1
|
Shankar SS, Daniels SJ, Robertson D, Sarv J, Sánchez J, Carter D, Jermutus L, Challis B, Sanyal AJ. Safety and Efficacy of Novel Incretin Co-agonist Cotadutide in Biopsy-proven Noncirrhotic MASH With Fibrosis. Clin Gastroenterol Hepatol 2024; 22:1847-1857.e11. [PMID: 38729399 DOI: 10.1016/j.cgh.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND & AIMS Cotadutide, a peptide co-agonist at the glucagon-like peptide-1 (GLP-1) and glucagon (GCG) receptors, has demonstrated robust improvements in body weight, glycemia, and hepatic fat fraction (HFF) in patients living with obesity and type 2 diabetes mellitus. METHODS In PROXYMO, a 19-week randomized double-blind placebo-controlled trial, the safety and efficacy of cotadutide (600 μg, 300 μg) or placebo were evaluated in 74 participants with biopsy-proven noncirrhotic metabolic dysfunction-associated steatohepatitis (MASH) with fibrosis. Analyses were performed using intent-to-treat and modified intent-to-treat population data. RESULTS Dose- and time-dependent improvements in HFF, alanine aminotransferase (ALT), and aspartate aminotransferase (AST), markers of liver health, and metabolic parameters were observed with significant improvements after 19 weeks with 600 μg ([least squares] mean difference vs placebo, [95% confidence interval] for absolute HFF: -5.0% [-8.5 to -1.5]; ALT: -23.5 U/L [-47.1 to -1.8]; AST: -16.8 U/L [-33.0 to -0.8]). Incidences of any grade treatment-emergent adverse events (TEAEs) were 91.7%, 76.9%, and 37.5% with cotadutide 600 μg, 300 μg, and placebo, respectively. The majority were gastrointestinal, mild to moderate in severity, and generally consistent with other incretins at this stage of development. TEAEs leading to treatment discontinuation were 16.7%, 7.7%, and 4.2% with cotadutide 600 μg, 300 μg, and placebo, respectively. CONCLUSIONS PROXYMO provides preliminary evidence for the safety and efficacy of GLP-1/GCG receptor co-agonism in biopsy-proven noncirrhotic MASH with fibrosis, supporting further evaluation of this mechanism in MASH. CLINICAL TRIAL REGISTRATION NUMBER NCT04019561.
Collapse
Affiliation(s)
- Sudha S Shankar
- Early Clinical Development, Early Cardiovascular, Renal, and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland; Translational Science and Experimental Medicine, Research and Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland.
| | - Samuel J Daniels
- Early Clinical Development, Early Cardiovascular, Renal, and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland
| | - Darren Robertson
- Early Clinical Development, Early Cardiovascular, Renal, and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland
| | - Janeli Sarv
- Early Biometrics & Statistical Innovation, Data Science & Artificial Intelligence, R&D, AstraZeneca, Gothenburg, Sweden
| | - José Sánchez
- Early Biometrics & Statistical Innovation, Data Science & Artificial Intelligence, R&D, AstraZeneca, Gothenburg, Sweden
| | - Debra Carter
- Global Patient Safety, Astra Zeneca, Gaithersburg, Maryland
| | - Lutz Jermutus
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Benjamin Challis
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Arun J Sanyal
- Division of Gastroenterology and Hepatology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
2
|
Stenberg E, Ottosson J, Cao Y, Sundbom M, Näslund E. Cardiovascular and diabetes outcomes among patients with obesity and type 2 diabetes after metabolic bariatric surgery or glucagon-like peptide 1 receptor agonist treatment. Br J Surg 2024; 111:znae221. [PMID: 39235379 PMCID: PMC11375857 DOI: 10.1093/bjs/znae221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/05/2024] [Accepted: 08/07/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND With the increasing prevalence of obesity and type 2 diabetes, the availability of different treatment options remains essential. Studies comparing the outcomes of glucagon-like peptide 1 receptor agonists with those of metabolic bariatric surgery in patients with type 2 diabetes and obesity are lacking. METHODS Using propensity score matching, based on data from several nationwide clinical registries, patients who underwent primary metabolic bariatric surgery (Roux-en-Y gastric bypass or sleeve gastrectomy) were matched with patients who received glucagon-like peptide 1 receptor agonists. Outcome measures included the occurrence of major cardiovascular events, microvascular complications, and potential side effects (alcohol/substance abuse, self-harm, and fractures). RESULTS Over a mean follow-up of 7 years, major cardiovascular events occurred in 191 of 2039 patients (cumulative incidence 14.5%) in the surgery group compared with 247 of 2039 patients (19.6%) in the glucagon-like peptide 1 receptor agonist group (HR 0.75 (95% c.i. 0.62 to 0.91), P = 0.003). Patients in the surgery group had lower haemoglobin A1c values 5 years after treatment (mean difference 9.82 (95% c.i. 8.51 to 11.14) mmol/mol, P < 0.001) and fewer microvascular complications (retinopathy HR 0.88 (95% c.i. 0.79 to 0.99), P = 0.039; nephropathy HR 0.72 (95% c.i. 0.66 to 0.80), P < 0.001; and neuropathy or leg ulcers HR 0.82 (95% c.i. 0.74 to 0.92), P < 0.001), but a higher risk of alcohol/substance abuse (HR 2.56 (95% c.i. 1.87 to 3.50), P < 0.001), self-harm (HR 1.41 (95% c.i. 1.17 to 1.71), P < 0.001), and fractures (HR 1.86 (95% c.i. 1.11 to 3.12), P = 0.019). CONCLUSION Compared with glucagon-like peptide 1 receptor agonist treatment, metabolic bariatric surgery is associated with superior metabolic outcomes and a lower risk of major cardiovascular events in patients with type 2 diabetes and obesity, but a higher risk of alcohol/substance abuse, self-harm, and fractures.
Collapse
Affiliation(s)
- Erik Stenberg
- Department of Surgery, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Johan Ottosson
- Department of Surgery, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Yang Cao
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, Örebro, Sweden
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Sundbom
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Erik Näslund
- Division of Surgery, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Holst JJ, Madsbad S, Bojsen-Møller KN, Dirksen C, Svane M. New Lessons from the gut: Studies of the role of gut peptides in weight loss and diabetes resolution after gastric bypass and sleeve gastrectomy. Peptides 2024; 176:171199. [PMID: 38552903 DOI: 10.1016/j.peptides.2024.171199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
It has been known since 2005 that the secretion of several gut hormones changes radically after gastric bypass operations and, although more moderately, after sleeve gastrectomy but not after gastric banding. It has therefore been speculated that increased secretion of particularly GLP-1 and Peptide YY (PYY), which both inhibit appetite and food intake, may be involved in the weight loss effects of surgery and for improvements in glucose tolerance. Experiments involving inhibition of hormone secretion with somatostatin, blockade of their actions with antagonists, or blockade of hormone formation/activation support this notion. However, differences between results of bypass and sleeve operations indicate that distinct mechanisms may also be involved. Although the reductions in ghrelin secretion after sleeve gastrectomy would seem to provide an obvious explanation, experiments with restoration of ghrelin levels pointed towards effects on insulin secretion and glucose tolerance rather than on food intake. It seems clear that changes in GLP-1 secretion are important for insulin secretion after bypass and appear to be responsible for postbariatric hypoglycemia in glucose-tolerant individuals; however, with time the improvements in insulin sensitivity, which in turn are secondary to the weight loss, may be more important. Changes in bile acid metabolism do not seem to be of particular importance in humans.
Collapse
Affiliation(s)
- Jens Juul Holst
- The NovoNordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Denmark.
| | - Sten Madsbad
- Department of Endocrinology, Hvidovre Hospital, University of Copenhagen, Denmark
| | | | - Carsten Dirksen
- Department of Endocrinology, Hvidovre Hospital, University of Copenhagen, Denmark
| | - Maria Svane
- Department of Endocrinology, Hvidovre Hospital, University of Copenhagen, Denmark
| |
Collapse
|
4
|
Huber H, Schieren A, Holst JJ, Simon MC. Dietary impact on fasting and stimulated GLP-1 secretion in different metabolic conditions - a narrative review. Am J Clin Nutr 2024; 119:599-627. [PMID: 38218319 PMCID: PMC10972717 DOI: 10.1016/j.ajcnut.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/15/2024] Open
Abstract
Glucagon-like peptide 1 (GLP-1), a gastrointestinal peptide and central mediator of glucose metabolism, is secreted by L cells in the intestine in response to food intake. Postprandial secretion of GLP-1 is triggered by nutrient-sensing via transporters and G-protein-coupled receptors (GPCRs). GLP-1 secretion may be lower in adults with obesity/overweight (OW) or type 2 diabetes mellitus (T2DM) than in those with normal glucose tolerance (NGT), but these findings are inconsistent. Because of the actions of GLP-1 on stimulating insulin secretion and promoting weight loss, GLP-1 and its analogs are used in pharmacologic preparations for the treatment of T2DM. However, physiologically stimulated GLP-1 secretion through the diet might be a preventive or synergistic method for improving glucose metabolism in individuals who are OW, or have impaired glucose tolerance (IGT) or T2DM. This narrative review focuses on fasting and postprandial GLP-1 secretion in individuals with different metabolic conditions and degrees of glucose intolerance. Further, the influence of relevant diet-related factors (e.g., specific diets, meal composition, and size, phytochemical content, and gut microbiome) that could affect fasting and postprandial GLP-1 secretion are discussed. Some studies showed diminished glucose- or meal-stimulated GLP-1 response in participants with T2DM, IGT, or OW compared with those with NGT, whereas other studies have reported an elevated or unchanged GLP-1 response in T2DM or IGT. Meal composition, especially the relationship between macronutrients and interventions targeting the microbiome can impact postprandial GLP-1 secretion, although it is not clear which macronutrients are strong stimulants of GLP-1. Moreover, glucose tolerance, antidiabetic treatment, grade of overweight/obesity, and sex were important factors influencing GLP-1 secretion. The results presented in this review highlight the potential of nutritional and physiologic stimulation of GLP-1 secretion. Further research on fasting and postprandial GLP-1 concentrations and the resulting metabolic consequences under different metabolic conditions is needed.
Collapse
Affiliation(s)
- Hanna Huber
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Institute of Neuroscience and Physiology, Mölndal, Sweden; Department Nutrition and Microbiota, University of Bonn, Institute of Nutrition and Food Science, Bonn, Germany
| | - Alina Schieren
- Department Nutrition and Microbiota, University of Bonn, Institute of Nutrition and Food Science, Bonn, Germany
| | - Jens Juul Holst
- Department of Biomedical Sciences, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark; The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Marie-Christine Simon
- Department Nutrition and Microbiota, University of Bonn, Institute of Nutrition and Food Science, Bonn, Germany.
| |
Collapse
|
5
|
Çalık Başaran N, Dotan I, Dicker D. Post metabolic bariatric surgery weight regain: the importance of GLP-1 levels. Int J Obes (Lond) 2024:10.1038/s41366-024-01461-2. [PMID: 38225284 DOI: 10.1038/s41366-024-01461-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 01/17/2024]
Abstract
Weight regain and insufficient weight loss are essential problems after metabolic bariatric surgery (MBS) in people living with obesity. Changes in the level of glucagon-like peptide-1 (GLP-1) secreted from the gut after bariatric surgery are one of the underlying mechanisms for successful initial weight loss. Studies and meta-analyses have revealed that postprandial GLP-1 levels increase after the Roux-en-Y gastric bypass and sleeve gastrectomy, but fasting GLP-1 levels do not increase significantly. Some observational studies have shown the relationship between higher postprandial GLP-1 levels and successful weight loss after bariatric surgery. There is growing evidence that GLP-1-receptor agonist (GLP-1-RA) use in patients who regained weight after bariatric surgery has resulted in significant weight loss. In this review, we aimed to summarize the changes in endogenous GLP-1 levels and their association with weight loss after MBS, describe the effects of GLP-1-RA use on weight loss after MBS, and emphasize metabolic adaptations in light of the recent literature. We hypothesized that maintaining higher basal-bolus GLP-1-RA levels may be a promising treatment choice in people with obesity who failed to lose weight after bariatric surgery.
Collapse
Affiliation(s)
- Nursel Çalık Başaran
- Hacettepe University, Faculty of Medicine, Department of Internal Medicine, General Internal Medicine, Ankara, Türkiye.
| | - Idit Dotan
- Rabin Medical Center, Beilinson Hospital, Department of Endocrinology and Obesity Clinic, Petah Tikva, Israel
- Tel Aviv University, Faculty of Medicine, Tel Aviv, Israel
| | - Dror Dicker
- Tel Aviv University, Faculty of Medicine, Tel Aviv, Israel
- Rabin Medical Center, Hasharon Hospital, Department of Internal Medicine and Obesity Clinic, Petah Tikva, Israel
| |
Collapse
|
6
|
Lammert M, Medawar E, Hartmann H, Grasser L, Dietrich A, Fenske W, Horstmann A. Distinct adaptations of endocrine and cognitive functions may contribute to high variability in long-term weight loss outcome after bariatric surgery. Physiol Behav 2023:114279. [PMID: 37356514 DOI: 10.1016/j.physbeh.2023.114279] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/08/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND Bariatric surgery has been widely recognized as the most efficient long-term treatment method in severe obesity, yet therapy success shows considerable interindividual variability. Postoperative metabolic adaptations, including improved gut hormone secretion (GLP-1, PYY and ghrelin), and restored executive function may play an explanatory role in weight loss, yet causes for poor success in individual patients remain unknown. This study investigates gut-hormonal and cognitive characteristics in extreme weight loss responders to bariatric surgery. METHODS Patients (n=47) with high or low excessive weight loss (EWL) at least 2 years after Roux-en-Y-gastric bypass or sleeve gastrectomy were allocated into good responders (GR, EWL 82.4 ± 11.6%) and poor responders (PR, EWL 24.0 ± SD 12.8%) to study differences in postprandial secretion of GLP-1, PYY, ghrelin and in working memory (WM). RESULTS Mean BMI was 47.1 ± 6.2 kg/m² in PR (n=21) and 28.9 ± 3.1 kg/m² in GR (n=26, p < 0.001). Fasted GLP-1 and PYY were comparable for GR and PR (p > 0.2) and increased strongly after a standardized test meal (300 kcal liquid meal) with a peak at 15 to 30 minutes. The increase was stronger in GR compared to PR (GLP-1, PYY: Time x Group p < 0.05). Plasma ghrelin levels already differed between groups at fasted state, showing significantly higher levels for GR (p < 0.05). Postprandially, ghrelin secretion was suppressed in both groups, but suppression was higher in GR (Time x Group p < 0.05). GR showed significantly higher WM scores than PR (p < 0.05). Postprandial ghrelin (iAUC), but not GLP-1 or PYY plasma levels, significantly mediated the relationship between EWL and a WM subscore (IS score, CI = 0.07 - 1.68), but not WM main score (MIS score, CI = -0.07 - 1.54), in mediation analyses. CONCLUSION Excess weight loss success after bariatric surgical procedures is associated with distinct profiles of gut-hormones at fasted and postprandial state, and differences in working memory. Better working memory performance in GR might be mediated by higher postprandial reduction in ghrelin plasma levels. Future studies need to integrate longitudinal data, larger samples and more sensitive cognitive tests.
