1
|
Wu B, Gao A, He B, Chen Y, Kong X, Wen F, Gao H. RNA-seq analysis of mitochondria-related genes regulated by AMPK in the human trophoblast cell line BeWo. Animal Model Exp Med 2024. [PMID: 39445545 DOI: 10.1002/ame2.12475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/11/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND How AMP activated protein kinase (AMPK) signaling regulates mitochondrial functions and mitophagy in human trophoblast cells remains unclear. This study was designed to investigate potential players mediating the regulation of AMPK on mitochondrial functions and mitophagy by next generation RNA-seq. METHODS We compared ATP production in protein kinase AMP-activated catalytic subunit alpha 1/2 (PRKAA1/2) knockdown (AKD) and control BeWo cells using the Seahorse real-time ATP rate test, then analyzed gene expression profiling by RNA-seq. Differentially expressed genes (DEG) were examined by Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Then protein-protein interactions (PPI) among mitochondria related genes were further analyzed using Metascape and Ingenuity Pathway Analysis (IPA) software. RESULTS Both mitochondrial and glycolytic ATP production in AKD cells were lower than in the control BeWo cells (CT), with a greater reduction of mitochondrial ATP production. A total of 1092 DEGs were identified, with 405 upregulated and 687 downregulated. GO analysis identified 60 genes associated with the term 'mitochondrion' in the cellular component domain. PPI analysis identified three clusters of mitochondria related genes, including aldo-keto reductase family 1 member B10 and B15 (AKR1B10, AKR1B15), alanyl-tRNA synthetase 1 (AARS1), mitochondrial ribosomal protein S6 (MRPS6), mitochondrial calcium uniporter dominant negative subunit beta (MCUB) and dihydrolipoamide branched chain transacylase E2 (DBT). CONCLUSIONS In summary, this study identified multiple mitochondria related genes regulated by AMPK in BeWo cells, and among them, three clusters of genes may potentially contribute to altered mitochondrial functions in response to reduced AMPK signaling.
Collapse
Affiliation(s)
- Bin Wu
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
| | - Albert Gao
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, District of Columbia, USA
| | - Bin He
- Reproductive Physiology Laboratory, National Research Institute for Family Planning, Beijing, P.R. China
| | - Yun Chen
- Landmark Bio, Watertown, Massachusetts, USA
| | - Xiangfeng Kong
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, P.R. China
| | - Fayuan Wen
- Department of Biology, College of Arts and Sciences, Howard University, Washington, District of Columbia, USA
| | - Haijun Gao
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, District of Columbia, USA
| |
Collapse
|
2
|
Jantape T, Kongwattanakul K, Arribas SM, Rodríguez-Rodríguez P, Iampanichakul M, Settheetham-Ishida W, Phuthong S. Maternal Obesity Alters Placental and Umbilical Cord Plasma Oxidative Stress, a Cross-Sectional Study. Int J Mol Sci 2024; 25:10866. [PMID: 39409195 PMCID: PMC11477106 DOI: 10.3390/ijms251910866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
Maternal obesity has been shown to impair the oxidative status in the placenta and newborns, potentially leading to adverse pregnancy outcomes and long-term effects on the programming of offspring metabolic status. This study aimed to investigate the impact of maternal obesity on maternal and umbilical cord plasma oxidative status, as well as placental oxidative adaptation. Maternal obesity (n = 20), defined as a pre-pregnancy BMI ≥ 25 kg/m2, and maternal leanness (n = 20), defined as a pre-pregnancy BMI < 23 kg/m2, were the group categories used in this study. Both groups were matched according to gestational age at delivery. Maternal blood, umbilical cord blood, and placental tissue were collected to assess nutritional content (cholesterol, triglyceride, and protein), oxidative stress markers (MDA and protein carbonyl), and antioxidant activity (SOD and catalase). Placental protein expression (SOD2, catalase, UCP2, and Nrf2) was evaluated using Western blot analysis. Catalase activity in maternal plasma significantly increased in the maternal obesity group (p = 0.0200), with a trend toward increased MDA and protein carbonyl levels. In umbilical cord plasma, triglyceride, protein carbonyl, and catalase activity were significantly elevated in the maternal obesity group compared with the lean controls (p = 0.0482, 0.0291, and 0.0347, respectively). Placental protein expression analysis revealed significantly decreased SOD2 (p = 0.0011) and catalase (p < 0.0001), along with Nrf2 downregulation (p < 0.0001). An increase in mitochondrial antioxidant UCP2 expression was observed (p = 0.0117). The neonatal protein carbonyl levels positively correlated with placental protein carbonyl (r = 0.7405, p < 0.0001) and negatively correlated with maternal catalase activity (r = -0.4332, p = 0.0052). This study thus provides evidence that maternal obesity is associated with placental and fetal oxidative stress, alongside a concurrent increase in placental antioxidant UCP2 expression.
Collapse
Affiliation(s)
- Thanyawan Jantape
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (T.J.); (M.I.); (W.S.-I.)
| | - Kiattisak Kongwattanakul
- Department of Obstetrics and Gynecology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Silvia M. Arribas
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (S.M.A.); (P.R.-R.)
| | - Pilar Rodríguez-Rodríguez
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (S.M.A.); (P.R.-R.)
| | - Metee Iampanichakul
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (T.J.); (M.I.); (W.S.-I.)
| | - Wannapa Settheetham-Ishida
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (T.J.); (M.I.); (W.S.-I.)
| | - Sophida Phuthong
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (T.J.); (M.I.); (W.S.-I.)
- Human High Performance and Health Promotion Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
3
|
Tao J, Rao Y, Wang J, Tan S, Zhao J, Cao Z, He L, Meng J, Wu P, Wang Z. Placental growth factor alleviates hyperglycemia-induced trophoblast pyroptosis by regulating mitophagy. J Obstet Gynaecol Res 2024; 50:1813-1829. [PMID: 39288911 DOI: 10.1111/jog.16050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/28/2024] [Indexed: 09/19/2024]
Abstract
INTRODUCTION Hyperglycemia is closely related to trophoblast dysfunction during pregnancy and results in suppressed invasion, migration, and pro-inflammatory cell death of trophoblasts. Hyperglycemia is a dependent risk factor for gestational hypertension accompanied by decreased placental growth factor (PLGF), which is important for maternal and fetal development. However, there is currently a lack of evidence to support whether PLGF can alleviate trophoblast cell dysfunction caused by high blood sugar. Here, we aim to clarify the effect of hyperglycemia on trophoblast dysfunction and determine how PLGF affects this process. METHODS The changes in placental tissue histomorphology from gestational diabetes mellitus (GDM) patients were compared with those of normal placentas. HTR8/SVneo cells were cultured in different amounts of glucose to examine cellular pyroptosis, migration, and invasion as well as PLGF levels. Furthermore, the levels of pyroptosis-related proteins (NLRP3, pro-caspase1, caspase1, IL-1β, and Gasdermin D [GSDMD]) as well as autophagy-related proteins (LC3-II, Beclin1, and p62) were examined by Western blotting. The GFP-mRFP-LC3-II system and transmission electron microscopy were used to detect mitophagy levels, and small interfering RNAs targeting BCL2 Interacting Protein 3 (siBNIP3) and PTEN-induced kinase 1 (siPINK1) were used to determine the role of mitophagy in pyroptotic death of HTR-8/SVneo cells. RESULTS Our results show that hyperglycemia upregulates NLRP3, pro-caspase1, caspase1, IL-1β at the protein level in GDM patients. High glucose (HG, 25 mM) inhibits viability, invasion, and migration of trophoblast cells while suppressing superoxide dismutase levels and promoting malondialdehyde production, thus leading to a senescence associated beta-gal-positive cell burst. PLGF levels in nucleus and the cytosol are also inhibited by HG, whereas PLGF treatment inhibited pyroptosis-related protein levels of NLRP3, pro-caspase1, caspase1, IL-1β, and GSDMD, Gasdermin D N-terminal domain (GSDMD-N). HG-induced mitochondrial dysfunction and BNIP3 and PINK1/Parkin expression. Knocking down BINP3 and PINK1 abolished the protective role of PLGF by preventing mitophagy. CONCLUSION PLGF inhibited hyperglycemia, while PLGF reversed hyperglycemic injury by promoting mitophagy via the BNIP3/PINK1/Parkin pathway. Altogether, these results suggest that PLGF may protect against trophoblast dysfunction in diabetes.
Collapse
Affiliation(s)
- Jun Tao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Yuzhu Rao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Jingjing Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Shiming Tan
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Jinli Zhao
- Emergency Department, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Zitong Cao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Lu He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Jun Meng
- Functional Department, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Peng Wu
- Hengyang Maternal and Child Health Hospital, Hengyang, China
| | - Zuo Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
4
|
Lv W, Xie H, Wu S, Dong J, Jia Y, Ying H. Identification of key metabolism-related genes and pathways in spontaneous preterm birth: combining bioinformatic analysis and machine learning. Front Endocrinol (Lausanne) 2024; 15:1440436. [PMID: 39229380 PMCID: PMC11368757 DOI: 10.3389/fendo.2024.1440436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024] Open
Abstract
Background Spontaneous preterm birth (sPTB) is a global disease that is a leading cause of death in neonates and children younger than 5 years of age. However, the etiology of sPTB remains poorly understood. Recent evidence has shown a strong association between metabolic disorders and sPTB. To determine the metabolic alterations in sPTB patients, we used various bioinformatics methods to analyze the abnormal changes in metabolic pathways in the preterm placenta via existing datasets. Methods In this study, we integrated two datasets (GSE203507 and GSE174415) from the NCBI GEO database for the following analysis. We utilized the "Deseq2" R package and WGCNA for differentially expressed genes (DEGs) analysis; the identified DEGs were subsequently compared with metabolism-related genes. To identify the altered metabolism-related pathways and hub genes in sPTB patients, we performed multiple functional enrichment analysis and applied three machine learning algorithms, LASSO, SVM-RFE, and RF, with the hub genes that were verified by immunohistochemistry. Additionally, we conducted single-sample gene set enrichment analysis to assess immune infiltration in the placenta. Results We identified 228 sPTB-related DEGs that were enriched in pathways such as arachidonic acid and glutathione metabolism. A total of 3 metabolism-related hub genes, namely, ANPEP, CKMT1B, and PLA2G4A, were identified and validated in external datasets and experiments. A nomogram model was developed and evaluated with 3 hub genes; the model could reliably distinguish sPTB patients and term labor patients with an area under the curve (AUC) > 0.75 for both the training and validation sets. Immune infiltration analysis revealed immune dysregulation in sPTB patients. Conclusion Three potential hub genes that influence the occurrence of sPTB through shadow participation in placental metabolism were identified; these results provide a new perspective for the development and targeting of treatments for sPTB.
Collapse
Affiliation(s)
- Wenqi Lv
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, China
| | - Han Xie
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, China
| | - Shengyu Wu
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, China
| | - Jiaqi Dong
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, China
| | - Yuanhui Jia
- Department of Clinical Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, sChina
| | - Hao Ying
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, China
- Department of Clinical Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, sChina
| |
Collapse
|
5
|
Louwen F, Kreis NN, Ritter A, Yuan J. Maternal obesity and placental function: impaired maternal-fetal axis. Arch Gynecol Obstet 2024; 309:2279-2288. [PMID: 38494514 PMCID: PMC11147848 DOI: 10.1007/s00404-024-07462-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/04/2024] [Indexed: 03/19/2024]
Abstract
The prevalence of maternal obesity rapidly increases, which represents a major public health concern worldwide. Maternal obesity is characteristic by metabolic dysfunction and chronic inflammation. It is associated with health problems in both mother and offspring. Increasing evidence indicates that the placenta is an axis connecting maternal obesity with poor outcomes in the offspring. In this brief review, we have summarized the current data regarding deregulated placental function in maternal obesity. The data show that maternal obesity induces numerous placental defects, including lipid and glucose metabolism, stress response, inflammation, immune regulation and epigenetics. These placental defects affect each other and result in a stressful intrauterine environment, which transduces and mediates the adverse effects of maternal obesity to the fetus. Further investigations are required to explore the exact molecular alterations in the placenta in maternal obesity, which may pave the way to develop specific interventions for preventing epigenetic and metabolic programming in the fetus.
Collapse
Affiliation(s)
- Frank Louwen
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor Stern-Kai 7, 60590, Frankfurt, Germany
| | - Nina-Naomi Kreis
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor Stern-Kai 7, 60590, Frankfurt, Germany
| | - Andreas Ritter
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor Stern-Kai 7, 60590, Frankfurt, Germany
| | - Juping Yuan
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor Stern-Kai 7, 60590, Frankfurt, Germany.
| |
Collapse
|
6
|
Ma K, Su B, Li F, Li J, Nie J, Xiong W, Luo J, Huang S, Zhou T, Liang X, Li F, Deng J, Tan C. Maternal or post-weaning dietary fructo-oligosaccharide supplementation reduces stillbirth rate of sows and diarrhea of weaned piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:155-164. [PMID: 38774024 PMCID: PMC11107255 DOI: 10.1016/j.aninu.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/22/2024] [Accepted: 04/02/2024] [Indexed: 05/24/2024]
Abstract
Fructo-oligosaccharides (FOS) are well-known prebiotics that have the potential to improve sow reproductive performance and increase piglet growth. However, previous studies were observed in sole FOS-supplemented diets of sows or weaned piglets and did not consider the sow-to-piglet transfer effect on the performance and diarrhea rate of weaned piglets. This study explores the effects of dietary FOS supplementation on the reproductive performance of sows, and the effects of FOS supplementation at different stages on the growth performance and diarrhea rate of weaned piglets. A split-plot experimental design was used with sow diet effect in the whole plot and differing piglet diet effect in the subplot. Fifty-two multiparous sows (223.24 ± 14.77 kg) were randomly divided into 2 groups (0 or 0.2% FOS). The experiment lasted from day 85 of gestation to day 21 of lactation. Reproductive performance, glucose tolerance, placental angiogenesis, and intestinal flora of sows were assessed. At weaning, 192 weaned piglets were grouped in 2 × 2 factorial designs, with the main effects of FOS supplemental level of sow diet (0 and 0.2%), and FOS supplemental level of weaned piglet diet (0 and 0.2%), respectively. The growth performance and diarrhea rate of the weaned piglets were analyzed during a 28-d experiment. Maternal dietary supplementation of FOS was shown to reduce the stillbirth and invalid piglet rates (P < 0.05), improve the insulin sensitivity (P < 0.05) and fecal scores (P < 0.05) of sows, increase the abundance of Akkermansia muciniphila (P = 0.016), decrease the abundance of Escherichia coli (P = 0.035), and increase the isovalerate content in feces (P = 0.086). Meanwhile, the placental angiogenesis marker CD31 expression was increased in sows fed FOS diet (P < 0.05). Moreover, maternal and post-weaning dietary FOS supplementation reduced the diarrhea rate of weaned piglets (P < 0.05) and increased the content of short-chain fatty acids in feces (P < 0.05). Furthermore, only post-weaning dietary FOS supplementation could improve nutrient digestibility of weaned piglets (P < 0.05). Collectively, FOS supplementation in sows can reduce stillbirth rate, perinatal constipation, and insulin resistance, as well as improve placental vascularization barrier. Additionally, maternal and post-weaning dietary FOS supplementation reduced the diarrhea rate of weaned piglets, but only FOS supplementation in piglets alone at weaning stage could improve their nutrient digestibility.
