1
|
Mollace R, Longo S, Nardin M, Tavernese A, Musolino V, Cardamone A, Federici M. Role of MASLD in CVD: A review of emerging treatment options. Diabetes Res Clin Pract 2024; 217:111891. [PMID: 39414088 DOI: 10.1016/j.diabres.2024.111891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/03/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), represents a growing health concern due to its strong association with metabolic syndrome, obesity, and type 2 diabetes mellitus (T2DM). This condition, characterized by excessive fat accumulation in the liver not attributed to alcohol consumption, has emerged as a leading cause of chronic liver disease globally. MASLD significantly elevates the risk of major adverse cardiovascular events (MACE) through mechanisms like increased oxidative stress, insulin resistance, and chronic inflammation, all of which contribute to the development of atherosclerosis and endothelial dysfunction. Effective management of MASLD is crucial not only for liver health but also for cardiovascular disease (CVD) prevention. Lifestyle modifications, particularly weight loss achieved through dietary changes and increased physical activity, are the cornerstone of MASLD treatment. Additionally, pharmacological interventions, especially antihyperglycemic agents, play a pivotal role in treating MASLD in patients with T2DM. Novel therapeutic agents targeting various pathways of metabolic and liver dysfunction are under investigation, offering hope for more effective management strategies. This review explores the interconnectedness of MASLD and CVD, highlighting current and emerging therapeutic approaches.
Collapse
Affiliation(s)
- Rocco Mollace
- Department of Experimental Medicine, Tor Vergata University, 00133 Rome, Italy; Cardiology Unit, Humanitas Gavazzeni, 24125 Bergamo, Italy
| | - Susanna Longo
- Center for Atherosclerosis and Internal Medicine Unit, Policlinico Tor Vergata University Hospital, Via Oxford 81, Rome 00133, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Matteo Nardin
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy; Internal Medicine, Department of Medicine, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Annamaria Tavernese
- Cardiovascular Imaging Unit, Cardio-Thoracic-Vascular Department IRCCS San Raffaele Scientific Institute Milan Italy, Italy
| | - Vincenzo Musolino
- IRC-FSH Center, Department of Health Sciences, University "Magna Græcia" of Catanzaro, Germaneto, 88100 Catanzaro, Italy
| | - Antonio Cardamone
- IRC-FSH Center, Department of Health Sciences, University "Magna Græcia" of Catanzaro, Germaneto, 88100 Catanzaro, Italy
| | - Massimo Federici
- Center for Atherosclerosis and Internal Medicine Unit, Policlinico Tor Vergata University Hospital, Via Oxford 81, Rome 00133, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy.
| |
Collapse
|
2
|
Wang L, Ren Y, Xu T, Geng J, Yang N, Wang R. Triglycerides: A Sensitizer but Not a Trigger for Hypertriglyceridemic Acute Pancreatitis. Dig Dis Sci 2024; 69:2123-2131. [PMID: 38609542 DOI: 10.1007/s10620-024-08412-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 03/25/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND The incidence of hypertriglyceridemic acute pancreatitis (HTG-AP) is increasing. Although the guideline defines the diagnostic criteria as triglyceride (TG) greater than 11.3 mmol/L, there is actually no specific threshold. Many people with hypertriglyceridemia (HTG) or obvious chyloid blood do not develop acute pancreatitis (AP). AIMS To explore the role of HTG in the pathogenesis of AP. METHODS Thirty-six male SD rats were randomly assigned into normal control, AP, HTG, HTG-AP, low-dose fenofibrate and high-dose fenofibrate groups. Serum indices and cytokine levels in serum, and pathological changes in pancreatic tissues were observed. The expression levels of TLR4 and NF-κBp65 in pancreatic tissues were detected by immunohistochemistry and Western blot. RESULTS In normal rats, HTG alone did not induce AP. However, after establishing the HTG-AP model with Poloxam 407 and L-arginine, serum-free fatty acid and TG levels were positively correlated with the levels of lipase, amylase, IL-1β, IL-6, pancreatic inflammation scores, and the expressions of TLR4 and NF-κBp65 (all P < 0.001). Expressions of TLR4 and NF-κBp65 were significantly increased in the pancreatic tissues of HTG-AP rats. Fenofibrate effectively decreased TG levels in HTG-AP rats and reduced the expression of TLR4 and NF-κBp65 (all P < 0.001). CONCLUSIONS HTG does not directly cause AP, but rather increases the susceptibility to AP or aggravates the inflammatory response. It is more like a sensitizer of inflammation rather than an activator.
Collapse
Affiliation(s)
- Lu Wang
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, P. R. China
| | - Yutang Ren
- Department of Gastroenterology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, No. 168 Litang Road, Beijing, 102218, P. R. China
| | - Ting Xu
- Department of Gastroenterology, Daqing Oilfield Central Hospital, No. 9 Zhongkang Road, Daqing, 163000, Heilongjiang, P. R. China
| | - Jinting Geng
- Gastrointestinal Interal Medicine and Digestive Endoscopy Center, Second Affiliated Hospital, Jilin University, No. 4026 Yatai Street, Changchun, 130000, Jilin, P. R. China
| | - Ning Yang
- Department of Gastroenterology, Heilongjiang Provincial Hospital, 82 Zhongshan Road, Harbin, 150000, Heilongjiang, P. R. China
| | - Ruifeng Wang
- Department of Gastroenterology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, No. 168 Litang Road, Beijing, 102218, P. R. China.
| |
Collapse
|
3
|
Cooreman MP, Vonghia L, Francque SM. MASLD/MASH and type 2 diabetes: Two sides of the same coin? From single PPAR to pan-PPAR agonists. Diabetes Res Clin Pract 2024; 212:111688. [PMID: 38697298 DOI: 10.1016/j.diabres.2024.111688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 05/04/2024]
Abstract
Type 2 diabetes (T2D) and metabolic dysfunction-associated steatotic liver disease (MASLD), mainly related to nutrition and lack of physical activity, are both very common conditions, share several disease pathways and clinical manifestations, and increasingly co-occur with disease progression. Insulin resistance is an upstream node in the biology of both conditions and triggers liver parenchymal injury, inflammation and fibrosis. Peroxisome proliferator-activated receptor (PPAR) nuclear transcription factors are master regulators of energy homeostasis - insulin signaling in liver, adipose and skeletal muscle tissue - and affect immune and fibrogenesis pathways. Among distinct yet overlapping effects, PPARα regulates lipid metabolism and energy expenditure, PPARβ/δ has anti-inflammatory effects and increases glucose uptake by skeletal muscle, while PPARγ improves insulin sensitivity and exerts direct antifibrotic effects on hepatic stellate cells. Together PPARs thus represent pharmacological targets across the entire biology of MASH. Single PPAR agonists are approved for hypertriglyceridemia (PPARα) and T2D (PPARγ), but these, as well as dual PPAR agonists, have shown mixed results as anti-MASH treatments in clinical trials. Agonists of all three PPAR isoforms have the potential to improve the full disease spectrum from insulin resistance to fibrosis, and correspondingly to improve cardiometabolic and hepatic health, as has been shown (phase II data) with the pan-PPAR agonist lanifibranor.
Collapse
Affiliation(s)
- Michael P Cooreman
- Research and Development, Inventiva, Daix, France; Research and Development, Inventiva, New York, NY, USA.
| | - Luisa Vonghia
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium; InflaMed Centre of Excellence, Laboratory for Experimental Medicine and Paediatrics, Translational Sciences in Inflammation and Immunology, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Sven M Francque
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium; InflaMed Centre of Excellence, Laboratory for Experimental Medicine and Paediatrics, Translational Sciences in Inflammation and Immunology, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium.
| |
Collapse
|
4
|
Xie S, Galimberti F, Olmastroni E, Luscher TF, Carugo S, Catapano AL, Casula M. Effect of lipid-lowering therapies on C-reactive protein levels: a comprehensive meta-analysis of randomized controlled trials. Cardiovasc Res 2024; 120:333-344. [PMID: 38373008 PMCID: PMC10981526 DOI: 10.1093/cvr/cvae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/15/2023] [Accepted: 12/14/2023] [Indexed: 02/20/2024] Open
Abstract
Chronic low-degree inflammation is a hallmark of atherosclerotic cardiovascular (CV) disease. To assess the effect of lipid-lowering therapies on C-reactive protein (CRP), a biomarker of inflammation, we conducted a meta-analysis according to the PRISMA guidelines. Databases were searched from inception to July 2023. Inclusion criteria were: (i) randomized controlled trials (RCTs) in human, Phase II, III, or IV; (ii) English language; (iii) comparing the effect of lipid-lowering drugs vs. placebo; (iv) reporting the effects on CRP levels; (v) with intervention duration of more than 3 weeks; (vi) and sample size (for both intervention and control group) over than 100 subjects. The between-group (treatment-placebo) CRP absolute mean differences and 95% confidence intervals were calculated for each drug class separately. A total of 171 668 subjects from 53 RCTs were included. CRP levels (mg/L) were significantly decreased by statins [-0.65 (-0.87 to -0.43), bempedoic acid; -0.43 (-0.67 to -0.20), ezetimibe; -0.28 (-0.48 to -0.08)], and omega-3 fatty acids [omega3FAs, -0.27 (-0.52 to -0.01)]. CRP was reduced by -0.40 (-1.17 to 0.38) with fibrates, although not statistically significant. A slight increase of CRP concentration was observed for proprotein convertase subtilisin/kexin type 9 inhibitors [0.11 (0.07-0.14)] and cholesteryl-ester transfer protein inhibitors [0.10 (0.00-0.21)], the latter being not statistically significant. Meta-regression analysis did not show a significant correlation between changes in CRP and LDL cholesterol (LDL-C) or triglycerides. Statins, bempedoic acid, ezetimibe, and omega3FAs significantly reduce serum CRP concentration, independently of LDL-C reductions. The impact of this anti-inflammatory effect in terms of CV prevention needs further investigation.
Collapse
Affiliation(s)
- Sining Xie
- Epidemiology and Preventive Pharmacology Service (SEFAP), Department of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti 9, 20033 Milan, Italy
| | - Federica Galimberti
- IRCCS MultiMedica, via Milanese 300, 20099 Sesto San Giovanni (Milan), Italy
| | - Elena Olmastroni
- Epidemiology and Preventive Pharmacology Service (SEFAP), Department of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti 9, 20033 Milan, Italy
- IRCCS MultiMedica, via Milanese 300, 20099 Sesto San Giovanni (Milan), Italy
| | - Thomas F Luscher
- Center for Molecular Cardiology, University Zurich, Wagistrasse 12, 8952 Schlieren (Zurich), Switzerland
- Cardiac Unit, Royal Brompton and Harefield Hospitals GSTT, Imperial College and King’s College London, Sydney Street, SW3 6NP London, UK
| | - Stefano Carugo
- Department of Clinical Sciences and Community Health, University of Milan, via della Commenda 19, 20122 Milan, Italy
- Cardiology Unit, Department of Internal Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico of Milan, via Francesco Sforza 28, 20122 Milan, Italy
| | - Alberico L Catapano
- Epidemiology and Preventive Pharmacology Service (SEFAP), Department of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti 9, 20033 Milan, Italy
- IRCCS MultiMedica, via Milanese 300, 20099 Sesto San Giovanni (Milan), Italy
| | - Manuela Casula
- Epidemiology and Preventive Pharmacology Service (SEFAP), Department of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti 9, 20033 Milan, Italy
- IRCCS MultiMedica, via Milanese 300, 20099 Sesto San Giovanni (Milan), Italy
| |
Collapse
|
5
|
Staels B, Butruille L, Francque S. Treating NASH by targeting peroxisome proliferator-activated receptors. J Hepatol 2023; 79:1302-1316. [PMID: 37459921 DOI: 10.1016/j.jhep.2023.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/18/2023] [Accepted: 07/02/2023] [Indexed: 09/15/2023]
Abstract
The pathophysiology of non-alcoholic steatohepatitis (NASH) encompasses a complex set of intra- and extrahepatic driving mechanisms, involving numerous metabolic, inflammatory, vascular and fibrogenic pathways. The peroxisome proliferator-activated receptors (PPARs) α, β/δ and γ belong to the nuclear receptor family of ligand-activated transcription factors. Activated PPARs modulate target tissue transcriptomic profiles, enabling the body's adaptation to changing nutritional, metabolic and inflammatory environments. PPARs hence regulate several pathways involved in NASH pathogenesis. Whereas single PPAR agonists exert robust anti-NASH activity in several preclinical models, their clinical effects on histological endpoints of NASH resolution and fibrosis regression appear more modest. Simultaneous activation of several PPAR isotypes across different organs and within-organ cell types, resulting in pleiotropic actions, enhances the therapeutic potential of PPAR agonists as pharmacological agents for NASH and NASH-related hepatic and extrahepatic morbidity, with some compounds having already shown clinical efficacy on histological endpoints.
Collapse
Affiliation(s)
- Bart Staels
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France.
| | - Laura Butruille
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Sven Francque
- Department of Gastroenterology Hepatology, Antwerp University Hospital, Drie Eikenstraat 655, B-2650, Edegem, Belgium; InflaMed Centre of Excellence, Laboratory for Experimental Medicine and Paediatrics, Translational Sciences in Inflammation and Immunology, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium.
| |
Collapse
|
6
|
Fuior EV, Zvintzou E, Filippatos T, Giannatou K, Mparnia V, Simionescu M, Gafencu AV, Kypreos KE. Peroxisome Proliferator-Activated Receptor α in Lipoprotein Metabolism and Atherosclerotic Cardiovascular Disease. Biomedicines 2023; 11:2696. [PMID: 37893070 PMCID: PMC10604751 DOI: 10.3390/biomedicines11102696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are a group of ligand-binding transcription factors with pivotal action in regulating pleiotropic signaling pathways of energetic metabolism, immune responses and cell proliferation and differentiation. A significant body of evidence indicates that the PPARα receptor is an important modulator of plasma lipid and lipoprotein metabolism, with pluripotent effects influencing the lipid and apolipoprotein cargo of both atherogenic and antiatherogenic lipoproteins and their functionality. Clinical evidence supports an important role of PPARα agonists (fibric acid derivatives) in the treatment of hypertriglyceridemia and/or low high-density lipoprotein (HDL) cholesterol levels, although the effects of clinical trials are contradictory and point to a reduction in the risk of nonfatal and fatal myocardial infarction events. In this manuscript, we provide an up-to-date critical review of the existing relevant literature.
