1
|
Hankir MK, Le Foll C. Central nervous system pathways targeted by amylin in the regulation of food intake. Biochimie 2024:S0300-9084(24)00238-4. [PMID: 39426704 DOI: 10.1016/j.biochi.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/04/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
Amylin is a peptide hormone co-released with insulin from pancreatic β-cells during a meal and primarily serves to promote satiation. While the caudal hindbrain was originally implicated as a major site of action in this regard, it is becoming increasingly clear that amylin recruits numerous central nervous system pathways to exert multifaceted effects on food intake. In this Review, we discuss the evidence derived from preclinical studies showing that amylin and the related peptide salmon calcitonin (sCT) directly or indirectly target genetically distinct neurons in the caudal hindbrain (nucleus tractus solitarius and area postrema), rostral hindbrain (lateral parabrachial nucleus), midbrain (lateral dorsal tegmentum and ventral tegmental area) and hypothalamus (arcuate nucleus and parasubthalamic nucleus) via activation of amylin and/or calcitonin receptors. Given that the stable amylin analogue cagrilintide is under clinical development for the treatment of obesity, it is important to determine whether this drug recruits overlapping or distinct central nervous system pathways to that of amylin and sCT with implications for minimising any aversive effects it potentially causes. Such insight will also be important to understand how amylin and sCT analogues synergize with other molecules as part of dual or triple agonist therapies for obesity, especially the glucagon-like peptide 1 receptor (GLP-1R) agonist semaglutide, which has been shown to synergistically lower body weight with cagrilintide (CagriSema) in clinical trials.
Collapse
Affiliation(s)
- Mohammed K Hankir
- Department of Veterinary Physiology, University of Zurich, Zurich, Switzerland; School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland.
| | - Christelle Le Foll
- Department of Veterinary Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Cui G, Zhang S, Zhang X, Li S. Development and validation of a nomogram for predicting anorexia of aging in older people. Appetite 2024; 201:107606. [PMID: 39029530 DOI: 10.1016/j.appet.2024.107606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/24/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Anorexia of aging (AA) is a common geriatric syndrome that seriously endangers the health of older adults. Early identification of populations at risk of AAand the implementation of appropriate intervention measures hold significant public health importance. This study aimed to develop a nomogram for predicting the risk of AA among older people. METHODS We conducted a cross-sectional study involving 2144 community-dwelling older adults to evaluate the AA using the Simplified Nutritional Appetite Questionnaire. We utilized the Least Absolute Shrinkage and Selection Operator (LASSO) and logistic regression analysis to select variables and develop a nomogram prediction model. The predictive performance of the nomogram was evaluated using the Receiver Operating Characteristic (ROC) curves, calibration curves, Decision Curve Analysis (DCA), and internal validation. RESULTS The prevalence of AA among Chinese older adults was 21.7% (95%CI: 20.0%-23.5%). Age, sex, family economic level, smoking status, dysphagia, loneliness, depressive symptoms, living alone, health literacy, life satisfaction, and body mass index have been identified as predictive factors for AA among older people. The nomogram constructed based on these predictive factors showed an area under the curve (AUC) of 0.766 (95%CI: 0.742-0.791), indicating good calibration and discrimination ability. Additionally, the results obtained from the 10-fold cross-validation process confirmed the nomogram's good predictive capabilities. Furthermore, the DCA results showed that the nomogram has clinical utility. CONCLUSION The nomogram constructed in this study serves as an effective tool for predicting anorexia of aging among community-dwelling older adults. Its implementation can help community healthcare workers evaluate the risk of AA in this population and identify high-risk groups.
Collapse
Affiliation(s)
- Guanghui Cui
- Department of Integrated Traditional Chinese and Western Medicine, Peking University First Hospital, Institute of Integrated Traditional Chinese and Western Medicine, Peking University, Beijing, China
| | - Shengkai Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xiaochen Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Shaojie Li
- School of Public Health, Peking University, Beijing, China; China Center for Health Development Studies, Peking University, Beijing, China.
| |
Collapse
|
3
|
Loda I, D’Angelo E, Marzetti E, Kerminen H. Prevention, Assessment, and Management of Malnutrition in Older Adults with Early Stages of Cognitive Disorders. Nutrients 2024; 16:1566. [PMID: 38892503 PMCID: PMC11173938 DOI: 10.3390/nu16111566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/11/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Malnutrition is common in older adults, and its risk is greater in those living with dementia. Relative to cognitively healthy peers, the prevalence of malnutrition is also increased in individuals with early stages of cognitive disorders owing to pathophysiological, cognitive, and psychosocial changes related to cognitive impairment. Malnutrition is associated with adverse health outcomes, including faster cognitive and functional decline. Here, we provide an overview of the prevention, assessment, and management of malnutrition in older adults, with a special focus on the aspects that are important to consider in individuals with early stages of cognitive disorders. Strategies to prevent malnutrition include systematic screening for malnourishment using validated tools to detect those at risk. If the screening reveals an increased risk of malnutrition, a detailed assessment including the individual's nutritional, medical, and functional status as well as dietary intake should be performed. The management of malnutrition in the early stages of cognitive disorders should be based on the findings of a comprehensive assessment and be personalized according to the individual's specific characteristics. In the article, we also provide an overview of the evidence on vitamin supplements and specific dietary patterns to prevent cognitive decline or attenuate its progression.
Collapse
Affiliation(s)
- Irene Loda
- Scuola di Specialità in Geriatria, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy;
| | - Emanuela D’Angelo
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy;
| | - Hanna Kerminen
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy;
- Faculty of Medicine and Health Technology, The Gerontology Research Center (GEREC), Tampere University, Arvo Ylpön katu 34, 33520 Tampere, Finland
| |
Collapse
|
4
|
Sun W, Matsuoka T, Imai A, Narumoto J. Relationship between eating problems and the risk of dementia: A retrospective study. Psychogeriatrics 2023; 23:1043-1050. [PMID: 37806970 DOI: 10.1111/psyg.13028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/24/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Older adults and individuals with decreased cognition often experience appetite changes and weight loss. As weight loss can result in cognitive decline, change in appetite may be an important contributor to the onset of dementia. However, there is a lack of relevant studies on this topic. This study aimed to determine the relationship between appetite changes, weight loss, and dementia onset. METHODS A total of 135 patients with normal cognitive function, subjective cognitive impairment, and mild cognitive impairment who were assessed using the Neuropsychiatric Inventory 12 item version (NPI-12) and followed up for at least 1 month were enrolled in the study. All patients underwent a Mini-Mental State Examination (MMSE). Eating problems were assessed using the NPI Eating Problems Score. Appetite and weight loss were assessed at the first visit by caregivers. Kaplan-Meier survival analyses with a log-rank test were used to compare the time to the onset of dementia between the presence or absence of the NPI eating problems, appetite loss, weight loss, or NPI depression scores. Cox proportional hazards regression models using the forced entry method were employed to estimate the hazard ratio (HR) for dementia. RESULTS Weight loss was significantly related to dementia onset (P = 0.027) in the Kaplan-Meier survival analyses, while eating problems, appetite loss, and depression showed no significant association (P = 0.519, P = 0.326, and P = 0.317, respectively). In the Cox proportional hazards regression models, the MMSE score was found to be a significant factor (P = 0.021, HR = 0.871); moreover, weight loss tended to increase the risk of dementia onset (P = 0.057, HR = 1.694). CONCLUSIONS Weight loss experienced by older adults could contribute to an increased risk of developing dementia.
Collapse
Affiliation(s)
- Weiyi Sun
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Teruyuki Matsuoka
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Psychiatry, National Hospital Organization Maizuru Medical Center, Kyoto, Japan
| | - Ayu Imai
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Jin Narumoto
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
5
|
Prater MC, Scheurell AR, Paton CM, Cooper JA. Hunger and satiety responses to diets enriched with cottonseed oil vs. olive oil. Physiol Behav 2023; 259:114041. [PMID: 36427543 DOI: 10.1016/j.physbeh.2022.114041] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022]
Abstract
Studies suggest that the type of dietary fat consumed habitually may modulate appetite and further influence weight management. The purpose of this study was to evaluate the impact of an 8-week diet intervention enriched with either cottonseed oil (CSO; polyunsaturated fat-rich) or olive oil (OO; monounsaturated fat-rich) on appetite responses in adults with high cholesterol. This was a parallel design, randomized partial outpatient feeding trial designed to provide approximately 60% of participants daily energy needs with ∼30% of energy needs as CSO (n = 21, BMI 27.3 ± 0.92 kg/m2, age 53 ± 2y) or OO (n = 21, BMI 27.6 ± 1.20 kg/m2, age 54 ± 2y). A high saturated fat meal challenge was completed at pre- and post-intervention visits with 5 h postprandial blood draws and visual analog scales (VAS) for cholecystokinin (CCK), peptide YY (PYY), ghrelin, and subjective appetite, respectively. Participants also completed VAS questionnaires hourly and recorded dietary intake after leaving the lab for the remainder of the day. There was a greater increase in fasting CCK (CSO: 0.54 ± 0.03 to 0.56 ± 0.04; OO: 0.63 ± 0.07 to 0.60 ± 0.06 ng/ml p = 0.05), a greater suppression of postprandial ghrelin (p < 0.01), and a greater increase in postprandial VAS fullness (p = 0.04) in CSO compared to OO. Additionally, there was a greater decrease in self-reported energy intake in CSO compared to OO (CSO: 2464 ± 123 to 2115 ± 123; OO: 2263 ± 147 to 2,434 ± 184 kcal/d p = 0.02). Only postprandial VAS prospective consumption showed greater suppression (p = 0.03) in OO vs. CSO. Altogether, these data show that CSO has a greater effect on appetite suppression than OO diet enrichment and may be beneficial for weight maintenance, especially in a population at-risk for chronic disease. Registered at clinicaltrials.gov: NCT04397055.
Collapse
Affiliation(s)
- M Catherine Prater
- Department of Nutritional Sciences, University of Georgia, Athens, GA, United States of America
| | - Alexis R Scheurell
- Department of Nutritional Sciences, University of Georgia, Athens, GA, United States of America
| | - Chad M Paton
- Department of Nutritional Sciences, University of Georgia, Athens, GA, United States of America; Department of Food Science and Technology, University of Georgia, Athens, GA, United States of America
| | - Jamie A Cooper
- Department of Nutritional Sciences, University of Georgia, Athens, GA, United States of America.
| |
Collapse
|
6
|
Picca A, Calvani R, Coelho-Júnior HJ, Landi F, Marzetti E. Anorexia of Aging: Metabolic Changes and Biomarker Discovery. Clin Interv Aging 2022; 17:1761-1767. [PMID: 36483084 PMCID: PMC9726216 DOI: 10.2147/cia.s325008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/24/2022] [Indexed: 08/04/2023] Open
Abstract
The age-associated decrease in appetite and food intake is referred to as "anorexia of aging". Older adults with anorexia show changes in the quantity/quality of energy supplied to the organism which eventually may cause a mismatch between ingested calories and physiological energy demands. Therefore, a state of malnutrition and impaired metabolism may ensue which renders older people more vulnerable to stressors and more prone to incur negative health outcomes. These latter cover a wide range of conditions including sarcopenia, low engagement in physical activity, and more severe consequences such as disability, loss of independence, hospitalization, nursing home placement, and mortality. Malnutrition has been recognized by the European Society of Clinical Nutrition (ESPEN) among the chief risk factors for the development of frailty. Frailty refers to a state of increased vulnerability to stressors stemming from reduced physiologic reserve, and according to ESPEN, is also nutrition-based. Alike frailty, anorexia is highly prevalent among older adults, and its multifactorial nature includes metabolic changes that develop in older age and possibly underly the condition. Circulating factors, including hormones (eg, cholecystokinin, ghrelin, leptin, and inflammatory and microbial mediators of gut dysbiosis), have been proposed as biomarkers for this condition to support early identification and develop personalized nutritional interventions. Additional studies are needed to untangle the interrelationship between gut microbiota and appetite regulation in older adults operating through brain-gut crosstalk. Furthermore, the contribution of the genetic background to appetite regulation and specific nutritional needs warrants investigation. Here, we provide an overview on anorexia of aging in the context of age-related metabolic changes. A special focus is placed on candidate biomarkers that may be used to assist in the early identification of anorexia of aging and in the development of personalized nutritional counseling.
