinthe, Québec, Canada
| | - Kalyne Bertolin
- Centre de Recherche en Reproduction et Fertilité, Université de Montréal, St-Hyacinthe, Québec, Canada
| | - Bruce D. Murphy
- Centre de Recherche en Reproduction et Fertilité, Université de Montréal, St-Hyacinthe, Québec, Canada
| |
Collapse
|
17
|
Gahete MD, Jimenez-Vacas JM, Alors-Perez E, Herrero-Aguayo V, Fuentes-Fayos AC, Pedraza-Arevalo S, Castaño JP, Luque RM. Mouse models in endocrine tumors. J Endocrinol 2018; 240:JOE-18-0571.R1. [PMID: 30475226 DOI: 10.1530/joe-18-0571] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/26/2018] [Indexed: 12/14/2022]
Abstract
Endocrine and neuroendocrine tumors comprise a highly heterogeneous group of neoplasms that can arise from (neuro)endocrine cells, either from endocrine glands or from the widespread diffuse neuroendocrine system, and, consequently, are widely distributed throughout the body. Due to their diversity, heterogeneity and limited incidence, studying in detail the molecular and genetic alterations that underlie their development and progression is still a highly elusive task. This, in turn, hinders the discovery of novel therapeutic options for these tumors. To circumvent these limitations, numerous mouse models of endocrine and neuroendocrine tumors have been developed, characterized and used in pre-clinical, co-clinical (implemented in mouse models and patients simultaneously) and post-clinical studies, for they represent powerful and necessary tools in basic and translational tumor biology research. Indeed, different in vivo mouse models, including cell line-based xenografts (CDXs), patient-derived xenografts (PDXs) and genetically engineered mouse models (GEMs), have been used to delineate the development, progression and behavior of human tumors. Results gained with these in vivo models have facilitated the clinical application in patients of diverse breakthrough discoveries made in this field. Herein, we review the generation, characterization and translatability of the most prominent mouse models of endocrine and neuroendocrine tumors reported to date, as well as the most relevant clinical implications obtained for each endocrine and neuroendocrine tumor type.
Collapse
Affiliation(s)
- Manuel D Gahete
- M Gahete, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, 14011, Spain
| | - Juan M Jimenez-Vacas
- J Jimenez-Vacas, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain
| | - Emilia Alors-Perez
- E Alors-Perez, Department of Cell Biology, Physiology and Inmunology, Maimonides Institute for Biomedical Research of Cordoba (IMIBIC) / University of Cordoba, Cordoba, Spain
| | - Vicente Herrero-Aguayo
- V Herrero-Aguayo, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain
| | - Antonio C Fuentes-Fayos
- A Fuentes-Fayos, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain
| | - Sergio Pedraza-Arevalo
- S Pedraza-Arevalo, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain
| | - Justo P Castaño
- J Castaño, Dpt. of Cell Biology-University of Córdoba, IMIBIC-Maimonides Biomedical Research Institute of Cordoba, Cordoba, E-14004, Spain
| | - Raul M Luque
- R Luque, Dept of Cell Biology, Phisiology and Inmunology, Section of Cell Biology, University of Cordoba, Cordoba, Spain, Cordoba, 14014, Spain
| |
Collapse
|
18
|
Passaia BDS, Dias MH, Kremer JL, Antonini SRR, de Almeida MQ, Fragoso MCBV, Lotfi CFP. TCF21/POD-1, a Transcritional Regulator of SF-1/NR5A1, as a Potential Prognosis Marker in Adult and Pediatric Adrenocortical Tumors. Front Endocrinol (Lausanne) 2018; 9:38. [PMID: 29520253 PMCID: PMC5827685 DOI: 10.3389/fendo.2018.00038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
With recent progress in understanding the pathogenesis of adrenocortical tumors (ACTs), identification of molecular markers to predict their prognosis has become possible. Transcription factor 21 (TCF21)/podocyte-expressed 1 (POD1) is a transcriptional regulatory protein expressed in mesenchymal cells at sites of epithelial-mesenchymal transition during the development of different systems. Adult carcinomas express less TCF21 than adenomas, in addition, the KEGG pathway analysis has shown that BUB1B, among others genes, is negatively correlated with TCF21 expression. The difference between BUB1B and PTEN-induced putative kinase 1 (PINK1) expression has been described previously to be associated with survival in adult but not in pediatric carcinomas. Here, we analyzed the gene expression of TCF21, BUB1B, PINK1, and NR5A1 in adult and pediatric ACTs. We found a negative correlation between the relative expression levels of TCF21 and BUB1B in adult ACTs, but the relative expression levels of TCF21, BUB1B, PINK1, and NR5A1 were similar in childhood ACTs. In addition, we propose using the subtracted expression levels of the TCF21/POD-1 genes as a predictor of overall survival (OS) in adult carcinomas and TCF21-NR5A1 as a predictor of malignancy for pediatric tumors in patients aged <5 years. These results require further validation in different cohorts of both adult and pediatric samples. Finally, we observed that the OS for patients aged <5 years was markedly favorable compared with that for patients >5 years as well as adult patients with carcinoma. In summary, we propose TCF21/POD-1 as a new prognostic marker in adult and pediatric ACTs.
Collapse
Affiliation(s)
| | - Matheus Henrique Dias
- Special Laboratory of Applied Toxicology (LETA), Butantan Institute, São Paulo, Brazil
| | - Jean Lucas Kremer
- Department of Anatomy, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Sonir Roberto Rauber Antonini
- Department of Pediatrics and Puericulture, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Madson Queiroz de Almeida
- Adrenal Unit, Hormone and Molecular Genetic Laboratory/LIM42, Hospital of Clinics, School of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Claudimara Ferini Pacicco Lotfi
- Department of Anatomy, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
- *Correspondence: Claudimara Ferini Pacicco Lotfi,
| |
Collapse
|
19
|
França MM, Lerario AM, Fragoso MCBV, Lotfi CFP. New evidences on the regulation of SF-1 expression by POD1/TCF21 in adrenocortical tumor cells. Clinics (Sao Paulo) 2017; 72:391-394. [PMID: 28658440 PMCID: PMC5463254 DOI: 10.6061/clinics/2017(06)10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 02/14/2017] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVES: Transcription Factor 21 represses steroidogenic factor 1, a nuclear receptor required for gonadal development, sex determination and the regulation of adrenogonadal steroidogenesis. The aim of this study was to investigate whether silencing or overexpression of the gene Transcription Factor 21 could modulate the gene and protein expression of steroidogenic factor 1 in adrenocortical tumors. METHODS: We analyzed the gene expression of steroidogenic factor 1 using qPCR after silencing endogenous Transcription Factor 21 in pediatric adrenal adenoma-T7 cells through small interfering RNA. In addition, using overexpression of Transcription Factor 21 in human adrenocortical carcinoma cells, we analyzed the protein expression of steroidogenic factor 1 using Western blotting. RESULTS: Transcription Factor 21 knockdown increased the mRNA expression of steroidogenic factor 1 by 5.97-fold in pediatric adrenal adenoma-T7 cells. Additionally, Transcription Factor 21 overexpression inhibited the protein expression of steroidogenic factor 1 by 0.41-fold and 0.64-fold in two different adult adrenocortical carcinoma cell cultures, H295R and T36, respectively. CONCLUSIONS: Transcription Factor 21 is downregulated in adrenocortical carcinoma cells. Taken together, these findings support the hypothesis that Transcription Factor 21 is a regulator of steroidogenic factor 1 and is a tumor suppressor gene in pediatric and adult adrenocortical tumors.