Collapse
Affiliation(s)
- Mathis Lammert
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany; Leipzig University Medical Centre, IFB Adiposity Diseases, 04103 Leipzig, Germany; Leipzig University Medical Centre, Collaborative Research Centre 1052-A5, 04103 Leipzig, Germany.
| | - Evelyn Medawar
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany.
| | - Hendrik Hartmann
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany; Leipzig University Medical Centre, Collaborative Research Centre 1052-A5, 04103 Leipzig, Germany; Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland.
| | - Linda Grasser
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany; Leipzig University Medical Centre, IFB Adiposity Diseases, 04103 Leipzig, Germany.
| | - Arne Dietrich
- Department of Obesity, Metabolic and Endocrine Surgery, University Hospital Leipzig, Liebigstraße 18, 04103 Leipzig, Germany.
| | - Wiebke Fenske
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
| | - Annette Horstmann
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany; Leipzig University Medical Centre, IFB Adiposity Diseases, 04103 Leipzig, Germany; Leipzig University Medical Centre, Collaborative Research Centre 1052-A5, 04103 Leipzig, Germany; Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland.
| |
Collapse
|
7
|
Tripyla A, Herzig D, Reverter-Branchat G, Pavan J, Schiavon M, Eugster PJ, Grouzmann E, Nakas CT, Sauvinet V, Meiller L, Zehetner J, Giachino D, Nett P, Gawinecka J, Del Favero S, Thomas A, Thevis M, Dalla Man C, Bally L. Counter-regulatory responses to postprandial hypoglycaemia in patients with post-bariatric hypoglycaemia vs surgical and non-surgical control individuals. Diabetologia 2023; 66:741-753. [PMID: 36648553 PMCID: PMC9947092 DOI: 10.1007/s00125-022-05861-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/21/2022] [Indexed: 01/18/2023]
Abstract
AIMS/HYPOTHESIS Post-bariatric hypoglycaemia is an increasingly recognised complication of bariatric surgery, manifesting particularly after Roux-en-Y gastric bypass. While hyperinsulinaemia is an established pathophysiological feature, the role of counter-regulation remains unclear. We aimed to assess counter-regulatory hormones and glucose fluxes during insulin-induced postprandial hypoglycaemia in patients with post-bariatric hypoglycaemia after Roux-en-Y gastric bypass vs surgical and non-surgical control individuals. METHODS In this case-control study, 32 adults belonging to four groups with comparable age, sex and BMI (patients with post-bariatric hypoglycaemia, Roux-en-Y gastric bypass, sleeve gastrectomy and non-surgical control individuals) underwent a postprandial hypoglycaemic clamp in our clinical research unit to reach the glycaemic target of 2.5 mmol/l 150-170 min after ingesting 15 g of glucose. Glucose fluxes were assessed during the postprandial and hypoglycaemic period using a dual-tracer approach. The primary outcome was the incremental AUC of glucagon during hypoglycaemia. Catecholamines, cortisol, growth hormone, pancreatic polypeptide and endogenous glucose production were also analysed during hypoglycaemia. RESULTS The rate of glucose appearance after oral administration, as well as the rates of total glucose appearance and glucose disappearance, were higher in both Roux-en-Y gastric bypass groups vs the non-surgical control group in the early postprandial period (all p<0.05). During hypoglycaemia, glucagon exposure was significantly lower in all surgical groups vs the non-surgical control group (all p<0.01). Pancreatic polypeptide levels were significantly lower in patients with post-bariatric hypoglycaemia vs the non-surgical control group (median [IQR]: 24.7 [10.9, 38.7] pmol/l vs 238.7 [186.3, 288.9] pmol/l) (p=0.005). Other hormonal responses to hypoglycaemia and endogenous glucose production did not significantly differ between the groups. CONCLUSIONS/INTERPRETATION The glucagon response to insulin-induced postprandial hypoglycaemia is lower in post-bariatric surgery individuals compared with non-surgical control individuals, irrespective of the surgical modality. No significant differences were found between patients with post-bariatric hypoglycaemia and surgical control individuals, suggesting that impaired counter-regulation is not a root cause of post-bariatric hypoglycaemia. TRIAL REGISTRATION ClinicalTrials.gov NCT04334161.
Collapse
Affiliation(s)
- Afroditi Tripyla
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - David Herzig
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Gemma Reverter-Branchat
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jacopo Pavan
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Michele Schiavon
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Philippe J Eugster
- Laboratory of Catecholamines and Peptides, Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Eric Grouzmann
- Laboratory of Catecholamines and Peptides, Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Christos T Nakas
- School of Agricultural Sciences, Laboratory of Biometry, University of Thessaly, Volos, Greece
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Valérie Sauvinet
- Centre de Recherche Nutrition Humaine Rhône-Alpes, Univ-Lyon, Inserm, INRAe, Claude Bernard Lyon1 University, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre Bénite, France
| | - Laure Meiller
- Centre de Recherche Nutrition Humaine Rhône-Alpes, Univ-Lyon, Inserm, INRAe, Claude Bernard Lyon1 University, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre Bénite, France
| | - Joerg Zehetner
- Department of Visceral Surgery, Hirslanden Clinic Beau-Site, Bern, Switzerland
| | - Daniel Giachino
- Department of Visceral Surgery, Lindenhofspital, Bern, Switzerland
| | - Philipp Nett
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Joanna Gawinecka
- Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Simone Del Favero
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Andreas Thomas
- Institute of Biochemistry / Center for Preventive Doping Research, German Sport University Cologne, Cologne, Germany
| | - Mario Thevis
- Institute of Biochemistry / Center for Preventive Doping Research, German Sport University Cologne, Cologne, Germany
| | - Chiara Dalla Man
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Lia Bally
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| |
Collapse
|
8
|
Shah H, Kramer A, Mullins CA, Mattern M, Gannaban RB, Townsend RL, Campagna SR, Morrison CD, Berthoud HR, Shin AC. Reduction of Plasma BCAAs following Roux-en-Y Gastric Bypass Surgery Is Primarily Mediated by FGF21. Nutrients 2023; 15:1713. [PMID: 37049555 PMCID: PMC10096671 DOI: 10.3390/nu15071713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/26/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
Type 2 diabetes (T2D) is a challenging health concern worldwide. A lifestyle intervention to treat T2D is difficult to adhere, and the effectiveness of approved medications such as metformin, thiazolidinediones (TZDs), and sulfonylureas are suboptimal. On the other hand, bariatric procedures such as Roux-en-Y gastric bypass (RYGB) are being recognized for their remarkable ability to achieve diabetes remission, although the underlying mechanism is not clear. Recent evidence points to branched-chain amino acids (BCAAs) as a potential contributor to glucose impairment and insulin resistance. RYGB has been shown to effectively lower plasma BCAAs in insulin-resistant or T2D patients that may help improve glycemic control, but the underlying mechanism for BCAA reduction is not understood. Hence, we attempted to explore the mechanism by which RYGB reduces BCAAs. To this end, we randomized diet-induced obese (DIO) mice into three groups that underwent either sham or RYGB surgery or food restriction to match the weight of RYGB mice. We also included regular chow-diet-fed healthy mice as an additional control group. Here, we show that compared to sham surgery, RYGB in DIO mice markedly lowered serum BCAAs most likely by rescuing BCAA breakdown in both liver and white adipose tissues. Importantly, the restored BCAA metabolism following RYGB was independent of caloric intake. Fasting insulin and HOMA-IR were decreased as expected, and serum valine was strongly associated with insulin resistance. While gut hormones such as glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) are postulated to mediate various surgery-induced metabolic benefits, mice lacking these hormonal signals (GLP-1R/Y2R double KO) were still able to effectively lower plasma BCAAs and improve glucose tolerance, similar to mice with intact GLP-1 and PYY signaling. On the other hand, mice deficient in fibroblast growth factor 21 (FGF21), another candidate hormone implicated in enhanced glucoregulatory action following RYGB, failed to decrease plasma BCAAs and normalize hepatic BCAA degradation following surgery. This is the first study using an animal model to successfully recapitulate the RYGB-led reduction of circulating BCAAs observed in humans. Our findings unmasked a critical role of FGF21 in mediating the rescue of BCAA metabolism following surgery. It would be interesting to explore the possibility of whether RYGB-induced improvement in glucose homeostasis is partly through decreased BCAAs.
Collapse
Affiliation(s)
- Harsh Shah
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Alyssa Kramer
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Caitlyn A. Mullins
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Marie Mattern
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Ritchel B. Gannaban
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - R. Leigh Townsend
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Shawn R. Campagna
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA
| | - Christopher D. Morrison
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Hans-Rudolf Berthoud
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Andrew C. Shin
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
9
|
Major adverse cardiovascular events among patients with type-2 diabetes, a nationwide cohort study comparing primary metabolic and bariatric surgery to GLP-1 receptor agonist treatment. Int J Obes (Lond) 2023; 47:251-256. [PMID: 36670155 PMCID: PMC10113141 DOI: 10.1038/s41366-023-01254-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/21/2023]
Abstract
BACKGROUND Glucagon-like Peptide-1 receptor agonists (GLP-1 RA) and metabolic and bariatric surgery (MBS) both improve cardiovascular outcomes in patients with severe obesity and type-2 diabetes (T2D). The aim of the present study was to assess the impact of MBS on major cardiovascular adverse events (MACE) in patients with severe obesity and T2D compared to patients with T2D treated with GLP-1 RA. SUBJECTS AND METHODS In this propensity score matched cohort study on nationwide data, patients with T2D and severe obesity who underwent MBS in Sweden from 2007 until 2019 were identified from the Scandinavian Obesity Surgery Registry and matched to a non-surgical group with T2D treated with GLP-1 RA (81.7% liraglutide, 9.0% dulaglutide, 6.0% exenatide, 1.6% lixisenatide and 0.8% semaglutide) from the general population using generalized linear model. Major outcome was MACE (hospitalization for acute coronary syndrome or cerebrovascular event or all-cause death), evaluated with multivariable Cox regression. RESULTS In total 2161 patients (obesity class I (10.2%), class II (40.3%), class III (49.5%)) were matched to 2161 non-surgical patients (mean age 51.1 ± 9.29 vs 51.5 ± 8.92 years, 64.8% vs. 64.4% women, with mean number of diabetes drugs of 2.5 ± 0.89 vs 2.6 ± 0.87, a mean duration of diabetes of 6.0 ± 4.15 vs 6.0 ± 4.51 years with 44.2% vs. 42.8% being treated with insulin at baseline). During the study period, 113 patients (8-year cumulative incidence 9.3%) compared to 130 non-surgical patients (8-year cumulative incidence 11.3%) suffered from MACE or all-cause mortality (HR 0.76, 95%CI 0.59-0.98), and 69 patients (8-year cumulative incidence 5.1%) compared to 92 non-surgical patients (8-year cumulative incidence 7.6%) suffered from a non-fatal MACE (HR 0.68, 95%CI 0.49-0.93). CONCLUSION In this matched cohort study, MBS was associated with lower risk for MACE compared to treatment with early GLP-1 RA in patients with T2D.
Collapse
|
10
|
Elias K, Webb DL, Diaz Tartera HO, Hellström PM, Sundbom M. Impact of biliopancreatic diversion with duodenal switch on glucose homeostasis and gut hormones and their correlations with appetite. Surg Obes Relat Dis 2022; 18:1392-1398. [PMID: 36151028 DOI: 10.1016/j.soard.2022.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/07/2022] [Accepted: 08/21/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Biliopancreatic diversion with duodenal switch (BPD/DS) results in lifelong changes in gastrointestinal physiology with unclear associations with appetite perception. OBJECTIVE To explore mixed meal-induced changes in glucose homeostasis and gut hormones and their correlations with appetite perception. SETTING University hospital. METHODS Of 28 patients studied preoperatively (age: 38.4 ± 11.3 years; body mass index [BMI]: 56.5 ± 5.1 kg/m2; 14 women), 19 (68%) returned for postoperative follow-up. Plasma was sampled for 180 minutes during a 260-kcal standardized mixed meal. Concentrations of leptin, glucose, insulin, triglycerides, active acyl-ghrelin, motilin, total glucose-dependent insulinotropic polypeptide (GIP), active glucagon-like peptide 1 (GLP-1), and total peptide YY (PYY) were measured. Subjective appetite sensations were scored. RESULTS BPD/DS resulted in 66.1% ± 23.3% excess BMI loss. Leptin was halved. Glucose and insulin levels were reduced, blunting a preoperative peak at 30 minutes, giving a lower homeostasis model assessment for insulin resistance (HOMA-IR; 13.9 versus 4.8). In contrast, reduced ghrelin and motilin concentrations were accompanied by pronounced peaks 20-30 minutes prior to meal responses. GIP was reduced, whereas GLP-1 and PYY responses were markedly increased, with an early postprandial peak (P < .05, for all). HOMA-IR correlated with insulin (r = .72) and GIP (r = .57). Postoperatively, satiety correlated with GLP-1 (r = .56), whereas the gastric motility index correlated with the desire to eat (r = .60), percentage excess BMI loss (r = -.55), and percentage total weight loss (r = -.49). Delta insulin, GLP-1, and leptin correlated positively with percentage total weight loss (r = .51, r = .48, and r = .58, respectively). CONCLUSIONS BPD/DS reduces leptin, HOMA-IR, and GIP while markedly increasing GLP-1 and PYY. This study marks the magnitude change in GLP-1 with additional effects of PYY as important factors for weight loss.
