1
|
Xiang T, Yang C, Deng Z, Sun D, Luo F, Chen Y. Krüppel-like factors family in health and disease. MedComm (Beijing) 2024; 5:e723. [PMID: 39263604 PMCID: PMC11387732 DOI: 10.1002/mco2.723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/13/2024] Open
Abstract
Krüppel-like factors (KLFs) are a family of basic transcription factors with three conserved Cys2/His2 zinc finger domains located in their C-terminal regions. It is acknowledged that KLFs exert complicated effects on cell proliferation, differentiation, survival, and responses to stimuli. Dysregulation of KLFs is associated with a range of diseases including cardiovascular disorders, metabolic diseases, autoimmune conditions, cancer, and neurodegenerative diseases. Their multidimensional roles in modulating critical pathways underscore the significance in both physiological and pathological contexts. Recent research also emphasizes their crucial involvement and complex interplay in the skeletal system. Despite the substantial progress in understanding KLFs and their roles in various cellular processes, several research gaps remain. Here, we elucidated the multifaceted capabilities of KLFs on body health and diseases via various compliable signaling pathways. The associations between KLFs and cellular energy metabolism and epigenetic modification during bone reconstruction have also been summarized. This review helps us better understand the coupling effects and their pivotal functions in multiple systems and detailed mechanisms of bone remodeling and develop potential therapeutic strategies for the clinical treatment of pathological diseases by targeting the KLF family.
Collapse
Affiliation(s)
- Tingwen Xiang
- Department of Orthopedics Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
| | - Chuan Yang
- Department of Biomedical Materials Science Third Military Medical University (Army Medical University) Chongqing China
| | - Zihan Deng
- Department of Orthopedics Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
| | - Dong Sun
- Department of Orthopedics Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
| | - Fei Luo
- Department of Orthopedics Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
| | - Yueqi Chen
- Department of Orthopedics Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
- Department of Orthopedics Chinese PLA 76th Army Corps Hospital Xining China
| |
Collapse
|
2
|
Li J, Xie Y, Zheng S, He H, Wang Z, Li X, Jiao S, Liu D, Yang F, Zhao H, Li P, Sun Y. Targeting autophagy in diabetic cardiomyopathy: From molecular mechanisms to pharmacotherapy. Biomed Pharmacother 2024; 175:116790. [PMID: 38776677 DOI: 10.1016/j.biopha.2024.116790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is a cardiac microvascular complication caused by metabolic disorders. It is characterized by myocardial remodeling and dysfunction. The pathogenesis of DCM is associated with abnormal cellular metabolism and organelle accumulation. Autophagy is thought to play a key role in the diabetic heart, and a growing body of research suggests that modulating autophagy may be a potential therapeutic strategy for DCM. Here, we have summarized the major signaling pathways involved in the regulation of autophagy in DCM, including Adenosine 5'-monophosphate-activated protein kinase (AMPK), mechanistic target of rapamycin (mTOR), Forkhead box subfamily O proteins (FOXOs), Sirtuins (SIRTs), and PTEN-inducible kinase 1 (PINK1)/Parkin. Given the significant role of autophagy in DCM, we further identified natural products and chemical drugs as regulators of autophagy in the treatment of DCM. This review may help to better understand the autophagy mechanism of drugs for DCM and promote their clinical application.
Collapse
Affiliation(s)
- Jie Li
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Beijing, China
| | - Yingying Xie
- Department of Cardiology, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shuwen Zheng
- Beijing University of Chinese Medicine School of Traditional Chinese Medicine, Beijing, China
| | - Haoming He
- Department of Cardiology, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhe Wang
- Department of Cardiology, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xuexi Li
- Department of Cardiology, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Siqi Jiao
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Dong Liu
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Furong Yang
- Beijing University of Chinese Medicine School of Traditional Chinese Medicine, Beijing, China
| | - Hailing Zhao
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China.
| | - Ping Li
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China.
| | - Yihong Sun
- Department of Cardiology, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China.
| |
Collapse
|
3
|
Huang Y, Wang Z, Li B, Ke L, Xiong Y, Zhang Y. Loss of KLF15 impairs endometrial receptivity by inhibiting EMT in endometriosis. J Endocrinol 2024; 261:e230319. [PMID: 38513352 PMCID: PMC11056958 DOI: 10.1530/joe-23-0319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/20/2024] [Indexed: 03/23/2024]
Abstract
The impaired endometrial receptivity is a major factor contributing to infertility in patients with endometriosis (EM), but the underlying mechanism remains unclear. Our study aimed to investigate the role of Kruppel-like factor 15 (KLF15) in endometrial receptivity and its regulation in EM. We observed a significant decrease in KLF15 expression in the mid-secretory epithelial endometrial cells of EM patients compared to normal females without EM. To confirm the role of KLF15 in endometrial receptivity, we found a significantly reduced KLF15 expression and a significant decrease in embryo implantation number in the rat model via uterine horn infection with siRNA. This highlights the importance of KLF15 as a regulator receptivity. Furthermore, through ChIP-qPCR, we discovered that the progesterone receptor (PR) directly binds to KLF15 promoter regions, indicating that progesterone resistance may mediate the decrease in KLF15 expression in EM patients. Additionally, we found that the mid-secretory endometrium of EM patients exhibited impaired epithelial-mesenchymal transition (EMT). Knockdown of KLF15 upregulated E-cadherin and downregulated vimentin expression, leading to inhibited invasiveness and migration of Ishikawa cells. Overexpression KLF15 promotes EMT, invasiveness, and migration ability, and increases the attachment rate of JAR cells to Ishikawa cells. Through RNA-seq analysis, we identified TWIST2 as a downstream gene of KLF15. We confirmed that KLF15 directly binds to the promoter region of TWIST2 via ChIP-qPCR, promoting epithelial cell EMT during the establishment of endometrial receptivity. Our study reveals the involvement of KLF15 in the regulation of endometrial receptivity and its downstream effects on EMT. These findings provide valuable insights into potential therapeutic approaches for treating non-receptive endometrium in patients with EM.
Collapse
Affiliation(s)
- Yaxiong Huang
- Department of Reproductive Medicine center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, PR China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan Hubei Province, PR China
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan Hubei Province, PR China
- Department of Gynaecology and Obstetrics, Sinopharm Dongfeng Hospital, Hubei University of Medicine, Shiyan, Hubei Province, PR China
| | - Zihan Wang
- Department of Reproductive Medicine center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, PR China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan Hubei Province, PR China
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan Hubei Province, PR China
| | - Bin Li
- Department of Gynaecology and Obstetrics, Sinopharm Dongfeng Hospital, Hubei University of Medicine, Shiyan, Hubei Province, PR China
| | - Lina Ke
- Department of Gynaecology and Obstetrics, Sinopharm Dongfeng Hospital, Hubei University of Medicine, Shiyan, Hubei Province, PR China
| | - Yao Xiong
- Department of Reproductive Medicine center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, PR China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan Hubei Province, PR China
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan Hubei Province, PR China
| | - Yuanzhen Zhang
- Department of Reproductive Medicine center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, PR China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan Hubei Province, PR China
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan Hubei Province, PR China
| |
Collapse
|
4
|
Bagheri M, Khansarinejad B, Mondanizadeh M, Azimi M, Alavi S. MiRNAs related in signaling pathways of women's reproductive diseases: an overview. Mol Biol Rep 2024; 51:414. [PMID: 38472662 DOI: 10.1007/s11033-024-09357-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/15/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND One of the main health issues that can affect women's health is reproductive diseases, such as polycystic ovary syndrome (PCOS), endometriosis (EMs), uterine leiomyomas (ULs), and ovarian cancer (OC). Although these diseases are very common, we do not have a complete understanding of their underlying cellular and molecular mechanisms. It is important to mention that the majority of patients are diagnosed with these diseases at later stages because of the absence of early diagnostic techniques and dependable molecular indicators. Hence, it is crucial to discover novel and non-invasive biomarkers that have prognostic, diagnostic and therapeutic capabilities. MiRNAs, also known as microRNAs, are small non-coding RNAs that play a crucial role in regulating gene expression at the post-transcriptional level. They are short in length, typically consisting of around 22 nucleotides, and are highly conserved across species. Numerous studies have shown that miRNAs are expressed differently in various diseases and can act as either oncogenes or tumor suppressors. METHODS The author conducted a comprehensive review of all the pertinent papers available in web of science, PubMed, Google Scholar, and Scopus databases. RESULTS We achieved three goals: providing readers with better information, enhancing search results, and making peer review easier. CONCLUSIONS This review focuses on the investigation of miRNAs and their involvement in various reproductive disorders in women, including their molecular targets. Additionally, it explores the role of miRNAs in the development and progression of these disorders.
Collapse
Affiliation(s)
- Malihe Bagheri
- Department of Biotechnology and Molecular Medicine, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Behzad Khansarinejad
- Department of Microbiology and Immunology, Arak University of Medical Sciences, Arak, Iran
| | - Mahdieh Mondanizadeh
- Department of Biotechnology and Molecular Medicine, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran.
| | - Mohadeseh Azimi
- Department of Biochemistry and Genetics, Arak University of Medical Sciences, Arak, Iran
| | - Shima Alavi
- Department of Obstetrics and Gynecology, Ghods Hospital, Arak, Iran
| |
Collapse
|
5
|
Izadpanah M, Yalameha B, Sani MZ, Cheragh PK, Mahdipour M, Rezabakhsh A, Rahbarghazi R. Exosomes as Theranostic Agents in Reproduction System. Adv Biol (Weinh) 2024; 8:e2300258. [PMID: 37955866 DOI: 10.1002/adbi.202300258] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/06/2023] [Indexed: 11/14/2023]
Abstract
Exosomes (Exos), belonging to extracellular vesicles, are cell-derived nano-sized vesicles with the potential to carry different kinds of biological molecules. Many studies have proved the impacts of exosomal cargo on several biological processes in female and male reproductive systems. It is also hypothesized that changes in exosomal cargo are integral to the promotion of certain pathological conditions, thus Exos can be used as valid biomarkers for the diagnosis of infertility and other abnormal conditions. Here, efforts are made to collect some recent data related to the physiological significance of Exos in the reproductive system, and their potential therapeutic effects. It is anticipated that the current review article will lay the groundwork for elucidating the source and mechanisms by which Exos control the reproductive system additionally supplying fresh methods and concepts for the detection and treatment of disorders associated with fertility for future studies.
Collapse
Affiliation(s)
- Melika Izadpanah
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Banafsheh Yalameha
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Zamani Sani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aysa Rezabakhsh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Matsuyama S, Whiteside S, Li SY. Implantation and Decidualization in PCOS: Unraveling the Complexities of Pregnancy. Int J Mol Sci 2024; 25:1203. [PMID: 38256276 PMCID: PMC10816633 DOI: 10.3390/ijms25021203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Polycystic Ovary Syndrome (PCOS) is a prevalent endocrine disorder in women of reproductive age, affecting 5-15% globally with a large proportion undiagnosed. This review explores the multifaceted nature of PCOS and its impact on pregnancy, including challenges in fertility due to hormonal imbalances and insulin resistance. Despite restoring ovulation pharmacologically, women with PCOS face lower pregnancy rates and higher risks of implantation failure and miscarriage. Our review focuses on the complexities of hormonal and metabolic imbalances that impair endometrial receptivity and decidualization in PCOS. Disrupted estrogen signaling, reduced integrity of endometrial epithelial tight junctions, and insulin resistance impair the window of endometrial receptivity. Furthermore, progesterone resistance adversely affects decidualization. Our review also examines the roles of various immune cells and inflammatory processes in the endometrium, contributing to the condition's reproductive challenges. Lastly, we discuss the use of rodent models in understanding PCOS, particularly those induced by hormonal interventions, offering insights into the syndrome's impact on pregnancy and potential treatments. This comprehensive review underscores the need for advanced understanding and treatment strategies to address the reproductive complications associated with PCOS, emphasizing its intricate interplay of hormonal, metabolic, and immune factors.
Collapse
Affiliation(s)
| | | | - Shu-Yun Li
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (S.M.); (S.W.)
| |
Collapse
|
7
|
Simmen FA, Alhallak I, Simmen RCM. Krüppel-like Factor-9 and Krüppel-like Factor-13: Highly Related, Multi-Functional, Transcriptional Repressors and Activators of Oncogenesis. Cancers (Basel) 2023; 15:5667. [PMID: 38067370 PMCID: PMC10705314 DOI: 10.3390/cancers15235667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 02/12/2024] Open
Abstract
Specificity Proteins/Krüppel-like Factors (SP/KLF family) are a conserved family of transcriptional regulators. These proteins share three highly conserved, contiguous zinc fingers in their carboxy-terminus, requisite for binding to cis elements in DNA. Each SP/KLF protein has unique primary sequence within its amino-terminal and carboxy-terminal regions, and it is these regions which interact with co-activators, co-repressors, and chromatin-modifying proteins to support the transcriptional activation and repression of target genes. Krüppel-like Factor 9 (KLF9) and Krüppel-like Factor 13 (KLF13) are two of the smallest members of the SP/KLF family, are paralogous, emerged early in metazoan evolution, and are highly conserved. Paradoxically, while most similar in primary sequence, KLF9 and KLF13 display many distinct roles in target cells. In this article, we summarize the work that has identified the roles of KLF9 (and to a lesser degree KLF13) in tumor suppression or promotion via unique effects on differentiation, pro- and anti-inflammatory pathways, oxidative stress, and tumor immune cell infiltration. We also highlight the great diversity of miRNAs, lncRNAs, and circular RNAs which provide mechanisms for the ubiquitous tumor-specific suppression of KLF9 mRNA and protein. Elucidation of KLF9 and KLF13 in cancer biology is likely to provide new inroads to the understanding of oncogenesis and its prevention and treatments.