Collapse
Affiliation(s)
- Monica Malheiros França
- Departamento de Anatomia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Antonio M Lerario
- Laboratorio de Hormonio e Genetica Molecular (LIM-42), Unidade Adrenal, Divisao de Endocrinologia, Faculdade de Medicine, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Maria Candida B V Fragoso
- Laboratorio de Hormonio e Genetica Molecular (LIM-42), Unidade Adrenal, Divisao de Endocrinologia, Faculdade de Medicine, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | | |
Collapse
|
20
|
Abstract
The process of sexual differentiation is central for reproduction of almost all metazoan and therefore for maintenance of practically all multicellular organisms. In sex development we can distinguish two different processes: First, sex determination is the developmental decision that directs the undifferentiated embryo into a sexually dimorphic individual. In mammals, sex determination equals gonadal development. The second process known as sex differentiation takes place once the sex determination decision has been made through factors produced by the gonads that determine the development of the phenotypic sex. Most of the knowledge on the factors involved in sexual development came from animal models and from studies of cases in whom the genetic or the gonadal sex does not match the phenotypical sex, i.e., patients affected by disorders of sex development (DSD). Generally speaking, factors influencing sex determination are transcriptional regulators, whereas factors important for sex differentiation are secreted hormones and their receptors. This review focuses on the factors involved in gonadal determination, and whenever possible, references on the "prismatic" clinical cases are given.
Collapse
Affiliation(s)
- Anna Biason-Lauber
- Department of Medicine, University of Fribourg, Chemin du Musée 5, 1700, Fribourg, Switzerland.
| |
Collapse
|
21
|
Xu X, Sergi C. Pediatric adrenal cortical carcinomas: Histopathological criteria and clinical trials. A systematic review. Contemp Clin Trials 2016; 50:37-44. [PMID: 27424218 DOI: 10.1016/j.cct.2016.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 06/01/2016] [Accepted: 07/10/2016] [Indexed: 12/14/2022]
|
22
|
Basham KJ, Hung HA, Lerario AM, Hammer GD. Mouse models of adrenocortical tumors. Mol Cell Endocrinol 2016; 421:82-97. [PMID: 26678830 PMCID: PMC4720156 DOI: 10.1016/j.mce.2015.11.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 12/17/2022]
Abstract
The molecular basis of the organogenesis, homeostasis, and tumorigenesis of the adrenal cortex has been the subject of intense study for many decades. Specifically, characterization of tumor predisposition syndromes with adrenocortical manifestations and molecular profiling of sporadic adrenocortical tumors have led to the discovery of key molecular pathways that promote pathological adrenal growth. However, given the observational nature of such studies, several important questions regarding the molecular pathogenesis of adrenocortical tumors have remained. This review will summarize naturally occurring and genetically engineered mouse models that have provided novel tools to explore the molecular and cellular underpinnings of adrenocortical tumors. New paradigms of cancer initiation, maintenance, and progression that have emerged from this work will be discussed.
Collapse
Affiliation(s)
- Kaitlin J Basham
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, USA; Endocrine Oncology Program, Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Holly A Hung
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, USA; Endocrine Oncology Program, Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Antonio M Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, USA; Endocrine Oncology Program, Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Gary D Hammer
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, USA; Endocrine Oncology Program, Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
23
|
Leccia F, Batisse-Lignier M, Sahut-Barnola I, Val P, Lefrançois-Martinez AM, Martinez A. Mouse Models Recapitulating Human Adrenocortical Tumors: What Is Lacking? Front Endocrinol (Lausanne) 2016; 7:93. [PMID: 27471492 PMCID: PMC4945639 DOI: 10.3389/fendo.2016.00093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/04/2016] [Indexed: 12/31/2022] Open
Abstract
Adrenal cortex tumors are divided into benign forms, such as primary hyperplasias and adrenocortical adenomas (ACAs), and malignant forms or adrenocortical carcinomas (ACCs). Primary hyperplasias are rare causes of adrenocorticotropin hormone-independent hypercortisolism. ACAs are the most common type of adrenal gland tumors and they are rarely "functional," i.e., producing steroids. When functional, adenomas result in endocrine disorders, such as Cushing's syndrome (hypercortisolism) or Conn's syndrome (hyperaldosteronism). By contrast, ACCs are extremely rare but highly aggressive tumors that may also lead to hypersecreting syndromes. Genetic analyses of patients with sporadic or familial forms of adrenocortical tumors (ACTs) led to the identification of potentially causative genes, most of them being involved in protein kinase A (PKA), Wnt/β-catenin, and P53 signaling pathways. Development of mouse models is a crucial step to firmly establish the functional significance of candidate genes, to dissect mechanisms leading to tumors and endocrine disorders, and in fine to provide in vivo tools for therapeutic screens. In this article, we will provide an overview on the existing mouse models (xenografted and genetically engineered) of ACTs by focusing on the role of PKA and Wnt/β-catenin pathways in this context. We will discuss the advantages and limitations of models that have been developed heretofore and we will point out necessary improvements in the development of next generation mouse models of adrenal diseases.
Collapse
Affiliation(s)
- Felicia Leccia
- UMR6293, GReD, INSERM U1103, CNRS, Clermont Université, Clermont-Ferrand, France
| | - Marie Batisse-Lignier
- UMR6293, GReD, INSERM U1103, CNRS, Clermont Université, Clermont-Ferrand, France
- Endocrinology, Diabetology and Metabolic Diseases Department, Centre Hospitalier Universitaire, School of Medicine, Clermont-Ferrand, France
| | | | - Pierre Val
- UMR6293, GReD, INSERM U1103, CNRS, Clermont Université, Clermont-Ferrand, France
| | | | - Antoine Martinez
- UMR6293, GReD, INSERM U1103, CNRS, Clermont Université, Clermont-Ferrand, France
- *Correspondence: Antoine Martinez,
| |
Collapse
|
24
|
Chen TY, Syu JS, Lin TC, Cheng HL, Lu FL, Wang CY. Chloroquine alleviates etoposide-induced centrosome amplification by inhibiting CDK2 in adrenocortical tumor cells. Oncogenesis 2015; 4:e180. [PMID: 26690546 PMCID: PMC4688395 DOI: 10.1038/oncsis.2015.37] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/25/2015] [Accepted: 10/21/2015] [Indexed: 12/26/2022] Open
Abstract
The antitumor drug etoposide (ETO) is widely used in treating several cancers, including adrenocortical tumor (ACT). However, when used at sublethal doses, tumor cells still survive and are more susceptible to the recurring tumor due to centrosome amplification. Here, we checked the effect of sublethal dose of ETO in ACT cells. Sublethal dose of ETO treatment did not induce cell death but arrested the ACT cells in G2/M phase. This resulted in centrosome amplification and aberrant mitotic spindle formation leading to genomic instability and cellular senescence. Under such conditions, Chk2, cyclin A/CDK2 and ERK1/2 were aberrantly activated. Pharmacological inactivation of Chk2, CDK2 or ERK1/2 or depletion of CDK2 or Chk2 inhibited the centrosome amplification in ETO-treated ACT cells. In addition, autophagy was activated by ETO and was required for ACT cell survival. Chloroquine, the autophagy inhibitor, reduced ACT cell growth and inhibited ETO-induced centrosome amplification. Chloroquine alleviated CDK2 and ERK, but not Chk2, activation and thus inhibited centrosome amplification in either ETO- or hydroxyurea-treated ACT cells. In addition, chloroquine also inhibited centrosome amplification in osteosarcoma U2OS cell lines when treated with ETO or hydroxyurea. In summary, we have demonstrated that chloroquine inhibited ACT cell growth and alleviated DNA damage-induced centrosome amplification by inhibiting CDK2 and ERK activity, thus preventing genomic instability and recurrence of ACT.
