1
|
Owen MD, Kennedy MG, Quilang RC, Scott EM, Forbes K. The role of microRNAs in pregnancies complicated by maternal diabetes. Clin Sci (Lond) 2024; 138:1179-1207. [PMID: 39289953 PMCID: PMC11409017 DOI: 10.1042/cs20230681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/14/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
With the global prevalence of diabetes increasing, more people of reproductive age are experiencing hyperglycaemic pregnancies. Maternal Type 1 (T1DM) or Type 2 (T2DM) diabetes mellitus, and gestational diabetes mellitus (GDM) are associated with maternal cardiovascular and metabolic complications. Pregnancies complicated by maternal diabetes also increase the risk of short- and long-term health complications for the offspring, including altered fetal growth and the onset of T2DM and cardiometabolic diseases throughout life. Despite advanced methods for improving maternal glucose control, the prevalence of adverse maternal and offspring outcomes associated with maternal diabetes remains high. The placenta is a key organ at the maternal-fetal interface that regulates fetal growth and development. In pregnancies complicated by maternal diabetes, altered placental development and function has been linked to adverse outcomes in both mother and fetus. Emerging evidence suggests that microRNAs (miRNAs) are key molecules involved in mediating these changes. In this review, we describe the role of miRNAs in normal pregnancy and discuss how miRNA dysregulation in the placenta and maternal circulation is associated with suboptimal placental development and pregnancy outcomes in individuals with maternal diabetes. We also discuss evidence demonstrating that miRNA dysregulation may affect the long-term health of mothers and their offspring. As such, miRNAs are potential candidates as biomarkers and therapeutic targets in diabetic pregnancies at risk of adverse outcomes.
Collapse
Affiliation(s)
- Manon D Owen
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
| | - Margeurite G Kennedy
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
- Anthony Nolan Research Institute, Royal Free Hospital, Hampstead, London, U.K
- UCL Cancer Institute, Royal Free Campus, London, U.K
| | - Rachel C Quilang
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Eleanor M Scott
- Division of Clinical and Population Sciences, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
| | - Karen Forbes
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
| |
Collapse
|
2
|
Ren Y, Zeng Y, Wu Y, Zhang Q, Xiao X. Maternal methyl donor supplementation: A potential therapy for metabolic disorder in offspring. J Nutr Biochem 2024; 124:109533. [PMID: 37977406 DOI: 10.1016/j.jnutbio.2023.109533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/07/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
The prevalences of diabetes mellitus and obesity are increasing yearly and has become a serious social burden. In addition to genetic factors, environmental factors in early life development are critical in influencing the prevalence of metabolic disorders in offspring. A growing body of evidence suggests the critical role of early methyl donor intervention in offspring health. Emerging studies have shown that methyl donors can influence offspring metabolism through epigenetic modifications and changing metabolism-related genes. In this review, we focus on the role of folic acid, betaine, vitamin B12, methionine, and choline in protecting against metabolic disorders in offspring. To address the current evidence on the potential role of maternal methyl donors, we summarize clinical studies as well as experimental animal models that support the impact of maternal methyl donors on offspring metabolism and discuss the mechanisms of action that may bring about these positive effects. Given the worldwide prevalence of metabolic disorders, these findings could be utilized in clinical practice, in which methyl donor supplementation in the early life years may reverse metabolic disorders in offspring and block the harmful intergenerational effect.
Collapse
Affiliation(s)
- Yaolin Ren
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yuan Zeng
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yifan Wu
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Qian Zhang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Xinhua Xiao
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
3
|
Aureli A, Recupero R, Mariani M, Manco M, Carlomagno F, Bocchini S, Nicodemo M, Marchili MR, Cianfarani S, Cappa M, Fintini D. Low Levels of Serum Total Vitamin B12 Are Associated with Worse Metabolic Phenotype in a Large Population of Children, Adolescents and Young Adults, from Underweight to Severe Obesity. Int J Mol Sci 2023; 24:16588. [PMID: 38068910 PMCID: PMC10706451 DOI: 10.3390/ijms242316588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/19/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
Vitamin B12 (or cobalamin) is an essential vitamin for DNA synthesis, fatty acid and protein metabolism as well as other metabolic pathways fundamental to the integrity of cells and tissues in humans. It is derived from the diet and mostly stored in the liver. Its deficiency has been associated with metabolic derangements, i.e., obesity, glucose intolerance, increased lipogenesis and metabolic dysfunction-associated steatotic liver disease (MASLD) and steatohepatitis (MASH). However, data with regard to body weight across the whole spectrum (from underweight to severe obesity) in children and young individuals are scarce. The present study aims to describe the association between serum total vitamin B12 and body mass index (BMI) ranging from underweight to severe obesity in a large population of children, adolescents and young adults. This study also investigates associations with visceral adiposity, glucose and lipid metabolism and liver dysfunction. A cross-sectional, single-centre study was conducted at the Paediatrics and Endocrinology units of the "Bambino Gesù Children Hospital", a tertiary referral institution for eating disorders. Clinical charts were reviewed and 601 patients aged from 5 to 25 years were enrolled in order to analyse anthropometric, auxological, clinical, biochemical and liver ultrasound data using robust statistical approaches. Analyses were adjusted for potential confounders. A reduction in serum total B12 levels was associated with a linear increase in body weight, as expressed by WHO BMI SDS (r = -0.31, p < 0.001, BCa 95% -0.38, -0.24). Lower B12 levels were associated with higher waist circumference but only in pubertal girls (r = -0.33, p = 0.008, BCa 95% -0.53, -0.11). Hepatic insulin resistance was higher in males with lower B12 levels (B = -0.003 (-0.007, -0.0001), p = 0.039), but not in females, whereas whole-body insulin resistance was unaffected. Serum lipid profiles (total, HDL and LDL cholesterol and triglycerides) were not influenced by serum cobalamin levels. However, lower cobalamin levels were associated with higher grading of ultrasound-scored hepatic steatosis (ptrend = 0.035). Lastly, both AST and ALT showed a significant and direct correlation with total B12 levels in underweight (r = 0.22 and 0.24, p = 0.002 and <0.001, respectively) and severely obese subjects (r = 0.24 and 0.32, p = 0.002 and <0.001). In conclusion lower vitamin B12 levels are associated with higher body weight, adiposity and with worse metabolic health in a large population of children, adolescents and young adults.
Collapse
Affiliation(s)
- Alessia Aureli
- Endocrinology and Diabetology Unit, “Bambino Gesù” Children’s Hospital, IRCCS, 00146 Rome, Italy; (A.A.); (M.M.); (S.B.); (M.N.); (S.C.); (D.F.)
| | - Rosanna Recupero
- Pediatric Unit, “Bambino Gesù” Children’s Hospital, IRCCS, 00146 Rome, Italy;
- Pediatrics Department, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Michela Mariani
- Endocrinology and Diabetology Unit, “Bambino Gesù” Children’s Hospital, IRCCS, 00146 Rome, Italy; (A.A.); (M.M.); (S.B.); (M.N.); (S.C.); (D.F.)
| | - Melania Manco
- Research Area for Foetal Neonatal and Cardiological Sciences, “Bambino Gesù” Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Francesco Carlomagno
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Sarah Bocchini
- Endocrinology and Diabetology Unit, “Bambino Gesù” Children’s Hospital, IRCCS, 00146 Rome, Italy; (A.A.); (M.M.); (S.B.); (M.N.); (S.C.); (D.F.)
| | - Mirella Nicodemo
- Endocrinology and Diabetology Unit, “Bambino Gesù” Children’s Hospital, IRCCS, 00146 Rome, Italy; (A.A.); (M.M.); (S.B.); (M.N.); (S.C.); (D.F.)
| | - Maria Rosaria Marchili
- Department of Emergency Admission and General Pediatrics, “Bambino Gesù” Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Stefano Cianfarani
- Endocrinology and Diabetology Unit, “Bambino Gesù” Children’s Hospital, IRCCS, 00146 Rome, Italy; (A.A.); (M.M.); (S.B.); (M.N.); (S.C.); (D.F.)
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Department of Women’s and Children’s Health, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Marco Cappa
- Research Area of Innovative Therapies in Endocrinopathies, “Bambino Gesù” Children’s Hospital, IRCCS, 00146 Rome, Italy;
| | - Danilo Fintini
- Endocrinology and Diabetology Unit, “Bambino Gesù” Children’s Hospital, IRCCS, 00146 Rome, Italy; (A.A.); (M.M.); (S.B.); (M.N.); (S.C.); (D.F.)
| |
Collapse
|
4
|
Liu PJ, Ma L, Li R, Liu Y. The Association Between the Imbalance of Single-Carbon Nutrients in Early Pregnancy and Gestational Diabetes Mellitus Risk is Influenced by Serum Selenium Status: A Cohort Study. Diabetes Metab Syndr Obes 2023; 16:3275-3283. [PMID: 37881350 PMCID: PMC10596188 DOI: 10.2147/dmso.s428286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023] Open
Abstract
Purpose The role of imbalanced one-carbon nutrients in gestational diabetes mellitus (GDM) risk has garnered significant interest, yet existing studies yield inconsistent results. Our objective was to assess whether the association between an unbalanced ratio of folate to vitamin B12 and GDM risk is influenced by the status of other micronutrients. Methods This cohort study included 366 singleton-pregnancy Han women enrolled at the Shunyi District Maternal and Child Health Hospital in Beijing, China. During the first trimester of pregnancy, we measured red blood cell (RBC) folate, serum levels of vitamin B12, vitamin D, and selenium. We examined the association between the imbalanced status of RBC folate and vitamin B12 and GDM risk using logistic regression, stratified by serum selenium or vitamin D status. Results Among the 366 women, 67 (18.3%) were diagnosed with GDM, 201 (54.9%) had vitamin D deficiency, and 245 (66.9%) had selenium deficiency. Overall, women with higher RBC folate/vitamin B12 ratios did not exhibit a significantly higher risk of GDM compared to those in reference tertile (all P > 0.05). Subsequently, we divided women into deficient and non-deficient groups based on serum selenium or vitamin D levels. In women with selenium deficiency, those in the highest tertile of the RBC folate/vitamin B12 ratio had the highest odds of GDM [OR: 3.40 (1.16-9.97), P=0.026] after adjusting for covariates. However, similar findings were not observed in pregnancies with normal selenium status. Irrespective of vitamin D status, women with higher RBC folate/vitamin B12 ratios did not exhibit a significantly increased risk of GDM. Conclusion Micronutrient deficiencies are common in early pregnancy. Women with a higher folate/vitamin B12 ratio coupled with selenium deficiency in early pregnancy have a higher GDM risk. These findings underscore the importance of micronutrient assessment in early pregnancy and subsequent interventions for micronutrient deficiencies.
Collapse
Affiliation(s)
- Peng Ju Liu
- Department of Clinical Nutrition, Peking Union Medical College Hospital, China Academic Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Liangkun Ma
- Department of Gynaecology and Obstetrics, Peking Union Medical College Hospital, China Academic Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Rui Li
- Department of Clinical Nutrition, Peking Union Medical College Hospital, China Academic Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yanping Liu
- Department of Clinical Nutrition, Peking Union Medical College Hospital, China Academic Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
5
|
Attardo GM, Benoit JB, Michalkova V, Kondragunta A, Baumann AA, Weiss BL, Malacrida A, Scolari F, Aksoy S. Lipid metabolism dysfunction following symbiont elimination is linked to altered Kennedy pathway homeostasis. iScience 2023; 26:107108. [PMID: 37534171 PMCID: PMC10391724 DOI: 10.1016/j.isci.2023.107108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/27/2023] [Accepted: 06/08/2023] [Indexed: 08/04/2023] Open
Abstract
Lipid metabolism is critical for insect reproduction, especially for species that invest heavily in the early developmental stages of their offspring. The role of symbiotic bacteria during this process is understudied but likely essential. We examined the role of lipid metabolism during the interaction between the viviparous tsetse fly (Glossina morsitans morsitans) and its obligate endosymbiotic bacteria (Wigglesworthia glossinidia) during tsetse pregnancy. We observed increased CTP:phosphocholine cytidylyltransferase (cct1) expression during pregnancy, which is critical for phosphatidylcholine biosynthesis in the Kennedy pathway. Experimental removal of Wigglesworthia impaired lipid metabolism via disruption of the Kennedy pathway, yielding obese mothers whose developing progeny starve. Functional validation via experimental cct1 suppression revealed a phenotype similar to females lacking obligate Wigglesworthia symbionts. These results indicate that, in Glossina, symbiont-derived factors, likely B vitamins, are critical for the proper function of both lipid biosynthesis and lipolysis to maintain tsetse fly fecundity.
