1
|
Abaj F, Saeedy SAG, Mirzaei K. Are caveolin-1 minor alleles more likely to be risk alleles in insulin resistance mechanisms in metabolic diseases? BMC Res Notes 2021; 14:185. [PMID: 34001235 PMCID: PMC8130340 DOI: 10.1186/s13104-021-05597-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 05/05/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES Obesity and insulin resistance (IR) are interrelated in a range of ways. The IR-obesity relationship is not a cause-and-effect association. Molecular biology research has made tremendous strides in discovering contributors to find this association. Genes that control adipocyte function such as caveolin-1 (CAV1); probably interact in the pathogenesis of human IR in this context. The involvement of CAV1 in glucose/lipid homeostasis is revealed and could modify the signaling of the insulin receptor. We examined the association between CAV1 and insulin signaling in modifying dyslipidemia and fat composition in overweight and obese women with a prevalent variant in the CAV1 gene. RESULTS Minor allele carriers were slightly older and had higher BMI (p = 0.02), FMI (p = 0.006), and VLF (p = 0.01) values; and tended to have lower total cholesterol TC (p = 0.04), low-density lipoprotein cholesterol (LDL-C) (p = 0.001) and high-density lipoprotein cholesterol (HDL-C) (p = 0.003). HOMA-IR levels predicted fat mass index (FMI) 0.47 (0.08, 0.87), visceral fat level (VFL) 0.65 (0.23, 1.07), TC 6.82 (1.76, 11.88) and HDL-C - 1.663 (- 3.11, - 0.214) only between minor allele carriers in adjusted models. (β, CI). Our results cast a new light on the IR mechanism and future studies will elucidate the clinical relevance of CAV1-IR in patients with dyslipidemia and high fat composition.
Collapse
Affiliation(s)
- Faezeh Abaj
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), No. 44, Hojjat-dost Alley, Naderi St., Keshavarz Blvd, P.O. Box, 14155-6117, Tehran, Iran
| | | | - Khadijeh Mirzaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), No. 44, Hojjat-dost Alley, Naderi St., Keshavarz Blvd, P.O. Box, 14155-6117, Tehran, Iran.
| |
Collapse
|
2
|
Tutino GE, Tam CHT, Ozaki R, Yuen LY, So WY, Chan MHM, Ko GTC, Yang X, Chan JCN, Tam WH, Ma RCW. Long-term maternal cardiometabolic outcomes 22 years after gestational diabetes mellitus. J Diabetes Investig 2020; 11:985-993. [PMID: 31912653 PMCID: PMC7378443 DOI: 10.1111/jdi.13209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/18/2019] [Accepted: 01/05/2020] [Indexed: 11/29/2022] Open
Abstract
AIMS/INTRODUCTION Women with gestational diabetes mellitus are at increased risk for type 2 diabetes. We characterized the association between maternal glycemia during pregnancy with long-term outcomes. METHODS AND METHODS In this prospective nested case-cohort study, participants were recalled for follow up with detailed evaluation including oral glucose tolerance test at 8, 15 and 22 years. Logistic regression was used to estimate the risk of developing impaired glucose tolerance/type 2 diabetes and metabolic syndrome at follow up. The association between maternal glycemia at pregnancy and follow up was evaluated by linear regression. We also charted trajectory of β-cell function during follow up. RESULTS The analysis included 121 women with a mean follow-up period of 22.5 years, and a mean age of 50.3 years. Gestational diabetes was associated with an adjusted odds ratio of 2.48 (95% confidence interval 1.03-5.99) for combined diabetes/impaired glucose tolerance at follow up (P = 0.04). Women with a pre-pregnancy body mass index ≥23 had an odds ratio of 5.43 (95% confidence interval 1.87-15.72) for metabolic syndrome at follow up, compared with those with body mass index <23 (P = 0.002). Both fasting and 2-h glucose during pregnancy were strongly associated with glycemic indices at follow up (P-value <0.001-0.016). Gestational diabetes was associated with impaired β-cell function that remained relatively stable after the index pregnancy. CONCLUSIONS Chinese women with a history of gestational diabetes have a high prevalence of impaired glucose tolerance/type 2 diabetes at 22-year follow up. Glucose levels during mid-pregnancy are strongly associated with those of middle age.
Collapse
Affiliation(s)
- Greg E Tutino
- Department of Medicine and TherapeuticsThe Chinese University of Hong KongHong Kong
- Hong Kong Institute of Diabetes and ObesityThe Chinese University of Hong KongHong Kong
| | - Claudia HT Tam
- Department of Medicine and TherapeuticsThe Chinese University of Hong KongHong Kong
- Hong Kong Institute of Diabetes and ObesityThe Chinese University of Hong KongHong Kong
| | - Riza Ozaki
- Department of Medicine and TherapeuticsThe Chinese University of Hong KongHong Kong
- Hong Kong Institute of Diabetes and ObesityThe Chinese University of Hong KongHong Kong
| | - Lai Yuk Yuen
- Department of Obstetrics and GynecologyThe Chinese University of Hong KongHong Kong
| | - Wing Yee So
- Department of Medicine and TherapeuticsThe Chinese University of Hong KongHong Kong
- Hong Kong Institute of Diabetes and ObesityThe Chinese University of Hong KongHong Kong
| | - Michael HM Chan
- Department of Chemical PathologyPrince of Wales HospitalShatinHong Kong
| | - Gary TC Ko
- Department of Medicine and TherapeuticsThe Chinese University of Hong KongHong Kong
- Hong Kong Institute of Diabetes and ObesityThe Chinese University of Hong KongHong Kong
| | - Xilin Yang
- Department of Epidemiology and BiostatisticsSchool of Public HealthTianjin Medical UniversityTianjinChina
| | - Juliana CN Chan
- Department of Medicine and TherapeuticsThe Chinese University of Hong KongHong Kong
- Hong Kong Institute of Diabetes and ObesityThe Chinese University of Hong KongHong Kong
- Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong
| | - Wing Hung Tam
- Department of Obstetrics and GynecologyThe Chinese University of Hong KongHong Kong
| | - Ronald CW Ma
- Department of Medicine and TherapeuticsThe Chinese University of Hong KongHong Kong
- Hong Kong Institute of Diabetes and ObesityThe Chinese University of Hong KongHong Kong
- Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong
| |
Collapse
|
3
|
Yang CH, Mangiafico SP, Waibel M, Loudovaris T, Loh K, Thomas HE, Morahan G, Andrikopoulos S. E2f8 and Dlg2 genes have independent effects on impaired insulin secretion associated with hyperglycaemia. Diabetologia 2020; 63:1333-1348. [PMID: 32356104 DOI: 10.1007/s00125-020-05137-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/14/2020] [Indexed: 12/11/2022]
Abstract
AIMS/HYPOTHESIS Reduced insulin secretion results in hyperglycaemia and diabetes involving a complex aetiology that is yet to be fully elucidated. Genetic susceptibility is a key factor in beta cell dysfunction and hyperglycaemia but the responsible genes have not been defined. The Collaborative Cross (CC) is a recombinant inbred mouse panel with diverse genetic backgrounds allowing the identification of complex trait genes that are relevant to human diseases. The aim of this study was to identify and characterise genes associated with hyperglycaemia. METHODS Using an unbiased genome-wide association study, we examined random blood glucose and insulin sensitivity in 53 genetically unique mouse strains from the CC population. The influences of hyperglycaemia susceptibility quantitative trait loci (QTLs) were investigated by examining glucose tolerance, insulin secretion, pancreatic histology and gene expression in the susceptible mice. Expression of candidate genes and their association with insulin secretion were examined in human islets. Mechanisms underlying reduced insulin secretion were studied in MIN6 cells using RNA interference. RESULTS Wide variations in blood glucose levels and the related metabolic traits (insulin sensitivity and body weight) were observed in the CC population. We showed that elevated blood glucose in the CC strains was not due to insulin resistance nor obesity but resulted from reduced insulin secretion. This insulin secretory defect was demonstrated to be independent of abnormalities in islet morphology, beta cell mass and pancreatic insulin content. Gene mapping identified the E2f8 (p = 2.19 × 10-15) and Dlg2 loci (p = 3.83 × 10-8) on chromosome 7 to be significantly associated with hyperglycaemia susceptibility. Fine mapping the implicated regions using congenic mice demonstrated that these two loci have independent effects on insulin secretion in vivo. Significantly, our results revealed that increased E2F8 and DLG2 gene expression are correlated with enhanced insulin secretory function in human islets. Furthermore, loss-of-function studies in MIN6 cells demonstrated that E2f8 is involved in insulin secretion through an ATP-sensitive K+ channel-dependent pathway, which leads to a 30% reduction in Abcc8 expression. Similarly, knockdown of Dlg2 gene expression resulted in impaired insulin secretion in response to glucose and non-glucose stimuli. CONCLUSIONS/INTERPRETATION Collectively, these findings suggest that E2F transcription factor 8 (E2F8) and discs large homologue 2 (DLG2) regulate insulin secretion. The CC resource enables the identification of E2f8 and Dlg2 as novel genes associated with hyperglycaemia due to reduced insulin secretion in pancreatic beta cells. Taken together, our results provide better understanding of the molecular control of insulin secretion and further support the use of the CC resource to identify novel genes relevant to human diseases.
Collapse
Affiliation(s)
- Chieh-Hsin Yang
- Department of Medicine (Austin Health), Austin Hospital, University of Melbourne, Level 7, Lance Townsend Building, Studley Road, Heidelberg, VIC, 3084, Australia.
- St Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, VIC, 3065, Australia.
| | - Salvatore P Mangiafico
- Department of Medicine (Austin Health), Austin Hospital, University of Melbourne, Level 7, Lance Townsend Building, Studley Road, Heidelberg, VIC, 3084, Australia
| | - Michaela Waibel
- St Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, VIC, 3065, Australia
| | - Thomas Loudovaris
- St Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, VIC, 3065, Australia
| | - Kim Loh
- St Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, VIC, 3065, Australia
| | - Helen E Thomas
- St Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, VIC, 3065, Australia
| | - Grant Morahan
- Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
| | - Sofianos Andrikopoulos
- Department of Medicine (Austin Health), Austin Hospital, University of Melbourne, Level 7, Lance Townsend Building, Studley Road, Heidelberg, VIC, 3084, Australia.
| |
Collapse
|
4
|
Abstract
Diabetes mellitus is a major risk factor for coronary heart disease (CHD). The major form of diabetes mellitus is type 2 diabetes mellitus (T2D), which is thus largely responsible for the CHD association in the general population. Recent years have seen major advances in the genetics of T2D, principally through ever-increasing large-scale genome-wide association studies. This article addresses the question of whether this expanding knowledge of the genomics of T2D provides insight into the etiologic relationship between T2D and CHD. We will investigate this relationship by reviewing the evidence for shared genetic loci between T2D and CHD; by examining the formal testing of this interaction (Mendelian randomization studies assessing whether T2D is causal for CHD); and then turn to the implications of this genetic relationship for therapies for CHD, for therapies for T2D, and for therapies that affect both. In conclusion, the growing knowledge of the genetic relationship between T2D and CHD is beginning to provide the promise for improved prevention and treatment of both disorders.