Collapse
Affiliation(s)
- Frank A. Simmen
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (I.A.); (R.C.M.S.)
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Iad Alhallak
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (I.A.); (R.C.M.S.)
| | - Rosalia C. M. Simmen
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (I.A.); (R.C.M.S.)
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
8
|
Khan K, Zafar S, Badshah Y, Ashraf NM, Rafiq M, Danish L, Shabbir M, Trembley JH, Afsar T, Almajwal A, Razak S. Cross talk of tumor protein D52 (TPD52) with KLF9, PKCε, and MicroRNA 223 in ovarian cancer. J Ovarian Res 2023; 16:202. [PMID: 37833790 PMCID: PMC10571360 DOI: 10.1186/s13048-023-01292-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Gynecologic cancers comprise malignancies in the female reproductive organs. Ovarian cancer ranks sixth in terms of incidence rates while seventh in terms of mortality rates. The stage at which ovarian cancer is diagnosed mainly determines the survival outcomes of patients. Various screening approaches are presently employed for diagnosing ovarian cancer; however, these techniques have low accuracy and are non-specific, resulting in high mortality rates of patients due to this disease. Hence, it is crucial to identify improved screening and diagnostic markers to overcome this cancer. This study aimed to find new biomarkers to facilitate the prognosis and diagnosis of ovarian cancer. METHODS Bioinformatics approaches were used to predict the tertiary structure and cellular localization along with phylogenetic analysis of TPD52. Its molecular interactions were determined through KEGG analysis, and real-time PCR-based expression analysis was performed to assess its co-expression with another oncogenic cellular pathway (miR-223, KLF9, and PKCε) proteins in ovarian cancer. RESULTS Bioinformatics analysis depicted the cytoplasmic localization of TPD52 and the high conservation of its coiled-coil domains. Further study revealed that TPD52 mRNA and miRNA-223 expression was elevated, while the expression of KLF 9 and PKCε was reduced in the blood of ovarian cancer patients. Furthermore, TPD52 and miR-223 expression were upregulated in the early stages of cancer and non-metastatic cancers. CONCLUSION TPD52, miR-223, PKCε, and KLF9, can be used as a blood based markers for disease prognosis, metastasis, and treatment response. The study outcomes hold great potential to be translated at the clinical level after further validation on larger cohorts.
Collapse
Affiliation(s)
- Khushbukhat Khan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Sameen Zafar
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Yasmin Badshah
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Naeem Mahmood Ashraf
- School of Biochemistry & Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Mehak Rafiq
- School of Interdisciplinary Engineering & Sciences (SINES), National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Lubna Danish
- Agricultural Research Institute, Tarnab, Peshawar, Pakistan
| | - Maria Shabbir
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan.
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan.
| | - Janeen H Trembley
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
9
|
Alhallak I, Quick CM, Graham GL, Simmen RCM. A Pilot Study on the Co-existence of Diabetes and Endometriosis in Reproductive-Age Women: Potential for Endometriosis Progression. Reprod Sci 2023:10.1007/s43032-023-01190-3. [PMID: 36788175 DOI: 10.1007/s43032-023-01190-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 02/02/2023] [Indexed: 02/16/2023]
Abstract
Endometriosis (ENDO) is a chronic estrogen-dependent gynecological condition that affects reproductive-age women, causing pelvic pain, infertility, and increased risk for ovarian cancer. Diabetes mellitus (DM) is a metabolic disease with significant morbidity and mortality and rising incidence worldwide. The occurrence of DM among ENDO patients remains understudied, despite commonalities in these conditions' immune, inflammatory, and metabolic dysfunctions. This pilot study evaluated whether a subset of women with ENDO manifests DM co-morbidity and if so, whether DM promotes ENDO status. Archived ectopic lesions obtained at ENDO surgery from non-diabetic (ENDO-N; n = 11) and diabetic (ENDO-DM; n = 15) patients were identified by a search of an electronic health database. Retrieved samples were analyzed by immunohistochemistry for markers of proliferation (Ki67, PTEN), steroid receptor signaling (ESR, PGR) and macrophage infiltration (CD68). Immunostaining data were expressed as percentages of immune-positive cells in lesion stroma and epithelium. In lesion stroma, the percentages of nuclear immune-positive cells were higher for ESR2 and lower for PGR-T, in ENDO-DM than ENDO-N patients. The percentages of nuclear immune-positive cells for ESR1 and PTEN tended to be higher and lower, respectively, in ENDO-DM than ENDO-N groups. In lesion glandular epithelium, the percentages of nuclear immune-positive cells were higher for ESR1 and ESR2, in ENDO-DM than ENDO-N groups. ENDO-N lesions had lower percentages of stromal CD68 immune-positive cells than ENDO-DM Type 1 lesions. Findings demonstrate DM in a subset of women with ENDO, which was associated with significant changes in lesion stromal and epithelial nuclear steroid hormone receptor levels, suggestive of disease progression.
Collapse
Affiliation(s)
- Iad Alhallak
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Charles M Quick
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Garrett L Graham
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Rosalia C M Simmen
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA. .,The Winthrop P Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
10
|
Abstract
OBJECTIVE To investigate the correlation between the expression of Kruppel-like transcription factor 9 (KLF9) and the prognostic value of tumors as well as its relationship with tumor immune invasion. METHODS A series of bioinformatics methods were used to analyze the relationship between KLF9 and tumor prognosis, tumor mutation burden, microsatellite instability (MSI), and immune cell infiltration in multiple carcinomas. RESULTS In multiple tumor tissues, the expression of KLF9 was lower compared with paracancerous tissues. Therefore, KLF9 can serve as a protective factor to improve the prognosis of carcinoma patients with certain tumor types. KLF9 was closely related to the clinical staging of various carcinomas. The expression of KLF9 was not only associated with tumor mutation burden and MSI in some tumor types, but also positively correlated with immune and stromal cells in multiple tumors. Further studies have found that, the level of immune cell infiltration was significantly related to the expression of KLF9. CONCLUSION KLF9 can affect the prognosis of pan-carcinoma, which is related to immune invasion. Therefore, KLF9 can be used as a potential biomarker for the prognosis of pan-carcinoma.
Collapse
Affiliation(s)
- Weichao Cai
- Department of Plastic Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Yecheng Li
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou, P. R. China
- *Correspondence: Weihong Cao, Department of Plastic Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, No. 150 XiMen Road, Taizhou, Zhejiang 317000, China (e-mail: ) and Yecheng Li, Department of General Surgery, Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Road, Suzhou, Jiangsu 215004, P. R. China (e-mail: )
| | - Weihong Cao
- Department of Plastic Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
- *Correspondence: Weihong Cao, Department of Plastic Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, No. 150 XiMen Road, Taizhou, Zhejiang 317000, China (e-mail: ) and Yecheng Li, Department of General Surgery, Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Road, Suzhou, Jiangsu 215004, P. R. China (e-mail: )
| |
Collapse
|
11
|
Kim HJ, Kim SH, Oh YS, Lee SR, Chae HD. Dienogest May Reduce Estradiol- and Inflammatory Cytokine-Induced Cell Viability and Proliferation and Inhibit the Pathogenesis of Endometriosis: A Cell Culture- and Mouse Model-Based Study. Biomedicines 2022; 10:biomedicines10112992. [PMID: 36428561 PMCID: PMC9687141 DOI: 10.3390/biomedicines10112992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Dienogest (DNG) is a therapeutic medication used in endometriosis treatment. Limited data are available regarding its mechanism of action on endometrial cells. Using in vivo and in vitro models, we investigated whether DNG treatment causes significant biological changes in human endometrial stromal cells (ESCs). The markers related to the pathogenesis of endometriosis in ESCs were evaluated using estradiol, tumor necrosis factor alpha (TNF-α), interleukin 1β (IL-1β), and IL-32, administered alone or in combination with DNG. Implanted endometrial tissues were compared between C57BL/6 mice that did or did not receive DNG treatment by using size measurements and immunohistochemistry. A significant decrease in cell viability, protein kinase B (AKT) phosphorylation, and the expression of p21-activated kinase 4 and vascular endothelial growth factor were observed in ESCs treated with estradiol plus DNG. Cell viability, AKT phosphorylation, and proliferating cell nuclear antigen (PCNA) expression also decreased significantly after TNF-α plus DNG treatment. Treatment with IL-1β or IL-32 plus DNG significantly decreased cell viability or PCNA expression, respectively. The size of the implanted endometrial tissue significantly decreased in mice treated with DNG, accompanied by decreased PCNA expression. Thus, DNG may reduce cell viability and proliferation induced by estradiol, TNF-α, IL-1β, and IL-32, and inhibit the endometriosis pathogenesis by decreasing PCNA expression.
Collapse
|
12
|
Li WN, Dickson MJ, DeMayo FJ, Wu SP. The role of progesterone receptor isoforms in the myometrium. J Steroid Biochem Mol Biol 2022; 224:106160. [PMID: 35931328 PMCID: PMC9895129 DOI: 10.1016/j.jsbmb.2022.106160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/15/2022] [Accepted: 08/01/2022] [Indexed: 02/08/2023]
Abstract
Myometrial contraction is stringently controlled throughout pregnancy and parturition. Progesterone signaling, effecting through the progesterone receptor (PR), is pivotal in modulating uterine activity. Evidence has shown that two major PR isoforms, PR-A and PR-B, have distinct activities on gene regulation, and the ratio between these isoforms determines the contractility of the myometrium at different gestational stages. Herein, we focus on the regulation of PR activity in the myometrium, especially the differential actions of the two PR isoforms, which maintain uterine quiescence during pregnancy and regulate the switch to a contractile state at the onset of labor. To demonstrate the PR regulatory network and its mechanisms of actions on myometrial activity, we summarized the findings into three parts: Regulation of PR Expression and Isoform Levels, Progesterone Receptor Interacting Factors, and Biological Processes Regulated by Myometrial Progesterone Receptor Isoforms. Recent genomic and epigenomic data, from human specimens and mouse models, are recruited to support the existing knowledge and offer new insights and future directions in myometrial biology.
Collapse
Affiliation(s)
- Wan-Ning Li
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Mackenzie J Dickson
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Francesco J DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| | - San-Pin Wu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
13
|
Li K, Diakite D, Austin J, Lee J, Lantvit DD, Murphy BT, Burdette JE. The Flavonoid Baicalein Negatively Regulates Progesterone Target Genes in the Uterus in Vivo. JOURNAL OF NATURAL PRODUCTS 2022; 85:237-247. [PMID: 34935393 PMCID: PMC9164990 DOI: 10.1021/acs.jnatprod.1c01008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Baicalein is a flavonoid extracted from the root of Scutellaria baicalensis (Chinese skullcap) and is consumed as part of this botanical dietary supplement to reduce oxidative stress, pain, and inflammation. We previously reported that baicalein can also modify receptor signaling through the progesterone receptor (PR) and glucocorticoid receptor (GR) in vitro, which is interesting due to the well-established roles of both PR and GR in reducing inflammation. To understand the effects of baicalein on PR and GR signaling in vivo in the uterus, ovariectomized CD-1 mice were treated with DMSO, progesterone (P4), baicalein, P4 with baicalein, and P4 with RU486, a PR antagonist, for a week. The uteri were collected for histology and RNA sequencing. Our results showed that baicalein attenuated the antiproliferative effect of P4 on luminal epithelium as well as on the PR target genes HAND2 and ZBTB16. Baicalein did not change levels of PR or GR RNA or protein in the uterus. RNA sequencing data indicated that many transcripts significantly altered by baicalein were regulated in the opposite direction by P4. Similarly, a large portion of GO/KEGG terms and GSEA gene sets were altered in the opposite direction by baicalein as compared to P4 treatment. Treatment of baicalein did not change body weight, organ weight, or blood glucose level. In summary, baicalein functioned as a PR antagonist in vivo and therefore may oppose P4 action under certain conditions such as uterine hyperplasia, fibroids, and uterine cancers.