Collapse
Affiliation(s)
- T-Y Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - J-S Syu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - T-C Lin
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - H-L Cheng
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - F-L Lu
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.,Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - C-Y Wang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
25
|
Röhrig T, Pihlajoki M, Ziegler R, Cochran RS, Schrade A, Schillebeeckx M, Mitra RD, Heikinheimo M, Wilson DB. Toying with fate: Redirecting the differentiation of adrenocortical progenitor cells into gonadal-like tissue. Mol Cell Endocrinol 2015; 408:165-77. [PMID: 25498963 PMCID: PMC4417465 DOI: 10.1016/j.mce.2014.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/30/2014] [Accepted: 12/01/2014] [Indexed: 01/07/2023]
Abstract
Cell fate decisions are integral to zonation and remodeling of the adrenal cortex. Animal models exhibiting ectopic differentiation of gonadal-like cells in the adrenal cortex can shed light on the molecular mechanisms regulating steroidogenic cell fate. In one such model, prepubertal gonadectomy (GDX) of mice triggers the formation of adrenocortical neoplasms that resemble luteinized ovarian stroma. Transcriptomic analysis and genome-wide DNA methylation mapping have identified genetic and epigenetic markers of GDX-induced adrenocortical neoplasia. Members of the GATA transcription factor family have emerged as key regulators of cell fate in this model. Expression of Gata4 is pivotal for the accumulation of gonadal-like cells in the adrenal glands of gonadectomized mice, whereas expression of Gata6 limits the spontaneous and GDX-induced differentiation of gonadal-like cells in the adrenal cortex. Additionally, Gata6 is essential for proper development of the adrenal X-zone, a layer analogous to the fetal zone of the human adrenal cortex. The relevance of these observations to developmental signaling pathways in the adrenal cortex, to other animal models of altered adrenocortical cell fate, and to human diseases is discussed.
Collapse
Affiliation(s)
- Theresa Röhrig
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Hochschule Mannheim - University of Applied Sciences, Mannheim 68163, Germany
| | - Marjut Pihlajoki
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Helsinki 00290, Finland
| | - Ricarda Ziegler
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Hochschule Mannheim - University of Applied Sciences, Mannheim 68163, Germany
| | - Rebecca S Cochran
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA
| | - Anja Schrade
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Helsinki 00290, Finland
| | - Maximiliaan Schillebeeckx
- Department of Genetics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA
| | - Robi D Mitra
- Department of Genetics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA
| | - Markku Heikinheimo
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Helsinki 00290, Finland
| | - David B Wilson
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA.
| |
Collapse
|
26
|
Abstract
This comparative review highlights animal models of adrenocortical neoplasia useful either for mechanistic studies or translational research. Three model species-mouse, ferret, and dog-are detailed. The relevance of each of these models to spontaneous and inherited adrenocortical tumors in humans is discussed.
Collapse
Affiliation(s)
- Sara Galac
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, Utrecht 3508 TD, The Netherlands
| | - David B Wilson
- Departments of Pediatrics and Developmental Biology, St. Louis Children's Hospital, Washington University, 660 South Euclid Avenue, Box 8208, St Louis, MO 63110, USA.
| |
Collapse
|
27
|
Abstract
Adrenocortical carcinoma (ACC) is rare but one of the most malignant endocrine tumors. This article reviews and summarizes the current knowledge about the treatment of ACC. The epidemiology and molecular events involved in the pathogenesis of ACC are briefly outlined. The different diagnostic tools to distinguish benign from malignant adrenocortical tumors, including biochemical analysis and imaging, are discussed. The surgical treatment of ACC has evolved in the last 2 decades. The different surgical alternatives for the treatment of ACC in the context of primary, recurrent, or metastatic disease are reviewed, and the remaining challenges and controversies are discussed.
Collapse
Affiliation(s)
- Gustavo G Fernandez Ranvier
- Division of Metabolic, Endocrine and Minimally Invasive Surgery, Department of Surgery, Mount Sinai Hospital, Icahn School of Medicine at Mount Sinai, 5 East 98th Street, Box 1259, New York, NY 10029, USA
| | - William B Inabnet
- Department of Surgery, Mount Sinai Beth Israel, Icahn School of Medicine at Mount Sinai, First Ave at 16th St, Baird Hall, 16th Floor, Suite 20, New York, NY 10003, USA.
| |
Collapse
|
28
|
Wanis KN, Kanthan R. Diagnostic and prognostic features in adrenocortical carcinoma: a single institution case series and review of the literature. World J Surg Oncol 2015; 13:117. [PMID: 25889798 PMCID: PMC4384320 DOI: 10.1186/s12957-015-0527-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 02/28/2015] [Indexed: 01/18/2023] Open
Abstract
Background Adrenocortical carcinoma is a rare cancer, with an incidence in the literature of 0.5 to 2 cases per million population per year. Adult adrenocortical carcinoma has a poor prognosis, underscoring the importance of identifying diagnostic and prognostic markers. Methods We searched our laboratory database for all cases in the past 15 years with a diagnosis of adrenocortical carcinoma. The original slides were then reviewed for their histopathological features. A representative paraffin block was subjected to further immunohistochemical staining for Ki-67, inhibin, steroidogenic factor-1 (SF-1), p53, and Β-catenin. These slides were scored by the study pathologist who was blinded to all clinicopathological data. In addition, a comprehensive review of the relevant English literature in the past 15 years was conducted. Results Eight cases were identified, including two adrenal sarcomatoid carcinomas. Seven of the eight cases had a disrupted reticulin network. Six of the eight tumors had >10% Ki-67 expression. Five of the eight tumors had >10% p53 expression. Positive inhibin immunohistochemical staining was seen in three of the eight tumors, and positive SF-1 staining was seen in five of the seven stained tumors. Abnormal Β-catenin intracellular accumulation was noted in four of the eight tumors. The two tumors in our series with sarcomatoid histology did not stain positively for SF-1 or inhibin. Conclusions Eight cases of adrenocortical carcinoma, including two with sarcomatoid features are presented. The two sarcomatoid adrenocortical carcinomas in our series did not stain for SF-1 which suggests a possible de novo pathway of tumorigenesis for this rare variant. The reticulin staining method was a useful tool for rapid differentiation of adrenocortical adenomas and carcinomas. Diffuse p53 staining showed a trend for positive correlation with increased Ki-67 expression. Inhibin staining was inconsistently expressed in our cases of adrenocortical carcinoma. In conclusion, as adrenocortical carcinoma is a rare disease, we recommend future multicenter studies with appropriate sample sizes to further evaluate the efficacy of these diagnostic and prognostic markers.
Collapse
Affiliation(s)
- Kerollos N Wanis
- College of Medicine, University of Saskatchewan, Saskatoon, Canada.
| | - Rani Kanthan
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, Canada. .,Royal University Hospital, Room 2868G-Wing, 103 Hospital Drive, Saskatoon, Saskatchewan, S7N 0W8, Canada.
| |
Collapse
|
29
|
Hu ZY, Tang LD, Zhang HY, Niu JY, Lou M. Clinicopathological significance of steroidogenic factor-1 expression in ovarian cancer versus ovarian sex cord stromal tumor. Tumour Biol 2015; 36:1429-35. [DOI: 10.1007/s13277-014-2187-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 06/03/2014] [Indexed: 11/24/2022] Open
|
30
|
Lalli E, Figueiredo BC. Pediatric adrenocortical tumors: what they can tell us on adrenal development and comparison with adult adrenal tumors. Front Endocrinol (Lausanne) 2015; 6:23. [PMID: 25741319 PMCID: PMC4332354 DOI: 10.3389/fendo.2015.00023] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 02/08/2015] [Indexed: 12/05/2022] Open
Abstract
Adrenocortical tumors (ACT) in children are very rare and are most frequently diagnosed in the context of the Li-Fraumeni syndrome, a multiple cancer syndrome linked to germline mutations of the tumor suppressor gene TP53 with loss of heterozygosity in the tumors. A peak of children ACT incidence is present in the states of southern Brazil, where they are linked to the high prevalence in the population of a specific TP53 mutation (R337H). Children ACT have specific features distinguishing them from adult tumors in their pathogenetic mechanisms, genomic profiles, and prognosis. Epidemiological and molecular evidence suggests that in most cases they are derived from the fetal adrenal.