Collapse
Affiliation(s)
- Mark O. Goodarzi
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jerome I. Rotter
- Institute for Translational Genomics and Population Sciences and Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| |
Collapse
|
5
|
The Diabetes Mellitus-Atherosclerosis Connection: The Role of Lipid and Glucose Metabolism and Chronic Inflammation. Int J Mol Sci 2020; 21:ijms21051835. [PMID: 32155866 PMCID: PMC7084712 DOI: 10.3390/ijms21051835] [Citation(s) in RCA: 481] [Impact Index Per Article: 120.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus comprises a group of carbohydrate metabolism disorders that share a common main feature of chronic hyperglycemia that results from defects of insulin secretion, insulin action, or both. Insulin is an important anabolic hormone, and its deficiency leads to various metabolic abnormalities in proteins, lipids, and carbohydrates. Atherosclerosis develops as a result of a multistep process ultimately leading to cardiovascular disease associated with high morbidity and mortality. Alteration of lipid metabolism is a risk factor and characteristic feature of atherosclerosis. Possible links between the two chronic disorders depending on altered metabolic pathways have been investigated in numerous studies. It was shown that both types of diabetes mellitus can actually induce atherosclerosis development or further accelerate its progression. Elevated glucose level, dyslipidemia, and other metabolic alterations that accompany the disease development are tightly involved in the pathogenesis of atherosclerosis at almost every step of the atherogenic process. Chronic inflammation is currently considered as one of the key factors in atherosclerosis development and is present starting from the earliest stages of the pathology initiation. It may also be regarded as one of the possible links between atherosclerosis and diabetes mellitus. However, the data available so far do not allow for developing effective anti-inflammatory therapeutic strategies that would stop atherosclerotic lesion progression or induce lesion reduction. In this review, we summarize the main aspects of diabetes mellitus that possibly affect the atherogenic process and its relationship with chronic inflammation. We also discuss the established pathophysiological features that link atherosclerosis and diabetes mellitus, such as oxidative stress, altered protein kinase signaling, and the role of certain miRNA and epigenetic modifications.
Collapse
|
6
|
Vukovic R, Dos Santos TJ, Ybarra M, Atar M. Children With Metabolically Healthy Obesity: A Review. Front Endocrinol (Lausanne) 2019; 10:865. [PMID: 31920976 PMCID: PMC6914809 DOI: 10.3389/fendo.2019.00865] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023] Open
Abstract
Children with "metabolically healthy obesity" (MHO) are a distinct subgroup of youth with obesity, who are less prone to the clustering of cardiometabolic risk factors. Although this phenotype, frequently defined by the absence of metabolic syndrome components or insulin resistance, was first described during the early 1980s, a consensus-based definition of pediatric MHO was introduced only recently, in 2018. The purpose of this review was to concisely summarize current knowledge regarding the MHO phenomenon in youth. The prevalence of MHO in children varies from 3 to 87%, depending on the definition used and the parameters evaluated, as well as the ethnicity and the pubertal status of the sample. The most consistent predictors of MHO in youth include younger age, lower body mass index, lower waist circumference, and lower body fat measurements. Various hypotheses have been proposed to elucidate the underlying factors maintaining the favorable MHO phenotype. While preserved insulin sensitivity and lack of inflammation were previously considered to be the main etiological factors, the most recent findings have implicated adipokine levels, the number of inflammatory immune cells in the adipose tissue, and the reduction of visceral adiposity due to adipose tissue expandability. Physical activity and genetic factors also contribute to the MHO phenotype. Obesity constitutes a continuum-increased risk for cardiometabolic complications, which is less evident in children with MHO. However, some findings have highlighted the emergence of hepatic steatosis, increased carotid intima-media thickness and inflammatory biomarkers in the MHO group compared to peers without obesity. Screening should be directed at those more likely to develop clustering of cardiometabolic risk factors. Lifestyle modifications should include behavioral changes focusing on sleep duration, screen time, diet, physical activity, and tobacco smoke exposure. Weight loss has also been associated with the improvement of insulin sensitivity and inflammation. Further investigative efforts are needed in order to elucidate the mechanisms which protect against the clustering of cardiometabolic risk factors in pediatric obesity, to provide more efficient, targeted treatment approaches for children with obesity, and to identify the protective factors preserving the MHO profile, avoiding the crossover of MHO to the phenotype with metabolically unhealthy obesity.
Collapse
Affiliation(s)
- Rade Vukovic
- Department of Pediatric Endocrinology, Mother and Child Healthcare Institute of Serbia “Dr Vukan Cupic”, Belgrade, Serbia
- School of Medicine, University of Belgrade, Belgrade, Serbia
- *Correspondence: Rade Vukovic
| | | | - Marina Ybarra
- Research Center of Sainte Justine University Hospital, Université de Montréal, Montreal, QC, Canada
- Centre Armand-Frappier, Institut National de la Recherche Scientifique, Université du Québec, Laval, QC, Canada
| | - Muge Atar
- Department of Pediatric Endocrinology, School of Medicine, Demirel University, Isparta, Turkey
| |
Collapse
|
7
|
Abstract
Insulin resistance and the metabolic syndrome are complex metabolic traits and key risk factors for the development of cardiovascular disease. They result from the interplay of environmental and genetic factors but the full extent of the genetic background to these conditions remains incomplete. Large-scale genome-wide association studies have helped advance the identification of common genetic variation associated with insulin resistance and the metabolic syndrome, and more recently, exome sequencing has allowed the identification of rare variants associated with the pathogenesis of these conditions. Many variants associated with insulin resistance are directly involved in glucose metabolism; however, functional studies are required to assess the contribution of other variants to the development of insulin resistance. Many genetic variants involved in the pathogenesis of the metabolic syndrome are associated with lipid metabolism.
Collapse
Affiliation(s)
- Audrey E Brown
- Institute of Cellular Medicine, William Leech Building, Medical School, Newcastle University, Newcastle, NE2 4HH, UK
| | - Mark Walker
- Institute of Cellular Medicine, William Leech Building, Medical School, Newcastle University, Newcastle, NE2 4HH, UK.
| |
Collapse
|
8
|
Francis S, Chandran SP, Nesheera KK, Jacob J. Fasting Insulin is Better Partitioned according to Family History of Type 2 Diabetes Mellitus than Post Glucose Load Insulin of Oral Glucose Tolerance Test in Young Adults. J Clin Diagn Res 2017; 11:BC13-BC16. [PMID: 28658751 DOI: 10.7860/jcdr/2017/27684.9910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/18/2017] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Hyperinsulinemia is contributed by insulin resistance, hepatic insulin uptake, insulin secretion and rate of insulin degradation. Family history of type 2 diabetes mellitus has been reported to cause hyperinsulinemia. AIM Correlation of fasting insulin with post glucose load Oral Glucose Tolerance Test (OGTT) insulin in young adults and their partitioning according to family history of type 2 diabetes. MATERIALS AND METHODS In this observational cross-sectional study, clinical evaluation and biochemical assays of insulin and diabetes related parameters, and secondary clinical influences on type 2 diabetes in volunteers were done for inclusion as participants (n=90) or their exclusion. Cut off levels of quantitative biochemical variables were fixed such that they included the effects of insulin resistance, but excluded other secondary clinical influences. Distribution was analysed by Shapiro-Wilk test; equality of variances by Levene's test; Log10 transformations for conversion of groups to Gaussian distribution and for equality of variances in the groups compared. When the groups compared had Gaussian distribution and there was equality of variance, parametric methods were used. Otherwise, non parametric methods were used. RESULTS Fasting insulin was correlating significantly with 30, 60 and 120 minute OGTT insulin showing that hyperinsulinemia in the fasting state was related to hyperinsulinemia in the post glucose load states. When fasting and post glucose load OGTT insulin were partitioned into those without and with family history of type 2 diabetes, maximum difference was seen in fasting insulin (p<0.001), followed by 120 (p=0.001) and 60 (p= 0.002) minute OGTT insulin. The 30 minute insulin could not be partitioned (p=0.574). CONCLUSION Fasting, 60 and 120 minute OGTT insulin can be partitioned according to family history of type 2 diabetes, demonstrating stratification and heterogeneity in the insulin sample. Of these, fasting insulin was better partitioned and could be used for baseline reference interval calculations.
Collapse
Affiliation(s)
- Saritha Francis
- Senior Research Fellow, Department of Biochemistry, Amala Cancer Research Centre, Thrissur, Kerala, India
| | | | - K K Nesheera
- Senior Research Fellow, Department of Biochemistry, Amala Cancer Research Centre, Thrissur, Kerala, India
| | - Jose Jacob
- Professor and HOD, Department of Biochemistry, Amala Institute of Medical Sciences, Amala Cancer Research Centre, Thrissur, Kerala, India
| |
Collapse
|
9
|
Malaguarnera R, Vella V, Nicolosi ML, Belfiore A. Insulin Resistance: Any Role in the Changing Epidemiology of Thyroid Cancer? Front Endocrinol (Lausanne) 2017; 8:314. [PMID: 29184536 PMCID: PMC5694441 DOI: 10.3389/fendo.2017.00314] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/30/2017] [Indexed: 12/13/2022] Open
Abstract
In the past few decades, the incidence of thyroid cancer (TC), namely of its papillary hystotype (PTC), has shown a steady increase worldwide, which has been attributed at least in part to the increasing diagnosis of early stage tumors. However, some evidence suggests that environmental and lifestyle factors can also play a role. Among the potential risk factors involved in the changing epidemiology of TC, particular attention has been drawn to insulin-resistance and related metabolic disorders, such as obesity, type 2 diabetes, and metabolic syndrome, which have been also rapidly increasing worldwide due to widespread dietary and lifestyle changes. In accordance with this possibility, various epidemiological studies have indeed gathered substantial evidence that insulin resistance-related metabolic disorders might be associated with an increased TC risk either through hyperinsulinemia or by affecting other TC risk factors including iodine deficiency, elevated thyroid stimulating hormone, estrogen-dependent signaling, chronic autoimmune thyroiditis, and others. This review summarizes the current literature evaluating the relationship between metabolic disorders characterized by insulin resistance and the risk for TC as well as the possible underlying mechanisms. The potential implications of such association in TC prevention and therapy are discussed.