Collapse
Affiliation(s)
- Geoffrey M. Attardo
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Department of Entomology and Nematology, Division of Agriculture and Natural Resources, University of California Davis, Davis, CA 95616, USA
| | - Joshua B. Benoit
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Veronika Michalkova
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Section of Molecular and Applied Zoology, Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Alekhya Kondragunta
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Aaron A. Baumann
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Brian L. Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Anna Malacrida
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | - Francesca Scolari
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
- Institute of Molecular Genetics (IGM), Italian National Research Council (CNR), Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| |
Collapse
|
6
|
Ashfaq F, Aljaadi AM, Salaka AS, Noorwali EA, Khatoon F, Khan MI. Comparison of TCN-2 (776C>G) Gene Polymorphism and Vitamin B12 Status with Different Body Mass Index among Saudi Adults. Life (Basel) 2023; 13:life13051185. [PMID: 37240829 DOI: 10.3390/life13051185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Overweight and obesity (OO) are significant public health issues, and many elements, including genetics, epigenetics, sedentary lifestyle, comorbid conditions, psychological and environmental pressures, have been linked to OO. More than 2 billion people are presently impacted by the global obesity epidemic, which is still advancing relentlessly. It is a significant public health concern and a major contributor to healthcare costs, because it increases the chance of developing conditions such as heart disease, stroke, type 2 diabetes, and chronic kidney disease (CKD). Using the ranges of 18.5-25 for normality, 25-30 for overweight, and 30 for obesity, BMI (in kg/m2) is used to identify obesity. Vitamin deficiency is one of the causative factors associated with the increasing trend of obesity. Altered vitamin B12 status is a multifactorial trait; changes in B12 status are produced by several single nucleotide polymorphisms (SNPs) in various genes that interact with the environment. They also support coordinated efforts to alter the built environment that is causing the obesity pandemic. Therefore, the present study aimed to evaluate the TCN-2 (776C>G) gene alteration and vitamin B12 levels with respect to different body mass index, as well as associating BMI with other biochemical parameters. METHODS 250 individuals were involved in the study; among them, 100 were in the healthy weight range category (BMI: 18.5 to <25 kg/m2), 100 were overweight (BMI: 25.0 to <30 kg/m2), and 50 were obese (BMI: >30 kg/m2). Participants visited during the screening program were subjected to blood pressure measurement, and further peripheral blood samples were drawn from all the participants in plain as well as in EDTA vials for biochemical (lipid profile and vitamin B12 level) analysis and single nucleotide polymorphism studies. Extracted DNA from whole blood collected in EDTA vials using kit protocol was used for genotyping by PCR-RFLP. RESULTS The levels of systolic (p < 0.0001) and diastolic blood pressures (p < 0.0001), HDL (p < 0.0001), LDL (p = 0.04), TG (p < 0.0001), cholesterol (p < 0.0001), and VLDL (p < 0.0001) showed significant differences between healthy controls, overweight, and obese groups. The healthy control TCN-2 (776C>G) genotypes were compared with those of overweight and obese participants, and compared to the healthy controls it was observed that overweight (p = 0.01) and obese (p = 0.002) subjects had significant differences in TCN-2 (776C>G) genotypes. For genotypes CG and GG, the odds ratio was 1.61 (0.87-2.95; p = 0.12), and 3.81 (1.47-9.88; p = 0.005) for overweight participants, respectively, and obese participants' calculated odds ratios were 2.49 (1.16-5.36; p = 0.01) and 5.79 (1.93-17.35; p = 0.001), respectively. The relative risk for genotypes CG and GG, was 1.25 (0.93-1.68; p = 0.12), 2.17 (1.12-4.17; p = 0.02) for overweight participants, while the obese participants' calculated relative risks were 1.31 (1.03-1.68; p = 0.01) and 2.02 (1.12-3.65; p = 0.001), respectively. Vitamin B12 levels were analyzed, and it was observed that a significant difference existed among overweight (305.5 pmol/L, p < 0.0001) and obese patients (229 pmol/L, p < 0.0001), respectively, as compared to healthy controls (385.5 pmol/L). Correlation analysis showed a significant association of vitamin B12 level with TG, cholesterol and VLDL; it showed a negative correlation, suggesting that decreases in B12 levels may impact the lipid profile. CONCLUSION The study concluded that a predisposition to the GG genotype of TCN-2 gene polymorphism (776C>G) may increase susceptibility to obesity and the related complications, and higher odds and relative risk for the GG genotype may increase the risk of having obesity and further related complications. Lower vitamin B12 levels were linked with obesity and overweight, and impaired lipid parameters suggested that lower vitamin B12 may impact the altered lipid profile.
Collapse
Affiliation(s)
- Fauzia Ashfaq
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Abeer M Aljaadi
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Afnan S Salaka
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Essra A Noorwali
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Fahmida Khatoon
- Department of Biochemistry, College of Medicine, University of Hail, Hail P.O. Box 2440, Saudi Arabia
| | - Mohammad Idreesh Khan
- Department of Clinical Nutrition, College of Applied Health Sciences in Ar Rass, Qassim University, Ar Rass 51921, Saudi Arabia
| |
Collapse
|
7
|
Hojeij B, Rousian M, Sinclair KD, Dinnyes A, Steegers-Theunissen RPM, Schoenmakers S. Periconceptional biomarkers for maternal obesity: a systematic review. Rev Endocr Metab Disord 2023; 24:139-175. [PMID: 36520252 PMCID: PMC10023635 DOI: 10.1007/s11154-022-09762-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/01/2022] [Indexed: 12/23/2022]
Abstract
Periconceptional maternal obesity is linked to adverse maternal and neonatal outcomes. Identifying periconceptional biomarkers of pathways affected by maternal obesity can unravel pathophysiologic mechanisms and identify individuals at risk of adverse clinical outcomes. The literature was systematically reviewed to identify periconceptional biomarkers of the endocrine, inflammatory and one-carbon metabolic pathways influenced by maternal obesity. A search was conducted in Embase, Ovid Medline All, Web of Science Core Collection and Cochrane Central Register of Controlled Trials databases, complemented by manual search in PubMed until December 31st, 2020. Eligible studies were those that measured biomarker(s) in relation to maternal obesity, overweight/obesity or body mass index (BMI) during the periconceptional period (14 weeks preconception until 14 weeks post conception). The ErasmusAGE score was used to assess the quality of included studies. Fifty-one articles were included that evaluated over 40 biomarkers. Endocrine biomarkers associated with maternal obesity included leptin, insulin, thyroid stimulating hormone, adiponectin, progesterone, free T4 and human chorionic gonadotropin. C-reactive protein was associated with obesity as part of the inflammatory pathway, while the associated one-carbon metabolism biomarkers were folate and vitamin B12. BMI was positively associated with leptin, C-reactive protein and insulin resistance, and negatively associated with Free T4, progesterone and human chorionic gonadotropin. Concerning the remaining studied biomarkers, strong conclusions could not be established due to limited or contradictory data. Future research should focus on determining the predictive value of the optimal set of biomarkers for their use in clinical settings. The most promising biomarkers include leptin, adiponectin, human chorionic gonadotropin, insulin, progesterone and CRP.
Collapse
Affiliation(s)
- Batoul Hojeij
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, 3015GD, The Netherlands
| | - Melek Rousian
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, 3015GD, The Netherlands
| | - Kevin D Sinclair
- School of Biosciences, Sutton Bonnington Campus, University of Nottingham, Leicestershire, LE12 6HD, UK
| | - Andras Dinnyes
- BioTalentum Ltd., Godollo, 2100, Hungary
- Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, 6720, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Godollo, 2100, Hungary
| | | | - Sam Schoenmakers
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, 3015GD, The Netherlands.
| |
Collapse
|
8
|
Chibireva M, Szoke D, Borille S, Rovegno L, Panteghini M. Association of maternal folate and B12 vitamin status with gestational diabetes mellitus: still an open issue. Clin Chim Acta 2023; 544:117307. [PMID: 37019326 DOI: 10.1016/j.cca.2023.117307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/27/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023]
Abstract
OBJECTIVES There is conflicting evidence about the role of folate and B12in gestational diabetes mellitus (GDM) onset. The association of vitamin status with GDM was therefore revalued, also measuring the B12active form holotranscobalamin. METHODS 677 women were evaluated at 24-28 weeks of gestation when OGTT was carried out. The 'one-step' strategy was employed for GDM diagnosis. Odds ratio (OR) of having GDM was estimated to quantify the association with vitamin levels. RESULTS 180 women (26.6%) had GDM. They were older (median, 34.6 vs. 33.3 years, p=0.019) and had higher body mass index (BMI) (25.8 vs. 24.1 kg/m2, p<0.001). Multiparous women had lower levels of all evaluated micronutrients, while overweight lowered both folate and total B12, but not holotranscobalamin. Lower total B12(270 vs. 290 ng/L, p=0.005), but not holotranscobalamin, was observed in GDM, being weakly negatively correlated with fasting glycemia (r=-0.11, p=0.005) and 1-h OGTT serum insulin (r=-0.09, p=0.014). At multivariate analysis, age, BMI and multiparity remained the strongest GDM predictors, while total B12(but not holotranscobalamin and folate) showed a slight protective effect (OR=0.996, p=0.038). CONCLUSIONS A weak association between total B12 levels and GDM risk was shown, but it was not confirmed when holotranscobalamin was measured.
Collapse
Affiliation(s)
| | | | | | | | - Mauro Panteghini
- Luigi Sacco University Hospital, Milan, Italy; Luigi Sacco Department of Biomedical and Clinical Sciences, Università Degli Studi di Milano, Milan, Italy
| |
Collapse
|
9
|
Jankovic-Karasoulos T, Smith MD, Leemaqz S, Williamson J, McCullough D, Arthurs AL, Jones LA, Bogias KJ, Mol BW, Dalton J, Dekker GA, Roberts CT. Elevated Maternal Folate Status and Changes in Maternal Prolactin, Placental Lactogen and Placental Growth Hormone Following Folic Acid Food Fortification: Evidence from Two Prospective Pregnancy Cohorts. Nutrients 2023; 15:1553. [PMID: 37049394 PMCID: PMC10097170 DOI: 10.3390/nu15071553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 04/14/2023] Open
Abstract
Folic acid (FA) food fortification in Australia has resulted in a higher-than-expected intake of FA during pregnancy. High FA intake is associated with increased insulin resistance and gestational diabetes. We aimed to establish whether maternal one-carbon metabolism and hormones that regulate glucose homeostasis change in healthy pregnancies post-FA food fortification. Circulating folate, B12, homocysteine, prolactin (PRL), human placental lactogen (hPL) and placental growth hormone (GH2) were measured in early pregnancy maternal blood in women with uncomplicated pregnancies prior to (SCOPE: N = 604) and post (STOP: N = 711)-FA food fortification. FA food fortification resulted in 63% higher maternal folate. STOP women had lower hPL (33%) and GH2 (43%) after 10 weeks of gestation, but they had higher PRL (29%) and hPL (28%) after 16 weeks. FA supplementation during pregnancy increased maternal folate and reduced homocysteine but only in the SCOPE group, and it was associated with 54% higher PRL in SCOPE but 28% lower PRL in STOP. FA food fortification increased maternal folate status, but supplements no longer had an effect, thereby calling into question their utility. An altered secretion of hormones that regulate glucose homeostasis in pregnancy could place women post-fortification at an increased risk of insulin resistance and gestational diabetes, particularly for older women and those with obesity.
Collapse
Affiliation(s)
| | - Melanie D. Smith
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA 5000, Australia
| | - Shalem Leemaqz
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA 5000, Australia
| | - Jessica Williamson
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA 5000, Australia
| | - Dylan McCullough
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA 5000, Australia
| | - Anya L. Arthurs
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA 5000, Australia
| | - Lauren A. Jones
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA 5000, Australia
| | | | - Ben W. Mol
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3800, Australia
| | - Julia Dalton
- Lyell McEwin Hospital, Adelaide, SA 5112, Australia
| | - Gustaaf A. Dekker
- Lyell McEwin Hospital, Adelaide, SA 5112, Australia
- Lyell McEwin Hospital, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Claire T. Roberts
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA 5000, Australia
| |
Collapse
|
10
|
Kowalczyk M, Piwowarski JP, Wardaszka A, Średnicka P, Wójcicki M, Juszczuk-Kubiak E. Application of In Vitro Models for Studying the Mechanisms Underlying the Obesogenic Action of Endocrine-Disrupting Chemicals (EDCs) as Food Contaminants-A Review. Int J Mol Sci 2023; 24:ijms24021083. [PMID: 36674599 PMCID: PMC9866663 DOI: 10.3390/ijms24021083] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Obesogenic endocrine-disrupting chemicals (EDCs) belong to the group of environmental contaminants, which can adversely affect human health. A growing body of evidence supports that chronic exposure to EDCs can contribute to a rapid increase in obesity among adults and children, especially in wealthy industrialized countries with a high production of widely used industrial chemicals such as plasticizers (bisphenols and phthalates), parabens, flame retardants, and pesticides. The main source of human exposure to obesogenic EDCs is through diet, particularly with the consumption of contaminated food such as meat, fish, fruit, vegetables, milk, and dairy products. EDCs can promote obesity by stimulating adipo- and lipogenesis of target cells such as adipocytes and hepatocytes, disrupting glucose metabolism and insulin secretion, and impacting hormonal appetite/satiety regulation. In vitro models still play an essential role in investigating potential environmental obesogens. The review aimed to provide information on currently available two-dimensional (2D) in vitro animal and human cell models applied for studying the mechanisms of obesogenic action of various industrial chemicals such as food contaminants. The advantages and limitations of in vitro models representing the crucial endocrine tissue (adipose tissue) and organs (liver and pancreas) involved in the etiology of obesity and metabolic diseases, which are applied to evaluate the effects of obesogenic EDCs and their disruption activity, were thoroughly and critically discussed.
Collapse
Affiliation(s)
- Monika Kowalczyk
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland
| | - Jakub P. Piwowarski
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, 02-097 Warsaw, Poland
- Correspondence: (J.P.P.); (E.J.-K.)
| | - Artur Wardaszka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland
| | - Paulina Średnicka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland
| | - Michał Wójcicki
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland
| | - Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland
- Correspondence: (J.P.P.); (E.J.-K.)
| |
Collapse
|
11
|
Shi Y, Zhong H, Pang L. Maternal micronutrient disturbance as risks of offspring metabolic syndrome. J Trace Elem Med Biol 2023; 75:127097. [PMID: 36272194 DOI: 10.1016/j.jtemb.2022.127097] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
Abstract
Metabolic syndrome (MetS) is defined as a constellation of individual metabolic disturbances, including central obesity, hypertension, dyslipidemia, and insulin resistance. The established pathogenesis of MetS varies extensively with gender, age, ethnic background, and nutritional status. In terms of nutritional status, micronutrients are more likely to be discounted as essential components of required nutrition than macronutrients due to the small amount required. Numerous observational studies have shown that pregnant women frequently experience malnutrition, especially in developing and low-income countries, resulting in chronic MetS in the offspring due to the urgent and increasing demands for micronutrients during gestation and lactation. Over the past few decades, scientific developments have revolutionized our understanding of the association between balanced maternal micronutrients and MetS in the offspring. Examples of successful individual, dual, or multiple maternal micronutrient interventions on the offspring include iron for hypertension, selenium for type 2 diabetes, and a combination of folate and vitamin D for adiposity. In this review, we aim to elucidate the effects of maternal micronutrient intake on offspring metabolic homeostasis and discuss potential perspectives and challenges in the field of maternal micronutrient interventions.