Collapse
Affiliation(s)
- Khalid Elias
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| | - Dominic-Luc Webb
- Department of Medical Sciences, Gastroenterology and Hepatology, Uppsala University, Uppsala, Sweden
| | - Hetzel O Diaz Tartera
- Department of Medical Sciences, Gastroenterology and Hepatology, Uppsala University, Uppsala, Sweden
| | - Per M Hellström
- Department of Medical Sciences, Gastroenterology and Hepatology, Uppsala University, Uppsala, Sweden
| | - Magnus Sundbom
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
11
|
Vasdeki D, Koufakis T, Tsamos G, Busetto L, Zebekakis P, Kotsa K. Remission as an Emerging Therapeutic Target in Type 2 Diabetes in the Era of New Glucose-Lowering Agents: Benefits, Challenges, and Treatment Approaches. Nutrients 2022; 14:4801. [PMID: 36432488 PMCID: PMC9695991 DOI: 10.3390/nu14224801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a progressive disease with a growing prevalence, associated with an increased risk of complications. The introduction of new classes of antidiabetic drugs into clinical practice has dramatically changed the landscape of diabetes therapy. However, despite the progress made in the pharmacotherapy of T2DM, mitigating the burden of the disease on individuals, societies and health care systems remains a challenge. Remission has recently emerged as a therapeutic target in T2DM, achievable through a wide range of interventions. Recent studies have shown that extensive lifestyle changes, such as weight reduction, bariatric surgery, and intensive glucose lowering therapy, can prompt the remission of diabetes, but some unanswered questions remain regarding its long-term effects on diabetic complications. Metabolic surgery and novel classes of glucose-lowering medications are currently the most effective interventions to induce weight loss and by extension remission in patients with diabetes; however, the ideal strategy to achieve the long-term maintenance of remission remains doubtful. In this narrative review, we discuss the available therapeutic approaches to target the remission of diabetes through personalized multimodal care, based on the latest evidence.
Collapse
Affiliation(s)
- Dimitra Vasdeki
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, 54636 Thessaloniki, Greece
| | - Theocharis Koufakis
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, 54636 Thessaloniki, Greece
| | - Georgios Tsamos
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, 54636 Thessaloniki, Greece
| | - Luca Busetto
- Department of Medicine, University of Padova, 35121 Padova, Italy
| | - Pantelis Zebekakis
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, 54636 Thessaloniki, Greece
| | - Kalliopi Kotsa
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, 54636 Thessaloniki, Greece
| |
Collapse
|
12
|
Ko JH, Kim TN. Type 2 Diabetes Remission with Significant Weight Loss: Definition and Evidence-Based Interventions. J Obes Metab Syndr 2022; 31:123-133. [PMID: 35618657 PMCID: PMC9284579 DOI: 10.7570/jomes22001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/14/2022] [Accepted: 03/15/2022] [Indexed: 11/26/2022] Open
Abstract
Type 2 diabetes (T2D) has long been regarded as an incurable and chronic disease according to conventional management methods. Clinical and pathophysiological studies on the natural course of T2D have shown that blood glucose control worsens with an increase in the number of required anti-hyperglycemic agents, as β-cell function progressively declines over time. However, recent studies have shown remission of T2D after metabolic surgery, intensive lifestyle modification, or medications, raising the possibility that β-cell function may be preserved or the decline in β-cell function may even be reversible. The World Health Organization as well as the American Diabetes Association and the European Association for the Study of Diabetes recognize remission as an appropriate management aim. In the light of the state of evidence for T2D reversal, physicians need to be educated on treatment options to achieve T2D remission so that they can actively play a part in counseling patients who may wish to explore these approaches to their disease. This review will introduce each of these approaches, summarizing their beneficial effects, supporting evidence, degree of sustainability, and challenges to be addressed in the future.
Collapse
Affiliation(s)
- Jung Hae Ko
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Inje University College of Medicine, Busan, Korea
| | - Tae Nyun Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Inje University College of Medicine, Busan, Korea
| |
Collapse
|
13
|
Zhang X, Li J, Liu T, Zhao M, Liang B, Chen H, Zhang Z. Identification of Key Biomarkers and Immune Infiltration in Liver Tissue after Bariatric Surgery. DISEASE MARKERS 2022; 2022:4369329. [PMID: 35789605 PMCID: PMC9250435 DOI: 10.1155/2022/4369329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/13/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022]
Abstract
Background Few drugs are clearly available for nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH); nevertheless, mounting studies have provided sufficient evidence that bariatric surgery is efficient for multiple metabolic diseases, including NAFLD and NASH, while the molecular mechanisms are still poorly understood. Methods The mRNA expression profiling of GSE48452 and GSE83452 were retrieved and obtained from the Gene Expression Omnibus (GEO) database. The limma package was employed for identifying differentially expressed genes (DEGs), followed by clusterProfiler for performing Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, and GSEA software for performing GSEA analyses. The PPI network analyses were constructed using Metascape online analyses. WGCNA was also utilized to identify and verify the hub genes. CIBERSORT tools contributed to the analysis of immune cell infiltration of liver diseases. Results We identify coexpressed differential genes including 10 upregulated and 55 downregulated genes in liver tissue after bariatric surgery. GO and KEGG enrichment analyses indicated that DEGs were remarkably involved in the immune response. GSEA demonstrated that DEGs were markedly enriched in the immune response before surgery, while most were enriched in metabolism after surgery. Seven genes were screened through the MCC algorithm and KME values, including SRGN, CD53, EVI2B, MPEG1, NCKAP1L, LCP1, and TYROBP. The mRNA levels of these genes were verified in the Attie Lab Diabetes Database, and only LCP1 was found to have significant differences and correlation with certain immune cells. Conclusion Our knowledge of the mechanisms by which bariatric surgery benefits the liver and the discovery of LCP1 is expected to serve as potential biomarkers or therapeutic targets for NAFLD and NASH.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Pediatrics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jingxin Li
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tiancai Liu
- School of Laboratory Medicine and Biotechnology, Institute of Antibody Engineering, Southern Medical University, Guangzhou, China
| | - Min Zhao
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Baozhu Liang
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hong Chen
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhen Zhang
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
14
|
Abel SA, English WJ, Duke MC, Williams DB, Aher CV, Broucek JR, Spann MD. Benefits of Adjuvant Medical Weight Loss Intervention in Setting of Weight Regain and Inadequate Weight Loss After Weight Loss Surgery. Am Surg 2022:31348221078957. [PMID: 35317659 DOI: 10.1177/00031348221078957] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Currently, there is no nationally accepted protocol for addressing weight regain or inadequate weight loss after MBS. OBJECTIVES To devise, implement, and evaluate a protocol targeting weight regain or inadequate weight loss in MBS patients at our institution. SETTING Vanderbilt University Medical Center, Nashville, TN, United States. METHODS Patients at least 6 months following primary sleeve gastrectomy (SG) or Roux-en-Y gastric bypass (RYGB) who achieved or were trending toward <50% excess body weight loss or who regained ≥10% of their lowest postoperative weight, were identified and referred for medical weight loss (MWL) intervention. Exclusion criteria were body mass index (BMI) ≤ 27 kg/m2, treatment with adjustable gastric banding, and conversion from SG to RYGB. RESULTS 2274 patients who were >6 months out from surgery were evaluated over 12 months. 93 patients (86% female) met criteria for inclusion. 69 (74%) patients agreed to intervention and were followed for an average of 165 days (SD 106.89 days), demonstrating a mean weight change of -5.11 kg (SD 6.86 kg), and BMI change of -1.81 kg/m2 (SD 2.37 kg/m2). Patients who spent <90 days in a MWL program demonstrated less average weight loss (1.75 kg vs 6.48 kg) (P = .0042), and less change in BMI (-.63 kg/m2 vs -2.29 kg/m2) (P = .0037) when compared to patients who spent >90 days in the MWL intervention. CONCLUSIONS This study identifies criteria for intervention in patients suffering weight regain or inadequate weight loss after MBS and demonstrates that standardized identification and referral for treatment results in modest weight loss.
Collapse
Affiliation(s)
- Stuart A Abel
- Division of Surgery, RinggoldID:12328Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wayne J English
- Division of Surgery, RinggoldID:12328Vanderbilt University Medical Center, Nashville, TN, USA
| | - Meredith C Duke
- Division of Surgery, RinggoldID:12328Vanderbilt University Medical Center, Nashville, TN, USA
| | - D Brandon Williams
- Division of Surgery, RinggoldID:12328Vanderbilt University Medical Center, Nashville, TN, USA
| | - Chetan V Aher
- Division of Surgery, RinggoldID:12328Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joseph R Broucek
- Division of Surgery, RinggoldID:12328Vanderbilt University Medical Center, Nashville, TN, USA
| | - Matthew D Spann
- Division of Surgery, RinggoldID:12328Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
15
|
Neurohormonal Changes in the Gut–Brain Axis and Underlying Neuroendocrine Mechanisms following Bariatric Surgery. Int J Mol Sci 2022; 23:ijms23063339. [PMID: 35328759 PMCID: PMC8954280 DOI: 10.3390/ijms23063339] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/05/2023] Open
Abstract
Obesity is a complex, multifactorial disease that is a major public health issue worldwide. Currently approved anti-obesity medications and lifestyle interventions lack the efficacy and durability needed to combat obesity, especially in individuals with more severe forms or coexisting metabolic disorders, such as poorly controlled type 2 diabetes. Bariatric surgery is considered an effective therapeutic modality with sustained weight loss and metabolic benefits. Numerous genetic and environmental factors have been associated with the pathogenesis of obesity, while cumulative evidence has highlighted the gut–brain axis as a complex bidirectional communication axis that plays a crucial role in energy homeostasis. This has led to increased research on the roles of neuroendocrine signaling pathways and various gastrointestinal peptides as key mediators of the beneficial effects following weight-loss surgery. The accumulate evidence suggests that the development of gut-peptide-based agents can mimic the effects of bariatric surgery and thus is a highly promising treatment strategy that could be explored in future research. This article aims to elucidate the potential underlying neuroendocrine mechanisms of the gut–brain axis and comprehensively review the observed changes of gut hormones associated with bariatric surgery. Moreover, the emerging role of post-bariatric gut microbiota modulation is briefly discussed.
Collapse
|
16
|
Camastra S, Palumbo M, Santini F. Nutrients handling after bariatric surgery, the role of gastrointestinal adaptation. Eat Weight Disord 2022; 27:449-461. [PMID: 33895917 PMCID: PMC8933374 DOI: 10.1007/s40519-021-01194-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/10/2021] [Indexed: 01/19/2023] Open
Abstract
Bariatric surgery determines a rearrangement of the gastrointestinal tract that influences nutrient handling and plays a role in the metabolic changes observed after surgery. Most of the changes depend on the accelerated gastric emptying observed in Roux-en-Y gastric bypass (RYGB) and, to a lesser extent, in sleeve gastrectomy (SG). The rapid delivery of meal into the jejunum, particularly after RYGB, contributes to the prompt appearance of glucose in peripheral circulation. Glucose increase is the principal determinant of GLP-1 increase with the consequent stimulation of insulin secretion, the latter balanced by a paradoxical glucagon increase that stimulates EGP to prevent hypoglycaemia. Protein digestion and amino acid absorption appear accelerated after RYGB but not after SG. After RYGB, the adaptation of the gut to the new condition participates to the metabolic change. The intestinal transit is delayed, the gut microbioma is changed, the epithelium becomes hypertrophic and increases the expression of glucose transporter and of the number of cell secreting hormones. These changes are not observed after SG. After RYGB-less after SG-bile acids (BA) increase, influencing glucose metabolism probably modulating FXR and TGR5 with an effect on insulin sensitivity. Muscle, hepatic and adipose tissue insulin sensitivity improve, and the gut reinforces the recovery of IS by enhancing glucose uptake and through the effect of the BA. The intestinal changes observed after RYGB result in a light malabsorption of lipid but not of carbohydrate and protein. In conclusion, functional and morphological adaptations of the gut after RYGB and SG activate inter-organs cross-talk that modulates the metabolic changes observed after surgery.Level of evidence Level V, narrative literature review.
Collapse
Affiliation(s)
- Stefania Camastra
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma, 67, 56126, Pisa, Italy. .,Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy.
| | - Maria Palumbo
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma, 67, 56126, Pisa, Italy
| | - Ferruccio Santini
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma, 67, 56126, Pisa, Italy.,Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| |
Collapse
|
17
|
Martínez-Montoro JI, Kuchay MS, Balaguer-Román A, Martínez-Sánchez MA, Frutos MD, Fernández-García JC, Ramos-Molina B. Gut microbiota and related metabolites in the pathogenesis of nonalcoholic steatohepatitis and its resolution after bariatric surgery. Obes Rev 2022; 23:e13367. [PMID: 34729904 DOI: 10.1111/obr.13367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 12/17/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is increasing in parallel with the rising prevalence of obesity, leading to major health and socioeconomic consequences. To date, the most effective therapeutic approach for NAFLD is weight loss. Accordingly, bariatric surgery (BS), which produces marked reductions in body weight, is associated with significant histopathological improvements in advanced stages of NAFLD, such as nonalcoholic steatohepatitis (NASH) and liver fibrosis. BS is also associated with substantial taxonomical and functional alterations in gut microbiota, which are believed to play a significant role in metabolic improvement after BS. Interestingly, gut microbiota and related metabolites may be implicated in the pathogenesis of NAFLD through diverse mechanisms, including specific microbiome signatures, short chain fatty acid production or the modulation of one-carbon metabolism. Moreover, emerging evidence highlights the potential association between gut microbiota changes after BS and NASH resolution. In this review, we summarize the current knowledge on the relationship between NAFLD severity and gut microbiota, as well as the role of the gut microbiome and related metabolites in NAFLD improvement after BS.