Collapse
Affiliation(s)
- Roberta Malaguarnera
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Veronica Vella
- School of Human and Social Sciences, “Kore” University of Enna, Enna, Italy
- *Correspondence: Veronica Vella, ; Antonino Belfiore,
| | - Maria Luisa Nicolosi
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Antonino Belfiore
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
- *Correspondence: Veronica Vella, ; Antonino Belfiore,
| |
Collapse
|
10
|
Zhou S, Meng X, Wang S, Ren R, Hou W, Huang K, Shi H. A 3-year follow-up study of β-cell function in patients with early-onset type 2 diabetes. Exp Ther Med 2016; 12:1097-1102. [PMID: 27446326 DOI: 10.3892/etm.2016.3394] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/12/2016] [Indexed: 12/14/2022] Open
Abstract
Insulin resistance and reduced β-cell glucose sensitivity are present in patients with type 2 diabetes. In the present study, we investigated the changes in β-cell function in patients with type 2 diabetes during a 3-year follow-up study. A total of 48 patients with early-onset type 2 diabetes (EOD) and 55 patients with late-onset type 2 diabetes (LOD) were enrolled. Weight, height, waist circumference, hip circumference, blood pressure and plasma levels of lipids, glucose, fasting serum C-peptide (CPR0) and serum C-peptide 6 min after glucagon stimulation (CPR6) were measured. In addition, islet β-cell secretory activity was detected. Subjects with EOD had lower Systolic blood pressure (SBP), diastolic blood pressure (DBP), body mass index (BMI), fasting CPR0, CPR6 and greater glycated hemoglobin A1c (HbA1c), triglyceride (TG) compared with subjects with LOD. CPR0, CPR6 and TG were decreased in both EOD and LOD groups 3 years later. The ratio of β-cell function failure was 29.17 and 10.91% in the EOD and LOD groups, respectively, and there was significant difference between the two groups. A positive correlation was identified between the CPR0 and waist-hip ratio, HbA1c in the EOD group. A similar positive correlation was observed between CPR0 and BMI in the LOD group. Collectively, islet β-cell function has declined in patients with EOD, and this change may be more evident when compared with those with LOD.
Collapse
Affiliation(s)
- Shaoling Zhou
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China; Department of Endocrinology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Xiaomei Meng
- Department of Endocrinology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Shuyan Wang
- Department of Endocrinology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Ruizhen Ren
- Department of Endocrinology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Weikai Hou
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Kuixiang Huang
- Department of Endocrinology, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, P.R. China
| | - Hongli Shi
- Department of Endocrinology, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
11
|
Raghavan S, Porneala B, McKeown N, Fox CS, Dupuis J, Meigs JB. Metabolic factors and genetic risk mediate familial type 2 diabetes risk in the Framingham Heart Study. Diabetologia 2015; 58:988-96. [PMID: 25619168 PMCID: PMC4393775 DOI: 10.1007/s00125-015-3498-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/01/2015] [Indexed: 12/25/2022]
Abstract
AIMS/HYPOTHESIS Type 2 diabetes mellitus in parents is a strong determinant of diabetes risk in their offspring. We hypothesise that offspring diabetes risk associated with parental diabetes is mediated by metabolic risk factors. METHODS We studied initially non-diabetic participants of the Framingham Offspring Study. Metabolic risk was estimated using beta cell corrected insulin response (CIR), HOMA-IR or a count of metabolic syndrome components (metabolic syndrome score [MSS]). Dietary risk and physical activity were estimated using questionnaire responses. Genetic risk score (GRS) was estimated as the count of 62 type 2 diabetes risk alleles. The outcome of incident diabetes in offspring was examined across levels of parental diabetes exposure, accounting for sibling correlation and adjusting for age, sex and putative mediators. The proportion mediated was estimated by comparing regression coefficients for parental diabetes with (β adj) and without (β unadj) adjustments for CIR, HOMA-IR, MSS and GRS (percentage mediated = 1 - β adj / β unadj). RESULTS Metabolic factors mediated 11% of offspring diabetes risk associated with parental diabetes, corresponding to a reduction in OR per diabetic parent from 2.13 to 1.96. GRS mediated 9% of risk, corresponding to a reduction in OR per diabetic parent from 2.13 to 1.99. CONCLUSIONS/INTERPRETATION Metabolic risk factors partially mediated offspring type 2 diabetes risk conferred by parental diabetes to a similar magnitude as genetic risk. However, a substantial proportion of offspring diabetes risk associated with parental diabetes remains unexplained by metabolic factors, genetic risk, diet and physical activity, suggesting that important familial influences on diabetes risk remain undiscovered.
Collapse
Affiliation(s)
- Sridharan Raghavan
- Division of General Internal Medicine, Department of Medicine, Harvard Medical School and Massachusetts General Hospital, 50 Staniford Street, 9th Floor, Boston, MA 02114, USA
| | - Bianca Porneala
- Division of General Internal Medicine, Department of Medicine, Harvard Medical School and Massachusetts General Hospital, 50 Staniford Street, 9th Floor, Boston, MA 02114, USA
| | - Nicola McKeown
- Nutritional Epidemiology Program, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Caroline S. Fox
- Laboratory for Metabolic and Population Health, National Heart, Lung, and Blood Institute, Framingham, MA, USA
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - James B. Meigs
- Division of General Internal Medicine, Department of Medicine, Harvard Medical School and Massachusetts General Hospital, 50 Staniford Street, 9th Floor, Boston, MA 02114, USA
| |
Collapse
|
12
|
Gjesing AP, Hornbak M, Allin KH, Ekstrøm CT, Urhammer SA, Eiberg H, Pedersen O, Hansen T. High heritability and genetic correlation of intravenous glucose- and tolbutamide-induced insulin secretion among non-diabetic family members of type 2 diabetic patients. Diabetologia 2014; 57:1173-81. [PMID: 24604100 DOI: 10.1007/s00125-014-3207-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 02/13/2014] [Indexed: 10/25/2022]
Abstract
AIMS/HYPOTHESIS The aim of this study was to estimate the heritability of quantitative measures of glucose regulation obtained from a tolbutamide-modified frequently sampled IVGTT (t-FSIGT) and to correlate the heritability of the glucose-stimulated beta cell response to the tolbutamide-induced beta cell response. In addition, single nucleotide polymorphisms (SNPs) having an exclusive effect on either glucose- or tolbutamide-stimulated insulin release were identified. METHODS Two hundred and eighty-four non-diabetic family members of patients with type 2 diabetes underwent a t-FSIGT with intravenous injection of glucose at t = 0 min and tolbutamide at t = 20 min. Measurements of plasma glucose, serum insulin and serum C-peptide were taken at 33 time points from fasting to 180 min. Insulin secretion rate, acute insulin response (AIR), disposition index (DI) after glucose and disposition index after tolbutamide (DIT), insulin sensitivity (SI), glucose effectiveness (SG) and beta cell responsiveness to glucose were calculated. A polygenic variance component model was used to estimate heritability, genetic correlations and associations. RESULTS We found high heritabilities for acute insulin secretion subsequent to glucose stimulation (AIRglucose h (2) ± SE: 0.88 ± 0.14), but these were slightly lower after tolbutamide (AIRtolbutamide h (2) ± SE: 0.69 ± 0.14). We also estimated the heritabilities for SI (h (2) ± SE: 0.26 ± 0.12), SG (h (2) ± SE: 0.47 ± 0.13), DI (h (2) ± SE: 0.56 ± 0.14), DIT (h (2) ± SE: 0.49 ± 0.14) and beta cell responsiveness to glucose (h (2) ± SE: 0.66 ± 0.12). Additionally, strong genetic correlations were found between measures of beta cell response after glucose and tolbutamide stimulation, with correlation coefficients ranging from 0.77 to 0.88. Furthermore, we identified five SNPs with an exclusive effect on either glucose-stimulated (rs5215, rs1111875, rs11920090) or tolbutamide-stimulated (rs10946398, rs864745) insulin secretion. CONCLUSIONS/INTERPRETATION Our data demonstrate that both glucose- and tolbutamide-induced insulin secretions are highly heritable traits, which are largely under the control of the same genes.
Collapse
Affiliation(s)
- Anette P Gjesing
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 1-3, 2100, Copenhagen Ø, Denmark,
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Goodarzi MO, Langefeld CD, Xiang AH, Chen YDI, Guo X, Hanley AJG, Raffel LJ, Kandeel F, Buchanan TA, Norris JM, Fingerlin TE, Lorenzo C, Rewers MJ, Haffner SM, Bowden DW, Rich SS, Bergman RN, Rotter JI, Watanabe RM, Wagenknecht LE. Insulin sensitivity and insulin clearance are heritable and have strong genetic correlation in Mexican Americans. Obesity (Silver Spring) 2014; 22:1157-64. [PMID: 24124113 PMCID: PMC3968231 DOI: 10.1002/oby.20639] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 08/29/2013] [Accepted: 10/02/2013] [Indexed: 11/08/2022]
Abstract
OBJECTIVE The GUARDIAN (Genetics UndeRlying DIAbetes in HispaNics) consortium is described, along with heritability estimates and genetic and environmental correlations of insulin sensitivity and metabolic clearance rate of insulin (MCRI). METHODS GUARDIAN is comprised of seven cohorts, consisting of 4,336 Mexican-American individuals in 1,346 pedigrees. Insulin sensitivity (SI ), MCRI, and acute insulin response (AIRg) were measured by frequently sampled intravenous glucose tolerance test in four cohorts. Insulin sensitivity (M, M/I) and MCRI were measured by hyperinsulinemic-euglycemic clamp in three cohorts. Heritability and genetic and environmental correlations were estimated within the family cohorts (totaling 3,925 individuals) using variance components. RESULTS Across studies, age, and gender-adjusted heritability of insulin sensitivity (SI , M, M/I) ranged from 0.23 to 0.48 and of MCRI from 0.35 to 0.73. The ranges for the genetic correlations were 0.91 to 0.93 between SI and MCRI; and -0.57 to -0.59 for AIRg and MCRI (all P < 0.0001). The ranges for the environmental correlations were 0.54 to 0.74 for SI and MCRI (all P < 0.0001); and -0.16 to -0.36 for AIRg and MCRI (P < 0.0001-0.06). CONCLUSIONS These data support a strong familial basis for insulin sensitivity and MCRI in Mexican Americans. The strong genetic correlations between MCRI and SI suggest common genetic determinants.