Collapse
Affiliation(s)
- Kailiang Li
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Djeneba Diakite
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Julia Austin
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Jeongho Lee
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Daniel D. Lantvit
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Brian T. Murphy
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Joanna E. Burdette
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| |
Collapse
|
14
|
Safi S, Badshah Y, Shabbir M, Zahra K, Khan K, Dilshad E, Afsar T, Almajwal A, Alruwaili NW, Al-disi D, Abulmeaty M, Razak S. Predicting 3D Structure, Cross Talks, and Prognostic Significance of KLF9 in Cervical Cancer. Front Oncol 2022; 11:797007. [PMID: 35047407 PMCID: PMC8761731 DOI: 10.3389/fonc.2021.797007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/30/2021] [Indexed: 12/14/2022] Open
Abstract
Our study aimed to identify the new blood-based biomarkers for the diagnosis and prognosis of cervical cancer. Moreover, the three-dimensional (3D) structure of Kruppel-like factor 9 (KLF9) was also determined in order to better understand its function, and a signaling pathway was constructed to identity its upstream and downstream targets. In the current study, the co-expressions of tumor protein D52 (TPD52), KLF9, microRNA 223 (miR-223), and protein kinase C epsilon (PKCϵ) were evaluated in cervical cancer patients and a possible relation with disease outcome was revealed. The expressions of TPD52, KLF9, miR-223, and PKCϵ were studied in the blood of 100 cervical cancer patients and 100 healthy controls using real-time PCR. The 3D structure of KLF9 was determined through homology modeling via the SWISS-MODEL and assessed using the Ramachandran plot. The predicted 3D structure of KLF9 had a similarity index of 62% with its template (KLF4) with no bad bonds in it. In order to construct a genetic pathway, depicting the crosstalk between understudied genes, STRING analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG), and DAVID software were used. The constructed genetic pathway showed that all the understudied genes are linked to each other and involved in the PI3K/Akt signaling pathway. There was a 23-fold increase in TPD52 expression, a 2-fold increase in miR-223 expression, a 0.14-fold decrease in KLF9 expression, and a 0.05-fold decrease of PKCϵ expression in cervical cancer. In the present study, we observed an association of the expressions of TPD52, KLF9, miR-223, and PKCϵ with tumor stage, metastasis, and treatment status of cervical cancer patients. Elevated expressions of TPD52 and miR-223 and reduced expressions of KLF9 and PKCϵ in peripheral blood of cervical cancer patients may serve as predictors of disease diagnosis and prognosis. Nevertheless, further in vitro and tissue-level studies are required to strengthen their role as potential diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Sadia Safi
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Yasmin Badshah
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Maria Shabbir
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Kainat Zahra
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Khushbukhat Khan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Erum Dilshad
- Department of Bioinformatics and Biosciences, Faculty of Health and Life Sciences, Capital University of Science and Technology (CUST), Islamabad, Pakistan
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Nawaf W. Alruwaili
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Dara Al-disi
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mahmoud Abulmeaty
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
15
|
Heard-Lipsmeyer ME, Alhallak I, Simmen FA, Melnyk SB, Simmen RCM. Lesion Genotype Modifies High-Fat Diet Effects on Endometriosis Development in Mice. Front Physiol 2021; 12:702674. [PMID: 34712146 PMCID: PMC8547326 DOI: 10.3389/fphys.2021.702674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/09/2021] [Indexed: 11/22/2022] Open
Abstract
Endometriosis is a chronic, estrogen-dependent gynecologic disorder that affects reproductive-aged women and to a lesser extent, post-menopausal women on hormone therapy. The condition is associated with systemic and local immune dysfunctions. While its underlying mechanisms remain poorly understood, endometriosis has a genetic component and propensity for the disease is subject to environmental, nutritional, and lifestyle influences. Previously, we showed that high-fat diet (HFD) increased ectopic lesion numbers, concurrent with systemic and peritoneal changes in inflammatory and oxidative stress status, in immunocompetent recipient mice ip administered with endometrial fragments null for Krüppel-like factor 9 gene. Herein, we determined whether HFD modifies lesion parameters, when recipient peritoneal environment is challenged with ectopic wild-type (WT) endometrial fragments, the latter simulating retrograde menstruation common in women during the menstrual period. WT endometrium-recipient mice fed HFD (45% kcal from fat) showed reduced lesion incidence, numbers, and volumes, in the absence of changes in systemic ovarian steroid hormone and insulin levels, relative to those fed the control diet (CD, 17% kcal from fat). Lesions from HFD- and CD-fed recipients demonstrated comparable gene expression for steroid hormone receptors (Esr and Pgr) and cytokines (Il-6, Il-8, and CxCL4) and similar levels of DNA oxidative biomarkers. HFD moderately altered serum (3-nitrotyrosine and methionine/homocysteine) and peritoneal (reduced glutathione/oxidized glutathione) pro-oxidative status but had no effect on peritoneal inflammatory (tumor necrosis factor α and tumor necrosis factor receptor 1) mediators. Results indicate that lesion genotype modifies dietary effects on disease establishment and/or progression and if translated, could be important for provision of nutritional guidelines to women with predisposition to, or affected by endometriosis.
Collapse
Affiliation(s)
- Melissa E. Heard-Lipsmeyer
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Division of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine-Louisiana, Monroe, LA, United States
| | - Iad Alhallak
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Frank A. Simmen
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- The Winthrop P Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Stepan B. Melnyk
- Arkansas Children’s Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Rosalia C. M. Simmen
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- The Winthrop P Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
16
|
Alhallak I, Wolter KG, Munoz AC, Simmen FA, Ward RJ, Petty SA, Li LX, Simmen RC. Breast adipose regulation of premenopausal breast epithelial phenotype involves interleukin 10. J Mol Endocrinol 2021; 67:173-188. [PMID: 34382943 PMCID: PMC8489570 DOI: 10.1530/jme-21-0100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/12/2021] [Indexed: 11/08/2022]
Abstract
Epidemiological studies inversely associate BMI with breast cancer risk in premenopausal women, but the pathophysiological linkage remains ill-defined. Despite the documented relevance of the 'local' environment to breast cancer progression and the well-accepted differences in transcriptome and metabolic properties of anatomically distinct fat depots, specific breast adipose contributions to the proliferative potential of non-diseased breast glandular compartment are not fully understood. To address early breast cancer causation in the context of obesity status, we compared the cellular and molecular phenotypes of breast adipose and matched breast glandular tissue from premenopausal non-obese (mean BMI = 27 kg/m2) and obese (mean BMI = 44 kg/m2) women. Breast adipose from obese women showed higher expression levels of adipogenic, pro-inflammatory, and estrogen synthetic genes than from non-obese women. Obese breast glandular tissue displayed lower proliferation and inflammatory status and higher expression of anti-proliferative/pro-senescence biomarkers TP53 and p21 than from non-obese women. Transcript levels for T-cell receptor and co-receptors CD3 and CD4 were higher in breast adipose of obese cohorts, coincident with elevated adipose interleukin 10 (IL10) and FOXP3 gene expression. In human breast epithelial cell lines MCF10A and HMEC, recombinant human IL10 reduced cell viability and CCND1 transcript levels, increased those of TP53 and p21, and promoted (MCF10A) apoptosis. Our findings suggest that breast adipose-associated IL10 may mediate paracrine interactions between non-diseased breast adipose and breast glandular compartments and highlight how breast adipose may program the local inflammatory milieu, partly by recruiting FOXP3+ T regulatory cells, to influence premenopausal breast cancer risk.
Collapse
Affiliation(s)
- Iad Alhallak
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| | - Keith G. Wolter
- Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| | - Ana Castro Munoz
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| | - Frank A. Simmen
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205
- Department of The Winthrop P Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| | | | - Stacy A. Petty
- Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| | - Lin-Xi Li
- Department of Microbiology & Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| | - Rosalia C.M. Simmen
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205
- Department of The Winthrop P Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| |
Collapse
|
17
|
Knoedler JR, Sáenz de Miera C, Subramani A, Denver RJ. An Intact Krüppel-like factor 9 Gene Is Required for Acute Liver Period 1 mRNA Response to Restraint Stress. Endocrinology 2021; 162:6255381. [PMID: 33904929 PMCID: PMC8312639 DOI: 10.1210/endocr/bqab083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Indexed: 12/14/2022]
Abstract
The clock protein period 1 (PER1) is a central component of the core transcription-translation feedback loop governing cell-autonomous circadian rhythms in animals. Transcription of Per1 is directly regulated by the glucocorticoid (GC) receptor (GR), and Per1 mRNA is induced by stressors or injection of GC. Circulating GCs may synchronize peripheral clocks with the central pacemaker located in the suprachiasmatic nucleus of the brain. Krüppel-like factor 9 (KLF9) is a zinc finger transcription factor that, like Per1, is directly regulated by liganded GR, and it associates in chromatin at clock and clock-output genes, including at Per1. We hypothesized that KLF9 modulates stressor-dependent Per1 transcription. We exposed wild-type (WT) and Klf9 null mice (Klf9-/-) of both sexes to 1 hour restraint stress, which caused similar 2- to 2.5-fold increases in plasma corticosterone (B) in each genotype and sex. Although WT mice of both sexes showed a 2-fold increase in liver Per1 mRNA level after restraint stress, this response was absent in Klf9-/- mice. However, injection of B in WT and Klf9-/- mice induced similar increases in Per1 mRNA. Our findings support that an intact Klf9 gene is required for liver Per1 mRNA responses to an acute stressor, but a possible role for GCs in this response requires further investigation.
Collapse
Affiliation(s)
- Joseph R Knoedler
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan 48109-2215, USA
- Current Affiliation: J. R. Knoedler’s current affiliation is the Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Cristina Sáenz de Miera
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1085, USA
- Current Affiliation: C. Sáenz de Miera’s current affiliation is the Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109-2800, USA
| | - Arasakumar Subramani
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1085, USA
| | - Robert J Denver
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan 48109-2215, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1085, USA
- Correspondence: Robert J. Denver, PhD, Department of Molecular, Cellular and Developmental Biology, 1105 North University Avenue, University of Michigan, Ann Arbor, MI 48109-1085, USA.
| |
Collapse
|
18
|
Giacomini E, Minetto S, Li Piani L, Pagliardini L, Somigliana E, Viganò P. Genetics and Inflammation in Endometriosis: Improving Knowledge for Development of New Pharmacological Strategies. Int J Mol Sci 2021; 22:ijms22169033. [PMID: 34445738 PMCID: PMC8396487 DOI: 10.3390/ijms22169033] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
According to a rich body of literature, immune cell dysfunctions, both locally and systemically, and an inflammatory environment characterize all forms of endometriosis. Alterations in transcripts and proteins involved in the recruitment of immune cells, in the interaction between cytokines and their receptors, cellular adhesion and apoptosis have been demonstrated in endometriotic lesions. The objective of this narrative review is to provide an overview of the components and mechanisms at the intersection between inflammation and genetics that may constitute vanguard therapeutic approaches in endometriosis. The GWAS technology and pathway-based analysis highlighted the role of the MAPK and the WNT/β-catenin cascades in the pathogenesis of endometriosis. These signaling pathways have been suggested to interfere with the disease establishment via several mechanisms, including apoptosis, migration and angiogenesis. Extracellular vesicle-associated molecules may be not only interesting to explain some aspects of endometriosis progression, but they may also serve as therapeutic regimens per se. Immune/inflammatory dysfunctions have always represented attractive therapeutic targets in endometriosis. These would be even more interesting if genetic evidence supported the involvement of functional pathways at the basis of these alterations. Targeting these dysfunctions through next-generation inhibitors can constitute a therapeutic alternative for endometriosis.
Collapse
Affiliation(s)
- Elisa Giacomini
- Reproductive Sciences Laboratory, Obstetrics and Gynecology Unit, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (E.G.); (L.P.)
| | - Sabrina Minetto
- Obstetrics and Gynecology Unit, IRCCS Ospedale San Raffaele, 20132 Milan, Italy;
| | - Letizia Li Piani
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (L.L.P.); (E.S.)
| | - Luca Pagliardini
- Reproductive Sciences Laboratory, Obstetrics and Gynecology Unit, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (E.G.); (L.P.)
| | - Edgardo Somigliana
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (L.L.P.); (E.S.)
| | - Paola Viganò
- Infertility Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Correspondence: ; Tel.: +39-02-5503-4302
| |
Collapse
|
19
|
Esfandyari S, Elkafas H, Chugh RM, Park HS, Navarro A, Al-Hendy A. Exosomes as Biomarkers for Female Reproductive Diseases Diagnosis and Therapy. Int J Mol Sci 2021; 22:ijms22042165. [PMID: 33671587 PMCID: PMC7926632 DOI: 10.3390/ijms22042165] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/14/2021] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
Cell-cell communication is an essential mechanism for the maintenance and development of various organs, including the female reproductive system. Today, it is well-known that the function of the female reproductive system and successful pregnancy are related to appropriate follicular growth, oogenesis, implantation, embryo development, and proper fertilization, dependent on the main regulators of cellular crosstalk, exosomes. During exosome synthesis, selective packaging of different factors into these vesicles happens within the originating cells. Therefore, exosomes contain both genetic and proteomic data that could be applied as biomarkers or therapeutic targets in pregnancy-associated disorders or placental functions. In this context, the present review aims to compile information about the potential exosomes with key molecular cargos that are dysregulated in female reproductive diseases which lead to infertility, including polycystic ovary syndrome (PCOS), premature ovarian failure (POF), Asherman syndrome, endometriosis, endometrial cancer, cervical cancer, ovarian cancer, and preeclampsia, as well as signaling pathways related to the regulation of the reproductive system and pregnancy outcome during these pathological conditions. This review might help us realize the etiology of reproductive dysfunction and improve the early diagnosis and treatment of the related complications.
Collapse
Affiliation(s)
- Sahar Esfandyari
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.E.); (H.E.); (R.M.C.)
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Hoda Elkafas
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.E.); (H.E.); (R.M.C.)
- Department of Pharmacology and Toxicology, Egyptian Drug Authority (EDA) Formally, (NODCAR), Cairo 35521, Egypt
| | - Rishi Man Chugh
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.E.); (H.E.); (R.M.C.)