Collapse
Affiliation(s)
- Yujie Shi
- Nanjing Maternal and Child Health Medical Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China.
| | - Hong Zhong
- Nanjing Maternal and Child Health Medical Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Lingxia Pang
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China.
| |
Collapse
|
12
|
Blasetti A, Quarta A, Guarino M, Cicolini I, Iannucci D, Giannini C, Chiarelli F. Role of Prenatal Nutrition in the Development of Insulin Resistance in Children. Nutrients 2022; 15:nu15010087. [PMID: 36615744 PMCID: PMC9824240 DOI: 10.3390/nu15010087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Nutrition during the prenatal period is crucial for the development of insulin resistance (IR) and its consequences in children. The relationship between intrauterine environment, fetal nutrition and the onset of IR, type 2 diabetes (T2D), obesity and metabolic syndrome later in life has been confirmed in many studies. The intake of carbohydrates, protein, fat and micronutrients during pregnancy seems to damage fetal metabolism programming; indeed, epigenetic mechanisms change glucose-insulin metabolism. Intrauterine growth restriction (IUGR) induced by unbalanced nutrient intake during prenatal life cause fetal adipose tissue and pancreatic beta-cell dysfunction. In this review we have summarized and discussed the role of maternal nutrition in preventing insulin resistance in youth.
Collapse
|
13
|
He J, Jiang D, Cui X, Ji C. Vitamin B12 status and folic acid/vitamin B12 related to the risk of gestational diabetes mellitus in pregnancy: a systematic review and meta-analysis of observational studies. BMC Pregnancy Childbirth 2022; 22:587. [PMID: 35870897 PMCID: PMC9308279 DOI: 10.1186/s12884-022-04911-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/11/2022] [Indexed: 12/02/2022] Open
Abstract
Background This review was conducted to investigate the association between serum vitamin B12 levels as well as folic acid/vitamin B12 during pregnancy and the risk of gestational diabetes mellitus (GDM). Methods A comprehensive search of electronic databases (Embase, PubMed, and Web of Science) was performed. The odds ratios (ORs) with 95% confidence intervals (CIs) of GDM risk were summarized using a random effects model. We also performed subgroup analyses to explore the source of heterogeneity. Results A total of 10 studies, including 10,595 pregnant women were assessed. Women with vitamin B12 deficiency were at higher risk for developing GDM when compared with those who were vitamin B12 sufficient (OR, 1.46; 95% CI 1.21–1.79; I2: 59.0%). Subgroup analysis indicated that this association might differ based on sample size and geographical distribution. Elevated vitamin B12 levels may decrease the risk of GDM by 23%. The role of excess folic acid and low vitamin B12 levels in the occurrence of GDM is also controversial. Conclusion In summary, vitamin B12 deficiency is associated with increased risk of GDM, it is necessary to pay more attention to the balance of vitamin B12 and folic acid. However, more in-depth studies across multiple populations are needed to verify these results. Supplementary Information The online version contains supplementary material available at 10.1186/s12884-022-04911-9.
Collapse
|
14
|
PIWI-Interacting RNA (piRNA) and Epigenetic Editing in Environmental Health Sciences. Curr Environ Health Rep 2022; 9:650-660. [PMID: 35917009 DOI: 10.1007/s40572-022-00372-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW: The epigenome modulates gene expression in response to environmental stimuli. Modifications to the epigenome are potentially reversible, making them a promising therapeutic approach to mitigate environmental exposure effects on human health. This review details currently available genome and epigenome editing technologies and highlights ncRNA, including piRNA, as potential tools for targeted epigenome editing. RECENT FINDINGS: Zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), and clustered regularly interspaced short palindromic repeats (CRISPR) associated nuclease (CRISPR/Cas) research has significantly advanced genome editing technology, with broad promise in genetic research and targeted therapies. Initial epigenome-directed therapies relied on global modification and suffered from limited specificity. Adapted from current genome editing tools, zinc finger protein (ZFP), TALE, and CRISPR/nuclease-deactivated Cas (dCas) systems now confer locus-specific epigenome editing, with promising applicability in the field of environmental health sciences. However, high incidence of off-target effects and time taken for screening limit their use. FUTURE DEVELOPMENT: ncRNA serve as a versatile biomarker with well-characterized regulatory mechanisms that can easily be adapted to edit the epigenome. For instance, the transposon silencing mechanism of germline PIWI-interacting RNAs (piRNA) could be engineered to specifically methylate a given gene, overcoming pitfalls of current global modifiers. Future developments in epigenome editing technologies will inform risk assessment through mechanistic investigation and serve as potential modes of intervention to mitigate environmentally induced adverse health outcomes later in life.
Collapse
|
15
|
Cechinel LR, Batabyal RA, Freishtat RJ, Zohn IE. Parental obesity-induced changes in developmental programming. Front Cell Dev Biol 2022; 10:918080. [PMID: 36274855 PMCID: PMC9585252 DOI: 10.3389/fcell.2022.918080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Many studies support the link between parental obesity and the predisposition to develop adult-onset metabolic syndromes that include obesity, high blood pressure, dyslipidemia, insulin resistance, and diabetes in the offspring. As the prevalence of obesity increases in persons of childbearing age, so does metabolic syndrome in their descendants. Understanding how parental obesity alters metabolic programs in the progeny, predisposing them to adult-onset metabolic syndrome, is key to breaking this cycle. This review explores the basis for altered metabolism of offspring exposed to overnutrition by focusing on critical developmental processes influenced by parental obesity. We draw from human and animal model studies, highlighting the adaptations in metabolism that occur during normal pregnancy that become maladaptive with obesity. We describe essential phases of development impacted by parental obesity that contribute to long-term alterations in metabolism in the offspring. These encompass gamete formation, placentation, adipogenesis, pancreas development, and development of brain appetite control circuits. Parental obesity alters the developmental programming of these organs in part by inducing epigenetic changes with long-term consequences on metabolism. While exposure to parental obesity during any of these phases is sufficient to alter long-term metabolism, offspring often experience multiple exposures throughout their development. These insults accumulate to increase further the susceptibility of the offspring to the obesogenic environments of modern society.
Collapse
|
16
|
Wang R, Bai Y, Yang Y. Effects of dietary supplementation of different levels of vitamin B 12 on the liver metabolism of laying hens. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5787-5794. [PMID: 35411555 DOI: 10.1002/jsfa.11928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Vitamin B12 plays an important role in lipid, protein, carbohydrate and nucleic acid metabolism. We investigated the effect of supplementing layers' diets with different vitamin B12 levels on liver metabolism using a liquid chromatography-mass spectrometry-based metabolomic approach to observe and analyse wide-target metabolomics in the liver. RESULTS We assigned hens to three groups, namely blank control group without vitamin B12 diet (BCG), normal control group with 25 μg kg-1 vitamin B12 (NCG) and vitamin B12 supplement group I with 100 μg kg-1 vitamin (VBSG I). The VBSG I group layers had higher (P < 0.05) vitamin B12 concentration than those from other groups. The egg yolk vitamin B12 concentration increased (P < 0.01) with the increasing vitamin B12 dietary supplemental level. Between the NCG versus BCG, VBSG I versus BCG, and VBSG I versus NCG groups, 11, 20 and 11 metabolites were significantly changed, respectively. The KEGG pathway of vitamin B6 metabolism was significantly impacted in the NCG layers than those from BCG; seven and five pathways were significantly impacted in the VBSG I layers compared with those from BCG and NCG, including pyrimidine metabolism, vitamin B6 metabolism, glycerophospholipid metabolism, etc. CONCLUSION: We concluded that 25 μg kg-1 vitamin B12 supplementation in corn-soybean meal-based layer diet increased the egg yolk vitamin B12 concentration and impacted the vitamin B6 metabolic pathway, and 100 μg kg-1 of it increased the egg yolk and liver vitamin B12 concentrations and impacted vitamin B6 , lipid, nucleic acid and amino acid metabolic pathways. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rui Wang
- Laboratory of Poultry Production, College of Animal Science, Shanxi Agricultural University, Jinzhong, China
- Department of Life Sciences, Luliang University, Lvliang, China
| | - Yan Bai
- Laboratory of Poultry Production, College of Animal Science, Shanxi Agricultural University, Jinzhong, China
| | - Yu Yang
- Laboratory of Poultry Production, College of Animal Science, Shanxi Agricultural University, Jinzhong, China
| |
Collapse
|
17
|
AlMuraikhy S, Anwardeen N, Naeem A, Sellami M, Domling A, Agouni A, Elrayess MA. Comparing the Metabolic Profiles Associated with Fitness Status between Insulin-Sensitive and Insulin-Resistant Non-Obese Individuals. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191912169. [PMID: 36231474 PMCID: PMC9564877 DOI: 10.3390/ijerph191912169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 05/27/2023]
Abstract
(1) Background: Young non-obese insulin-resistant (IR) individuals could be at risk of developing metabolic diseases including type 2 diabetes mellitus. The protective effect of physical activity in this apparently healthy group is expected but not well characterized. In this study, clinically relevant metabolic profiles were determined and compared among active and sedentary insulin-sensitive (IS) and IR young non-obese individuals. (2) Methods: Data obtained from Qatar Biobank for 2110 young (20-30 years old) non-obese (BMI ≤ 30) healthy participants were divided into four groups, insulin-sensitive active (ISA, 30.7%), insulin-sensitive sedentary (ISS, 21.4%), insulin-resistant active (IRA, 20%), and insulin-resistant sedentary (IRS, 23.3%), using the homeostatic model assessment of insulin resistance (HOMA-IR) and physical activity questionnaires. The effect of physical activity on 66 clinically relevant biochemical tests was compared among the four groups using linear models. (3) Results: Overall, non-obese IR participants had significantly (p ≤ 0.001) worse vital signs, blood sugar profiles, inflammatory markers, liver function, lipid profiles, and vitamin D levels than their IS counterparts. Physical activity was positively associated with left handgrip (p ≤ 0.01) and levels of creatine kinase (p ≤ 0.001) and creatine kinase-2 (p ≤ 0.001) in both IS and IR subjects. Furthermore, physical activity was positively associated with levels of creatinine (p ≤ 0.01) and total vitamin D (p = 0.006) in the IR group and AST (p = 0.001), folate (p = 0.001), and hematocrit (p = 0.007) in the IS group. Conversely, physical inactivity was negatively associated with the white blood cell count (p = 0.001) and an absolute number of lymphocytes (p = 0.003) in the IR subjects and with triglycerides (p = 0.005) and GGT-2 (p ≤ 0.001) in the IS counterparts. (4) Conclusions: An independent effect of moderate physical activity was observed in non-obese apparently healthy individuals a with different HOMA-IR index. The effect was marked by an improved health profile including higher vitamin D and lower inflammatory markers in IRA compared to IRS, and a higher oxygen carrying capacity and lipid profile in ISA compared to the ISS counterparts.
Collapse
Affiliation(s)
- Shamma AlMuraikhy
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
- Groningen Research Institute of Pharmacy, Drug Design, Groningen University, 9712 CP Groningen, The Netherlands
| | - Najeha Anwardeen
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Aisha Naeem
- Ministry of Public Health, Doha P.O. Box 42, Qatar
- Department of Oncology and Pathology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3800 Reservoir Rd., NW, Washington, DC 20007, USA
| | - Maha Sellami
- Physical Education Department (PE), College of Education, Qatar University, Doha P.O. Box 2713, Qatar
| | - Alexander Domling
- Groningen Research Institute of Pharmacy, Drug Design, Groningen University, 9712 CP Groningen, The Netherlands
| | - Abdelali Agouni
- College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Mohamed A. Elrayess
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
- College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
18
|
Bell DSH. Metformin-induced vitamin B12 deficiency can cause or worsen distal symmetrical, autonomic and cardiac neuropathy in the patient with diabetes. Diabetes Obes Metab 2022; 24:1423-1428. [PMID: 35491956 DOI: 10.1111/dom.14734] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/15/2022] [Accepted: 04/28/2022] [Indexed: 11/29/2022]
Abstract
Metformin blocks the absorption of vitamin B12 through a mechanism that has not been established but could be because of interference with the calcium-dependent binding of the intrinsic factor vitamin B12 complex to the cubam receptor in the terminal ileum. The subsequent deficiency of vitamin B12 may cause or accelerate distal symmetrical and autonomic neuropathy in the patient with diabetes. Several observational studies and meta-analyses have reported a significant association between metformin utilization and vitamin B12 deficiency. Prospective studies have shown that not only do metformin utilizers have lower vitamin B12 levels but they also have higher frequencies of distal symmetrical polyneuropathy and autonomic neuropathy (including cardiac denervation, which is associated with increased incidences of cardiac arrhythmias, cardiac events and mortality). Therefore, periodic monitoring of vitamin B12 is recommended in all patients who utilize metformin, particularly if metformin has been used for over 5 years at which stage hepatic stores of vitamin B12 would probably be depleted. Factors that accelerate the loss of hepatic vitamin B12 stores are proton pump inhibitors, bariatric surgery, being elderly and having an increased turnover of red blood cells. If serum vitamin B12 levels are borderline, measurement of methylmalonic acid and homocysteine levels can detect vitamin B12 deficiency at its earliest stage. Therapies include prophylactic calcium and vitamin B12 supplements, metformin withdrawal, replenishing vitamin B12 stores with intramuscular or oral vitamin B12 therapy and regular monitoring of vitamin B12 levels and vitamin B12 supplements if metformin continues to be utilized. With adequate vitamin B12 replacement, while symptoms of neuropathy may or may not improve, objective findings of neuropathy stabilize but do not improve.
