1
|
Akaeda S, Aikawa S, Hirota Y. Spatial and molecular anatomy of the endometrium during embryo implantation: a current overview of key regulators of blastocyst invasion. FEBS J 2024; 291:4206-4221. [PMID: 38348632 DOI: 10.1111/febs.17077] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/09/2024] [Accepted: 01/23/2024] [Indexed: 10/04/2024]
Abstract
Embryo implantation is composed of three steps: blastocyst apposition, adhesion/attachment and invasion. Blastocyst invasion has been studied less extensively than the other two events. Historically, studies conducted using electron microscopy have shown the removal of epithelial cells in the vicinity of the attached blastocysts in rodents, although the underlying mechanisms have remained unclear. Here, we describe recent studies using mice with uterine-specific gene deletion that demonstrated important roles for nuclear proteins such as progesterone receptor, hypoxia inducible factor and retinoblastoma in the regulation of embryo invasion. In these mouse models, the detachment of the endometrial luminal epithelium, decidualization in the stroma, and the activation of trophoblasts have been found to be important in ensuring embryo invasion. This review summarizes the molecular signaling associated with these cellular events, mainly evidenced by mouse models.
Collapse
Affiliation(s)
- Shun Akaeda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Shizu Aikawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Yasushi Hirota
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Japan
| |
Collapse
|
2
|
Li P, Xiao C, Lv Z, Cui H, Gao X. Study on the Effect of the Vaginal Administration of Conjugated Estrogens Cream Combined with Progesterone on the Endometrium of Rats and Its Mechanism of Action. Biomedicines 2024; 12:2074. [PMID: 39335586 PMCID: PMC11429103 DOI: 10.3390/biomedicines12092074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
The purpose of this study was to investigate the impact of conjugated estrogen cream, in conjunction with progesterone, on the endometrium, following vaginal administration, and assess the combined dose-effect relationship with progesterone. Initially, bilateral ovaries from mature, female, Sprague Dawley rats were excised to establish a hypoestrogenic (perimenopausal) model. A conjugated estrogen-progesterone combination cream was administered vaginally for a duration of 12 days. Subsequently, this study used pathological sections, Enzyme-Linked Immunosorbent Assay (ELISA) for pharmacodynamic studies, network pharmacology to explore possible signalling pathways associated with the drug and menopausal syndrome, and partial validation using a real-time quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry (ICH). The results demonstrate that, relative to the model group, the conjugated estrogen monotherapy significantly increased the uterine weight coefficients (p < 0.0001) and endometrial thickness (p < 0.001) and upregulated the expression of Cyclin D1 and VEGF. Moreover, this treatment downregulated PTEN expression. The co-administration of progesterone reversed these effects in a dose-dependent manner. Overall, the vaginal administration of a combination of progesterone and conjugated estrogen cream demonstrated the ability to mitigate endometrial hyperplasia induced by conjugated estrogen vaginal cream monotherapy. Furthermore, the effect of progesterone exhibited a dose-dependent response.
Collapse
Affiliation(s)
- Panpan Li
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China; (P.L.); (C.X.); (Z.L.); (H.C.)
| | - Cenyu Xiao
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China; (P.L.); (C.X.); (Z.L.); (H.C.)
| | - Zhiyuan Lv
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China; (P.L.); (C.X.); (Z.L.); (H.C.)
| | - Haiyang Cui
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China; (P.L.); (C.X.); (Z.L.); (H.C.)
| | - Xiaoli Gao
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China; (P.L.); (C.X.); (Z.L.); (H.C.)