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Hang-soo Park
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (H.-s.P.); (A.N.)
| | - Antonia Navarro
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (H.-s.P.); (A.N.)
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (H.-s.P.); (A.N.)
- Correspondence: ; Tel.: +1-773-832-0742
| |
Collapse
|
20
|
Hosseinirad H, Novin MG, Hosseini S, Nazarian H, Safaei Z, Hashemi T, Paktinat S, Mofarahe ZS. Evaluation of Expression and Phosphorylation of Progesterone Receptor in Endometrial Stromal Cells of Patients with Recurrent Implantation Failure Compared to Healthy Fertile Women. Reprod Sci 2021; 28:1457-1465. [PMID: 33449351 DOI: 10.1007/s43032-020-00428-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/10/2020] [Indexed: 11/30/2022]
Abstract
Recurrent implantation failure (RIF) is the repeated failure of good-quality embryos in implantation process following several assisted reproduction cycles. Disruption of the endometrial receptivity is one of the main causes of RIF. Progesterone plays a pivotal role in the endometrial receptivity through the regulation of gene expression pattern by binding to its receptors in the endometrial cells. The aim of this study was to evaluate the expression level of progesterone receptor (PR) and its phosphorylated form in the endometrial stromal cells (eSC) of RIF patients and compare it to the eSC of healthy fertile women as control group. After isolation of the eSC from biopsy samples of RIF patients and healthy fertile women and their characterization, expression levels of PR mRNA, PR protein, and phospho-Ser294 PR protein were evaluated by quantitative real-time PCR and immunofluorescence staining, respectively. The results demonstrated a significant reduction in PR mRNA expression (P < 0.01.) and phospho-Ser294 PR protein (P < 0.05) level in RIF patients compared to the control group. These data for the first time suggest that the expression of PR and its phosphorylated form are impaired in RIF patients. Therefore, designing therapeutic methods for improving PR expression status and its regulation in the endometrium of RIF patients may help in improving the final reproductive outcomes of these cases.
Collapse
Affiliation(s)
- Hossein Hosseinirad
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marefat Ghaffari Novin
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sedighe Hosseini
- Preventative Gynecology Research Center (PGRC), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Nazarian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Safaei
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Teibeh Hashemi
- Preventative Gynecology Research Center (PGRC), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahrokh Paktinat
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Shams Mofarahe
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Muraoka A, Osuka S, Kiyono T, Suzuki M, Yokoi A, Murase T, Nishino K, Niimi K, Nakamura T, Goto M, Kajiyama H, Kondo Y, Kikkawa F. Establishment and characterization of cell lines from human endometrial epithelial and mesenchymal cells from patients with endometriosis. F&S SCIENCE 2020; 1:195-205. [PMID: 35559928 DOI: 10.1016/j.xfss.2020.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To establish and characterize cell lines derived from human endometrial epithelial cells (ECs) and mesenchymal cells (MCs) from patients with and without endometriosis. DESIGN In vitro experimental study. SETTING University and national cancer center research institute. PATIENT(S) Two women with endometriosis and two women without endometriosis. INTERVENTION(S) Sampling of endometrial ECs and MCs. MAIN OUTCOME MEASURE(S) Establishing immortalized endometrial ECs and MCs with quantitative reverse transcription-polymerase chain reaction (qRT-PCR), immunocytochemical analysis, and RNA sequence profiling performed to characterize the immortalized cells and a cell proliferation assay, three-dimensional culture, and assays for hormone responses performed to characterize the features of ECs. RESULT(S) The qRT-PCR, immunocytochemical analysis, and Western blot analysis revealed that the ECs and MCs maintained their original features. Moreover, the immortalized cells were found to retain responsiveness to sex steroid hormones. The ECs formed a gland-like structure in three-dimensional culture, indicating the maintenance of normal EC phenotypes. The RNA sequence profiling, principal component analysis, and clustering analysis showed that the gene expression patterns of the immortalized cells were different from those of cancer cells. Several signaling pathways that were statistically significantly enriched in ECs and MCs with endometriosis were revealed. CONCLUSION(S) We successfully obtained four paired immortalized endometrial ECs and MCs from patients with and without endometriosis. Using these cells could help identify diagnostic and therapeutic targets for endometriosis. The cell lines established in this study will thus serve as powerful experimental tools in the study of endometriosis.
Collapse
Affiliation(s)
- Ayako Muraoka
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Japan; Division of Cancer Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Satoko Osuka
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Japan.
| | - Tohru Kiyono
- Project for Prevention of HPV-related Cancer, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa City, Japan.
| | - Miho Suzuki
- Division of Cancer Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Akira Yokoi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Tomohiko Murase
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Kimihiro Nishino
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Kaoru Niimi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Tomoko Nakamura
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Maki Goto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Yutaka Kondo
- Division of Cancer Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| |
Collapse
|
22
|
Saguyod SJU, Alhallak I, Simmen RCM, Velarde MC. Metformin regulation of progesterone receptor isoform-B expression in human endometrial cancer cells is glucose-dependent. Oncol Lett 2020; 20:249. [PMID: 32994812 PMCID: PMC7509689 DOI: 10.3892/ol.2020.12112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/25/2020] [Indexed: 11/17/2022] Open
Abstract
Metformin (MET) constitutes the first-line treatment against type 2 diabetes. Growing evidence linking insulin resistance and cancer risk has expanded the therapeutic potential of MET to several cancer types. However, the oncostatic mechanisms of MET are not well understood. MET has been shown to promote the expression of progesterone receptor (PGR) and other antitumor biomarkers in patients with non-diabetic endometrial cancer (EC) and in Ishikawa EC cells cultured in normal glucose (5.5 mM) media. Therefore, the present study aimed to assess the effects of MET on EC cells under conditions simulating diabetes. Ishikawa cells treated with 10 nM 17β-estradiol (E2) and/or 100 µM MET and exposed to normal and high (17.5 mM) concentrations of glucose were evaluated for proliferative and PGR expression status. Under normal glucose conditions, MET attenuated E2-induced cell proliferation and cyclin D1 gene expression, and increased total PGR and PGR-B transcript levels. MET inhibited Ishikawa cell spheroid formation only in the absence of E2 treatment. In E2-treated cells under high glucose conditions, MET showed no effects on cell proliferation and spheroid formation, and increased total PGR but not PGR-B transcript levels. Transfection with Krüppel-like factor 9 small interfering RNA increased PGR-A transcript levels, irrespective of glucose environment. Medroxyprogesterone acetate downregulated PGR-A expression more effectively with metformin under high compared with normal glucose conditions. To evaluate the potential mechanisms underlying the targeting of PGR by MET, E2-treated cells were incubated with MET and the AMPK inhibitor Compound C, or with the AMPK activator 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), under normal glucose conditions. Compound C abrogated the effects of MET on PGR-B while AICAR increased PGR-B transcript levels, albeit less effectively compared with MET. The present results demonstrate the glucose-dependent effects of MET on PGR-B isoform expression, which may inform the response to progestin therapy in diabetic women with EC.
Collapse
Affiliation(s)
- Sofia Jade U Saguyod
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, PH 1101, Philippines
| | - Iad Alhallak
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Rosalia C M Simmen
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.,The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Michael C Velarde
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, PH 1101, Philippines
| |
Collapse
|
23
|
Huang C, Li J, Zhang X, Xiong T, Ye J, Yu J, Gui Y. The miR-140-5p/KLF9/KCNQ1 axis promotes the progression of renal cell carcinoma. FASEB J 2020; 34:10623-10639. [PMID: 32596959 DOI: 10.1096/fj.202000088rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 12/21/2022]
Abstract
Although renal cell carcinoma (RCC) is a common malignant urological cancer, its pathogenesis remains unclear. Previous studies have indicated that miR-140-5p acts as a tumor suppressor in various tumors, including bladder cancer, hepatocellular carcinoma, and gastric cancer, but its biological function in RCC remains unknown. In the present study, we found that miR-140-5p was upregulated in RCC tissues, whereas Krüppel-like factor 9 (KLF9) was downregulated and correlated inversely with miR-140-5p in RCC tissues. miR-140-5p promoted the proliferation, migration, and invasion of RCC cells in vitro, and knockdown of miR-140-5p significantly suppressed tumor growth and lung metastasis in nude mouse model of RCC. We also found that miR-140-5p significantly suppressed the expression of KLF9 by binding to the 3'-UTR of KLF9 mRNA and that KLF9, as a transcription factor, upregulates KCNQ1 (also called Kv 7.1 and Kv LQT1) expression by binding to the site (-841/-827) in the KCNQ1 promoter region in RCC cells. Moreover, forced expression of KCNQ1 decreased the growth and metastasis of RCC cells. These results suggest that the miR-140-5p/KLF9/KCNQ1 axis functions as a key signaling pathway in RCC progression and metastasis and represents a potential target of RCC therapies.
Collapse
Affiliation(s)
- Chenchen Huang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, China
- Anhui Medical University, Hefei, China
| | - Jianfa Li
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, China
| | - Xiaoting Zhang
- Shenzhen Bao'an District Songgang People's Hospital, Shenzhen, China
| | - Tiefu Xiong
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, China
| | - Jing Ye
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, China
| | - Jing Yu
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yaoting Gui
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, China
- Anhui Medical University, Hefei, China
| |
Collapse
|
24
|
Krüppel-like factor 17 upregulates uterine corin expression and promotes spiral artery remodeling in pregnancy. Proc Natl Acad Sci U S A 2020; 117:19425-19434. [PMID: 32719113 DOI: 10.1073/pnas.2003913117] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Spiral artery remodeling is an important physiological process in the pregnant uterus which increases blood flow to the fetus. Impaired spiral artery remodeling contributes to preeclampsia, a major disease in pregnancy. Corin, a transmembrane serine protease, is up-regulated in the pregnant uterus to promote spiral artery remodeling. To date, the mechanism underlying uterine corin up-regulation remains unknown. Here we show that Krüppel-like factor (KLF) 17 is a key transcription factor for uterine corin expression in pregnancy. In cultured human uterine endometrial cells, KLF17 binds to the CORIN promoter and enhances the promoter activity. Disruption of the KLF17 gene in the endometrial cells abolishes CORIN expression. In mice, Klf17 is up-regulated in the pregnant uterus. Klf17 deficiency prevents uterine Corin expression in pregnancy. Moreover, Klf17-deficient mice have poorly remodeled uterine spiral arteries and develop gestational hypertension and proteinuria. Together, our results reveal an important function of KLF17 in regulating Corin expression and uterine physiology in pregnancy.
Collapse
|
25
|
Mirza Z, Abdel-dayem UA. Uncovering Potential Roles of Differentially Expressed Genes, Upstream Regulators, and Canonical Pathways in Endometriosis Using an In Silico Genomics Approach. Diagnostics (Basel) 2020; 10:diagnostics10060416. [PMID: 32575462 PMCID: PMC7344784 DOI: 10.3390/diagnostics10060416] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/08/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022] Open
Abstract
Endometriosis is characterized by ectopic endometrial tissue implantation, mostly within the peritoneum, and affects women in their reproductive age. Studies have been done to clarify its etiology, but the precise molecular mechanisms and pathophysiology remain unclear. We downloaded genome-wide mRNA expression and clinicopathological data of endometriosis patients and controls from NCBI’s Gene Expression Omnibus, after a systematic search of multiple independent studies comprising 156 endometriosis patients and 118 controls to identify causative genes, risk factors, and potential diagnostic/therapeutic biomarkers. Comprehensive gene expression meta-analysis, pathway analysis, and gene ontology analysis was done using a bioinformatics-based approach. We identified 1590 unique differentially expressed genes (129 upregulated and 1461 downregulated) mapped by IPA as biologically relevant. The top upregulated genes were FOS, EGR1, ZFP36, JUNB, APOD, CST1, GPX3, and PER1, and the top downregulated ones were DIO2, CPM, OLFM4, PALLD, BAG5, TOP2A, PKP4, CDC20B, and SNTN. The most perturbed canonical pathways were mitotic roles of Polo-like kinase, role of Checkpoint kinase proteins in cell cycle checkpoint control, and ATM signaling. Protein–protein interaction analysis showed a strong network association among FOS, EGR1, ZFP36, and JUNB. These findings provide a thorough understanding of the molecular mechanism of endometriosis, identified biomarkers, and represent a step towards the future development of novel diagnostic and therapeutic options.
Collapse
Affiliation(s)
- Zeenat Mirza
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence:
| | - Umama A. Abdel-dayem
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
26
|
Coffman JA. Chronic stress, physiological adaptation and developmental programming of the neuroendocrine stress system. FUTURE NEUROLOGY 2020. [DOI: 10.2217/fnl-2019-0014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Chronic stress undermines physical and mental health, in part via dysregulation of the neuroendocrine stress system. Key to understand this dysregulation is recognizing that the problem is not stress per se, but rather its chronicity. The optimally functioning stress system is highly dynamic, and negative feedback regulation enforces transient responses to acute stressors. Chronic stress overrides this, and adaptation to the chronicity can result in persistent dysregulation by altering sensitivity thresholds critical for control of system dynamics. Such adaptation involves plasticity within the central nervous system (CNS) as well as epigenetic regulation. When it occurs during development, it can have persistent effects on neuroendocrine regulation. Understanding how chronic stress programs development of the neuroendocrine stress system requires elucidation of stress-responsive gene regulatory networks that control CNS plasticity and development.