Collapse
|
19
|
Žarković M, Hufsky F, Markert UR, Marz M. The Role of Non-Coding RNAs in the Human Placenta. Cells 2022; 11:1588. [PMID: 35563893 PMCID: PMC9104507 DOI: 10.3390/cells11091588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 12/11/2022] Open
Abstract
Non-coding RNAs (ncRNAs) play a central and regulatory role in almost all cells, organs, and species, which has been broadly recognized since the human ENCODE project and several other genome projects. Nevertheless, a small fraction of ncRNAs have been identified, and in the placenta they have been investigated very marginally. To date, most examples of ncRNAs which have been identified to be specific for fetal tissues, including placenta, are members of the group of microRNAs (miRNAs). Due to their quantity, it can be expected that the fairly larger group of other ncRNAs exerts far stronger effects than miRNAs. The syncytiotrophoblast of fetal origin forms the interface between fetus and mother, and releases permanently extracellular vesicles (EVs) into the maternal circulation which contain fetal proteins and RNA, including ncRNA, for communication with neighboring and distant maternal cells. Disorders of ncRNA in placental tissue, especially in trophoblast cells, and in EVs seem to be involved in pregnancy disorders, potentially as a cause or consequence. This review summarizes the current knowledge on placental ncRNA, their transport in EVs, and their involvement and pregnancy pathologies, as well as their potential for novel diagnostic tools.
Collapse
Affiliation(s)
- Milena Žarković
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany; (M.Ž.); (F.H.)
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany;
| | - Franziska Hufsky
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany; (M.Ž.); (F.H.)
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
| | - Udo R. Markert
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany;
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany; (M.Ž.); (F.H.)
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
- FLI Leibniz Institute for Age Research, Beutenbergstraße 11, 07745 Jena, Germany
- Aging Research Center (ARC), 07745 Jena, Germany
| |
Collapse
|
20
|
Sørensen AE, van Poppel MNM, Desoye G, Simmons D, Damm P, Jensen DM, Dalgaard LT. The Temporal Profile of Circulating miRNAs during Gestation in Overweight and Obese Women with or without Gestational Diabetes Mellitus. Biomedicines 2022; 10:biomedicines10020482. [PMID: 35203692 PMCID: PMC8962411 DOI: 10.3390/biomedicines10020482] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Circulating non-coding microRNAs (miRNAs) are important for placentation, but their expression profiles across gestation in pregnancies, which are complicated by gestational diabetes mellitus (GDM), have not been fully established. Investigating a single time point is insufficient, as pregnancy is dynamic, involving several processes, including placenta development, trophoblast proliferation and differentiation and oxygen sensing. Thus, the aim of this study was to compare the temporal expression of serum miRNAs in pregnant women with and without GDM. This is a nested case-control study of longitudinal data obtained from a multicentric European study (the ‘DALI’ study). All women (n = 82) were overweight/obese (BMI ≥ 29 kg/m2) and were normal glucose tolerant (NGT) at baseline (before 20 weeks of gestation). We selected women (n = 41) who were diagnosed with GDM at 24–28 weeks, according to the IADPSG/WHO2013 criteria. They were matched with 41 women who remained NGT in their pregnancy. miRNA (miR-16-5p, -29a-3p, -103-3p, -134-5p, -122-5p, -223-3p, -330-3p and miR-433-3p) were selected based on their suggested importance for placentation, and measurements were performed at baseline and at 24–28 and 35–37 weeks of gestation. Women with GDM presented with overall miRNA levels above those observed for women remaining NGT. In both groups, levels of miR-29a-3p and miR-134-5p increased consistently with progressing gestation. The change over time only differed for miR-29a-3p when comparing women with GDM with those remaining NGT (p = 0.044). Our findings indicate that among overweight/obese women who later develop GDM, miRNA levels are already elevated early in pregnancy and remain above those of women who remain NGT during their pregnancy. Maternal circulating miRNAs may provide further insight into placentation and the cross talk between the maternal and fetal compartments.
Collapse
Affiliation(s)
- Anja Elaine Sørensen
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark;
- Correspondence: ; Tel.: +45-4674-3994
| | - Mireille N. M. van Poppel
- Faculty of Environmental and Regional Sciences and Education, Institute of Human Movement Science, Sport and Health, University of Graz, 8010 Graz, Austria;
| | - Gernot Desoye
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria;
- Center for Pregnant Women with Diabetes, Department of Obstetrics, Rigshospitalet, 2100 Copenhagen, Denmark;
| | - David Simmons
- Macarthur Clinical School, School of Medicine, Western Sydney University, Campbelltown, NSE 2560, Australia;
| | - Peter Damm
- Center for Pregnant Women with Diabetes, Department of Obstetrics, Rigshospitalet, 2100 Copenhagen, Denmark;
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Dorte Møller Jensen
- Department of Gynecology and Obstetrics, Odense University Hospital, 5000 Odense, Denmark;
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, 5000 Odense, Denmark
- Steno Diabetes Center Odense, Department of Gynecology and Obstetrics, Odense University Hospital, 5000 Odense, Denmark
| | - Louise Torp Dalgaard
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark;
| | | |
Collapse
|
21
|
Li N, Jiang J, Guo L. Effects of maternal folate and vitamin B12 on gestational diabetes mellitus: a dose-response meta-analysis of observational studies. Eur J Clin Nutr 2022; 76:1502-1512. [PMID: 35105943 DOI: 10.1038/s41430-022-01076-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 12/16/2022]
Abstract
To comprehensively estimate the association of gestational diabetes mellitus (GDM) risk with maternal red blood cell (RBC) folate, plasma/serum folate, dose and duration of folic acid supplement (FAS) intake and vitamin B12 separately. PubMed, Web of science, CNKI, and Wanfang Databases were searched through March 26, 2021. We synthesized data using random-effects model meta-analysis in Stata 12.0. Sensitivity, subgroup and dose-response analyses were also performed. The certainty of evidence was evaluated using the Grading of Recommendations, Assessment, Development and Evaluations (GRADE). Twenty six datasets from thirteen eligible observational studies were included in the study. We found a significant increase of GDM risk with the highest versus lowest category of RBC folate (OR = 1.96, 95% CI: 1.48-2.61, I2 = 0.0%, moderate-certainty evidence) and plasma/serum folate (OR = 1.23, 1.02-1.48, I2 = 57.8%, low-certainty evidence). The dose-response analysis revealed that each 200 ng/ml increase in RBC folate was significantly associated with 8% higher GDM risk. No significant association between dose of FAS intake and GDM risk was found with very low cetainty. Meanwhile, longer duration (≥3 months) of FAS conferred 56% significant higher GDM risk (OR = 1.56, 1.02-2.39, very low certainty evidence). No significant association of GDM risk with highest plasma/serum B12 was observed compared to lowest B12 (OR = 0.77, 0.58-1.02, very low-certainty evidence). Moderate-certainty evidence suggests that higher RBC folate appears to significantly increase GDM risk. Higher plasma/serum folate may increase GDM risk but with low certainty. Further well-designed trials or prospective studies are needed.
Collapse
Affiliation(s)
- Nana Li
- Department of Nutrient, Zhengzhou Central Hospital Affiliated to Zhengzhou University, No.195, Tongbai Road, Zhengzhou, China.
| | - Jicheng Jiang
- Department of Big Data Center for Cardiovascular Disease, Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Leilei Guo
- Hospital Infection Management Section, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| |
Collapse
|
22
|
Mahmood K, Al-Rasol EA. The effect of Vit B12 deficiency, homocystein, and lipid metabolism in association with increased risk of gestational diabetes mellitus. MEDICAL JOURNAL OF BABYLON 2022. [DOI: 10.4103/mjbl.mjbl_53_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
23
|
Hieronimus B, Ensenauer R. Influence of maternal and paternal pre-conception overweight/obesity on offspring outcomes and strategies for prevention. Eur J Clin Nutr 2021; 75:1735-1744. [PMID: 34131301 PMCID: PMC8636250 DOI: 10.1038/s41430-021-00920-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/22/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023]
Abstract
Overweight, obesity, and their comorbidities remain global health challenges. When established early in life, overweight is often sustained into adulthood and contributes to the early onset of non-communicable diseases. Parental pre-conception overweight and obesity is a risk factor for overweight and obesity in childhood and beyond. This increased risk likely is based on an interplay of genetic alterations and environmental exposures already at the beginning of life, although mechanisms are still poorly defined. In this narrative review, potential routes of transmission of pre-conceptional overweight/obesity from mothers and fathers to their offspring as well as prevention strategies are discussed. Observational evidence suggests that metabolic changes due to parental overweight/obesity affect epigenetic markers in oocytes and sperms alike and may influence epigenetic programming and reprogramming processes during embryogenesis. While weight reduction in overweight/obese men and women, who plan to become pregnant, seems advisable to improve undesirable outcomes in offspring, caution might be warranted. Limited evidence suggests that weight loss in men and women in close proximity to conception might increase undesirable offspring outcomes at birth due to nutritional deficits and/or metabolic disturbances in the parent also affecting gamete quality. A change in the dietary pattern might be more advisable. The data reviewed here suggest that pre-conception intervention strategies should shift from women to couples, and future studies should address possible interactions between maternal and paternal contribution to longitudinal childhood outcomes. Randomized controlled trials focusing on effects of pre-conceptional diet quality on long-term offspring health are warranted.
Collapse
Affiliation(s)
- Bettina Hieronimus
- Institute of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
- Institute of Child Nutrition, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Regina Ensenauer
- Institute of Child Nutrition, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany.
| |
Collapse
|
24
|
Ogunkolade BW, Adaikalakoteswari A, Cardoso SR, Lowe R, Patel N, Rakyan V, Finer S, Wabitsch M, Saravanan P, Tripathi G, Bochukova E, Hitman GA. An integrative epi-transcriptomic approach identifies the human cartilage chitinase 3-like protein 2 ( CHI3L2) as a potential mediator of B12 deficiency in adipocytes. Epigenetics 2021; 17:1219-1233. [PMID: 34818986 PMCID: PMC9542961 DOI: 10.1080/15592294.2021.2003043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Vitamin B12 has multiple biochemical functions including in the one-carbon cycle generating a methyl group for DNA methylation, and metabolism of fatty acids and amino acids to generate energy via the citric acid cycle. The aim of our study was to use a combined epigenomic and transcriptomic approach to identify novel genes mediating the effect of B12 on adipogenesis.Human pre-adipocytes (CHUB-S7) were treated with a range of B12 (0-500 nM) concentrations from the day of cell seeding until harvesting in discovery and validation experiments prior to genome-wide methylation analysis using the Illumina HumanMethylation 450Beadchip. For transcriptomic analysis, RNA-seq libraries were run on the Illumina HiSeq 2500. To further investigate the expression of any genes on human adipogenesis, a second human preadipocyte strain was studied (SGBS) by real-time quantitative PCR (qRT-PCR).A combined epigenetic and transcriptomic approach in differentiated human pre-adipocyte cell line, CHUB-S7, identified that the Human cartilage chitinase 3-like protein 2 (CHI3L2) gene was hypo-methylated and had increased expression in low B12 conditions. Furthermore, there was an approximately 1000-fold increase in CHI3L2 expression in the early days of adipocyte differentiation, which paralleled an increase of lipid droplets in differentiated SGBS cells and an increased expression level of markers of mature adipocytes.In summary, we have identified a potential role of the human cartilage chitinase 3-like protein 2 (CHI3L2) in adipocyte function in the presence of low B12 levels.
Collapse
Affiliation(s)
- B William Ogunkolade
- Genomics and Child Health, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Antonysunil Adaikalakoteswari
- Populations, Evidence, and Technologies, Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, UK.,Department of Bioscience, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Shirleny Romualdo Cardoso
- Genomics and Child Health, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Rob Lowe
- Genomics and Child Health, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Nisha Patel
- Genomics and Child Health, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Vardhman Rakyan
- Genomics and Child Health, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sarah Finer
- Genomics and Child Health, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Martin Wabitsch
- Division of Paediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Hospital, Ulm, Germany
| | - Ponnusamy Saravanan
- Populations, Evidence, and Technologies, Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Gyanendra Tripathi
- Populations, Evidence, and Technologies, Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, UK.,Human Sciences Research Centre, University of Derby, Derby, UK
| | - Elena Bochukova
- Genomics and Child Health, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Graham A Hitman
- Genomics and Child Health, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
25
|
Mitochondrial DNA Copy Number Adaptation as a Biological Response Derived from an Earthquake at Intrauterine Stage. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182211771. [PMID: 34831526 PMCID: PMC8624126 DOI: 10.3390/ijerph182211771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/06/2021] [Accepted: 11/07/2021] [Indexed: 01/07/2023]
Abstract
An altered mitochondrial DNA copy number (mtDNAcn) at birth can be a marker of increased disease susceptibility later in life. Gestational exposure to acute stress, such as that derived from the earthquake experienced on 19 September 2017 in Mexico City, could be associated with changes in mtDNAcn at birth. Our study used data from the OBESO (Biochemical and Epigenetic Origins of Overweight and Obesity) perinatal cohort in Mexico City. We compared the mtDNAcn in the umbilical cord blood of 22 infants born before the earthquake, 24 infants whose mothers were pregnant at the time of the earthquake (exposed), and 37 who were conceived after the earthquake (post-earthquake). We quantified mtDNAcn by quantitative real-time polymerase chain reaction normalized with a nuclear gene. We used a linear model adjusted by maternal age, body mass index, socioeconomic status, perceived stress, and pregnancy comorbidities. Compared to non-exposed newborns (mean ± SD mtDNAcn: 0.740 ± 0.161), exposed and post-earthquake newborns (mtDNAcn: 0.899 ± 0.156 and 0.995 ± 0.169, respectively) had increased mtDNAcn, p = 0.001. The findings of this study point at mtDNAcn as a potential biological marker of acute stress and suggest that experiencing an earthquake during pregnancy or before gestation can have programing effects in the unborn child. Long-term follow-up of newborns to women who experience stress prenatally, particularly that derived from a natural disaster, is warranted.