Collapse
Affiliation(s)
- Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| | - Riccardo Calvani
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| | | | - Francesco Landi
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
- Department of Geriatrics and Orthopedics, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
- Department of Geriatrics and Orthopedics, Università Cattolica Del Sacro Cuore, Rome, Italy
| |
Collapse
|
7
|
Huang HH, Wang TY, Yao SF, Lin PY, Chang JCY, Peng LN, Chen LK, Yen DHT. Gastric Mobility and Gastrointestinal Hormones in Older Patients with Sarcopenia. Nutrients 2022; 14:nu14091897. [PMID: 35565864 PMCID: PMC9103579 DOI: 10.3390/nu14091897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/23/2022] [Accepted: 04/29/2022] [Indexed: 11/24/2022] Open
Abstract
Sarcopenia has serious clinical consequences and poses a major threat to older people. Gastrointestinal environmental factors are believed to be the main cause. The aim of this study was to describe the relationship between sarcopenia and gastric mobility and to investigate the relationship between sarcopenia and the concentration of gastrointestinal hormones in older patients. Patients aged ≥ 75 years were recruited for this prospective study from August 2018 to February 2019 at the emergency department. The enrolled patients were tested for sarcopenia. Gastric emptying scintigraphy was conducted, and laboratory tests for cholecystokinin(CCK), glucagon-like peptide-1 (GLP-1), peptide YY (PYY), nesfatin, and ghrelin were performed during the fasting period. We enrolled 52 patients with mean age of 86.9 years, including 17 (32.7%) patients in the non-sarcopenia group, 17 (32.7%) patients in the pre-sarcopenia group, and 18 (34.6%) in the sarcopenia group. The mean gastric emptying half-time had no significant difference among three groups. The sarcopenia group had significantly higher fasting plasma concentrations of CCK, GLP-1, and PYY. We concluded that the older people with sarcopenia had significantly higher plasma concentrations of CCK, GLP-1, and PYY. In the elderly population, anorexigenic gastrointestinal hormones might have more important relationships with sarcopenia than orexigenic gastrointestinal hormones.
Collapse
Affiliation(s)
- Hsien-Hao Huang
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei 112201, Taiwan; (H.-H.H.); (T.-Y.W.); (P.-Y.L.); (J.C.-Y.C.)
- Institute of Emergency and Critical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Tse-Yao Wang
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei 112201, Taiwan; (H.-H.H.); (T.-Y.W.); (P.-Y.L.); (J.C.-Y.C.)
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Shan-Fan Yao
- Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei 112201, Taiwan;
| | - Pei-Ying Lin
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei 112201, Taiwan; (H.-H.H.); (T.-Y.W.); (P.-Y.L.); (J.C.-Y.C.)
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Julia Chia-Yu Chang
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei 112201, Taiwan; (H.-H.H.); (T.-Y.W.); (P.-Y.L.); (J.C.-Y.C.)
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Li-Ning Peng
- Aging and Health Research Center, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (L.-N.P.); (L.-K.C.)
- Center for Geriatrics and Gerontology, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Liang-Kung Chen
- Aging and Health Research Center, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (L.-N.P.); (L.-K.C.)
- Center for Geriatrics and Gerontology, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Taipei Municipal Gan-Dau Hospital, Taipei 112020, Taiwan
| | - David Hung-Tsang Yen
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei 112201, Taiwan; (H.-H.H.); (T.-Y.W.); (P.-Y.L.); (J.C.-Y.C.)
- Institute of Emergency and Critical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Emergency Medicine, National Defense Medical Center, Taipei 114202, Taiwan
- Department of Nursing, Yuanpei University of Medical Technology, Hsinchu 300102, Taiwan
- Correspondence: ; Tel.: +886-2-2875-7371
| |
Collapse
|
8
|
Cifuentes L, Acosta A. Homeostatic regulation of food intake. Clin Res Hepatol Gastroenterol 2022; 46:101794. [PMID: 34481092 PMCID: PMC9721532 DOI: 10.1016/j.clinre.2021.101794] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023]
Abstract
Food intake and energy expenditure are key regulators of body weight. To regulate food intake, the brain must integrate physiological signals and hedonic cues. The brain plays an essential role in modulating the appropriate responses to the continuous update of the body energy-status by the peripheral signals and the neuronal pathways that generate the gut-brain axis. This regulation encompasses various steps involved in food consumption, include satiation, satiety, and hunger. It is important to have a comprehensive understanding of the mechanisms that regulate food consumption as well as to standardize the vocabulary for the steps involved. This review discusses the current knowledge of the regulation and the contribution peripheral and central signals at each step of the cycle to control appetite. We also highlight how food intake has been measured. The increasingly complex understanding of regulation and action mechanisms intervening in the gut-brain axis offers ambitious targets for new strategies to control appetite.
Collapse
|
9
|
Jin Y, Wilde PJ, Hou Y, Wang Y, Han J, Liu W. An evolving view on food viscosity regulating gastric emptying. Crit Rev Food Sci Nutr 2022; 63:5783-5799. [PMID: 34985365 DOI: 10.1080/10408398.2021.2024132] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Viscosity is a property of most foods. The consumption of the high-viscosity food is associated with a variety of physiological responses, one of which is their ability to regulate gastric emptying and modulate postprandial glycemic response. Gastric emptying has been proven to be a key step affecting the digestion and absorption of food, whereas, the relationship between viscosity and gastric emptying is still far away from being understood. Here, we reviewed the factors that influence food viscosity and food viscosity changes during digestion. Besides, the effect of food viscosity on gastric emptying and food-viscosity-physiological response were highlighted. Finally, "quantitative relationship" of viscosity and gastric emptying was discussed. This review can contribute to the understanding that how food viscosity affects gastric emptying, and help for developing foods that could control satiety and manage body weight for the specific populations.
Collapse
Affiliation(s)
- Yangyi Jin
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Peter J Wilde
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Yingying Hou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yanping Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Jianzhong Han
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Weilin Liu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
10
|
Endocrinological and Nutritional Implications of Anorexia of Aging. ENDOCRINES 2021. [DOI: 10.3390/endocrines2040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Poor appetite—known as anorexia—is a common condition in aging and is associated with poor outcomes, including reduced survival and impaired quality of life. The anorexia of aging is mainly the result of several complex endocrinological, metabolic, and nutritional changes occurring with later age. The modulation of different peptides and hormones has been identified as an important determinant for the development of low appetite; in particular, an altered imbalance of plasma ghrelin, leptin, and cholecystokinin and increased inflammatory markers are implicated in its pathophysiology, and robust evidence of their involvement in anorexia of aging has been produced in the clinical setting. More recently, researchers identified that the gut microbiome composition significantly varies according to the appetite status. Other important clinical factors may worsen the symptoms of the anorexia in the elderly, in particular the potential concomitant presence of chronic catabolic comorbidities. Importantly, data indicate that anorexia is prevalent in frail older adults, negatively impacting body composition and specifically in altering muscle mass and function. For all these reasons, a prompt and early diagnosis of anorexia in the elderly is crucial to implement personalized metabolic and nutrition interventions to improve the outcomes and ameliorate quality of life.
Collapse
|
11
|
Nogueiras R. MECHANISMS IN ENDOCRINOLOGY: The gut-brain axis: regulating energy balance independent of food intake. Eur J Endocrinol 2021; 185:R75-R91. [PMID: 34260412 PMCID: PMC8345901 DOI: 10.1530/eje-21-0277] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/14/2021] [Indexed: 12/15/2022]
Abstract
Obesity is a global pandemic with a large health and economic burden worldwide. Bodyweight is regulated by the ability of the CNS, and especially the hypothalamus, to orchestrate the function of peripheral organs that play a key role in metabolism. Gut hormones play a fundamental role in the regulation of energy balance, as they modulate not only feeding behavior but also energy expenditure and nutrient partitioning. This review examines the recent discoveries about hormones produced in the stomach and gut, which have been reported to regulate food intake and energy expenditure in preclinical models. Some of these hormones act on the hypothalamus to modulate thermogenesis and adiposity in a food intake-independent fashion. Finally, the association of these gut hormones to eating, energy expenditure, and weight loss after bariatric surgery in humans is discussed.
Collapse
Affiliation(s)
- Ruben Nogueiras
- Department of Physiology, CIMUS, USC, CIBER Fisiopatología Obesidad y Nutrición (CiberOBN), Instituto Salud Carlos III, Galician Agency of Innovation, Xunta de Galicia, Santiago de Compostela, Spain
| |
Collapse
|
12
|
Moreira-Pais A, Ferreira R, Oliveira PA, Duarte JA. Sarcopenia versus cancer cachexia: the muscle wasting continuum in healthy and diseased aging. Biogerontology 2021; 22:459-477. [PMID: 34324116 DOI: 10.1007/s10522-021-09932-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022]
Abstract
Muscle wasting is one of the major health problems in older adults and is traditionally associated to sarcopenia. Nonetheless, muscle loss may also occur in older adults in the presence of cancer, and in this case, it is associated to cancer cachexia. The clinical management of these conditions is a challenge due to, at least in part, the difficulties in their differential diagnosis. Thus, efforts have been made to better comprehend the pathogenesis of sarcopenia and cancer cachexia, envisioning the improvement of their clinical discrimination and treatment. To add insights on this topic, this review discusses the current knowledge on key molecular players underlying sarcopenia and cancer cachexia in a comparative perspective. Data retrieved from this analysis highlight that while sarcopenia is characterized by the atrophy of fast-twitch muscle fibers, in cancer cachexia an increase in the proportion of fast-twitch fibers appears to happen. The molecular drivers for these specificmuscle remodeling patterns are still unknown; however, among the predominant contributors to sarcopenia is the age-induced neuromuscular denervation, and in cancer cachexia, the muscle disuse experienced by cancer patients seems to play an important role. Moreover, inflammation appears to be more severe in cancer cachexia. Impairment of nutrition-related mediators may also contribute to sarcopenia and cancer cachexia, being distinctly modulated in each condition.
Collapse
Affiliation(s)
- Alexandra Moreira-Pais
- CIAFEL, Faculty of Sport, University of Porto, Dr. Plácido da Costa 91, 4200-450, Porto, Portugal. .,LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal. .,Centre for Research and Technology of Agro Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal. .,Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Paula A Oliveira
- Centre for Research and Technology of Agro Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
| | - José A Duarte
- CIAFEL, Faculty of Sport, University of Porto, Dr. Plácido da Costa 91, 4200-450, Porto, Portugal. .,Faculdade de Desporto, Universidade do Porto, Rua Dr. Plácido da Costa 91, 4200-450, Porto, Portugal. .,TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal.
| |
Collapse
|
13
|
Rezaie P, Bitarafan V, Horowitz M, Feinle-Bisset C. Effects of Bitter Substances on GI Function, Energy Intake and Glycaemia-Do Preclinical Findings Translate to Outcomes in Humans? Nutrients 2021; 13:1317. [PMID: 33923589 PMCID: PMC8072924 DOI: 10.3390/nu13041317] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/07/2021] [Accepted: 04/15/2021] [Indexed: 12/25/2022] Open
Abstract
Bitter substances are contained in many plants, are often toxic and can be present in spoiled food. Thus, the capacity to detect bitter taste has classically been viewed to have evolved primarily to signal the presence of toxins and thereby avoid their consumption. The recognition, based on preclinical studies (i.e., studies in cell cultures or experimental animals), that bitter substances may have potent effects to stimulate the secretion of gastrointestinal (GI) hormones and modulate gut motility, via activation of bitter taste receptors located in the GI tract, reduce food intake and lower postprandial blood glucose, has sparked considerable interest in their potential use in the management or prevention of obesity and/or type 2 diabetes. However, it remains to be established whether findings from preclinical studies can be translated to health outcomes, including weight loss and improved long-term glycaemic control. This review examines information relating to the effects of bitter substances on the secretion of key gut hormones, gastric motility, food intake and blood glucose in preclinical studies, as well as the evidence from clinical studies, as to whether findings from animal studies translate to humans. Finally, the evidence that bitter substances have the capacity to reduce body weight and/or improve glycaemic control in obesity and/or type 2 diabetes, and potentially represent a novel strategy for the management, or prevention, of obesity and type 2 diabetes, is explored.
Collapse
Affiliation(s)
| | | | | | - Christine Feinle-Bisset
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide 5005, Australia; (P.R.); (V.B.); (M.H.)
| |
Collapse
|
14
|
Chapman I, Oberoi A, Giezenaar C, Soenen S. Rational Use of Protein Supplements in the Elderly-Relevance of Gastrointestinal Mechanisms. Nutrients 2021; 13:nu13041227. [PMID: 33917734 PMCID: PMC8068133 DOI: 10.3390/nu13041227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023] Open
Abstract
Protein supplements are increasingly used by older people to maintain nutrition and prevent or treat loss of muscle function. Daily protein requirements in older people are in the range of 1.2 gm/kg/day or higher. Many older adults do not consume this much protein and are likely to benefit from higher consumption. Protein supplements are probably best taken twice daily, if possible soon after exercise, in doses that achieve protein intakes of 30 gm or more per episode. It is probably not important to give these supplements between meals, as we have shown no suppressive effects of 30 gm whey drinks, and little if any suppression of 70 gm given to older subjects at varying time intervals from meals. Many gastrointestinal mechanisms controlling food intake change with age, but their contributions to changes in responses to protein are not yet well understood. There may be benefits in giving the supplement with rather than between meals, to achieve protein intakes above the effective anabolic threshold with lower supplement doses, and have favourable effects on food-induced blood glucose increases in older people with, or at risk of developing, type 2 diabetes mellitus; combined protein and glucose drinks lower blood glucose compared with glucose alone in older people.