Collapse
Affiliation(s)
- Kaidi Ma
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Bin Su
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Fuyong Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jinfeng Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jiawei Nie
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Wenyu Xiong
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jinxi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Shuangbo Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Tong Zhou
- Guangzhou Pucheng Biological Technology Co., Guangzhou, 511300, China
| | - Xide Liang
- Baolingbao Biology Co., Ltd, Dezhou, 251200, China
| | - Facai Li
- Baolingbao Biology Co., Ltd, Dezhou, 251200, China
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Chengquan Tan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
7
|
Xiao Z, Liu X, Luan X, Duan R, Peng W, Tong C, Qiao J, Qi H. Glucose uptake in trophoblasts of GDM mice is regulated by the AMPK-CLUT3 signaling pathway. Sci Rep 2024; 14:12051. [PMID: 38802412 PMCID: PMC11130200 DOI: 10.1038/s41598-024-61719-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/08/2024] [Indexed: 05/29/2024] Open
Abstract
GDM, as a metabolic disease during pregnancy, regulates GLUT3 translocation by AMPK, thereby affecting glucose uptake in trophoblasts. It provides a new research idea and therapeutic target for alleviating intrauterine hyperglycemia in GDM. STZ was used to construct GDM mice, inject AICAR into pregnant mice, and observe fetal and placental weight; flow cytometry was employed for the detection of glucose uptake by primary trophoblast cells; immunofluorescence was applied to detect the localization of GLUT3 and AMPK in placental tissue; Cocofal microscope was used to detect the localization of GLUT3 in trophoblast cells;qRT-PCR and Western blot experiments were carried out to detect the expression levels of GLUT3 and AMPK in placental tissue; CO-IP was utilized to detect the interaction of GLUT3 and AMPK. Compared with the normal pregnancy group, the weight of the fetus and placenta of GDM mice increased (P < 0.001), and the ability of trophoblasts to take up glucose decreased (P < 0.001). In addition, AMPK activity in trophoblasts and membrane localization of GLUT3 in GDM mice were down-regulated compared with normal pregnant mice (P < 0.05). There is an interaction between GLUT3 and AMPK. Activating AMPK in trophoblasts can up-regulate the expression of GLUT3 membrane protein in trophoblasts of mice (P < 0.05) and increase the glucose uptake of trophoblasts (P < 0.05). We speculate that inhibition of AMPK activity in GDM mice results in aberrant localization of GLUT3, which in turn attenuates glucose uptake by placental trophoblast cells. AICAR activates AMPK to increase the membrane localization of GLUT3 and improve the glucose uptake capacity of trophoblasts.
Collapse
Affiliation(s)
- Zhenghua Xiao
- Department of Obstetrics, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, People's Republic of China
| | - Xue Liu
- Department of Obstetrics, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, People's Republic of China
| | - Xiaojin Luan
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Ran Duan
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Youyi Road, Yuzhong District, Chongqing, 400016, People's Republic of China
| | - Wei Peng
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Youyi Road, Yuzhong District, Chongqing, 400016, People's Republic of China
| | - Chao Tong
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Juan Qiao
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Youyi Road, Yuzhong District, Chongqing, 400016, People's Republic of China.
| | - Hongbo Qi
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.
- Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, People's Republic of China.
| |
Collapse
|
8
|
Ndapatani LN, Mapesa J, Muchina E. Assessment of the effect of pre-conception care on preventing mother-to-child transmission of HIV in Nyeri County. Pan Afr Med J 2024; 47:144. [PMID: 38933429 PMCID: PMC11204976 DOI: 10.11604/pamj.2024.47.144.37196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 03/20/2024] [Indexed: 06/28/2024] Open
Abstract
Introduction the provision of essential preconception care services for HIV-positive pregnant women is crucial to prevent HIV transmission to infants. This includes pregnancy intention screening services, adequate viral load monitoring and suppression before conception, and necessary nutritional support. In Nyeri County, the prevalence of Mother-to-Child Transmission (MTCT) of HIV is 5.3%, which is higher than the global threshold of 5%. This study aims to evaluate the impact of pre-conception care services in preventing HIV transmission to infants in Nyeri County. The study objectives are to assess the utilization of pre-conception care services among HIV-positive women, specifically focusing on pregnancy intention screening, viral load monitoring and suppression, and access to nutritional assessment services before pregnancy. Additionally, the study aims to investigate the relationship between the provision of pre-conception care services and infant HIV outcomes. Methods this cross-sectional retrospective descriptive study employed stratified sampling to select eight level 4 and level 5 hospitals in Nyeri County. The target population consisted of HIV-infected women seeking postnatal care in these facilities, with a sample size of 252 women who had HIV-exposed infants under two years old and were receiving post-natal care at the respective hospitals. Sociodemographic characteristics, including age, marital status, and education level, were collected. Data analysis involved both descriptive and inferential statistics. Results our findings revealed that only 34.2% of HIV-positive women seeking postnatal care had received information or services related to pregnancy intention screening, a crucial aspect of pre-conception care. Almost half (46.4%) of the women who participated in the study had undergone viral load measurements before pregnancy, which is another critical component of preconception care. Additionally, 85.6% of these women had received nutritional services during pregnancy from their healthcare providers. Interestingly, all women who received any pre-conception care services reported that their infants were alive and tested HIV-negative. Conclusion preconception care is crucial in preventing mother-to-child transmission of HIV. Efforts should be made to ensure that all HIV-infected women planning to conceive have access to preconception care services.
Collapse
Affiliation(s)
| | - Job Mapesa
- Kenya Methodist University, 45240 - 00100, Nairobi, Kenya
| | - Emily Muchina
- Kenya Methodist University, 45240 - 00100, Nairobi, Kenya
| |
Collapse
|
9
|
Jiménez-Osorio AS, Carreón-Torres E, Correa-Solís E, Ángel-García J, Arias-Rico J, Jiménez-Garza O, Morales-Castillejos L, Díaz-Zuleta HA, Baltazar-Tellez RM, Sánchez-Padilla ML, Flores-Chávez OR, Estrada-Luna D. Inflammation and Oxidative Stress Induced by Obesity, Gestational Diabetes, and Preeclampsia in Pregnancy: Role of High-Density Lipoproteins as Vectors for Bioactive Compounds. Antioxidants (Basel) 2023; 12:1894. [PMID: 37891973 PMCID: PMC10604737 DOI: 10.3390/antiox12101894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/05/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Inflammation and oxidative stress are essential components in a myriad of pathogenic entities that lead to metabolic and chronic diseases. Moreover, inflammation in its different phases is necessary for the initiation and maintenance of a healthy pregnancy. Therefore, an equilibrium between a necessary/pathologic level of inflammation and oxidative stress during pregnancy is needed to avoid disease development. High-density lipoproteins (HDL) are important for a healthy pregnancy and a good neonatal outcome. Their role in fetal development during challenging situations is vital for maintaining the equilibrium. However, in certain conditions, such as obesity, diabetes, and other cardiovascular diseases, it has been observed that HDL loses its protective properties, becoming dysfunctional. Bioactive compounds have been widely studied as mediators of inflammation and oxidative stress in different diseases, but their mechanisms of action are still unknown. Nonetheless, these agents, which are obtained from functional foods, increase the concentration of HDL, TRC, and antioxidant activity. Therefore, this review first summarizes several mechanisms of HDL participation in the equilibrium between inflammation and oxidative stress. Second, it gives an insight into how HDL may act as a vector for bioactive compounds. Third, it describes the relationships between the inflammation process in pregnancy and HDL activity. Consequently, different databases were used, including MEDLINE, PubMed, and Scopus, where scientific articles published in the English language up to 2023 were identified.
Collapse
Affiliation(s)
- Angélica Saraí Jiménez-Osorio
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hida go, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Hidalgo, Mexico; (A.S.J.-O.); (J.Á.-G.); (J.A.-R.); (O.J.-G.); (L.M.-C.); (R.M.B.-T.); (M.L.S.-P.); (O.R.F.-C.)
| | - Elizabeth Carreón-Torres
- Department of Molecular Biology, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico;
| | - Emmanuel Correa-Solís
- Instituto de Farmacobiología, Universidad de la Cañada, Carretera Teotitlán-San Antonio Nanahuatipán Km 1.7 s/n., Paraje Titlacuatitla, Teotitlán de Flores Magón 68540, Oaxaca, Mexico;
| | - Julieta Ángel-García
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hida go, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Hidalgo, Mexico; (A.S.J.-O.); (J.Á.-G.); (J.A.-R.); (O.J.-G.); (L.M.-C.); (R.M.B.-T.); (M.L.S.-P.); (O.R.F.-C.)
| | - José Arias-Rico
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hida go, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Hidalgo, Mexico; (A.S.J.-O.); (J.Á.-G.); (J.A.-R.); (O.J.-G.); (L.M.-C.); (R.M.B.-T.); (M.L.S.-P.); (O.R.F.-C.)
| | - Octavio Jiménez-Garza
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hida go, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Hidalgo, Mexico; (A.S.J.-O.); (J.Á.-G.); (J.A.-R.); (O.J.-G.); (L.M.-C.); (R.M.B.-T.); (M.L.S.-P.); (O.R.F.-C.)
| | - Lizbeth Morales-Castillejos
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hida go, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Hidalgo, Mexico; (A.S.J.-O.); (J.Á.-G.); (J.A.-R.); (O.J.-G.); (L.M.-C.); (R.M.B.-T.); (M.L.S.-P.); (O.R.F.-C.)
| | - Hugo Alexander Díaz-Zuleta
- Facultad de Ciencias de la Salud, Universidad de Ciencias Aplicadas y Ambientales, Cl. 222 #54-21, Bogotá 111166, Colombia;
| | - Rosa María Baltazar-Tellez
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hida go, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Hidalgo, Mexico; (A.S.J.-O.); (J.Á.-G.); (J.A.-R.); (O.J.-G.); (L.M.-C.); (R.M.B.-T.); (M.L.S.-P.); (O.R.F.-C.)
| | - María Luisa Sánchez-Padilla
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hida go, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Hidalgo, Mexico; (A.S.J.-O.); (J.Á.-G.); (J.A.-R.); (O.J.-G.); (L.M.-C.); (R.M.B.-T.); (M.L.S.-P.); (O.R.F.-C.)
| | - Olga Rocío Flores-Chávez
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hida go, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Hidalgo, Mexico; (A.S.J.-O.); (J.Á.-G.); (J.A.-R.); (O.J.-G.); (L.M.-C.); (R.M.B.-T.); (M.L.S.-P.); (O.R.F.-C.)
| | - Diego Estrada-Luna
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hida go, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Hidalgo, Mexico; (A.S.J.-O.); (J.Á.-G.); (J.A.-R.); (O.J.-G.); (L.M.-C.); (R.M.B.-T.); (M.L.S.-P.); (O.R.F.-C.)
| |
Collapse
|
10
|
Molitor J, Sun Y, Rubio VG, Benmarhnia T, Chen JC, Avila C, Sacks DA, Chiu V, Slezak J, Getahun D, Wu J. Modeling spatially varying compliance effects of PM 2.5 exposure reductions on gestational diabetes mellitus in southern California: Results from electronic health record data of a large pregnancy cohort. ENVIRONMENTAL RESEARCH 2023; 231:116091. [PMID: 37182828 PMCID: PMC10405446 DOI: 10.1016/j.envres.2023.116091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/06/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
Gestational diabetes mellitus (GDM) is a major pregnancy complication affecting approximately 14.0% of pregnancies around the world. Air pollution exposure, particularly exposure to PM2.5, has become a major environmental issue affecting health, especially for vulnerable pregnant women. Associations between PM2.5 exposure and adverse birth outcomes are generally assumed to be the same throughout a large geographical area. However, the effects of air pollution on health can very spatially in subpopulations. Such spatially varying effects are likely due to a wide range of contextual neighborhood and individual factors that are spatially correlated, including SES, demographics, exposure to housing characteristics and due to different composition of particulate matter from different emission sources. This combination of elevated environmental hazards in conjunction with socioeconomic-based disparities forms what has been described as a "double jeopardy" for marginalized sub-populations. In this manuscript our analysis combines both an examination of spatially varying effects of a) unit-changes in exposure and examines effects of b) changes from current exposure levels down to a fixed compliance level, where compliance levels correspond to the Air Quality Standards (AQS) set by the U.S. Environmental Protection Agency (EPA) and World Health Organization (WHO) air quality guideline values. Results suggest that exposure reduction policies should target certain "hotspot" areas where size and effects of potential reductions will reap the greatest rewards in terms of health benefits, such as areas of southeast Los Angeles County which experiences high levels of PM2.5 exposures and consist of individuals who may be particularly vulnerable to the effects of air pollution on the risk of GDM.
Collapse
Affiliation(s)
- John Molitor
- College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, 97331, USA.
| | - Yi Sun
- Institute of Medical Information, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Environmental and Occupational Health, Program in Public Health, University of California, Irvine, CA, USA
| | | | - Tarik Benmarhnia
- Scripps Institution of Oceanography, University of California, San Diego, CA, USA
| | - Jiu-Chiuan Chen
- Departments of Population & Public Health Sciences and Neurology, University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
| | - Chantal Avila
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - David A Sacks
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA; Department of Obstetrics and Gynecology, University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
| | - Vicki Chiu
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Jeff Slezak
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Darios Getahun
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA; Department of Health Systems Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA, USA
| | - Jun Wu
- Department of Environmental and Occupational Health, Program in Public Health, University of California, Irvine, CA, USA.
| |
Collapse
|
11
|
Komijani E, Parhizkar F, Abdolmohammadi-Vahid S, Ahmadi H, Nouri N, Yousefi M, Aghebati-Maleki L. Autophagy-mediated immune system regulation in reproductive system and pregnancy-associated complications. J Reprod Immunol 2023; 158:103973. [PMID: 37295066 DOI: 10.1016/j.jri.2023.103973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/29/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Autophagy lysosomal degradation is the main cell mechanism in cellular, tissue and organismal homeostasis and is controlled by autophagy-related genes (ATG). Autophagy has important effects in cellular physiology, including adaptation to metabolic stress, removal of dangerous cargo (such as protein aggregates, damaged organelles, and intracellular pathogens), regeneration during differentiation and development, and prevention of genomic damage in general. Also, it has been found that autophagy is essential for pre-implantation, development, and maintaining embryo survival in mammals. Under certain conditions, autophagy may be detrimental through pro-survival effects such as cancer progression or through possible cell death-promoting effects. Hormonal changes and environmental stress can initiate autophagy in reproductive physiology. The activity of autophagy can be upregulated under conditions like a lack of nutrients, inflammation, hypoxia, and infections. In this regard the dysregulation of autophagy involved in some pregnancy complications such as preeclampsia (PE) and pregnancy loss, and has a major impact on reproductive outcomes. Therefore, we aimed to discuss the relationship between autophagy and the female reproductive system, with a special focus on the immune system, and its role in fetal and maternal health.