Collapse
Affiliation(s)
- James A Coffman
- MDI Biological Laboratory, Kathryn W Davis Center for Regenerative Biology and Aging, Salisbury Cove, ME 04672, USA
| |
Collapse
|
27
|
Molecular profile of eutopic and ectopic endometrium in endometriosis. GINECOLOGIA.RO 2020. [DOI: 10.26416/gine.28.2.2020.3179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
28
|
Pabona JMP, Burnett AF, Brown DM, Quick CM, Simmen FA, Montales MTE, Liu SJ, Rose T, Alhallak I, Siegel ER, Simmen RC. Metformin Promotes Anti-tumor Biomarkers in Human Endometrial Cancer Cells. Reprod Sci 2020; 27:267-277. [PMID: 32046384 PMCID: PMC7077930 DOI: 10.1007/s43032-019-00019-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/28/2019] [Indexed: 12/13/2022]
Abstract
Metformin (MET) is increasingly implicated in reducing the incidence of multiple cancer types in patients with diabetes. However, similar effects of MET in non-diabetic women with endometrial cancer (EC) remain unknown. In a pilot study, obese non-diabetic women diagnosed with type 1, grade 1/2 EC, and consenting to participate were randomly assigned to receive MET or no MET (control (CON)) during the pre-surgical window between diagnosis and hysterectomy. Endometrial tumors obtained at surgery (MET, n = 4; CON, n = 4) were analyzed for proliferation (Ki67), apoptosis (TUNEL), and nuclear expression of ERα, PGR, PTEN, and KLF9 proteins in tumor glandular epithelial (GE) and stromal (ST) cells. The percentages of immunopositive cells for PGR and for KLF9 in GE and for PTEN in ST were higher while those for ERα in GE but not ST were lower, in tumors of MET vs. CON patients. The numbers of Ki67- and TUNEL-positive cells in tumor GE and ST did not differ between groups. In human Ishikawa endometrial cancer cells, MET treatment (60 μM) decreased cell numbers and elicited distinct temporal changes in ESR1, KLF9, PGR, PGR-B, KLF4, DKK1, and other tumor biomarker mRNA levels. In the context of reduced KLF9 expression (by siRNA targeting), MET rapidly amplified PGR, PGR-B, and KLF4 transcript levels. Our findings suggest that MET acts directly in EC cells to modify steroid receptor expression and signaling network and may constitute a preventative strategy against EC in high-risk non-diabetic women.
Collapse
Affiliation(s)
- John Mark P Pabona
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Alexander F Burnett
- Department of Obstetrics & Gynecology, Division of Gynecologic Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.,The Winthrop P Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Dustin M Brown
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Charles M Quick
- The Winthrop P Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA.,Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Frank A Simmen
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.,The Winthrop P Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Maria Theresa E Montales
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Shi J Liu
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Tyler Rose
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Iad Alhallak
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Eric R Siegel
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Rosalia Cm Simmen
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA. .,The Winthrop P Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
29
|
Vashisht A, Alali Z, Nothnick WB. Deciphering the Role of miRNAs in Endometriosis Pathophysiology Using Experimental Endometriosis Mouse Models. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2020; 232:79-97. [PMID: 33278008 DOI: 10.1007/978-3-030-51856-1_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Endometriosis is an enigmatic disease for which we still have a poor understanding on how and why the disease develops. In recent years, miRNAs, small noncoding RNAs which regulate gene expression posttranscriptionally, have been evaluated for their role in endometriosis pathophysiology. This review will provide a brief summary on the role of miRNAs in endometrial physiology and pathophysiology as related to endometriosis. We will then discuss mouse models used in endometriosis research and the incorporation of some of these models in studies which examined the role of miRNAs in endometriosis pathophysiology. We conclude with providing future prospective on the role of mouse models in dissecting the role of miRNAs in endometriosis pathophysiology.
Collapse
Affiliation(s)
- Ayushi Vashisht
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Zahraa Alali
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Warren B Nothnick
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA. .,Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS, USA. .,Center for Reproductive Sciences, Institute for Reproductive and Perinatal Research, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
30
|
Ma L, Li Z, Li W, Ai J, Chen X. MicroRNA-142-3p suppresses endometriosis by regulating KLF9-mediated autophagy in vitro and in vivo. RNA Biol 2019; 16:1733-1748. [PMID: 31425004 DOI: 10.1080/15476286.2019.1657352] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The detailed pathogenesis of endometriosis remains largely unclear despite decades of research. Recent studies have demonstrated that miRNAs plays an important role in endometriosis. The expression of miR-142-3p was decreased in ectopic endometrial tissues, while KLF9 and VEGFA expression levels were increased. Overexpression of miR-142-3p or knockdown of KLF9 significantly suppressed CRL-7566 cell proliferation and metastasis, induced cell apoptosis, and decreased both cell autophagy and vascularization. Additionally, KLF9 was confirmed to be a direct target of miR-142-3p and to directly bind to the promoter of the VEGFA gene, regulating its expression. Finally, intraperitoneal injection of miR-142-3p lentivirus significantly attenuated ectopic endometriotic lesions in vivo.miR-142-3p directly targeted KLF9, regulated VEGFA expression, and was protective against the growth of ectopic endometriotic lesions. Therefore, the miR-142-3p/KLF9/VEGFA signalling pathway may be a potential target in endometriosis treatment.
Collapse
Affiliation(s)
- Lin Ma
- Reproductive Medicine center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zaiyi Li
- Reproductive Medicine center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Weihao Li
- Reproductive Medicine center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jing Ai
- Reproductive Medicine center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiaoxuan Chen
- Reproductive Medicine center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
31
|
van Weert LTCM, Buurstede JC, Sips HCM, Vettorazzi S, Mol IM, Hartmann J, Prekovic S, Zwart W, Schmidt MV, Roozendaal B, Tuckermann JP, Sarabdjitsingh RA, Meijer OC. Identification of mineralocorticoid receptor target genes in the mouse hippocampus. J Neuroendocrinol 2019; 31:e12735. [PMID: 31121060 PMCID: PMC6771480 DOI: 10.1111/jne.12735] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/10/2019] [Accepted: 05/10/2019] [Indexed: 02/06/2023]
Abstract
Brain mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) respond to the same glucocorticoid hormones but can have differential effects on cellular function. Several lines of evidence suggest that MR-specific target genes must exist and might underlie the distinct effects of the receptors. The present study aimed to identify MR-specific target genes in the hippocampus, a brain region where MR and GR are co-localised and play a role in the stress response. Using genome-wide binding of both receptor types, we previously identified MR-specific, MR-GR overlapping and GR-specific putative target genes. We now report altered gene expression levels of such genes in the hippocampus of forebrain MR knockout (fbMRKO) mice, killed at the time of their endogenous corticosterone peak. Of those genes associated with MR-specific binding, the most robust effect was a 50% reduction in Jun dimerization protein 2 (Jdp2) mRNA levels in fbMRKO mice. Down-regulation was also observed for the MR-specific Nitric oxide synthase 1 adaptor protein (Nos1ap) and Suv3 like RNA helicase (Supv3 l1). Interestingly, the classical glucocorticoid target gene FK506 binding protein 5 (Fkbp5), which is associated with MR and GR chromatin binding, was expressed at substantially lower levels in fbMRKO mice. Subsequently, hippocampal Jdp2 was confirmed to be up-regulated in a restraint stress model, posing Jdp2 as a bona fide MR target that is also responsive in an acute stress condition. Thus, we show that MR-selective DNA binding can reveal functional regulation of genes and further identify distinct MR-specific effector pathways.
Collapse
Affiliation(s)
- Lisa T. C. M. van Weert
- Einthoven LaboratoryDivision of EndocrinologyDepartment of MedicineLeiden University Medical CenterLeidenThe Netherlands
- Department of Cognitive NeuroscienceRadboud University Medical CenterNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - Jacobus C. Buurstede
- Einthoven LaboratoryDivision of EndocrinologyDepartment of MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Hetty C. M. Sips
- Einthoven LaboratoryDivision of EndocrinologyDepartment of MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Sabine Vettorazzi
- Institute of Comparative Molecular EndocrinologyUniversity of UlmUlmGermany
| | - Isabel M. Mol
- Einthoven LaboratoryDivision of EndocrinologyDepartment of MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Jakob Hartmann
- Department of PsychiatryHarvard Medical SchoolMcLean HospitalBelmontMassachusetts
| | - Stefan Prekovic
- Division of OncogenomicsOncode InstituteThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Wilbert Zwart
- Division of OncogenomicsOncode InstituteThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Mathias V. Schmidt
- Department of Stress Neurobiology and NeurogeneticsMax Planck Institute of PsychiatryMunichGermany
| | - Benno Roozendaal
- Department of Cognitive NeuroscienceRadboud University Medical CenterNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - Jan P. Tuckermann
- Institute of Comparative Molecular EndocrinologyUniversity of UlmUlmGermany
| | - R. Angela Sarabdjitsingh
- Department of Translational NeuroscienceUMC Utrecht Brain CenterUniversity Medical CenterUtrechtThe Netherlands
| | - Onno C. Meijer
- Einthoven LaboratoryDivision of EndocrinologyDepartment of MedicineLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
32
|
Wang X, Yu Q. Endometriosis-related ceRNA network to identify predictive biomarkers of endometrial receptivity. Epigenomics 2019; 11:147-167. [PMID: 30638056 DOI: 10.2217/epi-2018-0190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM As RNA, which plays a role in the regulation of endometrial receptivity, can be modulated via ceRNA mechanisms, we constructed a ceRNA network to explore potential RNA/ceRNA biomarkers indicating endometrial receptivity associated with endometriosis. MATERIALS & METHODS RNA sequencing was performed on eutopic endometrium from eight patients with and without endometriosis. Bioinformatics algorithms were used to predict ceRNA network and pathway analysis. RESULTS We identified an endometriosis-associated ceRNA network involving 45 pathways and four ceRNAs as potential predictive biomarkers for endometrial receptivity. Patients with endometriosis presented lower levels of progesterone receptor type B expression. CONCLUSION Differentially expressed RNAs and lower progesterone receptors type B levels in endometriosis might be related to the impairment of endometrial receptivity.
Collapse
Affiliation(s)
- Xi Wang
- Department of Obstetrics & Gynaecology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Qi Yu
- Department of Obstetrics & Gynaecology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
33
|
Rytkönen KT, Erkenbrack EM, Poutanen M, Elo LL, Pavlicev M, Wagner GP. Decidualization of Human Endometrial Stromal Fibroblasts is a Multiphasic Process Involving Distinct Transcriptional Programs. Reprod Sci 2018; 26:323-336. [PMID: 30309298 DOI: 10.1177/1933719118802056] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Decidual stromal cells differentiate from endometrial stromal fibroblasts (ESFs) under the influence of progesterone and cyclic adenosine monophosphate (cAMP) and are essential for implantation and the maintenance of pregnancy. They evolved in the stem lineage of placental (eutherian) mammals coincidental with the evolution of implantation. Here we use the well-established in vitro decidualization protocol to compare early (3 days) and late (8 days) gene transcription patterns in immortalized human ESF. We document extensive, dynamic changes in the early and late decidual cell transcriptomes. The data suggest the existence of an early signal transducer and activator of transcription (STAT) pathway dominated state and a later nuclear factor κB (NFKB) pathway regulated state. Transcription factor expression in both phases is characterized by putative or known progesterone receptor ( PGR) target genes, suggesting that both phases are under progesterone control. Decidualization leads to proliferative quiescence, which is reversible by progesterone withdrawal after 3 days but to a lesser extent after 8 days of decidualization. In contrast, progesterone withdrawal induces cell death at comparable levels after short or long exposure to progestins and cAMP. We conclude that decidualization is characterized by a biphasic gene expression dynamic that likely corresponds to different phases in the establishment of the fetal-maternal interface.
Collapse
Affiliation(s)
- Kalle T Rytkönen
- 1 Yale Systems Biology Institute, West Haven, CT, USA.,2 Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.,3 Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Kiinamyllynkatu, Finland.,4 Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Eric M Erkenbrack
- 1 Yale Systems Biology Institute, West Haven, CT, USA.,2 Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Matti Poutanen
- 3 Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Kiinamyllynkatu, Finland
| | - Laura L Elo
- 4 Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Mihaela Pavlicev
- 5 Cincinnati Children's Hospital and Medical Center, Cincinnati, OH, USA
| | - Günter P Wagner
- 1 Yale Systems Biology Institute, West Haven, CT, USA.,2 Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.,6 Department of Obstetrics, Yale Medical School, New Haven, CT, USA.,7 Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
34
|
An Ancient Fecundability-Associated Polymorphism Creates a GATA2 Binding Site in a Distal Enhancer of HLA-F. Am J Hum Genet 2018; 103:509-521. [PMID: 30245028 DOI: 10.1016/j.ajhg.2018.08.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 08/17/2018] [Indexed: 12/20/2022] Open
Abstract
Variation in female reproductive traits, such as fertility, fecundity, and fecundability, are heritable in humans, but identifying and functionally characterizing genetic variants associated with these traits have been challenging. Here, we explore the functional significance and evolutionary history of a G/A polymorphism at SNP rs2523393, which is an eQTL for HLA-F and is significantly associated with fecundability (the probability of being pregnant within a single menstrual cycle). We replicated the association between the rs2523393 genotype and HLA-F expression by using GTEx data and demonstrate that HLA-F is upregulated in the endometrium during the window of implantation and by progesterone in decidual stromal cells. Next, we show that the rs2523393 A allele creates a GATA2 binding site in a progesterone-responsive distal enhancer that loops to the HLA-F promoter. Remarkably, we found that the A allele is derived in the human lineage and that the G/A polymorphism arose before the divergence of modern and archaic humans and segregates at intermediate to high frequencies across human populations. Remarkably, the derived A allele is has also been identified in a GWAS as a risk allele for multiple sclerosis. These data suggest that the polymorphism is maintained by antagonistic pleiotropy and a reproduction-health tradeoff in human evolution.