Collapse
Affiliation(s)
- Ian Chapman
- Adelaide Medical School and Centre of Research Excellence (C.R.E.) in Translating Nutritional Science to Good Health, The University of Adelaide, Royal Adelaide Hospital, Adelaide, SA 5000, Australia; (I.C.); (A.O.)
| | - Avneet Oberoi
- Adelaide Medical School and Centre of Research Excellence (C.R.E.) in Translating Nutritional Science to Good Health, The University of Adelaide, Royal Adelaide Hospital, Adelaide, SA 5000, Australia; (I.C.); (A.O.)
| | - Caroline Giezenaar
- Riddett Institute, Massey University, Palmerston North 9430, New Zealand;
| | - Stijn Soenen
- Faculty of Health Sciences and Medicine, Bond University, Robina, QLD 4226, Australia
- Correspondence: ; Tel.: +61-07-55595-1390
| |
Collapse
|
15
|
Klockars A, Levine AS, Head MA, Perez-Leighton CE, Kotz CM, Olszewski PK. Impact of Gut and Metabolic Hormones on Feeding Reward. Compr Physiol 2021; 11:1425-1447. [PMID: 33577129 DOI: 10.1002/cphy.c190042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ingestion of food activates a cascade of endocrine responses (thereby reflecting a contemporaneous feeding status) that include the release of hormones from the gastrointestinal (GI) tract, such as cholecystokinin (CCK), glucagonlike peptide YY (PYY), peptide PP, and oleoylethanolamide, as well as suppression of ghrelin secretion. The pancreas and adipose tissue, on the other hand, release hormones that serve as a measure of the current metabolic state or the long-term energy stores, that is, insulin, leptin, and adiponectin. It is well known and intuitively understandable that these hormones target either directly (by crossing the blood-brain barrier) or indirectly (e.g., via vagal input) the "homeostatic" brainstem-hypothalamic pathways involved in the regulation of appetite. The current article focuses on yet another target of the metabolic and GI hormones that is critical in inducing changes in food intake, namely, the reward system. We discuss the physiological basis of this functional interaction, its importance in the control of appetite, and the impact that disruption of this crosstalk has on energy intake in select physiological and pathophysiological states. We conclude that metabolic and GI hormones have a capacity to strengthen or weaken a response of the reward system to a given food, and thus, they are fundamental in ensuring that feeding reward is plastic and dependent on the energy status of the organism. © 2021 American Physiological Society. Compr Physiol 11:1425-1447, 2021.
Collapse
Affiliation(s)
- Anica Klockars
- Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand
| | - Allen S Levine
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA
| | - Mitchell A Head
- Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand
| | | | - Catherine M Kotz
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA.,Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Pawel K Olszewski
- Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand.,Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA.,Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
16
|
Ha TS. Geriatric Physiology for Surgical Intensivists: Part I. JOURNAL OF ACUTE CARE SURGERY 2020. [DOI: 10.17479/jacs.2020.10.3.73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
17
|
Ano Y, Ohya R, Yamazaki T, Takahashi C, Taniguchi Y, Kondo K, Takashima A, Uchida K, Nakayama H. Hop bitter acids containing a β-carbonyl moiety prevent inflammation-induced cognitive decline via the vagus nerve and noradrenergic system. Sci Rep 2020; 10:20028. [PMID: 33208787 PMCID: PMC7674441 DOI: 10.1038/s41598-020-77034-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 11/03/2020] [Indexed: 12/19/2022] Open
Abstract
The prevention of age-related cognitive decline and dementia is becoming a high priority because of the rapid growth of aging populations. We have previously shown that hop bitter acids such as iso-α-acids (IAAs) and matured hop bitter acids (MHBAs) activate the vagus nerve and improve memory impairment. Moreover, supplements with MHBAs were shown to improve memory retrieval in older adults. However, the underlying mechanisms have not been entirely elucidated. We aimed to investigate the effects of MHBAs and the common β-tricarbonyl moiety on memory impairment induced by the activation of microglia and the loss of the noradrenergic system. MHBAs and a model compound with β-tricarbonyl moiety were administered to LPS-inoculated mice and 5 × FAD Alzheimer’s disease (AD) model mice, following the evaluation in behavioral tests and microglial activation. To evaluate the association of noradrenaline with MHBAs effects, mice treated with N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4), a noradrenergic neurotoxin that selectively damages noradrenergic projections from the locus coeruleus, were subjected to the behavioral evaluation. MHBAs reduced brain inflammation and improved LPS-induced memory impairment. A model compound possessing the β-tricarbonyl moiety improved the LPS-induced memory impairment and neuronal loss via the vagus nerve. Additionally, the protective effects of MHBAs on memory impairment were attenuated by noradrenaline depletion using DSP-4. MHBAs suppressed the activation of microglia and improved the memory impairment in 5 × FAD mice, which was also attenuated by noradrenaline depletion. Treatment with MHBAs increased cholecystokinin production from the intestinal cells. Generally, cholecystokinin activates the vagal nerve, which stimulate the noradrenergic neuron in the locus ceruleus. Taken together, our results reveal that food ingredients such as hop bitter acids with a β-tricarbonyl moiety suppress microglial activation and improve memory impairment induced by inflammation or AD pathology via the activation of the gut-brain axis and noradrenergic system. Supplements with hop bitter acids, including MHBAs, might be a novel approach for the prevention of cognitive decline and dementia.
Collapse
Affiliation(s)
- Yasuhisa Ano
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Tokyo, 113-8657, Japan. .,Kirin Central Research Institute, Kirin Holdings Company Ltd, 1-13-5 Fukuura Kanazawa-ku, Yokohama-shi, Kanagawa, 236-0004, Japan.
| | - Rena Ohya
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Tokyo, 113-8657, Japan.,Kirin Central Research Institute, Kirin Holdings Company Ltd, 1-13-5 Fukuura Kanazawa-ku, Yokohama-shi, Kanagawa, 236-0004, Japan
| | - Takahiro Yamazaki
- Kirin Central Research Institute, Kirin Holdings Company Ltd, 1-13-5 Fukuura Kanazawa-ku, Yokohama-shi, Kanagawa, 236-0004, Japan
| | - Chika Takahashi
- Kirin Central Research Institute, Kirin Holdings Company Ltd, 1-13-5 Fukuura Kanazawa-ku, Yokohama-shi, Kanagawa, 236-0004, Japan
| | - Yoshimasa Taniguchi
- Kirin Central Research Institute, Kirin Holdings Company Ltd, 1-13-5 Fukuura Kanazawa-ku, Yokohama-shi, Kanagawa, 236-0004, Japan
| | - Keiji Kondo
- Kirin Central Research Institute, Kirin Holdings Company Ltd, 1-13-5 Fukuura Kanazawa-ku, Yokohama-shi, Kanagawa, 236-0004, Japan
| | | | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Tokyo, 113-8657, Japan
| | - Hiroyuki Nakayama
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Tokyo, 113-8657, Japan
| |
Collapse
|
18
|
Lau S, Pek K, Chew J, Lim JP, Ismail NH, Ding YY, Cesari M, Lim WS. The Simplified Nutritional Appetite Questionnaire (SNAQ) as a Screening Tool for Risk of Malnutrition: Optimal Cutoff, Factor Structure, and Validation in Healthy Community-Dwelling Older Adults. Nutrients 2020; 12:nu12092885. [PMID: 32967354 PMCID: PMC7551805 DOI: 10.3390/nu12092885] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
Malnutrition is an independent marker of adverse outcomes in older adults. While the Simplified Nutritional Appetite Questionnaire (SNAQ) for anorexia has been validated as a nutritional screening tool, its optimal cutoff and validity in healthy older adults is unclear. This study aims to determine the optimal cutoff for SNAQ in healthy community-dwelling older adults, and to examine its factor structure and validity. We studied 230 community-dwelling older adults (mean age 67.2 years) who were nonfrail (defined by Fatigue, Resistance, Ambulation, Illnesses & Loss (FRAIL) criteria). When compared against the risk of malnutrition using the Mini Nutritional Assessment (MNA), the optimal cutoff for SNAQ was ≤15 (area under receiver operating characteristic (ROC) curve: 0.706, sensitivity: 69.2%, specificity: 61.3%). Using exploratory factor analysis, we found a two-factor structure (Factor 1: Appetite Perception; Factor 2: Satiety and Intake) which accounted for 61.5% variance. SNAQ showed good convergent, discriminant and concurrent validity. In logistic regression adjusted for age, gender, education and MNA, SNAQ ≤15 was significantly associated with social frailty, unlike SNAQ ≤4 (odds ratio (OR) 1.99, p = 0.025 vs. OR 1.05, p = 0.890). Our study validates a higher cutoff of ≤15 to increase sensitivity of SNAQ for anorexia detection as a marker of malnutrition risk in healthy community-dwelling older adults, and explicates a novel two-factor structure which warrants further research.
Collapse
Affiliation(s)
- Sabrina Lau
- Department of Geriatric Medicine, Tan Tock Seng Hospital, Singapore 308433, Singapore; (J.C.); (J.P.L.); (Y.Y.D.); (W.S.L.)
- Institute of Geriatrics and Active Ageing, Tan Tock Seng Hospital, Singapore 308433, Singapore; (K.P.); (N.H.I.)
- Correspondence: ; Tel.: +65-6359-6474
| | - Kalene Pek
- Institute of Geriatrics and Active Ageing, Tan Tock Seng Hospital, Singapore 308433, Singapore; (K.P.); (N.H.I.)
| | - Justin Chew
- Department of Geriatric Medicine, Tan Tock Seng Hospital, Singapore 308433, Singapore; (J.C.); (J.P.L.); (Y.Y.D.); (W.S.L.)
- Institute of Geriatrics and Active Ageing, Tan Tock Seng Hospital, Singapore 308433, Singapore; (K.P.); (N.H.I.)
| | - Jun Pei Lim
- Department of Geriatric Medicine, Tan Tock Seng Hospital, Singapore 308433, Singapore; (J.C.); (J.P.L.); (Y.Y.D.); (W.S.L.)
- Institute of Geriatrics and Active Ageing, Tan Tock Seng Hospital, Singapore 308433, Singapore; (K.P.); (N.H.I.)
| | - Noor Hafizah Ismail
- Institute of Geriatrics and Active Ageing, Tan Tock Seng Hospital, Singapore 308433, Singapore; (K.P.); (N.H.I.)
- Department of Continuing and Community Care, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | - Yew Yoong Ding
- Department of Geriatric Medicine, Tan Tock Seng Hospital, Singapore 308433, Singapore; (J.C.); (J.P.L.); (Y.Y.D.); (W.S.L.)
- Institute of Geriatrics and Active Ageing, Tan Tock Seng Hospital, Singapore 308433, Singapore; (K.P.); (N.H.I.)
| | - Matteo Cesari
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy;
- Geriatric Unit, IRCCS Istituti Clinici Scientifici Maugeri, 20122 Milan, Italy
| | - Wee Shiong Lim
- Department of Geriatric Medicine, Tan Tock Seng Hospital, Singapore 308433, Singapore; (J.C.); (J.P.L.); (Y.Y.D.); (W.S.L.)
- Institute of Geriatrics and Active Ageing, Tan Tock Seng Hospital, Singapore 308433, Singapore; (K.P.); (N.H.I.)
| |
Collapse
|
19
|
Skowron K, Kurnik-Łucka M, Dadański E, Bętkowska-Korpała B, Gil K. Backstage of Eating Disorder-About the Biological Mechanisms behind the Symptoms of Anorexia Nervosa. Nutrients 2020; 12:E2604. [PMID: 32867089 PMCID: PMC7551451 DOI: 10.3390/nu12092604] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
Anorexia nervosa (AN) represents a disorder with the highest mortality rate among all psychiatric diseases, yet our understanding of its pathophysiological components continues to be fragmentary. This article reviews the current concepts regarding AN pathomechanisms that focus on the main biological aspects involving central and peripheral neurohormonal pathways, endocrine function, as well as the microbiome-gut-brain axis. It emerged from the unique complexity of constantly accumulating new discoveries, which hamper the ability to look at the disease in a more comprehensive way. The emphasis is placed on the mechanisms underlying the main symptoms and potential new directions that require further investigation in clinical settings.