Collapse
Affiliation(s)
- José Ignacio Martínez-Montoro
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA), Faculty of Medicine, University of Malaga, Malaga, Spain
| | - Mohammad Shafi Kuchay
- Division of Endocrinology and Diabetes, Medanta - The Medicity Hospital, Gurugram, Haryana, India
| | - Andrés Balaguer-Román
- Department of General and Digestive System Surgery, Virgen de la Arrixaca University Hospital, Murcia, Spain.,Obesity and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| | | | - María Dolores Frutos
- Department of General and Digestive System Surgery, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - José Carlos Fernández-García
- Department of Endocrinology and Nutrition, Regional University Hospital of Malaga, Institute of Biomedical Research in Malaga (IBIMA), Faculty of Medicine, University of Malaga, Malaga, Spain
| | - Bruno Ramos-Molina
- Obesity and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| |
Collapse
|
18
|
Liu Y, Sheng C, Feng W, Sun F, Zhang J, Chen Y, Su L, Liu J, Du L, Jia X, You H, Huang X, Wu S, Lin Z, Qu S. A multi-center study on glucometabolic response to bariatric surgery for different subtypes of obesity. Front Endocrinol (Lausanne) 2022; 13:989202. [PMID: 36407309 PMCID: PMC9669340 DOI: 10.3389/fendo.2022.989202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVES To assess the benefit of a bariatric surgery in four artificial intelligence-identified metabolic (AIM) subtypes of obesity with respect to the improvement of glucometabolism and the remission of diabetes and hyperinsulinemia. METHODS This multicenter retrospective study prospectively collected data from five hospitals in China from 2010 to 2021. At baseline 1008 patients who underwent a bariatric surgery were enrolled (median age 31 years; median BMI 38.1kg/m2; 57.40% women) and grouped into the four AIM subtypes. Baseline and follow-up data (506 and 359 patients at 3- and 12-month post-surgery) were collected for longitudinal effect analysis. RESULTS Out of the four AIM subgroups, hypometabolic obesity (LMO) group was characterized by decompensated insulin secretion and high incidence of diabetes (99.2%) pre-surgery. After surgery, 62.1% of LMO patients with diabetes achieved remission, lower than the other three subgroups. Still, the bariatric surgery significantly reduced their blood glucose (median HbA1c decreased by 27.2%). The hypermetabolic obesity-hyperinsulinemia (HMO-I) group was characterized by severe insulin resistance and high incidence of hyperinsulinemia (87.8%) pre-surgery, which had been greatly alleviated post-surgery. For both metabolic healthy obesity (MHO) and hypermetabolic obesity-hyperuricemia (HMO-U) groups who showed a relatively healthy glucometabolism pre-surgery, rate of glucometabolic comorbidities improved moderately post-surgery. CONCLUSION In terms of glucometabolism, the four AIM subtypes of patients benefited differently from a bariatric surgery, which significantly relieved hyperglycemia and hyperinsulinemia for the LMO and HMO-I patients, respectively. The AIM-based subtypes may help better inform clinical decisions on bariatric surgery and patient counseling pertaining to post-surgery outcomes.
Collapse
Affiliation(s)
- Yao Liu
- Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chunjun Sheng
- Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenhuan Feng
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| | - Fang Sun
- Department of Hypertension and Endocrinology, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Jingjing Zhang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ying Chen
- Ministry of Education, Key Laboratory of Metabolism and Molecular Medicine, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lili Su
- Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jia Liu
- Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lei Du
- Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuyang Jia
- Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui You
- Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiu Huang
- Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shandong Wu
- Department of Radiology, Department of Biomedical Informatics, Department of Bioengineering, Intelligent Systems Program, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Biomedical Informatics, Intelligent Systems Program, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Bioengineering, Intelligent Systems Program, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ziwei Lin
- Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Ziwei Lin, ; Shen Qu,
| | - Shen Qu
- Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Ziwei Lin, ; Shen Qu,
| |
Collapse
|
19
|
Oh JH, Kang CW, Wang EK, Nam JH, Lee S, Park KH, Lee EJ, Cho A, Ku CR. Altered Glucose Metabolism and Glucose Transporters in Systemic Organs After Bariatric Surgery. Front Endocrinol (Lausanne) 2022; 13:937394. [PMID: 35909546 PMCID: PMC9329688 DOI: 10.3389/fendo.2022.937394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
The Roux-en-Y gastric bypass (RYGB) is highly effective in the remission of obesity and associated diabetes. The mechanisms underlying obesity and type 2 diabetes mellitus remission after RYGB remain unclear. This study aimed to evaluate the changes in continuous dynamic FDG uptake patterns after RYGB and examine the correlation between glucose metabolism and its transporters in variable endocrine organs using 18F-fluoro-2-deoxyglucose positron emission tomography images. Increased glucose metabolism in specific organs, such as the small intestine and various fat tissues, is closely associated with improved glycemic control after RYGB. In Otsuka Long-Evans Tokushima Fatty rats fed with high-fat diets, RYGB operation increases intestine glucose transporter expression and various fat tissues' glucose transporters, which are not affected by insulin. The fasting glucose decrement was significantly associated with RYGB, sustained weight loss, post-RYGB oral glucose tolerance test (OGTT) area under the curve (AUC), glucose transporter, or glycolytic enzymes in the small bowel and various fat tissues. High intestinal glucose metabolism and white adipose tissue-dependent glucose metabolism correlated with metabolic benefit after RYGB. These findings suggest that the newly developed glucose biodistribution accompanied by increased glucose transporters is a mechanism associated with the systemic effect of RYGB.
Collapse
Affiliation(s)
- Ju Hun Oh
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, College of Medicine, Seoul, South Korea
- Department of Internal Medicine, Endocrinology, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Chan Woo Kang
- Department of Internal Medicine, Endocrinology, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Eun Kyung Wang
- Department of Internal Medicine, Endocrinology, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Jung Ho Nam
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, College of Medicine, Seoul, South Korea
- Department of Internal Medicine, Endocrinology, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Soohyun Lee
- Department of Internal Medicine, Endocrinology, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Kyeong Hye Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyang, South Korea
| | - Eun Jig Lee
- Department of Internal Medicine, Endocrinology, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Arthur Cho
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: Cheol Ryong Ku, ; Arthur Cho,
| | - Cheol Ryong Ku
- Department of Internal Medicine, Endocrinology, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: Cheol Ryong Ku, ; Arthur Cho,
| |
Collapse
|
20
|
An Z, Wang H, Mokadem M. Role of the Autonomic Nervous System in Mechanism of Energy and Glucose Regulation Post Bariatric Surgery. Front Neurosci 2021; 15:770690. [PMID: 34887725 PMCID: PMC8649921 DOI: 10.3389/fnins.2021.770690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/15/2021] [Indexed: 01/06/2023] Open
Abstract
Even though lifestyle changes are the mainstay approach to address obesity, Sleeve gastrectomy (SG) and Roux-en-Y gastric bypass (RYGB) are the most effective and durable treatments facing this pandemic and its associated metabolic conditions. The traditional classifications of bariatric surgeries labeled them as “restrictive,” “malabsorptive,” or “mixed” types of procedures depending on the anatomical rearrangement of each one of them. This conventional categorization of bariatric surgeries assumed that the “restrictive” procedures induce their weight loss and metabolic effects by reducing gastric content and therefore having a smaller reservoir. Similarly, the “malabsorptive” procedures were thought to induce their main energy homeostatic effects from fecal calorie loss due to intestinal malabsorption. Observational data from human subjects and several studies from rodent models of bariatric surgery showed that neither of those concepts is completely true, at least in explaining the multiple metabolic changes and the alteration in energy balance that those two surgeries induce. Rather, neuro-hormonal mechanisms have been postulated to underly the physiologic effects of those two most performed bariatric procedures. In this review, we go over the role the autonomic nervous system plays- through its parasympathetic and sympathetic branches- in regulating weight balance and glucose homeostasis after SG and RYGB.
Collapse
Affiliation(s)
- Zhibo An
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA, United States
| | - Haiying Wang
- Department of Physiology, Basic Medical School of Jining Medical University, Jining, China
| | - Mohamad Mokadem
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA, United States.,Fraternal Order of Eagles Diabetes Research Center, The University of Iowa, Iowa City, IA, United States.,Obesity Research and Education Initiative, The University of Iowa, Iowa City, IA, United States.,Iowa City Veterans Affairs Health Care System, Iowa City, IA, United States
| |
Collapse
|
21
|
Redpath T, Naseer F, Price RK, Boyd A, Martin M, le Roux CW, Spector AC, Livingstone MBE. Evaluation of the impact of gastric bypass surgery on eating behaviour using objective methodologies under residential conditions: Rationale and study protocol. Contemp Clin Trials Commun 2021; 24:100846. [PMID: 34646959 PMCID: PMC8497851 DOI: 10.1016/j.conctc.2021.100846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/17/2021] [Accepted: 09/06/2021] [Indexed: 11/17/2022] Open
Abstract
Gastric bypass surgery leads to significant and sustained weight loss and a reduction in associated health risks in individuals with severe obesity. While reduced energy intake (EI) is the primary driver of weight loss following surgery, the underlying mechanisms accounting for this energy deficit are not well understood. The evidence base has been constrained by a lack of fit-for-purpose methodology in assessing food intake coupled with follow-up studies that are relatively short-term. This paper describes the underlying rationale and protocol for an observational, fully residential study using covert, objective methodology to evaluate changes in 24-hr food intake in patients (n = 31) at 1-month pre-surgery and 3-, 12- and 24-months post-surgery, compared to weight-stable controls (n = 32). The main study endpoints included change in EI, macronutrient intake, food preferences, and eating behaviours (speed, frequency, and duration of eating). Other physiological changes that may influence EI and weight regulation including changes in body composition, circulating appetite hormones, resting metabolic rate, total energy expenditure and gastrointestinal symptoms were also evaluated. Understanding which mechanisms contribute to a reduction in EI and weight loss post-surgery could potentially help to identify those individuals who are most likely to benefit from gastric bypass surgery as well as those that may need more targeted intervention to optimise their weight loss post-surgery. Furthermore, clarification of these mechanisms may also inform targeted approaches for non-surgical treatments of obesity.
Collapse
Affiliation(s)
- Tamsyn Redpath
- Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine, BT52 1SA, United Kingdom
| | - Fathimath Naseer
- Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine, BT52 1SA, United Kingdom
| | - Ruth Karen Price
- Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine, BT52 1SA, United Kingdom
| | - Adele Boyd
- Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine, BT52 1SA, United Kingdom
| | - Melanie Martin
- Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine, BT52 1SA, United Kingdom
| | - Carel Wynand le Roux
- Diabetes Complications Research Centre, Conway Institute, University College Dublin, Dublin, Ireland
| | - Alan C. Spector
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | | |
Collapse
|
22
|
Stenberg E, Marsk R, Sundbom M, Ottosson J, Jernberg T, Näslund I, Näslund E. Remission, relapse, and risk of major cardiovascular events after metabolic surgery in persons with hypertension: A Swedish nationwide registry-based cohort study. PLoS Med 2021; 18:e1003817. [PMID: 34723954 PMCID: PMC8559928 DOI: 10.1371/journal.pmed.1003817] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 09/16/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Several studies have shown that metabolic surgery is associated with remission of diabetes and hypertension. In terms of diabetes, factors such as duration, insulin use, weight loss, and age have been shown to contribute to the likelihood of remission. Such factors have not been determined for hypertension. The aim of this study was to evaluate factors associated with the remission and relapse of hypertension after metabolic surgery, as well as the risk for major adverse cardiovascular event (MACE) and mortality in patients with and without remission. METHODS AND FINDINGS All adults who underwent metabolic surgery between January 2007 and June 2016 were identified in the nationwide Scandinavian Obesity Surgery Registry (SOReg). Through cross-linkage with the Swedish Prescribed Drug Register, Patient Register, and Statistics Sweden, individual data on prescriptions, inpatient and outpatient diagnoses, and mortality were retrieved. Of the 15,984 patients with pharmacologically treated hypertension, 6,286 (39.3%) were in remission at 2 years. High weight loss and male sex were associated with higher chance of remission, while duration, number of antihypertensive drugs, age, body mass index (BMI), cardiovascular disease, and dyslipidemia were associated with lower chance. After adjustment for age, sex, BMI, comorbidities, and education, the cumulative probabilities of MACEs (2.8% versus 5.7%, adjusted odds ratio (OR) 0.60, 95% confidence interval (CI) 0.47 to 0.77, p < 0.001) and all-cause mortality (4.0% versus 8.0%, adjusted OR 0.71, 95% CI 0.57 to 0.88, p = 0.002) were lower for patients being in remission at 2 years compared with patients not in remission, despite relapse of hypertension in 2,089 patients (cumulative probability 56.3%) during 10-year follow-up. The main limitations of the study were missing information on nonpharmacological treatment for hypertension and the observational study design. CONCLUSIONS In this study, we observed an association between high postoperative weight loss and male sex with better chance of remission, while we observed a lower chance of remission depending on disease severity and presence of other metabolic comorbidities. Patients who achieved remission had a halved risk of MACE and death compared with those who did not. The results suggest that in patients with severe obesity and hypertension, metabolic surgery should not be delayed.
Collapse
Affiliation(s)
- Erik Stenberg
- Department of Surgery, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- * E-mail:
| | - Richard Marsk
- Division of Surgery, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Sundbom
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Johan Ottosson
- Department of Surgery, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Tomas Jernberg
- Division of Cardiovascular Medicine, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Ingmar Näslund
- Department of Surgery, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Erik Näslund
- Division of Surgery, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
23
|
Metabolic profiles, energy expenditures, and body compositions of the weight regain versus sustained weight loss patients who underwent Roux-en-Y gastric bypass. Surg Obes Relat Dis 2021; 17:2015-2025. [PMID: 34635422 DOI: 10.1016/j.soard.2021.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/11/2021] [Accepted: 09/06/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND Weight regain (WR) has been an emerging problem after Roux-en Y gastric bypass (RYGB) and little is known about the mechanisms of WR after RYGB. OBJECTIVE To evaluate the mechanisms of WR after RYGB through the postprandial gut hormones response, particularly glucagon-like peptide-1 (GLP-1), which regulates appetite control, energy expenditure, body composition, physical activities, dietary intake, and psychological factors. SETTING Duke University Medical Center, Durham, North Carolina. METHODS A cross sectional study of 34 patients who underwent RYGB at least 2 years and achieved ≥50% of excess weight loss at 1year was conducted. The subjects were categorized into WR group or sustained weight loss group, based upon whether their WR was ≥15% of postoperative lowest weight. RESULTS The WR group had less augmented postprandial GLP-1 response but exaggerated hyperinsulinemia. Postprandial peptide YY, ghrelin, and glucose were not different between group. Patients who regained weight required less weight-adjusted energy expenditure and had more percentage body fat and less percentage lean mass. The caloric intake and diet composition were comparable between groups; however, the WR group had higher depression scores, binge eating scales, and hunger rating and spent significantly less time on vigorous exercise. CONCLUSIONS The mechanisms of WR in patients who were initially successful after RYGB are complex and involved not only the role of postprandial gut hormone response but are also related to energy expenditure adaptation and body composition changes. Moreover, food preference and physical activity may play roles in weight control after bariatric surgery. Further prospective controlled trial is needed to explore the mechanisms of WR.