Collapse
|
35
|
Guo S. Cancer driver mutations in endometriosis: Variations on the major theme of fibrogenesis. Reprod Med Biol 2018; 17:369-397. [PMID: 30377392 PMCID: PMC6194252 DOI: 10.1002/rmb2.12221] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/03/2018] [Accepted: 06/24/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND One recent study reports cancer driver mutations in deep endometriosis, but its biological/clinical significance remains unclear. Since the natural history of endometriosis is essentially gradual progression toward fibrosis, it is thus hypothesized that the six driver genes reported to be mutated in endometriosis (the RP set) may play important roles in fibrogenesis but not necessarily malignant transformation. METHODS Extensive PubMed search to see whether RP and another set of driver genes not yet reported (NR) to be mutated in endometriosis have any roles in fibrogenesis. All studies reporting on the role of fibrogenesis of the genes in both RP and NR sets were retrieved and evaluated in this review. RESULTS All six RP genes were involved in various aspects of fibrogenesis as compared with only three NR genes. These nine genes can be anchored in networks linking with their upstream and downstream genes that are known to be aberrantly expressed in endometriosis, piecing together seemingly unrelated findings. CONCLUSIONS Given that somatic driver mutations can and do occur frequently in physiologically normal tissues, it is argued that these mutations in endometriosis are not necessarily synonymous with malignancy or premalignancy, but the result of enormous pressure for fibrogenesis.
Collapse
Affiliation(s)
- Sun‐Wei Guo
- Shanghai Obstetrics and Gynecology HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related DiseasesShanghaiChina
| |
Collapse
|
36
|
Erkenbrack EM, Maziarz JD, Griffith OW, Liang C, Chavan AR, Nnamani MC, Wagner GP. The mammalian decidual cell evolved from a cellular stress response. PLoS Biol 2018; 16:e2005594. [PMID: 30142145 PMCID: PMC6108454 DOI: 10.1371/journal.pbio.2005594] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 06/29/2018] [Indexed: 11/19/2022] Open
Abstract
Among animal species, cell types vary greatly in terms of number and kind. The number of cell types found within an organism differs considerably between species, and cell type diversity is a significant contributor to differences in organismal structure and function. These observations suggest that cell type origination is a significant source of evolutionary novelty. The molecular mechanisms that result in the evolution of novel cell types, however, are poorly understood. Here, we show that a novel cell type of eutherians mammals, the decidual stromal cell (DSC), evolved by rewiring an ancestral cellular stress response. We isolated the precursor cell type of DSCs, endometrial stromal fibroblasts (ESFs), from the opossum Monodelphis domestica. We show that, in opossum ESFs, the majority of decidual core regulatory genes respond to decidualizing signals but do not regulate decidual effector genes. Rather, in opossum ESFs, decidual transcription factors function in apoptotic and oxidative stress response. We propose that rewiring of cellular stress responses was an important mechanism for the evolution of the eutherian decidual cell type.
Collapse
Affiliation(s)
- Eric M. Erkenbrack
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
- Systems Biology Institute, Yale University, West Haven, Connecticut, United States of America
| | - Jamie D. Maziarz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
- Systems Biology Institute, Yale University, West Haven, Connecticut, United States of America
| | - Oliver W. Griffith
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
- Systems Biology Institute, Yale University, West Haven, Connecticut, United States of America
- School of Biosciences, University of Melbourne, Melbourne, Australia
| | - Cong Liang
- Systems Biology Institute, Yale University, West Haven, Connecticut, United States of America
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
| | - Arun R. Chavan
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
- Systems Biology Institute, Yale University, West Haven, Connecticut, United States of America
| | - Mauris C. Nnamani
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
- Systems Biology Institute, Yale University, West Haven, Connecticut, United States of America
| | - Günter P. Wagner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
- Systems Biology Institute, Yale University, West Haven, Connecticut, United States of America
- Department of Obstetrics, Gynecology, and Reproductive Science, Yale University Medical School, New Haven, Connecticut, United States of America
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan, United States of America
| |
Collapse
|
37
|
Klemmt PA, Starzinski-Powitz A. Molecular and Cellular Pathogenesis of Endometriosis. CURRENT WOMEN'S HEALTH REVIEWS 2018; 14:106-116. [PMID: 29861704 PMCID: PMC5925869 DOI: 10.2174/1573404813666170306163448] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 02/06/2017] [Accepted: 02/15/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND A substantial body of studies supports the view that molecular and cellular features of endometriotic lesions differ from those of eutopic endometrium. Apart from that, evidence exists that the eutopic endometrium from pa-tients with endometriosis differs from that of females without endometriosis. OBJECTIVE Aberrant expression profiles include a number of non-steroid signaling pathways that exert their putative influ-ence on the pathogenesis of endometriosis at least in part via crosstalk(s) with estrogen-mediated mechanisms. A rational to focus research on non-steroid signal pathways is that they might be remunerative targets for the development and selection of novel therapeutics to treat endometriosis possibly without affecting estrogen levels. RESULTS AND CONCLUSION In this article, we describe molecular and cellular features of endometriotic lesions and focus on the canonical WNT/β-signaling pathway, a key regulatory system in biology (including stem cell homeostasis) and often in pathophysiological conditions such as endometriosis. Recently emerged novel biological concepts in signal transduction and gene regulation like exosomes and microRNAs are discussed in their putative role in the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Petra A.B. Klemmt
- Department of Molecular Cell Biology and Human Genetics, Institute of Cell Biology and Neuroscience, Johann Wolfgang Goethe University of Frankfurt, Max-von-Laue-Str. 13, D-60438Frankfurt am Main, Germany
| | - Anna Starzinski-Powitz
- Department of Molecular Cell Biology and Human Genetics, Institute of Cell Biology and Neuroscience, Johann Wolfgang Goethe University of Frankfurt, Max-von-Laue-Str. 13, D-60438Frankfurt am Main, Germany
| |
Collapse
|
38
|
Brown DM, Lee HC, Liu S, Quick CM, Fernandes LM, Simmen FA, Tsai SJ, Simmen RCM. Notch-1 Signaling Activation and Progesterone Receptor Expression in Ectopic Lesions of Women With Endometriosis. J Endocr Soc 2018; 2:765-778. [PMID: 30151432 PMCID: PMC6106104 DOI: 10.1210/js.2018-00007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/22/2018] [Indexed: 12/22/2022] Open
Abstract
Context Progesterone (P) resistance is a hallmark of endometriosis, but the underlying mechanism(s) for loss of P sensitivity leading to lesion establishment remains poorly understood. Objective To evaluate the association between Notch-1 signaling activation and P resistance in the progression of endometriosis. Design Case control study; archived formalin-fixed, paraffin-embedded tissues. Setting University hospitals (United States, Taiwan). Patients Women with endometriosis; human endometrial stromal cell line (HESC). Intervention Eutopic endometria (EU) and ectopic lesions (ECs) were collected from surgically diagnosed patients. Archived tissue sections of EU and ECs were identified. HESCs were treated with N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT) and valproic acid (VPA) to, respectively, suppress and induce Notch-1 activation. Outcome Measures Tissues were analyzed for Notch Intra-Cellular Domain 1 (NICD1) and progesterone receptor (PGR) protein expression by immunohistochemistry and for transcript levels of NICD1 target genes HES1, PGR, and PGR-B by quantitative reverse transcription polymerase chain reaction. DAPT- or VPA-treated HESCs with and without P cotreatment were evaluated for cell numbers and for PGR, HES1, and PGR target gene DKK1 transcript levels. Results Nuclear-localized stromal NICD1 protein levels were inversely associated with those of total PGR in EU and ECs. Stromal ECs displayed higher HES1 and lower total PGR and PGR-B transcript levels than EU. In HESCs, DAPT reduction of NICD1 decreased cell numbers and increased PGR transcript and nuclear PGR protein levels and, with P cotreatment, maintained P sensitivity. Conversely, VPA induction of NICD1 decreased PGR transcript levels and, with P cotreatment, abrogated P-induced DKK1 and maintained HES1 transcript levels. Conclusions Aberrant Notch-1 activation is associated with decreased PGR that contributes to P resistance in endometriosis.
Collapse
Affiliation(s)
- Dustin M Brown
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Hsiu-Chi Lee
- Department of Physiology, National Cheng Kung University, Tainan, Taiwan
| | - Shi Liu
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Charles M Quick
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Lorenzo M Fernandes
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Frank A Simmen
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Shaw-Jenq Tsai
- Department of Physiology, National Cheng Kung University, Tainan, Taiwan
| | - Rosalia C M Simmen
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
39
|
Ji P, Fan X, Ma X, Wang X, Zhang J, Mao Z. Krüppel-like factor 9 suppressed tumorigenicity of the pancreatic ductal adenocarcinoma by negatively regulating frizzled-5. Biochem Biophys Res Commun 2018; 499:815-821. [PMID: 29621541 DOI: 10.1016/j.bbrc.2018.03.229] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 03/31/2018] [Indexed: 12/28/2022]
Abstract
Krüppel-like factor 9 (KLF9) has been implicated in mediating a diverse range of biological processes. However, the expression pattern and biological functions of KLF9 in pancreatic ductal adenocarcinoma (PDAC) are still unknown. Here, we evaluated the role of KLF9 in pancreatic ductal adenocarcinoma (PDAC). Overexpression of KLF9 significantly inhibited proliferation and clone formation in PDAC cells, while silencing KLF9 expression dramatically promoted this effect in vitro. Knocking down the expression of KLF9 also promoted the tumorigenesis in the PDAC mouse xneograft model. In in vitro mechanism study, KLF9 negatively regulated the activity of wnt/beta-catenin pathway in Top/Fop reporter assay. Frizzled-5, a key component involving in this pathway, was sharp inhibited by KLF9 both in mRNA and protein level. Furthermore, a KLF9-binding site (BTE) was identified in the promoter region of Frizzled-5. Mutation or deletion of this BTE strongly disrupted the KLF9's regulatory effect on Frizzled-5. More importantly, the expression level of KLF9 was significantly lower in clinical PDAC tissue compared to matched normal tissues and inversely associated with survival of the patients. Together, our findings indicated that KLF9 suppressed tumorigenicity of the pancreatic ductal adenocarcinoma by negatively regulating frizzled-5.
Collapse
Affiliation(s)
- Peiyu Ji
- College of Medical School, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Xin Fan
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Xiaoyan Ma
- Department of Gynecology and Obstetrics, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Xuqing Wang
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Jianxin Zhang
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, PR China.
| | - Zhengfa Mao
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, PR China.
| |
Collapse
|
40
|
Saguyod SJU, Kelley AS, Velarde MC, Simmen RCM. Diet and endometriosis-revisiting the linkages to inflammation. JOURNAL OF ENDOMETRIOSIS AND PELVIC PAIN DISORDERS 2018. [DOI: 10.1177/2284026518769022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Endometriosis is a chronic inflammatory condition that may cause pelvic pain, dysmenorrhea, and/or infertility in women of reproductive age. While treatments may include medical or surgical management, the majority of therapeutic options are non-curative, and women may experience longstanding pain and/or disability. In general, chronic diseases are believed to result from modifiable risk factors, including diet. In this review, we discuss recent data on evidence-based associations between diet and endometriosis and the mechanistic points of action of constituent dietary factors with emphasis on inflammatory events that may contribute to the promotion or inhibition of the disease. Understanding the convergence of diet and endometriosis may lead to the development of clinical strategies to improve the quality of life for symptomatic women.
Collapse
Affiliation(s)
- Sofia Jade U Saguyod
- Institute of Biology, University of the Philippines Diliman, Quezon City, Philippines
| | - Angela S Kelley
- Department of Obstetrics and Gynecology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Michael C Velarde
- Institute of Biology, University of the Philippines Diliman, Quezon City, Philippines
| | - Rosalia CM Simmen
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
41
|
Abstract
Oestrogen–progesterone signalling is highly versatile and critical for the maintenance of healthy endometrium in humans. The genomic and nongenomic signalling cascades initiated by these hormones in differentiated cells of endometrium have been the primary focus of research since 1920s. However, last decade of research has shown a significant role of stem cells in the maintenance of a healthy endometrium and the modulatory effects of hormones on these cells. Endometriosis, the growth of endometrium outside the uterus, is very common in infertile patients and the elusiveness in understanding of disease pathology causes hindrance in selection of treatment approaches to enhance fertility. In endometriosis, the stem cells are dysfunctional as it can confer progesterone resistance to their progenies resulting in disharmony of hormonal orchestration of endometrial homeostasis. The bidirectional communication between stem cell signalling pathways and oestrogen–progesterone signalling is found to be disrupted in endometriosis though it is not clear which precedes the other. In this paper, we review the intricate connection between hormones, stem cells and the cross-talks in their signalling cascades in normal endometrium and discuss how this is deregulated in endometriosis. Re-examination of the oestrogen–progesterone dependency of endometrium with a focus on stem cells is imperative to delineate infertility associated with endometriosis and thereby aid in designing better treatment modalities.