Collapse
Affiliation(s)
- Elena Valeria Fuior
- Institute of Cellular Biology and Pathology, “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (E.V.F.); (E.Z.); (M.S.)
| | - Evangelia Zvintzou
- Institute of Cellular Biology and Pathology, “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (E.V.F.); (E.Z.); (M.S.)
- Pharmacology Laboratory, Department of Medicine, University of Patras, 26500 Rio Achaias, Greece; (K.G.); (V.M.)
| | - Theodosios Filippatos
- Internal Medicine Clinic, Department of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Katerina Giannatou
- Pharmacology Laboratory, Department of Medicine, University of Patras, 26500 Rio Achaias, Greece; (K.G.); (V.M.)
| | - Victoria Mparnia
- Pharmacology Laboratory, Department of Medicine, University of Patras, 26500 Rio Achaias, Greece; (K.G.); (V.M.)
| | - Maya Simionescu
- Institute of Cellular Biology and Pathology, “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (E.V.F.); (E.Z.); (M.S.)
| | - Anca Violeta Gafencu
- Institute of Cellular Biology and Pathology, “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (E.V.F.); (E.Z.); (M.S.)
| | - Kyriakos E. Kypreos
- Institute of Cellular Biology and Pathology, “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (E.V.F.); (E.Z.); (M.S.)
- Pharmacology Laboratory, Department of Medicine, University of Patras, 26500 Rio Achaias, Greece; (K.G.); (V.M.)
- Department of Life Sciences, School of Sciences, European University Cyprus, 2404 Nicosia, Cyprus
| |
Collapse
|
7
|
de Wit-Verheggen VHW, Vanweert F, Raiko J, Liénard V, Schaart G, Gemmink A, Nascimento EBM, Hesselink MKC, Wildberger JE, Wierts R, Joris PJ, Haas J, Montaigne D, Staels B, Phielix E, Schrauwen P, Schrauwen-Hinderling VB, van de Weijer T. The tissue-specific metabolic effects of the PPARα agonist ciprofibrate in insulin-resistant male individuals: a double-blind, randomized, placebo-controlled crossover study. Obesity (Silver Spring) 2023; 31:2493-2504. [PMID: 37670579 DOI: 10.1002/oby.23874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 09/07/2023]
Abstract
OBJECTIVE Insulin resistance is characterized by ectopic fat accumulation leading to cardiac diastolic dysfunction and nonalcoholic fatty liver disease. The objective of this study was to determine whether treatment with the peroxisome proliferator-activated receptor-α (PPARα) agonist ciprofibrate has direct effects on cardiac and hepatic metabolism and can improve insulin sensitivity and cardiac function in insulin-resistant volunteers. METHODS Ten insulin-resistant male volunteers received 100 mg/d of ciprofibrate and placebo for 5 weeks in a randomized double-blind crossover study. Insulin-stimulated metabolic rate of glucose (MRgluc) was measured using dynamic 18 F-fluorodeoxyglucose-positron emission tomography (18 F-FDG-PET). Additionally, cardiac function, whole-body insulin sensitivity, intrahepatic lipid content, skeletal muscle gene expression, 24-hour blood pressure, and substrate metabolism were measured. RESULTS Whole-body insulin sensitivity, energy metabolism, and body composition were unchanged after ciprofibrate treatment. Ciprofibrate treatment decreased insulin-stimulated hepatic MRgluc and increased hepatic lipid content. Myocardial net MRgluc tended to decrease after ciprofibrate treatment, but ciprofibrate treatment had no effect on cardiac function and cardiac energy status. In addition, no changes in PPAR-related gene expression in muscle were found. CONCLUSIONS Ciprofibrate treatment increased hepatic lipid accumulation and lowered MRgluc, without affecting whole-body insulin sensitivity. Furthermore, parameters of cardiac function or cardiac energy status were not altered upon ciprofibrate treatment.
Collapse
Affiliation(s)
- Vera H W de Wit-Verheggen
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Froukje Vanweert
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Juho Raiko
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Viktor Liénard
- University Lille, Inserm, CHU Lille, Pasteur Institute of Lille, U1011-EGID, Lille, France
| | - Gert Schaart
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Anne Gemmink
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Emmani B M Nascimento
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Matthijs K C Hesselink
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Joachim E Wildberger
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Roel Wierts
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Peter J Joris
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Joel Haas
- University Lille, Inserm, CHU Lille, Pasteur Institute of Lille, U1011-EGID, Lille, France
| | - David Montaigne
- University Lille, Inserm, CHU Lille, Pasteur Institute of Lille, U1011-EGID, Lille, France
| | - Bart Staels
- University Lille, Inserm, CHU Lille, Pasteur Institute of Lille, U1011-EGID, Lille, France
| | - Esther Phielix
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Patrick Schrauwen
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Vera B Schrauwen-Hinderling
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Tineke van de Weijer
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
8
|
Francque S, Ratziu V. Future Treatment Options and Regimens for Nonalcoholic Fatty Liver Disease. Clin Liver Dis 2023; 27:429-449. [PMID: 37024217 DOI: 10.1016/j.cld.2023.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Recent progress in our understanding of the pathogenic mechanisms that drive progression of nonalcoholic steatohepatitis as well as lessons learned from several clinical trials that have been conducted over the past 15 years guide our current regulatory framework and trial design. Targeting the metabolic drivers should probably be the backbone of therapy in most of the patients, with some requiring more specific intrahepatic antiinflammatory and antifibrotic actions to achieve success. New and innovative targets and approaches as well as combination therapies are currently explored, while awaiting a better understanding of disease heterogeneity that should allow for future individualized medicine.
Collapse
Affiliation(s)
- Sven Francque
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium; Laboratory of Experimental Medicine and Paediatrics (LEMP), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; InflaMed Centre of Excellence, University of Antwerp, Antwerp, Belgium; Translational Sciences in Inflammation and Immunology, University of Antwerp, Antwerp, Belgium; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Antwerp University Hospital, Drie Eikenstraat 665, Edegem B-2650, Belgium.
| | - Vlad Ratziu
- Sorbonne Université, Paris, France; Institute of Cardiometabolism and Nutrition, Assistance Publique-Hôpitaux De Paris, Hôpital Pitié-Salpêtrière, 47-83 Boulevard de l'Hôpital, Paris Cedex 13 75651, France; INSERM UMRS 1138 CRC, Paris, France.
| |
Collapse
|
9
|
Dana N, Ferns GA, Nedaeinia R, Haghjooy Javanmard S. Leptin signaling in breast cancer and its crosstalk with peroxisome proliferator-activated receptors α and γ. Clin Transl Oncol 2023; 25:601-610. [PMID: 36348225 DOI: 10.1007/s12094-022-02988-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022]
Abstract
Obesity may create a mitogenic microenvironment that influences tumor initiation and progression. The obesity-associated adipokine, leptin regulates energy metabolism and has been implicated in cancer development. It has been shown that some cell types other than adipocytes can express leptin and leptin receptors in tumor microenvironments. It has been shown that peroxisome proliferator-activated receptors (PPAR) agonists can affect leptin levels and vice versa leptin can affect PPARs. Activation of PPARs affects the expression of several genes involved in aspects of lipid metabolism. In addition, PPARs regulate cancer cell progression through their action on the tumor cell proliferation, metabolism, and cellular environment. Some studies have shown an association between obesity and several types of cancer, including breast cancer. There is some evidence that suggests that there is crosstalk between PPARs and leptin during the development of breast cancer. Through a systematic review of previous studies, we have reviewed the published relevant articles regarding leptin signaling in breast cancer and its crosstalk with peroxisome proliferator-activated receptors α and γ.
Collapse
Affiliation(s)
- Nasim Dana
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton and Sussex Medical School, Falmer, Brighton, BN1 9PH, Sussex, UK
| | - Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
10
|
Profound Modification of Fatty Acid Profile and Endocannabinoid-Related Mediators in PPARα Agonist Fenofibrate-Treated Mice. Int J Mol Sci 2022; 24:ijms24010709. [PMID: 36614161 PMCID: PMC9821630 DOI: 10.3390/ijms24010709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Fenofibrate (FBR), an oral medication used to treat dyslipidemia, is a ligand of the peroxisome proliferator-activated receptor α (PPARα), a nuclear receptor that regulates the expression of metabolic genes able to control lipid metabolism and food intake. PPARα natural ligands include fatty acids (FA) and FA derivatives such as palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), known to have anti-inflammatory and anorexigenic activities, respectively. We investigated changes in the FA profile and FA derivatives by HPLC and LC-MS in male C57BL/6J mice fed a standard diet with or without 0.2% fenofibrate (0.2% FBR) for 21 days. Induction of PPARα by 0.2% FBR reduced weight gain, food intake, feed efficiency, and liver lipids and induced a profound change in FA metabolism mediated by parallel enhanced mitochondrial and peroxisomal β-oxidation. The former effects led to a steep reduction of essential FA, particularly 18:3n3, with a consequent decrease of the n3-highly unsaturated fatty acids (HUFA) score; the latter effect led to an increase of 16:1n7 and 18:1n9, suggesting enhanced hepatic de novo lipogenesis with increased levels of hepatic PEA and OEA, which may activate a positive feedback and further sustain reductions of body weight, hepatic lipids and feed efficiency.
Collapse
|
11
|
|
12
|
Guixé‐Muntet S, Biquard L, Szabo G, Dufour J, Tacke F, Francque S, Rautou P, Gracia‐Sancho J. Review article: vascular effects of PPARs in the context of NASH. Aliment Pharmacol Ther 2022; 56:209-223. [PMID: 35661191 PMCID: PMC9328268 DOI: 10.1111/apt.17046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/04/2021] [Accepted: 05/08/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors known to regulate glucose and fatty acid metabolism, inflammation, endothelial function and fibrosis. PPAR isoforms have been extensively studied in metabolic diseases, including type 2 diabetes and cardiovascular diseases. Recent data extend the key role of PPARs to liver diseases coursing with vascular dysfunction, including nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). AIM This review summarises and discusses the pathobiological role of PPARs in cardiovascular diseases with a special focus on their impact and therapeutic potential in NAFLD and NASH. RESULTS AND CONCLUSIONS PPARs may be attractive for the treatment of NASH due to their liver-specific effects but also because of their efficacy in improving cardiovascular outcomes, which may later impact liver disease. Assessment of cardiovascular disease in the context of NASH trials is, therefore, of the utmost importance, both from a safety and efficacy perspective.
Collapse
Affiliation(s)
- Sergi Guixé‐Muntet
- Liver Vascular Biology Research GroupIDIBAPS Biomedical Research Institute & CIBEREHDBarcelonaSpain
| | - Louise Biquard
- Université de Paris, Inserm, CNRSCentre de recherche sur l'InflammationUMR1149ParisFrance
| | - Gyongyi Szabo
- Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Jean‐François Dufour
- Department of Visceral Surgery and Medicine & Department for Biomedical ResearchInselspital, University of BernBernSwitzerland
| | - Frank Tacke
- Department of Hepatology & GastroenterologyCharité Universitätsmedizin Berlin, Campus Virchow‐Klinikum (CVK) and Campus Charité Mitte (CCM)BerlinGermany
| | - Sven Francque
- Department of Gastroenterology and HepatologyAntwerp University HospitalAntwerpBelgium,Translational Sciences in Inflammation and ImmunologyInflaMed Centre of Excellence, Laboratory of Experimental Medicine and Paediatrics, Faculty of Medicine and Health Sciences, University of AntwerpAntwerpBelgium
| | - Pierre‐Emmanuel Rautou
- Université de Paris, AP‐HP, Hôpital Beaujon, Service d'Hépatologie, DMU DIGESTCentre de Référence des Maladies Vasculaires du Foie, FILFOIE, ERN RARE‐LIVER, Centre de recherche sur l'inflammationParisFrance
| | - Jordi Gracia‐Sancho
- Liver Vascular Biology Research GroupIDIBAPS Biomedical Research Institute & CIBEREHDBarcelonaSpain,Department of Visceral Surgery and Medicine & Department for Biomedical ResearchInselspital, University of BernBernSwitzerland
| |
Collapse
|
13
|
Engel C, Meade R, Harroun N, Penrose A, Shafqat M, Jin X, DeSilva G, Semenkovich C, Zayed M. Altered Peroxisome Proliferator-Activated Receptor Alpha Signaling in Variably Diseased Peripheral Arterial Segments. Front Cardiovasc Med 2022; 9:834199. [PMID: 35783870 PMCID: PMC9248745 DOI: 10.3389/fcvm.2022.834199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/04/2022] [Indexed: 11/25/2022] Open
Abstract
Objective Peripheral atherosclerosis that accumulates in the extracranial carotid and lower extremity arteries can lead to significant morbidity and mortality. However, atherosclerotic disease progression is often not homogenous and is accelerated by diabetes. We previously observed increased phospholipid content in minimally (Min)-diseased arterial segments compared to maximally (Max)-diseased segments. Since Peroxisome Proliferator-Activated Receptor alpha (PPARα) is a key regulator of lipid metabolism, we hypothesized that it may have differential expression and signaling in Min vs. Max-diseased peripheral arterial segments. Methods Eighteen patients who underwent carotid endarterectomy (CEA), and 34 patients who underwent major lower extremity amputation were prospectively enrolled into a vascular tissue biobank. Min and Max-diseased segments were obtained in real-time from CEA plaque and amputated lower extremity arterial segments. mRNA and protein were isolated from specimens and the relative expression of ppara, and its downstream genes Acyl-CoA Oxidase 1 (acox1) and Carnitine Palmitoyltransferase 1A (cpt1a) were also evaluated. We evaluated gene expression and protein content relative to atherosclerotic disease severity and clinical diabetes status. Gene expression was also evaluated relative to Hemoglobin A1c and serum lipid profiles. Results In CEA segments of patients with diabetes, we observed significantly higher ppara and acox1 gene expression (p < 0.01 and p < 0.001 respectively), and higher PPARα protein content (p < 0.05). Hemoglobin A1c significantly correlated with expression of ppara (R2 = 0.66, p < 0.001), acox1 (R2 = 0.31, p < 0.05), and cpt1a (R2 = 0.4, p < 0.05). There was no significant difference in gene expression between Min vs. Max-diseased CEA plaque segments. Conversely, in lower extremity arterial segments of patients with diabetes, we observed significantly lower ppara, acox1, and cpt1a expression (p < 0.05, p < 0.001, and p < 0.0001 respectively). Interestingly, CPT1A content was lower in arterial segments of patients with diabetes (p < 0.05). Hemoglobin A1c and HDL-cholesterol had negative correlations with ppara (R2 = 0.44, p < 0.05; R2 = 0.42, p < 0.05; respectively). Conclusion This study demonstrates the significant differential expression of ppara and its immediate downstream genes in human carotid and lower extremity arteries relative to disease severity and diabetes. These findings highlight that mechanisms that influence atheroprogression in the carotid and lower extremities peripheral arteries are not homogenous and can be impacted by patient diabetes status and serum cholesterol profiles. Further elucidating these differential molecular mechanisms can help improve targeted therapy of atherosclerosis in different peripheral arterial beds.