Collapse
Affiliation(s)
- Mark O. Goodarzi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
- the Medical Genetics Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Carl D. Langefeld
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Anny H. Xiang
- Department of Research and Evaluation, Kaiser Permanente Southern California Medical Group, Pasadena, California
| | - Yii-Der I. Chen
- Institute for Translational Genomics and Population Sciences and Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences and Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California
| | - Anthony J. G. Hanley
- Departments of Nutritional Sciences and Medicine and Dalla Lana School of Public Health, University of Toronto, Ontario, Canada
| | - Leslie J. Raffel
- the Medical Genetics Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Fouad Kandeel
- Department of Diabetes, Endocrinology and Metabolism, City of Hope, Duarte, California
| | - Thomas A. Buchanan
- Department of Medicine, University of Southern California Keck School of Medicine, Los Angeles, California
- Department of Physiology and Biophysics, University of Southern California Keck School of Medicine, Los Angeles, California
| | - Jill M. Norris
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Aurora, Colorado
| | - Tasha E. Fingerlin
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Aurora, Colorado
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Denver, Aurora, Colorado
| | - Carlos Lorenzo
- Division of Clinical Epidemiology, University of Texas Health Sciences Center, San Antonio, Texas
| | - Marian J. Rewers
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, Colorado
| | | | - Donald W. Bowden
- Department of Biochemistry, Centers for Diabetes Research and Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Stephen S. Rich
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia
| | - Richard N. Bergman
- Diabetes and Obesity Research Institute, Burns and Allen Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Jerome I. Rotter
- Institute for Translational Genomics and Population Sciences and Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California
| | - Richard M. Watanabe
- Department of Physiology and Biophysics, University of Southern California Keck School of Medicine, Los Angeles, California
- Department of Preventive Medicine, University of Southern California Keck School of Medicine, Los Angeles, California
| | - Lynne E. Wagenknecht
- Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
14
|
Abstract
Glucose metabolism is normally regulated by a feedback loop including islet β cells and insulin-sensitive tissues, in which tissue sensitivity to insulin affects magnitude of β-cell response. If insulin resistance is present, β cells maintain normal glucose tolerance by increasing insulin output. Only when β cells cannot release sufficient insulin in the presence of insulin resistance do glucose concentrations rise. Although β-cell dysfunction has a clear genetic component, environmental changes play an essential part. Modern research approaches have helped to establish the important role that hexoses, aminoacids, and fatty acids have in insulin resistance and β-cell dysfunction, and the potential role of changes in the microbiome. Several new approaches for treatment have been developed, but more effective therapies to slow progressive loss of β-cell function are needed. Recent findings from clinical trials provide important information about methods to prevent and treat type 2 diabetes and some of the adverse effects of these interventions. However, additional long-term studies of drugs and bariatric surgery are needed to identify new ways to prevent and treat type 2 diabetes and thereby reduce the harmful effects of this disease.
Collapse
Affiliation(s)
- Steven E Kahn
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System, University of Washington, Seattle, WA, USA.
| | - Mark E Cooper
- Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Stefano Del Prato
- Department of Clinical and Experimental Medicine, University of Pisa School of Medicine, Pisa, Italy
| |
Collapse
|
15
|
Kahn SE, Suvag S, Wright LA, Utzschneider KM. Interactions between genetic background, insulin resistance and β-cell function. Diabetes Obes Metab 2012; 14 Suppl 3:46-56. [PMID: 22928564 PMCID: PMC3634618 DOI: 10.1111/j.1463-1326.2012.01650.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
An interaction between genes and the environment is a critical component underlying the pathogenesis of the hyperglycaemia of type 2 diabetes. The development of more sophisticated techniques for studying gene variants and for analysing genetic data has led to the discovery of some 40 genes associated with type 2 diabetes. Most of these genes are related to changes in β-cell function, with a few associated with decreased insulin sensitivity and obesity. Interestingly, using quantitative traits based on continuous measures rather than dichotomous ones, it has become evident that not all genes associated with changes in fasting or post-prandial glucose are also associated with a diagnosis of type 2 diabetes. Identification of these gene variants has provided novel insights into the physiology and pathophysiology of the β-cell, including the identification of molecules involved in β-cell function that were not previously recognized as playing a role in this critical cell.
Collapse
Affiliation(s)
- S E Kahn
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, Veterans Affairs Puget Sound Health Care System, Seattle, Washington 98108, USA.
| | | | | | | |
Collapse
|
16
|
Gjesing AP, Ekstrøm CT, Eiberg H, Urhammer SA, Holst JJ, Pedersen O, Hansen T. Fasting and oral glucose-stimulated levels of glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are highly familial traits. Diabetologia 2012; 55:1338-45. [PMID: 22349073 DOI: 10.1007/s00125-012-2484-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 01/17/2012] [Indexed: 02/03/2023]
Abstract
AIMS/HYPOTHESIS Heritability estimates have shown a varying degree of genetic contribution to traits related to type 2 diabetes. Therefore, the objective of this study was to investigate the familiality of fasting and stimulated measures of plasma glucose, serum insulin, serum C-peptide, plasma glucose-dependent insulinotropic polypeptide (GIP) and plasma glucagon-like peptide-1 (GLP-1) among non-diabetic relatives of Danish type 2 diabetic patients. METHODS Sixty-one families comprising 193 non-diabetic offspring, 29 non-diabetic spouses, 72 non-diabetic relatives (parent, sibling, etc.) and two non-related relatives underwent a 4 h 75 g OGTT with measurements of plasma glucose, serum insulin, serum C-peptide, plasma GIP and plasma GLP-1 levels at 18 time points. Insulin secretion rates (ISR) and beta cell responses to glucose, GIP and GLP-1 were calculated. Familiality was estimated based on OGTT-derived measures. RESULTS A high level of familiality was observed during the OGTT for plasma levels of GIP and GLP-1, with peak familiality values of 74 ± 16% and 65 ± 15%, respectively (h (2) ± SE). Familiality values were lower for plasma glucose, serum insulin and serum C-peptide during the OGTT (range 8-48%, 14-44% and 15-61%, respectively). ISR presented the highest familiality value at fasting reaching 59 ± 16%. Beta cell responsiveness to glucose, GLP-1 and GIP also revealed a strong genetic influence, with peak familiality estimates of 62 ± 13%, 76 ± 15% and 70 ± 14%, respectively. CONCLUSIONS/INTERPRETATION Our results suggest that circulating levels of GIP and GLP-1 as well as beta cell response to these incretins are highly familial compared with more commonly investigated measures of glucose homeostasis such as fasting and stimulated plasma glucose, serum insulin and serum C-peptide.
Collapse
Affiliation(s)
- A P Gjesing
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, University of Copenhagen, Universitetsparken 1, DK-2100 Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|
17
|
Adenosine kinase inhibition selectively promotes rodent and porcine islet β-cell replication. Proc Natl Acad Sci U S A 2012; 109:3915-20. [PMID: 22345561 DOI: 10.1073/pnas.1201149109] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Diabetes is a pathological condition characterized by relative insulin deficiency, persistent hyperglycemia, and, consequently, diffuse micro- and macrovascular disease. One therapeutic strategy is to amplify insulin-secretion capacity by increasing the number of the insulin-producing β cells without triggering a generalized proliferative response. Here, we present the development of a small-molecule screening platform for the identification of molecules that increase β-cell replication. Using this platform, we identify a class of compounds [adenosine kinase inhibitors (ADK-Is)] that promote replication of primary β cells in three species (mouse, rat, and pig). Furthermore, the replication effect of ADK-Is is cell type-selective: treatment of islet cell cultures with ADK-Is increases replication of β cells but not that of α cells, PP cells, or fibroblasts. Short-term in vivo treatment with an ADK-I also increases β-cell replication but not exocrine cell or hepatocyte replication. Therefore, we propose ADK inhibition as a strategy for the treatment of diabetes.
Collapse
|
18
|
Marquez M, Huyvaert M, Perry JR, Pearson RD, Falchi M, Morris AP, Vivequin S, Lobbens S, Yengo L, Gaget S, Pattou F, Poulain-Godefroy O, Charpentier G, Carlsson LM, Jacobson P, Sjöström L, Lantieri O, Heude B, Walley A, Balkau B, Marre M, Froguel P, Cauchi S. Low-frequency variants in HMGA1 are not associated with type 2 diabetes risk. Diabetes 2012; 61:524-30. [PMID: 22210315 PMCID: PMC3266400 DOI: 10.2337/db11-0728] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 10/04/2011] [Indexed: 01/01/2023]
Abstract
It has recently been suggested that the low-frequency c.136-14_136-13insC variant in high-mobility group A1 (HMGA1) may strongly contribute to insulin resistance and type 2 diabetes risk. In our study, we attempted to confirm that HMGA1 is a novel type 2 diabetes locus in French Caucasians. The gene was sequenced in 368 type 2 diabetic case subjects with a family history of type 2 diabetes and 372 normoglycemic control subjects without a family history of type 2 diabetes. None of the 41 genetic variations identified were associated with type 2 diabetes. The lack of association between the c.136-14_136-13insC variant and type 2 diabetes was confirmed in an independent French group of 4,538 case subjects and 4,015 control subjects and in a large meta-analysis of 16,605 case subjects and 46,179 control subjects. Finally, this variant had no effects on metabolic traits and was not involved in variations of HMGA1 and insulin receptor (INSR) expressions. The c.136-14_136-13insC variant was not associated with type 2 diabetes in individuals of European descent. Our study emphasizes the need to analyze a large number of subjects to reliably assess the association of low-frequency variants with the disease.
Collapse
Affiliation(s)
- Marcel Marquez
- UMR CNRS 8199, Genomic and Metabolic Disease, Lille, France
| | | | - John R.B. Perry
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K
- Genetics of Complex Traits, Peninsula Medical School, University of Exeter, Exeter, U.K
| | - Richard D. Pearson
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K
| | - Mario Falchi
- Genomic Medicine, Hammersmith Hospital, Imperial College London, London, U.K
| | - Andrew P. Morris
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K
| | | | | | - Loïc Yengo
- UMR CNRS 8199, Genomic and Metabolic Disease, Lille, France
| | - Stefan Gaget
- UMR CNRS 8199, Genomic and Metabolic Disease, Lille, France
| | | | | | - Guillaume Charpentier
- Corbeil-Essonnes Hospital, Department of Endocrinology-Diabetology, Corbeil-Essonnes, France
| | - Lena M.S. Carlsson
- Department of Molecular and Clinical Medicine and Center for Cardiovascular and Metabolic Research, The Sahlgrenska Academy, Gothenburg, Sweden
| | - Peter Jacobson
- Department of Molecular and Clinical Medicine and Center for Cardiovascular and Metabolic Research, The Sahlgrenska Academy, Gothenburg, Sweden
| | - Lars Sjöström
- Department of Molecular and Clinical Medicine and Center for Cardiovascular and Metabolic Research, The Sahlgrenska Academy, Gothenburg, Sweden
| | | | - Barbara Heude
- INSERM Centre de recherche en Epidémiologie et Santé des Populations U1018, Villejuif, France
| | - Andrew Walley
- Genomic Medicine, Hammersmith Hospital, Imperial College London, London, U.K
| | - Beverley Balkau
- INSERM Centre de recherche en Epidémiologie et Santé des Populations U1018, Villejuif, France
| | - Michel Marre
- Endocrinology-Diabetology-Nutrition, Bichat-Claude Bernard Hospital, Paris, France, and the University Denis Diderot Paris 7, Paris, France
| | | | - Philippe Froguel
- UMR CNRS 8199, Genomic and Metabolic Disease, Lille, France
- Genomic Medicine, Hammersmith Hospital, Imperial College London, London, U.K
| | | |
Collapse
|
19
|
Almgren P, Lehtovirta M, Isomaa B, Sarelin L, Taskinen MR, Lyssenko V, Tuomi T, Groop L. Heritability and familiality of type 2 diabetes and related quantitative traits in the Botnia Study. Diabetologia 2011; 54:2811-9. [PMID: 21826484 DOI: 10.1007/s00125-011-2267-5] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 07/05/2011] [Indexed: 11/28/2022]
Abstract
AIMS/HYPOTHESIS To study the heritability and familiality of type 2 diabetes and related quantitative traits in families from the Botnia Study in Finland. METHODS Heritability estimates for type 2 diabetes adjusted for sex, age and BMI are provided for different age groups of type 2 diabetes and for 34 clinical and metabolic traits in 5,810 individuals from 942 families using a variance component model (SOLAR). In addition, family means of these traits and their distribution across families are calculated. RESULTS The strongest heritability for type 2 diabetes was seen in patients with age at onset 35-60 years (h (2) = 0.69). However, including patients with onset up to 75 years dropped the h (2) estimates to 0.31. Among quantitative traits, the highest h (2) estimates in all individuals and in non-diabetic individuals were seen for lean body mass (h (2) = 0.53-0.65), HDL-cholesterol (0.52-0.61) and suppression of NEFA during OGTT (0.63-0.76) followed by measures of insulin secretion (insulinogenic index [IG(30)] = 0.41-0.50) and insulin action (insulin sensitivity index [ISI] = 0.37-0.40). In contrast, physical activity showed rather low heritability (0.16-0.18), whereas smoking showed strong heritability (0.57-0.59). Family means of these traits differed two- to fivefold between families belonging to the lowest and highest quartile of the trait (p < 0.00001). CONCLUSIONS/INTERPRETATION To detect stronger genetic effects in type 2 diabetes, it seems reasonable to restrict inclusion of patients to those with age at onset 35-60 years. Sequencing of families with extreme quantitative traits could be an important next step in the dissection of the genetics of type 2 diabetes.