Collapse
|
42
|
Petousis S, Prapas Y, Margioula-Siarkou C, Ravanos K, Milias S, Mavromatidis G, Kalogiannidis I, Haitoglou C, Athanasiadis A, Prapas N, Rousso D. Unexplained infertility patients present the mostly impaired levels of progesterone receptors: Prospective observational study. Am J Reprod Immunol 2018; 79:e12828. [PMID: 29450939 DOI: 10.1111/aji.12828] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/25/2018] [Indexed: 12/11/2022] Open
Abstract
PROBLEM Τo assess the endometrial expression of progesterone receptors in various subgroups of infertile women during implantation window. ΜETHODS: A prospective observational study was performed during March 2013-February 2017. Infertile women were categorized to those with tubal factor, ovarian failure, endometriosis or unexplained infertility. Endometrial biopsy was obtained on 7th-8th postovulatory day. Total progesterone receptors' PR(A + B) and type-B receptors' (PR-B) expression were compared between all categories of infertile and fruitful controls. RESULTS There were overall 30 patients with tubal factor infertility (group 1), 30 with ovarian failure (group 2), 20 with endometriosis (group 3) and 20 with unexplained infertility (group 4). The control group consisted of 30 fertile patients. Patients with unexplained infertility presented the lowest levels of epithelial endometrial expression both regarding PR(A + B) and PR-B receptors. PgR(A + B) h-score in luminal epithelial cells was 106.4 ± 14.7 for cases with unexplained infertility vs 219.7 ± 15.8 for controls (P < .001). Similarly, PgR(A + B) h-score in glandular epithelial cells was 109.7 ± 13.9 vs 220.1 ± 17.2 (P < .001). Relative remarks were made for type-B progesterone receptors. CONCLUSION Εndometrial expression of progesterone receptors is impaired in women with unexplained infertility. Therapeutic strategies targeting on improving progesterone receptors' expression may significantly affect final reproductive outcome.
Collapse
Affiliation(s)
- Stamatios Petousis
- 3rd Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, Thessaloniki, Greece.,Infertility Treatment Center, IAKENTRO, Thessaloniki, Greece
| | - Yannis Prapas
- 3rd Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, Thessaloniki, Greece.,Infertility Treatment Center, IAKENTRO, Thessaloniki, Greece
| | - Chrysoula Margioula-Siarkou
- 3rd Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, Thessaloniki, Greece.,Infertility Treatment Center, IAKENTRO, Thessaloniki, Greece
| | | | - Stefanos Milias
- Pathology Division, 424 General Army Hospital, Thessaloniki, Greece
| | - George Mavromatidis
- 3rd Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Kalogiannidis
- 3rd Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Costas Haitoglou
- Laboratory of Biological Chemistry, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Apostolos Athanasiadis
- 3rd Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Prapas
- 3rd Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, Thessaloniki, Greece.,Infertility Treatment Center, IAKENTRO, Thessaloniki, Greece
| | - David Rousso
- 3rd Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
43
|
Itoh H, Mogami H, Bou Nemer L, Word L, Rogers D, Miller R, Word RA. Endometrial stromal cell attachment and matrix homeostasis in abdominal wall endometriomas. Hum Reprod 2018; 33:280-291. [PMID: 29300932 PMCID: PMC5850606 DOI: 10.1093/humrep/dex371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/26/2017] [Indexed: 11/14/2022] Open
Abstract
STUDY QUESTION How does progesterone alter matrix remodeling in abdominal wall endometriomas compared with normal endometrium? SUMMARY ANSWER Progesterone may prevent attachment of endometrial cells to the abdominal wall, but does not ameliorate abnormal stromal cell responses of abdominal wall endometriomas. WHAT IS KNOWN ALREADY Menstruation is a tightly orchestrated physiologic event in which steroid hormones and inflammatory cells cooperatively initiate shedding of the endometrium. Abdominal wall endometriomas represent a unique form of endometriosis in which endometrial cells inoculate fascia or dermis at the time of obstetrical or gynecologic surgery. Invasion of endometrium into ectopic sites requires matrix metalloproteinases (MMPs) for tissue remodeling but endometrium is not shed externally. STUDY DESIGN SIZE, DURATION Observational study in 14 cases and 19 controls. PARTICIPANTS /MATERIALS, SETTING, METHODS Tissues and stromal cells isolated from 14 abdominal wall endometriomas were compared with 19 normal cycling endometrium using immunohistochemistry, quantitative PCR, gelatin zymography and cell attachment assays. P values < 0.05 were considered significant and experiments were repeated in at least three different cell preps to provide scientific rigor to the conclusions. MAIN RESULTS AND THE ROLE OF CHANCE The results indicate that MMP2 and MMP9 are not increased by TGFβ1 in endometrioma stromal cells. Although progesterone prevents attachment of endometrioma cells to matrix components of the abdominal wall, it does not ameliorate these abnormal stromal cell responses to TGFβ1. LARGE SCALE DATA N/A. LIMITATIONS REASONS FOR CAUTION Endometriomas were collected from women identified pre-operatively. Not all endometriomas were collected. Stromal cells from normal endometrium were from different patients, not women undergoing endometrioma resection. WIDER IMPLICATIONS OF THE FINDINGS This work provides insight into the mechanisms by which progesterone may prevent abdominal wall endometriomas but, once established, are refractory to progesterone treatment. STUDY FUNDING/COMPETING INTEREST(S) Tissue acquisition was supported by NIH P01HD087150. Authors have no competing interests.
Collapse
Affiliation(s)
- Hiroko Itoh
- Cecil H and Ida Green Center for Reproductive Biological Sciences, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Haruta Mogami
- Cecil H and Ida Green Center for Reproductive Biological Sciences, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Laurice Bou Nemer
- Cecil H and Ida Green Center for Reproductive Biological Sciences, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Larry Word
- Cecil H and Ida Green Center for Reproductive Biological Sciences, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David Rogers
- Cecil H and Ida Green Center for Reproductive Biological Sciences, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rodney Miller
- ProPath Laboratory, Immunohistochemistry Division, Dallas, TX
| | - R Ann Word
- Cecil H and Ida Green Center for Reproductive Biological Sciences, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
44
|
Pazhohan A, Amidi F, Akbari-Asbagh F, Seyedrezazadeh E, Farzadi L, Khodarahmin M, Mehdinejadiani S, Sobhani A. The Wnt/β-catenin signaling in endometriosis, the expression of total and active forms of β-catenin, total and inactive forms of glycogen synthase kinase-3β, WNT7a and DICKKOPF-1. Eur J Obstet Gynecol Reprod Biol 2017; 220:1-5. [PMID: 29107840 DOI: 10.1016/j.ejogrb.2017.10.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 10/05/2017] [Accepted: 10/30/2017] [Indexed: 02/07/2023]
Abstract
OBJECTIVES The cyclical changes in proliferation and differentiation of endometrial cells are regulated by estrogen and progesterone via modulating Wnt/β-catenin signaling. Imbalance in the expression of estrogen and progesterone receptors causes progesterone resistance in endometriosis patients. The aim of this study was to investigate the expression of some main components of Wnt/β-catenin signaling including WNT7a, DKK-1, β-catenin, and GSK-3β in eutopic endometrium and peritoneal endometriotic lesions of endometriosis patients compared to healthy endometrium in the mid-secretory phase of menstrual cycle. STUDY DESIGN This prospective study was performed, during a 12 months period from December 2015 to November 2016, on healthy women as the control group (n=14) and endometriosis patients (n=34). We used real-time polymerase chain reaction and Western blot techniques. RESULTS Protein and mRNA expression of DKK-1 were significantly down-regulated in both endometriotic lesions and eutopic endometrium of endometriosis group. We also demonstrated that the expression of non-phosphorylated β-catenin (active form) and phosphorylated GSK-3β (inactive form) were up-regulated in endometriosis patients. The mRNA levels of β-catenin, GSK-3β, and WNT7a, as well as the protein levels of total β-catenin, total GSK-3β, and WNT7a in endometriosis group, were not significantly different with those in control group. The patterns of mRNA and protein expression of all interested factors in the lesions were similar to those in the eutopic endometrium of same patients. CONCLUSIONS It seems that the aberrant activation of Wnt/β-catenin signaling in the secretory phase of the menstrual cycle in endometriosis has two essential elements: excessive inactivation of GSK-3β and suppression of the expression of Wnt signaling inhibitor DKK-1. Interventions in this signaling pathway may allow for the exploration of potential new targets for the control of development and progression of endometriosis.
Collapse
Affiliation(s)
- Azar Pazhohan
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fardin Amidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Firoozeh Akbari-Asbagh
- Department of Obstetrics and Gynecology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ensiyeh Seyedrezazadeh
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Laya Farzadi
- Department of Obstetrics and Gynecology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahshad Khodarahmin
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Aligholi Sobhani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
45
|
Abnormal Pathways in Endometriosis in Relation to Progesterone Resistance: A Review. JOURNAL OF ENDOMETRIOSIS AND PELVIC PAIN DISORDERS 2017. [DOI: 10.5301/jeppd.5000302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction Endometriosis is an estrogen-dependent disorder, and recent studies suggest that progesterone resistance may contribute to the development and pathophysiology of the disorder. Based on this, identification of genetic and molecular perturbations in the endometrium of women with endometriosis is an important step towards understanding the pathogenesis of the disease, and the development of novel treatment and diagnostic strategies. Methods A systematic literature search in PubMed and Embase was performed, and 118 articles were identified for further screening. Two reviewers performed article screening independently using Covidence, and 16 studies fulfilled the inclusion criteria. The Newcastle-Ottawa Scale was used to assess the quality of these studies. Results This review presents data from eutopic endometrial biopsies from women with and without endometriosis. Several biomarkers related to a downregulated progesterone response were identified and discussed in detail. Conclusions Our review demonstrates significant results concerning the biomarkers investigated, which may substantiate the theory of progesterone resistance in women with endometriosis. However, further research is necessary to determine their specific role and relevance.
Collapse
|
46
|
Wagner GP, Nnamani MC, Chavan AR, Maziarz J, Protopapas S, Condon J, Romero R. Evolution of Gene Expression in the Uterine Cervix related to Steroid Signaling: Conserved features in the regulation of cervical ripening. Sci Rep 2017; 7:4439. [PMID: 28667298 PMCID: PMC5493687 DOI: 10.1038/s41598-017-04759-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 05/19/2017] [Indexed: 01/01/2023] Open
Abstract
The uterine cervix is the boundary structure between the uterus and the vagina and is key for the maintenance of pregnancy and timing of parturition. Here we report on a comparative transcriptomic study of the cervix of four placental mammals, mouse, guinea pig, rabbit and armadillo, and one marsupial, opossum. Our aim is to investigate the evolution of cervical gene expression as related to putative mechanisms for functional progesterone withdrawal. Our findings are: 1) The patterns of gene expression in eutherian (placental) mammals are consistent with the notion that an increase in the E/P4 signaling ratio is critical for cervical ripening. How the increased E/P4 ratio is achieved, however, is variable between species. 2) None of the genes related to steroid signaling, that are modulated in eutherian species, change expression during opossum gestation. 3) A tendency for decreased expression of progesterone receptor co-activators (NCOA1, -2 and -3, and CREBBP) towards term is a shared derived feature of eutherians. This suggests that parturition is associated with broad scale histone de-acetylation. Western-blotting on mouse cervix confirmed large scale histone de-acetylation in labor. This finding may have important implications for the control of premature cervical ripening and prevention of preterm birth in humans.
Collapse
Affiliation(s)
- Günter P Wagner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA. .,Department of Obstetrics, Gynecology and Reproductive Science, Yale University, New Haven, CT, 06520, USA. .,Yale Systems Biology Institute, West Haven, CT, 06516, USA. .,Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, 48202, USA.
| | - Mauris C Nnamani
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA.,Yale Systems Biology Institute, West Haven, CT, 06516, USA
| | - Arun Rajendra Chavan
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA.,Yale Systems Biology Institute, West Haven, CT, 06516, USA
| | - Jamie Maziarz
- Yale Systems Biology Institute, West Haven, CT, 06516, USA
| | | | - Jennifer Condon
- Perinatology Research Branch, NICHD, NIH, Detroit, MI, 48201, USA.,Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, 48202, USA
| | - Roberto Romero
- Perinatology Research Branch, NICHD, NIH, Detroit, MI, 48201, USA.,Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, 48202, USA.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Epidemiology, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
47
|
Mika KM, Lynch VJ. An Ancient Fecundability-Associated Polymorphism Switches a Repressor into an Enhancer of Endometrial TAP2 Expression. Am J Hum Genet 2016; 99:1059-1071. [PMID: 27745831 DOI: 10.1016/j.ajhg.2016.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/02/2016] [Indexed: 12/25/2022] Open
Abstract
Variation in female reproductive traits, such as fertility, fecundity, and fecundability, is heritable in humans, but identifying and functionally characterizing genetic variants associated with these traits has been challenging. Here, we explore the functional significance and evolutionary history of a T/C polymorphism of SNP rs2071473, which we have previously shown is an eQTL for TAP2 and significantly associated with fecundability (time to pregnancy). We replicated the association between the rs2071473 genotype and TAP2 expression by using GTEx data and demonstrated that TAP2 is expressed by decidual stromal cells at the maternal-fetal interface. Next, we showed that rs2071473 is located within a progesterone-responsive cis-regulatory element that functions as a repressor with the T allele and an enhancer with the C allele. Remarkably, we found that this polymorphism arose before the divergence of modern and archaic humans, segregates at intermediate to high frequencies across human populations, and has genetic signatures of long-term balancing selection. This variant has also previously been identified in genome-wide association studies of immune-related disease, suggesting that both alleles are maintained as a result of antagonistic pleiotropy.