Collapse
Affiliation(s)
- Connor Engel
- Section of Vascular Surgery, Department of Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Rodrigo Meade
- Section of Vascular Surgery, Department of Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Nikolai Harroun
- Section of Vascular Surgery, Department of Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Amanda Penrose
- Section of Vascular Surgery, Department of Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Mehreen Shafqat
- Section of Vascular Surgery, Department of Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Xiaohua Jin
- Section of Vascular Surgery, Department of Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Gayan DeSilva
- Section of Vascular Surgery, Department of Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Clay Semenkovich
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Mohamed Zayed
- Section of Vascular Surgery, Department of Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO, United States,Division of Molecular Cell Biology, Washington University in St. Louis School of Medicine, St. Louis, MO, United States,Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, United States,Veterans Affairs St. Louis Health Care System, St. Louis, MO, United States,*Correspondence: Mohamed Zayed,
| |
Collapse
|
14
|
Wang X, Yu C, Liu X, Yang J, Feng Y, Wu Y, Xu Y, Zhu Y, Li W. Fenofibrate Ameliorated Systemic and Retinal Inflammation and Modulated Gut Microbiota in High-Fat Diet-Induced Mice. Front Cell Infect Microbiol 2022; 12:839592. [PMID: 35719341 PMCID: PMC9201033 DOI: 10.3389/fcimb.2022.839592] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/09/2022] [Indexed: 01/14/2023] Open
Abstract
Fenofibrate, as a lipid-lowering drug, has been reported to have a protective effect on the retina independent with plasma lipid levels. This study aimed to investigate that the ameliorative effects of fenofibrate on systemic and retinal inflammation, as well as gut microbiota dysbiosis in high-fat diet (HFD)-induced mice. C57BL/6J mice were randomly allocated into four groups: standard diet (SD) group; HFD group; SD plus fenofibrate (SD_ Fe) group; HFD plus fenofibrate (HFD_ Fe) group. After successfully establishing models (5 months), indicators associated with lipid, gut barrier, inflammation and gut microbiota were investigated. Our results showed that supplementing the HFD with fenofibrate decreased body weight gain, alleviated dyslipidemia and reversed the downregulation of short-chain fatty acid (SCFAs) in serum, retina and feces. Fenofibrate ameliorated intestinal barrier function damage in HFD-induced mice. Fenofibrate coadministration inhibited the levels of inflammatory factor and lipopolysaccharide (LPS) in the serum and attenuated inflammatory response in the retina of HFD-induced mice. Systemic LPS was positively correlated with a series of inflammatory factors in serum and retina, respectively. Fenofibrate supplementation down-regulated the abundances of LPS-associated bacteria in HFD mice, including Firmicutes and Proteobacteria at the phylum level, Desulfovibrionaceae at the family level, as well as unclassified_ Desulfovibrionaceae, Acetatifactor, Flavonifractor, Oscillibacter and Anaerotruncus at the genus level. However, fenofibrate treatment up-regulated the abundances of SCFA-associated bacteria in HFD mice, including Bacteroidetes at the phylum level, Porphyromonadaceae at the family level, as well as unclassified_Porphyromonadaceae, Barnesiella, Alloprevotella and Bifidobacterium at the genus level. In conclusion, our results confirmed fenofibrate could attenuate HFD-induced systemic and retinal inflammation, accompanying with restoration of intestinal barrier damage and modulation of gut microbiota/metabolites. This work provided an explanation for the ameliorative effects of fenofibrate on HFD-induced systemic and retinal inflammation might be partially related with the modulation of gut microbiota and its metabolites.
Collapse
Affiliation(s)
- Xue Wang
- Aier School of Ophthalmology, Central South University, Changsha, China
- University of Science and Technology of China, Suzhou Institute of Biomedical Engineering and Technology, Suzhou, China
| | - Chaofeng Yu
- Aier School of Ophthalmology, Central South University, Changsha, China
| | - Xiaomei Liu
- University of Science and Technology of China, Suzhou Institute of Biomedical Engineering and Technology, Suzhou, China
| | - Jiasong Yang
- Aier School of Ophthalmology, Central South University, Changsha, China
- Department of Ophthalmology, Shanghai Aier Eye Hospital, Shanghai, China
| | - Yuliang Feng
- Aier School of Ophthalmology, Central South University, Changsha, China
| | - Yajun Wu
- Aier School of Ophthalmology, Central South University, Changsha, China
| | - Yali Xu
- Aier School of Ophthalmology, Central South University, Changsha, China
| | - Yihua Zhu
- Department of Ophthalmology, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- *Correspondence: Wensheng Li, ; Yihua Zhu,
| | - Wensheng Li
- Aier School of Ophthalmology, Central South University, Changsha, China
- Department of Ophthalmology, Shanghai Aier Eye Hospital, Shanghai, China
- *Correspondence: Wensheng Li, ; Yihua Zhu,
| |
Collapse
|
15
|
Rizk FH, Soliman NA, Heabah NA, Abdel Ghafar MT, El-Attar SH, Elsaadany A. Fenofibrate Improves Cognitive Impairment Induced by High-Fat High-Fructose Diet: A Possible Role of Irisin and Heat Shock Proteins. ACS Chem Neurosci 2022; 13:1782-1789. [PMID: 35652596 DOI: 10.1021/acschemneuro.2c00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
A high-fat, high-fructose diet (HFFD) impairs cognitive functions and increases susceptibility to neurodegenerative disorders. Irisin and heat shock protein 70 (HSP70) are well known for their role in neuroprotection. The possible neuroprotective effects of fenofibrate on HFFD-induced cognitive dysfunction and the involvement of irisin and HSP70 in these effects were investigated in this study. Rats were divided into normal control, HFFD, dimethylsulfoxide+HFFD, and fenofibrate+HFFD groups. At the end of the experiment, fenofibrate treatment restored hippocampus histological characteristics to almost normal and improved HFFD-induced cognitive deficit. It reduced body weight gain and had hypolipidemic effects by significantly lowering total cholesterol, triglycerides, and low-density lipoprotein cholesterol levels while increasing high-density lipoprotein cholesterol levels. It has antioxidant and anti-inflammatory effects as it significantly reduced the hippocampal malondialdehyde, interleukin-6, and tumor necrosis factor-alpha levels, while significantly increasing the reduced glutathione level. It prevented HFFD-induced hypoxia by significantly lowering hippocampal vascular endothelial growth factor and hypoxia-inducible factor-1 alpha levels. It significantly activated the hippocampal peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1α)/irisin/brain-derived neurotrophic factor pathway. It significantly increased hippocampal HSP70 while decreasing the HSP90 levels. It enhanced synaptic plasticity by significantly upregulating the hippocampal relative GluR1 gene expression. Furthermore, hippocampal irisin levels in the HFFD group were found to be positively correlated with cognitive function, hippocampal HSP70, and relative GluR1 gene expression levels, while negatively correlated with hippocampal HSP90 and HIF1α levels. Therefore, fenofibrate may be used as a potential medication to treat HFFD-induced neurodegenerative disorders.
Collapse
Affiliation(s)
- Fatma H. Rizk
- Physiology Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
| | - Nema A. Soliman
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
| | - Nehal A. Heabah
- Pathology Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
| | | | - Shimaa H. El-Attar
- Internal Medicine Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
| | - Amira Elsaadany
- Pharmacology Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
| |
Collapse
|
16
|
Berzinji B, Dizaye K. Investigating the effect of Fenofibrate on biomarkers of vascular inflammation in L-NAME induced hypertensive rats. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e81078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study aims to evaluate the impact of fenofibrate on the levels of (IL-6, hsCRP, Lp-PLA2, sCD40L, and cystatin C) in hypertensive rats. Twenty-four rats were divided into two groups each of twelve. The first group served as the normotensive group, while the second group was regarded as the hypertensive group. Each group was further divided into two subgroups (control and treated). The control subgroups only received a placebo and the treated subgroups were given fenofibrate 30 mg/kg daily orally by gastric gavage for 4 weeks. The level of hsCRP, IL6, and Lp-PLA2 significantly increased, but sCD40L and cystatin C levels were not changed in hypertensive rats. Fenofibrate has significantly reduced the levels of hsCRP and Lp-LPA2 in hypertensive rats while IL6 and sCD40s have not been changed in both groups. In conclusion, Fenofibrate has revealed a pleiotropic anti-inflammatory effect by reducing the level of hsCRP and Lp-LPA2 in hypertensive rats.
Collapse
|
17
|
Lange NF, Graf V, Caussy C, Dufour JF. PPAR-Targeted Therapies in the Treatment of Non-Alcoholic Fatty Liver Disease in Diabetic Patients. Int J Mol Sci 2022; 23:ijms23084305. [PMID: 35457120 PMCID: PMC9028563 DOI: 10.3390/ijms23084305] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 02/06/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPAR), ligand-activated transcription factors of the nuclear hormone receptor superfamily, have been identified as key metabolic regulators in the liver, skeletal muscle, and adipose tissue, among others. As a leading cause of liver disease worldwide, non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) cause a significant burden worldwide and therapeutic strategies are needed. This review provides an overview of the evidence on PPAR-targeted treatment of NAFLD and NASH in individuals with type 2 diabetes mellitus. We considered current evidence from clinical trials and observational studies as well as the impact of treatment on comorbid metabolic conditions such as obesity, dyslipidemia, and cardiovascular disease. Future areas of research, such as possible sexually dimorphic effects of PPAR-targeted therapies, are briefly reviewed.
Collapse
Affiliation(s)
- Naomi F. Lange
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, 3012 Bern, Switzerland
- Correspondence: (N.F.L.); (J.-F.D.)
| | - Vanessa Graf
- Department of Diabetes, Endocrinology, Clinical Nutrition, and Metabolism, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland;
| | - Cyrielle Caussy
- Univ Lyon, CarMen Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69495 Pierre-Bénite, France;
- Département Endocrinologie, Diabète et Nutrition, Hôpital Lyon Sud, Hospices Civils de Lyon, 69495 Pierre-Bénite, France
| | - Jean-François Dufour
- Centre des Maladies Digestives, 1003 Lausanne, Switzerland
- Swiss NASH Foundation, 3011 Bern, Switzerland
- Correspondence: (N.F.L.); (J.-F.D.)
| |
Collapse
|
18
|
Progression of Nonalcoholic Fatty Liver Disease-Associated Fibrosis in a Large Cohort of Patients with Type 2 Diabetes. Dig Dis Sci 2022; 67:1379-1388. [PMID: 33779880 DOI: 10.1007/s10620-021-06955-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 03/12/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) can progress to advanced fibrosis, especially in patients with type 2 diabetes. Small studies have shown that fibrosis can also regress. AIM We aimed to provide large-scale data on progression and regression of fibrosis in diabetics with NAFLD. METHODS Adult diabetic patients with the diagnosis of NAFLD based on ICD-9 codes were identified. We used scores from noninvasive tests to identify patients with advanced fibrosis, calculated at first assessment and last follow-up visit. Cutoff values for advanced fibrosis were AST: ALT ratio > 1.4, AST to platelet ratio index > 1.5, FIB-4 score > 2.67, and NAFLD fibrosis score > 0.676. RESULTS Our cohort included 50,695 diabetics with NAFLD (55.3% female; 71% Caucasian; mean age, 51.2 ± 11.6 y). During median follow-up of 84.4 months, 25.8% transitioned from no advanced fibrosis to advanced fibrosis (progression), 6.4% transitioned from advanced fibrosis to no advanced fibrosis (regression), and the rest remained stable. Factors associated with transition to advanced fibrosis were female sex, older age at first evaluation, African-American race, obesity, chronic kidney disease, or coronary artery disease. Use of insulin increased the risk of progression to advanced fibrosis (odds ratio,1.36; p < .001), whereas use of oral hypoglycemic agents, angiotensin 2 receptor blockers, and fibrates was associated with reduced risk (odds ratios, 0.92, 0.94 and 0.90, respectively; all p < .05). CONCLUSIONS In a large cohort of patients with type 2 diabetes and NAFLD, more than a quarter progressed to advanced fibrosis. These findings indicate the need for early detection and staging of NAFLD in diabetics.