Collapse
|
24
|
Tapio J, Vähänikkilä H, Kesäniemi YA, Ukkola O, Koivunen P. Higher hemoglobin levels are an independent risk factor for adverse metabolism and higher mortality in a 20-year follow-up. Sci Rep 2021; 11:19936. [PMID: 34620927 PMCID: PMC8497471 DOI: 10.1038/s41598-021-99217-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/21/2021] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to cross-sectionally and longitudinally examine whether higher hemoglobin (Hb) levels within the normal variation associate with key components of metabolic syndrome and total and cardiovascular mortality. The study included 967 Finnish subjects (age 40-59 years) followed for ≥ 20 years. The focus was on Hb levels, cardiovascular diseases (CVDs) and mortality rates. Higher Hb levels associated positively with key anthropometric and metabolic parameters at baseline. At the follow-up similar associations were seen in men. The highest Hb quartile showed higher leptin levels and lower adiponectin levels at baseline and follow-up (p < 0.05) and lower plasma ghrelin levels at baseline (p < 0.05). Higher baseline Hb levels associated independently with prevalence of type 2 diabetes at follow-up (p < 0.01). The highest Hb quartile associated with higher serum alanine aminotransferase levels (p < 0.001) and independently with increased risk for liver fat accumulation (OR 1.63 [1.03; 2.57]) at baseline. The highest Hb quartile showed increased risk for total (HR = 1.48 [1.01; 2.16]) and CVD-related mortality (HR = 2.08 [1.01; 4.29]). Higher Hb levels associated with an adverse metabolic profile, increased prevalence of key components of metabolic syndrome and higher risk for CVD-related and total mortality.
Collapse
Affiliation(s)
- Joona Tapio
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, P.O. Box 5400, 90014, Oulu, Finland
| | - Hannu Vähänikkilä
- Northern Finland Birth Cohorts, Arctic Biobank, Infrastructure for Population Studies, Faculty of Medicine, University of Oulu, 90014, Oulu, Finland
| | - Y Antero Kesäniemi
- Medical Research Center Oulu, Faculty of Medicine, Oulu University Hospital and Research Unit of Internal Medicine, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
| | - Olavi Ukkola
- Medical Research Center Oulu, Faculty of Medicine, Oulu University Hospital and Research Unit of Internal Medicine, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland.
| | - Peppi Koivunen
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, P.O. Box 5400, 90014, Oulu, Finland.
| |
Collapse
|
25
|
Martinussen C, Svane MS, Bojsen-Møller KN, Jensen CZ, Kristiansen VB, Bookout AL, Jørgensen SB, Holst JJ, Wewer Albrechtsen NJ, Madsbad S, Kuhre RE. Plasma GDF15 levels are similar between subjects after bariatric surgery and matched controls and are unaffected by meals. Am J Physiol Endocrinol Metab 2021; 321:E443-E452. [PMID: 34370594 DOI: 10.1152/ajpendo.00190.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Growth differentiating factor 15 (GDF15) is expressed in the intestine and is one of the most recently identified satiety peptides. The mechanisms controlling its secretion are unclear. The present study investigated whether plasma GDF15 concentrations are meal-related and if potential responses depend on macronutrient type or are affected by previous bariatric surgery. The study included 1) volunteers ingesting rapidly vs. slowly digested carbohydrates (sucrose vs. isomaltose; n = 10), 2) volunteers who had undergone Roux-en-Y gastric bypass (RYGB) or sleeve gastrectomy (SG) surgery and unoperated matched controls ingesting a liquid mixed meal (n = 9-10 in each group), and 3) individuals with previous RYGB compared with unoperated controls ingesting isocaloric glucose, fat, or protein (n = 6 in each group). Plasma was collected after an overnight fast and up to 6 h after ingestion (≥12 time points). In cohort 1, fasting GDF15 concentrations were ∼480 pg/mL. Concentrations after sucrose or isomaltose intake did not differ from baseline (P = 0.26 to P > 0.99) and total area under the curves (tAUCs were similar between groups (P = 0.77). In cohort 2, fasting GDF15 concentrations were as follows (pg/mL): RYGB = 540 ± 41.4, SG = 477 ± 36.4, and controls = 590 ± 41.8, with no between-group differences (P = 0.73). Concentrations did not increase at any postprandial time point (over all time factor: P = 0.10) and tAUCs were similar between groups (P = 0.73). In cohort 3, fasting plasma GDF15 was similar among the groups (P > 0.99) and neither glucose, fat, nor protein intake consistently increased the concentrations. In conclusion, we find that plasma GDF15 was not stimulated by meal intake and that fasting concentrations did not differ between RYGB-, SG-, and body mass index (BMI)-matched controls when investigated during the weight stable phase after RYGB and SG.NEW & NOTEWORTHY Our combined data show that GDF15 does not increase in response to a liquid meal. Moreover, we show for the first time that ingestion of sucrose, isomaltose, glucose, fat, or protein also does not increase plasma GDF15 concentrations, questioning the role of GDF15 in regulation of food source preference. Finally, we find that neither fasting nor postprandial plasma GDF15 concentrations are increased in individuals with previous bariatric surgery compared with unoperated body mass index (BMI)-matched controls.
Collapse
Affiliation(s)
- Christoffer Martinussen
- Department of Endocrinology, Hvidovre Hospital, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maria Saur Svane
- Department of Endocrinology, Hvidovre Hospital, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | - Jens Juul Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department for Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Hvidovre Hospital, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rune Ehrenreich Kuhre
- Obesity Pharmacology, Novo Nordisk, Måløv, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
Smith KR, Moran TH. Gastrointestinal peptides in eating-related disorders. Physiol Behav 2021; 238:113456. [PMID: 33989649 PMCID: PMC8462672 DOI: 10.1016/j.physbeh.2021.113456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/19/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022]
Abstract
Food intake is tightly controlled by homeostatic signals sensitive to metabolic need for the regulation of body weight. This review focuses on the peripherally-secreted gastrointestinal peptides (i.e., ghrelin, cholecystokinin, glucagon-like peptide 1, and peptide tyrosine tyrosine) that contribute to the control of appetite and discusses how these peptides or the signals arising from their release are disrupted in eating-related disorders across the weight spectrum, namely anorexia nervosa, bulimia nervosa, and obesity, and whether they are normalized following weight restoration or weight loss treatment. Further, the role of gut peptides in the pathogenesis and treatment response in human weight conditions as identified by rodent models are discussed. Lastly, we review the incretin- and hormone-based pharmacotherapies available for the treatment of obesity and eating-related disorders.
Collapse
Affiliation(s)
- Kimberly R Smith
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States.
| | - Timothy H Moran
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| |
Collapse
|
27
|
Nauck MA, Wefers J, Meier JJ. Treatment of type 2 diabetes: challenges, hopes, and anticipated successes. Lancet Diabetes Endocrinol 2021; 9:525-544. [PMID: 34181914 DOI: 10.1016/s2213-8587(21)00113-3] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022]
Abstract
Despite the successful development of new therapies for the treatment of type 2 diabetes, such as glucagon-like peptide-1 (GLP-1) receptor agonists and sodium-glucose cotransporter-2 inhibitors, the search for novel treatment options that can provide better glycaemic control and at reduce complications is a continuous effort. The present Review aims to present an overview of novel targets and mechanisms and focuses on glucose-lowering effects guiding this search and developments. We discuss not only novel developments of insulin therapy (eg, so-called smart insulin preparation with a glucose-dependent mode of action), but also a group of drug classes for which extensive research efforts have not been rewarded with obvious clinical impact. We discuss the potential clinical use of the salutary adipokine adiponectin and the hepatokine fibroblast growth factor (FGF) 21, among others. A GLP-1 peptide receptor agonist (semaglutide) is now available for oral absorption, and small molecules activating GLP-1 receptors appear on the horizon. Bariatric surgery and its accompanying changes in the gut hormonal milieu offer a background for unimolecular peptides interacting with two or more receptors (for GLP-1, glucose-dependent insulinotropic polypeptide, glucagon, and peptide YY) and provide more substantial glycaemic control and bodyweight reduction compared with selective GLP-1 receptor agonists. These and additional approaches will help expand the toolbox of effective medications needed for optimising the treatment of well delineated subgroups of type 2 diabetes or help develop personalised approaches for glucose-lowering drugs based on individual characteristics of our patients.
Collapse
Affiliation(s)
- Michael A Nauck
- Diabetes Division, Katholisches Klinikum Bochum, St Josef Hospital, Ruhr University Bochum, Bochum, Germany.
| | - Jakob Wefers
- Diabetes Division, Katholisches Klinikum Bochum, St Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Juris J Meier
- Diabetes Division, Katholisches Klinikum Bochum, St Josef Hospital, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
28
|
Chumakova-Orin M, Vanetta C, Moris DP, Guerron AD. Diabetes remission after bariatric surgery. World J Diabetes 2021; 12:1093-1101. [PMID: 34326957 PMCID: PMC8311476 DOI: 10.4239/wjd.v12.i7.1093] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/10/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023] Open
Abstract
Over the last decade, obesity rates have continued to rise in the United States as well as worldwide and are showing no signs of slowing down. This rise is in parallel with the increasing rates of type 2 diabetes mellitus (T2DM). Given the association between obesity and T2DM and their strong correlation with increased morbidity and mortality in addition to healthcare expenditure, it is important to recognize the most effective ways to combat them. Thus, we performed a review of literature that focused on assessing the outcomes of T2DM following bariatric surgery. Available evidence suggests that bariatric surgery provides better T2DM resolution in obese patients when compared to best medical management alone. Additionally, Biliopancreatic diversion with duodenal switch as well as Roux-en-Y gastric bypass have demonstrated higher rates of T2DM resolution when compared with other bariatric procedures.
Collapse
Affiliation(s)
| | - Carolina Vanetta
- Department of Surgery, Duke University, Durham, NC 27705, United States
| | - Dimitrios P Moris
- Department of Surgery, Duke University, Durham, NC 27705, United States
| | - Alfredo D Guerron
- Department of Surgery, Duke University, Durham, NC 27705, United States
| |
Collapse
|
29
|
Redpath TL, Livingstone MBE, Dunne AA, Boyd A, le Roux CW, Spector AC, Price RK. Methodological issues in assessing change in dietary intake and appetite following gastric bypass surgery: A systematic review. Obes Rev 2021; 22:e13202. [PMID: 33527664 PMCID: PMC8244068 DOI: 10.1111/obr.13202] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/20/2020] [Accepted: 12/13/2020] [Indexed: 12/23/2022]
Abstract
Gastric bypass surgery is an effective long-term treatment for individuals with severe obesity. Changes in appetite, dietary intake, and food preferences have all been postulated to contribute to postoperative body weight regulation, however, findings are inconsistent. The aim of this systematic review was to evaluate the current literature on changes in dietary intake and appetite following gastric bypass surgery, in the context of the methodology used and the analysis, interpretation, and presentation of results. Four databases were systematically searched with terms related to "gastric bypass surgery," "appetite," and "dietary intake," and 49 papers (n = 2384 patients after gastric bypass) were eligible for inclusion. The evidence indicated that only a reduction in overall energy intake and an increase in postprandial satiety are maintained beyond 6-month post-surgery, whereas relative macronutrient intake and premeal hunger remain unchanged. However, available data were limited by inconsistencies in the methods, analysis, presentation, and interpretation of results. In particular, there was a reliance on data collected by subjective methods with minimal acknowledgment of the limitations, such as misreporting of food intake. There is a need for further work employing objective measurement of appetite and dietary intake following gastric bypass surgery to determine how these mechanisms may contribute to weight regulation in the longer term.
Collapse
Affiliation(s)
- Tamsyn L Redpath
- Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine, UK
| | | | - Aoibheann A Dunne
- Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine, UK
| | - Adele Boyd
- Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine, UK
| | - Carel W le Roux
- Diabetes Complications Research Centre, University College Dublin, Dublin, Ireland
| | - Alan C Spector
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Ruth K Price
- Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine, UK
| |
Collapse
|
30
|
Gastric Sensory and Motor Functions and Energy Intake in Health and Obesity-Therapeutic Implications. Nutrients 2021; 13:nu13041158. [PMID: 33915747 PMCID: PMC8065811 DOI: 10.3390/nu13041158] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/18/2021] [Accepted: 03/26/2021] [Indexed: 01/19/2023] Open
Abstract
Sensory and motor functions of the stomach, including gastric emptying and accommodation, have significant effects on energy consumption and appetite. Obesity is characterized by energy imbalance; altered gastric functions, such as rapid gastric emptying and large fasting gastric volume in obesity, may result in increased food intake prior to reaching usual fullness and increased appetite. Thus, many different interventions for obesity, including different diets, anti-obesity medications, bariatric endoscopy, and surgery, alter gastric functions and gastrointestinal motility. In this review, we focus on the role of the gastric and intestinal functions in food intake, pathophysiology of obesity, and obesity management.
Collapse
|
31
|
Schalla MA, Taché Y, Stengel A. Neuroendocrine Peptides of the Gut and Their Role in the Regulation of Food Intake. Compr Physiol 2021; 11:1679-1730. [PMID: 33792904 DOI: 10.1002/cphy.c200007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The regulation of food intake encompasses complex interplays between the gut and the brain. Among them, the gastrointestinal tract releases different peptides that communicate the metabolic state to specific nuclei in the hindbrain and the hypothalamus. The present overview gives emphasis on seven peptides that are produced by and secreted from specialized enteroendocrine cells along the gastrointestinal tract in relation with the nutritional status. These established modulators of feeding are ghrelin and nesfatin-1 secreted from gastric X/A-like cells, cholecystokinin (CCK) secreted from duodenal I-cells, glucagon-like peptide 1 (GLP-1), oxyntomodulin, and peptide YY (PYY) secreted from intestinal L-cells and uroguanylin (UGN) released from enterochromaffin (EC) cells. © 2021 American Physiological Society. Compr Physiol 11:1679-1730, 2021.