- Xinjiang Key Laboratory of Active Components and Drug Release Technology of Natural Drugs, Urumqi 830011, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi 830011, China
| |
Collapse
|
3
|
Dagher C, Manning-Geist B, Ellenson LH, Weigelt B, Rios-Doria E, Barry D, Abu-Rustum NR, Leitao MM, Mueller JJ. Molecular subtyping in endometrial cancer: A promising strategy to guide fertility preservation. Gynecol Oncol 2023; 179:180-187. [PMID: 37992549 PMCID: PMC10843754 DOI: 10.1016/j.ygyno.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023]
Abstract
OBJECTIVES To investigate the association of molecular subtype with progesterone response in patients with endometrial cancer (EC) or atypical endometrial hyperplasia (AEH). METHODS Premenopausal patients aged ≤48 years with tumor-normal sequencing data who received progesterone for EC/AEH from 1/1/2010-6/30/2021 were identified. Tumors were classified as POLE-ultramutated, microsatellite instability-high (MSI-H), copy number-high (CN-H), or copy number-low (CN-L) molecular subtype. Best response to progesterone was compared by subtype. Appropriate statistical tests were performed. RESULTS Of 20 patients, 7 (35%) had AEH and 13 (65%) had EC. Sixteen tumors (80%) were CN-L, 3 (15%) were MSI-H, and 1 (5%) was POLE-ultramutated. Median time on progesterone was 22 months (range, 3-115). Ten patients (50%) had complete response (CR); median time to CR was 9 months (range, 3-32). Four patients (20%) had stable disease (SD) and 6 (30%) had progressive disease (PD). For CN-L tumors, 10 patients (62%) had CR, 3 (19%) had SD, and 3 (19%) had PD. For MSI-H tumors, 1 patient (33%) had SD and 2 (66%) had PD. For POLE-ultramutated tumors, 1 patient had PD. Median follow-up was 48 months (range, 12-123). Four of 10 patients (40%) with CR recurred; median time from CR to recurrence was 16 months (range, 5-102). CONCLUSION Molecular subtype may be associated with progesterone response in patients with EC/AEH. CN-L tumors had the best response, and MSI-H tumors had the poorest. Recurrence after CR is common, and close surveillance is warranted. Larger studies investigating the role of molecular classification in medical management of EC/AEH are needed.
Collapse
Affiliation(s)
- Christian Dagher
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Beryl Manning-Geist
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lora H Ellenson
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Britta Weigelt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eric Rios-Doria
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Obstetrics and Gynecology, University of Washington School of Medicine, Seattle, WA, USA
| | - Danika Barry
- Department of Obstetrics and Gynecology, Northwestern University School of Medicine, Chicago, IL, USA
| | - Nadeem R Abu-Rustum
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, USA
| | - Mario M Leitao
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, USA
| | - Jennifer J Mueller
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
4
|
Das M, Mohanty SR, Minocha T, Mishra NK, Yadav SK, Haldar C. Circadian desynchronization in pregnancy of Golden hamster following long time light exposure: Involvement of Akt/FoxO1 pathway. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112508. [PMID: 35841738 DOI: 10.1016/j.jphotobiol.2022.112508] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/18/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Coordination between central and peripheral reproductive clocks in females is poorly understood. Long light is having a hazardous effect on reproductive health. Hence, explored the effect of long-time light exposure (LLD; 16L:8D) on the central and peripheral reproductive (ovary and uterus) clock genes (Bmal1, Clock, Per1, Per2, Cry1 and Cry2) and its downstream regulators (Aanat, Egf, Cx26, Cx43, ERα, pAktS-473, pAktT-308, pFoxO1T-24, 14-3-3, HoxA10, HoxA11 and Pibf) expression in non-pregnant and pregnant Golden hamster. Young adult Golden hamsters were exposed to LLD for 30 days and then were mated. We observed that LLD exposure increased the thickness of the endometrium and reduced myometrium thickness, resembling uterine adenomyosis. In non-pregnant females LLD altered the expressions of clock genes in suprachiasmatic nuclei (SCN), ovary and the uterus along with serum estradiol rhythm. LLD upregulated Egf and downregulated Aanat, Cx26, and Cx43 mRNA levels in uterus. LLD upregulated Akt/FoxO1 phosphorylation and 14-3-3 expressions in the uterus of nonpregnant females. LLD exposure to pregnant females lowered serum progesterone, Aanat, Pibf, Hoxa10, and Hoxa11 mRNA expressions on D4 (peri-implantation) and D8 (post-implantation) resulting in a low implantation rate on D8 (post-implantation). Hence it is evident that the frequent pregnancy anomalies noted under a long light schedule might be due to desynchronization in Aanat, Pibf, Hoxa10, and Hoxa11 as well as the central and peripheral clock genes (Bmal1, Clock, Per1, Per2, Cry1 and Cry2). LLD exposure desynchronized the central and peripheral reproductive clock affecting uterine physiology via Akt/FoxO1 pathway in Golden hamsters. Thus, LLD is a risk factor for female reproductive health and fertility.