Collapse
Affiliation(s)
- Erfan Komijani
- Department of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Forough Parhizkar
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hamid Ahmadi
- Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, Pécs University, Pécs, Hungary
| | - Narjes Nouri
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
12
|
Diniz MS, Grilo LF, Tocantins C, Falcão-Pires I, Pereira SP. Made in the Womb: Maternal Programming of Offspring Cardiovascular Function by an Obesogenic Womb. Metabolites 2023; 13:845. [PMID: 37512552 PMCID: PMC10386510 DOI: 10.3390/metabo13070845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/02/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Obesity incidence has been increasing at an alarming rate, especially in women of reproductive age. It is estimated that 50% of pregnancies occur in overweight or obese women. It has been described that maternal obesity (MO) predisposes the offspring to an increased risk of developing many chronic diseases in an early stage of life, including obesity, type 2 diabetes, and cardiovascular disease (CVD). CVD is the main cause of death worldwide among men and women, and it is manifested in a sex-divergent way. Maternal nutrition and MO during gestation could prompt CVD development in the offspring through adaptations of the offspring's cardiovascular system in the womb, including cardiac epigenetic and persistent metabolic programming of signaling pathways and modulation of mitochondrial metabolic function. Currently, despite diet supplementation, effective therapeutical solutions to prevent the deleterious cardiac offspring function programming by an obesogenic womb are lacking. In this review, we discuss the mechanisms by which an obesogenic intrauterine environment could program the offspring's cardiovascular metabolism in a sex-divergent way, with a special focus on cardiac mitochondrial function, and debate possible strategies to implement during MO pregnancy that could ameliorate, revert, or even prevent deleterious effects of MO on the offspring's cardiovascular system. The impact of maternal physical exercise during an obesogenic pregnancy, nutritional interventions, and supplementation on offspring's cardiac metabolism are discussed, highlighting changes that may be favorable to MO offspring's cardiovascular health, which might result in the attenuation or even prevention of the development of CVD in MO offspring. The objectives of this manuscript are to comprehensively examine the various aspects of MO during pregnancy and explore the underlying mechanisms that contribute to an increased CVD risk in the offspring. We review the current literature on MO and its impact on the offspring's cardiometabolic health. Furthermore, we discuss the potential long-term consequences for the offspring. Understanding the multifaceted effects of MO on the offspring's health is crucial for healthcare providers, researchers, and policymakers to develop effective strategies for prevention and intervention to improve care.
Collapse
Affiliation(s)
- Mariana S Diniz
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-531 Coimbra, Portugal
- Ph.D. Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-531 Coimbra, Portugal
| | - Luís F Grilo
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-531 Coimbra, Portugal
- Ph.D. Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-531 Coimbra, Portugal
| | - Carolina Tocantins
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-531 Coimbra, Portugal
- Ph.D. Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-531 Coimbra, Portugal
| | - Inês Falcão-Pires
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4099-002 Porto, Portugal
| | - Susana P Pereira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-531 Coimbra, Portugal
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
| |
Collapse
|
13
|
Cao Y, Liang T, Peng J, Zhao X. Factors influencing thrombelastography in pregnancy. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:198-205. [PMID: 36999466 PMCID: PMC10930342 DOI: 10.11817/j.issn.1672-7347.2023.210530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Indexed: 04/01/2023]
Abstract
OBJECTIVES The number of gestational women has been increased in recent years, resulting in more adverse pregnancy outcomes. It is crucial to assess the coagulation function of pregnant women and to intervene in a timely manner. This study aims to analyze the influencing factors on thrombelastography (TEG) and explore the evaluation of TEG for gestational women. METHODS A retrospective study was conducted on 449 pregnant women who were hospitalized in the obstetrics department in Xiangya Hospital of Central South University from 2018 to 2020. We compared the changes on the TEG parameters among normal pregnant women between different age groups, different ingravidation groups, and different stages of pregnancy groups. The influence on TEG of hypertensive disorders in pregnancy (HDP) and gestational diabetes mellitus (GDM) as well as two diseases synchronization was explored. RESULTS Compared with the normal second trimester women, the R values and K values of TEG were increased, and α angle, CI values and LY30 values were decreased in third trimester women (all P<0.05). Compared with normal group, the R values and CI values of TEG of the HDP group have significant difference (both P<0.05). There were no significant difference of TEG between the GDM group, the HDP combined with GDM group and the normal group (all P>0.05). Multiple linear regression analysis showed that the influencing factors for R value in TEG were weeks of gestation (P<0.001) and mode of conception (P<0.05), for α angle was weeks of gestation (P<0.05), for MA value was mode of conception (P<0.05), and for CI value was weeks of gestation (P<0.05). The analysis of correlation between TEG with platelet (PLT) and coagulation routines represented that there was a correlation between TEG R values and activated partial thromboplastin time (APTT) (P<0.01), and negative correlation between TEG CI values and APTT (P<0.05). There was a negative correlation between TEG K values and FIB (P<0.05). The correlation of α angle (P<0.05), MA values (P<0.01) and CI values (P<0.05) with FIB were positive respectively. CONCLUSIONS The TEG parameters of 3 stages of pregnancy were different. The different ingravidation approach has effect on TEG. The TEG parameters were consistent with conventional coagulation indicators. The TEG can be used to screen the coagulation status of gestational women, recognize the abnormalities of coagulation and prevent the severe complication timely.
Collapse
Affiliation(s)
- Yueqing Cao
- Department of Hematology, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Ting Liang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jie Peng
- Department of Hematology, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Xielan Zhao
- Department of Hematology, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
14
|
Huang S, Wu D, Hao X, Nie J, Huang Z, Ma S, Chen Y, Chen S, Wu J, Sun J, Ao H, Gao B, Tan C. Dietary fiber supplementation during the last 50 days of gestation improves the farrowing performance of gilts by modulating insulin sensitivity, gut microbiota, and placental function. J Anim Sci 2023; 101:skad021. [PMID: 36634095 PMCID: PMC9912709 DOI: 10.1093/jas/skad021] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/11/2023] [Indexed: 01/13/2023] Open
Abstract
Our previous study found dietary konjac flour (KF) supplementation could improve insulin sensitivity and reproductive performance of sows, but its high price limits its application in actual production. This study aimed to investigate the effects of supplementation of a cheaper combined dietary fiber (CDF, using bamboo shoots fiber and alginate fiber to partially replace KF) from the last 50 days of gestation to parturition on farrowing performance, insulin sensitivity, gut microbiota, and placental function of gilts. Specifically, a total of 135 pregnant gilts with a similar farrowing time were blocked by backfat thickness and body weight on day 65 of gestation (G65d) and assigned to 1 of the 3 dietary treatment groups (n = 45 per group): basal diet (CON), basal diet supplemented with 2% KF or 2% CDF (CDF containing 15% KF, 60% bamboo shoots fiber, and 25% alginate fiber), respectively. The litter performance, insulin sensitivity and glucose tolerance parameters, placental vessel density, and short-chain fatty acids (SCFAs) levels in feces were assessed. The gut microbiota population in gilts during gestation was also assessed by 16S rDNA gene sequencing. Compared with CON, both KF and CDF treatments not only increased the piglet birth weight (P < 0.05) and piglet vitality (P < 0.01) but also decreased the proportion of piglets with birth weight ≤ 1.2 kg (P < 0.01) and increased the proportion of piglets with birth weight ≥ 1.5 kg (P < 0.01). In addition, KF or CDF supplementation reduced fasting blood insulin level (P < 0.05), homeostasis model assessment-insulin resistance (P < 0.05), serum hemoglobin A1c (P < 0.05), and the level of advanced glycation end products (P < 0.05) at G110d, and increased the placental vascular density (P < 0.05) at farrowing. Meanwhile, KF or CDF supplementation increased microbial diversity (P < 0.05) and SCFAs levels (P < 0.05) in feces at G110d. Notably, the production cost per live-born piglet was lower in CDF group (¥ 36.1) than KF group (¥ 41.3). Overall, KF or CDF supplementation from G65d to farrowing could improve the farrowing performance of gilts possibly by improving insulin sensitivity, regulating gut microbiota and metabolites, and increasing placental vascular density, with higher economic benefits and a similar effect for CDF vs. KF, suggesting the potential of CDF as a cheaper alternative to KF in actual production.
Collapse
Affiliation(s)
- Shuangbo Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Deyuan Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xiangyu Hao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jiawei Nie
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zihao Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Shuo Ma
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yiling Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Shengxing Chen
- Joinsha Animal Health Products (XIAMEN) Co., Ltd., Xiamen, Fujian 361000, China
| | - Jianyao Wu
- Joinsha Animal Health Products (XIAMEN) Co., Ltd., Xiamen, Fujian 361000, China
| | - Jihui Sun
- Joinsha Animal Health Products (XIAMEN) Co., Ltd., Xiamen, Fujian 361000, China
| | - Huasun Ao
- Joinsha Animal Health Products (XIAMEN) Co., Ltd., Xiamen, Fujian 361000, China
| | - Binghui Gao
- Joinsha Animal Health Products (XIAMEN) Co., Ltd., Xiamen, Fujian 361000, China
| | - Chengquan Tan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| |
Collapse
|
15
|
Bao Y, Zhang J, Liu Y, Wu L, Yang J. Identification of human placenta-derived circular RNAs and autophagy related circRNA-miRNA-mRNA regulatory network in gestational diabetes mellitus. Front Genet 2022; 13:1050906. [PMID: 36531251 PMCID: PMC9748685 DOI: 10.3389/fgene.2022.1050906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/10/2022] [Indexed: 09/01/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is a metabolic and reproductive disease with serious risks and adverse health effects. However, the pathophysiological mechanism of GDM, especially the roles of circRNAs in its pathogenesis, is largely unknown. The objective of this study was to identify and investigate the roles of circRNAs in GDM. In the current study, placental circRNA expression profiles of normal controls and GDM patients were analyzed using high-throughput sequencing. Bioinformatics analysis identified a total of 4,955 circRNAs, of which 37 circRNAs were significantly deregulated in GDM placentas compared with NC placentas. GO and KEGG enrichment analyses demonstrated that metabolic process-associated terms and metabolic pathways that may be related to GDM were significantly enriched. The biological characteristics of placenta-derived circRNAs, such as their stability and RNase R resistance, were also validated Bioinformatics prediction. Moreover, we constructed the autophagy related circRNA-miRNA-mRNA regulatory network and further functional analysis revealed that the circCDH2-miR-33b-3p-ULK1 axis may be associated with autophagy in the placentas of GDM patients. Our study indicates that aberrant expression of circRNAs may play roles in autophagy in GDM placentas, providing new insights into GDM.
Collapse
Affiliation(s)
- Yindi Bao
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jun Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi Liu
- Department of Obstetrics and Gynecology, Xiaogan Central Hospital Affiliated to Wuhan University of Science and Technology, Xiaogan, China
| | - Lianzhi Wu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing Yang
- Reproductive Medical Center/Hubei Medical Clinical Research Center for Assisted Reproductive Technology and Embryonic Development, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
16
|
Brombach C, Tong W, Giussani DA. Maternal obesity: new placental paradigms unfolded. Trends Mol Med 2022; 28:823-835. [PMID: 35760668 DOI: 10.1016/j.molmed.2022.05.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 01/24/2023]
Abstract
The prevalence of maternal obesity is increasing at an alarming rate, and is providing a major challenge for obstetric practice. Adverse effects on maternal and fetal health are mediated by complex interactions between metabolic, inflammatory, and oxidative stress signaling in the placenta. Endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR) are common downstream pathways of cell stress, and there is evidence that this conserved homeostatic response may be a key mediator in the pathogenesis of placental dysfunction. We summarize the current literature on the placental cellular and molecular changes that occur in obese women. A special focus is cast onto placental ER stress in obese pregnancy, which may provide a novel link for future investigation.
Collapse
Affiliation(s)
| | - Wen Tong
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3EL, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK; Cambridge Strategic Research Initiative in Reproduction, Cambridge CB2 3EL, Cambridge UK.
| | - Dino A Giussani
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3EL, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK; Cambridge Strategic Research Initiative in Reproduction, Cambridge CB2 3EL, Cambridge UK; Cambridge Cardiovascular Centre for Research Excellence, Cambridge CB2 0QQ, UK.
| |
Collapse
|
17
|
Mandò C, Abati S, Anelli GM, Favero C, Serati A, Dioni L, Zambon M, Albetti B, Bollati V, Cetin I. Epigenetic Profiling in the Saliva of Obese Pregnant Women. Nutrients 2022; 14:2122. [PMID: 35631263 PMCID: PMC9146705 DOI: 10.3390/nu14102122] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 02/06/2023] Open
Abstract
Maternal obesity is associated with inflammation and oxidative stress, strongly impacting the intrauterine environment with detrimental consequences for both mother and offspring. The saliva is a non-invasive biofluid reflecting both local and systemic health status. This observational study aimed to profile the epigenetic signature in the saliva of Obese (OB) and Normal-Weight (NW) pregnant women. Sixteen NW and sixteen OB Caucasian women with singleton spontaneous pregnancies were enrolled. microRNAs were quantified by the OpenArray Platform. The promoter region methylation of Suppressor of Cytokine Signaling 3 (SOCS3) and Transforming Growth Factor Beta 1 (TGF-Beta1) was assessed by pyrosequencing. There were 754 microRNAs evaluated: 20 microRNAs resulted in being differentially expressed between OB and NW. microRNA pathway enrichment analysis showed a significant association with the TGF-Beta signaling pathway (miTALOS) and with fatty acids biosynthesis/metabolism, lysine degradation, and ECM-receptor interaction pathways (DIANA-miRPath). Both SOCS3 and TGF-Beta1 were significantly down-methylated in OB vs. NW. These results help to clarify impaired mechanisms involved in obesity and pave the way for the understanding of specific damaged pathways. The characterization of the epigenetic profile in saliva of pregnant women can represent a promising tool for the identification of obesity-related altered mechanisms and of possible biomarkers for early diagnosis and treatment of pregnancy-adverse conditions.
Collapse
Affiliation(s)
- Chiara Mandò
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (G.M.A.); (A.S.); (I.C.)
| | - Silvio Abati
- Department of Dentistry, University Vita-Salute San Raffaele, 20132 Milan, Italy;
| | - Gaia Maria Anelli
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (G.M.A.); (A.S.); (I.C.)
| | - Chiara Favero
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (C.F.); (L.D.); (B.A.); (V.B.)
| | - Anaïs Serati
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (G.M.A.); (A.S.); (I.C.)
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20054 Segrate, Italy
| | - Laura Dioni
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (C.F.); (L.D.); (B.A.); (V.B.)
| | - Marta Zambon
- Department of Woman, Mother and Child, Luigi Sacco and Vittore Buzzi Children Hospital, ASST Fatebenefratelli-Sacco, 20154 Milan, Italy;
| | - Benedetta Albetti
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (C.F.); (L.D.); (B.A.); (V.B.)
| | - Valentina Bollati
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (C.F.); (L.D.); (B.A.); (V.B.)
- Occupational Health Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Irene Cetin
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (G.M.A.); (A.S.); (I.C.)
- Department of Woman, Mother and Child, Luigi Sacco and Vittore Buzzi Children Hospital, ASST Fatebenefratelli-Sacco, 20154 Milan, Italy;
| |
Collapse
|
18
|
Meng R, Gao Q, Liang R, Guan L, Liu S, Zhu Q, Su D, Xia Y, Ma X. Changes in gene expression in rat placenta at gestational day 16.5 in response to hyperglycemia. Gen Comp Endocrinol 2022; 320:113999. [PMID: 35217063 DOI: 10.1016/j.ygcen.2022.113999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 11/26/2022]
Abstract
Gestational diabetes mellitus (GDM) is a serious pregnancy complication. Hyperglycemia induces abnormal placental development and function. However, the mechanism is unclear. Previous research showed streptozocin (STZ) injection sustained hyperglycemia throughout pregnancy in rodents. Our current results showed that the placenta from hyperglycemic STZ-treated rats was about 20% heavier than that of controls. The relative thickness of each layer of the placenta was also significantly different on gestational day (GD) 16.5. Gene expression was analyzed by RNA sequencing to explore reasons for the abnormal placenta. In total, 2100 differential expressed genes (DEGs), including 1327 up-regulated and 773 down-regulated genes, were identified. Gene ontogeny (GO) analysis revealed DEGs involved in developmental process, growth, metabolic process, cell junction, molecular transducer activity and signaling. By KEGG analysis, DEGs were mainly related to the endocrine system, development, signal transduction and cell growth and death. The KEGG results were partly consistent with GO results, with DEGs mainly focused on biochemical signal pathways such as cell growth and death (e.g., Abl1, Bbc3 and Camk2d), and signal transduction (e.g., Abl1, Ceacam1 and Arnt). These genes may play a dominant role in abnormal cell proliferation and signaling disorders. These results suggest that DEGs play a role in diabetic-induced placental abnormalities. One or more of these DEGs may be involved in the etiology of placental weight increase caused by hyperglycemia.