Collapse
|
19
|
Ru Y, Zhang Y, Xiang YW, Luo Y, Luo Y, Jiang JS, Song JK, Fei XY, Yang D, Zhang Z, Zhang HP, Liu TY, Yin SY, Li B, Kuai L. Gene set enrichment analysis and ingenuity pathway analysis to identify biomarkers in Sheng-ji Hua-yu formula treated diabetic ulcers. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114845. [PMID: 34800645 DOI: 10.1016/j.jep.2021.114845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/02/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sheng-ji Hua-yu (SJHY) formula is a Chinese herbal prescription for diabetic ulcers (DUs) treatment, which can accelerate wound reconstruction and shorten the healing time. However, its mechanism role maintains unclear. AIM OF THE STUDY To elucidate the molecular mechanisms of SJHY application on DUs. MATERIALS AND METHODS To begin with, transcriptome sequencing was adopted to identified differentially expression mRNAs among normal ulcers, DUs, and DUs + SJHY treatment in vivo. Liquid chromatography-tandem mass spectrometry was applied for the quality control of SJHY formula. GO and KEGG enrichment analysis were used to identify the mechanisms underlying the therapeutic effect of SJHY formula, and then gene set enrichment analysis and ingenuity pathway analysis were conducted for functional analysis. Further, qPCR detection was performed in vivo for validation. RESULTS SJHY administration could regulate the glucose metabolic process, AMPK and HIF-1 pathway to accelerate healing processes of DUs. Besides, CRHR1, SHH, and GAL were identified as the critical targets, and SLC6A3, GRP, FGF23, and CYP27B1 were considered as the upstream genes of SJHY treatment. Combined with animal experiments, the prediction results were validated in DUs mice model. CONCLUSIONS This study used modular pharmacology analysis to identify the biomarkers of SJHY formula and provide the potential therapeutic targets for DUs treatment as well.
Collapse
Affiliation(s)
- Yi Ru
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Ying Zhang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yan-Wei Xiang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yue Luo
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Jing-Si Jiang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jian-Kun Song
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Xiao-Ya Fei
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Dan Yang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Zhan Zhang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Hui-Ping Zhang
- Shanghai Applied Protein Technology Co.Ltd., 58 Yuanmei Road, Shanghai, 200233, China.
| | - Tai-Yi Liu
- Shanghai Applied Protein Technology Co.Ltd., 58 Yuanmei Road, Shanghai, 200233, China.
| | - Shuang-Yi Yin
- Center for Translational Medicine, Huaihe Hospital of Henan University, Kaifeng, 475001, Henan, China.
| | - Bin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
20
|
Warren RA, Carew AS, Andreou P, Herman C, Levy AP, Ginsberg HN, Sapp J, Rimm EB, Kirkland S, Cahill LE. Haptoglobin Phenotype Modifies the Effect of Fenofibrate on Risk of Coronary Event: ACCORD Lipid Trial. Diabetes Care 2022; 45:241-250. [PMID: 34785535 DOI: 10.2337/dc21-1429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/22/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The haptoglobin (Hp)2-2 phenotype (∼35-40% of people) is associated with increased oxidation and dysfunctional HDL in hyperglycemia and may explain why drugs designed to pharmacologically raise HDL cholesterol and lower triglycerides have not reliably prevented cardiovascular disease in diabetes. We aimed to determine whether the effect of adding fenofibrate versus placebo to simvastatin on the risk of coronary artery disease (CAD) events depends on Hp phenotype in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) lipid trial. RESEARCH DESIGN AND METHODS Cox proportional hazards regression models quantified the relationship between fenofibrate therapy and CAD events in the ACCORD lipid trial in participants with the Hp2-2 phenotype (n = 1,795) separately from those without (n = 3,201). RESULTS Fenofibrate therapy successfully lowered the risk of CAD events in participants without the Hp2-2 phenotype (multivariable adjusted hazard ratio 0.74 [95% CI 0.60-0.90] compared with no fenofibrate therapy) but not in participants with the Hp2-2 phenotype (1.16 [0.87-1.56]; P interaction = 0.009). Subgroup analyses revealed that this protective effect of fenofibrate against CAD events among the non-Hp2-2 phenotype group was pronounced in participants with severe dyslipidemia (P interaction = 0.01) and in males (P interaction = 0.02) with an increased CAD risk from fenofibrate treatment observed in females with the Hp2-2 phenotype (P interaction = 0.002). CONCLUSIONS The effect of fenofibrate added to simvastatin on risk of CAD events depends on Hp phenotype in the ACCORD lipid trial.
Collapse
Affiliation(s)
- Rachel A Warren
- 1Department of Community Health and Epidemiology, Dalhousie University, Halifax, Nova Scotia, Canada.,2Queen Elizabeth II Health Sciences Centre, Nova Scotia Health, Halifax, Nova Scotia, Canada.,3Department of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Allie S Carew
- 1Department of Community Health and Epidemiology, Dalhousie University, Halifax, Nova Scotia, Canada.,2Queen Elizabeth II Health Sciences Centre, Nova Scotia Health, Halifax, Nova Scotia, Canada.,3Department of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Pantelis Andreou
- 1Department of Community Health and Epidemiology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Christine Herman
- 2Queen Elizabeth II Health Sciences Centre, Nova Scotia Health, Halifax, Nova Scotia, Canada.,4Department of Surgery, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Andrew P Levy
- 5Ruth and Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | | | - John Sapp
- 2Queen Elizabeth II Health Sciences Centre, Nova Scotia Health, Halifax, Nova Scotia, Canada.,3Department of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Eric B Rimm
- 7Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA.,8Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Susan Kirkland
- 1Department of Community Health and Epidemiology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Leah E Cahill
- 1Department of Community Health and Epidemiology, Dalhousie University, Halifax, Nova Scotia, Canada.,2Queen Elizabeth II Health Sciences Centre, Nova Scotia Health, Halifax, Nova Scotia, Canada.,3Department of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
21
|
Palavicini JP, Chavez-Velazquez A, Fourcaudot M, Tripathy D, Pan M, Norton L, DeFronzo RA, Shannon CE. The Insulin-Sensitizer Pioglitazone Remodels Adipose Tissue Phospholipids in Humans. Front Physiol 2021; 12:784391. [PMID: 34925073 PMCID: PMC8674727 DOI: 10.3389/fphys.2021.784391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/08/2021] [Indexed: 12/11/2022] Open
Abstract
The insulin-sensitizer pioglitazone exerts its cardiometabolic benefits in type 2 diabetes (T2D) through a redistribution of body fat, from ectopic and visceral areas to subcutaneous adipose depots. Whereas excessive weight gain and lipid storage in obesity promotes insulin resistance and chronic inflammation, the expansion of subcutaneous adipose by pioglitazone is associated with a reversal of these immunometabolic deficits. The precise events driving this beneficial remodeling of adipose tissue with pioglitazone remain unclear, and whether insulin-sensitizers alter the lipidomic composition of human adipose has not previously been investigated. Using shotgun lipidomics, we explored the molecular lipid responses in subcutaneous adipose tissue following 6months of pioglitazone treatment (45mg/day) in obese humans with T2D. Despite an expected increase in body weight following pioglitazone treatment, no robust effects were observed on the composition of storage lipids (i.e., triglycerides) or the content of lipotoxic lipid species (e.g., ceramides and diacylglycerides) in adipose tissue. Instead, pioglitazone caused a selective remodeling of the glycerophospholipid pool, characterized by a decrease in lipids enriched for arachidonic acid, such as plasmanylethanolamines and phosphatidylinositols. This contributed to a greater overall saturation and shortened chain length of fatty acyl groups within cell membrane lipids, changes that are consistent with the purported induction of adipogenesis by pioglitazone. The mechanism through which pioglitazone lowered adipose tissue arachidonic acid, a major modulator of inflammatory pathways, did not involve alterations in phospholipase gene expression but was associated with a reduction in its precursor linoleic acid, an effect that was also observed in skeletal muscle samples from the same subjects. These findings offer important insights into the biological mechanisms through which pioglitazone protects the immunometabolic health of adipocytes in the face of increased lipid storage.
Collapse
Affiliation(s)
- Juan P. Palavicini
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Alberto Chavez-Velazquez
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Marcel Fourcaudot
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Devjit Tripathy
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Meixia Pan
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Luke Norton
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Ralph A. DeFronzo
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Christopher E. Shannon
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
22
|
Galal A, El-Bakly WM, El-Kilany SS, Ali AA, El-Demerdash E. Fenofibrate ameliorates olanzapine's side effects without altering its central effect: emphasis on FGF-21-adiponectin axis. Behav Pharmacol 2021; 32:615-629. [PMID: 34637209 DOI: 10.1097/fbp.0000000000000656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The present work was designed to investigate whether fenofibrate could ameliorate olanzapine deleterious effect on insulin resistance via its effect on fibroblast growth factor-21 (FGF-21)-adiponectin axis without affecting olanzapine antipsychotic effect in postweaning socially isolated reared female rats. Treatment with olanzapine (6 mg/kg, intraperitoneally) or fenofibrate (100 mg/kg, orally) have been started 5 weeks after isolation, then behavioral tests, hippocampal content of neurotransmitters, and brain-derived neurotrophic factor (BDNF) were assessed. Moreover, insulin resistance, lipid profile, FGF-21, adiponectin, inflammatory, and oxidative stress markers of adipose tissue were assessed. Treatment of isolated-reared animals with olanzapine, or fenofibrate significantly ameliorated the behavioral and biochemical changes induced by postweaning social isolation. Co-treatment showed additive effects in improving hippocampal BDNF level. Besides, fenofibrate reduced the elevation in weight gain, adiposity index, insulin resistance, lipid profile, and FGF-21 level induced by olanzapine treatment. Also, fenofibrate increased adiponectin level which was reduced upon olanzapine treatment. Moreover, fenofibrate improved both adipose tissue oxidative stress and inflammatory markers elevation as a result of olanzapine treatment. Fenofibrate could ameliorate olanzapine-induced insulin resistance without affecting its central effect in isolated reared rats via its action on FGF-21-adiponectin axis.
Collapse
Affiliation(s)
- Aya Galal
- Cardiac Surgery Hospital, Ain Shams University
| | | | - Sara S El-Kilany
- Department of Anatomy, Faculty of Medicine, Ain Shams University
| | - Azza A Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar university (Girls Branch)
| | - Ebtehal El-Demerdash
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Abbasia, Cairo, Egypt
| |
Collapse
|
23
|
The Role and Mechanism of Oxidative Stress and Nuclear Receptors in the Development of NAFLD. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6889533. [PMID: 34745420 PMCID: PMC8566046 DOI: 10.1155/2021/6889533] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022]
Abstract
The overproduction of reactive oxygen species (ROS) and consequent oxidative stress contribute to the pathogenesis of acute and chronic liver diseases. It is now acknowledged that nonalcoholic fatty liver disease (NAFLD) is characterized as a redox-centered disease due to the role of ROS in hepatic metabolism. However, the underlying mechanisms accounting for these alternations are not completely understood. Several nuclear receptors (NRs) are dysregulated in NAFLD, and have a direct influence on the expression of a set of genes relating to the progress of hepatic lipid homeostasis and ROS generation. Meanwhile, the NRs act as redox sensors in response to metabolic stress. Therefore, targeting NRs may represent a promising strategy for improving oxidation damage and treating NAFLD. This review summarizes the link between impaired lipid metabolism and oxidative stress and highlights some NRs involved in regulating oxidant/antioxidant turnover in the context of NAFLD, shedding light on potential therapies based on NR-mediated modulation of ROS generation and lipid accumulation.
Collapse
|
24
|
Sahukari R, Punabaka J, Bhasha S, Ganjikunta VS, Kondeti Ramudu S, Kesireddy SR, Ye W, Korivi M. Phytochemical Profile, Free Radical Scavenging and Anti-Inflammatory Properties of Acalypha Indica Root Extract: Evidence from In Vitro and In Vivo Studies. Molecules 2021; 26:molecules26206251. [PMID: 34684831 PMCID: PMC8537703 DOI: 10.3390/molecules26206251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 01/08/2023] Open
Abstract
In our in vitro and in vivo studies, we used Acalypha indica root methanolic extract (AIRME), and investigated their free radical scavenging/antioxidant and anti-inflammatory properties. Primarily, phytochemical analysis showed rich content of phenols (70.92 mg of gallic acid/g) and flavonoids (16.01 mg of rutin/g) in AIRME. We then performed HR-LC-MS and GC-MS analyses, and identified 101 and 14 phytochemical compounds, respectively. Among them, ramipril glucuronide (1.563%), antimycin A (1.324%), swietenine (1.134%), quinone (1.152%), oxprenolol (1.118%), choline (0.847%), bumetanide (0.847%) and fenofibrate (0.711%) are the predominant phytomolecules. Evidence from in vitro studies revealed that AIRME scavenges DPPH and hydroxyl radicals in a concentration dependent manner (10–50 μg/mL). Similarly, hydrogen peroxide and lipid peroxidation were also remarkably inhibited by AIRME as concentration increases (20–100 μg/mL). In vitro antioxidant activity of AIRME was comparable to ascorbic acid treatment. For in vivo studies, carrageenan (1%, sub-plantar) was injected to rats to induce localized inflammation. Acute inflammation was represented by paw-edema, and significantly elevated (p < 0.05) WBC, platelets and C-reactive protein (CRP). However, AIRME pretreatment (150/300 mg/kg bodyweight) significantly (p < 0.05) decreased edema volume. This was accompanied by a significant (p < 0.05) reduction of WBC, platelets and CRP with both doses of AIRME. The decreased activities of superoxide dismutase, catalase, glutathione reductase and glutathione peroxidase in paw tissue were restored (p < 0.05 / p < 0.01) with AIRME in a dose-dependent manner. Furthermore, AIRME attenuated carrageenan-induced neutrophil infiltrations and vascular dilation in paw tissue. For the first time, our findings demonstrated the potent antioxidant and anti-inflammatory properties of AIRME, which could be considered to develop novel anti-inflammatory drugs.