Collapse
Affiliation(s)
- Enzo Lalli
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS, Valbonne, France
- University of Nice-Sophia-Antipolis, Valbonne, France
- Associated International Laboratory (LIA) NEOGENEX, CNRS, Valbonne, France
- *Correspondence: Enzo Lalli, Institut de Pharmacologie Moléculaire et Cellulaire CNRS, 660 route des Lucioles – Sophia Antipolis, Valbonne 06560, France e-mail: ; Bonald C. Figueiredo, Instituto de Pesquisa Pelé Pequeno Principe, Av. Silva Jardim, 1632, Curitiba, Paraná CEP 80250-060, Brazil e-mail:
| | - Bonald C. Figueiredo
- Associated International Laboratory (LIA) NEOGENEX, CNRS, Valbonne, France
- Federal University of Paraná, Curitiba, Brazil
- Instituto de Pesquisa Pelé Pequeno Principe, Curitiba, Brazil
- *Correspondence: Enzo Lalli, Institut de Pharmacologie Moléculaire et Cellulaire CNRS, 660 route des Lucioles – Sophia Antipolis, Valbonne 06560, France e-mail: ; Bonald C. Figueiredo, Instituto de Pesquisa Pelé Pequeno Principe, Av. Silva Jardim, 1632, Curitiba, Paraná CEP 80250-060, Brazil e-mail:
| |
Collapse
|
31
|
Abstract
Stem cells are endowed with the potential for self-renewal and multipotency. Pluripotent embryonic stem cells have an early role in the formation of the three germ layers (ectoderm, mesoderm and endoderm), whereas adult tissue stem cells and progenitor cells are critical mediators of organ homeostasis. The adrenal cortex is an exceptionally dynamic endocrine organ that is homeostatically maintained by paracrine and endocrine signals throughout postnatal life. In the past decade, much has been learned about the stem and progenitor cells of the adrenal cortex and the multiple roles that these cell populations have in normal development and homeostasis of the adrenal gland and in adrenal diseases. In this Review, we discuss the evidence for the presence of adrenocortical stem cells, as well as the various signalling molecules and transcriptional networks that are critical for the embryological establishment and postnatal maintenance of this vital population of cells. The implications of these pathways and cells in the pathophysiology of disease are also addressed.
Collapse
Affiliation(s)
- Elisabeth M Walczak
- Division of Nephrology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Gary D Hammer
- Center for Organogenesis, Alfred Taubman Biomedical Sciences Research Building, Room 1528, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
| |
Collapse
|
32
|
Pihlajoki M, Dörner J, Cochran RS, Heikinheimo M, Wilson DB. Adrenocortical zonation, renewal, and remodeling. Front Endocrinol (Lausanne) 2015; 6:27. [PMID: 25798129 PMCID: PMC4350438 DOI: 10.3389/fendo.2015.00027] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/16/2015] [Indexed: 12/12/2022] Open
Abstract
The adrenal cortex is divided into concentric zones. In humans the major cortical zones are the zona glomerulosa, zona fasciculata, and zona reticularis. The adrenal cortex is a dynamic organ in which senescent cells are replaced by newly differentiated ones. This constant renewal facilitates organ remodeling in response to physiological demand for steroids. Cortical zones can reversibly expand, contract, or alter their biochemical profiles to accommodate needs. Pools of stem/progenitor cells in the adrenal capsule, subcapsular region, and juxtamedullary region can differentiate to repopulate or expand zones. Some of these pools appear to be activated only during specific developmental windows or in response to extreme physiological demand. Senescent cells can also be replenished through direct lineage conversion; for example, cells in the zona glomerulosa can transform into cells of the zona fasciculata. Adrenocortical cell differentiation, renewal, and function are regulated by a variety of endocrine/paracrine factors including adrenocorticotropin, angiotensin II, insulin-related growth hormones, luteinizing hormone, activin, and inhibin. Additionally, zonation and regeneration of the adrenal cortex are controlled by developmental signaling pathways, such as the sonic hedgehog, delta-like homolog 1, fibroblast growth factor, and WNT/β-catenin pathways. The mechanisms involved in adrenocortical remodeling are complex and redundant so as to fulfill the offsetting goals of organ homeostasis and stress adaptation.
Collapse
Affiliation(s)
- Marjut Pihlajoki
- Helsinki University Central Hospital, Children’s Hospital, University of Helsinki, Helsinki, Finland
| | - Julia Dörner
- Hochschule Mannheim – University of Applied Sciences, Mannheim, Germany
- St. Louis Children’s Hospital, Washington University School of Medicine, St. Louis, MO, USA
| | - Rebecca S. Cochran
- St. Louis Children’s Hospital, Washington University School of Medicine, St. Louis, MO, USA
| | - Markku Heikinheimo
- Helsinki University Central Hospital, Children’s Hospital, University of Helsinki, Helsinki, Finland
- St. Louis Children’s Hospital, Washington University School of Medicine, St. Louis, MO, USA
| | - David B. Wilson
- St. Louis Children’s Hospital, Washington University School of Medicine, St. Louis, MO, USA
- *Correspondence: David B. Wilson, Washington University School of Medicine, Box 8208, 660 South Euclid Avenue, St. Louis, MO 63110, USA e-mail:
| |
Collapse
|
33
|
Galac S, Kool MMJ, van den Berg MF, Mol JA, Kooistra HS. Expression of steroidogenic factor 1 in canine cortisol-secreting adrenocortical tumors and normal adrenals. Domest Anim Endocrinol 2014; 49:1-5. [PMID: 25010021 DOI: 10.1016/j.domaniend.2014.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 04/08/2014] [Accepted: 04/13/2014] [Indexed: 12/13/2022]
Abstract
We report on a screening for the relative messenger RNA (mRNA) and protein expression of steroidogenic factor 1 (SF-1) in normal canine adrenals (n = 10) and cortisol-secreting adrenocortical tumors (11 adenomas and 26 carcinomas). The relative mRNA expression of SF-1 was determined by quantitative real-time polymerase chain reaction analysis and revealed no differences between normal adrenals, adenomas, and carcinomas. Immunohistochemistry demonstrated SF-1 protein expression in a nuclear pattern throughout the normal adrenal cortex and a predominantly nuclear staining pattern in adrenocortical tumors. Of the 15 dogs available for follow up, 7 dogs developed hypercortisolism within 2.5 yr after adrenalectomy, with metastatic disease in 6 dogs and adrenocortical tumor regrowth in 1 dog. The relative SF-1 mRNA expression in dogs with early recurrence was greater (2.46-fold, P = 0.020) than in dogs in remission for at least 2.5 yr after adrenalectomy. In conclusion, we demonstrated the presence of SF-1 expression in normal canine adrenals and adrenocortical tumors. The high SF-1 mRNA expression in carcinomas with early recurrence might indicate its value as a prognostic marker, as well as its potential for therapeutic development.