Collapse
Affiliation(s)
- Kamil Skowron
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta St 18, 31-121 Krakow, Poland; (K.S.); (M.K.-Ł.); (E.D.)
| | - Magdalena Kurnik-Łucka
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta St 18, 31-121 Krakow, Poland; (K.S.); (M.K.-Ł.); (E.D.)
| | - Emil Dadański
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta St 18, 31-121 Krakow, Poland; (K.S.); (M.K.-Ł.); (E.D.)
| | - Barbara Bętkowska-Korpała
- Department of Psychiatry, Jagiellonian University Medical College, Institute of Medical Psychology, Jakubowskiego St 2, 30-688 Krakow, Poland;
| | - Krzysztof Gil
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta St 18, 31-121 Krakow, Poland; (K.S.); (M.K.-Ł.); (E.D.)
| |
Collapse
|
20
|
Effect of White Potatoes on Subjective Appetite, Food Intake, and Glycemic Response in Healthy Older Adults. Nutrients 2020; 12:nu12092606. [PMID: 32867083 PMCID: PMC7551271 DOI: 10.3390/nu12092606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 12/16/2022] Open
Abstract
The objective of this study was to determine the effect of white potato cooking methods on subjective appetite, short-term food intake (FI), and glycemic response in healthy older adults. Using a within-subject, repeated-measures design, 20 participants (age: 70.4 ± 0.6 y) completed, in random order, five treatment conditions: three potato treatments (baked potatoes, mashed potatoes, and French fries), an isocaloric control treatment (white bread), or a fasting condition (meal skipping). Subjective appetite and glycemic response were measured for 120 min using visual analogue scales and capillary blood samples, respectively. Lunch FI was measured with an ad libitum pizza meal at 120 min. Change from baseline subjective appetite (p < 0.001) and lunch FI (p < 0.001) were lower after all test treatments compared with meal skipping (p < 0.001), but did not differ among test treatments. Cumulative FI (test treatment + lunch FI) did not differ among treatment conditions. Blood glucose concentrations were higher after all test treatments compared with meal skipping (p < 0.001), but were not different from each other. In healthy older adults, white potatoes suppressed subjective appetite and lunch FI compared with meal skipping, suggesting white potatoes do not bypass regulatory control mechanisms of FI.
Collapse
|
21
|
Enteroendocrine Hormone Secretion and Metabolic Control: Importance of the Region of the Gut Stimulation. Pharmaceutics 2020; 12:pharmaceutics12090790. [PMID: 32825608 PMCID: PMC7559385 DOI: 10.3390/pharmaceutics12090790] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022] Open
Abstract
It is now widely appreciated that gastrointestinal function is central to the regulation of metabolic homeostasis. Following meal ingestion, the delivery of nutrients from the stomach into the small intestine (i.e., gastric emptying) is tightly controlled to optimise their subsequent digestion and absorption. The complex interaction of intraluminal nutrients (and other bioactive compounds, such as bile acids) with the small and large intestine induces the release of an array of gastrointestinal hormones from specialised enteroendocrine cells (EECs) distributed in various regions of the gut, which in turn to regulate gastric emptying, appetite and postprandial glucose metabolism. Stimulation of gastrointestinal hormone secretion, therefore, represents a promising strategy for the management of metabolic disorders, particularly obesity and type 2 diabetes mellitus (T2DM). That EECs are distributed distinctively between the proximal and distal gut suggests that the region of the gut exposed to intraluminal stimuli is of major relevance to the secretion profile of gastrointestinal hormones and associated metabolic responses. This review discusses the process of intestinal digestion and absorption and their impacts on the release of gastrointestinal hormones and the regulation of postprandial metabolism, with an emphasis on the differences between the proximal and distal gut, and implications for the management of obesity and T2DM.
Collapse
|
22
|
Foll CL, Lutz TA. Systemic and Central Amylin, Amylin Receptor Signaling, and Their Physiological and Pathophysiological Roles in Metabolism. Compr Physiol 2020; 10:811-837. [PMID: 32941692 DOI: 10.1002/cphy.c190034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This article in the Neural and Endocrine Section of Comprehensive Physiology discusses the physiology and pathophysiology of the pancreatic hormone amylin. Shortly after its discovery in 1986, amylin has been shown to reduce food intake as a satiation signal to limit meal size. Amylin also affects food reward, sensitizes the brain to the catabolic actions of leptin, and may also play a prominent role in the development of certain brain areas that are involved in metabolic control. Amylin may act at different sites in the brain in addition to the area postrema (AP) in the caudal hindbrain. In particular, the sensitizing effect of amylin on leptin action may depend on a direct interaction in the hypothalamus. The concept of central pathways mediating amylin action became more complex after the discovery that amylin is also synthesized in certain hypothalamic areas but the interaction between central and peripheral amylin signaling remains currently unexplored. Amylin may also play a dominant pathophysiological role that is associated with the aggregation of monomeric amylin into larger, cytotoxic molecular entities. This aggregation in certain species may contribute to the development of type 2 diabetes mellitus but also cardiovascular disease. Amylin receptor pharmacology is complex because several distinct amylin receptor subtypes have been described, because other neuropeptides [e.g., calcitonin gene-related peptide (CGRP)] can also bind to amylin receptors, and because some components of the functional amylin receptor are also used for other G-protein coupled receptor (GPCR) systems. © 2020 American Physiological Society. Compr Physiol 10:811-837, 2020.
Collapse
Affiliation(s)
- Christelle Le Foll
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Thomas A Lutz
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
23
|
Johnson KO, Shannon OM, Matu J, Holliday A, Ispoglou T, Deighton K. Differences in circulating appetite-related hormone concentrations between younger and older adults: a systematic review and meta-analysis. Aging Clin Exp Res 2020; 32:1233-1244. [PMID: 31432431 PMCID: PMC7316693 DOI: 10.1007/s40520-019-01292-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 07/23/2019] [Indexed: 02/07/2023]
Abstract
Ageing is associated with reduced appetite and energy intakes. However, the mechanisms underlying this phenomenon are not fully understood. This systematic review and meta-analysis quantified differences in circulating concentrations of appetite-related hormones between healthy older and younger adults. Six databases were searched through 12th June 2018 for studies that compared appetite-related hormone concentrations between older and younger adults. Data were pooled using random-effects meta-analysis and are presented as standardised mean difference (Hedges’ g) with 95% confidence intervals (95% CI). Thirty-five studies were included involving 710 older adults (mean ± SD; age: 73 ± 5 years) and 713 younger adults (age: 28 ± 7 years). Compared with younger adults, older adults exhibited higher fasted and postprandial concentrations of the anorectic hormones cholecystokinin (Fasted: SMD 0.41 (95% CI 0.24, 0.57); p < 0.001. Postprandial: SMD 0.41 (0.20, 0.62); p < 0.001), leptin [Fasted: SMD 1.23 (0.15, 2.30); p = 0.025. Postprandial: SMD 0.62 (0.23, 1.01); p = 0.002] and insulin [Fasted: SMD 0.24 (− 0.02, 0.50); p = 0.073. Postprandial: SMD 0.16 (0.01, 0.32); p = 0.043]. Higher postprandial concentrations of peptide-YY were also observed in older adults compared with younger adults [SMD 0.31 (− 0.03, 0.65); p = 0.075]. Compared with younger adults, older adults had lower energy intakes [SMD − 0.98 (− 1.74, − 0.22); p = 0.011], and lower hunger perceptions in the fasted [SMD − 1.00 (− 1.54, − 0.46); p < 0.001] and postprandial states [SMD − 0.31, (− 0.64, 0.02); p = 0.064]. Higher circulating concentrations of insulin, leptin, cholecystokinin and peptide-YY accord with reduced appetite and energy intakes in healthy older adults. Interventions to reduce circulating levels of these hormones may be beneficial for combatting the anorexia of ageing.
Collapse
Affiliation(s)
- Kelsie Olivia Johnson
- Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK
| | - Oliver Michael Shannon
- Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Jamie Matu
- School of Clinical and Applied Science, Leeds Beckett University, Leeds, LS1 3HE, UK
- Faculty of Medicine and Health, Leeds University, Leeds, LS2 9JT, UK
| | - Adrian Holliday
- Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK
| | - Theocharis Ispoglou
- Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK
| | - Kevin Deighton
- Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK.
- Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Fairfax Hall, Leeds, LS6 3QQ, UK.
| |
Collapse
|
24
|
Giezenaar C, Lange K, Hausken T, Jones KL, Horowitz M, Chapman I, Soenen S. Effects of Age on Acute Appetite-Related Responses to Whey-Protein Drinks, Including Energy Intake, Gastric Emptying, Blood Glucose, and Plasma Gut Hormone Concentrations-A Randomized Controlled Trial. Nutrients 2020; 12:nu12041008. [PMID: 32268554 PMCID: PMC7231005 DOI: 10.3390/nu12041008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 02/07/2023] Open
Abstract
Protein-rich supplements are used commonly to increase energy intake in undernourished older people. This study aimed to establish age effects on energy intake, appetite, gastric emptying, blood glucose, and gut hormones in response to protein-rich drinks. In a randomized double-blind, order, 13 older men (age: 75 ± 2 yrs, body mass index (BMI): 26 ± 1 kg/m2) and 13 younger (23 ± 1 yrs, 24 ± 1 kg/m2) men consumed (i) a control drink (~2 kcal) or drinks (450 mL) containing protein/fat/carbohydrate: (ii) 70 g/0 g/0 g (280 kcal/'P280'), (iii) 14 g/12.4 g/28 g (280 kcal/'M280'), (iv) 70 g/12.4 g/28 g (504 kcal/'M504'), on four separate days. Appetite (visual analog scales), gastric emptying (3D ultrasonography), blood glucose, plasma insulin, ghrelin, cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1) concentrations (0-180 min), and ad-libitum energy intake (180-210 min) were determined. Older men, compared to younger men, had higher fasting glucose and CCK concentrations and lower fasting GLP-1 concentrations (all p < 0.05). Energy intake by P280 compared to control was less suppressed in older men (increase: 49 ± 42 kcal) than it was in younger men (suppression: 100 ± 54 kcal, p = 0.038). After the caloric drinks, the suppression of hunger and the desire to eat, and the stimulation of fullness was less (p < 0.05), and the stimulation of plasma GLP-1 was higher (p < 0.05) in older men compared to younger men. Gastric emptying, glucose, insulin, ghrelin, and CCK responses were similar between age groups. In conclusion, ageing reduces the responses of caloric drinks on hunger, the desire to eat, fullness, and energy intake, and protein-rich nutrition supplements may be an effective strategy to increase energy intake in undernourished older people.
Collapse
Affiliation(s)
- Caroline Giezenaar
- Riddet Institute, Massey University, Palmerston North 4474, New Zealand;
| | - Kylie Lange
- Adelaide Medical School and Centre of Research Excellence (C.R.E.) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Royal Adelaide Hospital, South-Australia 5000, Australia; (K.L.); (K.L.J.); (M.H.); (I.C.)
| | - Trygve Hausken
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway;
| | - Karen L. Jones
- Adelaide Medical School and Centre of Research Excellence (C.R.E.) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Royal Adelaide Hospital, South-Australia 5000, Australia; (K.L.); (K.L.J.); (M.H.); (I.C.)
| | - Michael Horowitz
- Adelaide Medical School and Centre of Research Excellence (C.R.E.) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Royal Adelaide Hospital, South-Australia 5000, Australia; (K.L.); (K.L.J.); (M.H.); (I.C.)
| | - Ian Chapman
- Adelaide Medical School and Centre of Research Excellence (C.R.E.) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Royal Adelaide Hospital, South-Australia 5000, Australia; (K.L.); (K.L.J.); (M.H.); (I.C.)
| | - Stijn Soenen
- Adelaide Medical School and Centre of Research Excellence (C.R.E.) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Royal Adelaide Hospital, South-Australia 5000, Australia; (K.L.); (K.L.J.); (M.H.); (I.C.)
- Correspondence: ; Tel.: +61-8-8313-3638
| |
Collapse
|
25
|
Khalaf A, Hoad CL, Menys A, Nowak A, Radford S, Taylor SA, Latief K, Lingaya M, Falcone Y, Singh G, Spiller RC, Gowland PA, Marciani L, Moran GW. Gastrointestinal peptides and small-bowel hypomotility are possible causes for fasting and postprandial symptoms in active Crohn's disease. Am J Clin Nutr 2020; 111:131-140. [PMID: 31557279 DOI: 10.1093/ajcn/nqz240] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 08/29/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Crohn's disease (CD) patients suffer postprandial aversive symptoms, which can lead to anorexia and malnutrition. Changes in the regulation of gut hormones and gut dysmotility are believed to play a role. OBJECTIVES This study aimed to investigate small-bowel motility and gut peptide responses to a standard test meal in CD by using MRI. METHODS We studied 15 CD patients with active disease (age 36 ± 3 y; BMI 26 ± 1 kg/m 2) and 20 healthy volunteers (HVs; age 31 ± 3 years; BMI 24 ± 1 kg/m 2). They underwent baseline and postprandial MRI scans, symptom questionnaires, and blood sampling following a 400-g soup meal (204 kcal). Small-bowel motility, other MRI parameters, and glucagon-like peptide-1 (GLP-1), polypeptide YY (PYY), and cholecystokinin peptides were measured. Data are presented as means ± SEMs. RESULTS HVs had significantly higher fasting motility indexes [106 ± 13 arbitrary units (a.u.)], compared with CD participants (70 ± 8 a.u.; P ≤ 0.05). Postprandial small-bowel water content showed a significant time by group interaction (P < 0.05), with CD participants showing higher levels from 210 min postprandially. Fasting concentrations of GLP-1 and PYY were significantly greater in CD participants, compared with HVs [GLP-1, CD 50 ± 8 µg/mL versus HV 13 ± 3 µg/mL (P ≤ 0.0001); PYY, CD 236 ± 16 pg/mL versus HV 118 ± 12 pg/mL (P ≤ 0.0001)]. The meal challenge induced a significant postprandial increase in aversive symptom scores (fullness, distention, bloating, abdominal pain, and sickness) in CD participants compared with HVs (P ≤ 0.05). CONCLUSIONS The decrease in fasting small-bowel motility noted in CD participants can be ascribed to the increased fasting gut peptides. A better understanding of the etiology of aversive symptoms in CD will facilitate identification of better therapeutic targets to improve nutritional status. This trial was registered at clinicaltrials.gov as NCT03052465.