Collapse
Affiliation(s)
- Ravi Sahukari
- Department of Zoology, Sri Venkateswara University, Tirupati 517502, India; (R.S.); (J.P.); (S.B.); (V.S.G.); (S.R.K.)
| | - Jyothi Punabaka
- Department of Zoology, Sri Venkateswara University, Tirupati 517502, India; (R.S.); (J.P.); (S.B.); (V.S.G.); (S.R.K.)
| | - Shanmugam Bhasha
- Department of Zoology, Sri Venkateswara University, Tirupati 517502, India; (R.S.); (J.P.); (S.B.); (V.S.G.); (S.R.K.)
| | - Venkata Subbaiah Ganjikunta
- Department of Zoology, Sri Venkateswara University, Tirupati 517502, India; (R.S.); (J.P.); (S.B.); (V.S.G.); (S.R.K.)
| | | | - Sathyavelu Reddy Kesireddy
- Department of Zoology, Sri Venkateswara University, Tirupati 517502, India; (R.S.); (J.P.); (S.B.); (V.S.G.); (S.R.K.)
| | - Weibing Ye
- Exercise and Metabolism Research Center, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua 321004, China
- Correspondence: (W.Y.); (M.K.); Tel.: +86-579-8229-1009 (W.Y. & M.K.)
| | - Mallikarjuna Korivi
- Exercise and Metabolism Research Center, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua 321004, China
- Correspondence: (W.Y.); (M.K.); Tel.: +86-579-8229-1009 (W.Y. & M.K.)
| |
Collapse
|
25
|
Camacho-Muñoz D, Kiezel-Tsugunova M, Kiss O, Uddin M, Sundén M, Ryaboshapkina M, Lind L, Oscarsson J, Nicolaou A. Omega-3 carboxylic acids and fenofibrate differentially alter plasma lipid mediators in patients with non-alcoholic fatty liver disease. FASEB J 2021; 35:e21976. [PMID: 34618982 DOI: 10.1096/fj.202100380rrr] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 12/23/2022]
Abstract
Fibrates and omega-3 polyunsaturated acids are used for the treatment of hypertriglyceridemia but have not demonstrated consistent effects on cardiovascular (CV) risk. In this study, we investigate how these two pharmacological agents influence plasma levels of bioactive lipid mediators, aiming to explore their efficacy beyond that of lipid-lowering agents. Plasma from overweight patients with non-alcoholic fatty liver disease (NAFLD) and hypertriglyceridemia, participating in a randomized placebo-controlled study investigating the effects of 12 weeks treatment with fenofibrate or omega-3 free carboxylic acids (OM-3CA) (200 mg or 4 g per day, respectively), were analyzed for eicosanoids and related PUFA species, N-acylethanolamines (NAE) and ceramides. OM-3CA reduced plasma concentrations of proinflammatory PGE2 , as well as PGE1 , PGD1 and thromboxane B2 but increased prostacyclin, and eicosapentaenoic acid- and docosahexaenoic acid-derived lipids of lipoxygenase and cytochrome P450 monooxygenase (CYP) (e.g., 17-HDHA, 18-HEPE, 19,20-DiHDPA). Fenofibrate reduced plasma concentrations of vasoactive CYP-derived eicosanoids (DHETs). Although OM-3CA increased plasma levels of the NAE docosahexaenoyl ethanolamine and docosapentaenoyl ethanolamine, and fenofibrate increased palmitoleoyl ethanolamine, the effect of both treatments may have been masked by the placebo (olive oil). Fenofibrate was more efficacious than OM-3CA in significantly reducing plasma ceramides, pro-inflammatory lipids associated with CV disease risk. Neither treatment affected putative lipid species associated with NAFLD. Our results show that OM-3CA and fenofibrate differentially modulate the plasma mediator lipidome, with OM-3CA promoting the formation of lipid mediators with potential effects on chronic inflammation, while fenofibrate mainly reducing ceramides. These findings suggest that both treatments could ameliorate chronic inflammation with possible impact on disease outcomes, independent of triglyceride reduction.
Collapse
Affiliation(s)
- Dolores Camacho-Muñoz
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Magdalena Kiezel-Tsugunova
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Orsolya Kiss
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Mohib Uddin
- AstraZeneca Gothenburg, Biopharmaceuticals R&D, Mӧlndal, Sweden
| | - Mattias Sundén
- Department of Economics, University of Gothenburg, Gothenburg, Sweden
| | | | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Jan Oscarsson
- AstraZeneca Gothenburg, Biopharmaceuticals R&D, Mӧlndal, Sweden
| | - Anna Nicolaou
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.,Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
26
|
Yang XF, Lu M, You L, Gen H, Yuan L, Tian T, Li CY, Xu K, Hou J, Lei M. Herbal therapy for ameliorating nonalcoholic fatty liver disease via rebuilding the intestinal microecology. Chin Med 2021; 16:62. [PMID: 34315516 PMCID: PMC8314451 DOI: 10.1186/s13020-021-00470-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/14/2021] [Indexed: 02/08/2023] Open
Abstract
The worldwide prevalence of nonalcoholic fatty liver disease (NAFLD) is increasing, and this metabolic disorder has been recognized as a severe threat to human health. A variety of chemical drugs have been approved for treating NAFLD, however, they always has serious side effects. Chinese herbal medicines (CHMs) have been widely used for preventing and treating a range of metabolic diseases with satisfactory safety and effective performance in clinical treatment of NAFLD. Recent studies indicated that imbanlance of the intestinal microbiota was closely associated with the occurrence and development of NAFLD, thus, the intestinal microbiota has been recognized as a promising target for treatment of NAFLD. In recent decades, a variety of CHMs have been reported to effectively prevent or treat NAFLD by modulating intestinal microbiota to further interfer the gut-liver axis. In this review, recent advances in CHMs for the treatment of NAFLD via rebuilding the intestinal microecology were systematically reviewed. The key roles of CHMs in the regulation of gut microbiota and the gut-liver axis along with their mechanisms (such as modulating intestinal permeability, reducing the inflammatory response, protecting liver cells, improving lipid metabolism, and modulating nuclear receptors), were well summarized. All the knowledge and information presented here will be very helpful for researchers to better understand the applications and mechanisms of CHMs for treatment of NAFLD.
Collapse
Affiliation(s)
- Xiao-Fang Yang
- Critical Care Medicine, Seventh Peoples Hospital, Affiliated to Shanghai University of TCM, Shanghai, 200137, China
| | - Ming Lu
- Trauma Emergency Center, The Seventh Peoples Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Lijiao You
- Critical Care Medicine, Seventh Peoples Hospital, Affiliated to Shanghai University of TCM, Shanghai, 200137, China
| | - Huan Gen
- Critical Care Medicine, Seventh Peoples Hospital, Affiliated to Shanghai University of TCM, Shanghai, 200137, China
| | - Lin Yuan
- Critical Care Medicine, Seventh Peoples Hospital, Affiliated to Shanghai University of TCM, Shanghai, 200137, China
| | - Tianning Tian
- Trauma Emergency Center, The Seventh Peoples Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Chun-Yu Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Kailiang Xu
- Critical Care Medicine, Seventh Peoples Hospital, Affiliated to Shanghai University of TCM, Shanghai, 200137, China.
| | - Jie Hou
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| | - Ming Lei
- Critical Care Medicine, Seventh Peoples Hospital, Affiliated to Shanghai University of TCM, Shanghai, 200137, China.
| |
Collapse
|
27
|
Gastaldelli A, Stefan N, Häring HU. Liver-targeting drugs and their effect on blood glucose and hepatic lipids. Diabetologia 2021; 64:1461-1479. [PMID: 33877366 PMCID: PMC8187191 DOI: 10.1007/s00125-021-05442-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022]
Abstract
The global epidemic of non-alcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH) and the high prevalence among individuals with type 2 diabetes has attracted the attention of clinicians specialising in liver disorders. Many drugs are in the pipeline for the treatment of NAFLD/NASH, and several glucose-lowering drugs are now being tested specifically for the treatment of liver disease. Among these are nuclear hormone receptor agonists (e.g. peroxisome proliferator-activated receptor agonists, farnesoid X receptor agonists and liver X receptor agonists), fibroblast growth factor-19 and -21, single, dual or triple incretins, sodium-glucose cotransporter inhibitors, drugs that modulate lipid or other metabolic pathways (e.g. inhibitors of fatty acid synthase, diacylglycerol acyltransferase-1, acetyl-CoA carboxylase and 11β-hydroxysteroid dehydrogenase type-1) or drugs that target the mitochondrial pyruvate carrier. We have reviewed the metabolic effects of these drugs in relation to improvement of diabetic hyperglycaemia and fatty liver disease, as well as peripheral metabolism and insulin resistance.
Collapse
Affiliation(s)
- Amalia Gastaldelli
- Institute of Clinical Physiology, National Research Council-CNR, Pisa, Italy.
| | - Norbert Stefan
- Department of Internal Medicine IV, University of Tübingen, Tübingen, Germany.
- Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich, Tübingen, Germany.
- German Center for Diabetes Research, Neuherberg, Germany.
| | - Hans-Ulrich Häring
- Department of Internal Medicine IV, University of Tübingen, Tübingen, Germany
- Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich, Tübingen, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| |
Collapse
|
28
|
Yokote K, Yamashita S, Arai H, Araki E, Matsushita M, Nojima T, Suganami H, Ishibashi S. Effects of pemafibrate on glucose metabolism markers and liver function tests in patients with hypertriglyceridemia: a pooled analysis of six phase 2 and phase 3 randomized double-blind placebo-controlled clinical trials. Cardiovasc Diabetol 2021; 20:96. [PMID: 33947390 PMCID: PMC8097867 DOI: 10.1186/s12933-021-01291-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/27/2021] [Indexed: 12/26/2022] Open
Abstract
Background Increased risk of cardiovascular events is associated not only with dyslipidemias, but also with abnormalities in glucose metabolism and liver function. This study uses pooled analysis to explore the in-depth effects of pemafibrate, a selective peroxisome proliferator-activated receptor α modulator (SPPARMα) already known to decrease elevated triglycerides, on glucose metabolism and liver function in patients with hypertriglyceridemia. Methods We performed a post-hoc analysis of six phase 2 and phase 3 Japanese randomized double-blind placebo-controlled trials that examined the effects of daily pemafibrate 0.1 mg, 0.2 mg, and 0.4 mg on glucose metabolism markers and liver function tests (LFTs). Primary endpoints were changes in glucose metabolism markers and LFTs from baseline after 12 weeks of pemafibrate treatment. All adverse events and adverse drug reactions were recorded as safety endpoints. Results The study population was 1253 patients randomized to placebo (n = 298) or pemafibrate 0.1 mg/day (n = 127), 0.2 mg/day (n = 584), or 0.4 mg/day (n = 244). Participant mean age was 54.3 years, 65.4 % had BMI ≥ 25 kg/m2, 35.8 % had type 2 diabetes, and 42.6 % had fatty liver. Fasting glucose, fasting insulin, and HOMA-IR decreased significantly in all pemafibrate groups compared to placebo. The greatest decrease was for pemafibrate 0.4 mg/day: least square (LS) mean change from baseline in fasting glucose − 0.25 mmol/L; fasting insulin − 3.31 µU/mL; HOMA-IR − 1.28. ALT, γ-GT, ALP, and total bilirubin decreased significantly at all pemafibrate doses vs. placebo, with the greatest decrease in the pemafibrate 0.4 mg/day group: LS mean change from baseline in ALT − 7.6 U/L; γ-GT − 37.3 U/L; ALP − 84.7 U/L; and total bilirubin − 2.27 µmol/L. Changes in HbA1c and AST did not differ significantly from placebo in any pemafibrate groups in the overall study population. The decreases from baseline in LFTs and glucose metabolism markers except for HbA1c were notable among patients with higher baseline values. FGF21 increased significantly in all pemafibrate groups compared to placebo, with the greatest increase in the pemafibrate 0.4 mg/day group. Adverse event rates were similar in all groups including placebo. Conclusions In patients with hypertriglyceridemia, pemafibrate can improve glucose metabolism and liver function, and increase FGF21, without increasing adverse event risk. Supplementary Information The online version contains supplementary material available at 10.1186/s12933-021-01291-w.
Collapse
Affiliation(s)
- Koutaro Yokote
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8670, Japan. .,Department of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8670, Japan.
| | - Shizuya Yamashita
- Rinku General Medical Center, 2-23 Ohrai-kita, Rinku, Izumisano-shi, Osaka, 598-8577, Japan
| | - Hidenori Arai
- National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu-shi, Aichi, 474-8511, Japan
| | - Eiichi Araki
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto-shi, Kumamoto, 860-8556, Japan
| | - Mitsunori Matsushita
- Medical Affairs Department, Kowa Company, Ltd, 3-4-14 Nihonbashi-honcho, Chuo-ku, Tokyo, 103-8433, Japan
| | - Toshiaki Nojima
- Clinical Data Science Department, Kowa Company, Ltd, 3-4-14 Nihonbashi-honcho, Chuo- ku, Tokyo, 103-8433, Japan
| | - Hideki Suganami
- Clinical Data Science Department, Kowa Company, Ltd, 3-4-14 Nihonbashi-honcho, Chuo- ku, Tokyo, 103-8433, Japan
| | - Shun Ishibashi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| |
Collapse
|
29
|
Thibaut R, Gage MC, Pineda-Torra I, Chabrier G, Venteclef N, Alzaid F. Liver macrophages and inflammation in physiology and physiopathology of non-alcoholic fatty liver disease. FEBS J 2021; 289:3024-3057. [PMID: 33860630 PMCID: PMC9290065 DOI: 10.1111/febs.15877] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/05/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022]
Abstract
Non‐alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic syndrome, being a common comorbidity of type 2 diabetes and with important links to inflammation and insulin resistance. NAFLD represents a spectrum of liver conditions ranging from steatosis in the form of ectopic lipid storage, to inflammation and fibrosis in nonalcoholic steatohepatitis (NASH). Macrophages that populate the liver play important roles in maintaining liver homeostasis under normal physiology and in promoting inflammation and mediating fibrosis in the progression of NAFLD toward to NASH. Liver macrophages are a heterogenous group of innate immune cells, originating from the yolk sac or from circulating monocytes, that are required to maintain immune tolerance while being exposed portal and pancreatic blood flow rich in nutrients and hormones. Yet, liver macrophages retain a limited capacity to raise the alarm in response to danger signals. We now know that macrophages in the liver play both inflammatory and noninflammatory roles throughout the progression of NAFLD. Macrophage responses are mediated first at the level of cell surface receptors that integrate environmental stimuli, signals are transduced through multiple levels of regulation in the cell, and specific transcriptional programmes dictate effector functions. These effector functions play paramount roles in determining the course of disease in NAFLD and even more so in the progression towards NASH. The current review covers recent reports in the physiological and pathophysiological roles of liver macrophages in NAFLD. We emphasise the responses of liver macrophages to insulin resistance and the transcriptional machinery that dictates liver macrophage function.