Collapse
Affiliation(s)
- S Galac
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| | - M M J Kool
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - M F van den Berg
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - J A Mol
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - H S Kooistra
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
34
|
Antonini SR, Leal LF, Cavalcanti MM. Pediatric adrenocortical tumors: diagnosis, management and advancements in the understanding of the genetic basis and therapeutic implications. Expert Rev Endocrinol Metab 2014; 9:445-464. [PMID: 30736208 DOI: 10.1586/17446651.2014.941813] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Adrenocortical tumors (ACTs) may be sporadic or related to inherited genetic syndromes. Uncovering the molecular defects underlying these genetic syndromes has revealed key signaling pathways involved in adrenocortical tumorigenesis. Although the understanding of ACT biology has improved, to date, very few potential prognostic molecular markers of childhood ACTs have been identified. In this review, we summarize the current knowledge of the epidemiology, clinical presentation, diagnosis, prognosis and treatment options for pediatric patients with ACTs. A review of the genetic basis of adrenocortical tumorigenesis is presented, focusing on the main molecular abnormalities involved in the tumorigenic process and potential novel therapy targets that have been generated, or are being generated, with the discovery of these molecular defects.
Collapse
Affiliation(s)
| | - Letícia F Leal
- a Department of Pediatrics, Ribeirao Preto Medical-School - University of Sao Paulo, Sao Paulo, Brazil
| | - Marcelo M Cavalcanti
- a Department of Pediatrics, Ribeirao Preto Medical-School - University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
35
|
Papotti M, Duregon E, Volante M, McNicol AM. Pathology of the adrenal cortex: a reappraisal of the past 25 years focusing on adrenal cortical tumors. Endocr Pathol 2014; 25:35-48. [PMID: 24382573 DOI: 10.1007/s12022-013-9291-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A reappraisal of the major advances in the diagnostic pathology of adrenal cortical lesions and tumors in the last 25 years is presented, with special reference to the definition of malignancy in primary adrenal cancer and its variants. Slightly more than 25 years ago, Weiss proposed his diagnostic scoring system for adrenal cortical carcinoma. This represented a milestone for adrenal pathologists and the starting point for further modifications of the system, either through minor changes in the scoring procedure itself or concentrating on some particular Weiss criterion such as mitotic index, integrated into alternative scoring schemes or algorithms that are currently under validation. Improvements in diagnostic immunohistochemistry have led to the identification of markers of cortical origin, such as Melan-A, alpha-inhibin, and SF-1 and of prognostic factors in carcinoma, such as the Ki-67 proliferation index and SF-1 itself. With regard to hyperplastic conditions, genetic investigations have allowed the association of the majority of cases of primary pigmented nodular adrenocortical disease (PPNAD) in Carney complex to mutations in the gene encoding the regulatory subunit 1A of protein kinase A (PRKAR1A). Other hereditary conditions are also associated with adrenal cortical tumors, including the Li-Fraumeni, Beckwith-Wiedemann, Gardner, multiple endocrine neoplasia type 1, and neurofibromatosis type 1 syndromes. Moreover, several advances have been made in the knowledge of the molecular background of sporadic tumors, and a number of molecules/genes are of particular interest as potential diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Mauro Papotti
- Department of Oncology, University of Turin at San Luigi Hospital, Regione Gonzole 10, 10043, Orbassano, Torino, Italy
| | | | | | | |
Collapse
|
36
|
Xu Y, Qi Y, Zhu Y, Ning G, Huang Y. Molecular markers and targeted therapies for adrenocortical carcinoma. Clin Endocrinol (Oxf) 2014; 80:159-68. [PMID: 24304415 DOI: 10.1111/cen.12358] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/13/2013] [Accepted: 10/28/2013] [Indexed: 12/19/2022]
Abstract
Adrenocortical carcinoma (ACC) is a lethal disease with poor prognosis and lack of effective therapeutic options. Systemic treatment is often employed to treat patients with advanced ACC, but outcomes are disappointing. During the last decade, some of the causative genetic mutations in sporadic ACCs have been identified. Molecular analysis has had a significant impact on the understanding of the pathogenetic mechanism of ACC development and the evaluation of prognostic and predictive markers. Preclinical investigations and clinical trials of tyrosine kinase inhibitors and anti-angiogenic compounds have been initiated to seek target therapy of ACCs. This review summarizes the current view of molecular alterations involved in the pathophysiology of adrenocortical carcinogenesis. The rationale for testing targeted therapies of ACC is also presented.
Collapse
Affiliation(s)
- Yunze Xu
- Department of Urology, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China; Department of Urology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | |
Collapse
|
37
|
Lalli E, Doghman M, Latre de Late P, El Wakil A, Mus-Veteau I. Beyond steroidogenesis: novel target genes for SF-1 discovered by genomics. Mol Cell Endocrinol 2013; 371:154-9. [PMID: 23168267 DOI: 10.1016/j.mce.2012.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 11/07/2012] [Accepted: 11/07/2012] [Indexed: 02/06/2023]
Abstract
Steroidogenic Factor-1 (SF-1) is a nuclear receptor transcription factor that has an essential role in the development of adrenal glands and gonads and in the regulation of steroidogenic gene expression. Recent studies using genomic approaches have revealed that SF-1 also has an important role in regulating proliferation of adrenocortical cells and have revealed its role in the control of a variety of biological processes as diverse as angiogenesis, adhesion to the extracellular matrix, cytoskeleton dynamics, transcriptional and post-transcriptional regulation of gene expression and apoptosis in the adrenal cortex. The identification of the complete set of SF-1 target genes will be of great importance to open new avenues for therapeutic intervention in adrenal diseases.
Collapse
Affiliation(s)
- Enzo Lalli
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, UMR 7275, Valbonne, France.
| | | | | | | | | |
Collapse
|
38
|
Hoivik EA, Bjanesoy TE, Bakke M. Epigenetic regulation of the gene encoding steroidogenic factor-1. Mol Cell Endocrinol 2013; 371:133-9. [PMID: 23313548 DOI: 10.1016/j.mce.2012.12.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 12/27/2012] [Accepted: 12/28/2012] [Indexed: 12/21/2022]
Abstract
The nuclear receptor steroidogenic factor 1 (SF-1) is expressed in a precise time and cell-specific pattern in the endocrine system. Three intronic enhancers and one upstream enhancer, which are required for controlling the restricted expression of SF-1, have been identified in the mouse gene encoding SF-1. In recent years, efforts from several laboratories have established that expression of SF-1 is controlled by DNA methylation. CpG-sites are found in the basal promoter as well as in the intronic enhancers, and the methylation status of these genomic regions nearly perfectly correlates with their transcriptional activity such that they are hypomethylated in tissues where they are active, and generally hypermethylated in tissues where they are not active. This review summarizes the present knowledge of how tissue differentially methylated regions control the transcriptional activity of the SF-1 gene, and how irregularities in the methylation pattern can contribute to disease development.
Collapse
Affiliation(s)
- Erling A Hoivik
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | | |
Collapse
|
39
|
Wang CY, Chen WY, Lai PY, Chung BC. Distinct functions of steroidogenic factor-1 (NR5A1) in the nucleus and the centrosome. Mol Cell Endocrinol 2013; 371:148-53. [PMID: 23219870 DOI: 10.1016/j.mce.2012.11.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/24/2012] [Accepted: 11/26/2012] [Indexed: 10/27/2022]
Abstract
Steroidogenic Factor 1 (SF-1, Ad4bp, NR5A1) is a nuclear receptor expressed mainly in the adrenals and gonads. It activates the transcription of genes in steroidogenesis, reproduction, and energy metabolism. In addition, it also regulates the growth and differentiation of adrenogonadal primodial cells. SF-1 resides in the nucleus and the centrosome. SF-1 moves dynamically in the nucleus, and SF-1 location and activity are dynamically regulated by post-translational modifications. In the centrosome, SF-1 maintains genomic integrity by controlling centrosome homeostasis. SF-1 prevents centrosome amplification by restricting aberrant activation of centrosomal DNA-PK. Upon SF-1 removal, DNA-PK is activated and centrosomes are amplified. This leads to genomic instability and cell growth defects. These data indicate that SF-1 at both the nucleus and the centrosome contributes to cell growth control, but the mechanisms of SF-1 action in different locations are different.