Collapse
Affiliation(s)
- Asseel Khalaf
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,National Institute of Health Research Nottingham Biomedical Research Centre at Nottingham University, Hospitals National Health Service Trust and the University of Nottingham, Nottingham, United Kingdom
| | - Caroline L Hoad
- National Institute of Health Research Nottingham Biomedical Research Centre at Nottingham University, Hospitals National Health Service Trust and the University of Nottingham, Nottingham, United Kingdom.,Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | | | - Adam Nowak
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,National Institute of Health Research Nottingham Biomedical Research Centre at Nottingham University, Hospitals National Health Service Trust and the University of Nottingham, Nottingham, United Kingdom
| | - Shellie Radford
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,National Institute of Health Research Nottingham Biomedical Research Centre at Nottingham University, Hospitals National Health Service Trust and the University of Nottingham, Nottingham, United Kingdom
| | - Stuart A Taylor
- Centre for Medical Imaging, Division of Medicine, University College London, United Kingdom
| | - Khalid Latief
- Department of Radiology, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Melanie Lingaya
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,National Institute of Health Research Nottingham Biomedical Research Centre at Nottingham University, Hospitals National Health Service Trust and the University of Nottingham, Nottingham, United Kingdom
| | - Yirga Falcone
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,National Institute of Health Research Nottingham Biomedical Research Centre at Nottingham University, Hospitals National Health Service Trust and the University of Nottingham, Nottingham, United Kingdom
| | - Gulzar Singh
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,National Institute of Health Research Nottingham Biomedical Research Centre at Nottingham University, Hospitals National Health Service Trust and the University of Nottingham, Nottingham, United Kingdom
| | - Robin C Spiller
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,National Institute of Health Research Nottingham Biomedical Research Centre at Nottingham University, Hospitals National Health Service Trust and the University of Nottingham, Nottingham, United Kingdom
| | - Penny A Gowland
- National Institute of Health Research Nottingham Biomedical Research Centre at Nottingham University, Hospitals National Health Service Trust and the University of Nottingham, Nottingham, United Kingdom.,Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Luca Marciani
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,National Institute of Health Research Nottingham Biomedical Research Centre at Nottingham University, Hospitals National Health Service Trust and the University of Nottingham, Nottingham, United Kingdom
| | - Gordon W Moran
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,National Institute of Health Research Nottingham Biomedical Research Centre at Nottingham University, Hospitals National Health Service Trust and the University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
26
|
Ramlan H, Damanhuri HA. Effects of age on feeding response: Focus on the rostral C1 neuron and its glucoregulatory proteins. Exp Gerontol 2019; 129:110779. [PMID: 31705967 DOI: 10.1016/j.exger.2019.110779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/15/2019] [Accepted: 11/06/2019] [Indexed: 01/16/2023]
Abstract
BACKGROUND Older people are likely to develop anorexia of aging. Rostral C1 (rC1) catecholaminergic neurons in rostral ventrolateral medulla (RVLM) are recently discovered its role in food intake control. It is well established that these neurons regulate cardiovascular function. OBJECTIVE This study aims to determine the effect of age on the function of rostral C1 (rC1) neurons in mediating feeding response. METHOD Male Sprague Dawley rats at 3-months (n = 22) and 24-months (n = 22) old were used and further divided into two subgroups; 1) treatment group with 2-deoxy-d-glucose (2DG) and 2) vehicle group. Feeding hormones such as cholecystokinin (CCK), ghrelin and leptin were analysed using enzyme-linked immunosorbent assay (ELISA). Rat brain was carefully dissected to obtain the brainstem RVLM region. Further analysis was carried out to determine the level of proteins and genes in RVLM that were associated with feeding pathway. Protein expression of tyrosine hydroxylase (TH), phosphorylated TH at Serine40 (pSer40TH), AMP-activated protein kinase (AMPK), phosphorylated AMPK (phospho AMPK) and neuropeptide Y Y5 receptor (NPY5R) were determined by western blot. Expression of TH, AMPK and NPY genes were determined by real-time PCR. RESULTS This study showed that blood glucose level was elevated in young and old rats following 2DG administration. Plasma CCK-8 concentration was higher in the aged rats at basal and increased with 2DG administration in young rats, but the leptin and ghrelin showed no changes. Old rats showed higher TH and lower AMPK mRNA levels. Glucoprivation decreased AMPK mRNA level in young rats and decreased TH mRNA in old rats. Aged rC1 neurons showed higher NPY5R protein level. Following glucoprivation, rC1 neurons produced distinct molecular changes across age in which, in young rats, AMPK phosphorylation level was increased and in old rats, TH phosphorylation level was increased. CONCLUSION These findings suggest that glucose-counterregulatory responses by rC1 neurons at least, contribute to the ability of young and old rats in coping glucoprivation. Age-induced molecular changes within rC1 neurons may attenuate the glucoprivic responses. This situation may explain the impairment of feeding response in the elderly.
Collapse
Affiliation(s)
- Hajira Ramlan
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Hanafi Ahmad Damanhuri
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000, Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
27
|
Elovaris RA, Hutchison AT, Lange K, Horowitz M, Feinle-Bisset C, Luscombe-Marsh ND. Plasma Free Amino Acid Responses to Whey Protein and Their Relationships with Gastric Emptying, Blood Glucose- and Appetite-Regulatory Hormones and Energy Intake in Lean Healthy Men. Nutrients 2019; 11:nu11102465. [PMID: 31618863 PMCID: PMC6835323 DOI: 10.3390/nu11102465] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/01/2019] [Accepted: 10/09/2019] [Indexed: 02/07/2023] Open
Abstract
This study determined the effects of increasing loads of whey protein on plasma amino acid (AA) concentrations, and their relationships with gastric emptying, blood glucose- and appetite-regulatory hormones, blood glucose and energy intake. Eighteen healthy lean men participated in a double-blinded study, in which they consumed, on 3 separate occasions, in randomised order, 450-mL drinks containing either 30 g (L) or 70 g (H) of pure whey protein isolate, or control with 0 g of protein (C). Gastric emptying, serum concentrations of AAs, ghrelin, cholecystokinin (CCK), glucagon-like-peptide 1 (GLP-1), insulin, glucagon and blood glucose were measured before and after the drinks over 180 min. Then energy intake was quantified. All AAs were increased, and 7/20 AAs were increased more by H than L. Incremental areas under the curve (iAUC0-180 min) for CCK, GLP-1, insulin and glucagon were correlated positively with iAUCs of 19/20 AAs (p < 0.05). The strongest correlations were with the branched-chain AAs as well as lysine, tyrosine, methionine, tryptophan, and aspartic acid (all R2 > 0.52, p < 0.05). Blood glucose did not correlate with any AA (all p > 0.05). Ghrelin and energy intake correlated inversely, but only weakly, with 15/20 AAs (all R2 < 0.34, p < 0.05). There is a strong relationship between gluco-regulatory hormones with a number of (predominantly essential) AAs. However, the factors mediating the effects of protein on blood glucose and energy intake are likely to be multifactorial.
Collapse
Affiliation(s)
- Rachel A Elovaris
- Adelaide Medical School and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Health and Medical Sciences Building, Corner North Terrace and George Street, Adelaide 5005, Australia.
| | - Amy T Hutchison
- Adelaide Medical School and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Health and Medical Sciences Building, Corner North Terrace and George Street, Adelaide 5005, Australia.
- Nutrition and Metabolism Theme, South Australian Health and Medical Research Institute, Adelaide 5000, Australia.
| | - Kylie Lange
- Adelaide Medical School and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Health and Medical Sciences Building, Corner North Terrace and George Street, Adelaide 5005, Australia.
| | - Michael Horowitz
- Adelaide Medical School and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Health and Medical Sciences Building, Corner North Terrace and George Street, Adelaide 5005, Australia.
| | - Christine Feinle-Bisset
- Adelaide Medical School and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Health and Medical Sciences Building, Corner North Terrace and George Street, Adelaide 5005, Australia.
| | - Natalie D Luscombe-Marsh
- Adelaide Medical School and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Health and Medical Sciences Building, Corner North Terrace and George Street, Adelaide 5005, Australia.
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Nutrition and Health Program, P.O. Box 10097, Adelaide 5000, Australia.
| |
Collapse
|
28
|
Abdulla H, Bass JJ, Stokes T, Gorissen SHM, McGlory C, Phillips BE, Phillips SM, Smith K, Idris I, Atherton PJ. The effect of oral essential amino acids on incretin hormone production in youth and ageing. Endocrinol Diabetes Metab 2019; 2:e00085. [PMID: 31592446 PMCID: PMC6775449 DOI: 10.1002/edm2.85] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 05/02/2019] [Accepted: 06/15/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The effect of substantive doses of essential amino acids (EAA) on incretin and insulin production, and the impact of age upon this effect, is ill-defined. METHODS A 15-g oral EAA drink was administered to young (N = 8; 26 ± 4.4 years) and older (N = 8; 69 ± 3.8 years) healthy volunteers. Another group of younger volunteers (N = 9; 21 ± 1.9 years) was given IV infusions to achieve equivalent plasma amino acids (AA) profiles. Plasma AA, insulin, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) were quantified over 2 hours. RESULTS In younger recruits, EAA-induced rapid insulinaemia and aminoacidaemia with total amino acids(AA), EAA and branched chain amino acids (BCAA) matched between oral and IV groups. Insulin peaked at 39 ± 29 pmol L-1 at 30 minutes following oral feeding compared to 22 ± 9 pmol L-1 at 60 minutes following IV feeding (P: NS). EAA peaked at 3395 μmol L-1 at 45 minutes during IV infusion compared to 2892 μmol L-1 following oral intake (Feeding effect: P < 0.0001. Oral vs IV feeding: P: NS). There was an 11% greater increase in insulin levels in the 120 minutes duration of the study in response to oral EAA as opposed to IV EAA. GIP increased following oral EAA (452 pmol L-1 vs 232 pmol L-1, P < 0.05). Age did not impact insulin or incretins production. CONCLUSION Postprandial rises in EAA levels lead to rapid insulinaemia which is higher with oral compared with IV EAA, that is attributed more to GIP and unaffected by age. This finding supports EAA, on their own or as part of high-protein meal, as nutritive therapeutics in impaired glycaemia and ageing.
Collapse
Affiliation(s)
- Haitham Abdulla
- MRC‐ARUK Centre for Musculoskeletal Ageing Research and NIHR BRC, School of MedicineUniversity of NottinghamDerbyUK
- Diabetes and Endocrinology CentreUniversity Hospitals Birmingham NHS Foundation Trust, Heartlands HospitalBirminghamUK
| | - Joseph J. Bass
- MRC‐ARUK Centre for Musculoskeletal Ageing Research and NIHR BRC, School of MedicineUniversity of NottinghamDerbyUK
- Department of Physical Education and Sport SciencesUniversity of LimerickLimerickUK
| | - Tanner Stokes
- Department of KinesiologyMcMaster UniversityHamiltonOntarioCanada
| | | | - Chris McGlory
- Department of KinesiologyMcMaster UniversityHamiltonOntarioCanada
| | - Bethan E. Phillips
- MRC‐ARUK Centre for Musculoskeletal Ageing Research and NIHR BRC, School of MedicineUniversity of NottinghamDerbyUK
| | | | - Kenneth Smith
- MRC‐ARUK Centre for Musculoskeletal Ageing Research and NIHR BRC, School of MedicineUniversity of NottinghamDerbyUK
| | - Iskandar Idris
- MRC‐ARUK Centre for Musculoskeletal Ageing Research and NIHR BRC, School of MedicineUniversity of NottinghamDerbyUK
- Department of Endocrinology and DiabetesUniversity Hospitals Derby and Burton NHS Foundation TrustDerbyUK
| | - Philip J. Atherton
- MRC‐ARUK Centre for Musculoskeletal Ageing Research and NIHR BRC, School of MedicineUniversity of NottinghamDerbyUK
| |
Collapse
|
29
|
How Satiating Are the 'Satiety' Peptides: A Problem of Pharmacology versus Physiology in the Development of Novel Foods for Regulation of Food Intake. Nutrients 2019; 11:nu11071517. [PMID: 31277416 PMCID: PMC6682889 DOI: 10.3390/nu11071517] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 12/15/2022] Open
Abstract
Developing novel foods to suppress energy intake and promote negative energy balance and weight loss has been a long-term but commonly unsuccessful challenge. Targeting regulation of appetite is of interest to public health researchers and industry in the quest to develop ‘functional’ foods, but poor understanding of the underpinning mechanisms regulating food intake has hampered progress. The gastrointestinal (GI) or ‘satiety’ peptides including cholecystokinin (CCK), glucagon-like peptide 1 (GLP-1) and peptide YY (PYY) secreted following a meal, have long been purported as predictive biomarkers of appetite response, including food intake. Whilst peptide infusion drives a clear change in hunger/fullness and eating behaviour, inducing GI-peptide secretion through diet may not, possibly due to modest effects of single meals on peptide levels. We conducted a review of 70 dietary preload (DIET) and peptide infusion (INFUSION) studies in lean healthy adults that reported outcomes of CCK, GLP-1 and PYY. DIET studies were acute preload interventions. INFUSION studies showed that minimum increase required to suppress ad libitum energy intake for CCK, GLP-1 and PYY was 3.6-, 4.0- and 3.1-fold, respectively, achieved through DIET in only 29%, 0% and 8% of interventions. Whether circulating ‘thresholds’ of peptide concentration likely required for behavioural change can be achieved through diet is questionable. As yet, no individual or group of peptides can be measured in blood to reliably predict feelings of hunger and food intake. Developing foods that successfully target enhanced secretion of GI-origin ‘satiety’ peptides for weight loss remains a significant challenge.