Collapse
Affiliation(s)
- Rui Meng
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; Department of Genetics, National Research Institute for Family Planning, Health Department, Beijing 100081, China
| | - Qianqian Gao
- Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
| | - Ranran Liang
- College of Life Science, Dezhou University, Dezhou, Shandong, China
| | - Lina Guan
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Shanhe Liu
- Mudanjiang Medical College, Mudanjiang, Heilongjiang, China
| | - Qinghua Zhu
- College of Life Science, Dezhou University, Dezhou, Shandong, China
| | - Dongmei Su
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; Department of Genetics, National Research Institute for Family Planning, Health Department, Beijing 100081, China.
| | - Yixin Xia
- Obstetrics and Gynecology, Peking University Shougang Hospital,Beijing, China.
| | - Xu Ma
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; Department of Genetics, National Research Institute for Family Planning, Health Department, Beijing 100081, China.
| |
Collapse
|
19
|
Wu B, Chen Y, Clarke R, Akala E, Yang P, He B, Gao H. AMPK Signaling Regulates Mitophagy and Mitochondrial ATP Production in Human Trophoblast Cell Line BeWo. FRONT BIOSCI-LANDMRK 2022; 27:118. [PMID: 35468677 PMCID: PMC9830999 DOI: 10.31083/j.fbl2704118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Accumulating evidence suggests that mitochondrial structural and functional defects are present in human placentas affected by pregnancy related disorders, but mitophagy pathways in human trophoblast cells/placental tissues have not been investigated. METHODS In this study, we investigated three major mitophagy pathways mediated by PRKN, FUNDC1, and BNIP3/BNIP3L in response to AMPK activation by AICAR and knockdown of PRKAA1/2 (AKD) in human trophoblast cell line BeWo and the effect of AKD on mitochondrial membrane potential and ATP production. RESULTS Autophagy flux assay demonstrated that AMPK signaling activation stimulates autophagy, evidenced increased LC3II and SQSTM1 protein abundance in the whole cell lysates and mitochondrial fractions, and mitophagy flux assay demonstrated that the activation of AMPK signaling stimulates mitophagy via PRKN and FUNDC1 mediated but not BNIP3/BNIP3L mediated pathways. The stimulatory regulation of AMPK signaling on mitophagy was confirmed by AKD which reduced the abundance of LC3II, SQSTM1, PRKN, and FUNDC1 proteins, but increased the abundance of BNIP3/BNIP3L proteins. Coincidently, AKD resulted in elevated mitochondrial membrane potential and reduced mitochondrial ATP production, compared to control BeWo cells. CONCLUSIONS In summary, AMPK signaling stimulates mitophagy in human trophoblast cells via PRKN and FUNDC1 mediated mitophagy pathways and AMPK regulated mitophagy contributes to the maintenance of mitochondrial membrane potential and mitochondrial ATP production.
Collapse
Affiliation(s)
- Bin Wu
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, 250013 Jinan, Shandong, China
| | - Yun Chen
- Rocket Pharmaceuticals, Inc., Cranbury, NJ 08512, USA
| | - Robert Clarke
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Emmanuel Akala
- Department of Pharmaceutical Sciences, College of Pharmacy, Howard University, Washington, DC 20060, USA
| | - Peixin Yang
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Bin He
- Reproductive Physiology Laboratory, National Research Institute for Family Planning, 100081 Beijing, China
| | - Haijun Gao
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC 20059, USA,Correspondence: (Haijun Gao)
| |
Collapse
|
20
|
Scott H, Martinelli LM, Grynspan D, Bloise E, Connor KL. Preterm Birth Associates With Increased Placental Expression of MDR Transporters Irrespective of Prepregnancy BMI. J Clin Endocrinol Metab 2022; 107:1140-1158. [PMID: 34748636 DOI: 10.1210/clinem/dgab813] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Preterm birth (PTB) and suboptimal prepregnancy body mass index (BMI) operate through inflammatory pathways to impair fetoplacental development. Placental efflux transporters mediate fetal protection and nutrition; however, few studies consider the effect of both PTB and BMI on fetal protection. We hypothesized that PTB would alter the expression of placental multidrug resistance (MDR) transporters and selected proinflammatory cytokines, and that maternal underweight and obesity would further impair placental phenotype. OBJECTIVE To determine whether placental MDR transporters P-glycoprotein (P-gp, encoded by ABCB1) and breast cancer resistance protein (BCRP/ABCG2), and proinflammatory cytokine levels are altered by PTB and maternal BMI. METHODS A cross-sectional study was conducted to assess the effect of PTB (with/without chorioamnionitis), or the effect of maternal prepregnancy BMI on placental MDR transporter and interleukin (IL)-6 and -8 expression in 60 preterm and 36 term pregnancies. RESULTS ABCB1 expression was increased in preterm compared to term placentae (P = .04). P-gp (P = .008) and BCRP (P = .01) immunolabeling was increased among all preterm compared to term placentae, with P-gp expression further increased in preterm pregnancies with chorioamnionitis (PTC, P = .007). Placental IL-6 mRNA expression was decreased in PTC compared to term placentae (P = .0005) and PTC associated with the greatest proportion of anti-inflammatory medications administered during pregnancy. Maternal BMI group did not influence placental outcomes. CONCLUSION PTB and infection, but not prepregnancy BMI, alter placental expression of MDR transporters and IL-6. This may have implications for fetal exposure to xenobiotics that may be present in the maternal circulation in pregnancies complicated by PTB.
Collapse
Affiliation(s)
- Hailey Scott
- Department of Health Sciences, Carleton University, Ottawa, Canada
| | - Lilian M Martinelli
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - David Grynspan
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Enrrico Bloise
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Kristin L Connor
- Department of Health Sciences, Carleton University, Ottawa, Canada
| |
Collapse
|
21
|
Fan M, Pan T, Jin W, Sun J, Zhang S, Du Y, Chen X, Chen Q, Xu W, Choo SW, Zhu G, Chen Y, Zhou J. FGF4, A New Potential Regulator in Gestational Diabetes Mellitus. Front Pharmacol 2022; 13:827617. [PMID: 35317005 PMCID: PMC8934430 DOI: 10.3389/fphar.2022.827617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Gestational diabetes mellitus (GDM) is associated with adverse maternal and neonatal outcomes, however the underlying mechanisms remain elusive. The aim of this study was to find efficient regulator of FGFs in response to the pathogenesis of GDM and explore the role of the FGFs in GDM.Methods: We performed a systematic screening of placental FGFs in GDM patients and further in two different GDM mouse models to investigate their expression changes. Significant changed FGF4 was selected, engineered, purified, and used to treat GDM mice in order to examine whether it can regulate the adverse metabolic phenotypes of the diabetic mice and protect their fetus.Results: We found FGF4 expression was elevated in GDM patients and its level was positively correlated to blood glucose, indicating a physiological relevance of FGF4 with respect to the development of GDM. Recombinant FGF4 (rFGF4) treatment could effectively normalize the adverse metabolic phenotypes in high fat diet induced GDM mice but not in STZ induced GDM mice. However, rFGF4 was highly effective in reduce of neural tube defects (NTDs) of embryos in both the two GDM models. Mechanistically, rFGF4 treatment inhibits pro-inflammatory signaling cascades and neuroepithelial cell apoptosis of both GDM models, which was independent of glucose regulation.Conclusions/interpretation: Our study provides novel insight into the important roles of placental FGF4 and suggests that it may serve as a promising diagnostic factor and therapeutic target for GDM.
Collapse
Affiliation(s)
- Miaojuan Fan
- Department of Infectious Diseases & Zhejiang Provincial Key laboratory of Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Baoji Maternal and Child Health Hospital, Baoji, China
| | - Tongtong Pan
- Department of Infectious Diseases & Zhejiang Provincial Key laboratory of Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Jin
- Department of Infectious Diseases & Zhejiang Provincial Key laboratory of Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Jian Sun
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shujun Zhang
- The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yali Du
- The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinwei Chen
- The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiong Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wenxin Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Siew Woh Choo
- College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Guanghui Zhu
- The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Guanghui Zhu, ; Yongping Chen, ; Jie Zhou,
| | - Yongping Chen
- Department of Infectious Diseases & Zhejiang Provincial Key laboratory of Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Guanghui Zhu, ; Yongping Chen, ; Jie Zhou,
| | - Jie Zhou
- Department of Infectious Diseases & Zhejiang Provincial Key laboratory of Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Guanghui Zhu, ; Yongping Chen, ; Jie Zhou,
| |
Collapse
|
22
|
Song L, Wang N, Peng Y, Sun B, Cui W. Placental lipid transport and content in response to maternal overweight and gestational diabetes mellitus in human term placenta. Nutr Metab Cardiovasc Dis 2022; 32:692-702. [PMID: 35109996 DOI: 10.1016/j.numecd.2021.12.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS Placental lipid transport is altered in women with high prepregnancy body mass index (pre-BMI) or gestational diabetes (GDM), which consequently affects foetal growth. However, the interaction of maternal overweight (OW) and GDM on placental lipid metabolism and possible adaptations are less studied. We aimed to examine whether maternal OW or GDM is the main factor disrupting placental lipid processing in human term placenta. METHODS AND RESULTS A total of 152 lean (18.5 ≤ pre-BMI ≤ 23.9 kg/m2) and OW (24 ≤ pre-BMI ≤ 27.9 kg/m2) pregnant women with or without GDM with a scheduled delivery by caesarean section were recruited. Maternal venous blood samples were used to measure metabolic parameters during pregnancy. Term placentas and cord blood were collected at delivery to determine placental lipid metabolism and foetal circulating lipid levels. Maternal OW significantly increased the placental mRNA expression of genes involved in lipid metabolism (FAT/CD36, FATP1, FATP4, FATP6, and PPAR-α), elevated placental lipid content (triglyceride, cholesterol), enhanced placental mTORC1-rpS6 and ERK1/2 signalling, increased cord blood insulin levels and birth weight. Neonatal birth weight was positively correlated with maternal pre-BMI, placental ERK1/2 signalling and cord blood insulin. There was an interaction between OW and GDM in regulating key placental fuel transport and storage gene expression (LPL, FATP6, FABP7, PPAR-α, PPAR-β, PPAR-γ, IR-β, GLUT1, SNAT2, SNAT4, and LAT1). CONCLUSION Maternal OW mainly affects placental lipid metabolism, which may contribute to foetal overgrowth and may impact long-term offspring health. GDM plays a less significant role in affecting placental lipid transfer and other mechanisms may be involved.
Collapse
Affiliation(s)
- Lin Song
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ning Wang
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yanqi Peng
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bo Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Wei Cui
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
23
|
Sun Y, Li X, Benmarhnia T, Chen JC, Avila C, Sacks DA, Chiu V, Slezak J, Molitor J, Getahun D, Wu J. Exposure to air pollutant mixture and gestational diabetes mellitus in Southern California: Results from electronic health record data of a large pregnancy cohort. ENVIRONMENT INTERNATIONAL 2022; 158:106888. [PMID: 34563749 PMCID: PMC9022440 DOI: 10.1016/j.envint.2021.106888] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/07/2021] [Accepted: 09/17/2021] [Indexed: 05/14/2023]
Abstract
BACKGROUND Epidemiological findings are inconsistent regarding the associations between air pollution exposure during pregnancy and gestational diabetes mellitus (GDM). Several limitations exist in previous studies, including potential outcome and exposure misclassification, unassessed confounding, and lack of simultaneous consideration of air pollution mixtures and particulate matter (PM) constituents. OBJECTIVES To assess the association between GDM and maternal residential exposure to air pollution, and the joint effect of the mixture of air pollutants and PM constituents. METHODS Detailed clinical data were obtained for 395,927 pregnancies in southern California (2008-2018) from Kaiser Permanente Southern California (KPSC) electronic health records. GDM diagnosis was based on KPSC laboratory tests. Monthly average concentrations of fine particulate matter < 2.5 μm (PM2.5), <10 μm (PM10), nitrogen dioxide (NO2), and ozone (O3) were estimated using kriging interpolation of Environmental Protection Agency's routine monitoring station data, while PM2.5 constituents (i.e., sulfate, nitrate, ammonium, organic matter and black carbon) were estimated using a fine-resolution geoscience-derived model. A multilevel logistic regression was used to fit single-pollutant models; quantile g-computation approach was applied to estimate the joint effect of air pollution and PM component mixtures. Main analyses adjusted for maternal age, race/ethnicity, education, median family household income, pre-pregnancy BMI, smoking during pregnancy, insurance type, season of conception and year of delivery. RESULTS The incidence of GDM was 10.9% in the study population. In single-pollutant models, we observed an increased odds for GDM associated with exposures to PM2.5, PM10, NO2 and PM2.5 constituents. The association was strongest for NO2 [adjusted odds ratio (OR) per interquartile range: 1.176, 95% confidence interval (CI): 1.147-1.205)]. In multi-pollutant models, increased ORs for GDM in association with one quartile increase in air pollution mixtures were found for both kriging-based regional air pollutants (NO2, PM2.5, and PM10, OR = 1.095, 95% CI: 1.082-1.108) and PM2.5 constituents (i.e., sulfate, nitrate, ammonium, organic matter and black carbon, OR = 1.258, 95% CI: 1.206-1.314); NO2 (78%) and black carbon (48%) contributed the most to the overall mixture effects among all krigged air pollutants and all PM2.5 constituents, respectively. The risk of GDM associated with air pollution exposure were significantly higher among Hispanic mothers, and overweight/obese mothers. CONCLUSION This study found that exposure to a mixture of ambient PM2.5, PM10, NO2, and PM2.5 chemical constituents was associated with an increased risk of GDM. NO2 and black carbon PM2.5 contributed most to GDM risk.