Collapse
|
26
|
Sobczyńska-Malefora A, Yajnik CS, Harrington DJ, Hitman GA, Finer S. Vitamin B12 and Folate Markers Are Associated with Insulin Resistance During the Third Trimester of Pregnancy in South Asian Women, Living in the United Kingdom, with Gestational Diabetes and Normal Glucose Tolerance. J Nutr 2021; 152:163-170. [PMID: 34601603 PMCID: PMC8754569 DOI: 10.1093/jn/nxab352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/21/2021] [Accepted: 09/24/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) can adversely affect the health of the developing fetus. Women of South Asian origin are particularly at risk of developing GDM. Insulin resistance (IR) contributes to the etiology of GDM, and although studies have shown associations of vitamin B12 (B12) and folate status with GDM and IR, only a limited number of B12 and folate markers have been used. OBJECTIVE We used a comprehensive panel of B12 and folate markers to examine their association with IR in pregnant women with diet-controlled GDM and normal glucose tolerance (NGT). METHODS In this cross-sectional study, 59 British-Bangladeshi women (24 GDM and 35 NGT) with a mean age of 29 y, BMI (in kg/m2) 26.7 and gestational age 33 wk were recruited. Serum total B12, holotranscobalamin, folate, methylmalonic acid, plasma homocysteine, 5-methyltetrahydrofolate, and red cell folate (RCF) were measured along with other parameters. The independent sample t-test and chi-squared test were used to assess differences in markers between GDM and NGT women. Spearman's test was used to look for correlations. A simple multiple regression analysis was used to investigate if markers of B12 and folate status predicted IR, using the HOMA-IR and adjusting for age, GDM status, and BMI. RESULTS There were no differences in concentrations of B12 and folate markers between GDM and NGT women. In Spearman's analysis HOMA-IR correlated negatively with total serum B12 (P < 0.001) and holotranscobalamin (P < 0.05), and positively with BMI (P < 0.001), blood pressure (P < 0.05) and triglycerides (P < 0.05) in all women. MMA did not correlate with any of the B12 markers. In regression analysis, total B12 (β = -0.622, P = 0.004), RCF (β = 0.387, P = 0.018), and BMI (β = 0.024, P < 0.001) were the significant predictors of HOMA-IR variance. CONCLUSIONS Significant associations between markers of B12 and folate status with HOMA-IR were found during the third trimester in British-Bangladeshi women. B12 markers correlated poorly with each other.
Collapse
Affiliation(s)
| | | | - Dominic J Harrington
- Nutristasis Unit, Viapath, St. Thomas’ Hospital, London, United Kingdom,Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Graham A Hitman
- Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Sarah Finer
- Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom,Barts Health NHS Trust, London, United Kingdom
| |
Collapse
|
27
|
Maher A, Sobczyńska-Malefora A. The Relationship Between Folate, Vitamin B12 and Gestational Diabetes Mellitus With Proposed Mechanisms and Foetal Implications. J Family Reprod Health 2021; 15:141-149. [PMID: 34721605 PMCID: PMC8536822 DOI: 10.18502/jfrh.v15i3.7131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The incidence of gestational diabetes mellitus (GDM) is rising, which warrants attention due to the associated complications during pregnancy and in the long term for both mother and offspring. Studies have suggested a relationship between maternal folate (vitamin B9) and vitamin B12 status and GDM risk. Seemingly the most problematic scenario occurs when there is B-vitamin imbalance, with high folate and low vitamin B12. This nutritional state can occur in vitamin B12 deficient women who exceed the recommended folic acid supplementation. However, the pathological mechanisms behind this relationship are currently unclear and are explored in this review article. A high folate/low B12 can lead to a functional folate deficiency through the methyl-trap phenomenon, impairing re-methylation of homocysteine and regeneration of folates for DNA synthesis and repair. Consequently elevated homocysteine concentration leads to endothelial dysfunction and oxidative stress. Vitamin B12 deficiency also leads to an impairment of the conversion of methylmalonyl-CoA to succinyl-CoA, which has been associated with insulin resistance. Insulin resistance is thought to contribute to the etiology of GDM. More studies are needed to confirm the impact of these and other mechanisms on disease development. However, it highlights a potential avenue for GDM risk modification through a vitamin B12 supplement and improvement of maternal metabolic health.
Collapse
Affiliation(s)
- Angeline Maher
- Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Agata Sobczyńska-Malefora
- Faculty of Life Sciences & Medicine, Kings College London, London, UK.,Nutristasis Unit, Viapath, St. Thomas' Hospital, London, UK
| |
Collapse
|
28
|
Saravanan P, Sukumar N, Adaikalakoteswari A, Goljan I, Venkataraman H, Gopinath A, Bagias C, Yajnik CS, Stallard N, Ghebremichael-Weldeselassie Y, Fall CHD. Association of maternal vitamin B 12 and folate levels in early pregnancy with gestational diabetes: a prospective UK cohort study (PRiDE study). Diabetologia 2021; 64:2170-2182. [PMID: 34296321 PMCID: PMC8423653 DOI: 10.1007/s00125-021-05510-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/28/2021] [Indexed: 12/30/2022]
Abstract
AIMS/HYPOTHESIS The prevalence of gestational diabetes mellitus (GDM) is increasing worldwide in all ethnic groups. Low vitamin B12 and low/high folate levels may contribute to GDM risk, but there is conflicting evidence. Our aim is to assess the relationships of early pregnancy vitamin B12 and folate levels with the risk of GDM status at 26-28 weeks of gestation. METHODS This was a prospective, multi-centre, multi-ethnic cohort study (n = 4746) in the UK. Participants who were eligible to be selectively screened as per the National Institute for Health and Care Excellence (NICE) criteria were included in the study. RESULTS GDM prevalence was 12.5% by NICE and 14.7% by International Association of Diabetes and Pregnancy Study Groups (IADPSG) criteria. Folate deficiency (1.3%) was rare but B12 insufficiency (42.3% at <220 pmol/l) and folate excess (36.5%) were common in early pregnancy. Early pregnancy median B12 levels were lower, and folate levels higher, in women who were diagnosed with GDM at 26-28 weeks. B12 was negatively associated with fasting plasma glucose (1 SD: -0.06 mmol/l; 95% CI -0.04, -0.08; p < 0.0001) and 2 h plasma glucose levels (-0.07 mmol/l; 95% CI -0.02, -0.12; p = 0.004). Higher B12 was associated with 14.4% lower RR of IADPSG-GDM (0.856; 95% CI 0.786, 0.933; p = 0.0004) after adjusting for key confounders (age, parity, smoking status, ethnicity, family history, household income and folate status). Approximately half of this association was mediated through BMI. Folate was positively associated with 2 h plasma glucose levels (0.08 mmol/l; 95% CI 0.04, 0.13; p = 0.0005) but its relationship with fasting plasma glucose was U-shaped (quadratic β: 0.011; p = 0.05). Higher folate was associated with 11% higher RR of IADPSG-GDM (adjusted RR 1.11; 95% CI 1.036, 1.182; p = 0.002) (age, parity, smoking status, ethnicity, family history, household income and B12 status). Although no interactions were observed for B12 and folate (as continuous variables) with glucose levels and GDM risk, a low B12-high folate combination was associated with higher blood glucose level and risk of IADPSG-GDM (adjusted RR 1.742; 95% CI 1.226, 2.437; p = 0.003). CONCLUSIONS/INTERPRETATION B12 insufficiency and folate excess were common in early pregnancy. Low B12 and high folate levels in early pregnancy were associated with small but statistically significant changes in maternal blood glucose level and higher RR of GDM. Our findings warrant additional studies on the role of unmetabolised folic acid in glucose metabolism and investigating the effect of optimising early pregnancy or pre-conception B12 and folate levels on subsequent hyperglycaemia. TRIAL REGISTRATION ClinicalTrials.gov NCT03008824.
Collapse
Affiliation(s)
- Ponnusamy Saravanan
- Division of Health Sciences, Warwick Medical School, Gibbet Hill, University of Warwick, Warwick, Coventry, UK.
- Academic Department of Diabetes, Endocrinology and Metabolism, George Eliot Hospital, Nuneaton, UK.
| | - Nithya Sukumar
- Division of Health Sciences, Warwick Medical School, Gibbet Hill, University of Warwick, Warwick, Coventry, UK
- Academic Department of Diabetes, Endocrinology and Metabolism, George Eliot Hospital, Nuneaton, UK
| | - Antonysunil Adaikalakoteswari
- Division of Health Sciences, Warwick Medical School, Gibbet Hill, University of Warwick, Warwick, Coventry, UK
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham, UK
| | - Ilona Goljan
- Academic Department of Diabetes, Endocrinology and Metabolism, George Eliot Hospital, Nuneaton, UK
- Novo Nordisk Ltd, Gatwick, UK
| | - Hema Venkataraman
- Division of Health Sciences, Warwick Medical School, Gibbet Hill, University of Warwick, Warwick, Coventry, UK
- Heartlands Hospital, University Hospital Birmingham NHS Trust, Birmingham, UK
| | - Amitha Gopinath
- Academic Department of Diabetes, Endocrinology and Metabolism, George Eliot Hospital, Nuneaton, UK
| | - Christos Bagias
- Division of Health Sciences, Warwick Medical School, Gibbet Hill, University of Warwick, Warwick, Coventry, UK
| | | | - Nigel Stallard
- Division of Health Sciences, Warwick Medical School, Gibbet Hill, University of Warwick, Warwick, Coventry, UK
| | - Yonas Ghebremichael-Weldeselassie
- Division of Health Sciences, Warwick Medical School, Gibbet Hill, University of Warwick, Warwick, Coventry, UK
- School of Mathematics and Statistics, The Open University, Milton Keynes, UK
| | - Caroline H D Fall
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| |
Collapse
|
29
|
Improvement in vitamin B 12 status of Wistar rats by supplementing the diet with Chlorella vulgaris biomass. Journal of Food Science and Technology 2021; 58:4270-4281. [PMID: 34538910 DOI: 10.1007/s13197-020-04901-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/04/2020] [Accepted: 11/10/2020] [Indexed: 10/22/2022]
Abstract
The sources of bioavailable vitamin B12 are limited, and most of them are animal-derived. Chlorella vulgaris, a freshwater microalga, is known for immune system boosting, nutraceutical properties and presence of a natural form of vitamin B12. The present study focused on the in vivo evaluation of the Chlorella biomass as a source of bioavailable vitamin B12 to alleviate the vitamin B12 deficiency status of Wistar rats. Experimental animals were evaluated for the vitamin B12 deficiency-related circulatory marker (serum vitamin B12) and functional markers (plasma homocysteine and urinary methylmalonic acid), haematological and histological changes. The results showed that an increase of 2.4-fold in urinary methylmalonic acid (13.01 ± 0.89 µmoles moles of creatinine-1), 2.6-fold in plasma homocysteine (17.18 ± 3.57 µmole L-1), and 48% decrease in serum vitamin B12 levels (252.69 ± 1.46 pg mL-1) in vitamin B12 deficient group compared to control animals. The Chlorella biomass supplementation in the diet led to the restoration of the functional and circulatory markers, hematological parameters, and vitamin B12 content of kidney and liver to control levels. The Chlorella biomass supplementation increased the erythrocyte precursors and MAST cells in the bone marrow and also normalized the histological features of kidney, liver, and lung tissues. The results suggest that the vitamin B12 from the Chlorella biomass was bioavailable and facilitated the improvement of vitamin B12 status in deficient rats.
Collapse
|
30
|
Aguilera-Méndez A, Boone-Villa D, Nieto-Aguilar R, Villafaña-Rauda S, Molina AS, Sobrevilla JV. Role of vitamins in the metabolic syndrome and cardiovascular disease. Pflugers Arch 2021; 474:117-140. [PMID: 34518916 DOI: 10.1007/s00424-021-02619-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 08/14/2021] [Accepted: 08/30/2021] [Indexed: 12/25/2022]
Abstract
The prevalence of metabolic syndrome and cardiovascular disease has increased and continues to be the leading cause of mortality worldwide. The etiology of these diseases includes a complex phenotype derived from interactions between genetic, environmental, and nutritional factors. In this regard, it is common to observe vitamin deficiencies in the general population and even more in patients with cardiometabolic diseases due to different factors. Vitamins are essential micronutrients for cellular metabolism and their deficiencies result in diseases. In addition to its role in nutritional functions, increasingly, vitamins are being recognized as modulators of genetics expression and signals transduction, when consumed at pharmacological concentrations. Numerous randomized preclinical and clinical trials have evaluated the use of vitamin supplementation in the prevention and treatment of metabolic syndrome and cardiovascular disease. However, it is controversy regarding its efficacy in the treatment and prevention of these diseases. In this review, we investigated chemical basics, physiological effect and recommended daily intake, problems with deficiency and overdose, preclinical and clinical studies, and mechanisms of action of vitamin supplementation in the treatment and prevention of metabolic syndrome and cardiovascular disease.