Collapse
Affiliation(s)
- P Almgren
- Department of Clinical Sciences, Diabetes and Endocrinology, CRC, Scania University Hospital Malmoe, Lund University, 20502 Malmoe, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lankinen M, Schwab U, Kolehmainen M, Paananen J, Poutanen K, Mykkänen H, Seppänen-Laakso T, Gylling H, Uusitupa M, Orešič M. Whole grain products, fish and bilberries alter glucose and lipid metabolism in a randomized, controlled trial: the Sysdimet study. PLoS One 2011; 6:e22646. [PMID: 21901116 PMCID: PMC3161986 DOI: 10.1371/journal.pone.0022646] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 06/27/2011] [Indexed: 02/07/2023] Open
Abstract
Background Due to the growing prevalence of type 2 diabetes, new dietary solutions are needed to help improve glucose and lipid metabolism in persons at high risk of developing the disease. Herein we investigated the effects of low-insulin-response grain products, fatty fish, and berries on glucose metabolism and plasma lipidomic profiles in persons with impaired glucose metabolism. Methodology/Principal Findings Altogether 106 men and women with impaired glucose metabolism and with at least two other features of the metabolic syndrome were included in a 12-week parallel dietary intervention. The participants were randomized into three diet intervention groups: (1) whole grain and low postprandial insulin response grain products, fatty fish three times a week, and bilberries three portions per day (HealthyDiet group), (2) Whole grain enriched diet (WGED) group, which includes principally the same grain products as group (1), but with no change in fish or berry consumption, and (3) refined wheat breads (Control). Oral glucose tolerance, plasma fatty acids and lipidomic profiles were measured before and after the intervention. Self-reported compliance with the diets was good and the body weight remained constant. Within the HealthyDiet group two hour glucose concentration and area-under-the-curve for glucose decreased and plasma proportion of (n-3) long-chain PUFAs increased (False Discovery Rate p-values <0.05). Increases in eicosapentaenoic acid and docosahexaenoic acid associated curvilinearly with the improved insulin secretion and glucose disposal. Among the 364 characterized lipids, 25 changed significantly in the HealthyDiet group, including multiple triglycerides incorporating the long chain (n-3) PUFA. Conclusions/Significance The results suggest that the diet rich in whole grain and low insulin response grain products, bilberries, and fatty fish improve glucose metabolism and alter the lipidomic profile. Therefore, such a diet may have a beneficial effect in the efforts to prevent type 2 diabetes in high risk persons. Trial Registration ClinicalTrials.gov NCT00573781
Collapse
Affiliation(s)
- Maria Lankinen
- VTT Technical Research Centre of Finland, Kuopio, Finland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
The physiologic hallmarks of type 2 diabetes are insulin resistance in hepatic and peripheral tissues and pancreatic β-cell dysfunction. Thus, genetic loci underlying susceptibility to type 2 diabetes are likely to map to one of these endophenotypes. Genome-wide association studies have now identified up to 38 susceptibility loci for type 2 diabetes and a number of other loci underlying variation in type 2 diabetes-related quantitative traits. The majority are of unknown biology or map to pancreatic β-cell dysfunction. A seemingly disproportionate minority map to insulin resistance. We briefly discuss the known insulin resistance loci identified from genome-wide association, and then discuss reasons why additional insulin resistance loci have not been identified. We present alternative views that may partly explain the apparent dearth of insulin resistance loci contributing to genetic susceptibility to type 2 diabetes, rather than focus on traditional issues such as study design and sampling, which have been addressed elsewhere.
Collapse
Affiliation(s)
- Richard M Watanabe
- Department of Preventive Medicine, Keck School of Medicine of USC, Los Angeles, CA 90089-9011, USA.
| |
Collapse
|
22
|
Simonis-Bik AMC, Eekhoff EMW, de Moor MHM, Kramer MHH, Boomsma DI, Heine RJ, Dekker JM, Maassen JA, 't Hart LM, Diamant M, de Geus EJC. Genetic influences on the insulin response of the beta cell to different secretagogues. Diabetologia 2009; 52:2570-7. [PMID: 19802603 DOI: 10.1007/s00125-009-1532-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 08/20/2009] [Indexed: 12/29/2022]
Abstract
AIMS/HYPOTHESIS The aim of the present study was to estimate the heritability of the beta cell insulin response to glucose and to glucose combined with glucagon-like peptide-1 (GLP-1) or with GLP-1 plus arginine. METHODS This was a twin-family study that included 54 families from the Netherlands Twin Register. The participants were healthy twin pairs and their siblings of the same sex, aged 20 to 50 years. Insulin response of the beta cell was assessed by a modified hyperglycaemic clamp with additional GLP-1 and arginine. Insulin sensitivity index (ISI) was assessed by the euglycaemic-hyperinsulinaemic clamp. Multivariate structural equation modelling was used to obtain heritabilities and the genetic factors underlying individual differences in BMI, ISI and secretory responses of the beta cell. RESULTS The heritability of insulin levels in response to glucose was 52% and 77% for the first and second phase, respectively, 53% in response to glucose + GLP-1 and 80% in response to an additional arginine bolus. Insulin responses to the administration of glucose, glucose + GLP-1 and glucose + GLP-1 + arginine were highly correlated (0.62< r <0.79). Heritability of BMI and ISI was 74% and 60% respectively. The genetic factors that influenced BMI and ISI explained about half of the heritability of insulin levels in response to the three secretagogues. The other half was due to genetic factors specific to the beta cell. CONCLUSIONS/INTERPRETATION In healthy adults, genetic factors explain most of the individual differences in the secretory capacity of the beta cell. These genetic influences are partly independent from the genes that influence BMI and ISI.
Collapse
Affiliation(s)
- A M C Simonis-Bik
- Diabetes Centre, VU University Medical Centre, ZH 4A62, PO Box 7057, 1007, Amsterdam, the Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lillioja S, Wilton A. Agreement among type 2 diabetes linkage studies but a poor correlation with results from genome-wide association studies. Diabetologia 2009; 52:1061-74. [PMID: 19296077 DOI: 10.1007/s00125-009-1324-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 02/13/2009] [Indexed: 12/22/2022]
Abstract
AIMS/HYPOTHESIS Little of the genetic basis for type 2 diabetes has been explained, despite numerous genetic linkage studies and the discovery of multiple genes in genome-wide association (GWA) studies. To begin to resolve the genetic component of this disease, we searched for sites at which genetic results had been corroborated in different studies, in the expectation that replication among studies should direct us to the genomic locations of causative genes with more confidence than the results of individual studies. METHODS We have mapped the physical location of results from 83 linkage reports (for type 2 diabetes and diabetes precursor quantitative traits [QTs, e.g. plasma insulin levels]) and recent large GWA reports (for type 2 diabetes) onto the same human genome sequence to identify replicated results in diabetes genetic 'hot spots'. RESULTS Genetic linkage has been found at least ten times at 18 different locations, and at least five times in 56 locations. All replication clusters contained study populations from more than one ethnic background and most contained results for both diabetes and QTs. There is no close relationship between the GWA results and linkage clusters, and the nine best replication clusters have no nearby GWA result. CONCLUSIONS/INTERPRETATION Many of the genes for type 2 diabetes remain unidentified. This analysis identifies the broad location of yet to be identified genes on 6q, 1q, 18p, 2q, 20q, 17pq, 8p, 19q and 9q. The discrepancy between the linkage and GWA studies may be explained by the presence of multiple, uncommon, mildly deleterious polymorphisms scattered throughout the regulatory and coding regions of genes for type 2 diabetes.
Collapse
Affiliation(s)
- S Lillioja
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia.
| | | |
Collapse
|
24
|
The polymorphisms of UCP1 genes associated with fat metabolism, obesity and diabetes. Mol Biol Rep 2009; 37:1513-22. [PMID: 19444646 DOI: 10.1007/s11033-009-9550-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Accepted: 04/30/2009] [Indexed: 10/20/2022]
Abstract
Uncoupling protein 1 (UCP1), a 32-kDa protein located in the inner mitochondrial membrane, is abundant in brown adipose tissue, as a proton transporter in mitochondria inner membrane which uncouples oxidative metabolism from ATP synthesis and dissipates energy through the heat. UCP1 has been reported to play important roles for energy homeostasis in rodents and neonate of larger mammals including human. Recently, numerous candidate genes were searched to determine the genetic factors implicated in the pathogenesis of obesity, related metabolic disorders and diabetes. UCP-1, which plays a major role in thermogenesis, was suggested to be one of the candidates. This review summarizes data supporting the existence of brown adipocytes and the role of UCP1 in energy dissipation in adult humans, and the genetic variety association with the fat metabolism, obesity and diabetes.