Collapse
Affiliation(s)
- Chia-Yih Wang
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | | | | | | |
Collapse
|
40
|
França MM, Ferraz-de-Souza B, Santos MG, Lerario AM, Fragoso MCBV, Latronico AC, Kuick RD, Hammer GD, Lotfi CF. POD-1 binding to the E-box sequence inhibits SF-1 and StAR expression in human adrenocortical tumor cells. Mol Cell Endocrinol 2013; 371:140-7. [PMID: 23313103 PMCID: PMC5749231 DOI: 10.1016/j.mce.2012.12.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 12/21/2012] [Accepted: 12/28/2012] [Indexed: 11/29/2022]
Abstract
Pod-1/Tcf21 is expressed at epithelial-mesenchymal interaction sites during development of many organs. Different approaches have demonstrated that Pod-1 transcriptionally inhibits Sf-1/NR5A1 during gonadal development. Disruption of Sf-1 can lead to disorders of adrenal development, while increased dosage of SF-1 has been related to increased adrenal cell proliferation and tumorigenesis. In this study, we analyzed whether POD-1 overexpression inhibits the endogenous Sf-1 expression in human and mouse adrenocortical tumor cells. Cells were transiently transfected with luciferase reporter gene under the control of Sf-1 promoter and with an expression vector encoding Pod-1. Pod-1 construct inhibited the transcription of the Sf1/Luc reporter gene in a dose-dependent manner in mouse Y-1 adrenocortical carcinoma (ACC) cells, and inhibited endogenous SF-1 expression in the human H295R and ACC-T36 adrenocortical carcinoma cells. These results were validated by chromatin immunoprecipitation assay with POD-1-transfected H295R cells using primers specific to E-box sequence in SF-1 promoter region, indicating that POD-1 binds to the SF-1 E-box promoter. Moreover, POD-1 over-expression resulted in a decrease in expression of the SF-1 target gene, StAR (Steroidogenic Acute Regulatory Protein). Lastly, while the induced expression of POD-1 did not affect the cell viability of H295R/POD-1 or ACC-T36/POD-1 cells, the most significantly enriched KEGG pathways for genes negatively correlated to POD-1/TCF21 in 33 human ACCs were those associated with cell cycle genes.
Collapse
Affiliation(s)
- Monica Malheiros França
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, SP, Brazil
| | - Bruno Ferraz-de-Souza
- Laboratory of Carbohydrates and Radioimmunoassays (LIM-18), School of Medicine, University of São Paulo, São Paulo 01246-903, SP, Brazil
| | - Mariza Gerdulo Santos
- Laboratory of Hormones and Molecular Genetics (LIM-42), Division of Endocrinology, School of Medicine, University of São Paulo, São Paulo 01246-903, SP, Brazil
| | - Antonio Marcondes Lerario
- Laboratory of Hormones and Molecular Genetics (LIM-42), Division of Endocrinology, School of Medicine, University of São Paulo, São Paulo 01246-903, SP, Brazil
| | - Maria Candida Barisson Villares Fragoso
- Laboratory of Hormones and Molecular Genetics (LIM-42), Division of Endocrinology, School of Medicine, University of São Paulo, São Paulo 01246-903, SP, Brazil
| | - Ana Claudia Latronico
- Laboratory of Hormones and Molecular Genetics (LIM-42), Division of Endocrinology, School of Medicine, University of São Paulo, São Paulo 01246-903, SP, Brazil
| | - Rork D. Kuick
- Biostatistics Core of the Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Gary D. Hammer
- Department of Internal Medicine, Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Claudimara F.P. Lotfi
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, SP, Brazil
- Corresponding author. Tel.: +55 11 3091 7492; fax: +55 11 3091 7366. (C.F.P. Lotfi)
| |
Collapse
|
41
|
Grisa L, Leonel ML, Gonçalves MIR, Pletsch F, Sade ER, Custódio G, Zagonel IPS, Longui CA, Figueiredo BC. Impact of early postnatal androgen exposure on voice development. PLoS One 2013; 7:e50242. [PMID: 23284635 PMCID: PMC3526601 DOI: 10.1371/journal.pone.0050242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 10/22/2012] [Indexed: 11/19/2022] Open
Abstract
Background The impact of early postnatal androgen exposure on female laryngeal tissue may depend on certain characteristics of this exposure. We assessed the impact of the dose, duration, and timing of early androgen exposure on the vocal development of female subjects who had been treated for adrenocortical tumor (ACT) in childhood. Methods The long-term effects of androgen exposure on the fundamental vocal frequency (F0), vocal pitch, and final height and the presence of virilizing signs were examined in 9 adult (age, 18.4 to 33.5 years) and 10 adolescent (13.6 to 17.8 years) female ACT patients. We also compared the current values with values obtained 0.9 years to 7.4 years after these subjects had undergone ACT surgery, a period during which they had shown normal androgen levels. Results Of the 19 subjects, 17 (89%) had been diagnosed with ACT before 4 years of age, 1 (5%) at 8.16 years, and 1 (5%) at 10.75 years. Androgen exposure (2 to 30 months) was sufficiently strong to cause pubic hair growth in all subjects and clitoromegaly in 74% (14/19) of the subjects, but did not reduce their height from the target value. Although androgen exposure induced a remarkable reduction in F0 (132 Hz) and moderate pitch virilization in 1 subject and partial F0 virilization, resulting in F0 of 165 and 169 Hz, in 2 subjects, the majority had normal F0 ranging from 189 to 245 Hz. Conclusions Female laryngeal tissue is less sensitive to androgen exposure between birth and adrenarche than during other periods. Differential larynx sensitivity to androgen exposure in childhood and F0 irreversibility in adulthood are age-, concentration-, duration-, and timing-dependent events that may also be affected by exposure to inhibitory or stimulatory hormones. Further studies are required to better characterize each of these factors.
Collapse
Affiliation(s)
- Leila Grisa
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, Brazil
- Hospital Pequeno Príncipe, Curitiba, Paraná, Brazil
- Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil
| | | | - Maria I. R. Gonçalves
- Departamento de Fonoaudiologia da Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | | | - Elis R. Sade
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, Brazil
- Hospital Pequeno Príncipe, Curitiba, Paraná, Brazil
| | - Gislaine Custódio
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, Brazil
| | - Ivete P. S. Zagonel
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, Brazil
- Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil
| | - Carlos A. Longui
- Irmandade da Santa Casa de Misericórdia de São Paulo, São Paulo, São Paulo, Brazil
| | - Bonald C. Figueiredo
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, Brazil
- Hospital Pequeno Príncipe, Curitiba, Paraná, Brazil
- Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil
- Departmento de Saúde Comunitária, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
- * E-mail:
| |
Collapse
|
42
|
Fonseca AL, Healy J, Kunstman JW, Korah R, Carling T. Gene expression and regulation in adrenocortical tumorigenesis. BIOLOGY 2012; 2:26-39. [PMID: 24832650 PMCID: PMC4009874 DOI: 10.3390/biology2010026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/01/2012] [Accepted: 12/14/2012] [Indexed: 11/21/2022]
Abstract
Adrenocortical tumors are frequently found in the general population, and may be benign adrenocortical adenomas or malignant adrenocortical carcinomas. Unfortunately the clinical, biochemical and histopathological distinction between benign and malignant adrenocortical tumors may be difficult in the absence of widely invasive or metastatic disease, and hence attention has turned towards a search for molecular markers. The study of rare genetic diseases that are associated with the development of adrenocortical carcinomas has contributed to our understanding of adrenocortical tumorigenesis. In addition, comprehensive genomic hybridization, methylation profiling, and genome wide mRNA and miRNA profiling have led to improvements in our understanding, as well as demonstrated several genes and pathways that may serve as diagnostic or prognostic markers.