Collapse
Affiliation(s)
- Asdrubal Aguilera-Méndez
- Institute of Biological Chemistry Research, Universidad Michoacana de San Nicolás de Hidalgo, Av. J. Mújica, Edificio B3, Ciudad Universitaria, CP, 58030, Morelia, Michoacán, México.
| | - Daniel Boone-Villa
- School of Medicine, North Section, Universidad Autónoma de Coahuila, Piedras Negras, 26090, Coahuila, México
| | - Renato Nieto-Aguilar
- University Center for Postgraduate Studies and Research, School of Dentistry, Universidad Michoacana de San Nicolás de Hidalgo, 58337, Morelia, Michoacán, México
| | - Santiago Villafaña-Rauda
- Postgraduate Section, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, México
| | - Alfredo Saavedra Molina
- Institute of Biological Chemistry Research, Universidad Michoacana de San Nicolás de Hidalgo, Av. J. Mújica, Edificio B3, Ciudad Universitaria, CP, 58030, Morelia, Michoacán, México
| | - Janeth Ventura Sobrevilla
- School of Medicine, North Section, Universidad Autónoma de Coahuila, Piedras Negras, 26090, Coahuila, México
| |
Collapse
|
31
|
Collado A, Jin H, Pernow J, Zhou Z. MicroRNA: A mediator of diet-induced cardiovascular protection. Curr Opin Pharmacol 2021; 60:183-192. [PMID: 34461563 DOI: 10.1016/j.coph.2021.07.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/20/2021] [Accepted: 07/30/2021] [Indexed: 11/30/2022]
Abstract
Diets containing nutrients such as polyunsaturated fatty acids, polyphenols, or vitamins have been shown to have cardiovascular benefits. Micro (mi)RNAs are fundamental regulators of gene expression and function in the cardiovascular system. Diet-induced cardiovascular benefits are associated with changes in endogenous expression of miRNAs in the cardiovascular system. In addition, emerging studies have shown that miRNAs present in the food can be transported in the circulation to tissues. These exogenous miRNAs may also affect cardiovascular function contributing to the diet-induced benefits. This review discusses the emerging role of both endogenous and exogenous miRNAs as mediators of diet-induced cardiovascular protection. Understanding the mechanisms of diet-mediated actions through modulation of miRNA may provide a potential strategy for new therapies.
Collapse
Affiliation(s)
- Aida Collado
- Division of Cardiology, Department of Medicine Solna, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Hong Jin
- Division of Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - John Pernow
- Division of Cardiology, Department of Medicine Solna, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden; Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Zhichao Zhou
- Division of Cardiology, Department of Medicine Solna, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
32
|
Yu Y, Zhang J, Wang J, Sun B. MicroRNAs: The novel mediators for nutrient-modulating biological functions. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Interaction between Metformin, Folate and Vitamin B 12 and the Potential Impact on Fetal Growth and Long-Term Metabolic Health in Diabetic Pregnancies. Int J Mol Sci 2021; 22:ijms22115759. [PMID: 34071182 PMCID: PMC8198407 DOI: 10.3390/ijms22115759] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/15/2022] Open
Abstract
Metformin is the first-line treatment for many people with type 2 diabetes mellitus (T2DM) and gestational diabetes mellitus (GDM) to maintain glycaemic control. Recent evidence suggests metformin can cross the placenta during pregnancy, thereby exposing the fetus to high concentrations of metformin and potentially restricting placental and fetal growth. Offspring exposed to metformin during gestation are at increased risk of being born small for gestational age (SGA) and show signs of ‘catch up’ growth and obesity during childhood which increases their risk of future cardiometabolic diseases. The mechanisms by which metformin impacts on the fetal growth and long-term health of the offspring remain to be established. Metformin is associated with maternal vitamin B12 deficiency and antifolate like activity. Vitamin B12 and folate balance is vital for one carbon metabolism, which is essential for DNA methylation and purine/pyrimidine synthesis of nucleic acids. Folate:vitamin B12 imbalance induced by metformin may lead to genomic instability and aberrant gene expression, thus promoting fetal programming. Mitochondrial aerobic respiration may also be affected, thereby inhibiting placental and fetal growth, and suppressing mammalian target of rapamycin (mTOR) activity for cellular nutrient transport. Vitamin supplementation, before or during metformin treatment in pregnancy, could be a promising strategy to improve maternal vitamin B12 and folate levels and reduce the incidence of SGA births and childhood obesity. Heterogeneous diagnostic and screening criteria for GDM and the transient nature of nutrient biomarkers have led to inconsistencies in clinical study designs to investigate the effects of metformin on folate:vitamin B12 balance and child development. As rates of diabetes in pregnancy continue to escalate, more women are likely to be prescribed metformin; thus, it is of paramount importance to improve our understanding of metformin’s transgenerational effects to develop prophylactic strategies for the prevention of adverse fetal outcomes.
Collapse
|
34
|
Alabduljabbar S, Zaidan SA, Lakshmanan AP, Terranegra A. Personalized Nutrition Approach in Pregnancy and Early Life to Tackle Childhood and Adult Non-Communicable Diseases. Life (Basel) 2021; 11:life11060467. [PMID: 34073649 PMCID: PMC8224671 DOI: 10.3390/life11060467] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023] Open
Abstract
The development of childhood and adult non-communicable diseases (NCD) is associated with environmental factors, starting from intrauterine life. A new theory finds the roots of epigenetic programming in parental gametogenesis, continuing during embryo development, fetal life, and finally in post-natal life. Maternal health status and poor nutrition are widely recognized as implications in the onset of childhood and adult diseases. Early nutrition, particularly breastfeeding, also plays a primary role in affecting the health status of an individual later in life. A poor maternal diet during pregnancy and lack of breastfeeding can cause a nutrient deficiency that affects the gut microbiota, and acts as a cofactor for many pathways, impacting the epigenetic controls and transcription of genes involved in the metabolism, angiogenesis, and other pathways, leading to NCDs in adult life. Both maternal and fetal genetic backgrounds also affect nutrient adsorption and functioning at the cellular level. This review discusses the most recent evidence on maternal nutrition and breastfeeding in the development of NCD, the potentiality of the omics technologies in uncovering the molecular mechanisms underlying it, with the future prospective of applying a personalized nutrition approach to prevent and treat NCD from the beginning of fetal life.
Collapse
|
35
|
Yang Y, Cai Z, Zhang J. Association between maternal folate status and gestational diabetes mellitus. Food Sci Nutr 2021; 9:2042-2052. [PMID: 33841822 PMCID: PMC8020922 DOI: 10.1002/fsn3.2173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/19/2020] [Accepted: 01/21/2021] [Indexed: 12/29/2022] Open
Abstract
Studies on the association between maternal folate status and gestational diabetes mellitus (GDM) have yielded inconsistent results. This meta-analysis was performed to determine whether there may exist some association between maternal folate status and GDM. Unrestricted searches of PubMed, Web of Science, Cochrane, and Embase were conducted. All relevant studies on the association between maternal folat status and GDM risk were screened. The standardized mean difference (SMD) with 95% CIs was used to determine the association between maternal folate and GDM. Odds ratios (ORs) with 95% confidence intervals (CIs) were calculated using random-effects models to assess the impact of maternal folate status on GDM risk. 12 studies were included. The overall data revealed that compared with the non-GDM group, women with GDM had higher level of folate (SMD 0.41, 95% CI 0.07 to 0.21, I2 = 17.2%) in second or third trimester. We also found that maternal high folate status may be associated with increased risk of GDM (OR 2.16, 95% CI 1.70 to 2.74, I2 = 0.0%). Compared with non-GDM group, women with GDM are prone to higher folate level. Moreover, high maternal folate status may predict a higher risk of GDM. As the number of included studies was limited, further large population studies are needed in the future.
Collapse
Affiliation(s)
- Yan Yang
- Department of Metabolism and EndocrinologyMetabolic Syndrome Research CenterKey Laboratory of Diabetes ImmunologyMinistry of EducationNational Clinical Research Center for Metabolic DiseasesThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Zixin Cai
- Department of Metabolism and EndocrinologyMetabolic Syndrome Research CenterKey Laboratory of Diabetes ImmunologyMinistry of EducationNational Clinical Research Center for Metabolic DiseasesThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Jingjing Zhang
- Department of Metabolism and EndocrinologyMetabolic Syndrome Research CenterKey Laboratory of Diabetes ImmunologyMinistry of EducationNational Clinical Research Center for Metabolic DiseasesThe Second Xiangya Hospital of Central South UniversityChangshaChina
| |
Collapse
|
36
|
Sundrani DP, Karkhanis AR, Joshi SR. Peroxisome Proliferator-Activated Receptors (PPAR), fatty acids and microRNAs: Implications in women delivering low birth weight babies. Syst Biol Reprod Med 2021; 67:24-41. [PMID: 33719831 DOI: 10.1080/19396368.2020.1858994] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Low birth weight (LBW) babies are associated with neonatal morbidity and mortality and are at increased risk for noncommunicable diseases (NCDs) in later life. However, the molecular determinants of LBW are not well understood. Placental insufficiency/dysfunction is the most frequent etiology for fetal growth restriction resulting in LBW and placental epigenetic processes are suggested to be important regulators of pregnancy outcome. Early life exposures like altered maternal nutrition may have long-lasting effects on the health of the offspring via epigenetic mechanisms like DNA methylation and microRNA (miRNA) regulation. miRNAs have been recognized as major regulators of gene expression and are known to play an important role in placental development. Angiogenesis in the placenta is known to be regulated by transcription factor peroxisome proliferator-activated receptor (PPAR) which is activated by ligands such as long-chain-polyunsaturated fatty acids (LCPUFA). In vitro studies in different cell types indicate that fatty acids can influence epigenetic mechanisms like miRNA regulation. We hypothesize that maternal fatty acid status may influence the miRNA regulation of PPAR genes in the placenta in women delivering LBW babies. This review provides an overview of miRNAs and their regulation of PPAR gene in the placenta of women delivering LBW babies.Abbreviations: AA - Arachidonic Acid; Ago2 - Argonaute2; ALA - Alpha-Linolenic Acid; ANGPTL4 - Angiopoietin-Like Protein 4; C14MC - Chromosome 14 miRNA Cluster; C19MC - Chromosome 19 miRNA Cluster; CLA - Conjugated Linoleic Acid; CSE - Cystathionine γ-Lyase; DHA - Docosahexaenoic Acid; EFA - Essential Fatty Acids; E2F3 - E2F transcription factor 3; EPA - Eicosapentaenoic Acid; FGFR1 - Fibroblast Growth Factor Receptor 1; GDM - Gestational Diabetes Mellitus; hADMSCs - Human Adipose Tissue-Derived Mesenchymal Stem Cells; hBMSCs - Human Bone Marrow Mesenchymal Stem Cells; HBV - Hepatitis B Virus; HCC - Hepatocellular Carcinoma; HCPT - Hydroxycamptothecin; HFD - High-Fat Diet; Hmads - Human Multipotent Adipose-Derived Stem; HSCS - Human Hepatic Stellate Cells; IUGR - Intrauterine Growth Restriction; LA - Linoleic Acid; LBW - Low Birth Weight; LCPUFA - Long-Chain Polyunsaturated Fatty Acids; MEK1 - Mitogen-Activated Protein Kinase 1; MiRNA - MicroRNA; mTOR - Mammalian Target of Rapamycin; NCDs - NonCommunicable Diseases; OA - Oleic Acid; PASMC - Pulmonary Artery Smooth Muscle Cell; PLAG1 - Pleiomorphic Adenoma Gene 1; PPAR - Peroxisome Proliferator-Activated Receptor; PPARα - PPAR alpha; PPARγ - PPAR gamma; PPARδ - PPAR delta; pre-miRNA - precursor miRNA; RISC - RNA-Induced Silencing Complex; ROS - Reactive Oxygen Species; SAT - Subcutaneous Adipose Tissue; WHO - World Health Organization.
Collapse
Affiliation(s)
- Deepali P Sundrani
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Aishwarya R Karkhanis
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Sadhana R Joshi
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| |
Collapse
|
37
|
Rashid S, Meier V, Patrick H. Review of Vitamin B12 deficiency in pregnancy: a diagnosis not to miss as veganism and vegetarianism become more prevalent. Eur J Haematol 2021; 106:450-455. [PMID: 33341967 DOI: 10.1111/ejh.13571] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 01/23/2023]
Abstract
Vegetarianism and veganism are increasingly popular. The Food Standards Agency, biennial Food and You Survey of adults aged 16 years and over living in the UK, found that between 2012 and 2018 the proportion of people who reported never consuming dairy products had increased from 2% to 5%. However, veganism risks development of vitamin B12 deficiency as it is not available from plant sources. Moreover, its impact may be slow to be detected because body stores of vitamin B12 can last years. There is currently no published guidance on antenatal diagnosis and management of vitamin B12 deficiency. This paper reviews the metabolism, diagnosis and treatment of vitamin B12 in pregnancy. It concludes that national screening policymakers should consider introducing screening for B12 deficiency into the Antenatal and Newborn Screening Programmes for mothers and their infants if at risk of vitamin B12 deficiency. In the interim, national policy should be developed for prophylactic vitamin B12 supplementation in high-risk groups around the time of pregnancy.