Collapse
Affiliation(s)
- Yi Sun
- Department of Environmental and Occupational Health, Program in Public Health, University of California, Irvine, CA, USA
| | - Xia Li
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Tarik Benmarhnia
- Herbert Wertheim School of Public Health and Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive #0725, CA La Jolla 92093, USA
| | - Jiu-Chiuan Chen
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Chantal Avila
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - David A Sacks
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA; Department of Obstetrics and Gynecology, University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
| | - Vicki Chiu
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Jeff Slezak
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - John Molitor
- College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Darios Getahun
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA; Department of Health Systems Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA, USA.
| | - Jun Wu
- Department of Environmental and Occupational Health, Program in Public Health, University of California, Irvine, CA, USA.
| |
Collapse
|
24
|
Bukhari I, Iqbal F, Thorne RF. Editorial: Relationship between gestational and neonatal diabetes mellitus. Front Endocrinol (Lausanne) 2022; 13:1060147. [PMID: 36313786 PMCID: PMC9616566 DOI: 10.3389/fendo.2022.1060147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ihtisham Bukhari
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Non-coding RNA and Cancer Metabolism, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People’s Hospital, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Furhan Iqbal
- Institute of Zoology, Bahauddin Zakariya University, Multan, Pakistan
- *Correspondence: Furhan Iqbal, ; Rick Francis Thorne,
| | - Rick Francis Thorne
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Non-coding RNA and Cancer Metabolism, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People’s Hospital, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
- *Correspondence: Furhan Iqbal, ; Rick Francis Thorne,
| |
Collapse
|
25
|
Bukhari I, Iqbal F, Thorne RF. Research advances in gestational, neonatal diabetes mellitus and metabolic disorders. Front Endocrinol (Lausanne) 2022; 13:969952. [PMID: 35966084 PMCID: PMC9373870 DOI: 10.3389/fendo.2022.969952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/04/2022] [Indexed: 01/18/2023] Open
Affiliation(s)
- Ihtisham Bukhari
- Henan Provincial and Zhengzhou City Key Laboratory of Non-Coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-Coding RNA and Metabolism in Cancer, Translational Research Institute of Henan Provincial People’s Hospital, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Ihtisham Bukhari, ; Rick Francis Thorne,
| | - Furhan Iqbal
- Zoology Division, Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
| | - Rick Francis Thorne
- Henan Provincial and Zhengzhou City Key Laboratory of Non-Coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-Coding RNA and Metabolism in Cancer, Translational Research Institute of Henan Provincial People’s Hospital, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
- *Correspondence: Ihtisham Bukhari, ; Rick Francis Thorne,
| |
Collapse
|
26
|
Hung TH, Wu CP, Chen SF. Differential Changes in Akt and AMPK Phosphorylation Regulating mTOR Activity in the Placentas of Pregnancies Complicated by Fetal Growth Restriction and Gestational Diabetes Mellitus With Large-For-Gestational Age Infants. Front Med (Lausanne) 2021; 8:788969. [PMID: 34938752 PMCID: PMC8685227 DOI: 10.3389/fmed.2021.788969] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/18/2021] [Indexed: 01/04/2023] Open
Abstract
Background: Dysregulation of placental mechanistic target of rapamycin (mTOR) activity has been implicated in the pathophysiology of pregnancies complicated by idiopathic fetal growth restriction (FGR) and gestational diabetes mellitus (GDM) with large-for-gestational-age (LGA) infants. However, the underlying mechanisms remain unclear. Methods: We obtained placentas from women with normal pregnancies (n = 11) and pregnancies complicated by FGR (n = 12) or GDM with LGA infants (n = 12) to compare the levels of total and phosphorylated forms of Akt, AMPK, TSC2, and mTOR among the three groups and used primary cytotrophoblast cells isolated from 30 normal term placentas to study the effects of oxygen–glucose deprivation (OGD) and increasing glucose concentrations on the changes of these factors in vitro. Results: Placentas from FGR pregnancies had lower phosphorylated Akt (p-Akt) levels (P < 0.05), higher p-AMPKα levels (P < 0.01), and lower mTOR phosphorylation (P < 0.05) compared to that of normal pregnant women. Conversely, women with GDM and LGA infants had higher p-Akt (P < 0.001), lower p-AMPKα (P < 0.05), and higher p-mTOR levels (P < 0.05) in the placentas than normal pregnant women. Furthermore, primary cytotrophoblast cells subjected to OGD had lower p-Akt and p-mTOR (both P < 0.05) and higher p-AMPKα levels (P < 0.05) than those cultured under standard conditions, but increasing glucose concentrations had opposite effects on the respective levels. Administering compound C, an AMPK inhibitor, did not significantly affect Akt phosphorylation but partially reversed mTOR phosphorylation. Administering LY294002, an Akt inhibitor, decreased p-mTOR levels, but did not change the levels of total and phosphorylated AMPKα. Conclusion: These results suggest that Akt and AMPK are involved in the regulation of trophoblast mTOR activity in the placentas of pregnancies complicated by FGR and GDM with LGA infants.
Collapse
Affiliation(s)
- Tai-Ho Hung
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan.,Department of Obstetrics and Gynecology, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan.,Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chung-Pu Wu
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan.,Graduate Institute of Biomedical Sciences, Department of Physiology and Pharmacology and Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Szu-Fu Chen
- Department of Physical Medicine and Rehabilitation, Cheng Hsin General Hospital, Taipei, Taiwan
| |
Collapse
|
27
|
Peña-Villalobos I, Otárola FA, Casas BS, Sabat P, Palma V. Perinatal Food Deprivation Modifies the Caloric Restriction Response in Adult Mice Through Sirt1. Front Physiol 2021; 12:769444. [PMID: 34925065 PMCID: PMC8675943 DOI: 10.3389/fphys.2021.769444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/08/2021] [Indexed: 11/30/2022] Open
Abstract
Variations in the availability of nutritional resources in animals can trigger reversible adjustments, which in the short term are manifested as behavioral and physiological changes. Several of these responses are mediated by Sirt1, which acts as an energy status sensor governing a global genetic program to cope with changes in nutritional status. Growing evidence suggests a key role of the response of the perinatal environment to caloric restriction in the setup of physiological responses in adulthood. The existence of adaptive predictive responses has been proposed, which suggests that early nutrition could establish metabolic capacities suitable for future food-scarce environments. We evaluated how perinatal food deprivation and maternal gestational weight gain impact the transcriptional, physiological, and behavioral responses in mice, when acclimated to caloric restriction in adulthood. Our results show a strong predictive capacity of maternal weight and gestational weight gain, in the expression of Sirt1 and its downstream targets in the brain and liver, mitochondrial enzymatic activity in skeletal muscle, and exploratory behavior in offspring. We also observed differential responses of both lactation and gestational food restriction on gene expression, thermogenesis, organ masses, and behavior, in response to adult caloric restriction. We conclude that the early nutritional state could determine the magnitude of responses to food scarcity later in adulthood, mediated by the pivotal metabolic sensor Sirt1. Our results suggest that maternal gestational weight gain could be an important life history trait and could be used to predict features that improve the invasive capacity or adjustment to seasonal food scarcity of the offspring.
Collapse
Affiliation(s)
- Isaac Peña-Villalobos
- Department of Ecological Sciences, Faculty of Sciences, Universidad de Chile, Santiago, Chile.,Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Fabiola A Otárola
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Bárbara S Casas
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Pablo Sabat
- Department of Ecological Sciences, Faculty of Sciences, Universidad de Chile, Santiago, Chile.,Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Verónica Palma
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| |
Collapse
|
28
|
Reproductive outcomes after bariatric surgery in women. Wien Klin Wochenschr 2021; 134:56-62. [PMID: 34878586 PMCID: PMC8813708 DOI: 10.1007/s00508-021-01986-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 01/11/2023]
Abstract
The presence of obesity may significantly influence female fertility through various mechanisms. Impairment of the hypothalamic-pituitary-ovarian axis in obese women may induce anovulation and infertility. Obesity may have an effect on women’s spontaneous and assisted conception rates, increased miscarriage rates, premature labor, stillbirth and perinatal risks, and menstrual irregularity. It has been suggested that weight loss improves reproductive outcomes due to fertility amelioration and an improvement in menstrual irregularity and ovulation. It is still not known which weight reduction procedures (changes in lifestyle, pharmacological management or bariatric intervention) result in optimal outcome on infertility. Currently, bariatric surgery is defined as the best available method for the management of obesity and its associated diseases. We have analyzed literature facts about effects of bariatric surgery on the function of the hypothalamic-pituitary-ovarian axis, polycystic ovary syndrome (PCOS), anti-Mullerian hormone (AMH) and sexual dysfunction in obesity and pregnancy in obesity. Immediate positive effects of bariatric surgery are evident at the moment, while for long-term outcomes more prolonged follow-up investigations should be done.
Collapse
|
29
|
Guo M, Ren Q, Yang F, Han T, Du W, Zhao F, Li W, Li J, Feng Y, Zhang Y, Wang S, Wu W. Association between AMPKα1 gene polymorphisms and gestational diabetes in the Chinese population: A case-control study. Diabet Med 2021; 38:e14613. [PMID: 34053110 DOI: 10.1111/dme.14613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/25/2021] [Indexed: 12/01/2022]
Abstract
AIM The aim is to examine the association between seven candidate single nucleotide polymorphisms in AMPKα1 and gestational diabetes in Chinese people. METHOD We used a matched nested case-control study design, individuals including 334 participants with gestational diabetes and 334 healthy pregnant women. Confirmed 334 gestational diabetes cases and maternal age and district of residence matched controls (1:1) were enrolled. We examined seven candidate single nucleotide polymorphisms in AMPKα1 gene and the risk of gestational diabetes. The associations were estimated in Co-dominant, Dominant, Recessive, and Alleles models. The odds ratios (ORs) and their 95% confidence intervals (95% CI) were estimated by unconditional logistical regression as a measure of the associations between genotypes and gestational diabetes adjusting for maternal age, prepregnancy body mass index (BMI), fetal sex and parity. RESULT At the gene level, we found that AMPKα1 was associated with gestational diabetes (p = 0.008). After adjusting the covariates and multiple comparison correction, AMPKα1 (rsc1002424, rs10053664, rs13361707) polymorphisms were associated with the risk of gestational diabetes. In addition, gestational diabetes was related to the AAGGA haplotype comprising rs1002424, rs2570091, rs10053664, rs13361707 and rs3805486 in the haplotype models (p = 0.011). CONCLUSIONS This study provides evidence that the AMPKα1 genotypes (rs1002424 G/A, rs10053664 A/G, rs13361707 A/G) and the haplotype (AAGGA) are relevant genetic factors in a Chinese population with gestational diabetes.
Collapse
Affiliation(s)
- Mengzhu Guo
- Department of Epidemiology, School of Public Health, Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan, China
| | - Qingwen Ren
- Department of Epidemiology, School of Public Health, Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan, China
| | - Feifei Yang
- Department of Epidemiology, School of Public Health, Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan, China
| | - Tianbi Han
- Department of Epidemiology, School of Public Health, Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan, China
| | - Wenqiong Du
- Department of Epidemiology, School of Public Health, Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan, China
| | - Feng Zhao
- Department of Epidemiology, School of Public Health, Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan, China
| | - Wangjun Li
- Department of Epidemiology, School of Public Health, Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan, China
| | - Jinbo Li
- Department of Epidemiology, School of Public Health, Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan, China
| | - YongLiang Feng
- Department of Epidemiology, School of Public Health, Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan, China
| | - Yawei Zhang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Suping Wang
- Department of Epidemiology, School of Public Health, Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan, China
| | - Weiwei Wu
- Department of Epidemiology, School of Public Health, Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
30
|
Role of EBAF/Nodal/p27 signaling pathway in development of placenta in normal and diabetic rats. Dev Biol 2021; 481:172-178. [PMID: 34737126 DOI: 10.1016/j.ydbio.2021.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 11/20/2022]
Abstract
Placentas control the maternal-fetal transport of nutrients and gases. Placental reactions to adverse intrauterine conditions affect fetal development. Such adverse conditions occur in pregnancies complicated by diabetes, leading to alterations in placental anatomy and physiology. In this study, streptozocin (STZ) injection produced sustained hyperglycemia during pregnancy in rats. Hyperglycemic pregnant rats had gained significantly less weight than normal pregnant rats on embryonic day 15.5. We investigated the influence of diabetes on placental anatomy and physiology. Compared with controls, the diabetic group had a markedly thicker junctional zone at embryonic day 15.5. To explore a mechanism for this abnormality, we examined Nodal expression in the junctional zone of control and diabetic groups. We found lower expression of Nodal in the diabetic group. We then investigated the expression of its target gene p27Kip1 (p27), which is related to cell proliferation. In vitro, Nodal overexpression up-regulated p27 protein levels while interfered EBAF up-regulated p27. In vivo, the expression of p27 was lower in diabetic compared with normal rats, and localization was similar between the two groups. In contrast, a higher expression of PCNA was found in diabetic versus normal placenta. Endometrial bleeding associated factor (EBAF), an up-stream molecular regulator of Nodal, was expressed at higher levels in placenta from diabetic versus normal rats. Based on these results, we speculate that the EBAF/Nodal/p27 signaling pathway plays a role in morphological change of diabetic placenta.
Collapse
|
31
|
Beetch M, Alejandro EU. Placental mTOR Signaling and Sexual Dimorphism in Metabolic Health across the Lifespan of Offspring. CHILDREN 2021; 8:children8110970. [PMID: 34828683 PMCID: PMC8619510 DOI: 10.3390/children8110970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 11/17/2022]
Abstract
Robust evidence of fetal programming of adult disease has surfaced in the last several decades. Human and preclinical investigations of intrauterine insults report perturbations in placental nutrient sensing by the mechanistic target of rapamycin (mTOR). This review focuses on pregnancy complications associated with placental mTOR regulation, such as fetal growth restriction (FGR), fetal overgrowth, gestational diabetes mellitus (GDM), polycystic ovarian syndrome (PCOS), maternal nutrient restriction (MNR), preeclampsia (PE), maternal smoking, and related effects on offspring birthweight. The link between mTOR-associated birthweight outcomes and offspring metabolic health trajectory with a focus on sexual dimorphism are discussed. Both human physiology and animal models are summarized to facilitate in depth understanding. GDM, PCOS and fetal overgrowth are associated with increased placental mTOR, whereas FGR, MNR and maternal smoking are linked to decreased placental mTOR activity. Generally, birth weight is reduced in complications with decreased mTOR (i.e., FGR, MNR, maternal smoking) and higher with increased mTOR (GDM, PCOS). Offspring display obesity or a higher body mass index in childhood and adulthood, impaired glucose and insulin tolerance in adulthood, and deficiencies in pancreatic beta-cell mass and function compared to offspring from uncomplicated pregnancies. Defining causal players in the fetal programming of offspring metabolic health across the lifespan will aid in stopping the vicious cycle of obesity and type II diabetes.
Collapse
|
32
|
Shan D, Dong R, Hu Y. Current understanding of autophagy in intrahepatic cholestasis of pregnancy. Placenta 2021; 115:53-59. [PMID: 34560328 DOI: 10.1016/j.placenta.2021.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022]
Abstract
Intrahepatic cholestasis of pregnancy (ICP) is the most common liver disease during pregnancy. Manifested with pruritus and elevation in bile acids, the etiology of ICP is still poorly understood. Although ICP is considered relatively benign for the mother, increased rates of adverse fetal outcomes including sudden fetal demise are possible devastating outcomes associated with ICP. Limited understanding of the underlying mechanisms restricted treatment options and managements of ICP. In recent decades, evolving evidence indicated the significance of autophagy in pregnancy and pregnancy complications. Autophagy is an ancient self-defense mechanism which is essential for cell survival, differentiation and development. Autophagy has pivotal roles in embryogenesis, implantation, and maintenance of pregnancy, and is involved in the orchestration of diverse physiological and pathological cellular responses in patients with pregnancy complications. Recent advances in these research fields provide tantalizing targets on autophagy to improve the care of pregnant women. This review summarizes recent advances in understanding autophagy in ICP and its possible roles in the causation and prevention of ICP.