Collapse
Affiliation(s)
- Annabelle L Fonseca
- Department of Surgery, Yale Endocrine Neoplasia Laboratory, Yale University School of Medicine, 333 Cedar Street, TMP202 Box 208062, New Haven, CT 06520, USA.
| | - James Healy
- Department of Surgery, Yale Endocrine Neoplasia Laboratory, Yale University School of Medicine, 333 Cedar Street, TMP202 Box 208062, New Haven, CT 06520, USA.
| | - John W Kunstman
- Department of Surgery, Yale Endocrine Neoplasia Laboratory, Yale University School of Medicine, 333 Cedar Street, TMP202 Box 208062, New Haven, CT 06520, USA.
| | - Reju Korah
- Yale Endocrine Neoplasia Laboratory, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Tobias Carling
- Department of Surgery, Yale Endocrine Neoplasia Laboratory, Yale University School of Medicine, 333 Cedar Street, TMP202 Box 208062, New Haven, CT 06520, USA.
| |
Collapse
|
43
|
Lebastchi AH, Kunstman JW, Carling T. Adrenocortical Carcinoma: Current Therapeutic State-of-the-Art. JOURNAL OF ONCOLOGY 2012; 2012:234726. [PMID: 23125857 PMCID: PMC3483813 DOI: 10.1155/2012/234726] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 08/13/2012] [Accepted: 08/27/2012] [Indexed: 12/24/2022]
Abstract
Adrenocortical carcinoma (ACC) is a rare, aggressive malignancy that generally conveys a poor prognosis. Currently, surgical resection is considered the lone curative treatment modality. In addition, the low prevalence of ACC has limited effective clinical trial design to develop evidence-based approaches to ACC therapy. The proper role of radio- and chemotherapy treatment for ACC is still being defined. Similarly, the molecular pathogenesis of ACC remains to be fully characterized. Despite these challenges, progress has been made in several areas. After years of refinement, an internationally accepted staging system has been defined. International collaborations have facilitated increasingly robust clinical trials, especially regarding agent choice and patient selection for chemotherapeutics. Genetic array data and molecular profiling have identified new potential targets for rational drug design as well as potential tumor markers and predictors of therapeutic response. However, these advances have not yet been translated into a large outcomes benefit for ACC patients. In this paper, we summarize established therapy for ACC and highlight recent findings in the field that are impacting clinical practice.
Collapse
Affiliation(s)
- Amir H. Lebastchi
- Department of Surgery, Yale Endocrine Neoplasia Laboratory, Yale School of Medicine, 333 Cedar Street, TMP202, Box 208062, New Haven, CT 06520, USA
| | - John W. Kunstman
- Department of Surgery, Yale Endocrine Neoplasia Laboratory, Yale School of Medicine, 333 Cedar Street, TMP202, Box 208062, New Haven, CT 06520, USA
| | - Tobias Carling
- Department of Surgery, Yale Endocrine Neoplasia Laboratory, Yale School of Medicine, 333 Cedar Street, TMP202, Box 208062, New Haven, CT 06520, USA
| |
Collapse
|
44
|
Abstract
Steroidogenic factor-1 (SF-1) (Ad4BP, NR5A1) is a nuclear receptor that plays a key role in adrenal and reproductive development and function. Deletion of the gene encoding Sf-1 (Nr5a1) in mice results in severe developmental defects of the adrenal gland and gonad. Consequently, initial work on the potential effects of SF-1 disruption in humans focused on individuals with primary adrenal failure, a 46,XY karyotype, complete gonadal dysgenesis, and Müllerian structures. This is a rare phenotype, but has been reported on two occasions, because of alterations that affect key DNA-binding domains of SF-1. Attention then turned to a potential wider role of SF-1 in human adrenal and reproductive disorders. Although changes in SF-1 only very rarely cause isolated adrenal failure, it is emerging that variations in SF-1 are a surprisingly frequent cause of reproductive dysfunction in humans. In 46,XY disorders of sex development, a spectrum of phenotypes has been reported including severe and partial forms of gonadal (testicular) dysgenesis, hypospadias, anorchia with microphallus, and even male factor infertility. In 46,XX females, alterations in SF-1 are associated with primary ovarian insufficiency. Thus, SF-1 seems be a more significant factor in human reproductive health than was first envisioned, with implications for adults as well as children.
Collapse
Affiliation(s)
- Ranna El-Khairi
- Developmental Endocrinology Research Group, Clinical and Molecular Genetics Unit, UCL Institute of Child Health, University College London, London, United Kingdom
| | - John C. Achermann
- Developmental Endocrinology Research Group, Clinical and Molecular Genetics Unit, UCL Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
45
|
Ehrlund A, Treuter E. Ligand-independent actions of the orphan receptors/corepressors DAX-1 and SHP in metabolism, reproduction and disease. J Steroid Biochem Mol Biol 2012; 130:169-79. [PMID: 21550402 DOI: 10.1016/j.jsbmb.2011.04.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 03/11/2011] [Accepted: 04/21/2011] [Indexed: 12/11/2022]
Abstract
DAX-1 and SHP are two closely related atypical orphan members of the nuclear receptor (NR) family that make up the NR0B subfamily. They combine properties of typical NRs and of NR-associated coregulators: both carry the characteristic NR ligand-binding domain but instead of a NR DNA-binding domain they have unique N-terminal regions that contain LxxLL-related NR-binding motifs often found in coregulators. Recent structural data indicate that DAX-1 lacks a ligand-binding pocket and thus should rely on ligand-independent mechanisms of regulation. This might be true, but remains to be proven, for SHP as well. DAX-1 and SHP have in common that they act as transcriptional corepressors of cholesterol metabolism pathways that are related on a molecular level. However, the expression patterns of the two NRs are largely different, with some notable exceptions, and so are the physiological processes they regulate. DAX-1 is mainly involved in steroidogenesis and reproductive development, while SHP plays major roles in maintaining cholesterol and glucose homeostasis. This review highlights the key similarities and differences between DAX-1 and SHP with regard to structure, function and biology and considers what can be learnt from recent research advances in the field. This article is part of a Special Issue entitled 'Orphan Receptors'.