Collapse
|
30
|
Gastrointestinal Sensing of Meal-Related Signals in Humans, and Dysregulations in Eating-Related Disorders. Nutrients 2019; 11:nu11061298. [PMID: 31181734 PMCID: PMC6627312 DOI: 10.3390/nu11061298] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/29/2019] [Accepted: 06/05/2019] [Indexed: 12/13/2022] Open
Abstract
The upper gastrointestinal (GI) tract plays a critical role in sensing the arrival of a meal, including its volume as well as nutrient and non-nutrient contents. The presence of the meal in the stomach generates a mechanical distension signal, and, as gastric emptying progresses, nutrients increasingly interact with receptors on enteroendocrine cells, triggering the release of gut hormones, with lipid and protein being particularly potent. Collectively, these signals are transmitted to the brain to regulate appetite and energy intake, or in a feedback loop relayed back to the upper GI tract to further adjust GI functions, including gastric emptying. The research in this area to date has provided important insights into how sensing of intraluminal meal-related stimuli acutely regulates appetite and energy intake in humans. However, disturbances in the detection of these stimuli have been described in a number of eating-related disorders. This paper will review the GI sensing of meal-related stimuli and the relationship with appetite and energy intake, and examine changes in GI responses to luminal stimuli in obesity, functional dyspepsia and anorexia of ageing, as examples of eating-related disorders. A much better understanding of the mechanisms underlying these dysregulations is still required to assist in the development of effective management and treatment strategies in the future.
Collapse
|
31
|
Christoffersen BØ, Skyggebjerg RB, Bugge A, Kirk RK, Vestergaard B, Uldam HK, Fels JJ, Pyke C, Sensfuss U, Sanfridson A, Clausen TR. Long-acting CCK analogue NN9056 lowers food intake and body weight in obese Göttingen Minipigs. Int J Obes (Lond) 2019; 44:447-456. [PMID: 31175319 PMCID: PMC6997118 DOI: 10.1038/s41366-019-0386-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 03/16/2019] [Accepted: 04/05/2019] [Indexed: 12/18/2022]
Abstract
Background/Objectives Cholecystokinin (CCK) is a regulator of appetite and energy intake in man. The aim of this study was to determine the effect of NN9056, a long-acting CCK-1 receptor-selective CCK analogue, on food intake and body weight (BW) in obese Göttingen Minipigs. Subjects/Methods Tolerability of NN9056 and acute effects on food intake, pancreas histology, amylase and lipase levels were assessed in lean domestic pigs in doses up to 100 nmol/kg (n = 3–4). Subsequently, obese Göttingen Minipigs were treated subcutaneously (s.c.) once daily for 13 weeks with vehicle, NN9056 low dose (regulated from 5 to 2 nmol/kg) or NN9056 high dose (10 nmol/kg) (n = 7–8). Food intake was measured daily and BW twice weekly. At the end of the treatment period, an intravenous glucose tolerance test (IVGTT) and a 24-h exposure profile was obtained. Data are mean ± SD. Results The acute studies in domestic pigs showed significant and dose-dependent effect of NN9056 on food intake, acceptable tolerability and no histopathological signs of pancreatitis. Sub-chronic treatment in obese Göttingen Minipigs was also well tolerated and accumulated food intake was significantly lower in both treated groups compared to vehicle, with no significant difference between the dose levels of NN9056 (41.8 ± 12.6, 51.5 ± 13.8 and 86.5 ± 19.5 kg in high-dose, low-dose and vehicle groups, respectively, p = 0.012 and p < 0.0001 for low and high dose vs. vehicle, respectively). Accordingly, there was a weight loss in both treated groups vs. a weight gain in the vehicle group (−7.2 ± 4.6%, −2.3 ± 3.2% and 12.3 ± 3.9% in the high-dose, low-dose and vehicle groups, respectively, p < 0.0001 for both vs. vehicle). IVGTT data were not significantly different between groups. Conclusion NN9056, a long-acting CCK-1 receptor-selective CCK analogue, significantly reduced food intake and BW in obese Göttingen Minipigs after once daily s.c. dosing for 13 weeks.
Collapse
Affiliation(s)
| | | | - Anne Bugge
- Global Drug Discovery, Novo Nordisk A/S, Novo Nordisk Park, 2760, Måløv, Denmark
| | - Rikke Kaae Kirk
- Global Drug Discovery, Novo Nordisk A/S, Novo Nordisk Park, 2760, Måløv, Denmark
| | - Bill Vestergaard
- Global Drug Discovery, Novo Nordisk A/S, Novo Nordisk Park, 2760, Måløv, Denmark
| | - Henriette Kold Uldam
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Park, 2760, Måløv, Denmark
| | - Johannes Josef Fels
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Park, 2760, Måløv, Denmark
| | - Charles Pyke
- Global Drug Discovery, Novo Nordisk A/S, Novo Nordisk Park, 2760, Måløv, Denmark
| | - Ulrich Sensfuss
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Park, 2760, Måløv, Denmark
| | - Annika Sanfridson
- Global Drug Discovery, Novo Nordisk A/S, Novo Nordisk Park, 2760, Måløv, Denmark
| | - Trine Ryberg Clausen
- Global Drug Discovery, Novo Nordisk A/S, Novo Nordisk Park, 2760, Måløv, Denmark.
| |
Collapse
|
32
|
Ano Y, Hoshi A, Ayabe T, Ohya R, Uchida S, Yamada K, Kondo K, Kitaoka S, Furuyashiki T. Iso-α-acids, the bitter components of beer, improve hippocampus-dependent memory through vagus nerve activation. FASEB J 2019; 33:4987-4995. [PMID: 30601670 PMCID: PMC6436653 DOI: 10.1096/fj.201801868rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/10/2018] [Indexed: 11/11/2022]
Abstract
Iso-α-acids (IAAs) are hop-derived bitter acids of beer. Epidemiologic studies suggest that moderate alcohol consumption is beneficial for cognitive function, but they do not show the ingredients in alcoholic beverages. Previously, we reported that long-term consumption of IAAs prevents inflammation and Alzheimer pathologies in mice, but their effects on cognitive function have not been evaluated. In the present study, we demonstrated that the consumption of IAAs improves spatial and object recognition memory functions not only in normal Crl:CD1(ICR) male mice but also in mice with pharmacologically induced amnesia. IAA consumption increased the total and extracellular levels of dopamine in the hippocampus of mice and Sprague-Dawley male rats, respectively. Dopamine D1 receptor antagonist treatment and knockdown of dopamine D1 receptor expression in the hippocampus attenuated IAA-induced spatial memory improvement. Furthermore, vagotomy attenuated the effects of IAAs in improving spatial and object recognition memory functions and increasing the total level of dopamine in the hippocampus. These results suggest that the consumption of IAAs activates dopamine D1 receptor-signaling in the hippocampus in a vagus nerve-dependent manner and, consequently, improves spatial and object recognition memory functions. Vagal activation with food components including IAAs may be an easy and safe approach to improve cognitive functions.-Ano, Y., Hoshi, A., Ayabe, T., Ohya, R., Uchida, S., Yamada, K., Kondo, K., Kitaoka, S., Furuyashiki, T. Iso-α-acids, the bitter components of beer, improve hippocampus-dependent memory through vagus nerve activation.
Collapse
Affiliation(s)
- Yasuhisa Ano
- Research Laboratories for Health Science and Food Technologies, Kirin Company, Limited, Yokohama-shi, Japan
| | - Ayaka Hoshi
- Research Laboratories for Health Science and Food Technologies, Kirin Company, Limited, Yokohama-shi, Japan
| | - Tatsuhiro Ayabe
- Research Laboratories for Health Science and Food Technologies, Kirin Company, Limited, Yokohama-shi, Japan
| | - Rena Ohya
- Research Laboratories for Health Science and Food Technologies, Kirin Company, Limited, Yokohama-shi, Japan
| | - Shinichi Uchida
- Research and Development Division, Central Nervous System Research Laboratories, Central Nervous System (CNS) Research and Development Unit, Kyowa Hakko Kirin Company, Limited, Shizuoka, Japan
| | - Koji Yamada
- Research and Development Division, Central Nervous System Research Laboratories, Central Nervous System (CNS) Research and Development Unit, Kyowa Hakko Kirin Company, Limited, Shizuoka, Japan
| | - Keiji Kondo
- Research Laboratories for Health Science and Food Technologies, Kirin Company, Limited, Yokohama-shi, Japan
| | - Shiho Kitaoka
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe-shi, Japan; and
- Japan Agency for Medical Research and Development–Centers of Research Excellence in Science and Technology (AMED–CREST) Tokyo, Japan
| | - Tomoyuki Furuyashiki
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe-shi, Japan; and
- Japan Agency for Medical Research and Development–Centers of Research Excellence in Science and Technology (AMED–CREST) Tokyo, Japan
| |
Collapse
|
33
|
Heruc GA, Little TJ, Kohn M, Madden S, Clarke S, Horowitz M, Feinle-Bisset C. Appetite Perceptions, Gastrointestinal Symptoms, Ghrelin, Peptide YY and State Anxiety Are Disturbed in Adolescent Females with Anorexia Nervosa and Only Partially Restored with Short-Term Refeeding. Nutrients 2018; 11:nu11010059. [PMID: 30597915 PMCID: PMC6356798 DOI: 10.3390/nu11010059] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/23/2018] [Accepted: 12/25/2018] [Indexed: 02/07/2023] Open
Abstract
Factors underlying disturbed appetite perception in anorexia nervosa (AN) are poorly characterized. We examined in patients with AN whether fasting and postprandial appetite perceptions, gastrointestinal (GI) hormones, GI symptoms and state anxiety (i) differed from healthy controls (HCs) and (ii) were modified by two weeks of refeeding. 22 female adolescent inpatients with restricting AN, studied on hospital admission once medically stable (Wk0), and after one (Wk1) and two (Wk2) weeks of high-calorie refeeding, were compared with 17 age-matched HCs. After a 4 h fast, appetite perceptions, GI symptoms, state anxiety, and plasma acyl-ghrelin, cholecystokinin (CCK), peptide tyrosine tyrosine (PYY) and pancreatic polypeptide (PP) concentrations were assessed at baseline and in response to a mixed-nutrient test-meal (479 kcal). Compared with HCs, in patients with AN at Wk0, baseline ghrelin, PYY, fullness, bloating and anxiety were higher, and hunger less, and in response to the meal, ghrelin, bloating and anxiety were greater, and hunger less (all p < 0.05). After two weeks of refeeding, there was no change in baseline or postprandial ghrelin or bloating, or postprandial anxiety, but baseline PYY, fullness and anxiety decreased, and baseline and postprandial hunger increased (p < 0.05). We conclude that in AN, refeeding for 2 weeks was associated with improvements in PYY, appetite and baseline anxiety, while increased ghrelin, bloating and postprandial anxiety persisted.
Collapse
Affiliation(s)
- Gabriella A Heruc
- Adelaide Medical School and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Level 5 Adelaide Health and Medical Sciences Building, Corner North Terrace and George Street, Adelaide 5005, Australia.
| | - Tanya J Little
- Adelaide Medical School and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Level 5 Adelaide Health and Medical Sciences Building, Corner North Terrace and George Street, Adelaide 5005, Australia.
| | - Michael Kohn
- The Children's Hospital at Westmead, Sydney 2145, Australia.