Collapse
|
25
|
Goedecke JH, Dave JA, Faulenbach MV, Utzschneider KM, Lambert EV, West S, Collins M, Olsson T, Walker BR, Seckl JR, Kahn SE, Levitt NS. Insulin response in relation to insulin sensitivity: an appropriate beta-cell response in black South African women. Diabetes Care 2009; 32:860-5. [PMID: 19196884 PMCID: PMC2671086 DOI: 10.2337/dc08-2048] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The purpose of this study was to characterize differences in the acute insulin response to glucose (AIR(g)) relative to insulin sensitivity (S(I)) in black and white premenopausal normoglycemic South African women matched for body fatness. RESEARCH DESIGN AND METHODS Cross-sectional analysis including 57 black and white South African women matched for BMI, S(I), AIR(g), and the disposition index (AIR(g) x S(I)) were performed using a frequently sampled intravenous glucose tolerance test with minimal model analysis, and similar measures were analyzed using an oral glucose tolerance test (OGTT). Body composition was assessed by dual-energy X-ray absorptiometry and computed tomography. RESULTS S(I) was significantly lower (4.4 +/- 0.8 vs. 9.4 +/- 0.8 and 2.9 +/- 0.8 vs. 6.0 +/- 0. 8 x 10(-5) min(-1)/[pmol/l], P < 0.001) and AIR(g) was significantly higher (1,028 +/- 255 vs. 352 +/- 246 and 1,968 +/- 229 vs. 469 +/- 246 pmol/l, P < 0.001), despite similar body fatness (30.9 +/- 1.4 vs. 29.7 +/- 1.3 and 46.8 +/- 1.2 vs. 44.4 +/- 1.3%) in the normal-weight and obese black women compared with their white counterparts, respectively. Disposition index, a marker of beta-cell function, was not different between ethnic groups (3,811 +/- 538 vs. 2,966 +/- 518 and 3,646 +/- 485 vs. 2,353 +/- 518 x 10(-5) min, P = 0.10). Similar results were obtained for the OGTT-derived measures. CONCLUSIONS Black South African women are more insulin resistant than their white counterparts but compensate by increasing their insulin response to maintain normal glucose levels, suggesting an appropriate beta-cell response for the level of insulin sensitivity.
Collapse
Affiliation(s)
- Julia H Goedecke
- Department of Human Biology, UCT/MRC Research Unit for Exercise Science and Sports Medicine, University of Cape Town, Cape Town, South Africa.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Magge SN, Stettler N, Jawad AF, Levitt Katz LE. Increased prevalence of abnormal glucose tolerance among obese siblings of children with type 2 diabetes. J Pediatr 2009; 154:562-566.e1. [PMID: 19028390 PMCID: PMC2746396 DOI: 10.1016/j.jpeds.2008.09.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 09/18/2008] [Accepted: 09/30/2008] [Indexed: 01/14/2023]
Abstract
OBJECTIVE To test the hypothesis that overweight siblings of children with type 2 diabetes mellitus (T2DM) have a higher prevalence of abnormal glucose tolerance (AGT) compared with other overweight children. STUDY DESIGN This was a cross-sectional study of overweight (body mass index [BMI] >or= 95(th) percentile) subjects, age 8 to 17 years, with at least 1 sibling age >or= 12 years. The primary outcome was AGT, as assessed by the oral glucose tolerance test (2-hour glucose >or= 140 mg/dL). The secondary outcome was insulin resistance by homeostasis model assessment (HOMA). RESULTS The sibling (n=20) and control (n=42) groups were similar in terms of age, sex, racial distribution (largely African American), pubertal status, and BMI. The prevalence of AGT in the sibling group was 40.0% (n=8), compared with 14.3% (n=6) in controls (P= .048, Fisher exact test; unadjusted odds ratio=4.0; 95% confidence interval=1.2 to 13.5). Univariate analysis did not identify confounders for either outcome. There were no significant differences in HOMA or hemoglobin A1c between the 2 groups. CONCLUSIONS Overweight siblings of children with T2DM had 4 times greater odds of having AGT compared with other overweight children. This group may represent a particularly high-risk population to target for screening and pediatric T2DM prevention.
Collapse
Affiliation(s)
- Sheela N Magge
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
27
|
Goedecke JH, Dave JA, Faulenbach MV, Utzschneider KM, Lambert EV, West S, Collins M, Olsson T, Walker BR, Seckl JR, Kahn SE, Levitt NS. Insulin response in relation to insulin sensitivity: an appropriate beta-cell response in black South African women. Diabetes Care 2009. [PMID: 19196884 DOI: 10.2337/dc09-1216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
OBJECTIVE The purpose of this study was to characterize differences in the acute insulin response to glucose (AIR(g)) relative to insulin sensitivity (S(I)) in black and white premenopausal normoglycemic South African women matched for body fatness. RESEARCH DESIGN AND METHODS Cross-sectional analysis including 57 black and white South African women matched for BMI, S(I), AIR(g), and the disposition index (AIR(g) x S(I)) were performed using a frequently sampled intravenous glucose tolerance test with minimal model analysis, and similar measures were analyzed using an oral glucose tolerance test (OGTT). Body composition was assessed by dual-energy X-ray absorptiometry and computed tomography. RESULTS S(I) was significantly lower (4.4 +/- 0.8 vs. 9.4 +/- 0.8 and 2.9 +/- 0.8 vs. 6.0 +/- 0. 8 x 10(-5) min(-1)/[pmol/l], P < 0.001) and AIR(g) was significantly higher (1,028 +/- 255 vs. 352 +/- 246 and 1,968 +/- 229 vs. 469 +/- 246 pmol/l, P < 0.001), despite similar body fatness (30.9 +/- 1.4 vs. 29.7 +/- 1.3 and 46.8 +/- 1.2 vs. 44.4 +/- 1.3%) in the normal-weight and obese black women compared with their white counterparts, respectively. Disposition index, a marker of beta-cell function, was not different between ethnic groups (3,811 +/- 538 vs. 2,966 +/- 518 and 3,646 +/- 485 vs. 2,353 +/- 518 x 10(-5) min, P = 0.10). Similar results were obtained for the OGTT-derived measures. CONCLUSIONS Black South African women are more insulin resistant than their white counterparts but compensate by increasing their insulin response to maintain normal glucose levels, suggesting an appropriate beta-cell response for the level of insulin sensitivity.
Collapse
Affiliation(s)
- Julia H Goedecke
- Department of Human Biology, UCT/MRC Research Unit for Exercise Science and Sports Medicine, University of Cape Town, Cape Town, South Africa.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Salinari S, Bertuzzi A, Iaconelli A, Manco M, Mingrone G. Twenty-four hour insulin secretion and beta cell NEFA oxidation in type 2 diabetic, morbidly obese patients before and after bariatric surgery. Diabetologia 2008; 51:1276-84. [PMID: 18458872 DOI: 10.1007/s00125-008-1007-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Accepted: 03/12/2008] [Indexed: 12/17/2022]
Abstract
AIMS/HYPOTHESIS We have previously demonstrated that type 2 diabetes resolves after bariatric surgery. To study the role of NEFA in the prompt normalisation of beta cell glucose sensitivity, insulin secretion and beta cell glucose and lipid metabolism were investigated by a model of nutrient-stimulated insulin secretion using a multiple-meal test. METHODS Hourly glucose, C-peptide and NEFA were measured in nine morbidly obese, type 2 diabetic patients before and 1 week after bariatric surgery and in six matched healthy volunteers over 24 h. A mathematical model of glucose-NEFA comodulation of insulin secretion rate (ISR) was used to compute ISR and beta-oxidation. Insulin sensitivity was measured by an OGTT minimal model. RESULTS Beta cell sensitivity to glucose and NEFA was doubled after surgery, while the 24 h insulin secretion decreased from 277.1 +/- 144.4 to 198.0 +/- 107.6 nmol/m(2) (p < 0.02). Insulin sensitivity was restored. The beta-oxidation rate of beta cells was completely normalised (from 0.032 +/- 0.012 x 10(-12) to 0.103 +/- 0.031 x 10(-12) mmol/min per cell, p < 0.005). The best predictor of beta cell function improvement was the duration of diabetes. CONCLUSIONS/INTERPRETATION Bariatric surgery in type 2 diabetes restores beta-oxidation in beta cells, doubles glucose-NEFA sensitivity and reverses diabetes. It is likely that ISR is reduced to match insulin-sensitivity normalisation, in spite of no significant reduction in NEFA levels. We hypothesise that insulin sensitivity normalisation might appear as a consequence of nutrient exclusion from proximal intestinal transit, and that secondarily the need for insulin secretion diminishes. The insulin sensitivity increase is much higher than usually obtained by insulin-sensitising agents and is independent of weight changes.
Collapse
Affiliation(s)
- S Salinari
- Department of Systems Analysis and Informatics, University of Rome La Sapienza, Via Ariosto 25, 00185, Rome, Italy.
| | | | | | | | | |
Collapse
|
29
|
Das SK, Sharma NK, Chu WS, Wang H, Elbein SC. Aryl hydrocarbon receptor nuclear translocator (ARNT) gene as a positional and functional candidate for type 2 diabetes and prediabetic intermediate traits: Mutation detection, case-control studies, and gene expression analysis. BMC MEDICAL GENETICS 2008; 9:16. [PMID: 18366646 PMCID: PMC2323364 DOI: 10.1186/1471-2350-9-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 03/17/2008] [Indexed: 01/23/2023]
Abstract
BACKGROUND ARNT, a member of the basic helix-loop-helix family of transcription factors, is located on human chromosome 1q21-q24, a region which showed well replicated linkage to type 2 diabetes. We hypothesized that common polymorphisms in the ARNT gene might increase the susceptibility to type 2 diabetes through impaired glucose-stimulated insulin secretion. METHODS We selected 9 single nucleotide polymorphisms to tag common variation across the ARNT gene. Additionally we searched for novel variants in functional coding domains in European American and African American samples. Case-control studies were performed in 191 European American individuals with type 2 diabetes and 187 nondiabetic European American control individuals, and in 372 African American individuals with type 2 diabetes and 194 African American control individuals. Metabolic effects of ARNT variants were examined in 122 members of 26 European American families from Utah and in 225 unrelated individuals from Arkansas. Gene expression was tested in 8 sibling pairs discordant for type 2 diabetes. RESULTS No nonsynonymous variants or novel polymorphisms were identified. No SNP was associated with type 2 diabetes in either African Americans or European Americans, but among nondiabetic European American individuals, ARNT SNPs rs188970 and rs11204735 were associated with acute insulin response (AIRg; p = or < 0.005). SNP rs2134688 interacted with body mass index to alter beta-cell compensation to insulin resistance (disposition index; p = 0.004). No significant difference in ARNT mRNA levels was observed in transformed lymphocytes from sibling pairs discordant for type 2 diabetes. CONCLUSION Common ARNT variants are unlikely to explain the linkage signal on chromosome 1q, but may alter insulin secretion in nondiabetic subjects. Our studies cannot exclude a role for rare variants or variants of small (< 1.6) effect size.