Collapse
Affiliation(s)
- Sabia Rashid
- Lewisham and Greenwich NHS Trust, Queen Elizabeth Hospital, London, UK
| | - Violet Meier
- Library and Knowledge Services, University Hospital Lewisham, London, UK
| | - Hannah Patrick
- Lewisham and Greenwich NHS Trust, Queen Elizabeth Hospital, London, UK
| |
Collapse
|
38
|
Dufau J, Shen JX, Couchet M, De Castro Barbosa T, Mejhert N, Massier L, Griseti E, Mouisel E, Amri EZ, Lauschke VM, Rydén M, Langin D. In vitro and ex vivo models of adipocytes. Am J Physiol Cell Physiol 2021; 320:C822-C841. [PMID: 33439778 DOI: 10.1152/ajpcell.00519.2020] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adipocytes are specialized cells with pleiotropic roles in physiology and pathology. Several types of fat cells with distinct metabolic properties coexist in various anatomically defined fat depots in mammals. White, beige, and brown adipocytes differ in their handling of lipids and thermogenic capacity, promoting differences in size and morphology. Moreover, adipocytes release lipids and proteins with paracrine and endocrine functions. The intrinsic properties of adipocytes pose specific challenges in culture. Mature adipocytes float in suspension culture due to high triacylglycerol content and are fragile. Moreover, a fully differentiated state, notably acquirement of the unilocular lipid droplet of white adipocyte, has so far not been reached in two-dimensional culture. Cultures of mouse and human-differentiated preadipocyte cell lines and primary cells have been established to mimic white, beige, and brown adipocytes. Here, we survey various models of differentiated preadipocyte cells and primary mature adipocyte survival describing main characteristics, culture conditions, advantages, and limitations. An important development is the advent of three-dimensional culture, notably of adipose spheroids that recapitulate in vivo adipocyte function and morphology in fat depots. Challenges for the future include isolation and culture of adipose-derived stem cells from different anatomic location in animal models and humans differing in sex, age, fat mass, and pathophysiological conditions. Further understanding of fat cell physiology and dysfunction will be achieved through genetic manipulation, notably CRISPR-mediated gene editing. Capturing adipocyte heterogeneity at the single-cell level within a single fat depot will be key to understanding diversities in cardiometabolic parameters among lean and obese individuals.
Collapse
Affiliation(s)
- Jérémy Dufau
- Inserm, Institute of Metabolic and Cardiovascular Diseases (I2MC), UMR1297, Toulouse, France.,Faculté de Médecine, I2MC, UMR1297, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Joanne X Shen
- Karolinska Institutet, Department of Physiology and Pharmacology, Stockholm, Sweden
| | - Morgane Couchet
- Karolinska Institutet, Department of Medicine (H7), Stockholm, Sweden
| | | | - Niklas Mejhert
- Karolinska Institutet, Department of Medicine (H7), Stockholm, Sweden
| | - Lucas Massier
- Karolinska Institutet, Department of Medicine (H7), Stockholm, Sweden
| | - Elena Griseti
- Inserm, Institute of Metabolic and Cardiovascular Diseases (I2MC), UMR1297, Toulouse, France.,Faculté de Médecine, I2MC, UMR1297, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Etienne Mouisel
- Inserm, Institute of Metabolic and Cardiovascular Diseases (I2MC), UMR1297, Toulouse, France.,Faculté de Médecine, I2MC, UMR1297, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | | | - Volker M Lauschke
- Karolinska Institutet, Department of Physiology and Pharmacology, Stockholm, Sweden
| | - Mikael Rydén
- Karolinska Institutet, Department of Medicine (H7), Stockholm, Sweden
| | - Dominique Langin
- Inserm, Institute of Metabolic and Cardiovascular Diseases (I2MC), UMR1297, Toulouse, France.,Faculté de Médecine, I2MC, UMR1297, Université de Toulouse, Université Paul Sabatier, Toulouse, France.,Toulouse University Hospitals, Department of Biochemistry, Toulouse, France
| |
Collapse
|
39
|
Antiobesity effects of phytochemicals from an epigenetic perspective. Nutrition 2020; 84:111119. [PMID: 33476999 DOI: 10.1016/j.nut.2020.111119] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023]
Abstract
Obesity is an important cause of morbidity and mortality due to its close association with metabolic disorders including diabetes, cardiovascular diseases, and certain types of cancer. According to the Developmental Origins of Adult Health and Disease hypothesis, obesity is likely caused by epigenetic changes. Recent studies have shown an association between epigenetic dysregulation of certain genes and obesity. Due to their reversible characteristic, epigenetic dysregulations can be restored. Restoration of epigenetic dysregulation in obesity-related genes by epigenetic modifiers may be a new treatment option for obesity. Certain phytochemicals such as tea polyphenols, curcumin, genistein, isothiocyanates, and citrus isoflavonoids were shown to prevent weight gain. These phytochemicals are known for their antioxidant effects but they also modify epigenetic mechanisms. These phytochemicals may have a therapeutic potential in the management of obesity. The aim of this study was to review the epigenetic effects of certain phytochemicals on the expression of obesity-related genes.
Collapse
|
40
|
Rodríguez-Cano AM, Calzada-Mendoza CC, Estrada-Gutierrez G, Mendoza-Ortega JA, Perichart-Perera O. Nutrients, Mitochondrial Function, and Perinatal Health. Nutrients 2020; 12:E2166. [PMID: 32708345 PMCID: PMC7401276 DOI: 10.3390/nu12072166] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/13/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022] Open
Abstract
Mitochondria are active independent organelles that not only meet the cellular energy requirement but also regulate central cellular activities. Mitochondria can play a critical role in physiological adaptations during pregnancy. Differences in mitochondrial function have been found between healthy and complicated pregnancies. Pregnancy signifies increased nutritional requirements to support fetal growth and the metabolism of maternal and fetal tissues. Nutrient availability regulates mitochondrial metabolism, where excessive macronutrient supply could lead to oxidative stress and contribute to mitochondrial dysfunction, while micronutrients are essential elements for optimal mitochondrial processes, as cofactors in energy metabolism and/or as antioxidants. Inadequate macronutrient and micronutrient consumption can result in adverse pregnancy outcomes, possibly through mitochondrial dysfunction, by impairing energy supply, one-carbon metabolism, biosynthetic pathways, and the availability of metabolic co-factors which modulate the epigenetic processes capable of establishing significant short- and long-term effects on infant health. Here, we review the importance of macronutrients and micronutrients on mitochondrial function and its influence on maternal and infant health.
Collapse
Affiliation(s)
- Ameyalli M Rodríguez-Cano
- Section for Postgraduate Studies and Research, Higher School of Medicine, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (A.M.R.-C.); (C.C.C.-M.)
- Nutrition and Bioprogramming Department, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Lomas de Virreyes, Mexico City 11000, Mexico
| | - Claudia C Calzada-Mendoza
- Section for Postgraduate Studies and Research, Higher School of Medicine, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (A.M.R.-C.); (C.C.C.-M.)
| | - Guadalupe Estrada-Gutierrez
- Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Research Division; Montes Urales 800, Lomas de Virreyes, Mexico City 11000, Mexico;
| | - Jonatan A Mendoza-Ortega
- Immunobiochemistry Department, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Lomas de Virreyes, Mexico City 11000, Mexico;
- Immunology Department, National School of Biological Sciences, Instituto Politécnico Nacional, Mexico City 11350, Mexico
| | - Otilia Perichart-Perera
- Nutrition and Bioprogramming Department, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Lomas de Virreyes, Mexico City 11000, Mexico
| |
Collapse
|
41
|
Vitamin B12 deficiency and altered one-carbon metabolites in early pregnancy is associated with maternal obesity and dyslipidaemia. Sci Rep 2020; 10:11066. [PMID: 32632125 PMCID: PMC7338455 DOI: 10.1038/s41598-020-68344-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 04/22/2020] [Indexed: 02/07/2023] Open
Abstract
Vitamin B12 (B12) is a micronutrient essential for one-carbon (1C) metabolism. B12 deficiency disturbs the 1C cycle and alters DNA methylation which is vital for most metabolic processes. Studies show that B12 deficiency may be associated with obesity, insulin resistance and gestational diabetes; and with obesity in child-bearing women. We therefore hypothesised that the associations between B12 deficiency, BMI and the metabolic risk could be mediated through altered 1C metabolites in early pregnancy. We explored these associations in two different early pregnancy cohorts in the UK (cohort 1; n = 244 and cohort 2; n = 60) with anthropometric data at 10-12 weeks and plasma/serum sampling at 16-18 weeks. B12, folate, total homocysteine (tHcy), methionine, MMA, metabolites of 1C metabolism (SAM, SAH) and anthropometry were measured. B12 deficiency (< 150 pmol/l) in early pregnancy was 23% in cohort 1 and 18% in cohort 2. Regression analysis after adjusting for likely confounders showed that B12 was independently and negatively associated with BMI (Cohort 1: β = - 0.260, 95% CI (- 0.440, - 0.079), p = 0.005, Cohort 2: (β = - 0.220, 95% CI (- 0.424, - 0.016), p = 0.036) and positively with HDL cholesterol (HDL-C) (β = 0.442, 95% CI (0.011,0.873), p = 0.045). We found that methionine (β = - 0.656, 95% CI (- 0.900, - 0.412), p < 0.0001) and SAH (β = 0.371, 95% CI (0.071, 0.672), p = 0.017) were independently associated with triglycerides. Low B12 status and alteration in metabolites in 1C metabolism are common in UK women in early pregnancy and are independently associated with maternal obesity and dyslipidaemia. Therefore, we suggest B12 monitoring in women during peri-conceptional period and future studies on the pathophysiological relationship between changes in 1C metabolites and its association with maternal and fetal outcomes on larger cohorts. This in turn may offer potential to reduce the metabolic risk in pregnant women and their offspring.
Collapse
|
42
|
Low Vitamin B12 and Lipid Metabolism: Evidence from Pre-Clinical and Clinical Studies. Nutrients 2020; 12:nu12071925. [PMID: 32610503 PMCID: PMC7400011 DOI: 10.3390/nu12071925] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 12/21/2022] Open
Abstract
Obesity is a worldwide epidemic responsible for 5% of global mortality. The risks of developing other key metabolic disorders like diabetes, hypertension and cardiovascular diseases (CVDs) are increased by obesity, causing a great public health concern. A series of epidemiological studies and animal models have demonstrated a relationship between the importance of vitamin B12 (B12) and various components of metabolic syndrome. High prevalence of low B12 levels has been shown in European (27%) and South Indian (32%) patients with type 2 diabetes (T2D). A longitudinal prospective study in pregnant women has shown that low B12 status could independently predict the development of T2D five years after delivery. Likewise, children born to mothers with low B12 levels may have excess fat accumulation which in turn can result in higher insulin resistance and risk of T2D and/or CVD in adulthood. However, the independent role of B12 on lipid metabolism, a key risk factor for cardiometabolic disorders, has not been explored to a larger extent. In this review, we provide evidence from pre-clinical and clinical studies on the role of low B12 status on lipid metabolism and insights on the possible epigenetic mechanisms including DNA methylation, micro-RNA and histone modifications. Although, there are only a few association studies of B12 on epigenetic mechanisms, novel approaches to understand the functional changes caused by these epigenetic markers are warranted.
Collapse
|
43
|
Kouroglou E, Anagnostis P, Daponte A, Bargiota A. Vitamin B12 insufficiency is associated with increased risk of gestational diabetes mellitus: a systematic review and meta-analysis. Endocrine 2019; 66:149-156. [PMID: 31463884 DOI: 10.1007/s12020-019-02053-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/06/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE Vitamin B12 deficiency has been associated with a plethora of metabolic abnormalities, such as hyperhomocysteinaemia, insulin resistance and defective synthesis of neurotransmitters and fatty acids. Inconsistency exists as to whether vitamin B12 deficiency is also associated with increased risk of gestational diabetes mellitus (GDM). The purpose of this study was to systematically review and meta-analyze the existing evidence for this association. METHODS A comprehensive search was conducted in PubMed, Scopus and Cochrane Central up to April 30, 2019. Data are expressed as odds ratio (OR) with 95% confidence interval (CI). The I2 index was employed for heterogeneity. RESULTS Six studies (n = 1810 pregnant women, 309 GDM cases) fulfilled the eligibility criteria for qualitative and two studies for quantitative analysis. In five studies providing data on vitamin B12 concentrations for both groups, women with GDM had lower vitamin B12 levels when compared with non-GDM women. Women with vitamin B12 deficiency were at higher risk for developing GDM when compared with those who were vitamin B12 sufficient: OR 1.81 (95% CI, 1.25-2.63, I2: 0%). Due to the small number of studies, the role of potential confounders could not be safely estimated. CONCLUSIONS Vitamin B12 deficiency seems to be associated with increased risk of GDM. More studies are needed to further strengthen this finding and to clarify possible pathogenetic mechanisms.
Collapse
Affiliation(s)
- Eleni Kouroglou
- First Department of Internal Medicine, General Hospital of Volos, Volos, Greece.
| | - Panagiotis Anagnostis
- Unit of Reproductive Endocrinology, First Department of Obstetrics and Gynaecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alexandros Daponte
- Department of Obstetrics and Gynaecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Alexandra Bargiota
- Department of Endocrinology and Metabolic Diseases, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| |
Collapse
|
44
|
Madhubalaji CK, Rashmi V, Chauhan VS, Shylaja MD, Sarada R. Improvement of vitamin B 12 status with Spirulina supplementation in Wistar rats validated through functional and circulatory markers. J Food Biochem 2019; 43:e13038. [PMID: 31502254 DOI: 10.1111/jfbc.13038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 12/20/2022]
Abstract
Spirulina evaluated as a source of vitamin B12 through the modulation of vitamin B12 deficiency mediated physiological and biochemical changes in experimental animals. The B12 deficient male weanling Wistar rats were fed with Spirulina-supplemented diet for 10 weeks. An increase in urinary methylmalonic acid (22.70 ± 4.08 µmol/moles of creatinine) and plasma homocysteine (16.55 ± 0.48 µmol/L) levels in the B12 deficient group was observed, while these were equal to control in the Spirulina fed group (8.71 ± 0.48 µmol/mol of creatinine and 6.88 ± 1.18 µmol/L, respectively). The vitamin B12 levels in serum (874.27 ± 89.69), plasma (615.53 ± 26.5 pg/ml), kidney (10.19 ± 1.066 ng/g), and liver tissues (6.37 ± 0.62 ng/g) in the Spirulina fed group were similar to control. Severe atrophic changes in the testes and altered tissue architecture in lung and spleen as seen in the B12 deficient group were normalized in the Spirulina fed group. The study validates that Spirulina can improve the vitamin B12 status. PRACTICAL APPLICATIONS: The present study showed that the supplementation of Spirulina in the diet of vitamin B12 deficient rats leads to the normalization of vitamin B12 deficiency-induced circulatory and functional biomarkers along with biochemical and histological changes. Vegetarian sources for vitamin B12 are limited and the results presented here provide scientific validation for the use of Spirulina as a potential vegetarian source of bioavailable vitamin B12 .