- Adolescent and Young Adult Medicine Department, Westmead Hospital, Sydney 2145, Australia.
| | - Sloane Madden
- The Children's Hospital at Westmead, Sydney 2145, Australia.
| | - Simon Clarke
- Adolescent and Young Adult Medicine Department, Westmead Hospital, Sydney 2145, Australia.
| | - Michael Horowitz
- Adelaide Medical School and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Level 5 Adelaide Health and Medical Sciences Building, Corner North Terrace and George Street, Adelaide 5005, Australia.
| | - Christine Feinle-Bisset
- Adelaide Medical School and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Level 5 Adelaide Health and Medical Sciences Building, Corner North Terrace and George Street, Adelaide 5005, Australia.
| |
Collapse
|
34
|
Clegg ME, Williams EA. Optimizing nutrition in older people. Maturitas 2018; 112:34-38. [PMID: 29704915 DOI: 10.1016/j.maturitas.2018.04.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 03/29/2018] [Accepted: 04/02/2018] [Indexed: 01/09/2023]
Abstract
Older adults are at increased risk of malnutrition, for a variety of physiological and psychological reasons. This has implications for health, quality of life, independence and economic circumstances. Improvements in nutrition are known to bring tangible benefits to older people and many age-related diseases and conditions can be prevented, modulated or ameliorated by good nutrition. However, practical and realistic approaches are required to optimize diet and food intake in older adults. One area where improvements can be made relates to appetite. Encouraging older adults to prepare meals can increase appetite and food intake, and providing opportunities for older adults to eat a wide variety of foods, in company, is a simple strategy to increase food intake. The protein requirement of older adults is subject to controversy and although considered the most satiating macronutrient, it appears that protein does not elicit as great a satiating effect in older adults as it does in younger individuals. This indicates that there is potential to increase protein intake without impacting on overall energy intake. Other areas where simple practical improvements can be made include both packaging of foods that are easy to prepare and the education of older adults on the safe storage and preparation of food. Research into improving the diets and nutritional status of older adults has indicated that many of the strategies can be easily and cost-effectively undertaken.
Collapse
Affiliation(s)
- Miriam E Clegg
- Oxford Brookes Centre for Nutrition and Health, Department of Sport, Health Sciences and Social Work, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, UK.
| | - Elizabeth A Williams
- Department of Oncology & Metabolism, Human Nutrition Unit, The University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| |
Collapse
|
35
|
Breit S, Kupferberg A, Rogler G, Hasler G. Vagus Nerve as Modulator of the Brain-Gut Axis in Psychiatric and Inflammatory Disorders. Front Psychiatry 2018; 9:44. [PMID: 29593576 PMCID: PMC5859128 DOI: 10.3389/fpsyt.2018.00044] [Citation(s) in RCA: 510] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 02/01/2018] [Indexed: 12/13/2022] Open
Abstract
The vagus nerve represents the main component of the parasympathetic nervous system, which oversees a vast array of crucial bodily functions, including control of mood, immune response, digestion, and heart rate. It establishes one of the connections between the brain and the gastrointestinal tract and sends information about the state of the inner organs to the brain via afferent fibers. In this review article, we discuss various functions of the vagus nerve which make it an attractive target in treating psychiatric and gastrointestinal disorders. There is preliminary evidence that vagus nerve stimulation is a promising add-on treatment for treatment-refractory depression, posttraumatic stress disorder, and inflammatory bowel disease. Treatments that target the vagus nerve increase the vagal tone and inhibit cytokine production. Both are important mechanism of resiliency. The stimulation of vagal afferent fibers in the gut influences monoaminergic brain systems in the brain stem that play crucial roles in major psychiatric conditions, such as mood and anxiety disorders. In line, there is preliminary evidence for gut bacteria to have beneficial effect on mood and anxiety, partly by affecting the activity of the vagus nerve. Since, the vagal tone is correlated with capacity to regulate stress responses and can be influenced by breathing, its increase through meditation and yoga likely contribute to resilience and the mitigation of mood and anxiety symptoms.
Collapse
Affiliation(s)
- Sigrid Breit
- Division of Molecular Psychiatry, Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Aleksandra Kupferberg
- Division of Molecular Psychiatry, Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Gregor Hasler
- Division of Molecular Psychiatry, Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| |
Collapse
|
36
|
Giezenaar C, Hutchison AT, Luscombe-Marsh ND, Chapman I, Horowitz M, Soenen S. Effect of Age on Blood Glucose and Plasma Insulin, Glucagon, Ghrelin, CCK, GIP, and GLP-1 Responses to Whey Protein Ingestion. Nutrients 2017; 10:nu10010002. [PMID: 29267221 PMCID: PMC5793230 DOI: 10.3390/nu10010002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/11/2017] [Accepted: 12/19/2017] [Indexed: 02/07/2023] Open
Abstract
Protein-rich supplements are used widely to prevent and manage undernutrition in older people. We have previously shown that healthy older, compared to younger, adults have less suppression of energy intake by whey protein-although the effects of age on appetite-related gut hormones are largely unknown. The aim of this study was to determine and compare the acute effects of whey protein loads on blood glucose and plasma gut hormone concentrations in older and younger adults. Sixteen healthy older (eight men, eight women; mean ± SEM: age: 72 ± 1 years; body mass index: 25 ± 1 kg/m²) and 16 younger (eight men, eight women; 24 ± 1 years; 23 ± 0.4 kg/m²) adults were studied on three occasions in which they ingested 30 g (120 kcal) or 70 g (280 kcal) whey protein, or a flavored-water control drink (~2 kcal). At regular intervals over 180 min, blood glucose and plasma insulin, glucagon, ghrelin, cholecystokinin (CCK), gastric inhibitory peptide (GIP), and glucagon-like peptide-1 (GLP-1) concentrations were measured. Plasma ghrelin was dose-dependently suppressed and insulin, glucagon, CCK, GIP, and GLP-1 concentrations were dose-dependently increased by the whey protein ingestion, while blood glucose concentrations were comparable during all study days. The stimulation of plasma CCK and GIP concentrations was greater in older than younger adults. In conclusion, orally ingested whey protein resulted in load-dependent gut hormone responses, which were greater for plasma CCK and GIP in older compared to younger adults.
Collapse
Affiliation(s)
- Caroline Giezenaar
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, 5000 Adelaide, Australia.
| | - Amy T Hutchison
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, 5000 Adelaide, Australia.
| | - Natalie D Luscombe-Marsh
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, 5000 Adelaide, Australia.
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Food and Nutrition, 5000 Adelaide, Australia.
| | - Ian Chapman
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, 5000 Adelaide, Australia.
| | - Michael Horowitz
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, 5000 Adelaide, Australia.
| | - Stijn Soenen
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, 5000 Adelaide, Australia.
| |
Collapse
|
37
|
Morley JE. Anorexia of ageing: a key component in the pathogenesis of both sarcopenia and cachexia. J Cachexia Sarcopenia Muscle 2017; 8:523-526. [PMID: 28452130 PMCID: PMC5566640 DOI: 10.1002/jcsm.12192] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 01/16/2017] [Accepted: 01/21/2017] [Indexed: 01/22/2023] Open
Abstract
The anorexia of aging was first recognized as a physiological syndrome 30 years ago. Its major causes are an alteration in fundal compliance with an increase in antral stretch and enhanced cholecystokinin activity leading to increased satiation.This anorexia leads to weight loss in aging persons and is one of the component causes of the aging related sarcopenia. This physiological anorexia also increases the risk of more severe anorexia when an older person has an increase in inflammatory cytokines such as occurs when they have an illness. This results in an increase in the anorexia due to cachexia in older persons.
Collapse
Affiliation(s)
- John E Morley
- Division of Geriatric Medicine, Saint Louis University School of Medicine, 1402 S. Grand Blvd., M238, St. Louis, MO, 63104, USA
| |
Collapse
|
38
|
Shaddinger BC, Young MA, Billiard J, Collins DA, Hussaini A, Nino A. Effect of Albiglutide on Cholecystokinin-Induced Gallbladder Emptying in Healthy Individuals: A Randomized Crossover Study. J Clin Pharmacol 2017; 57:1322-1329. [DOI: 10.1002/jcph.940] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/14/2017] [Indexed: 11/08/2022]
|
39
|
Yehuda S, Rabinovitz S. The Role of Essential Fatty Acids in Anorexia Nervosa and Obesity. Crit Rev Food Sci Nutr 2017; 56:2021-35. [PMID: 26068122 DOI: 10.1080/10408398.2013.809690] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The two basic questions in food intake study are what we eat, and how much do we eat. Most research is directed toward the control of how much is eaten. This is likely the result of the increased number of individuals with eating disorders in the Western world. Feeding behavior is highly complex, and is controlled by many psychological, physiological, biochemical, and immunological factors. The aim of this review is to clarify the involvement of fatty acids in eating disorders such as anorexia and binge eating disorder. The review will describe the modified fatty acid profile observed in individuals with anorexia or binge eating disorder, and discuss on what factors fatty acids can exert beneficial effects. In addition, the differences and similarities between anorexia and binge eating disorder will be discussed. We suggest that beneficial effects of essential fatty acids on both anorexia and binge eating disorder can be explained by the stabilizing effect of those fatty acids on the neuronal membrane fluidity index.
Collapse
Affiliation(s)
- Shlomo Yehuda
- a Psychopharmacology Lab , Department of Psychology, Bar Ilan University , Ramat Gan , Israel
| | - Sharon Rabinovitz
- a Psychopharmacology Lab , Department of Psychology, Bar Ilan University , Ramat Gan , Israel.,b School of Criminology, University of Haifa , Mount Carmel , Israel
| |
Collapse
|
40
|
Adipocytes promote prostate cancer stem cell self-renewal through amplification of the cholecystokinin autocrine loop. Oncotarget 2016; 7:4939-48. [PMID: 26700819 PMCID: PMC4826255 DOI: 10.18632/oncotarget.6643] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 11/27/2015] [Indexed: 12/18/2022] Open
Abstract
Obesity has long been linked with prostate cancer progression, although the underlying mechanism is still largely unknown. Here, we report that adipocytes promote the enrichment of prostate cancer stem cells (CSCs) through a vicious cycle of autocrine amplification. In the presence of adipocytes, prostate cancer cells actively secrete the peptide hormone cholecystokinin (CCK), which not only stimulates prostate CSC self-renewal, but also induces cathepsin B (CTSB) production of the adipocytes. In return, CTSB facilitates further CCK secretion by the cancer cells. More importantly, inactivation of CCK receptor not only suppresses CTSB secretion by the adipocytes, but also synergizes the inhibitory effect of CTSB inhibitor on adipocyte-promoted prostate CSC self-renewal. In summary, we have uncovered a novel mechanism underlying the mutual interplay between adipocytes and prostate CSCs, which may help explaining the role of adipocytes in prostate cancer progression and provide opportunities for effective intervention.
Collapse
|
41
|
Chinese herbal formula for postprandial distress syndrome: Study protocol of a double-blinded, randomized, placebo-controlled trial. Eur J Integr Med 2016. [DOI: 10.1016/j.eujim.2016.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
42
|
Roy M, Gaudreau P, Payette H. A scoping review of anorexia of aging correlates and their relevance to population health interventions. Appetite 2016; 105:688-99. [DOI: 10.1016/j.appet.2016.06.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 12/21/2022]
|
43
|
Giezenaar C, Chapman I, Luscombe-Marsh N, Feinle-Bisset C, Horowitz M, Soenen S. Ageing Is Associated with Decreases in Appetite and Energy Intake--A Meta-Analysis in Healthy Adults. Nutrients 2016; 8:nu8010028. [PMID: 26751475 PMCID: PMC4728642 DOI: 10.3390/nu8010028] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/07/2015] [Accepted: 12/22/2015] [Indexed: 02/07/2023] Open
Abstract
It is not well recognized that in the elderly weight loss is more common than weight gain. The aim of this analysis was to determine the effect of ageing on appetite (hunger/fullness) and energy intake, after overnight fasting and in a postprandial state, by meta-analyses of trials that included at least two age groups (>18 years). We hypothesized that appetite and energy intake would be less in healthy older compared with younger adults. Following a PubMed-database systematic search up to 30 June 2015, 59 studies were included in the random-effects-model meta-analyses. Energy intake was 16%-20% lower in older (n = 3574/~70 years/~71 kg/~25 kg/m²) than younger (n = 4111/~26 years/~69 kg/~23 kg/m²) adults (standardized mean difference: -0.77 (95% confidence interval -0.90 to -0.64)). Hunger was 25% (after overnight fasting; weighted mean difference (WMD): -17 (-22 to -13) mm) to 39% (in a postprandial state; WMD: -14 (-19 to -9) mm) lower, and fullness 37% (after overnight fasting; WMD: 6 mm (95% CI: 1 to 11 mm)) greater in older than younger adults. In conclusion, appetite and energy intake are less in healthy older than younger adults, suggesting that ageing per se affects food intake.
Collapse
Affiliation(s)
- Caroline Giezenaar
- Discipline of Medicine, National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, the University of Adelaide, 5000 Adelaide, Australia.
| | - Ian Chapman
- Discipline of Medicine, National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, the University of Adelaide, 5000 Adelaide, Australia.
| | - Natalie Luscombe-Marsh
- Discipline of Medicine, National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, the University of Adelaide, 5000 Adelaide, Australia.