Collapse
Affiliation(s)
- Dan Shan
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, 610041, China
| | - Ruihong Dong
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, 610041, China
| | - Yayi Hu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, 610041, China.
| |
Collapse
|
33
|
Belcastro L, Ferreira CS, Saraiva MA, Mucci DB, Murgia A, Lai C, Vigor C, Oger C, Galano JM, Pinto GDA, Griffin JL, Torres AG, Durand T, Burton GJ, Sardinha FLC, El-Bacha T. Decreased Fatty Acid Transporter FABP1 and Increased Isoprostanes and Neuroprostanes in the Human Term Placenta: Implications for Inflammation and Birth Weight in Maternal Pre-Gestational Obesity. Nutrients 2021; 13:2768. [PMID: 34444927 PMCID: PMC8398812 DOI: 10.3390/nu13082768] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/26/2022] Open
Abstract
The rise in prevalence of obesity in women of reproductive age in developed and developing countries might propagate intergenerational cycles of detrimental effects on metabolic health. Placental lipid metabolism is disrupted by maternal obesity, which possibly affects the life-long health of the offspring. Here, we investigated placental lipid metabolism in women with pre-gestational obesity as a sole pregnancy complication and compared it to placental responses of lean women. Open profile and targeted lipidomics were used to assess placental lipids and oxidised products of docosahexaenoic (DHA) and arachidonic acid (AA), respectively, neuroprostanes and isoprostanes. Despite no overall signs of lipid accumulation, DHA and AA levels in placentas from obese women were, respectively, 2.2 and 2.5 times higher than those from lean women. Additionally, a 2-fold increase in DHA-derived neuroprostanes and a 1.7-fold increase in AA-derived isoprostanes were seen in the obese group. These changes correlated with a 70% decrease in placental FABP1 protein. Multivariate analyses suggested that neuroprostanes and isoprostanes are associated with maternal and placental inflammation and with birth weight. These results might shed light on the molecular mechanisms associated with altered placental fatty acid metabolism in maternal pre-gestational obesity, placing these oxidised fatty acids as novel mediators of placental function.
Collapse
Affiliation(s)
- Livia Belcastro
- Laboratory of Nutritional Biochemistry, Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.B.); (M.A.S.); (D.B.M.)
| | - Carolina S. Ferreira
- LeBioME-Bioactives, Mitochondria and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (C.S.F.); (G.D.A.P.); (A.G.T.)
| | - Marcelle A. Saraiva
- Laboratory of Nutritional Biochemistry, Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.B.); (M.A.S.); (D.B.M.)
| | - Daniela B. Mucci
- Laboratory of Nutritional Biochemistry, Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.B.); (M.A.S.); (D.B.M.)
| | - Antonio Murgia
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK; (A.M.); (J.L.G.)
| | - Carla Lai
- Department of Environmental and Life Sciences, University of Cagliari, 09124 Cagliari, Italy;
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, Université de Montpellier, CNRS, ENSCM, Bâtiment Balard, 1919 Route de Mende, 34293 Montpellier, France; (C.V.); (C.O.); (J.-M.G.); (T.D.)
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, Université de Montpellier, CNRS, ENSCM, Bâtiment Balard, 1919 Route de Mende, 34293 Montpellier, France; (C.V.); (C.O.); (J.-M.G.); (T.D.)
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, Université de Montpellier, CNRS, ENSCM, Bâtiment Balard, 1919 Route de Mende, 34293 Montpellier, France; (C.V.); (C.O.); (J.-M.G.); (T.D.)
| | - Gabriela D. A. Pinto
- LeBioME-Bioactives, Mitochondria and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (C.S.F.); (G.D.A.P.); (A.G.T.)
| | - Julian L. Griffin
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK; (A.M.); (J.L.G.)
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2BX, UK
| | - Alexandre G. Torres
- LeBioME-Bioactives, Mitochondria and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (C.S.F.); (G.D.A.P.); (A.G.T.)
- Lipid Biochemistry and Lipidomics Laboratory, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, Université de Montpellier, CNRS, ENSCM, Bâtiment Balard, 1919 Route de Mende, 34293 Montpellier, France; (C.V.); (C.O.); (J.-M.G.); (T.D.)
| | - Graham J. Burton
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK;
| | - Fátima L. C. Sardinha
- Laboratory of Nutritional Biochemistry, Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.B.); (M.A.S.); (D.B.M.)
| | - Tatiana El-Bacha
- LeBioME-Bioactives, Mitochondria and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (C.S.F.); (G.D.A.P.); (A.G.T.)
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK;
| |
Collapse
|
34
|
Abstract
Almost 2 billion adults in the world are overweight, and more than half of them are classified as obese, while nearly one-third of children globally experience poor growth and development. Given the vast amount of knowledge that has been gleaned from decades of research on growth and development, a number of questions remain as to why the world is now in the midst of a global epidemic of obesity accompanied by the "double burden of malnutrition," where overweight coexists with underweight and micronutrient deficiencies. This challenge to the human condition can be attributed to nutritional and environmental exposures during pregnancy that may program a fetus to have a higher risk of chronic diseases in adulthood. To explore this concept, frequently called the developmental origins of health and disease (DOHaD), this review considers a host of factors and physiological mechanisms that drive a fetus or child toward a higher risk of obesity, fatty liver disease, hypertension, and/or type 2 diabetes (T2D). To that end, this review explores the epidemiology of DOHaD with discussions focused on adaptations to human energetics, placental development, dysmetabolism, and key environmental exposures that act to promote chronic diseases in adulthood. These areas are complementary and additive in understanding how providing the best conditions for optimal growth can create the best possible conditions for lifelong health. Moreover, understanding both physiological as well as epigenetic and molecular mechanisms for DOHaD is vital to most fully address the global issues of obesity and other chronic diseases.
Collapse
Affiliation(s)
- Daniel J Hoffman
- Department of Nutritional Sciences, Program in International Nutrition, and Center for Childhood Nutrition Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers, the State University of New Jersey, New Brunswick, New Jersey
| | - Theresa L Powell
- Department of Pediatrics and Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, School of Public Health and Division of Exposure Science and Epidemiology, Rutgers Environmental and Occupational Health Sciences Institute, Rutgers, the State University of New Jersey, New Brunswick, New Jersey
| | - Daniel B Hardy
- Department of Biostatistics and Epidemiology, School of Public Health and Division of Exposure Science and Epidemiology, Rutgers Environmental and Occupational Health Sciences Institute, Rutgers, the State University of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
35
|
Fowden AL, Camm EJ, Sferruzzi-Perri AN. Effects of Maternal Obesity On Placental Phenotype. Curr Vasc Pharmacol 2021; 19:113-131. [PMID: 32400334 DOI: 10.2174/1570161118666200513115316] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 12/26/2022]
Abstract
The incidence of obesity is rising rapidly worldwide with the consequence that more women are entering pregnancy overweight or obese. This leads to an increased incidence of clinical complications during pregnancy and of poor obstetric outcomes. The offspring of obese pregnancies are often macrosomic at birth although there is also a subset of the progeny that are growth-restricted at term. Maternal obesity during pregnancy is also associated with cardiovascular, metabolic and endocrine dysfunction in the offspring later in life. As the interface between the mother and fetus, the placenta has a central role in programming intrauterine development and is known to adapt its phenotype in response to environmental conditions such as maternal undernutrition and hypoxia. However, less is known about placental function in the abnormal metabolic and endocrine environment associated with maternal obesity during pregnancy. This review discusses the placental consequences of maternal obesity induced either naturally or experimentally by increasing maternal nutritional intake and/or changing the dietary composition. It takes a comparative, multi-species approach and focusses on placental size, morphology, nutrient transport, metabolism and endocrine function during the later stages of obese pregnancy. It also examines the interventions that have been made during pregnancy in an attempt to alleviate the more adverse impacts of maternal obesity on placental phenotype. The review highlights the potential role of adaptations in placental phenotype as a contributory factor to the pregnancy complications and changes in fetal growth and development that are associated with maternal obesity.
Collapse
Affiliation(s)
- A L Fowden
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, United Kingdom
| | - E J Camm
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, United Kingdom
| | - A N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, United Kingdom
| |
Collapse
|
36
|
Bedell S, Hutson J, de Vrijer B, Eastabrook G. Effects of Maternal Obesity and Gestational Diabetes Mellitus on the Placenta: Current Knowledge and Targets for Therapeutic Interventions. Curr Vasc Pharmacol 2021; 19:176-192. [PMID: 32543363 DOI: 10.2174/1570161118666200616144512] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/16/2020] [Accepted: 05/17/2020] [Indexed: 02/08/2023]
Abstract
Obesity and gestational diabetes mellitus (GDM) are becoming more common among pregnant women worldwide and are individually associated with a number of placenta-mediated obstetric complications, including preeclampsia, macrosomia, intrauterine growth restriction and stillbirth. The placenta serves several functions throughout pregnancy and is the main exchange site for the transfer of nutrients and gas from mother to fetus. In pregnancies complicated by maternal obesity or GDM, the placenta is exposed to environmental changes, such as increased inflammation and oxidative stress, dyslipidemia, and altered hormone levels. These changes can affect placental development and function and lead to abnormal fetal growth and development as well as metabolic and cardiovascular abnormalities in the offspring. This review aims to summarize current knowledge on the effects of obesity and GDM on placental development and function. Understanding these processes is key in developing therapeutic interventions with the goal of mitigating these effects and preventing future cardiovascular and metabolic pathology in subsequent generations.
Collapse
Affiliation(s)
- Samantha Bedell
- Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, ON N6A 3B4, Canada
| | - Janine Hutson
- Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, ON N6A 3B4, Canada
| | - Barbra de Vrijer
- Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, ON N6A 3B4, Canada
| | - Genevieve Eastabrook
- Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, ON N6A 3B4, Canada
| |
Collapse
|
37
|
Odularu AT, Ajibade PA. Challenge of diabetes mellitus and researchers’ contributions to its control. OPEN CHEM 2021. [DOI: 10.1515/chem-2020-0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
The aim of this review study was to assess the past significant events on diabetes mellitus, transformations that took place over the years in the medical records of treatment, countries involved, and the researchers who brought about the revolutions. This study used the content analysis to report the existence of diabetes mellitus and the treatments provided by researchers to control it. The focus was mainly on three main types of diabetes (type 1, type 2, and type 3 diabetes). Ethical consideration has also helped to boost diabetic studies globally. The research has a history path from pharmaceuticals of organic-based drugs to metal-based drugs with their nanoparticles in addition to the impacts of nanomedicine, biosensors, and telemedicine. Ongoing and future studies in alternative medicine such as vanadium nanoparticles (metal nanoparticles) are promising.
Collapse
Affiliation(s)
- Ayodele T. Odularu
- Department of Chemistry, University of Fort Hare , Private Bag X1314 , Alice 5700 , Eastern Cape , South Africa
| | - Peter A. Ajibade
- Department of Chemistry, University of KwaZulu-Natal , Pietermaritzburg Campus , Scottsville 3209 , South Africa
| |
Collapse
|
38
|
Griffiths RM, Pru CA, Behura SK, Cronrath AR, McCallum ML, Kelp NC, Winuthayanon W, Spencer TE, Pru JK. AMPK is required for uterine receptivity and normal responses to steroid hormones. Reproduction 2021; 159:707-717. [PMID: 32191914 DOI: 10.1530/rep-19-0402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 03/19/2020] [Indexed: 12/11/2022]
Abstract
We previously demonstrated that 5'-AMP-activated protein kinase (AMPK) is essential for normal reproductive functions in female mice. Conditional ablation of Prkaa1 and Prkaa2, genes that encode the α1 and α2 catalytic domains of AMPK, resulted in early reproductive senescence, faulty artificial decidualization, uterine inflammation and fibrotic postparturient endometrial regeneration. We also noted a delay in the timing of embryo implantation in Prkaa1/2d/d female mice, suggesting a role for AMPK in establishing uterine receptivity. As outlined in new studies here, conditional uterine ablation of Prkaa1/2 led to an increase in ESR1 in the uteri of Prkaa1/2d/d mice, resulting in prolonged epithelial cell proliferation and retention of E2-induced gene expression (e.g. Msx1, Muc1, Ltf) through the implantation window. Within the stromal compartment, stromal cell proliferation was reduced by five-fold in Prkaa1/2d/d mice, and this was accompanied by a significant decrease in cell cycle regulatory genes and aberrant expression of decidualization marker genes such as Hand2, Bmp2, Fst and Inhbb. This phenotype is consistent with our prior study, demonstrating a failure of the Prkaa1/2d/d uterus to undergo decidualization. Despite these uterine defects, ovarian function seemed to be normal following ablation of Prkaa1/2 from peri-ovulatory follicles in which ovulation, luteinization and serum progesterone levels were not different on day 5 of pregnancy or pseudopregnancy between Prkaa1/2fl/fl and Prkaa1/2d/d mice. These cumulative findings demonstrate that AMPK activity plays a prominent role in mediating several steroid hormone-dependent events such as epithelial cell proliferation, uterine receptivity and decidualization as pregnancy is established.
Collapse
Affiliation(s)
- Richard M Griffiths
- Department of Animal Sciences, School of Molecular Biosciences, and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Cindy A Pru
- Department of Animal Sciences, School of Molecular Biosciences, and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Susanta K Behura
- Division of Animal Sciences and Department of Obstetrics, Gynecology, and Women's Health, University of Missouri, Columbia, Missouri, USA
| | - Andrea R Cronrath
- Department of Animal Sciences, School of Molecular Biosciences, and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Melissa L McCallum
- Department of Animal Sciences, School of Molecular Biosciences, and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Nicole C Kelp
- Department of Animal Sciences, School of Molecular Biosciences, and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Wipawee Winuthayanon
- Department of Animal Sciences, School of Molecular Biosciences, and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Thomas E Spencer
- Division of Animal Sciences and Department of Obstetrics, Gynecology, and Women's Health, University of Missouri, Columbia, Missouri, USA
| | - James K Pru
- Department of Animal Sciences, School of Molecular Biosciences, and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| |
Collapse
|
39
|
Hu J, Xu W, Yang H, Mu L. Uric acid participating in female reproductive disorders: a review. Reprod Biol Endocrinol 2021; 19:65. [PMID: 33906696 PMCID: PMC8077923 DOI: 10.1186/s12958-021-00748-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/18/2021] [Indexed: 12/21/2022] Open
Abstract
Uric acid (UA) is the end metabolic product of purine metabolism. Early on, UA was considered to be a metabolite with a certain antioxidant capacity. As research has progressed, other properties of UA have been explored, and its association with many diseases has been found. The association between UA and kidney disease and cardiovascular disease is well established; however, there is still a paucity of reviews on the association between UA and the female reproductive system. An increasing number of epidemiological studies have shown elevated serum UA levels in patients with polycystic ovary syndrome (PCOS), endometriosis, etc. Additionally, serum UA can be used as a predictor of pregnancy complications and adverse foetal outcomes. An increasing number of animal experiments and clinical studies have revealed possible mechanisms related to the involvement of UA in certain female reproductive disorders: oxidative stress, chronic inflammation, mitochondrial dysfunction, etc. This article reviews the current mainstream mechanisms regarding the pathogenesis of UA and the role of UA in certain specific female reproductive disorders (direct involvement in the development of certain diseases or enhancement of other risk factors) in the hope of contributing to clinical prevention, diagnosis, treatment and improvement in prognosis.
Collapse
Affiliation(s)
- Junhao Hu
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, No.96 Fuxue Road, 325000, Wenzhou, People's Republic of China
| | - Wenyi Xu
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, No.96 Fuxue Road, 325000, Wenzhou, People's Republic of China
| | - Haiyan Yang
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, No.96 Fuxue Road, 325000, Wenzhou, People's Republic of China.
| | - Liangshan Mu
- School of Medicine, Zhejiang University, No.866 Yuhantang Road, 310058, Hangzhou, People's Republic of China.
| |
Collapse
|
40
|
Verduci E, Calcaterra V, Di Profio E, Fiore G, Rey F, Magenes VC, Todisco CF, Carelli S, Zuccotti GV. Brown Adipose Tissue: New Challenges for Prevention of Childhood Obesity. A Narrative Review. Nutrients 2021; 13:nu13051450. [PMID: 33923364 PMCID: PMC8145569 DOI: 10.3390/nu13051450] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Pediatric obesity remains a challenge in modern society. Recently, research has focused on the role of the brown adipose tissue (BAT) as a potential target of intervention. In this review, we revised preclinical and clinical works on factors that may promote BAT or browning of white adipose tissue (WAT) from fetal age to adolescence. Maternal lifestyle, type of breastfeeding and healthy microbiota can affect the thermogenic activity of BAT. Environmental factors such as exposure to cold or physical activity also play a role in promoting and activating BAT. Most of the evidence is preclinical, although in clinic there is some evidence on the role of omega-3 PUFAs (EPA and DHA) supplementation on BAT activation. Clinical studies are needed to dissect the early factors and their modulation to allow proper BAT development and functions and to prevent onset of childhood obesity.