Collapse
|
48
|
Heard ME, Melnyk SB, Simmen FA, Yang Y, Pabona JMP, Simmen RCM. High-Fat Diet Promotion of Endometriosis in an Immunocompetent Mouse Model is Associated With Altered Peripheral and Ectopic Lesion Redox and Inflammatory Status. Endocrinology 2016; 157:2870-82. [PMID: 27175969 PMCID: PMC4929556 DOI: 10.1210/en.2016-1092] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Endometriosis is a benign gynecological condition that causes considerable morbidity due to associated infertility, debilitating pelvic pain and inflammatory dysfunctions. Diet is a highly modifiable risk factor for many chronic diseases, but its contribution to endometriosis has not been extensively investigated, due partly to the paradoxical inverse association between obesity and disease incidence. Nevertheless, chronic exposure to dietary high-fat intake has been linked to greater systemic inflammation and oxidative stress, both features of women with endometriosis. Here, we evaluated the effects of a high-fat diet (HFD) (45% fat kcal) on endometriosis progression using an immunocompetent mouse model where ectopic lesion incidence was induced in wild-type recipients by ip administration of endometrial fragments from transcription factor Krüppel-like factor 9-null donor mice. We show that HFD significantly increased ectopic lesion numbers in recipient mice with no significant weight gain and modifications in systemic ovarian steroid hormone and insulin levels, relative to control diet-fed (17% fat kcal) mice. HFD promotion of lesion establishment was associated with reductions in stromal estrogen receptor 1 isoform and progesterone receptor expression, increased F4/80-positive macrophage infiltration, higher stromal but not glandular epithelial proliferation, and enhanced expression of proinflammatory and prooxidative stress pathway genes. Lesion-bearing HFD-fed mice also displayed higher peritoneal fluid TNFα and elevated local and systemic redox status than control diet-fed counterparts. Our results suggest that HFD intake exacerbates endometriosis outcome in the absence of ovarian dysfunction and insulin resistance in mice and warrants further consideration with respect to clinical management of endometriosis progression and recurrence in nonobese patients.
Collapse
Affiliation(s)
- Melissa E Heard
- Departments of Physiology and Biophysics (M.E.H., F.A.S., Y.Y., J.M.P.P., R.C.M.S.) and Pediatrics (S.B.M.) and Arkansas Children's Hospital Research Institute (S.B.M.), University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205; and Department of Obstetrics and Gynecology (Y.Y.), The Aerospace Central Hospital, Beijing 100049, China
| | - Stepan B Melnyk
- Departments of Physiology and Biophysics (M.E.H., F.A.S., Y.Y., J.M.P.P., R.C.M.S.) and Pediatrics (S.B.M.) and Arkansas Children's Hospital Research Institute (S.B.M.), University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205; and Department of Obstetrics and Gynecology (Y.Y.), The Aerospace Central Hospital, Beijing 100049, China
| | - Frank A Simmen
- Departments of Physiology and Biophysics (M.E.H., F.A.S., Y.Y., J.M.P.P., R.C.M.S.) and Pediatrics (S.B.M.) and Arkansas Children's Hospital Research Institute (S.B.M.), University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205; and Department of Obstetrics and Gynecology (Y.Y.), The Aerospace Central Hospital, Beijing 100049, China
| | - Yanqing Yang
- Departments of Physiology and Biophysics (M.E.H., F.A.S., Y.Y., J.M.P.P., R.C.M.S.) and Pediatrics (S.B.M.) and Arkansas Children's Hospital Research Institute (S.B.M.), University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205; and Department of Obstetrics and Gynecology (Y.Y.), The Aerospace Central Hospital, Beijing 100049, China
| | - John Mark P Pabona
- Departments of Physiology and Biophysics (M.E.H., F.A.S., Y.Y., J.M.P.P., R.C.M.S.) and Pediatrics (S.B.M.) and Arkansas Children's Hospital Research Institute (S.B.M.), University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205; and Department of Obstetrics and Gynecology (Y.Y.), The Aerospace Central Hospital, Beijing 100049, China
| | - Rosalia C M Simmen
- Departments of Physiology and Biophysics (M.E.H., F.A.S., Y.Y., J.M.P.P., R.C.M.S.) and Pediatrics (S.B.M.) and Arkansas Children's Hospital Research Institute (S.B.M.), University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205; and Department of Obstetrics and Gynecology (Y.Y.), The Aerospace Central Hospital, Beijing 100049, China
| |
Collapse
|
49
|
Gupta D, Hull ML, Fraser I, Miller L, Bossuyt PMM, Johnson N, Nisenblat V. Endometrial biomarkers for the non-invasive diagnosis of endometriosis. Cochrane Database Syst Rev 2016; 4:CD012165. [PMID: 27094925 PMCID: PMC6953323 DOI: 10.1002/14651858.cd012165] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND About 10% of reproductive-aged women suffer from endometriosis, which is a costly, chronic disease that causes pelvic pain and subfertility. Laparoscopy is the gold standard diagnostic test for endometriosis, but it is expensive and carries surgical risks. Currently, there are no non-invasive tests available in clinical practice that accurately diagnose endometriosis. This is the first diagnostic test accuracy review of endometrial biomarkers for endometriosis that utilises Cochrane methodologies, providing an update on the rapidly expanding literature in this field. OBJECTIVES To determine the diagnostic accuracy of the endometrial biomarkers for pelvic endometriosis, using a surgical diagnosis as the reference standard. We evaluated the tests as replacement tests for diagnostic surgery and as triage tests to inform decisions to undertake surgery for endometriosis. SEARCH METHODS We did not restrict the searches to particular study designs, language or publication dates. To identify trials, we searched the following databases: CENTRAL (2015, July), MEDLINE (inception to May 2015), EMBASE (inception to May 2015), CINAHL (inception to April 2015), PsycINFO (inception to April 2015), Web of Science (inception to April 2015), LILACS (inception to April 2015), OAIster (inception to April 2015), TRIP (inception to April 2015) and ClinicalTrials.gov (inception to April 2015). We searched DARE and PubMed databases up to April 2015 to identify reviews and guidelines as sources of references to potentially relevant studies. We also performed searches for papers recently published and not yet indexed in the major databases. The search strategies incorporated words in the title, abstract, text words across the record and the medical subject headings (MeSH). SELECTION CRITERIA We considered published peer-reviewed, randomised controlled or cross-sectional studies of any size that included prospectively collected samples from any population of reproductive-aged women suspected of having one or more of the following target conditions: ovarian, peritoneal or deep infiltrating endometriosis (DIE). DATA COLLECTION AND ANALYSIS Two authors independently extracted data from each study and performed a quality assessment. For each endometrial diagnostic test, we classified the data as positive or negative for the surgical detection of endometriosis and calculated the estimates of sensitivity and specificity. We considered two or more tests evaluated in the same cohort as separate data sets. We used the bivariate model to obtain pooled estimates of sensitivity and specificity whenever sufficient data were available. The predetermined criteria for a clinically useful test to replace diagnostic surgery was one with a sensitivity of 94% and a specificity of 79%. The criteria for triage tests were set at sensitivity at or above 95% and specificity at or above 50%, which in case of negative results rules out the diagnosis (SnOUT test) or sensitivity at or above 50% with specificity at or above 95%, which in case of positive result rules in the diagnosis (SpIN test). MAIN RESULTS We included 54 studies involving 2729 participants, most of which were of poor methodological quality. The studies evaluated endometrial biomarkers either in specific phases of the menstrual cycle or outside of it, and the studies tested the biomarkers either in menstrual fluid, in whole endometrial tissue or in separate endometrial components. Twenty-seven studies evaluated the diagnostic performance of 22 endometrial biomarkers for endometriosis. These were angiogenesis and growth factors (PROK-1), cell-adhesion molecules (integrins α3β1, α4β1, β1 and α6), DNA-repair molecules (hTERT), endometrial and mitochondrial proteome, hormonal markers (CYP19, 17βHSD2, ER-α, ER-β), inflammatory markers (IL-1R2), myogenic markers (caldesmon, CALD-1), neural markers (PGP 9.5, VIP, CGRP, SP, NPY, NF) and tumour markers (CA-125). Most of these biomarkers were assessed in single studies, whilst only data for PGP 9.5 and CYP19 were available for meta-analysis. These two biomarkers demonstrated significant diversity for the diagnostic estimates between the studies; however, the data were too limited to reliably determine the sources of heterogeneity. The mean sensitivities and specificities of PGP 9.5 (7 studies, 361 women) were 0.96 (95% confidence interval (CI) 0.91 to 1.00) and 0.86 (95% CI 0.70 to 1.00), after excluding one outlier study, and for CYP19 (8 studies, 444 women), they were were 0.77 (95% CI 0.70 to 0.85) and 0.74 (95% CI 0.65 to 84), respectively. We could not statistically evaluate other biomarkers in a meaningful way. An additional 31 studies evaluated 77 biomarkers that showed no evidence of differences in expression levels between the groups of women with and without endometriosis. AUTHORS' CONCLUSIONS We could not statistically evaluate most of the biomarkers assessed in this review in a meaningful way. In view of the low quality of most of the included studies, the findings of this review should be interpreted with caution. Although PGP 9.5 met the criteria for a replacement test, it demonstrated considerable inter study heterogeneity in diagnostic estimates, the source of which could not be determined. Several endometrial biomarkers, such as endometrial proteome, 17βHSD2, IL-1R2, caldesmon and other neural markers (VIP, CGRP, SP, NPY and combination of VIP, PGP 9.5 and SP) showed promising evidence of diagnostic accuracy, but there was insufficient or poor quality evidence for any clinical recommendations. Laparoscopy remains the gold standard for the diagnosis of endometriosis, and using any non-invasive tests should only be undertaken in a research setting. We have also identified a number of biomarkers that demonstrated no diagnostic value for endometriosis. We recommend that researchers direct future studies towards biomarkers with high diagnostic potential in good quality diagnostic studies.
Collapse
Affiliation(s)
| | - M Louise Hull
- The University of AdelaideDiscipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research InstituteKing William RoadAdelaideSouth AustrailaAustralia
| | - Ian Fraser
- University of New South WalesSchool of Women's and Children's Health, Royal Hospital for WomenBarker StSydneyNSWAustralia2131
| | - Laura Miller
- Fertility PlusDepartment of Obstetrics and GynaecologyAuckland District Health BoardAucklandNew Zealand1142
| | - Patrick MM Bossuyt
- Academic Medical Center, University of AmsterdamDepartment of Clinical Epidemiology, Biostatistics and BioinformaticsRoom J1b‐217, PO Box 22700AmsterdamNetherlands1100 DE
| | - Neil Johnson
- The University of AdelaideDiscipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research InstituteKing William RoadAdelaideSouth AustrailaAustralia
| | - Vicki Nisenblat
- The University of AdelaideDiscipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research InstituteKing William RoadAdelaideSouth AustrailaAustralia
| | | |
Collapse
|
50
|
Aromatase inhibitors in the treatment of endometriosis. MENOPAUSE REVIEW 2016; 15:43-7. [PMID: 27095958 PMCID: PMC4828508 DOI: 10.5114/pm.2016.58773] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 04/23/2015] [Indexed: 01/01/2023]
Abstract
Endometriosis is a chronic inflammatory condition in which foci of endometrial tissue grow outside of the uterine cavity. Endometriosis was estimated to affect 176 million women of childbearing potential all over the world in 2010. The presence of extrauterine endometrial tissue is associated with pain and infertility. Typical symptoms of endometriosis include dysmenorrhoea, dyspareunia, heavy menstrual periods (menorrhagia), pelvic pain that is not related to menstrual cycles, dysuria, and chronic fatigue. Medical treatments for endometriosis include combined oral contraceptive pills, danazol, gestrinone, medroxyprogesterone acetate, and gonadotropin-releasing hormone agonists (aGnRHs). A new class of medications called aromatase inhibitors has been identified in recent years as potential therapeutic agents for endometriosis. This article provides general information about aromatase inhibitors, their use in gynaecology, and their adverse effects. In particular, the paper discusses the use of aromatase inhibitors in the treatment of endometriosis in postmenopausal women. Unlike oral contraceptives, gestagens, aGnRHs, and danazol, which suppress ovarian oestrogen synthesis, aromatase inhibitors inhibit mainly extra-ovarian synthesis of oestrogens. Therefore, the use of aromatase inhibitors seems to be particularly relevant in older patients, as most of the body's oestrogen is produced outside the ovaries after menopause. The paper discusses also the use of aromatase inhibitors in the treatment of pain associated with endometriosis and infertility caused by endometriosis.
Collapse
|