Collapse
Affiliation(s)
- Chegu Krishnamurthi Madhubalaji
- Plant Cell Biotechnology Department, CSIR - Central Food Technological Research Institute, Mysuru, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Venkatasubbaiah Rashmi
- Plant Cell Biotechnology Department, CSIR - Central Food Technological Research Institute, Mysuru, India
| | - Vikas Singh Chauhan
- Plant Cell Biotechnology Department, CSIR - Central Food Technological Research Institute, Mysuru, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - M Dharmesh Shylaja
- Department of Biochemistry, CSIR - Central Food Technological Research Institute, Mysuru, India
| | - Ravi Sarada
- Plant Cell Biotechnology Department, CSIR - Central Food Technological Research Institute, Mysuru, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
45
|
Surendran S, Jayashri R, Drysdale L, Bodhini D, Lakshmipriya N, Shanthi Rani CS, Sudha V, Lovegrove JA, Anjana RM, Mohan V, Radha V, Pradeepa R, Vimaleswaran KS. Evidence for the association between FTO gene variants and vitamin B12 concentrations in an Asian Indian population. GENES & NUTRITION 2019; 14:26. [PMID: 31516636 PMCID: PMC6728975 DOI: 10.1186/s12263-019-0649-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/30/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Low vitamin B12 concentrations have been associated with major clinical outcomes, including adiposity, in Indian populations. The Fat mass and obesity-associated gene (FTO) is an established obesity-susceptibility locus; however, it remains unknown whether it influences vitamin B12 status. Hence, we investigated the association of two previously studied FTO polymorphisms with vitamin B12 concentrations and metabolic disease-related outcomes and examined whether these associations were modified by dietary factors and physical activity. METHODS A total of 176 individuals with type 2 diabetes, 152 with pre-diabetes, and 220 normal glucose-tolerant individuals were randomly selected from the Chennai Urban Rural Epidemiology Study. Anthropometric, clinical, and biochemical investigations, which included body mass index (BMI), waist circumference, vitamin B12, homocysteine, and folic acid were measured. A validated food frequency questionnaire was used for dietary assessment and self-reported physical activity measures were collected. An unweighted genetic risk score (GRS) was calculated for two FTO single-nucleotide polymorphisms (rs8050136 and rs2388405) by summation of the number of risk alleles for obesity. Interaction analyses were performed by including the interaction terms in the regression model. RESULTS The GRS was significantly associated with increased BMI (P = 0.009) and risk of obesity (P = 0.023). Individuals carrying more than one risk allele for the GRS had 13.13% lower vitamin B12 concentrations, compared to individuals carrying zero risk alleles (P = 0.018). No associations between the GRS and folic acid and homocysteine concentrations were observed. Furthermore, no statistically significant GRS-diet or GRS-physical activity interactions with vitamin B12, folic acid, homocysteine or metabolic-disease outcomes were observed. CONCLUSION The study shows for the first time that a genetic risk score using two FTO SNPs is associated with lower vitamin B12 concentrations; however, we did not identify any evidence for the influence of lifestyle factors on this association. Further replication studies in larger cohorts are warranted to investigate the association between the GRS and vitamin B12 concentrations.
Collapse
Affiliation(s)
- Shelini Surendran
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research (ICMR), Department of Food and Nutritional Sciences, University of Reading, Whiteknights, PO Box 226, Reading, RG6 6AP UK
| | - Ramamoorthy Jayashri
- Department of Diabetology, Madras Diabetes Research Foundation and Dr. Mohan’s Diabetes Specialities Centre, WHO Collaborating Centre for Non-communicable Diseases Prevention and Control, ICMR Centre for Advanced Research on Diabetes, Gopalapuram, Chennai, 600086 India
| | - Lauren Drysdale
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
| | - Dhanasekaran Bodhini
- Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, India
| | - Nagarajan Lakshmipriya
- Department of Foods, Nutrition and Dietetics Research, Madras Diabetes Research Foundation, Chennai, India
| | | | - Vasudevan Sudha
- Department of Foods, Nutrition and Dietetics Research, Madras Diabetes Research Foundation, Chennai, India
| | - Julie A. Lovegrove
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research (ICMR), Department of Food and Nutritional Sciences, University of Reading, Whiteknights, PO Box 226, Reading, RG6 6AP UK
| | - Ranjit M. Anjana
- Department of Diabetology, Madras Diabetes Research Foundation and Dr. Mohan’s Diabetes Specialities Centre, WHO Collaborating Centre for Non-communicable Diseases Prevention and Control, ICMR Centre for Advanced Research on Diabetes, Gopalapuram, Chennai, 600086 India
| | - Viswanathan Mohan
- Department of Diabetology, Madras Diabetes Research Foundation and Dr. Mohan’s Diabetes Specialities Centre, WHO Collaborating Centre for Non-communicable Diseases Prevention and Control, ICMR Centre for Advanced Research on Diabetes, Gopalapuram, Chennai, 600086 India
| | - Venkatesan Radha
- Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, India
| | - Rajendra Pradeepa
- Department of Diabetology, Madras Diabetes Research Foundation and Dr. Mohan’s Diabetes Specialities Centre, WHO Collaborating Centre for Non-communicable Diseases Prevention and Control, ICMR Centre for Advanced Research on Diabetes, Gopalapuram, Chennai, 600086 India
| | - Karani S. Vimaleswaran
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research (ICMR), Department of Food and Nutritional Sciences, University of Reading, Whiteknights, PO Box 226, Reading, RG6 6AP UK
| |
Collapse
|
46
|
Li S, Hou Y, Yan X, Wang Y, Shi C, Wu X, Liu H, Zhang L, Zhang X, Liu J, Zhang M, Zhang Q, Tang N. Joint effects of folate and vitamin B 12 imbalance with maternal characteristics on gestational diabetes mellitus. J Diabetes 2019; 11:744-751. [PMID: 30614647 DOI: 10.1111/1753-0407.12899] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/14/2018] [Accepted: 01/03/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND This study examined whether folate and vitamin B12 imbalance is associated with gestational diabetes mellitus (GDM) and explored interactions between B vitamin imbalance and maternal risk factors for GDM. METHODS A cross-sectional study was performed in 406 Chinese pregnant women. Serum folate, vitamin B12 , and blood glucose concentrations were measured at 24 to 28 weeks gestation during GDM screening. A diagnosis of GDM was made based on International Association of Diabetes and Pregnancy Study Groups criteria (fasting plasma glucose [FPG] ≥5.1 mM, 1-hour plasma glucose ≥10.0 mM, or 2-hour plasma glucose ≥8.5 mM). Binary logistic regression was used to obtain odds ratios (ORs) after controlling for different confounders. RESULTS Higher folate levels were associated with higher glucose concentrations and a higher risk of GDM (OR 1.98; 95% confidence interval [CI] 1.00-3.90), whereas higher vitamin B12 levels were associated with lower FPG and a lower risk of GDM (OR 0.30; 95% CI 0.15-0.60). A higher folate: vitamin B12 ratio was associated with higher glucose and a higher risk of GDM (OR 3.08; 95% CI 1.63-5.83). The presence of both a higher folate: vitamin B12 ratio and advanced age further increased the OR to 2.13 (95% CI 1.09-4.15) with a significant additive interaction. Furthermore, a higher folate: vitamin B12 ratio and a higher prepregnancy body mass index (pp-BMI) were synergistically associated with an increased risk of GDM (OR 3.03; 95% CI 1.40-6.57). CONCLUSIONS An imbalance between folate and vitamin B12 , represented by a higher folate: vitamin B12 ratio, was highly associated with GDM risk, and this association could be further modified by maternal age and pp-BMI.
Collapse
Affiliation(s)
- Shuying Li
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Yaxing Hou
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
- Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xinxin Yan
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
- Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yuwen Wang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
- Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Chen Shi
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
- Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xiaoyan Wu
- Beichen District Women's and Children's Health Center, Tianjin, China
| | - Huihuan Liu
- Beichen District Women's and Children's Health Center, Tianjin, China
| | - Liwen Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
- Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xumei Zhang
- Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Juan Liu
- Department of Biomedical Information and Library, Tianjin Medical University, Tianjin, China
| | - Ming Zhang
- Tianjin Centers for Disease Control and Prevention, Tianjin, China
| | - Qiang Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
- Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Naijun Tang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
- Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
| |
Collapse
|
47
|
Vitamin B 12 status in kidney transplant recipients: association with dietary intake, body adiposity and immunosuppression. Br J Nutr 2019; 122:450-458. [PMID: 31280734 DOI: 10.1017/s0007114519001417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The aim of the present study was to evaluate the prevalence of vitamin B12 (B12) deficiency in kidney transplant recipients (KTR) and its possible association with B12 dietary intake, body adiposity and immunosuppressive drugs. In this cross-sectional study, we included 225 KTR, aged 47·50 (sd 12·11) years, and 125 (56 %) were men. Serum levels of B12 were determined by chemiluminescent microparticle intrinsic factor assay and the cut-off of 200 pg/ml was used to stratify KTR into B12-sufficient or B12-deficient group. B12 dietary intake was evaluated by three 24 h dietary recalls and was considered adequate when ≥2·4 μg/d. Body adiposity was estimated after taking anthropometric measures and using the dual-energy X-ray absorptiometry (DXA) method. B12 deficiency was seen in 14 % of the individuals. B12-deficient group, compared with the B12-sufficient group, exhibited lower intake of B12 (median 2·42 (interquartile range (IQR) 1·41-3·23) v. 3·16 (IQR 1·94-4·55) μg/d, P = 0·04) and higher values of waist circumference (median 96·0 (IQR 88·0-102·5) v. 90·0 (IQR 82·0-100·0) cm, P = 0·04). When the analysis included only women, B12 deficiency was associated with higher total and central body adiposity measurements obtained with anthropometry (BMI, body adiposity index, waist and neck circumferences) and DXA (total and trunk body fat). Among individuals with adequate intake of B12, the deficiency of this vitamin was more frequently seen in those using mycophenolate mofetil (MMF) (17 %) v. azathioprine (2 %), P = 0·01. In conclusion, the prevalence of B12 deficiency in KTR was estimated as 14 % and was associated with reduced intake of B12 as well as higher adiposity, especially in women, and with the use of MMF.
Collapse
|
48
|
Ebrahimi R, Bahiraee A, Niazpour F, Emamgholipour S, Meshkani R. The role of microRNAs in the regulation of insulin signaling pathway with respect to metabolic and mitogenic cascades: A review. J Cell Biochem 2019; 120:19290-19309. [PMID: 31364207 DOI: 10.1002/jcb.29299] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/27/2019] [Indexed: 12/18/2022]
Abstract
Insulin resistance (IR) is a shared pathological condition among type 2 diabetes, obesity, cardiovascular disease, and other metabolic disorders. It is growing significantly all over the world and consequently, a substantial effort is needed for developing the potential novel diagnostics and therapeutics. An insulin signaling pathway is tightly modulated by different mechanisms including the epigenetic modifications. Today, a deal of great attention has been shifted towards the regulatory role of noncoding RNAs on target proteins of the insulin signaling pathway. Noncoding RNAs are a major area of the epigenetics which control gene expression at the posttranscriptional levels and include a large class of microRNAs (miRNAs). With this in view, many studies have implicated the mediatory effects of miRNAs on the downstream metabolic and mitogenic proteins of the insulin signaling pathway. Since providing new biomarkers for the early diagnosis of IR and related metabolic traits are very significant, we intended to review the possible role of miRNAs in the regulation of the insulin signaling pathway, with a primary focus on the downstream target proteins of the metabolic and mitogenic cascades.
Collapse
Affiliation(s)
- Reyhane Ebrahimi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Bahiraee
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Farshad Niazpour
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Solaleh Emamgholipour
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
49
|
Epigenomic Control of Thermogenic Adipocyte Differentiation and Function. Int J Mol Sci 2018; 19:ijms19061793. [PMID: 29914202 PMCID: PMC6032041 DOI: 10.3390/ijms19061793] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 06/12/2018] [Accepted: 06/12/2018] [Indexed: 12/17/2022] Open
Abstract
Obesity and its associated metabolic disorders are spreading at a fast pace throughout the world; thus, effective therapeutic approaches are necessary to combat this epidemic. Obesity develops when there is a greater caloric intake than energy expenditure. Promoting energy expenditure has recently attracted much attention as a promising approach for the management of body weight. Thermogenic adipocytes are capable of burning fat to dissipate chemical energy into heat, thereby enhancing energy expenditure. After the recent re-discovery of thermogenic adipocytes in adult humans, much effort has focused on understanding the molecular mechanisms, especially the epigenetic mechanisms, which regulate thermogenic adipocyte development and function. A number of chromatin signatures, such as histone modifications, DNA methylation, chromatin accessibilities, and interactions, have been profiled at the genome level and analyzed in various murine and human thermogenic fat cell systems. Moreover, writers and erasers, as well as readers of the epigenome are also investigated using genomic tools in thermogenic adipocytes. In this review, we summarize and discuss the recent advance in these studies and highlight the insights gained into the epigenomic regulation of thermogenic program as well as the pathogenesis of human metabolic diseases.
Collapse
|