Collapse
Affiliation(s)
- Elvira Verduci
- Department of Health Sciences, University of Milan, 20146 Milan, Italy
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
- Correspondence: (E.V.); (S.C.)
| | - Valeria Calcaterra
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
- Pediatric and Adolescent Unit, Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy
| | - Elisabetta Di Profio
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
- Department of Animal Sciences for Health, Animal Production and Food Safety, University of Milan, 20133 Milan, Italy
| | - Giulia Fiore
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
| | - Federica Rey
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy;
- Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, University of Milan, 20157 Milan, Italy
| | - Vittoria Carlotta Magenes
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
| | - Carolina Federica Todisco
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
| | - Stephana Carelli
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy;
- Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, University of Milan, 20157 Milan, Italy
- Correspondence: (E.V.); (S.C.)
| | - Gian Vincenzo Zuccotti
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy;
- Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, University of Milan, 20157 Milan, Italy
| |
Collapse
|
41
|
Diceglie C, Anelli GM, Martelli C, Serati A, Lo Dico A, Lisso F, Parisi F, Novielli C, Paleari R, Cetin I, Ottobrini L, Mandò C. Placental Antioxidant Defenses and Autophagy-Related Genes in Maternal Obesity and Gestational Diabetes Mellitus. Nutrients 2021; 13:nu13041303. [PMID: 33920886 PMCID: PMC8071310 DOI: 10.3390/nu13041303] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 01/07/2023] Open
Abstract
Maternal obesity and gestational diabetes mellitus (GDM) are increasing worldwide, representing risk factors for both mother and child short/long-term outcomes. Oxidative stress, lipotoxicity and altered autophagy have already been reported in obesity, but few studies have focused on obese pregnant women with GDM. Antioxidant and macro/chaperone-mediated autophagy (CMA)-related gene expressions were evaluated herein in obese and GDM placentas. A total of 47 women with singleton pregnancies delivered by elective cesarean section were enrolled: 16 normal weight (NW), 18 obese with no comorbidities (OB GDM(–)), 13 obese with GDM (OB GDM(+)). Placental gene expression was assessed by real-time PCR. Antioxidant gene expression (CAT, GPX1, GSS) decreased, the pro-autophagic ULK1 gene increased and the chaperone-mediated autophagy regulator PHLPP1 decreased in OB GDM(–) vs. NW. On the other hand, PHLPP1 expression increased in OB GDM(+) vs. OB GDM(–). When analyzing results in relation to fetal sex, we found sexual dimorphism for both antioxidant and CMA-related gene expressions. These preliminary results can pave the way for further analyses aimed at elucidating the placental autophagy role in metabolic pregnancy disorders and its potential targetability for the treatment of diabetes outcomes.
Collapse
Affiliation(s)
- Cecilia Diceglie
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20054 Segrate, Italy; (C.D.); (C.M.); (A.S.); (A.L.D.); (R.P.)
| | - Gaia Maria Anelli
- Department of Biomedical and Clinical Sciences “Luigi Sacco”, Università degli Studi di Milano, 20157 Milano, Italy; (G.M.A.); (F.L.); (C.N.); (I.C.)
| | - Cristina Martelli
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20054 Segrate, Italy; (C.D.); (C.M.); (A.S.); (A.L.D.); (R.P.)
| | - Anais Serati
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20054 Segrate, Italy; (C.D.); (C.M.); (A.S.); (A.L.D.); (R.P.)
- Department of Biomedical and Clinical Sciences “Luigi Sacco”, Università degli Studi di Milano, 20157 Milano, Italy; (G.M.A.); (F.L.); (C.N.); (I.C.)
| | - Alessia Lo Dico
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20054 Segrate, Italy; (C.D.); (C.M.); (A.S.); (A.L.D.); (R.P.)
| | - Fabrizia Lisso
- Department of Biomedical and Clinical Sciences “Luigi Sacco”, Università degli Studi di Milano, 20157 Milano, Italy; (G.M.A.); (F.L.); (C.N.); (I.C.)
| | - Francesca Parisi
- Department of Woman, Mother and Child, Luigi Sacco and Vittore Buzzi Children Hospital, ASST Fatebenefratelli-Sacco, Università degli Studi di Milano, 20154 Milano, Italy;
| | - Chiara Novielli
- Department of Biomedical and Clinical Sciences “Luigi Sacco”, Università degli Studi di Milano, 20157 Milano, Italy; (G.M.A.); (F.L.); (C.N.); (I.C.)
| | - Renata Paleari
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20054 Segrate, Italy; (C.D.); (C.M.); (A.S.); (A.L.D.); (R.P.)
| | - Irene Cetin
- Department of Biomedical and Clinical Sciences “Luigi Sacco”, Università degli Studi di Milano, 20157 Milano, Italy; (G.M.A.); (F.L.); (C.N.); (I.C.)
- Department of Woman, Mother and Child, Luigi Sacco and Vittore Buzzi Children Hospital, ASST Fatebenefratelli-Sacco, Università degli Studi di Milano, 20154 Milano, Italy;
| | - Luisa Ottobrini
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20054 Segrate, Italy; (C.D.); (C.M.); (A.S.); (A.L.D.); (R.P.)
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 20054 Segrate, Italy
- Correspondence: (L.O.); (C.M.); Tel.: +39-02-503-30346 (L.O.); +39-02-503-19883 (C.M.)
| | - Chiara Mandò
- Department of Biomedical and Clinical Sciences “Luigi Sacco”, Università degli Studi di Milano, 20157 Milano, Italy; (G.M.A.); (F.L.); (C.N.); (I.C.)
- Correspondence: (L.O.); (C.M.); Tel.: +39-02-503-30346 (L.O.); +39-02-503-19883 (C.M.)
| |
Collapse
|
42
|
Li SY, Guo H, Zhang Y, Li P, Zhou P, Sun LR, Li J, Chen LM. Effects of intermittently scanned continuous glucose monitoring on blood glucose control and the production of urinary ketone bodies in pregestational diabetes mellitus. Diabetol Metab Syndr 2021; 13:39. [PMID: 33836817 PMCID: PMC8034123 DOI: 10.1186/s13098-021-00657-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 03/25/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To investigate the effects of intermittently scanned continuous glucose monitoring (isCGM) on blood glucose control, clinical value of blood glucose monitoring and production of urinary ketone bodies in pregestational diabetes mellitus. METHOD A total of 124 patients with pregestational diabetes mellitus at 12-14 weeks of gestation admitted to the gestational diabetes clinic of our hospital from December 2016 to December 2018 were selected and randomly divided into two groups. Sixty patients adopted self-monitoring of blood glucose (SMBG) were taken as the control group, and the other 64 patients adopted isCGM system by wearing the device for 14 days. Blood sugar control, glycosylated albumin level, ketone production in urine, the maximum and minimum of blood sugar value measured by different monitoring methods and their occurrence time were observed in the two groups. RESULT (1) No statistically significant differences were found between the groups in terms of maternal age, gestational age at first visit, family history, duration of diabetes, education level, total insulin dose, chronic hypertension, abortion history, nulliparity, assisted reproductive technology, history of macrosomia childbirth, pre-pregnancy BMI, and overweight (%) at the first visit and hypoglycemia, (2) the value of Glycated Albumin was lower in the CGM group compared to the control group at 2ed weeks (14.6 ± 2.2 vs. 16.8 ± 2.7, p < 0.001). The women in the CGM group spent increased time in the recommended glucose control target range of 3.5-7.8 mmol/L (69 ± 10% vs. 62 ± 11%, p < 0.001) and reduced time above target compared with those in the control group at 2 weeks (25 ± 7% vs. 31 ± 8%, p < 0.001). In the second week of the study, the positive rate of urinary ketone body in isCGM group was lower than that in the control group (42 ± 5 vs. 54 ± 5, p < 0.001), and (3) the minimum blood glucose of 31.2% (20/64) cases in isCGM group appeared during 0:00-2:59 at night, and 26.6% (17/64) cases appeared during 3:00-5:59 at night. The minimum values of 40.0% (24/60) cases in the control group appeared within the 30 min before lunch, 23.3% (14/60) within the 30 min before breakfast, and 11.7% (7/60) within the 30 min before dinner. The cases of minimum of blood sugar before meals accounted for 75% of all the minimum values, and the cases of minimum at night only accounted for 8.3%. CONCLUSION Intermittently scanned continuous glucose monitoring can reduce hyperglycemia exposure and ketone body formation in pregestational diabetes mellitus. In addition, isCGM is better than SMBG in detecting nocturnal hypoglycemia.
Collapse
Affiliation(s)
- Shu-Ying Li
- Department of Endocrinology, Tianjin Xiqing Hospital, Tianjin, China
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, 300134, China
| | - Hang Guo
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, 300134, China
| | - Yi Zhang
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, 300134, China
| | - Pei Li
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, 300134, China
| | - Pei Zhou
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, 300134, China
| | - Li-Rong Sun
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, 300134, China
| | - Jing Li
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, 300134, China
| | - Li-Ming Chen
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, 300134, China.
| |
Collapse
|
43
|
Nogues P, Dos Santos E, Couturier-Tarrade A, Berveiller P, Arnould L, Lamy E, Grassin-Delyle S, Vialard F, Dieudonne MN. Maternal Obesity Influences Placental Nutrient Transport, Inflammatory Status, and Morphology in Human Term Placenta. J Clin Endocrinol Metab 2021; 106:e1880-e1896. [PMID: 32936881 DOI: 10.1210/clinem/dgaa660] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/15/2020] [Indexed: 01/04/2023]
Abstract
CONTEXT Maternal obesity has a significant impact on placental development. However, this impact on the placenta's structure and function (ie, nutrient transport and hormone and cytokine production) is a controversial subject. OBJECTIVE We hypothesized that maternal obesity is associated with morphologic, secretory, and nutrient-related changes and elevated levels of inflammation in the placenta. DESIGN We collected samples of placental tissue from 2 well-defined groups of pregnant women from 2017 to 2019. We compared the 2 groups regarding placental cytokine and hormone secretion, immune cell content, morphology, and placental nutrient transporter expressions. SETTING Placenta were collected after caesarean section performed by experienced clinicians at Centre Hospitalier Intercommunal (CHI) of Poissy-Saint-Germain-en-Laye. PATIENTS The main inclusion criteria were an age between 27 and 37 years old, no complications of pregnancy, and a first-trimester body mass index of 18-25 kg/m2 for the nonobese (control) group and 30-40 kg/m2 for the obese group. RESULTS In contrast to our starting hypothesis, we observed that maternal obesity was associated with (1) lower placental IL-6 expression and macrophage/leukocyte infiltration, (2) lower placental expression of GLUT1 and SNAT1-2, (3) a lower placental vessel density, and (4) lower levels of placental leptin and human chorionic gonadotropin production. CONCLUSION These results suggest that the placenta is a plastic organ and could optimize fetal growth. A better understanding of placental adaptation is required because these changes may partly determine the fetal outcome in cases of maternal obesity.
Collapse
Affiliation(s)
- Perrine Nogues
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Esther Dos Santos
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
- Service de Biologie Médicale, Centre Hospitalier Intercommunal de Poissy-Saint-Germain, Poissy, France
| | - Anne Couturier-Tarrade
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Paul Berveiller
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
- Service de Gynécologie-Obstétrique, Centre Hospitalier Intercommunal de Poissy-Saint-Germain-en-Laye, Poissy, France
| | - Lucie Arnould
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Elodie Lamy
- Université Paris-Saclay, UVSQ, INSERM, Infection et inflammation, Département de Biotechnologie de la Santé, Montigny le Bretonneux, France
| | - Stanislas Grassin-Delyle
- Université Paris-Saclay, UVSQ, INSERM, Infection et inflammation, Département de Biotechnologie de la Santé, Montigny le Bretonneux, France
- Hôpital Foch, Département des maladies des voies respiratoires, Suresnes, France
| | - François Vialard
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
- Département de Biologie de la Reproduction, Cytogénétique, Gynécologie et Obstétrique, Centre Hospitalier Intercommunal de Poissy-Saint-Germain-en-Laye, Poissy, France
| | - Marie-Noëlle Dieudonne
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| |
Collapse
|
44
|
Kasture V, Sahay A, Joshi S. Cell death mechanisms and their roles in pregnancy related disorders. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 126:195-225. [PMID: 34090615 DOI: 10.1016/bs.apcsb.2021.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Autophagy and apoptosis are catabolic pathways essential for homeostasis. They play a crucial role for normal placental and fetal development. These cell death mechanisms are exaggerated in placental disorders such as preeclampsia, intrauterine growth restriction (IUGR) and gestational diabetes mellitus (GDM). Apoptosis is widely studied, highly controlled and regulated whereas; autophagy is an orderly degradation and recycling of the cellular components. Cellular senescence may be initiated by a variety of stimuli, including hypoxia, oxidative stress, reduction in survival signals and nutrition deprivation. Apoptosis is regulated by two types of pathways intrinsic and extrinsic. Extrinsic pathway is initiated by apoptosis inducing cells such as macrophages, natural killer cells whereas; intrinsic pathway is initiated in response to DNA damage, cell injury and lack of oxygen. In autophagy, the cell or organelles undergo lysosomal degradation. Placental apoptosis increases as the gestation progresses while autophagy plays a role in trophoblast differentiation and invasion. In pregnancy disorders like preeclampsia and IUGR, proapoptotic markers such as caspase 3, 8, BAX are higher and antiapoptotic markers like Bcl-2 are lower. In GDM, apoptotic markers are reduced resulting in increased placental mass and fetal macrosomia. Apoptosis in the pathological pregnancies is also influenced by the reduced levels of micronutrients and long chain polyunsaturated fatty acids resulting in disturbed placental biology. This chapter describes the role of various key molecular events involved in cellular senescence and the various factors influencing them. This will help identify future therapeutic strategies for better management of these processes.
Collapse
Affiliation(s)
- Vaishali Kasture
- Department of Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Akriti Sahay
- Department of Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Sadhana Joshi
- Department of Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India.
| |
Collapse
|
45
|
Liu Y, Wang Y, Wang C, Shi R, Zhou X, Li Z, Sun W, Zhao L, Yuan L. Maternal obesity increases the risk of fetal cardiac dysfunction via visceral adipose tissue derived exosomes. Placenta 2021; 105:85-93. [PMID: 33556718 DOI: 10.1016/j.placenta.2021.01.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 01/02/2023]
Abstract
INTRODUCTION There is a strong association between gestational obesity and fetal cardiac dysfunction, while the exact mechanisms remain largely unknown. The purpose of this study was to investigate the role of exosomes from maternal visceral adipose tissue in abnormal embryonic development in obese pregnancy. METHODS Female C57BL/6J obese mice were induced by a high-fat diet (containing 60% fat). Fetal cardiac function and morphology were examined by echocardiography and histology. The placenta was extracted for histological examination. miRNA expression in exosomes from the visceral adipose tissue was profiled by RNA-seq. Gene expression of inflammatory factors was analyzed by qPCR. RESULTS In the obese pregnant mice, there were obvious inflammation and lipid droplets in the placenta. And the fetal cardiac function in obese pregnancy was also compromised. Moreover, injection of the visceral adipose tissue exosomes from the obese mice significantly decreased the fetal cardiac function in the normal lean pregnant mice. Mechanistically, the decreased expression of miR-19b might be responsible for the enhanced inflammation in the placenta. DISCUSSION Exosomes derived from visceral adipose tissue in obese mice contribute to fetal heart dysfunction, at least partially via affecting the function of the placenta.