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Food and Nutrition, 5000 Adelaide, Australia.
| | - Christine Feinle-Bisset
- Discipline of Medicine, National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, the University of Adelaide, 5000 Adelaide, Australia.
| | - Michael Horowitz
- Discipline of Medicine, National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, the University of Adelaide, 5000 Adelaide, Australia.
| | - Stijn Soenen
- Discipline of Medicine, National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, the University of Adelaide, 5000 Adelaide, Australia.
| |
Collapse
|
44
|
Hutchison AT, Piscitelli D, Horowitz M, Jones KL, Clifton PM, Standfield S, Hausken T, Feinle-Bisset C, Luscombe-Marsh ND. Acute load-dependent effects of oral whey protein on gastric emptying, gut hormone release, glycemia, appetite, and energy intake in healthy men. Am J Clin Nutr 2015; 102:1574-84. [PMID: 26537944 DOI: 10.3945/ajcn.115.117556] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/16/2015] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND In healthy individuals, intraduodenal whey protein load-dependently modulates gastrointestinal motor and hormonal functions and suppresses energy intake. The effect of oral whey, particularly the impact of load, has not been evaluated. OBJECTIVE The purpose of this study was to quantify gastric emptying of 30 and 70 g of oral whey protein loads and their relation to gastrointestinal hormone, glycemic, and appetitive responses. DESIGN On 3 separate occasions in a randomized, double-blind order, 18 lean men [mean ± SEM age: 24.8 ± 1.4 y; body mass index (in kg/m(2)): 21.6 ± 0.5] received iso-osmolar, equally palatable drinks (∼450 mL) containing 30 g pure whey protein isolate (L), 70 g pure whey protein isolate (H), or saline (control). Gastric emptying (with the use of 3-dimensional ultrasound), plasma cholecystokinin, glucagon-like peptide 1, glucose-dependent insulinotropic peptide, insulin, glucagon, total amino acids, and blood glucose were measured for 180 min after consumption of the drinks, and energy intake at a buffet-style lunch was quantified. RESULTS Gastric emptying of the L and H drinks was comparable when expressed in kilocalories per minute (L: 2.6 ± 0.2 kcal/min; H: 2.9 ± 0.3 kcal/min) and related between individuals (r = 0.54, P < 0.01). Gastrointestinal hormone, insulin, and glucagon responses to the L and H drinks were comparable until ∼45-60 min after ingestion, after which time the responses became more differentiated. Blood glucose was modestly reduced after the H drink between t = 45 and 150 min when compared with the L drink (all P < 0.05). Energy intake was suppressed by both L and H drinks compared with control (P < 0.05) (control: 1174 ± 91 kcal; L: 1027 ± 81 kcal; and H: 997 ± 71 kcal). CONCLUSION These findings indicate that, in healthy lean men, the rate of gastric emptying of whey protein is independent of load and determines the initial gastrointestinal hormone response. This study was registered at www.anzctr.org.au as 12611000706976.
Collapse
Affiliation(s)
- Amy T Hutchison
- University of Adelaide Discipline of Medicine, Royal Adelaide Hospital, Adelaide, Australia; National Health and Medical Research Council Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Diana Piscitelli
- University of Adelaide Discipline of Medicine, Royal Adelaide Hospital, Adelaide, Australia; School of Health Sciences and
| | - Michael Horowitz
- University of Adelaide Discipline of Medicine, Royal Adelaide Hospital, Adelaide, Australia; National Health and Medical Research Council Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Karen L Jones
- University of Adelaide Discipline of Medicine, Royal Adelaide Hospital, Adelaide, Australia; National Health and Medical Research Council Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Peter M Clifton
- University of Adelaide Discipline of Medicine, Royal Adelaide Hospital, Adelaide, Australia; National Health and Medical Research Council Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia; School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Scott Standfield
- University of Adelaide Discipline of Medicine, Royal Adelaide Hospital, Adelaide, Australia; National Health and Medical Research Council Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Trygve Hausken
- Institute of Medicine, University of Bergen, and National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital, Bergen, Norway; and
| | - Christine Feinle-Bisset
- University of Adelaide Discipline of Medicine, Royal Adelaide Hospital, Adelaide, Australia; National Health and Medical Research Council Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Natalie D Luscombe-Marsh
- University of Adelaide Discipline of Medicine, Royal Adelaide Hospital, Adelaide, Australia; National Health and Medical Research Council Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia; Food and Nutrition Flagship, Commonwealth Science and Industrial Research Organization, Adelaide, Australia
| |
Collapse
|
45
|
Hutchison AT, Feinle-Bisset C, Fitzgerald PCE, Standfield S, Horowitz M, Clifton PM, Luscombe-Marsh ND. Comparative effects of intraduodenal whey protein hydrolysate on antropyloroduodenal motility, gut hormones, glycemia, appetite, and energy intake in lean and obese men. Am J Clin Nutr 2015; 102:1323-31. [PMID: 26561615 DOI: 10.3945/ajcn.115.114538] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 09/16/2015] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND In lean individuals, intraduodenal protein and lipid modulate gastrointestinal motor and hormone functions and reduce energy intake in a load-dependent manner; protein also stimulates insulin, with modest effects on reducing blood glucose. The effect of intraduodenal lipid on gastrointestinal motor and hormone responses is diminished in obesity; whether the effects of protein are also attenuated remains unclear. OBJECTIVES The objectives of this study were to characterize the load-dependent effects of intraduodenal whey protein hydrolysate on antropyloroduodenal pressures, gut hormones, glycemia, appetite, and energy intake in obese subjects and to compare the responses to the higher protein load with those in lean subjects. DESIGN We measured antropyloroduodenal pressures, plasma cholecystokinin (CCK), glucagon-like peptide 1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), glucagon, insulin, blood glucose, appetite, and energy intake in 12 nondiabetic obese men on 3 separate occasions, in a double-blind, randomized order, during 60-min intraduodenal infusions of hydrolyzed whey protein at either 0 (saline control), 1.5, or 3 kcal/min. Twelve age-matched lean individuals received a 3-kcal/min infusion only. Immediately after the infusions, energy intake from a buffet lunch was quantified. RESULTS In obese subjects, protein suppressed antral and duodenal pressures; stimulated plasma CCK, GLP-1, GIP, insulin, and glucagon (all r > 0.57, P < 0.01); and tended to reduce energy intake (r = -10.38, P = 0.057) in a dose-dependent manner. In response to the 3-kcal/min protein load, antropyloroduodenal pressures, CCK, GLP-1, and glucagon did not differ between lean and obese subjects. Insulin release was greater, and GIP release less, in obese than in lean subjects (both P < 0.05), whereas the reduction in glucose was comparable. Energy intake tended to be higher in obese subjects (P = 0.08). CONCLUSIONS The gastrointestinal effects of hydrolyzed whey protein remain relatively intact in obesity; however, the observed changes in insulin and GIP suggest early disturbances in the insulin-incretin axis. This study was registered at www.anzctr.org.au as ACTRN 12612000203853.
Collapse
Affiliation(s)
- Amy T Hutchison
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Christine Feinle-Bisset
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Penelope C E Fitzgerald
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Scott Standfield
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Michael Horowitz
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Peter M Clifton
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia; School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia; and
| | - Natalie D Luscombe-Marsh
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia; Commonwealth Scientific and Industrial Research Organization, Animal, Food and Health Sciences, Adelaide, Australia
| |
Collapse
|
46
|
Ezeoke CC, Morley JE. Pathophysiology of anorexia in the cancer cachexia syndrome. J Cachexia Sarcopenia Muscle 2015; 6:287-302. [PMID: 26675762 PMCID: PMC4670736 DOI: 10.1002/jcsm.12059] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/11/2015] [Accepted: 06/22/2015] [Indexed: 12/20/2022] Open
Abstract
Anorexia is commonly present in persons with cancer and a major component of cancer cachexia. There are multiple causes of anorexia in cancer. Peripherally, these can be due to (i) substances released from or by the tumour, e.g. pro-inflammatory cytokines, lactate, and parathormone-related peptide; (ii) tumours causing dysphagia or altering gut function; (iii) tumours altering nutrients, e.g. zinc deficiency; (iv) tumours causing hypoxia; (v) increased peripheral tryptophan leading to increased central serotonin; or (vi) alterations of release of peripheral hormones that alter feeding, e.g. peptide tyrosine tyrosine and ghrelin. Central effects include depression and pain, decreasing the desire to eat. Within the central nervous system, tumours create multiple alterations in neurotransmitters, neuropeptides, and prostaglandins that modulate feeding. Many of these neurotransmitters appear to produce their anorectic effects through the adenosine monophosphate kinase/methylmalonyl coenzyme A/fatty acid system in the hypothalamus. Dynamin is a guanosine triphosphatase that is responsible for internalization of melanocortin 4 receptors and prostaglandin receptors. Dynamin is up-regulated in a mouse model of cancer anorexia. A number of drugs, e.g. megestrol acetate, cannabinoids, and ghrelin agonists, have been shown to have some ability to be orexigenic in cancer patients.
Collapse
Affiliation(s)
- Chukwuemeka Charles Ezeoke
- United States Navy Medical Corps and PGY-2, Internal Medicine Residency, Saint Louis University HospitalSt. Louis, MO, USA
| | - John E Morley
- Division of Geriatrics, Saint Louis University School of Medicine1402 S. Grand Blvd., M238, St. Louis, MO, 63104, USA
- Division of Endocrinology, Saint Louis University School of MedicineSt. Louis, MO, USA
| |
Collapse
|
47
|
Bailly N, Maître I, Wymelbeke VV. Relationships between nutritional status, depression and pleasure of eating in aging men and women. Arch Gerontol Geriatr 2015; 61:330-6. [DOI: 10.1016/j.archger.2015.08.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 08/23/2015] [Accepted: 08/24/2015] [Indexed: 11/29/2022]
|
48
|
Morley JE. Peptides and aging: Their role in anorexia and memory. Peptides 2015; 72:112-8. [PMID: 25895851 DOI: 10.1016/j.peptides.2015.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/03/2015] [Accepted: 04/04/2015] [Indexed: 12/16/2022]
Abstract
The rapid aging of the world's population has led to a need to increase our understanding of the pathophysiology of the factors leading to frailty and cognitive decline. Peptides have been shown to be involved in the pathophysiology of frailty and cognitive decline. Weight loss is a major component of frailty. In this review, we demonstrate a central role for both peripheral peptides (e.g., cholecystokinin and ghrelin) and neuropeptides (e.g., dynorphin and alpha-MSH) in the pathophysiology of the anorexia of aging. Similarly, peripheral peptides (e.g., ghrelin, glucagon-like peptide 1, and cholecystokinin) are modulators of memory. A number of centrally acting neuropeptides have also been shown to modulate cognitive processes. Amyloid-beta peptide in physiological levels is a memory enhancer, while in high (pathological) levels, it plays a key role in the development of Alzheimer's disease.
Collapse
Affiliation(s)
- John E Morley
- Divisions of Geriatric Medicine and Endocrinology, Saint Louis University School of Medicine, St Louis, MO, United States.
| |
Collapse
|
49
|
Abstract
Aging is characterized by a diminished homeostatic regulation of physiologic functions, including slowing of gastric emptying. Gastric and small intestinal motor and humoral mechanisms in humans are complex and highly variable: ingested food is stored, mixed with digestive enzymes, ground into small particles, and delivered as a liquefied form into the duodenum at a rate allowing efficient digestion and absorption. In healthy aging, motor function is well preserved whereas deficits in sensory function are more apparent. The effects of aging on gastric emptying are relevant to the absorption of oral medications and the regulation of appetite, postprandial glycemia, and blood pressure.
Collapse
Affiliation(s)
- Stijn Soenen
- Discipline of Medicine, National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Royal Adelaide Hospital, The University of Adelaide, Frome Road, Adelaide, South Australia 5000, Australia.
| | - Chris K Rayner
- Discipline of Medicine, National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Royal Adelaide Hospital, The University of Adelaide, Frome Road, Adelaide, South Australia 5000, Australia
| | - Michael Horowitz
- Discipline of Medicine, National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Royal Adelaide Hospital, The University of Adelaide, Frome Road, Adelaide, South Australia 5000, Australia
| | - Karen L Jones
- Discipline of Medicine, National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Royal Adelaide Hospital, The University of Adelaide, Frome Road, Adelaide, South Australia 5000, Australia
| |
Collapse
|
50
|
Abstract
The anorexia of aging is common, leading to adverse health consequences. As populations age, the impacts from anorexia in the older population are set to increase. Only greater awareness will allow for prevention or early intervention. This article discusses the physiologic anorexia of aging, highlights contributing factors, and proposes management strategies, including screening, especially in primary care. Many neuroendocrine factors have been implicated in the pathophysiology; it is clear that further human research is necessary if there is to be a pharmacologic breakthrough. There are currently no approved pharmacologic treatment strategies to prevent or treat the anorexia of aging.
Collapse
Affiliation(s)
- Renuka Visvanathan
- Aged & Extended Care Services, Level 8B, The Queen Elizabeth Hospital, Woodville Road, Woodville South, Adelaide, SA 5011, Australia.
| |
Collapse
|