Collapse
Affiliation(s)
- Swapan K Das
- Division of Endocrinology and Metabolism, Department of Medicine, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Endocrinology Section, Medicine and Research Services, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA
| | - Neeraj K Sharma
- Division of Endocrinology and Metabolism, Department of Medicine, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Endocrinology Section, Medicine and Research Services, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA
| | - Winston S Chu
- Division of Endocrinology and Metabolism, Department of Medicine, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Endocrinology Section, Medicine and Research Services, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA
| | - Hua Wang
- Division of Endocrinology and Metabolism, Department of Medicine, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Endocrinology Section, Medicine and Research Services, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA
| | - Steven C Elbein
- Division of Endocrinology and Metabolism, Department of Medicine, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Endocrinology Section, Medicine and Research Services, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA
| |
Collapse
|
30
|
Das SK, Sharma NK, Chu WS, Wang H, Elbein SC. Aryl hydrocarbon receptor nuclear translocator (ARNT) gene as a positional and functional candidate for type 2 diabetes and prediabetic intermediate traits: Mutation detection, case-control studies, and gene expression analysis. BMC MEDICAL GENETICS 2008. [PMID: 18366646 DOI: 10.1186/1471‐2350‐9‐16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND ARNT, a member of the basic helix-loop-helix family of transcription factors, is located on human chromosome 1q21-q24, a region which showed well replicated linkage to type 2 diabetes. We hypothesized that common polymorphisms in the ARNT gene might increase the susceptibility to type 2 diabetes through impaired glucose-stimulated insulin secretion. METHODS We selected 9 single nucleotide polymorphisms to tag common variation across the ARNT gene. Additionally we searched for novel variants in functional coding domains in European American and African American samples. Case-control studies were performed in 191 European American individuals with type 2 diabetes and 187 nondiabetic European American control individuals, and in 372 African American individuals with type 2 diabetes and 194 African American control individuals. Metabolic effects of ARNT variants were examined in 122 members of 26 European American families from Utah and in 225 unrelated individuals from Arkansas. Gene expression was tested in 8 sibling pairs discordant for type 2 diabetes. RESULTS No nonsynonymous variants or novel polymorphisms were identified. No SNP was associated with type 2 diabetes in either African Americans or European Americans, but among nondiabetic European American individuals, ARNT SNPs rs188970 and rs11204735 were associated with acute insulin response (AIRg; p = or < 0.005). SNP rs2134688 interacted with body mass index to alter beta-cell compensation to insulin resistance (disposition index; p = 0.004). No significant difference in ARNT mRNA levels was observed in transformed lymphocytes from sibling pairs discordant for type 2 diabetes. CONCLUSION Common ARNT variants are unlikely to explain the linkage signal on chromosome 1q, but may alter insulin secretion in nondiabetic subjects. Our studies cannot exclude a role for rare variants or variants of small (< 1.6) effect size.
Collapse
Affiliation(s)
- Swapan K Das
- Division of Endocrinology and Metabolism, Department of Medicine, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
| | | | | | | | | |
Collapse
|
31
|
Elbein SC, Chu WS, Das SK, Yao-Borengasser A, Hasstedt SJ, Wang H, Rasouli N, Kern PA. Transcription factor 7-like 2 polymorphisms and type 2 diabetes, glucose homeostasis traits and gene expression in US participants of European and African descent. Diabetologia 2007; 50:1621-30. [PMID: 17579832 DOI: 10.1007/s00125-007-0717-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Accepted: 04/25/2007] [Indexed: 01/31/2023]
Abstract
AIMS/HYPOTHESIS We sought to determine: (1) the role of previously described transcription factor 7-like 2 (TCF7L2) variants in type 2 diabetes in African American individuals and in participants of European ancestry; (2) the physiological impact of these variants on glucose homeostasis; and (3) whether the non-coding variants altered TCF7L2 expression in adipocytes and transformed lymphocytes. METHODS Association studies were conducted by genotyping 932 Europid and African American diabetic and control participants. Family studies were conducted in 673 members of 68 Europid families ascertained for at least two diabetic siblings. Metabolic studies were conducted in 585 non-diabetic individuals who had undergone frequently sampled intravenous glucose tolerance tests to determine insulin sensitivity and insulin secretion. Gene expression studies were conducted in 74 adipose samples and 64 muscle samples from non-diabetic individuals with known genotypes and also in 55 lymphoblastoid cell lines. RESULTS TCF7L2 variants were associated with type 2 diabetes in a Europid case-control population and in families, but not in African Americans. Risk alleles increased the 60 min post-challenge glucose value in Europid families and reduced insulin sensitivity by 45% in Europids, but did not alter insulin secretion. TCF7L2 expression was not altered by genotype and did not correlate with insulin sensitivity or BMI. CONCLUSIONS/INTERPRETATION We confirmed TCF7L2 as a risk factor in a population of European descent, where it reduced glucose tolerance and insulin sensitivity, but not insulin secretion. We found no role in African Americans and could not explain the association by altered adipocyte or muscle gene expression.
Collapse
Affiliation(s)
- S C Elbein
- Endocrine Section, Medicine and Research Services, Central Arkansas Veterans Healthcare System, John L. McClellan Memorial Veterans Hospital, 4700 W. 7th Street, Little Rock, AR 72205, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Watanabe RM, Black MH, Xiang AH, Allayee H, Lawrence JM, Buchanan TA. Genetics of gestational diabetes mellitus and type 2 diabetes. Diabetes Care 2007; 30 Suppl 2:S134-40. [PMID: 17596461 PMCID: PMC2925642 DOI: 10.2337/dc07-s205] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Richard M Watanabe
- Department of Preventive Medicine, Keck School of Medicine of USC, Los Angeles, CA 90089-9011, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Craig RL, Chu WS, Elbein SC. Retinol binding protein 4 as a candidate gene for type 2 diabetes and prediabetic intermediate traits. Mol Genet Metab 2007; 90:338-44. [PMID: 17174134 PMCID: PMC1950248 DOI: 10.1016/j.ymgme.2006.11.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 11/04/2006] [Accepted: 11/04/2006] [Indexed: 11/23/2022]
Abstract
Serum retinol binding protein 4 (RBP4) was recently described as a new adipokine that reduced peripheral and hepatic insulin sensitivity and increased hepatic gluconeogenesis. The RBP4 gene maps to 10q23-24, near a region linked to T2DM in Caucasian and Mexican American populations. Hence, sequence variants that alter RBP4 expression or function could increase T2DM susceptibility and reduce insulin sensitivity. We screened the 6 exons, flanking intronic sequence, and 5' and 3' flanking sequences in 48 Caucasian and 48 African American subjects. We identified 21 SNPs, of which 8 were unique to the African American population. Additional public database SNPs were chosen for regions not screened. We selected SNPs for typing based on frequency, linkage disequilibrium, and location in a putative functional or conserved region. We typed 10 SNPs in 191 Caucasians with T2DM and a family history of T2DM, and 188 euglycemic controls with no family history of diabetes. We similarly typed 14 variants in 182 controls and 353 diabetic individuals of African American ancestry. No single variant was associated with type 2 diabetes in either population (p>0.15 in African Americans, p>0.09 in Caucasians), but a haplotype of 8 common SNPs in Caucasians was significantly increased in type 2 diabetics compared with controls (0.137 vs. 0.076, p=0.008). Furthermore, SNPs -804 and +9476 were associated with reduced insulin secretion, (p=0.01 and 0.001, respectively), and SNP +390 with reduced insulin sensitivity (p=0.0005) in Caucasians. Our data suggest that noncoding SNPs may increase diabetes susceptibility in Caucasians and may contribute to insulin resistance and reduced insulin secretion.
Collapse
Affiliation(s)
- Rebekah L. Craig
- Division of Endocrinology and Metabolism, Department of Medicine, University of Arkansas for Medical Sciences College of Medicine
- Endocrine Division, Medicine and Research Services, Central Arkansas Veterans Healthcare System
| | - Winston S. Chu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Arkansas for Medical Sciences College of Medicine
- Endocrine Division, Medicine and Research Services, Central Arkansas Veterans Healthcare System
| | - Steven C. Elbein
- Division of Endocrinology and Metabolism, Department of Medicine, University of Arkansas for Medical Sciences College of Medicine
- Endocrine Division, Medicine and Research Services, Central Arkansas Veterans Healthcare System
| |
Collapse
|
34
|
Chu WS, Das SK, Wang H, Chan JC, Deloukas P, Froguel P, Baier LJ, Jia W, McCarthy MI, Ng MC, Damcott C, Shuldiner AR, Zeggini E, Elbein SC. Activating transcription factor 6 (ATF6) sequence polymorphisms in type 2 diabetes and pre-diabetic traits. Diabetes 2007; 56:856-62. [PMID: 17327457 PMCID: PMC2672156 DOI: 10.2337/db06-1305] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Activating transcription factor 6 (ATF6) is located within the region of linkage to type 2 diabetes on chromosome 1q21-q23 and is a key activator of the endoplasmic reticulum stress response. We evaluated 78 single nucleotide polymorphisms (SNPs) spanning >213 kb in 95 people, from which we selected 64 SNPs for evaluation in 191 Caucasian case subjects from Utah and between 165 and 188 control subjects. Six SNPs showed nominal associations with type 2 diabetes (P = 0.001-0.04), including the nonsynonymous SNP rs1058405 (M67V) in exon 3 and rs11579627 in the 3' flanking region. Only rs1159627 remained significant on permutation testing. The associations were not replicated in 353 African-American case subjects and 182 control subjects, nor were ATF6 SNPs associated with altered insulin secretion or insulin sensitivity in nondiabetic Caucasian individuals. No association with type 2 diabetes was found in a subset of 44 SNPs in Caucasian (n = 2,099), Pima Indian (n = 293), and Chinese (n = 287) samples. Allelic expression imbalance was found in transformed lymphocyte cDNA for 3' untranslated region variants, thus suggesting cis-acting regulatory variants. ATF6 does not appear to play a major role in type 2 diabetes, but further work is required to identify the cause of the allelic expression imbalance.