Collapse
Affiliation(s)
- Anna Ehrlund
- Center for Biosciences, Department of Biosciences and Nutrition, Karolinska Institutet, S-14183 Huddinge/Stockholm, Sweden
| | | |
Collapse
|
46
|
Letouzé E, Rosati R, Komechen H, Doghman M, Marisa L, Flück C, de Krijger RR, van Noesel MM, Mas JC, Pianovski MAD, Zambetti GP, Figueiredo BC, Lalli E. SNP array profiling of childhood adrenocortical tumors reveals distinct pathways of tumorigenesis and highlights candidate driver genes. J Clin Endocrinol Metab 2012; 97:E1284-93. [PMID: 22539591 DOI: 10.1210/jc.2012-1184] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
CONTEXT Childhood adrenocortical tumors (ACT) are rare malignancies, except in southern Brazil, where a higher incidence rate is associated to a high frequency of the founder R337H TP53 mutation. To date, copy number alterations in these tumors have only been analyzed by low-resolution comparative genomic hybridization. OBJECTIVE We analyzed an international series of 25 childhood ACT using high-resolution single nucleotide polymorphism arrays to: 1) detect focal copy number alterations highlighting candidate driver genes; and 2) compare genetic alterations between Brazilian patients carrying the R337H TP53 mutation and non-Brazilian patients. RESULTS We identified 16 significantly recurrent chromosomal alterations (q-value < 0.05), the most frequent being -4q34, +9q33-q34, +19p, loss of heterozygosity (LOH) of chromosome 17 and 11p15. Focal amplifications and homozygous deletions comprising well-known oncogenes (MYC, MDM2, PDGFRA, KIT, MCL1, BCL2L1) and tumor suppressors (TP53, RB1, RPH3AL) were identified. In addition, eight focal deletions were detected at 4q34, defining a sharp peak region around the noncoding RNA LINC00290 gene. Although non-Brazilian tumors with a mutated TP53 were similar to Brazilian tumors, those with a wild-type TP53 displayed distinct genomic profiles, with significantly fewer rearrangements (P = 0.019). In particular, three alterations (LOH of chromosome 17, +9q33-q34, and -4q34) were significantly more frequent in TP53-mutated samples. Finally, two of four TP53 wild-type tumors displayed as sole rearrangement a copy-neutral LOH of the imprinted region at 11p15, supporting a major role for this region in ACT development. CONCLUSIONS Our findings highlight potential driver genes and cellular pathways implicated in childhood ACT and demonstrate the existence of different oncogenic routes in this pathology.
Collapse
Affiliation(s)
- Eric Letouzé
- Program Cartes d'Identité des Tumeurs, Ligue Nationale Contre Le Cancer, 14 rue Corvisart, 75013 Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Faria AM, Almeida MQ. Differences in the molecular mechanisms of adrenocortical tumorigenesis between children and adults. Mol Cell Endocrinol 2012; 351:52-7. [PMID: 22019901 DOI: 10.1016/j.mce.2011.09.040] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Revised: 09/22/2011] [Accepted: 09/27/2011] [Indexed: 10/16/2022]
Abstract
Adrenocortical carcinoma (ACC) is a rare malignancy with poor prognosis. The incidence of pediatric adrenocortical tumors (ACT) is remarkably high in Southern Brazil, where it is estimated to be 15 times greater than the world occurrence, due to a high frequency of a germline mutation (p.R337H) of the TP53 gene. Differently from adults, pediatric adrenocortical neoplasms with apparently poor prognosis based on histopathological features have often a good clinical outcome. A high Weiss score is definitely not a good predictor of survival in children, but it is much more discriminative of a poor outcome in adult tumors. Besides important differences in prognosis, adrenocortical tumorigenesis has distinct patterns between children and adults. In this review, we summarize recent data from ours and other Institutions, showing that the prognostic importance of molecular markers is striking different between pediatric and adult ACT. Although the majority of pediatric ACT are associated with p.R337H germline mutation, it is not a predictor of poor outcome in children and adolescents with ACT. On the other side, TP53 somatic mutations define a subgroup of adult ACC with different tumorigenesis and unfavorable prognosis. IGF system has a central role in the malignant phenotype of ACT, but in adult tumors it is mediated by IGF2 over-expression and in pediatric tumors by IGF1R over-expression. Finally, SF1 over-expression is associated with decreased overall survival and recurrence-free survival in adult ACC, but not in the pediatric group. In conclusion, discriminating benign and malignant behavior is more challenging in pediatric ACT than in adult tumors.
Collapse
Affiliation(s)
- André M Faria
- Unidade de Suprarrenal e Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM-42, Hospital das Clínicas e, Brazil
| | | |
Collapse
|
48
|
Custódio G, Komechen H, Figueiredo FRO, Fachin ND, Pianovski MAD, Figueiredo BC. Molecular epidemiology of adrenocortical tumors in southern Brazil. Mol Cell Endocrinol 2012; 351:44-51. [PMID: 22056871 DOI: 10.1016/j.mce.2011.10.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 10/17/2011] [Accepted: 10/17/2011] [Indexed: 11/23/2022]
Abstract
The high frequency of TP53 R337H carriers in southern Brazil is responsible for the highest known incidence of childhood adrenocortical tumor (ACT). Our aims were to examine other contributing mutations, age-related risk factors, epidemiological differences in ACT and to shed light on a method for increasing the survival rate of children. The fetal zone of the adrenal cortex is believed to be one of the tissues most susceptible to adenoma or carcinoma formation due to loss of p53 function. The founder germline R337H mutation is found in 95% of ACTs of young children, a much greater proportion than in adults. Despite intense educational campaigns about the high incidence of ACT in Paraná State, advanced cases remain common. Four advanced ACT cases (4/5) were admitted to a single institution in the first 6months of 2011 in Paraná State, none of the families knew about ACT, and 2 reported no familial cancer syndrome. Curative resection is possible when a small ACT is detected early.
Collapse
Affiliation(s)
- Gislaine Custódio
- Pelé Pequeno Príncipe Research Institute, Av. Silva Jardim, 1632, Água Verde, Curitiba, Paraná, Brazil
| | | | | | | | | | | |
Collapse
|
49
|
Gardiner JR, Shima Y, Morohashi KI, Swain A. SF-1 expression during adrenal development and tumourigenesis. Mol Cell Endocrinol 2012; 351:12-8. [PMID: 22024498 DOI: 10.1016/j.mce.2011.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 10/05/2011] [Accepted: 10/07/2011] [Indexed: 02/01/2023]
Abstract
SF-1 is a master regulator of steroidogenesis whose expression is critical for normal adrenal and gonadal organogenesis. Strict maintenance of SF-1 levels is essential, and mutations causing under- or overexpression result in congenital adrenal and gonadal defects or hyperplasia, respectively. Data from transgenic mouse models points to a network of transcription factors responsible for stringent regulation of Sf-1 expression during development, which bind to intronic enhancer elements in addition to the basal promoter to specifically modulate transcription in each Sf-1-expressing tissue. Furthermore, analysis of the role of SF-1 in adrenal tumourigenesis implies that improper developmental regulation of Sf-1 expression may have postnatal consequences separate from the well-documented developmental defects.
Collapse
|
50
|
Beuschlein F, Galac S, Wilson DB. Animal models of adrenocortical tumorigenesis. Mol Cell Endocrinol 2012; 351:78-86. [PMID: 22100615 PMCID: PMC3288624 DOI: 10.1016/j.mce.2011.09.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 09/25/2011] [Accepted: 09/26/2011] [Indexed: 12/16/2022]
Abstract
Over the past decade, research on human adrenocortical neoplasia has been dominated by gene expression profiling of tumor specimens and by analysis of genetic disorders associated with a predisposition to these tumors. Although these studies have identified key genes and associated signaling pathways that are dysregulated in adrenocortical neoplasms, the molecular events accounting for the frequent occurrence of benign tumors and low rate of malignant transformation remain unknown. Moreover, the prognosis for patients with adrenocortical carcinoma remains poor, so new medical treatments are needed. Naturally occurring and genetically engineered animal models afford a means to investigate adrenocortical tumorigenesis and to develop novel therapeutics. This comparative review highlights adrenocortical tumor models useful for either mechanistic studies or preclinical testing. Three model species - mouse, ferret, and dog - are reviewed, and their relevance to adrenocortical tumors in humans is discussed.
Collapse
Affiliation(s)
- Felix Beuschlein
- Endocrine Research Unit, Medizinische Klinik Campus Innenstadt, Klinikum der LMU, Ziemssenstr. 1, D-80336 Munich, Germany
| | - Sara Galac
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - David B. Wilson
- Departments of Pediatrics and Developmental Biology, Washington University and St. Louis Children's Hospital, St. Louis, MO 63110 USA
| |
Collapse
|