Collapse
Affiliation(s)
- Martha A Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Yvette Taché
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California, USA.,VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
32
|
Ladebo L, Pedersen PV, Pacyk GJ, Kroustrup JP, Drewes AM, Brock C, Olesen AE. Gastrointestinal pH, Motility Patterns, and Transit Times After Roux-en-Y Gastric Bypass. Obes Surg 2021; 31:2632-2640. [PMID: 33709293 DOI: 10.1007/s11695-021-05308-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/17/2021] [Accepted: 02/23/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Studies investigating the underlying pathophysiology are needed to help explain and understand the postoperative complications following Roux-en-Y gastric bypass (RYGB) surgery. This study aimed to characterize segmental gastrointestinal pH profiles, motility measures, and transit times in patients with RYGB. MATERIALS AND METHODS Nineteen patients with RYGB underwent a standardized wireless motility capsule assessment. The oro-cecal segment was defined from capsule ingestion until the passage of the ileocecal junction. Segmental median pH, motility index, and transit time were determined for the oro-cecal and colonic segment as well as for the first and last hour of both these segments. For comparison to reference values, data from 17 healthy age- and gender-matched controls was used. A mixed effect model was used to describe differences between groups. RESULTS Median pH was high in patients with RYGB during the first hour of the oro-cecal segment (6.45 ± 0.4 vs 3.65 ± 1.55 pH units for healthy controls; P < 0.001), as well as during the entire oro-cecal segment (6.97 ± 0.4 vs 5.51 ± 1.1 pH units; P < 0.001). The same was evident for the median motility index (152 ± 64 vs 35.8 ± 31.1 mmHg*sec/min; P < 0.001 and 130 ± 65.9 vs 89.1 ± 20 mmHg*sec/min; P < 0.012, respectively). Median motility index was low the first hour of the colon (55.2 ± 45.7 vs 122 ± 77.9 mmHg*sec/min; P < 0.002). Additionally, patients had short oro-cecal transit time (5.8 ± 1.6 vs 7.6 ± 1.4 h; P < 0.001) and long colonic transit time (29.4 ± 17.5 vs 19.6 ± 12.2 h; P = 0.048). CONCLUSIONS In patients with RYGB, the oro-cecal segment was characterized by an alkaline intraluminal environment, high motility activity, and short transit time. In contrast, colonic transit time was long.
Collapse
Affiliation(s)
- Louise Ladebo
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Medicinerhuset 4th floor, Mølleparkvej 4, DK-9000, Aalborg, Denmark. .,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| | | | - Grzegorz J Pacyk
- Department of Clinical Medicine and Endocrinology, Aalborg University Hospital, Aalborg, Denmark
| | - Jens Peter Kroustrup
- Department of Clinical Medicine and Endocrinology, Aalborg University Hospital, Aalborg, Denmark
| | - Asbjørn M Drewes
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Medicinerhuset 4th floor, Mølleparkvej 4, DK-9000, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Christina Brock
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Medicinerhuset 4th floor, Mølleparkvej 4, DK-9000, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Anne E Olesen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Department of Clinical Pharmacology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
33
|
Steenackers N, Vanuytsel T, Augustijns P, Tack J, Mertens A, Lannoo M, Van der Schueren B, Matthys C. Adaptations in gastrointestinal physiology after sleeve gastrectomy and Roux-en-Y gastric bypass. Lancet Gastroenterol Hepatol 2021; 6:225-237. [PMID: 33581761 DOI: 10.1016/s2468-1253(20)30302-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 01/19/2023]
Abstract
Linked to the growing obesity epidemic, demand for bariatric and metabolic surgery has increased, the most common procedures being sleeve gastrectomy and Roux-en-Y gastric bypass. Originally, bariatric procedures were described as purely restrictive, malabsorptive, or combined restrictive-malabsorptive procedures limiting food intake, nutrient absorption, or both. Nowadays, anatomical alterations are known to affect gastrointestinal physiology, which in turn affects the digestion and absorption of nutrients and drugs. Therefore, understanding gastrointestinal physiology is crucial to prevent postoperative nutritional deficiencies and to optimise postoperative drug therapy. Preclinical and clinical research indicates that sleeve gastrectomy accelerates liquid and solid gastric emptying and small intestinal transit, and increases bile acid serum levels, whereas its effects on gastrointestinal acidity, gastric and pancreatic secretions, surface area, and colonic transit remain largely unknown. Roux-en-Y gastric bypass diminishes gastric acid secretion, accelerates liquid gastric emptying, and increases bile acid serum levels, but its effects on intestinal pH, solid gastric emptying, intestinal transit time, gastric enzyme secretions, and surface area remain largely unknown. In this Review, we summarise current knowledge of the effects of these two procedures on gastrointestinal physiology and assess the knowledge gaps.
Collapse
Affiliation(s)
- Nele Steenackers
- Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Tim Vanuytsel
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Patrick Augustijns
- Department of Chronic Diseases and Metabolism, and Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Jan Tack
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Ann Mertens
- Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Matthias Lannoo
- Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | | | | |
Collapse
|
34
|
Do Gut Hormones Contribute to Weight Loss and Glycaemic Outcomes after Bariatric Surgery? Nutrients 2021; 13:nu13030762. [PMID: 33652862 PMCID: PMC7996890 DOI: 10.3390/nu13030762] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 02/07/2023] Open
Abstract
Bariatric surgery is an effective intervention for management of obesity through treating dysregulated appetite and achieving long-term weight loss maintenance. Moreover, significant changes in glucose homeostasis are observed after bariatric surgery including, in some cases, type 2 diabetes remission from the early postoperative period and postprandial hypoglycaemia. Levels of a number of gut hormones are dramatically increased from the early period after Roux-en-Y gastric bypass and sleeve gastrectomy—the two most commonly performed bariatric procedures—and they have been suggested as important mediators of the observed changes in eating behaviour and glucose homeostasis postoperatively. In this review, we summarise the current evidence from human studies on the alterations of gut hormones after bariatric surgery and their impact on clinical outcomes postoperatively. Studies which assess the role of gut hormones after bariatric surgery on food intake, hunger, satiety and glucose homeostasis through octreotide use (a non-specific inhibitor of gut hormone secretion) as well as with exendin 9–39 (a specific glucagon-like peptide-1 receptor antagonist) are reviewed. The potential use of gut hormones as biomarkers of successful outcomes of bariatric surgery is also evaluated.
Collapse
|
35
|
Guimarães M, Pereira SS, Monteiro MP. From Entero-Endocrine Cell Biology to Surgical Interventional Therapies for Type 2 Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1307:273-297. [PMID: 32016913 DOI: 10.1007/5584_2020_480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The physiological roles of the enteroendocrine system in relation to energy and glucose homeostasis regulation have been extensively studied in the past few decades. Considerable advances were made that enabled to disclose the potential use of gastro-intestinal (GI) hormones to target obesity and type 2 diabetes (T2D). The recognition of the clinical relevance of these discoveries has led the pharmaceutical industry to design several hormone analogues to either to mitigate physiological defects or target pharmacologically T2D.Amongst several advances, a major breakthrough in the field was the unexpected observation that enteroendocrine system modulation to T2D target could be achieved by surgically induced anatomical rearrangement of the GI tract. These findings resulted from the widespread use of bariatric surgery procedures for obesity treatment, which despite initially devised to induce weight loss by limiting the systemic availably of nutrients, are now well recognized to influence GI hormone dynamics in a manner that is highly dependent on the type of anatomical rearrangement produced.This chapter will focus on enteroendocrine system related mechanisms leading to improved glycemic control in T2D after bariatric surgery interventions.
Collapse
Affiliation(s)
- Marta Guimarães
- Endocrine, Cardiovascular & Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal.,Department of Anatomy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.,Department of General Surgery, Centro Hospitalar de Entre o Douro e Vouga, Santa Maria da Feira, Portugal
| | - Sofia S Pereira
- Endocrine, Cardiovascular & Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal.,Department of Anatomy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Mariana P Monteiro
- Endocrine, Cardiovascular & Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal. .,Department of Anatomy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.
| |
Collapse
|
36
|
Tabucanon T, Wilcox J, Tang WHW. Does Weight Loss Improve Clinical Outcomes in Overweight and Obese Patients with Heart Failure? Curr Diab Rep 2020; 20:75. [PMID: 33231788 DOI: 10.1007/s11892-020-01367-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/26/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Obesity increases the risk of new onset heart failure (HF), and particularly HF with preserved ejection fraction (HFpEF). Despite the observations of favorable clinical outcomes in HF patients with obesity in general, sometimes referred to as the "obesity paradox," it is important to recognize that severe obesity is associated with worse clinical outcomes. This review summarizes the effects of obesity treatment on cardiovascular health and HF clinical outcomes. RECENT FINDINGS Treatment for obesity utilizes a variety of modalities to achieve purposeful weight loss including lifestyle intervention, medications, and bariatric surgery. There are a cluster of benefits of obesity treatment in terms of clinical outcomes in HF. The mechanisms of these benefits include both weight loss-dependent and weight loss-independent mechanisms. Obesity treatment is safe and associated with favorable clinical outcomes across the spectrum of the HF population. The potential benefits are facilitated through multiple mechanisms.
Collapse
Affiliation(s)
- Thida Tabucanon
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Kaufman Center for Heart Failure Treatment and Recovery, Cleveland Clinic, 9500 Euclid Avenue, Desk J3-4, Cleveland, OH, 44195, USA
- Thammasat Heart Center, Thammasat University Hospital, Khlong Luang, Pathum Thani, Thailand
| | - Jennifer Wilcox
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - W H Wilson Tang
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Kaufman Center for Heart Failure Treatment and Recovery, Cleveland Clinic, 9500 Euclid Avenue, Desk J3-4, Cleveland, OH, 44195, USA.
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
37
|
Zanley E, Shah ND, Craig C, Lau JN, Rivas H, McLaughlin T. Guidelines for gastrostomy tube placement and enteral nutrition in patients with severe, refractory hypoglycemia after gastric bypass. Surg Obes Relat Dis 2020; 17:456-465. [PMID: 33160876 DOI: 10.1016/j.soard.2020.09.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/29/2020] [Accepted: 09/14/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND Postbariatric hypoglycemia (PBH) affects up to 38% of Roux-en-Y gastric bypass (RYGB) patients. Severe cases are refractory to diet and medications. Surgical treatments including bypass reversal and pancreatectomy are highly morbid and hypoglycemia often recurs. We have developed a highly effective method of treatment by which enteral nutrition administered through a gastrostomy (G) tube placed in the remnant stomach replaces oral diet: if done correctly this reverses hyperinsulinemia and hypoglycemia, yielding substantial health and quality of life benefits for severely affected patients. OBJECTIVES To provide clinical guidelines for placement of a G-tube to treat postRYGB hypoglycemia, including candidate selection, preoperative evaluation, surgical considerations, and post-RYGB management. SETTING Stanford University Hospital and Clinics. METHODS Based on our relatively large experience with placing and managing G-tubes for PBH treatment, an interdisciplinary task force developed guidelines for practitioners. RESULTS A team approach (endocrinologist, dietitian, surgeon, psychologist) is recommended. Appropriate candidates have a history of RYGB, severe hypoglycemia refractory to medical-nutrition therapy, and significantly affected quality of life. Preoperative requirements include education and expectation setting, determination of initial enteral feeding program, and establishing service with a home enteral provider. Close postoperative follow-up is needed to ensure success and may require adjustments in formula and mode/rate of delivery to optimize tolerance and meet nutritional goals. G-tube nutrition must fully replace oral nutrition to prevent hypoglycemia. CONCLUSIONS G-tube placement in the remnant stomach represents a relatively well-tolerated and effective treatment for severe, refractory hypoglycemia after RYGB.
Collapse
Affiliation(s)
- Elizabeth Zanley
- Department of Medicine, Stanford University, Stanford, California
| | - Neha D Shah
- Department of Clinical Nutrition, Stanford Health Care, Stanford, California
| | - Colleen Craig
- Department of Medicine, Stanford University, Stanford, California
| | - James N Lau
- Department of General Surgery, Stanford University, Stanford, California
| | - Homero Rivas
- Department of General Surgery, Stanford University, Stanford, California
| | | |
Collapse
|
38
|
Mariën I, De Block C, Verrijken A, Van Dessel K, Peiffer F, Verhaegen A, Hubens G, Van Gaal L, Dirinck E. Features of oral glucose tolerance tests in patients after Roux-en-Y gastric bypass with and without hypoglycaemia symptoms in daily life: It's all about speed. Diabetes Obes Metab 2020; 22:2107-2119. [PMID: 32643861 DOI: 10.1111/dom.14130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To evaluate the glucose and insulin profiles during an oral glucose tolerance test (OGTT) after Roux-en-Y gastric bypass (RYGB) in symptomatic and asymptomatic patients. RESEARCH DESIGN AND METHODS This retrospective study consisted of two groups that had undergone RYGB. The symptomatic (S) group (n = 27) had an OGTT at presentation, whereas the asymptomatic (A) group (n = 99) had an OGTT 1 year after RYGB. Each group was subdivided into two groups, namely, those with glycaemia <54 mg/dL (S1/A1) and those with glycaemia >54 mg/dL (S2/A2) during OGTT. Most of the patients underwent OGTT preoperatively. RESULTS Preoperatively, the glucose and insulin levels, as well as the speed of increase and decrease, were similar in all groups. Postoperatively, the minimum glucose levels during the OGTT did not differ between the symptomatic and asymptomatic groups (55 ± 19 vs. 54 ± 17 mg/dL) or between the S1 and A1 subgroups (39 ± 7 vs. 43 ± 8 mg/dL). The peak glucose values were higher in the symptomatic versus the asymptomatic group (236 ± 52 vs. 189 ± 43 mg/dL; P <0.05) and in the S1 and S2 versus the A1 and A2 subgroups. The speed of glucose increase and decline was significantly higher in the symptomatic group versus the asymptomatic group, with the speed of glucose decline being the highest in the S1 subgroup. CONCLUSION Assessing hypoglycaemia after a gastric bypass remains challenging. Our study suggests that the main difference in glucose dynamics between symptomatic and asymptomatic patients might be the speed of glucose and insulin increase and decline during OGTT rather than the absolute values obtained.