Collapse
Affiliation(s)
- Yunnan Liu
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, People's Republic of China
| | - Yixiao Wang
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, People's Republic of China
| | - Chen Wang
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, People's Republic of China
| | - Ruijing Shi
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, People's Republic of China
| | - Xueying Zhou
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, People's Republic of China
| | - Zhelong Li
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, People's Republic of China
| | - Wenqi Sun
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, People's Republic of China
| | - Lianbi Zhao
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, People's Republic of China
| | - Lijun Yuan
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, People's Republic of China.
| |
Collapse
|
46
|
Sletner L, Moen AEF, Yajnik CS, Lekanova N, Sommer C, Birkeland KI, Jenum AK, Böttcher Y. Maternal Glucose and LDL-Cholesterol Levels Are Related to Placental Leptin Gene Methylation, and, Together With Nutritional Factors, Largely Explain a Higher Methylation Level Among Ethnic South Asians. Front Endocrinol (Lausanne) 2021; 12:809916. [PMID: 35002980 PMCID: PMC8739998 DOI: 10.3389/fendo.2021.809916] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/06/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Leptin, mainly secreted by fat cells, plays a core role in the regulation of appetite and body weight, and has been proposed as a mediator of metabolic programming. During pregnancy leptin is also secreted by the placenta, as well as being a key regulatory cytokine for the development, homeostatic regulation and nutrient transport within the placenta. South Asians have a high burden of type 2 diabetes, partly attributed to a "thin-fat-phenotype". OBJECTIVE Our aim was to investigate how maternal ethnicity, adiposity and glucose- and lipid/cholesterol levels in pregnancy are related to placental leptin gene (LEP) DNA methylation. METHODS We performed DNA methylation analyses of 13 placental LEP CpG sites in 40 ethnic Europeans and 40 ethnic South Asians participating in the STORK-Groruddalen cohort. RESULTS South Asian ethnicity and gestational diabetes (GDM) were associated with higher placental LEP methylation. The largest ethnic difference was found for CpG11 [5.8% (95% CI: 2.4, 9.2), p<0.001], and the strongest associations with GDM was seen for CpG5 [5.2% (1.4, 9.0), p=0.008]. Higher maternal LDL-cholesterol was associated with lower placental LEP methylation, in particular for CpG11 [-3.6% (-5.5, -1.4) per one mmol/L increase in LDL, p<0.001]. After adjustments, including for nutritional factors involved in the one-carbon-metabolism cycle (vitamin D, B12 and folate levels), ethnic differences in placental LEP methylation were strongly attenuated, while associations with glucose and LDL-cholesterol persisted. CONCLUSIONS Maternal glucose and lipid metabolism is related to placental LEP methylation, whilst metabolic and nutritional factors largely explain a higher methylation level among ethnic South Asians.
Collapse
Affiliation(s)
- Line Sletner
- Department of Pediatric and Adolescents Medicine, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Lørenskog, Norway
- *Correspondence: Line Sletner,
| | - Aina E. F. Moen
- Institute of Clinical Medicine, University of Oslo, Lørenskog, Norway
- Department of Clinical Molecular Biology, Akershus University Hospital, Lørenskog, Norway
- Division of Infection Control and Environmental Health, The Norwegian Institute of Public Health, Oslo, Norway
| | | | - Nadezhda Lekanova
- Department of Clinical Molecular Biology, Akershus University Hospital, Lørenskog, Norway
| | - Christine Sommer
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | | | - Anne K. Jenum
- General Practice Research Unit, Department of General Practice, Institute of Health and Society, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Yvonne Böttcher
- Institute of Clinical Medicine, University of Oslo, Lørenskog, Norway
- Department of Clinical Molecular Biology, Akershus University Hospital, Lørenskog, Norway
| |
Collapse
|
47
|
García-Ricobaraza M, García-Bermúdez M, Torres-Espinola FJ, Segura Moreno MT, Bleyere MN, Díaz-Prieto LE, Nova E, Marcos A, Campoy C. Association study of rs1801282 PPARG gene polymorphism and immune cells and cytokine levels in a Spanish pregnant women cohort and their offspring. J Biomed Sci 2020; 27:101. [PMID: 33250050 PMCID: PMC7702670 DOI: 10.1186/s12929-020-00694-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 11/12/2020] [Indexed: 12/20/2022] Open
Abstract
Background Peroxisome proliferator activated receptor gamma (PPARG) belongs to the nuclear receptor superfamily functioning as transcription factors to regulate cellular differentiation, development and metabolism. Moreover, it has been implicated in the regulation of lipid metabolism, as well as the maturation of monocytes/macrophages and the control of inflammatory reactions. The aim of this study was to evaluate the relationship between the Pro12Ala (rs1808212) PPARG gene polymorphism on immune molecular and cellular components in mothers and their offspring participating in the PREOBE study. Methods DNA from maternal venous blood samples at 24, 34 and 40 gestational weeks, plus cord blood samples was extracted. Pro12Ala PPARG polymorphism genotyping was performed, and immune system markers were analyzed by flow cytometry. Results Study findings revealed no effect of rs1808212 PPARG genotypes on innate immune parameters in mothers and their offspring; however, CD4 + /CD8 + ratio were decreased at 24 and 34 weeks in pregnant women carrying the CG (Pro12Ala) rs1808212 polymorphism, (p = 0,012 and p = 0,030; respectively). Only CD19 levels in peripheral blood were significantly higher at delivery in pregnant women carrying the CC (Pro12Pro) genotype (p ≤ 0.001). Moreover, there were statistically significant differences in leukocytes and neutrophils maternal levels at 34 weeks of gestation, being lower in carriers of Pro12Ala genotype (p = 0.028 and p = 0.031, respectively). Conclusions Results suggest that Pro12Ala PPARG polymorphism may have an effect on some cell and immune parameters in pregnant women during pregnancy and at time of delivery. However, newborn innate immune system does not seems to be influenced by PPARG Pro12Ala polymorphism in cord blood.
Collapse
Affiliation(s)
- Maria García-Ricobaraza
- Department of Paediatrics, School of Medicine, Universidad de Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibsGRANADA, Health Sciences Technological Park, Granada, Spain
| | - Mercedes García-Bermúdez
- Department of Paediatrics, School of Medicine, Universidad de Granada, Granada, Spain. .,Instituto de Investigación Biosanitaria ibsGRANADA, Health Sciences Technological Park, Granada, Spain.
| | - Francisco J Torres-Espinola
- Department of Paediatrics, School of Medicine, Universidad de Granada, Granada, Spain.,EURISTIKOS Excellence Centre for Paediatric Research, Universidad de Granada, Granada, Spain
| | - M Teresa Segura Moreno
- Department of Paediatrics, School of Medicine, Universidad de Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibsGRANADA, Health Sciences Technological Park, Granada, Spain
| | - Mathieu N Bleyere
- Department of Physiology, Haematology and Immunology, Nangui Abrogoua University, Abidjan, Côte d'Ivoire
| | - Ligia E Díaz-Prieto
- Institute of Food Science, Technology and Nutrition (ICTAN), CSIC, Madrid, Spain
| | - Esther Nova
- Institute of Food Science, Technology and Nutrition (ICTAN), CSIC, Madrid, Spain
| | - Ascensión Marcos
- Institute of Food Science, Technology and Nutrition (ICTAN), CSIC, Madrid, Spain
| | - Cristina Campoy
- Department of Paediatrics, School of Medicine, Universidad de Granada, Granada, Spain. .,Instituto de Investigación Biosanitaria ibsGRANADA, Health Sciences Technological Park, Granada, Spain. .,EURISTIKOS Excellence Centre for Paediatric Research, Universidad de Granada, Granada, Spain.
| |
Collapse
|
48
|
Rosario FJ, Powell TL, Gupta MB, Cox L, Jansson T. mTORC1 Transcriptional Regulation of Ribosome Subunits, Protein Synthesis, and Molecular Transport in Primary Human Trophoblast Cells. Front Cell Dev Biol 2020; 8:583801. [PMID: 33324640 PMCID: PMC7726231 DOI: 10.3389/fcell.2020.583801] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
Mechanistic Target of Rapamycin Complex 1 (mTORC1) serves as positive regulator of placental nutrient transport and mitochondrial respiration. The role of mTORC1 signaling in modulating other placental functions is largely unexplored. We used gene array following silencing of raptor to identify genes regulated by mTORC1 in primary human trophoblast (PHT) cells. Seven hundred and thirty-nine genes were differentially expressed; 487 genes were down-regulated and 252 up-regulated. Bioinformatic analyses demonstrated that inhibition of mTORC1 resulted in decreased expression of genes encoding ribosomal proteins in the 60S and 40S ribosome subunits. Furthermore, down-regulated genes were functionally enriched in genes involved in eIF2, sirtuin and mTOR signaling, mitochondrial function, and glutamine and zinc transport. Stress response genes were enriched among up-regulated genes following mTORC1 inhibition. The protein expression of ribosomal proteins RPL26 (RPL26) and Ribosomal Protein S10 (RPS10) was decreased and positively correlated to mTORC1 signaling and System A amino acid transport in human placentas collected from pregnancies complicated by intrauterine growth restriction (IUGR). In conclusion, mTORC1 signaling regulates the expression of trophoblast genes involved in ribosome and protein synthesis, mitochondrial function, lipid metabolism, nutrient transport, and angiogenesis, representing novel links between mTOR signaling and multiple placental functions critical for normal fetal growth and development.
Collapse
Affiliation(s)
- Fredrick J. Rosario
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Theresa L. Powell
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Madhulika B. Gupta
- Department of Biochemistry, University of Western Ontario, London, ON, Canada
| | - Laura Cox
- Center for Precision Medicine, Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Thomas Jansson
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
49
|
Mitanchez D, Jacqueminet S, Lebbah S, Dommergues M, Hajage D, Ciangura C. Relative Contribution of Gestational Weight Gain, Gestational Diabetes, and Maternal Obesity to Neonatal Fat Mass. Nutrients 2020; 12:nu12113434. [PMID: 33182482 PMCID: PMC7698189 DOI: 10.3390/nu12113434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/21/2020] [Accepted: 11/02/2020] [Indexed: 11/16/2022] Open
Abstract
Maternal nutritional and metabolic status influence fetal growth. This study investigated the contribution of gestational weight gain (GWG), gestational diabetes (GDM), and maternal obesity to birthweight and newborn body fat. It is a secondary analysis of a prospective study including 204 women with a pregestational body mass index (BMI) of 18.5-24.9 kg/m2 and 219 women with BMI ≥ 30 kg/m2. GDM was screened in the second and third trimester and was treated by dietary intervention, and insulin if required. Maternal obesity had the greatest effect on skinfolds (+1.4 mm) and cord leptin (+3.5 ng/mL), but no effect on birthweight. GWG was associated with increased birthweight and skinfolds thickness, independently from GDM and maternal obesity. There was an interaction between third trimester weight gain and GDM on birthweight and cord leptin, but not with maternal obesity. On average, +1 kg in third trimester was associated with +13 g in birthweight and with +0.64 ng/mL in cord leptin, and a further 32 g and 0.89 ng/mL increase in diabetic mothers, respectively. Maternal obesity is the main contributor to neonatal body fat. There is an independent association between third trimester weight gain, birthweight, and neonatal body fat, enhanced by GDM despite intensive treatment.
Collapse
Affiliation(s)
- Delphine Mitanchez
- Department of Neonatology, Bretonneau Hospital, François Rabelais University, 37000 Tours, France
- INSERM, UMR_S 938 Saint Antoine Research Centre, Sorbonne University, 75012 Paris, France
- Correspondence: ; Tel.: +33-2-47-47-47-49
| | - Sophie Jacqueminet
- Department of Diabetology, Institute of Cardiometabolism And Nutrition (ICAN), Pitié Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne University, 75013 Paris, France; (S.J.); (C.C.)
| | - Said Lebbah
- Clinic Research Unit, Pitié Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne University, 75013 Paris, France;
| | - Marc Dommergues
- Department of Gynaecology and Obstetrics, Pitié Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne University, 75013 Paris, France;
| | - David Hajage
- INSERM, Public Health Department, Pierre Louis Institute of Epidemiology and Public Health, AP-HP, Centre of Pharmacoepidémiology (Cephepi), Sorbonne University, 75013 Paris, France;
| | - Cécile Ciangura
- Department of Diabetology, Institute of Cardiometabolism And Nutrition (ICAN), Pitié Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne University, 75013 Paris, France; (S.J.); (C.C.)
- Department of Nutrition, Institute of Cardiometbolism And Nutrition (ICAN), Pitié Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne University, 75013 Paris, France
| |
Collapse
|
50
|
Keleher MR, Erickson K, Kechris K, Yang IV, Dabelea D, Friedman JE, Boyle KE, Jansson T. Associations between the activity of placental nutrient-sensing pathways and neonatal and postnatal metabolic health: the ECHO Healthy Start cohort. Int J Obes (Lond) 2020; 44:2203-2212. [PMID: 32327723 PMCID: PMC8329931 DOI: 10.1038/s41366-020-0574-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 03/10/2020] [Accepted: 03/27/2020] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Our hypothesis was that the activity of placental nutrient-sensing pathways is associated with adiposity and metabolic health in childhood. RESEARCH DESIGN AND METHODS Using placental villus samples from healthy mothers from the Healthy Start Study, we measured the abundance and phosphorylation of key intermediates in the mTOR, insulin, AMPK, and ER stress signaling pathways. Using multivariate multiple regression models, we tested the association between placental proteins and offspring adiposity (%fat mass) at birth (n = 109), 4-6 months (n = 104), and 4-6 years old (n = 64), adjusted for offspring sex and age. RESULTS Placental mTORC1 phosphorylation was positively associated with adiposity at birth (R2 = 0.13, P = 0.009) and 4-6 years (R2 = 0.15, P = 0.046). The mTORC2 target PKCα was positively associated with systolic blood pressure at 4-6 years (β = 2.90, P = 0.005). AMPK phosphorylation was positively associated with adiposity at birth (β = 2.32, P = 0.023), but the ratio of phosphorylated to total AMPK was negatively associated with skinfold thickness (β = -2.37, P = 0.022) and body weight (β = -2.92, P = 0.005) at 4-6 years. CONCLUSIONS This is the first report of associations between key placental protein activity measures and longitudinal child outcomes at various life stages. Our data indicate that AMPK and mTOR signaling are linked to cardiometabolic measures at birth and 4-6 years, providing novel insight into potential mechanisms underpinning how metabolic signaling in the placenta is associated with future risk of cardiovascular disease.
Collapse
Affiliation(s)
- Madeline Rose Keleher
- Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- The Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Aurora, CO, USA.
| | - Kathryn Erickson
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Katerina Kechris
- The Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Aurora, CO, USA
- Department of Biostatistics & Informatics, Colorado School of Public Health, Aurora, CO, USA
| | - Ivana V Yang
- The Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Aurora, CO, USA
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Dana Dabelea
- The Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Aurora, CO, USA
- Department of Epidemiology, Colorado School of Public Health, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jacob E Friedman
- Department of Pediatrics, Section of Neonatology, University of Colorado School of Medicine, Aurora, CO, USA
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kristen E Boyle
- Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- The Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Aurora, CO, USA
| | - Thomas Jansson
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|