Collapse
Affiliation(s)
- Winston S. Chu
- Division of Endocrinology, Department of Medicine, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| | - Swapan Kumar Das
- Division of Endocrinology, Department of Medicine, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| | - Hua Wang
- Division of Endocrinology, Department of Medicine, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| | - Juliana C. Chan
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Shatin, Hong Kong, Special Administrative Region (SAR), China
| | | | - Philippe Froguel
- Institut de Biologie de Lille, Lille, France
- Faculty of Life Sciences, Imperial College, London, U.K
| | - Leslie J. Baier
- Phoenix Epidemiology and Clinical Research Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona
| | - Weiping Jia
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Jiaotong University No. 6 People’s Hospital, Shanghai, China
| | - Mark I. McCarthy
- Oxford Centre for Diabetes, Endocrinology and Metabolism and Wellcome Trust Centre for Human Genetics, University of Oxford, U.K
| | - Maggie C.Y. Ng
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Shatin, Hong Kong, Special Administrative Region (SAR), China
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Coleen Damcott
- Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland
| | - Alan R. Shuldiner
- Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland
| | - Eleftheria Zeggini
- Oxford Centre for Diabetes, Endocrinology and Metabolism and Wellcome Trust Centre for Human Genetics, University of Oxford, U.K
| | - Steven C. Elbein
- Division of Endocrinology, Department of Medicine, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| |
Collapse
|
35
|
Elbein SC, Wang X, Karim MA, Chu WS, Silver KD. Analysis of coding variants in the betacellulin gene in type 2 diabetes and insulin secretion in African American subjects. BMC MEDICAL GENETICS 2006; 7:62. [PMID: 16869959 PMCID: PMC1544326 DOI: 10.1186/1471-2350-7-62] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Accepted: 07/25/2006] [Indexed: 01/18/2023]
Abstract
Background Betacellulin is a member of the epidermal growth factor family, expressed at the highest levels predominantly in the pancreas and thought to be involved in islet neogenesis and regeneration. Nonsynonymous coding variants were reported to be associated with type 2 diabetes in African American subjects. We tested the hypotheses that these previously identified variants were associated with type 2 diabetes in African Americans ascertained in Arkansas and that they altered insulin secretion in glucose tolerant African American subjects. Methods We typed three variants, exon1 Cys7Gly (C7G), exon 2 Leu44Phe (L44F), and exon 4 Leu124Met (L124M), in 188 control subjects and 364 subjects with type 2 diabetes. We tested for altered insulin secretion in 107 subjects who had undergone intravenous glucose tolerance tests to assess insulin sensitivity and insulin secretion. Results No variant was associated with type 2 diabetes, and no variant altered insulin secretion or insulin sensitivity. However, an effect on lipids was observed for all 3 variants, and variant L124M was associated with obesity measures. Conclusion We were unable to confirm a role for nonsynonymous variants of betacellulin in the propensity to type 2 diabetes or to impaired insulin secretion.
Collapse
Affiliation(s)
- Steven C Elbein
- Endocrinology Section, Medical Service, Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | - Xiaoqin Wang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | - Mohammad A Karim
- Endocrinology Section, Medical Service, Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | - Winston S Chu
- Endocrinology Section, Medical Service, Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | - Kristi D Silver
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
36
|
Abstract
Type 2 Diabetes results from a complex physiologic process that includes the pancreatic beta cells, peripheral glucose uptake in muscle, the secretion of multiple cytokines and hormone-like molecules from adipocytes, hepatic glucose production, and likely the central nervous system. Consistent with the complex web of physiologic defects, the emerging picture of the genetics will involve a large number of risk susceptibility genes, each individually with relatively small effect (odds ratios below 1.2 in most cases). The challenge for the future will include cataloging and confirming the genetic risk factors, and understanding how these risk factors interact with each other and with the known environmental and lifestyle risk factors that increase the propensity to type 2 diabetes.
Collapse
Affiliation(s)
- Swapan Kumar Das
- University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| | | |
Collapse
|
37
|
Karim MA, Wang X, Hale TC, Elbein SC. Insulin Promoter Factor 1 variation is associated with type 2 diabetes in African Americans. BMC MEDICAL GENETICS 2005; 6:37. [PMID: 16229747 PMCID: PMC1274317 DOI: 10.1186/1471-2350-6-37] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Accepted: 10/17/2005] [Indexed: 01/23/2023]
Abstract
Background Defective insulin secretion is a key defect in the pathogenesis of type 2 diabetes (T2DM). The β-cell specific transcription factor, insulin promoter factor 1 gene (IPF1), is essential to pancreatic development and the maintenance of β-cell mass. We hypothesized that regulatory or coding variants in IPF1 contribute to defective insulin secretion and thus T2DM. Methods We screened 71 Caucasian and 69 African American individuals for genetic variants in the promoter region, three highly conserved upstream regulatory sequences (PH1, PH2 and PH3), the human β-cell specific enhancer, and the two exons with adjacent introns. We tested for an association of each variant with T2DM Caucasians (192 cases and 192 controls) and African Americans (341 cases and 186 controls). Results We identified 8 variants in the two populations, including a 3 bp insertion in exon 2 (InsCCG243) in African Americans that resulted in an in-frame proline insertion in the transactivation domain. No variant was associated with T2DM in Caucasians, but polymorphisms at -3766 in the human β-cell enhancer, at -2877 bp in the PH1 domain, and at -108 bp in the promoter region were associated with T2DM in African American subjects (p < 0.01), both individually and as haplotypes (p = 0.01 correcting by permutation test). No SNP altered a binding site for the expected β-cell transcription factors. The rare alleles of InsCCG243 in exon 2 showed a trend to over-representation among African American diabetic subjects (p < 0.1), but this trend was not significant on permutation test. Conculsion The common alleles of regulatory variants in the 5' enhancer and promoter regions of the IPF1 gene increase susceptibility to type 2 diabetes among African American individuals, likely as a result of gene-gene or gene-environment interactions. In contrast, IPF1 is not a cause of type 2 diabetes in Caucasians. A previously described InsCCG243 variant may contribute to diabetes susceptibility in African American individuals, but is of low penetrance.
Collapse
Affiliation(s)
- Mohammad A Karim
- Endocrinology Section, Medical Service, Central Arkansas Veterans Healthcare System, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 USA
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 USA
| | - Xiaoqin Wang
- Endocrinology Section, Medical Service, Central Arkansas Veterans Healthcare System, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 USA
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 USA
| | - Terri C Hale
- Endocrinology Section, Medical Service, Central Arkansas Veterans Healthcare System, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 USA
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 USA
| | - Steven C Elbein
- Endocrinology Section, Medical Service, Central Arkansas Veterans Healthcare System, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 USA
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 USA
| |
Collapse
|
38
|
Abstract
In the last years type 2 diabetes has reached almost epidemic proportions. More than 170 million individuals are affected worldwide, about 6 million in Germany. Manifestation of type 2 diabetes is determined by both environmental factors such as lack of physical exercise and overeating and a genetic predisposition. Despite enormous efforts in medical research to identify susceptibility loci and high risk alleles, the genetics of common type 2 diabetes (non-MODY) remain unknown. To date, only a few susceptibility genes have been identified (such as PPARG, KCNJ11, CAPN10). However, replication of initial studies is often difficult. This can be explained by both locus and allelic heterogeneity as well as ethnic differences between different populations. Studies in genetically isolated populations such as the Pima Indians are advantageous to identify susceptibility alleles. Despite some recent advances, it is not possible to predict an individual's risk of type 2 diabetes based on the presence of a certain disease-risk allele.
Collapse
Affiliation(s)
- Y Böttcher
- Medizinische Klinik III, Universitätsklinikum Leipzig
| | | | | | | |
Collapse
|
39
|
Goldfine AB, Bouche C, Parker RA, Kim C, Kerivan A, Soeldner JS, Martin BC, Warram JH, Kahn CR. Insulin resistance is a poor predictor of type 2 diabetes in individuals with no family history of disease. Proc Natl Acad Sci U S A 2003; 100:2724-9. [PMID: 12591951 PMCID: PMC151408 DOI: 10.1073/pnas.0438009100] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2002] [Indexed: 01/27/2023] Open
Abstract
In normoglycemic offspring of two type 2 diabetic parents, low insulin sensitivity (S(I)) and low insulin-independent glucose effectiveness (S(G)) predict the development of diabetes one to two decades later. To determine whether low S(I), low S(G,) or low acute insulin response to glucose are predictive of diabetes in a population at low genetic risk for disease, 181 normoglycemic individuals with no family history of diabetes (FH-) and 150 normoglycemic offspring of two type 2 diabetic parents (FH+) underwent i.v. glucose tolerance testing (IVGTT) between the years 1964-82. During 25 +/- 6 years follow-up, comprising 2,758 person years, the FH- cohort (54 +/- 9 years) had an age-adjusted incidence rate of type 2 diabetes of 1.8 per 1,000 person years, similar to that in other population-based studies, but significantly lower than 16.7 for the FH+ cohort. Even when the two study populations were subdivided by initial values of S(I) and S(G) derived from IVGTT's performed at study entry, there was a 10- to 20-fold difference in age-adjusted incidence rates for diabetes in the FH- vs. FH+ individuals with low S(I) and low S(G). The acute insulin response to glucose was not predictive of the development of diabetes when considered independently or when assessed as a function of S(I), i.e., the glucose disposition index. These data demonstrate that low glucose disposal rates are robustly associated with the development of diabetes in the FH+ individuals, but insulin resistance per se is not sufficient for the development of diabetes in individuals without family history of disease and strongly suggest a familial factor, not detectable in our current measures of the dynamic responses of glucose or insulin to an IVGTT is an important risk factor for type 2 diabetes. Low S(I) and low S(G), both measures of glucose disposal, interact with this putative familial factor to result in a high risk of type 2 diabetes in the FH+ individuals, but not in the FH- individuals.
Collapse
|
40
|
Kahn SE. The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of Type 2 diabetes. Diabetologia 2003; 46:3-19. [PMID: 12637977 DOI: 10.1007/s00125-002-1009-0] [Citation(s) in RCA: 1325] [Impact Index Per Article: 63.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2002] [Revised: 10/17/2002] [Indexed: 12/13/2022]
Abstract
The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of Type 2 diabetes have been debated extensively. The concept that a feedback loop governs the interaction of the insulin-sensitive tissues and the beta cell as well as the elucidation of the hyperbolic relationship between insulin sensitivity and insulin secretion explains why insulin-resistant subjects exhibit markedly increased insulin responses while those who are insulin-sensitive have low responses. Consideration of this hyperbolic relationship has helped identify the critical role of beta-cell dysfunction in the development of Type 2 diabetes and the demonstration of reduced beta-cell function in high risk subjects. Furthermore, assessments in a number of ethnic groups emphasise that beta-cell function is a major determinant of oral glucose tolerance in subjects with normal and reduced glucose tolerance and that in all populations the progression from normal to impaired glucose tolerance and subsequently to Type 2 diabetes is associated with declining insulin sensitivity and beta-cell function. The genetic and molecular basis for these reductions in insulin sensitivity and beta-cell function are not fully understood but it does seem that body-fat distribution and especially intra-abdominal fat are major determinants of insulin resistance while reductions in beta-cell mass contribute to beta-cell dysfunction. Based on our greater understanding of the relative roles of insulin resistance and beta-cell dysfunction in Type 2 diabetes, we can anticipate advances in the identification of genes contributing to the development of the disease as well as approaches to the treatment and prevention of Type 2 diabetes.
Collapse
Affiliation(s)
- S E Kahn
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, Veterans Affairs Puget Sound Health Care System and University of Washington, Seattle, Washington, USA
| |
Collapse
|