Collapse
Affiliation(s)
- Ilke Mariën
- Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, Antwerp, Belgium
| | - Christophe De Block
- Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, Antwerp, Belgium
- Laboratory of Experimental Medicine and Pediatrics, Antwerp University, Antwerp, Belgium
| | - An Verrijken
- Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, Antwerp, Belgium
- Laboratory of Experimental Medicine and Pediatrics, Antwerp University, Antwerp, Belgium
| | - Kristof Van Dessel
- Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, Antwerp, Belgium
- Laboratory of Experimental Medicine and Pediatrics, Antwerp University, Antwerp, Belgium
| | - Frida Peiffer
- Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, Antwerp, Belgium
| | - Ann Verhaegen
- Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, Antwerp, Belgium
| | - Guy Hubens
- Department of Abdominal Surgery, Antwerp University Hospital, Antwerp, Belgium
| | - Luc Van Gaal
- Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, Antwerp, Belgium
- Laboratory of Experimental Medicine and Pediatrics, Antwerp University, Antwerp, Belgium
| | - Eveline Dirinck
- Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, Antwerp, Belgium
- Laboratory of Experimental Medicine and Pediatrics, Antwerp University, Antwerp, Belgium
| |
Collapse
|
39
|
Näslund E, Stenberg E, Hofmann R, Ottosson J, Sundbom M, Marsk R, Svensson P, Szummer K, Jernberg T. Association of Metabolic Surgery With Major Adverse Cardiovascular Outcomes in Patients With Previous Myocardial Infarction and Severe Obesity: A Nationwide Cohort Study. Circulation 2020; 143:1458-1467. [PMID: 33103469 DOI: 10.1161/circulationaha.120.048585] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND The number of patients with myocardial infarction and severe obesity is increasing and there is a lack of evidence how these patients should be treated. The aim of this study was to investigate the association between metabolic surgery (Roux-en-Y gastric bypass and sleeve gastrectomy) and major adverse cardiovascular events in patients with previous myocardial infarction (MI) and severe obesity. METHODS Of 566 patients with previous MI registered in the SWEDEHEART registry (Swedish Web-System for Enhancement and Development of Evidence-Based Care in Heart Disease Evaluated According to Recommended Therapies) undergoing metabolic surgery and registered in the nationwide Scandinavian Obesity Surgery Registry, 509 patients (Roux-en-Y gastric bypass n=465; sleeve gastrectomy n=44) could be matched 1:1 to a control with MI from SWEDEHEART, but no subsequent metabolic surgery regarding sex, age (±3 years), year of MI (±3 years), and body mass index (±3). The 2 groups were well matched, except for a lower proportion of reduced ejection fraction after MI (7% versus 12%), previous heart failure (10% versus 19%), atrial fibrillation (6% versus 10%), and chronic obstructive pulmonary disease (4% versus 7%) in patients undergoing metabolic surgery. RESULTS The median (interquartile range) follow-up time was 4.6 (2.7-7.1) years. The 8-year cumulative probability of major adverse cardiovascular events was lower in patients undergoing metabolic surgery (18.7% [95% CI, 15.9-21.5%] versus 36.2% [33.2-39.3%], adjusted hazard ratio, 0.44 [95% CI, 0.32-0.61]). Patients undergoing metabolic surgery had also a lower risk of death (adjusted HR, 0.45 [95% CI, 0.29-0.70]; MI, 0.24 [0.14-0.41]) and new onset heart failure, but there were no significant differences regarding stroke (0.91 [0.38-2.20]) and new onset atrial fibrillation (0.56 [0.31-1.01]). CONCLUSIONS In severely obese patients with previous MI, metabolic surgery is associated with a low risk for serious complications, lower risk of major adverse cardiovascular events, death, new MI, and new onset heart failure. These findings need to be confirmed in a randomized, controlled trial.
Collapse
Affiliation(s)
- Erik Näslund
- Division of Surgery (E.N., R.M.), Department of Clinical Sciences, Danderyd Hospital, Stockholm, Sweden
| | - Erik Stenberg
- Department of Surgery, Faculty of Medicine and Health, Örebro University, Sweden (E.S., J.O.)
| | - Robin Hofmann
- Department of Clinical Science and Education, Division of Cardiology (R.H., P.S.), Karolinska Institutet, Stockholm, Sweden
| | - Johan Ottosson
- Department of Surgery, Faculty of Medicine and Health, Örebro University, Sweden (E.S., J.O.)
| | - Magnus Sundbom
- Department of Surgical Sciences, Uppsala University, Sweden (M.S.)
| | - Richard Marsk
- Division of Surgery (E.N., R.M.), Department of Clinical Sciences, Danderyd Hospital, Stockholm, Sweden
| | - Per Svensson
- Department of Clinical Science and Education, Division of Cardiology (R.H., P.S.), Karolinska Institutet, Stockholm, Sweden
| | - Karolina Szummer
- Department of Medicine, Huddinge, Section of Cardiology (K.S.), Karolinska Institutet, Stockholm, Sweden
| | - Tomas Jernberg
- Division of Cardiovascular Medicine (T.J.), Department of Clinical Sciences, Danderyd Hospital, Stockholm, Sweden
| |
Collapse
|
40
|
Osinski C, Le Gléau L, Poitou C, de Toro-Martin J, Genser L, Fradet M, Soula HA, Leturque A, Blugeon C, Jourdren L, Hubert EL, Clément K, Serradas P, Ribeiro A. Type 2 diabetes is associated with impaired jejunal enteroendocrine GLP-1 cell lineage in human obesity. Int J Obes (Lond) 2020; 45:170-183. [PMID: 33037328 PMCID: PMC7752761 DOI: 10.1038/s41366-020-00694-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 09/07/2020] [Accepted: 09/26/2020] [Indexed: 12/15/2022]
Abstract
Objectives Altered enteroendocrine cell (EEC) function in obesity and type 2 diabetes is not fully understood. Understanding the transcriptional program that controls EEC differentiation is important because some EEC types harbor significant therapeutic potential for type 2 diabetes. Methods EEC isolation from jejunum of obese individuals with (ObD) or without (Ob) type 2 diabetes was obtained with a new method of cell sorting. EEC transcriptional profiles were established by RNA-sequencing in a first group of 14 Ob and 13 ObD individuals. EEC lineage and densities were studied in the jejunum of a second independent group of 37 Ob, 21 ObD and 22 non obese (NOb) individuals. Results The RNA seq analysis revealed a distinctive transcriptomic signature and a decreased differentiation program in isolated EEC from ObD compared to Ob individuals. In the second independent group of ObD, Ob and NOb individuals a decreased GLP-1 cell lineage and GLP-1 maturation from proglucagon, were observed in ObD compared to Ob individuals. Furthermore, jejunal density of GLP-1-positive cells was significantly reduced in ObD compared to Ob individuals. Conclusions These results highlight that the transcriptomic signature of EEC discriminate obese subjects according to their diabetic status. Furthermore, type 2 diabetes is associated with reduced GLP-1 cell differentiation and proglucagon maturation leading to low GLP-1-cell density in human obesity. These mechanisms could account for the decrease plasma GLP-1 observed in metabolic diseases.
Collapse
Affiliation(s)
- Céline Osinski
- Sorbonne Université, INSERM, Nutrition and obesities: systemic approaches, F-75013, Paris, France
| | - Léa Le Gléau
- Sorbonne Université, INSERM, Nutrition and obesities: systemic approaches, F-75013, Paris, France
| | - Christine Poitou
- Sorbonne Université, INSERM, Nutrition and obesities: systemic approaches, F-75013, Paris, France.,Nutrition Department, Pitié-Salpêtrière hospital, Assistance Publique/Hôpitaux de Paris, F-75013, Paris, France
| | - Juan de Toro-Martin
- Sorbonne Université, Université de Paris, INSERM, Cordeliers Research Center, F-75006, Paris, France.,Institute of Nutrition and Functional Foods (INAF), School of Nutrition, Université Laval, Quebec, QC, Canada
| | - Laurent Genser
- Sorbonne Université, INSERM, Nutrition and obesities: systemic approaches, F-75013, Paris, France.,Hepato-Biliary-Pancreatic Gastrointestinal Surgery and Liver Transplantation, Pitié-Salpêtrière Hospital, Assistance Publique/Hôpitaux de Paris, F-75013, Paris, France
| | - Magali Fradet
- Cytometry platform, Institut Cardiometabolism and Nutrition, F-75013, Paris, France.,Institut de Biologie, CIRB, Collège de France, F-75005, Paris, France
| | - Hédi Antoine Soula
- Sorbonne Université, INSERM, Nutrition and obesities: systemic approaches, F-75013, Paris, France
| | - Armelle Leturque
- Sorbonne Université, INSERM, Nutrition and obesities: systemic approaches, F-75013, Paris, France
| | - Corinne Blugeon
- Genomics core facility, Département de biologie, Institut de Biologie de l'ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Laurent Jourdren
- Genomics core facility, Département de biologie, Institut de Biologie de l'ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Edwige Ludiwyne Hubert
- Sorbonne Université, Université de Paris, INSERM, Cordeliers Research Center, F-75006, Paris, France.,SERVIER, ADIR, F-92284, Suresnes, cedex, France
| | - Karine Clément
- Sorbonne Université, INSERM, Nutrition and obesities: systemic approaches, F-75013, Paris, France.,Nutrition Department, Pitié-Salpêtrière hospital, Assistance Publique/Hôpitaux de Paris, F-75013, Paris, France
| | - Patricia Serradas
- Sorbonne Université, INSERM, Nutrition and obesities: systemic approaches, F-75013, Paris, France.
| | - Agnès Ribeiro
- Sorbonne Université, INSERM, Nutrition and obesities: systemic approaches, F-75013, Paris, France.
| |
Collapse
|
41
|
Hanchard J, Capó-Vélez CM, Deusch K, Lidington D, Bolz SS. Stabilizing Cellular Barriers: Raising the Shields Against COVID-19. Front Endocrinol (Lausanne) 2020; 11:583006. [PMID: 33101215 PMCID: PMC7554589 DOI: 10.3389/fendo.2020.583006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its clinical manifestation (COVID-19; coronavirus disease 2019) have caused a worldwide health crisis. Disruption of epithelial and endothelial barriers is a key clinical turning point that differentiates patients who are likely to develop severe COVID-19 outcomes: it marks a significant escalation in respiratory symptoms, loss of viral containment and a progression toward multi-organ dysfunction. These barrier mechanisms are independently compromised by known COVID-19 risk factors, including diabetes, obesity and aging: thus, a synergism between these underlying conditions and SARS-CoV-2 mechanisms may explain why these risk factors correlate with more severe outcomes. This review examines the key cellular mechanisms that SARS-CoV-2 and its underlying risk factors utilize to disrupt barrier function. As an outlook, we propose that glucagon-like peptide 1 (GLP-1) may be a therapeutic intervention that can slow COVID-19 progression and improve clinical outcome following SARS-CoV-2 infection. GLP-1 signaling activates barrier-promoting processes that directly oppose the pro-inflammatory mechanisms commandeered by SARS-CoV-2 and its underlying risk factors.
Collapse
Affiliation(s)
- Julia Hanchard
- Aphaia Pharma AG, Zug, Switzerland
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Toronto Centre for Microvascular Medicine at The Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, Toronto, ON, Canada
| | | | | | - Darcy Lidington
- Aphaia Pharma AG, Zug, Switzerland
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Toronto Centre for Microvascular Medicine at The Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, Toronto, ON, Canada
| | - Steffen-Sebastian Bolz
- Aphaia Pharma AG, Zug, Switzerland
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Toronto Centre for Microvascular Medicine at The Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
42
|
Søeby M, Nielsen JB, Pedersen SB, Gribsholt SB, Holst JJ, Richelsen B. Relationship between biochemical and symptomatic hypoglycemia after RYGB. Responses to a mixed meal test: a case-control study. Surg Obes Relat Dis 2020; 16:1179-1185. [DOI: 10.1016/j.soard.2020.04.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/24/2020] [Accepted: 04/11/2020] [Indexed: 01/03/2023]
|
43
|
Schneider R, Kraljević M, Peterli R, Rohm TV, Klasen JM, Cavelti-Weder C, Delko T. GLP-1 Analogues as a Complementary Therapy in Patients after Metabolic Surgery: a Systematic Review and Qualitative Synthesis. Obes Surg 2020; 30:3561-3569. [PMID: 32500274 DOI: 10.1007/s11695-020-04750-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 12/25/2022]
Abstract
The evidence is strong that bariatric surgery is superior to medical treatment in terms of weight loss and comorbidities in patients with severe obesity. However, a considerable part of patients presents with unsatisfactory response in the long term. It remains unclear whether postoperative administration of glucagon-like peptide-1 analogues can promote additional benefits. Therefore, a systematic review of the current literature on the management of postoperative GLP-1 analogue usage after metabolic surgery was performed. From 4663 identified articles, 6 met the inclusion criteria, but only one was a randomized controlled trial. The papers reviewed revealed that GLP-1 analogues may have beneficial effects on additional weight loss and T2D remission postoperatively. Thus, the use of GLP-1 analogues in addition to surgery promises good results concerning weight loss and improvements of comorbidities and can be used in patients with unsatisfactory results after bariatric surgery.
Collapse
Affiliation(s)
- Romano Schneider
- Clarunis, Department of Visceral Surgery, University Center for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, P.O. BOX, CH-4002, Basel, Switzerland.
| | - Marko Kraljević
- Clarunis, Department of Visceral Surgery, University Center for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, P.O. BOX, CH-4002, Basel, Switzerland
| | - Ralph Peterli
- Clarunis, Department of Visceral Surgery, University Center for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, P.O. BOX, CH-4002, Basel, Switzerland
| | - Theresa V Rohm
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, CH-4031, Basel, Switzerland.,Department of Biomedicine, University of Basel, University Hospital Basel, CH-4031, Basel, Switzerland
| | - Jennifer M Klasen
- Clarunis, Department of Visceral Surgery, University Center for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, P.O. BOX, CH-4002, Basel, Switzerland
| | - Claudia Cavelti-Weder
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, CH-4031, Basel, Switzerland.,Department of Biomedicine, University of Basel, University Hospital Basel, CH-4031, Basel, Switzerland
| | - Tarik Delko
- Clarunis, Department of Visceral Surgery, University Center for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, P.O. BOX, CH-4002, Basel, Switzerland
| |
Collapse
|
44
|
Non-responders After Gastric Bypass Surgery for Morbid Obesity: Peptide Hormones and Glucose Homeostasis. Obes Surg 2020; 29:4008-4017. [PMID: 31338735 DOI: 10.1007/s11695-019-04089-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION About 20% of patients operated with Roux-en-Y gastric bypass (RYGBP) experience poor long-term weight result. This study compared levels of leptin and gut hormones in long-term weight responders with non-responders after RYGBP. In a subgroup analysis, hormone levels were assessed in T2DM (type 2 diabetes mellitus) and normoglycemic participants. METHODS Insulin, glucose, leptin, acyl-ghrelin, total PYY, active GLP-1, and GIP were measured during an oral glucose tolerance test (OGTT) in post-RYGBP subjects: 22 non-responders (BMI 40.6 ± 6.0 kg/m2 after an excess BMI loss [EBMIL] of 26.0 ± 15.9%) and 18 responders (BMI 29.5 ± 3.5 kg/m2 after an EBMIL of 74.9 ± 18.2%). Subjects were matched for preoperative age, BMI, and years of follow-up. Measures of glucose homeostasis were calculated, and body composition was measured. RESULTS Fat mass-adjusted fasting leptin correlated negatively with %EBMIL (r = - 0.57, p < 0.01). Non-responders presented higher levels of leptin during the OGTT. Leptin decreased and ghrelin returned to baseline levels earlier in non-responders. Despite having higher insulin resistance than responders, non-responders demonstrated similar OGTT responses of GLP-1, GIP, and PYY. T2DM participants demonstrated lower GLP-1 levels than normoglycemic participants of similar weight. CONCLUSION Fasting leptin is associated with weight result after RYGBP, and hormonal responses to a glucose oral load might work towards promoting obesity in long-term non-responders after RYGBP. Poor long-term weight result and glycemic status after RYGBP are each associated with differences in peptide hormone levels.