Collapse
Affiliation(s)
- Ronan Thibaut
- Cordeliers Research Centre, INSERM, IMMEDIAB Laboratory, Sorbonne Université, Université de Paris, France
| | - Matthew C Gage
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Inès Pineda-Torra
- Department of Medicine, Centre for Cardiometabolic and Vascular Science, University College London, UK
| | - Gwladys Chabrier
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Nicolas Venteclef
- Cordeliers Research Centre, INSERM, IMMEDIAB Laboratory, Sorbonne Université, Université de Paris, France
| | - Fawaz Alzaid
- Cordeliers Research Centre, INSERM, IMMEDIAB Laboratory, Sorbonne Université, Université de Paris, France
| |
Collapse
|
30
|
Francque S, Szabo G, Abdelmalek MF, Byrne CD, Cusi K, Dufour JF, Roden M, Sacks F, Tacke F. Nonalcoholic steatohepatitis: the role of peroxisome proliferator-activated receptors. Nat Rev Gastroenterol Hepatol 2021; 18:24-39. [PMID: 33093663 DOI: 10.1038/s41575-020-00366-5] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/02/2020] [Indexed: 02/06/2023]
Abstract
The increasing epidemic of obesity worldwide is linked to serious health effects, including increased prevalence of type 2 diabetes mellitus, cardiovascular disease and nonalcoholic fatty liver disease (NAFLD). NAFLD is the liver manifestation of the metabolic syndrome and includes the spectrum of liver steatosis (known as nonalcoholic fatty liver) and steatohepatitis (known as nonalcoholic steatohepatitis), which can evolve into progressive liver fibrosis and eventually cause cirrhosis. Although NAFLD is becoming the number one cause of chronic liver diseases, it is part of a systemic disease that affects many other parts of the body, including adipose tissue, pancreatic β-cells and the cardiovascular system. The pathomechanism of NAFLD is multifactorial across a spectrum of metabolic derangements and changes in the host microbiome that trigger low-grade inflammation in the liver and other organs. Peroxisome proliferator-activated receptors (PPARs) are a group of nuclear regulatory factors that provide fine tuning for key elements of glucose and fat metabolism and regulate inflammatory cell activation and fibrotic processes. This Review summarizes and discusses the current literature on NAFLD as the liver manifestation of the systemic metabolic syndrome and focuses on the role of PPARs in the pathomechanisms as well as in the potential targeting of disease.
Collapse
Affiliation(s)
- Sven Francque
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium. .,Translational Research in Inflammation and Immunology (TWI2N), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.
| | - Gyongyi Szabo
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Manal F Abdelmalek
- Division of Gastroenterology and Hepatology, Department of Medicine, Duke University Health System, Durham, NC, USA
| | - Christopher D Byrne
- Nutrition & Metabolism, Human Development & Health, Faculty of Medicine, University Hospital Southampton, Southampton, UK
| | - Kenneth Cusi
- Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, FL, USA
| | - Jean-François Dufour
- Hepatology, Department of Clinical Research, University Hospital of Bern, Bern, Switzerland.,University Clinic for Visceral Surgery and Medicine, Inselspital, Bern, Switzerland
| | - Michael Roden
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, University Clinics Düsseldorf, Düsseldorf, Germany.,Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Frank Sacks
- Departments of Nutrition and Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Channing Division, Department of Medicine Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité University Medical Center, Berlin, Germany
| |
Collapse
|
31
|
Sven M F, Pierre B, Manal F A, Quentin M A, Elisabetta B, Vlad R, Philippe HM, Bruno S, Jean-Louis J, Pierre B, Jean-Louis A. A randomised, double-blind, placebo-controlled, multi-centre, dose-range, proof-of-concept, 24-week treatment study of lanifibranor in adult subjects with non-alcoholic steatohepatitis: Design of the NATIVE study. Contemp Clin Trials 2020; 98:106170. [PMID: 33038502 DOI: 10.1016/j.cct.2020.106170] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/10/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022]
Abstract
Background Non-alcoholic steatohepatitis (NASH), a multifactorial disease, can progress to hepatic fibrosis and cirrhosis. The Peroxysomal Proliferator-Activated Receptors, PPARα, β/δ and γ, play a central role in the regulation of glucose and lipid metabolism and of the inflammatory and fibrogenic pathways in liver and in other organs that all contribute to NASH pathogenesis. Lanifibranor (IVA337), a panPPAR agonist, by acting on these three different PPAR isotypes, combines pharmacological effects that could address the different components of the disease as demonstrated in preclinical models. Objectives NATIVE study (EudraCT: 2016-001979-70, NCT: NCT03008070) aims to assess the safety and the efficacy of a 24-week treatment with lanifibranor (800 and 1200 mg/day) in adult non-cirrhotic NASH patients. The primary efficacy endpoint is a 2-point reduction in the activity part of the Steatosis Activity Fibrosis (SAF) histological score (combining inflammation and ballooning) without worsening of fibrosis. Design NATIVE is a Phase 2b randomised, placebo-controlled, double-blind, parallel-assignment, dose-range study. Eligible adult patients with a confirmed histological diagnosis of NASH should have a SAF Activity score of 3 or 4 (>2) and a SAF Steatosis score ≥ 1. There is no specific criterion related to the fibrosis score except that patients with cirrhosis (F4) were excluded. Summary This study will evaluate the efficacy of a 24-week treatment of NASH with lanifibranor based on histological evaluations (SAF score) by biopsy. The number of responders according to the SAF Activity score-based definition from baseline to 24 weeks will be compared between groups and serves as primary endpoint.
Collapse
Affiliation(s)
- Francque Sven M
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Drie Eikenstraat 655, B-2650 Edegem, 2610 Wilrijk, Belgium; Laboratory of Experimental Medicine and Paediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Bedossa Pierre
- Liverpat, 28 rue de l'Amiral Hamelin, 75116 Paris, France.; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, Upon Tyne, UK
| | - Abdelmalek Manal F
- Division of Gastroenterology and Hepatology, Duke University, 40 Duke Medicine Circle, Durham, NC 27710, USA
| | - Anstee Quentin M
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, Upon Tyne, UK; Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne, UK; Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Bugianesi Elisabetta
- Division of Gastroenterology and Hepatology, Department of Medical Sciences, University of Torino, A.O. Città della Salute e della Scienza di Torino, Corso Bramante, 88 I-10126 Torino, Italy
| | - Ratziu Vlad
- AP-HP Hopital Pitié-Salpetrière, 47 Boulevard de L'Hôpital, 75013 Paris, France
| | | | - Scherrer Bruno
- Bruno Scherrer Conseil S.A.R.L., 15 rue Beethoven, 78730 Saint Arnoult en Yvelines, France
| | | | | | | |
Collapse
|
32
|
Uncovering New Drug Properties in Target-Based Drug-Drug Similarity Networks. Pharmaceutics 2020; 12:pharmaceutics12090879. [PMID: 32947845 PMCID: PMC7557376 DOI: 10.3390/pharmaceutics12090879] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 01/19/2023] Open
Abstract
Despite recent advances in bioinformatics, systems biology, and machine learning, the accurate prediction of drug properties remains an open problem. Indeed, because the biological environment is a complex system, the traditional approach—based on knowledge about the chemical structures—can not fully explain the nature of interactions between drugs and biological targets. Consequently, in this paper, we propose an unsupervised machine learning approach that uses the information we know about drug–target interactions to infer drug properties. To this end, we define drug similarity based on drug–target interactions and build a weighted Drug–Drug Similarity Network according to the drug–drug similarity relationships. Using an energy-model network layout, we generate drug communities associated with specific, dominant drug properties. DrugBank confirms the properties of 59.52% of the drugs in these communities, and 26.98% are existing drug repositioning hints we reconstruct with our DDSN approach. The remaining 13.49% of the drugs seem not to match the dominant pharmacologic property; thus, we consider them potential drug repurposing hints. The resources required to test all these repurposing hints are considerable. Therefore we introduce a mechanism of prioritization based on the betweenness/degree node centrality. Using betweenness/degree as an indicator of drug repurposing potential, we select Azelaic acid and Meprobamate as a possible antineoplastic and antifungal, respectively. Finally, we use a test procedure based on molecular docking to analyze Azelaic acid and Meprobamate’s repurposing.
Collapse
|
33
|
Gut-Pancreas-Liver Axis as a Target for Treatment of NAFLD/NASH. Int J Mol Sci 2020; 21:ijms21165820. [PMID: 32823659 PMCID: PMC7461212 DOI: 10.3390/ijms21165820] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/04/2020] [Accepted: 08/09/2020] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents the most common form of chronic liver disease worldwide. Due to its association with obesity and diabetes and the fall in hepatitis C virus morbidity, cirrhosis in NAFLD is becoming the most frequent indication to liver transplantation, but the pathogenetic mechanisms are still not completely understood. The so-called gut-liver axis has gained enormous interest when data showed that its alteration can lead to NAFLD development and might favor the occurrence of non-alcoholic steatohepatitis (NASH). Moreover, several therapeutic approaches targeting the gut-pancreas-liver axis, e.g., incretins, showed promising results in NASH treatment. In this review, we describe the role of incretin hormones in NAFLD/NASH pathogenesis and treatment and how metagenomic/metabolomic alterations in the gut microbiota can lead to NASH in the presence of gut barrier modifications favoring the passage of bacteria or bacterial products in the portal circulation, i.e., bacterial translocation.
Collapse
|
34
|
Rahimi L, Malek M, Ismail-Beigi F, Khamseh ME. Challenging Issues in the Management of Cardiovascular Risk Factors in Diabetes During the COVID-19 Pandemic: A Review of Current Literature. Adv Ther 2020; 37:3450-3462. [PMID: 32632851 PMCID: PMC7338141 DOI: 10.1007/s12325-020-01417-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Indexed: 02/06/2023]
Abstract
The COVID-19 outbreak was declared a pandemic on March 2020. Many patients with SARS-CoV-2 infection have underlying chronic medical conditions such as diabetes, cardiovascular disease (CVD), and hypertension. Patient-related outcomes are worse if there are associated comorbidities. We do not have enough evidence regarding the most appropriate management of patients with diabetes during COVID-19 infection. Insulin resistance and CVD together increase the inflammatory state of the body, which can contribute to and perhaps mediate the increase of COVID-19 severity. Hence, in addition to management of dysglycemia, other CVD risk factors should be targeted. We explore the possible pathophysiologic links between diabetes and COVID-19 and discuss various options to treat dysglycemia, hypertension, and dyslipidemia in the era of COVID-19.
Collapse
Affiliation(s)
- Leili Rahimi
- Department of Medicine, Case Western Reserve University, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Mojtaba Malek
- Research Center for Prevention of Cardiovascular Disease, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Faramarz Ismail-Beigi
- Department of Medicine, Case Western Reserve University, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Mohammad E Khamseh
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
35
|
Peterson LR, Jiang X, Chen L, Goldberg AC, Farmer MS, Ory DS, Schaffer JE. Alterations in plasma triglycerides and ceramides: links with cardiac function in humans with type 2 diabetes. J Lipid Res 2020; 61:1065-1074. [PMID: 32393551 PMCID: PMC7328042 DOI: 10.1194/jlr.ra120000669] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/15/2020] [Indexed: 12/23/2022] Open
Abstract
Cardiac dysfunction in T2D is associated with excessive FA uptake, oxidation, and generation of toxic lipid species by the heart. It is not known whether decreasing lipid delivery to the heart can effect improvement in cardiac function in humans with T2D. Thus, our objective was to test the hypothesis that lowering lipid delivery to the heart would result in evidence of decreased "lipotoxicity," improved cardiac function, and salutary effects on plasma biomarkers of cardiovascular risk. Thus, we performed a double-blind randomized placebo-controlled parallel design study of the effects of 12 weeks of fenofibrate-induced lipid lowering on cardiac function, inflammation, and oxidation biomarkers, and on the ratio of two plasma ceramides, Cer d18:1 (4E) (1OH, 3OH)/24:0 and Cer d18:1 (4E) (1OH, 3OH)/16:0 (i.e., "C24:0/C16:0"), which is associated with decreased risk of cardiac dysfunction and heart failure. Fenofibrate lowered plasma TG and cholesterol but did not improve heart systolic or diastolic function. Fenofibrate treatment lowered the plasma C24:0/C16:0 ceramide ratio and minimally altered oxidative stress markers but did not alter measures of inflammation. Overall, plasma TG lowering correlated with improvement of cardiac relaxation (diastolic function) as measured by tissue Doppler-derived parameter e'. Moreover, lowering the plasma C24:0/C16:0 ceramide ratio was correlated with worse diastolic function. These findings indicate that fenofibrate treatment per se is not sufficient to effect changes in cardiac function; however, decreases in plasma TG may be linked to improved diastolic function. In contrast, decreases in plasma C24:0/C16:0 are linked with worsening cardiac function.