Collapse
|
45
|
Eiken A, Fuglsang S, Eiken M, Svane MS, Kuhre RE, Wewer Albrechtsen NJ, Hansen SH, Trammell SAJ, Svenningsen JS, Rehfeld JF, Bojsen-Møller KN, Jørgensen NB, Holst JJ, Madsbad S, Madsen JL, Dirksen C. Bilio-enteric flow and plasma concentrations of bile acids after gastric bypass and sleeve gastrectomy. Int J Obes (Lond) 2020; 44:1872-1883. [PMID: 32317753 DOI: 10.1038/s41366-020-0578-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 03/04/2020] [Accepted: 03/27/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND/OBJECTIVES Bile acids in plasma are elevated after bariatric surgery and may contribute to metabolic improvements, but underlying changes in bile flow are poorly understood. We assessed bilio-enteric flow of bile and plasma bile concentrations in individuals with Roux-en-Y gastric bypass (RYGB) or sleeve gastrectomy (SG) surgery compared with matched non-surgical controls (CON). SUBJECTS/METHODS Fifteen RYGB, 10 SG and 15 CON underwent 99Tc-mebrofenin cholescintigraphy combined with intake of a high-fat 111In-DTPA-labelled meal and frequent blood sampling. A 75Se-HCAT test was used to assess bile acid retention. RESULTS After RYGB, gallbladder filling was decreased (p = 0.045 versus CON), basal flow of bile into the small intestine increased (p = 0.005), bile acid retention augmented (p = 0.021) and basal bile acid plasma concentrations elevated (p = 0.009). During the meal, foods passed unimpeded through the gastric pouch resulting in almost instant postprandial mixing of bile and foods, but the postprandial rise in plasma bile acids was brief and associated with decreased overall release of fibroblast growth factor-19 (FGF-19) compared with CON (p = 0.033). After SG, bile flow and retention were largely unaltered (p > 0.05 versus CON), but gastric emptying was accelerated (p < 0.001) causing earlier mixture of bile and foods also in this group. Neither basal nor postprandial bile acid concentrations differed between SG and CON. CONCLUSIONS Bilio-enteric bile flow is markedly altered after RYGB resulting in changes in plasma concentrations of bile acids and FGF-19, whereas bile flow and plasma concentrations are largely unaltered after SG.
Collapse
Affiliation(s)
- Aleksander Eiken
- Department of Endocrinology, Hvidovre Hospital, Hvidovre, Denmark
| | - Stefan Fuglsang
- Department of Clinical Physiology and Nuclear Medicine, Centre for Functional Imaging and Research, Hvidovre Hospital, Hvidovre, Denmark
| | - Markus Eiken
- Department of Endocrinology, Hvidovre Hospital, Hvidovre, Denmark
| | - Maria S Svane
- Department of Endocrinology, Hvidovre Hospital, Hvidovre, Denmark
| | - Rune E Kuhre
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,NNF Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department. of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | - Svend H Hansen
- Department. of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | - Samuel A J Trammell
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens S Svenningsen
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens F Rehfeld
- Department. of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | | | - Nils B Jørgensen
- Department of Endocrinology, Hvidovre Hospital, Hvidovre, Denmark
| | - Jens J Holst
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Hvidovre Hospital, Hvidovre, Denmark
| | - Jan L Madsen
- Department of Clinical Physiology and Nuclear Medicine, Centre for Functional Imaging and Research, Hvidovre Hospital, Hvidovre, Denmark
| | - Carsten Dirksen
- Department of Endocrinology, Hvidovre Hospital, Hvidovre, Denmark.
| |
Collapse
|
46
|
Gimeno RE, Briere DA, Seeley RJ. Leveraging the Gut to Treat Metabolic Disease. Cell Metab 2020; 31:679-698. [PMID: 32187525 PMCID: PMC7184629 DOI: 10.1016/j.cmet.2020.02.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/23/2019] [Accepted: 02/20/2020] [Indexed: 02/07/2023]
Abstract
25 years ago, the future of treating obesity and diabetes focused on end organs known to be involved in energy balance and glucose regulation, including the brain, muscle, adipose tissue, and pancreas. Today, the most effective therapies are focused around the gut. This includes surgical options, such as vertical sleeve gastrectomy and Roux-en-Y gastric bypass, that can produce sustained weight loss and diabetes remission but also extends to pharmacological treatments that simulate or amplify various signals that come from the gut. The purpose of this Review is to discuss the wealth of approaches currently under development that seek to further leverage the gut as a source of novel therapeutic opportunities with the hope that we can achieve the effects of surgical interventions with less invasive and more scalable solutions.
Collapse
Affiliation(s)
- Ruth E Gimeno
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46225, USA
| | - Daniel A Briere
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46225, USA
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
47
|
Davis EM, Sandoval DA. Glucagon‐Like Peptide‐1: Actions and Influence on Pancreatic Hormone Function. Compr Physiol 2020; 10:577-595. [DOI: 10.1002/cphy.c190025] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
48
|
Alexiadou K, Cuenco J, Howard J, Wewer Albrechtsen NJ, Ilesanmi I, Kamocka A, Tharakan G, Behary P, Bech PR, Ahmed AR, Purkayastha S, Wheller R, Fleuret M, Holst JJ, Bloom SR, Khoo B, Tan TMM. Proglucagon peptide secretion profiles in type 2 diabetes before and after bariatric surgery: 1-year prospective study. BMJ Open Diabetes Res Care 2020; 8:8/1/e001076. [PMID: 32209584 PMCID: PMC7103850 DOI: 10.1136/bmjdrc-2019-001076] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/20/2020] [Accepted: 02/07/2020] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Hyperglucagonemia is a key pathophysiological driver of type 2 diabetes. Although Roux-en-Y gastric bypass (RYGB) is a highly effective treatment for diabetes, it is presently unclear how surgery alters glucagon physiology. The aim of this study was to characterize the behavior of proglucagon-derived peptide (glucagon, glucagon-like peptide-1 (GLP-1), oxyntomodulin, glicentin) secretion after RYGB surgery. RESEARCH DESIGN AND METHODS Prospective study of 19 patients with obesity and pre-diabetes/diabetes undergoing RYGB. We assessed the glucose, insulin, GLP-1, glucose-dependent insulinotropic peptide (GIP), oxyntomodulin, glicentin and glucagon responses to a mixed-meal test (MMT) before and 1, 3 and 12 months after surgery. Glucagon was measured using a Mercodia glucagon ELISA using the 'Alternative' improved specificity protocol, which was validated against a reference liquid chromatography combined with mass spectrometry method. RESULTS After RYGB, there were early improvements in fasting glucose and glucose tolerance and the insulin response to MMT was accelerated and amplified, in parallel to significant increases in postprandial GLP-1, oxyntomodulin and glicentin secretion. There was a significant decrease in fasting glucagon levels at the later time points of 3 and 12 months after surgery. Glucagon was secreted in response to the MMT preoperatively and postoperatively in all patients and there was no significant change in this postprandial secretion. There was no significant change in GIP secretion. CONCLUSIONS There is a clear difference in the dynamics of secretion of proglucagon peptides after RYGB. The reduction in fasting glucagon secretion may be one of the mechanisms driving later improvements in glycemia after RYGB. TRIAL REGISTRATION NUMBER NCT01945840.
Collapse
Affiliation(s)
- Kleopatra Alexiadou
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Joyceline Cuenco
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - James Howard
- Drug Development Solutions, LGC Bioscience, Fordham, Cambridgeshire, UK
| | - Nicolai Jacob Wewer Albrechtsen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
- NNF Center for Protein Research, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Ibiyemi Ilesanmi
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Anna Kamocka
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - George Tharakan
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Preeshila Behary
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Paul R Bech
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Ahmed R Ahmed
- Department of Surgery and Cancer, Imperial College London, London, UK
| | | | - Robert Wheller
- Drug Development Solutions, LGC Bioscience, Fordham, Cambridgeshire, UK
| | - Matthieu Fleuret
- Drug Development Solutions, LGC Bioscience, Fordham, Cambridgeshire, UK
| | - Jens Juul Holst
- Department of Biomedical Sciences and the NNF Center for Basic Metabolic Research, University of Copenhagen Panum Institute, Copenhagen, Denmark
| | - Stephen R Bloom
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Bernard Khoo
- Division of Medicine, University College London, London, UK
| | - Tricia M-M Tan
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| |
Collapse
|
49
|
Katsogiannos P, Kamble PG, Wiklund U, Sundbom M, Espes D, Hammar U, Karlsson FA, Pereira MJ, Eriksson JW. Rapid changes in neuroendocrine regulation may contribute to reversal of type 2 diabetes after gastric bypass surgery. Endocrine 2020; 67:344-353. [PMID: 31983031 PMCID: PMC7026226 DOI: 10.1007/s12020-020-02203-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/13/2020] [Indexed: 01/17/2023]
Abstract
OBJECTIVE To explore the role of hormones and the autonomic nervous system in the rapid remission of diabetes after Roux-en-Y Gastric Bypass (RYGB). RESEARCH DESIGN AND METHODS Nineteen obese patients with type 2 diabetes, 7 M/12 F, were randomized (2:1) to RYGB or standard-of-care medical treatment (control). At baseline and 4 and 24 weeks post surgery, fasting blood sampling, OGTT, intravenous arginine challenge, and heart-rate variability (HRV) assessments were performed. RESULTS At both 4 and 24 weeks post-RYGB the following effects were found: arginine-stimulated insulin secretion was reduced. GLP-1, GIP, and glucagon rise during OGTT was enhanced. IGF-1 and GH levels increased. In addition, total HRV and spectral components PLF (power of low frequency) and PHF (power of high frequency) increased. At 4 weeks, morning cortisol was lower than baseline and 24 weeks. At 24 weeks, NEFA levels during OGTT, and the PLF/PHF ratio decreased. None of these changes were seen in the control group. CONCLUSIONS There were rapid changes within 4 weeks after RYGB: signs of enhanced parasympathetic nerve activity, reduced morning cortisol, and enhanced incretin and glucagon responses to glucose. The findings suggest that neurohormonal mechanisms can contribute to the rapid improvement of insulin resistance and glycemia following RYGB in type 2 diabetes.
Collapse
Affiliation(s)
- Petros Katsogiannos
- Department of Medical Science, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Prasad G Kamble
- Department of Medical Science, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Urban Wiklund
- Radiation Sciences, Biomedical Engineering & Informatics, Umeå University, Umeå, Sweden
| | | | - Daniel Espes
- Department of Medical Science, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Ulf Hammar
- Department of Medical Science, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - F Anders Karlsson
- Department of Medical Science, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Maria J Pereira
- Department of Medical Science, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Jan W Eriksson
- Department of Medical Science, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
50
|
Li M, Liu Z, Qian B, Liu W, Horimoto K, Xia J, Shi M, Wang B, Zhou H, Chen L. "Dysfunctions" induced by Roux-en-Y gastric bypass surgery are concomitant with metabolic improvement independent of weight loss. Cell Discov 2020; 6:4. [PMID: 32025334 PMCID: PMC6985254 DOI: 10.1038/s41421-019-0138-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 12/03/2019] [Indexed: 12/19/2022] Open
Abstract
Metabolic surgery has been increasingly recommended for obese diabetic patients, but questions remain as to its molecular mechanism that leads to improved metabolic parameters independently of weight loss from a network viewpoint. We evaluated the role of the Roux limb (RL) in Roux-en-Y gastric bypass (RYGB) surgery in nonobese diabetic rat models. Improvements in metabolic parameters were greater in the long-RL RYGB group. Transcriptome profiles reveal that amelioration of diabetes state following RYGB differs remarkably from both normal and diabetic states. According to functional analysis, RYGB surgery significantly affected a major gene group, i.e., the newly changed group, which represented diabetes-irrelevant genes abnormally expressed after RYGB. We hypothesize that novel "dysfunctions" carried by this newly changed gene group induced by RYGB rebalance diabetic states and contribute to amelioration of metabolic parameters. An unusual increase in cholesterol (CHOL) biosynthesis in RL enriched by the newly changed group was concomitant with ameliorated metabolic parameters, as demonstrated by measurements of physiological parameters and biodistribution analysis using [14C]-labeled glucose. Our findings demonstrate RYGB-induced "dysfunctions" in the newly changed group as a compensatory role contributes to amelioration of diabetes. Rather than attempting to normalize "abnormal" molecules, we suggest a new disease treatment strategy of turning "normal" molecules "abnormal" in order to achieve a new "normal" physiological balance. It further implies a novel strategy for drug discovery, i.e. targeting also on "normal" molecules, which are traditionally ignored in pharmaceutical development.
Collapse
Affiliation(s)
- Meiyi Li
- Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy Sciences, Shanghai, 200031 China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, 201199 China
| | - Zhiyuan Liu
- Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy Sciences, Shanghai, 200031 China
| | - Bangguo Qian
- Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy Sciences, Shanghai, 200031 China
| | - Weixin Liu
- Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy Sciences, Shanghai, 200031 China
| | - Katsuhisa Horimoto
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Jie Xia
- Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy Sciences, Shanghai, 200031 China
| | - Meilong Shi
- Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
| | - Bing Wang
- Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
| | - Huarong Zhou
- Sherman College of Chiropractic, Boiling Springs, SC 29316 USA
| | - Luonan Chen
- Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy Sciences, Shanghai, 200031 China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223 China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031 China
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, 201210 China
| |
Collapse
|