Collapse
Affiliation(s)
- Linda R Peterson
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110. mailto:
| | - Xuntian Jiang
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Ling Chen
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO 63110
| | - Anne C Goldberg
- Division of Endocrinology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Marsha S Farmer
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Daniel S Ory
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Jean E Schaffer
- Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215
| |
Collapse
|
36
|
Ruscica M, Corsini A, Ferri N, Banach M, Sirtori CR. Clinical approach to the inflammatory etiology of cardiovascular diseases. Pharmacol Res 2020; 159:104916. [PMID: 32445957 PMCID: PMC7238995 DOI: 10.1016/j.phrs.2020.104916] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 02/06/2023]
Abstract
Inflammation is an obligatory marker of arterial disease, both stemming from the inflammatory activity of cholesterol itself and from well-established molecular mechanisms. Raised progenitor cell recruitment after major events and clonal hematopoiesis related mechanisms have provided an improved understanding of factors regulating inflammatory phenomena. Trials with inflammation antagonists have led to an extensive evaluation of biomarkers such as the high sensitivity C reactive protein (hsCRP), not exerting a causative role, but frequently indicative of the individual cardiovascular (CV) risk. Aim of this review is to provide indication on the anti-inflammatory profile of agents of general use in CV prevention, i.e. affecting lipids, blood pressure, diabetes as well nutraceuticals such as n-3 fatty acids. A crucial issue in the evaluation of the benefit of the anti-inflammatory activity is the frequent discordance between a beneficial activity on a major risk factor and associated changes of hsCRP, as in the case of statins vs PCSK9 antagonists. In hypertension, angiotensin converting enzyme inhibitors exert an optimal anti-inflammatory activity, vs the case of sartans. The remarkable preventive activity of SLGT-2 inhibitors in heart failure is not associated with a clear anti-inflammatory mechanism. Finally, icosapent ethyl has been shown to reduce the CV risk in hypertriglyceridemia, with a 27 % reduction of hsCRP. The inflammation-based approach to arterial disease has considerably gained from an improved understanding of the clinical diagnostic strategy and from a better knowledge on the mode of action of numerous agents, including nutraceuticals.
Collapse
Affiliation(s)
- Massimiliano Ruscica
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Alberto Corsini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy; Multimedica IRCCS, Milano, Italy
| | - Nicola Ferri
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Padua, Italy
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Lodz, Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland; Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland.
| | - Cesare R Sirtori
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
37
|
Kim NH, Kim SG. Fibrates Revisited: Potential Role in Cardiovascular Risk Reduction. Diabetes Metab J 2020; 44:213-221. [PMID: 32347023 PMCID: PMC7188966 DOI: 10.4093/dmj.2020.0001] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 02/05/2020] [Indexed: 12/18/2022] Open
Abstract
Fibrates, peroxisome proliferator-activated receptor-α agonists, are potent lipid-modifying drugs. Their main effects are reduction of triglycerides and increase in high-density lipoprotein levels. Several randomized controlled trials have not demonstrated their benefits on cardiovascular risk reduction, especially as an "add on" to statin therapy. However, subsequent analyses by major clinical trials, meta-analyses, and real-world evidence have proposed their potential in specific patient populations with atherogenic dyslipidemia and metabolic syndrome. Here, we have reviewed and discussed the accumulated data on fibrates to understand their current status in cardiovascular risk management.
Collapse
Affiliation(s)
- Nam Hoon Kim
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Sin Gon Kim
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea.
| |
Collapse
|
38
|
Morieri ML, Shah HS, Sjaarda J, Lenzini PA, Campbell H, Motsinger-Reif AA, Gao H, Lovato L, Prudente S, Pandolfi A, Pezzolesi MG, Sigal RJ, Paré G, Marcovina SM, Rotroff DM, Patorno E, Mercuri L, Trischitta V, Chew EY, Kraft P, Buse JB, Wagner MJ, Cresci S, Gerstein HC, Ginsberg HN, Mychaleckyj JC, Doria A. PPARA Polymorphism Influences the Cardiovascular Benefit of Fenofibrate in Type 2 Diabetes: Findings From ACCORD-Lipid. Diabetes 2020; 69:771-783. [PMID: 31974142 PMCID: PMC7085251 DOI: 10.2337/db19-0973] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 01/21/2020] [Indexed: 02/06/2023]
Abstract
The cardiovascular benefits of fibrates have been shown to be heterogeneous and to depend on the presence of atherogenic dyslipidemia. We investigated whether genetic variability in the PPARA gene, coding for the pharmacological target of fibrates (PPAR-α), could be used to improve the selection of patients with type 2 diabetes who may derive cardiovascular benefit from addition of this treatment to statins. We identified a common variant at the PPARA locus (rs6008845, C/T) displaying a study-wide significant influence on the effect of fenofibrate on major cardiovascular events (MACE) among 3,065 self-reported white subjects treated with simvastatin and randomized to fenofibrate or placebo in the ACCORD-Lipid trial. T/T homozygotes (36% of participants) experienced a 51% MACE reduction in response to fenofibrate (hazard ratio 0.49; 95% CI 0.34-0.72), whereas no benefit was observed for other genotypes (P interaction = 3.7 × 10-4). The rs6008845-by-fenofibrate interaction on MACE was replicated in African Americans from ACCORD (N = 585, P = 0.02) and in external cohorts (ACCORD-BP, ORIGIN, and TRIUMPH, total N = 3059, P = 0.005). Remarkably, rs6008845 T/T homozygotes experienced a cardiovascular benefit from fibrate even in the absence of atherogenic dyslipidemia. Among these individuals, but not among carriers of other genotypes, fenofibrate treatment was associated with lower circulating levels of CCL11-a proinflammatory and atherogenic chemokine also known as eotaxin (P for rs6008845-by-fenofibrate interaction = 0.003). The GTEx data set revealed regulatory functions of rs6008845 on PPARA expression in many tissues. In summary, we have found a common PPARA regulatory variant that influences the cardiovascular effects of fenofibrate and that could be used to identify patients with type 2 diabetes who would derive benefit from fenofibrate treatment, in addition to those with atherogenic dyslipidemia.
Collapse
Affiliation(s)
- Mario Luca Morieri
- Research Division, Joslin Diabetes Center, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
- Department of Medicine, University of Padova, Padova, Italy
| | - Hetal S Shah
- Research Division, Joslin Diabetes Center, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Jennifer Sjaarda
- McMaster University and Population Health Research Institute, Hamilton, Ontario, Canada
| | - Petra A Lenzini
- Department of Genetics, Washington University School of Medicine, St. Louis, MO
| | - Hannah Campbell
- Department of Genetics, Washington University School of Medicine, St. Louis, MO
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Alison A Motsinger-Reif
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, NC
| | - He Gao
- Research Division, Joslin Diabetes Center, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Laura Lovato
- Wake Forest School of Medicine, Winston Salem, NC
| | - Sabrina Prudente
- Research Unit of Metabolic and Cardiovascular Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Assunta Pandolfi
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio," Chieti, Italy
| | - Marcus G Pezzolesi
- Division of Nephrology and Hypertension and Diabetes and Metabolism Center, University of Utah, Salt Lake City, UT
| | - Ronald J Sigal
- Departments of Medicine, Cardiac Sciences, and Community Health Sciences, Cumming School of Medicine, Faculties of Medicine and Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Guillaume Paré
- McMaster University and Population Health Research Institute, Hamilton, Ontario, Canada
| | - Santica M Marcovina
- Department of Medicine, University of Washington, and Northwest Lipid Metabolism and Diabetes Research Laboratories, Seattle, WA
| | - Daniel M Rotroff
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH
| | - Elisabetta Patorno
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Luana Mercuri
- Research Unit of Metabolic and Cardiovascular Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Vincenzo Trischitta
- Research Unit of Metabolic and Cardiovascular Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
- Department of Experimental Medicine, "Sapienza" University, Rome, Italy
| | - Emily Y Chew
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Peter Kraft
- Departments of Epidemiology and Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - John B Buse
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Michael J Wagner
- Center for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Sharon Cresci
- Department of Genetics, Washington University School of Medicine, St. Louis, MO
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Hertzel C Gerstein
- McMaster University and Population Health Research Institute, Hamilton, Ontario, Canada
| | - Henry N Ginsberg
- Irving Institute for Clinical and Translational Research, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Josyf C Mychaleckyj
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA
| | - Alessandro Doria
- Research Division, Joslin Diabetes Center, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|
39
|
Koshelskaya OA, Suslova TE, Kologrivova IV, Margolis NY, Zhuravleva OA, Kharitonova OA, Vinnitskaya IV. Metabolic, Inflammatory and Imaging Biomarkers in Evaluation of Coronary Arteries Anatomical Stenosis in Patients with Stable Coronary Artery Disease. RATIONAL PHARMACOTHERAPY IN CARDIOLOGY 2020. [DOI: 10.20996/1819-6446-2020-01-01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aim. To reveal the statistically significant determinants of the coronary artery (CA) stenosis ≥70% in patients with chronic stable CA disease receiving drug therapy.Material and methods. The study included 68 patients (aged 59.6±6.4 years) with stable CA disease and optimal cardioactive therapy. Coronary angiography was performed in all patients. Basic serum parameters of carbohydrate and lipid metabolism were evaluated; serum concentration of cytokines, adipokines and high sensitive C-reactive protein (hsCRP) were determined by ELISA. The epicardial adipose tissue (EAT) thickness was measured by B-mode echocardiography.Results. The patients’ classification model was created. It allowed to determine probability P for CA stenosis of 70% or more for each patient using formula Р, where L=0.89-1.09×gender+ 0.51×triglycerides–0.28×HDL+0.24×hsCRP (HDL – high density lipoproteins). If calculated P value falls into interval (0; 0.228) the patient should be classified into the group with the risk of CA stenosis ≥70%, while if calculated P value falls into interval (0.228; 1), the patient should be classified into group with CA stenosis below 70%. Even though EAT thickness was indistinguishable determinant of CA stenosis ≥70% in our study, its inclusion into the model as a fifth variable allowed to increase the model quality: area under ROC-curve (AUC) in the model without EAT thickness constituted 0.708 (p=0.009), and increased up to 0.879 (p=0.011) after EAT thickness inclusion.Conclusions. Male sex, level of triglycerides, HDL and hsCRP are statistically significant determinants of CA stenosis ≥70%. The presence of the triglycerides level in the created model underscores an important contribution of this lipid fraction, even when elevated only up to the moderate values, into modulation of the residual cardiovascular risk in patients receiving statins.
Collapse
Affiliation(s)
- O. A. Koshelskaya
- Tomsk National Research Medical Center, Russian Academy of Science, Cardiology Research Institute
| | - T. E. Suslova
- Tomsk National Research Medical Center, Russian Academy of Science, Cardiology Research Institute
| | - I. V. Kologrivova
- Tomsk National Research Medical Center, Russian Academy of Science, Cardiology Research Institute
| | | | - O. A. Zhuravleva
- Tomsk National Research Medical Center, Russian Academy of Science, Cardiology Research Institute
| | - O. A. Kharitonova
- Tomsk National Research Medical Center, Russian Academy of Science, Cardiology Research Institute
| | - I. V. Vinnitskaya
- Tomsk National Research Medical Center, Russian Academy of Science, Cardiology Research Institute
| |
Collapse
|
40
|
Ozburn AR, Metten P, Potretzke S, Townsley KG, Blednov YA, Crabbe JC. Effects of Pharmacologically Targeting Neuroimmune Pathways on Alcohol Drinking in Mice Selectively Bred to Drink to Intoxication. Alcohol Clin Exp Res 2020; 44:553-566. [PMID: 31853996 DOI: 10.1111/acer.14269] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/09/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Rodent models of high alcohol drinking offer opportunities to better understand factors for alcohol use disorders (AUD) and test potential treatments. Selective breeding was carried out to create 2 unique High Drinking in the Dark (HDID-1, HDID-2) mouse lines that represent models of genetic risk for binge-like drinking. A number of studies have indicated that neuroimmune genes are important for regulation of alcohol drinking. We tested whether compounds shown to reduce drinking in other models also reduce alcohol intake in these unique genetic lines. METHODS We report tests of gabapentin, tesaglitazar, fenofibrate, caffeic acid phenethyl ester (CAPE), ibrutinib, and rolipram. Although these compounds have different mechanisms of action, they have all been shown to reduce inflammatory responses. We evaluated effects of these compounds on alcohol intake. In order to facilitate comparison with previously published findings for some compounds, we employed similar schedules that were previously used for that compound. RESULTS Gabapentin increased ethanol (EtOH) binge-like alcohol drinking in female HDID-1 and HS/NPT mice. Tesaglitazar and fenofibrate did not alter 2-bottle choice (2BC) drinking in male HDID-1 or HS/NPT mice. However, tesaglitazar had no effect on DID EtOH intake but reduced blood alcohol levels (BAL), and fenofibrate increased DID intake with no effects on BAL. CAPE had no effect on EtOH intake. Ibrutinib reduced intake in female HDID-1 in initial testing, but did not reduce intake in a second week of testing. Rolipram reduced DID intake and BALs in male and female HDID-1, HDID-2, and HS/NPT mice. CONCLUSIONS A number of compounds shown to reduce EtOH drinking in other models, and genotypes are not effective in HDID mice or their genetically heterogeneous founders, HS/NPT. The most promising compound was the PDE4 inhibitor, rolipram. These results highlight the importance of assessing generalizability when rigorously testing compounds for therapeutic development.
Collapse
Affiliation(s)
- Angela R Ozburn
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, VA Portland Health Care System, Oregon Health & Science University, Portland, Oregon
| | - Pamela Metten
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, VA Portland Health Care System, Oregon Health & Science University, Portland, Oregon
| | - Sheena Potretzke
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, VA Portland Health Care System, Oregon Health & Science University, Portland, Oregon
| | - Kayla G Townsley
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, VA Portland Health Care System, Oregon Health & Science University, Portland, Oregon
| | - Yuri A Blednov
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, Texas
| | - John C Crabbe
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, VA Portland Health Care System, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
41
|
Marjot T, Moolla A, Cobbold JF, Hodson L, Tomlinson JW. Nonalcoholic Fatty Liver Disease in Adults: Current Concepts in Etiology, Outcomes, and Management. Endocr Rev 2020; 41:5601173. [PMID: 31629366 DOI: 10.1210/endrev/bnz009] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/14/2019] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a spectrum of disease, extending from simple steatosis to inflammation and fibrosis with a significant risk for the development of cirrhosis. It is highly prevalent and is associated with significant adverse outcomes both through liver-specific morbidity and mortality but, perhaps more important, through adverse cardiovascular and metabolic outcomes. It is closely associated with type 2 diabetes and obesity, and both of these conditions drive progressive disease toward the more advanced stages. The mechanisms that govern hepatic lipid accumulation and the predisposition to inflammation and fibrosis are still not fully understood but reflect a complex interplay between metabolic target tissues including adipose and skeletal muscle, and immune and inflammatory cells. The ability to make an accurate assessment of disease stage (that relates to clinical outcome) can also be challenging. While liver biopsy is still regarded as the gold-standard investigative tool, there is an extensive literature on the search for novel noninvasive biomarkers and imaging modalities that aim to accurately reflect the stage of underlying disease. Finally, although no therapies are currently licensed for the treatment of NAFLD, there are interventions that appear to have proven efficacy in randomized controlled trials as well as an extensive emerging therapeutic landscape of new agents that target many of the fundamental pathophysiological processes that drive NAFLD. It is highly likely that over the next few years, new treatments with a specific license for the treatment of NAFLD will become available.
Collapse
Affiliation(s)
- Thomas Marjot
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, University of Oxford, John Radcliffe Hospital, Oxford, UK.,Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
| | - Ahmad Moolla
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
| | - Jeremy F Cobbold
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
| | - Jeremy W Tomlinson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
| |
Collapse
|
42
|
Abstract
Dyslipidemia is one of the major cardiovascular risk factors, but beyond statin treatment-which represents the cornerstone of therapy-a relevant practical uncertainty regards the use of fibrate derivatives. In the lack of successful results from the main cardiovascular trials, guidelines recommend the use of peroxisome proliferator-activated receptor agonists in selected cases, i.e. patients with true atherogenic dyslipidemia. However, recent observations indicate that fenofibrate treatment may provide a reliable complementary support against residual cardiovascular risk. We therefore summarize current evidence on fenofibrate, seeking to provide an updated interpretation of recent studies in the field.
Collapse
|
43
|
Sahebkar A, Simental-Mendía LE, Katsiki N, Reiner Ž, Banach M, Pirro M, Atkin SL. Effect of fenofibrate on plasma apolipoprotein C-III levels: a systematic review and meta-analysis of randomised placebo-controlled trials. BMJ Open 2019; 8:e021508. [PMID: 30798284 PMCID: PMC6278807 DOI: 10.1136/bmjopen-2018-021508] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES This meta-analysis of randomised placebo-controlled clinical trials aimed to assess the effect of fenofibrate on apolipoprotein C-III (apo C-III), a key regulator of triglyceride metabolism. MATERIALS AND METHODS Randomised placebo-controlled trials investigating the impact of fenofibrate treatment on apo C-III levels were searched in PubMed-Medline, Scopus, Web of Science and Google Scholar databases from inception to 18 August 2017. Quantitative data synthesis was determined by a random-effects model and generic inverse variance method. Sensitivity analysis was conducted using the leave-one-out method. A weighted random-effects meta-regression was performed to evaluate glycaemic parameter confounders. RESULTS Meta-analysis of 10 clinical trials involving 477 subjects showed fenofibrate therapy decreased apo C-III levels (weighted mean difference (WMD) -4.78 mg/dL, 95% CI -6.95 to -2.61, p<0.001; I266.87%). Subgroup analysis showed that fenofibrate reduced plasma apo C-III concentrations in subgroups of trials with treatment durations of either <12 weeks (WMD -4.50 mg/dL, p=0.001) or ≥12 weeks (WMD: -4.73 mg/dL, p=0.009) and doses of fenofibrate <200 mg/day (WMD -6.33 mg/dL, p<0.001) and >200 mg/day (p=0.006), with no significant difference between the subgroups. CONCLUSION This meta-analysis found that fenofibrate therapy significantly decreases apo C-III levels, an effect evident with both short-term treatment and doses less than 200 mg/day.
Collapse
Affiliation(s)
- Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Niki Katsiki
- Second Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippocration Hospital, Thessaloniki, Greece
| | - Željko Reiner
- Department of Internal medicine, University Hospital Center Zagreb, University of Zagreb, Zagreb, Croatia
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Lodz, Poland
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | | |
Collapse
|
44
|
Impact of drugs with anti-inflammatory effects on skeletal muscle and inflammation: A systematic literature review. Exp Gerontol 2018; 114:33-49. [PMID: 30367977 DOI: 10.1016/j.exger.2018.10.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 09/01/2018] [Accepted: 10/17/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND Ageing-related low-grade inflammation is suggested to aggravate sarcopenia and frailty. This systematic review investigates the influence that drugs with anti-inflammatory effects (AIDs) have on inflammation and skeletal muscle. METHODS PubMed and Web of Science were systematically screened for articles reporting the effects of AIDs on inflammation on one hand and on muscle mass and/or performance on the other. RESULTS Twenty-eight articles were included. These articles were heterogeneous in terms of the subjects studied, intervention components, setting, and outcome measures. Articles on older humans with acute inflammation showed evidence that celecoxib and piroxicam could reduce inflammation and improve performance and that ibuprofen improves exercise-induced muscle hypertrophy and gains in strength. In younger humans, only the effects of AIDs combined with exercise were investigated; no significant benefits of non-selective COX-inhibitors were reported, but improved strength gains with etanercept and reduced muscle soreness with celecoxib were noted. Indomethacin increased acute exercise-induced inflammation and reduced satellite cell differentiation in exercising muscle. Most articles did not systematically report occurrences of side effects. CONCLUSIONS Although AIDs showed significant reduction in inflammation-induced muscle weakness in older hospitalised patients with acute inflammation, robust evidence is still lacking. When combined with exercise, AIDs presented a protective effect against age-related loss of muscle mass, thus enhancing muscle mass and performance. The mechanism regulating muscle strength and its mass seems to differ between individuals of old and young age. However, the effects seem drug-specific and dose-dependent and appear to be influenced by subjects' trainability and the clinical context. In addition, the balance between benefits and harm remains unclear.
Collapse
|
45
|
Bougarne N, Weyers B, Desmet SJ, Deckers J, Ray DW, Staels B, De Bosscher K. Molecular Actions of PPARα in Lipid Metabolism and Inflammation. Endocr Rev 2018; 39:760-802. [PMID: 30020428 DOI: 10.1210/er.2018-00064] [Citation(s) in RCA: 442] [Impact Index Per Article: 73.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 07/10/2018] [Indexed: 12/13/2022]
Abstract
Peroxisome proliferator-activated receptor α (PPARα) is a nuclear receptor of clinical interest as a drug target in various metabolic disorders. PPARα also exhibits marked anti-inflammatory capacities. The first-generation PPARα agonists, the fibrates, have however been hampered by drug-drug interaction issues, statin drop-in, and ill-designed cardiovascular intervention trials. Notwithstanding, understanding the molecular mechanisms by which PPARα works will enable control of its activities as a drug target for metabolic diseases with an underlying inflammatory component. Given its role in reshaping the immune system, the full potential of this nuclear receptor subtype as a versatile drug target with high plasticity becomes increasingly clear, and a novel generation of agonists may pave the way for novel fields of applications.
Collapse
Affiliation(s)
- Nadia Bougarne
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Basiel Weyers
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Sofie J Desmet
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Julie Deckers
- Department of Internal Medicine, Ghent University, Ghent, Belgium
- Laboratory of Immunoregulation, VIB Center for Inflammation Research, Ghent (Zwijnaarde), Belgium
| | - David W Ray
- Division of Metabolism and Endocrinology, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom
| | - Bart Staels
- Université de Lille, U1011-European Genomic Institute for Diabetes, Lille, France
- INSERM, U1011, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Karolien De Bosscher
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| |
Collapse
|
46
|
Kumar D, Goand UK, Gupta S, Shankar K, Varshney S, Rajan S, Srivastava A, Gupta A, Vishwakarma AL, Srivastava AK, Gaikwad AN. Saroglitazar reduces obesity and associated inflammatory consequences in murine adipose tissue. Eur J Pharmacol 2018; 822:32-42. [DOI: 10.1016/j.ejphar.2018.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/21/2017] [Accepted: 01/05/2018] [Indexed: 12/27/2022]
|
47
|
Effect of fibrates on glycemic parameters: A systematic review and meta-analysis of randomized placebo-controlled trials. Pharmacol Res 2017; 132:232-241. [PMID: 29292213 DOI: 10.1016/j.phrs.2017.12.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 12/26/2017] [Accepted: 12/27/2017] [Indexed: 12/26/2022]
Abstract
AIMS The aim of this meta-analysis of randomized placebo-controlled clinical trials was to assess the effect of fibrates on glycemic parameters. MATERIALS AND METHODS Only randomized placebo-controlled trials investigating the impact of fibrate treatment on glucose homeostasis markers were searched in PubMed-Medline, SCOPUS, Web of Science and Google Scholar databases (from inception to April 11, 2017). A random-effects model and generic inverse variance method were used for quantitative data synthesis. Sensitivity analysis was conducted using the leave-one-out method. A weighted random-effects meta-regression was performed to evaluate the impact of potential confounders on glycemic parameters. RESULTS This meta-analysis of data from 22 randomized placebo-controlled clinical trials involving a total of 11,402 subjects showed that fibrate therapy significantly decreased fasting plasma glucose (WMD: -0.28 mmol/L, 95% CI: -0.42, -0.14, p < 0.001), insulin levels (WMD: -3.87 pmol/L, 95% CI: -4.97, -2.78, p < 0.001) and insulin resistance (HOMA-IR, WMD: -1.09, 95% CI: -1.71, -0.47, p = 0.001), but with no effect on HbA1c (WMD: 0.01%, 95% CI: -0.18, 0.19, p = 0.955). All analyses were robust in the leave-one-out sensitivity analysis except for insulin levels that showed a non-significant result (WMD: -0.84 pmol/L, 95% CI: -6.36, 4.68, p = 0.766) following omission of one of the included trials. CONCLUSION This meta-analysis has shown that fibrate treatment significantly decreases fasting plasma glucose, insulin levels, and HOMA-IR indicating additional clinical therapeutic benefits.
Collapse
|
48
|
Abstract
INTRODUCTION Significant advancements in the treatment of hypercholesterolemia have recently been achieved. However, a considerable level of residual cardiovascular risk still affects patients' outcomes. Atherogenic dyslipidemia is one of the major constituents of residual risk. Fibrates, PPAR alpha agonists, which modify lipid profile and have numerous pleiotropic effects, seem to be drugs of choice in patients with atherogenic dyslipidemia. These drugs are effective both in monotherapy and combined therapy with statins. Areas covered: A review of clinical trials and experimental studies on fibrates and their use in the treatment of lipid disorders has been performed. Expert commentary: Fibrates are an effective and safe group of drugs to treat patients with atherogenic dyslipidemia. In this particular population of patients, they improve cardiovascular outcomes. Benefits of fibrate treatment extend beyond the impact of lipid profile. Significant improvements in carbohydrate metabolism, adipokines levels, thrombosis and inflammation were also noted.
Collapse
Affiliation(s)
- Bogusław Okopień
- a Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice , Medical University of Silesia , Katowice , Poland
| | - Lukasz Buldak
- a Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice , Medical University of Silesia , Katowice , Poland
| | - Aleksandra Bołdys
- a Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice , Medical University of Silesia , Katowice , Poland
| |
Collapse
|
49
|
Higa R, Roberti SL, Capobianco E, Fornes D, White V, Jawerbaum A. Pro-oxidant/pro-inflammatory alterations in the offspring´s heart of mild diabetic rats are regulated by maternal treatments with a mitochondrial antioxidant. Reprod Toxicol 2017. [DOI: 10.1016/j.reprotox.2017.06.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
50
|
Filippatos TD, Kei A, Rizos CV, Elisaf MS. Effects of PCSK9 Inhibitors on Other than Low-Density Lipoprotein Cholesterol Lipid Variables. J Cardiovasc Pharmacol Ther 2017; 23:3-12. [DOI: 10.1177/1074248417724868] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Low-density lipoprotein cholesterol (LDL-C) is a major cardiovascular risk factor, but other lipid variables such as triglycerides (TRGs), high-density lipoprotein cholesterol (HDL-C) and lipoprotein a [Lp(a)] also affect cardiovascular risk. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors significantly lower LDL-C concentration but also modestly improve the concentrations of TRGs and HDL-C and more robustly decrease Lp(a) levels. The review presents the associated mechanisms of the beneficial effects of PCSK9 inhibitors on the other than LDL-C lipid variables, including the effects on lipid/apolipoprotein secretion and clearance and the heteroexchange between lipoproteins, as well as the possible effects on other variables involved in lipid metabolism such as sortilin. Proprotein convertase subtilisin/kexin type 9 inhibitors improve the overall lipid profile, and these beneficial effects may play a role in the reduction of cardiovascular risk.
Collapse
Affiliation(s)
| | - Anastazia Kei
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Christos V. Rizos
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Moses S. Elisaf
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| |
Collapse
|