Collapse
Affiliation(s)
- Megha Das
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Soumya Ranjan Mohanty
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Tarun Minocha
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Nitesh Kumar Mishra
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Sanjeev Kumar Yadav
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Chandana Haldar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
5
|
Sirohi VK, Medrano TI, Mesa AM, Kannan A, Bagchi IC, Cooke PS. Regulation of AKT Signaling in Mouse Uterus. Endocrinology 2022; 163:bqab233. [PMID: 34791100 PMCID: PMC8667855 DOI: 10.1210/endocr/bqab233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Indexed: 01/02/2023]
Abstract
17β-estradiol (E2) treatment of ovariectomized adult mice stimulates the uterine PI3K-AKT signaling pathway and epithelial proliferation through estrogen receptor 1 (ESR1). However, epithelial proliferation occurs independently of E2/ESR1 signaling in neonatal uteri. Similarly, estrogen-independent uterine epithelial proliferation is seen in adulthood in mice lacking Ezh2, critical for histone methylation, and in wild-type (WT) mice treated neonatally with estrogen. The role of AKT in estrogen-independent uterine epithelial proliferation was the focus of this study. Expression of the catalytically active phosphorylated form of AKT (p-AKT) and epithelial proliferation were high in estrogen receptor 1 knockout and WT mice at postnatal day 6, when E2 concentrations were low, indicating that neither ESR1 nor E2 are essential for p-AKT expression and epithelial proliferation in these mice. However, p-AKT levels and proliferation remained estrogen responsive in preweaning WT mice. Expression of p-AKT and proliferation were both high in uterine luminal epithelium of mice estrogenized neonatally and ovariectomized during adulthood. Increased expression of phosphorylated (inactive) EZH2 was also observed. Consistent with this, Ezh2 conditional knockout mice show ovary-independent uterine epithelial proliferation and high epithelial p-AKT. Thus, adult p-AKT expression is constitutive and E2/ESR1 independent in both model systems. Finally, E2-induced p-AKT expression and normal uterine proliferation did not occur in mice lacking membrane (m)ESR1, indicating a key role for membrane ESR1 in AKT activation. These findings emphasize the importance of AKT activation in promoting uterine epithelial proliferation even when that proliferation is not E2/ESR1 dependent and further indicate that p-AKT can be uncoupled from E2/ESR1 signaling in several experimental scenarios.
Collapse
Affiliation(s)
- Vijay K Sirohi
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Theresa I Medrano
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Ana M Mesa
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Athilakshmi Kannan
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Indrani C Bagchi
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Paul S Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| |
Collapse
|
6
|
Wang X, Zhang Y, Li Y, Tang M, Deng Q, Mao J, Du L. Estrogen Regulates Glucose Metabolism in Cattle Neutrophils Through Autophagy. Front Vet Sci 2021; 8:773514. [PMID: 34912878 PMCID: PMC8666889 DOI: 10.3389/fvets.2021.773514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022] Open
Abstract
Hypoglycemia resulting from a negative energy balance (NEB) in periparturient cattle is the major reason for a reduced glycogen content in polymorphonuclear neutrophils (PMNs). The lack of glycogen induces PMNs dysfunction and is responsible for the high incidence of perinatal diseases. The perinatal period is accompanied by dramatic changes in sex hormones levels of which estrogen (17β-estradiol, E2) has been shown to be closely associated with PMNs function. However, the precise regulatory mechanism of E2 on glucose metabolism in cattle PMNs has not been elucidated. Cattle PMNs were cultured in RPMI 1640 with 2.5 (LG), 5.5 (NG) and 25 (HG) mM glucose and E2 at 20 (EL), 200 (EM) and 450 (EH) pg/mL. We found that E2 maintained PMNs viability in different glucose conditions, and promoted glycogen synthesis by inhibiting PFK1, G6PDH and GSK-3β activity in LG while enhancing PFK1 and G6PDH activity and inhibiting GSK-3β activity in HG. E2 increased the ATP content in LG but decreased it in HG. This indicated that the E2-induced increase/decrease of ATP content may be independent of glycolysis and the pentose phosphate pathway (PPP). Further analysis showed that E2 promoted the activity of hexokinase (HK) and GLUT1, GLUT4 and SGLT1 expression in LG, while inhibiting GLUT1, GLUT4 and SGLT1 expression in HG. Finally, we found that E2 increased LC3, ATG5 and Beclin1 expression, inhibited p62 expression, promoting AMPK-dependent autophagy in LG, but with the opposite effect in HG. Moreover, E2 increased the Bcl-2/Bax ratio and decreased the apoptosis rate of PMNs in LG but had the opposite effect in HG. These results showed that E2 could promote AMPK-dependent autophagy and inhibit apoptosis in response to glucose-deficient environments. This study elucidated the detailed mechanism by which E2 promotes glycogen storage through enhancing glucose uptake and retarding glycolysis and the PPP in LG. Autophagy is essential for providing ATP to maintain the survival and immune potential of PMNs. These results provided significant evidence for further understanding the effects of E2 on PMNs immune potential during the hypoglycemia accompanying perinatal NEB in cattle.
Collapse
Affiliation(s)
- Xinbo Wang
- Clinical Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao, China
| | - Yuming Zhang
- Clinical Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao, China
| | - Yansong Li
- Clinical Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao, China
| | - Mingyu Tang
- Clinical Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao, China
| | - Qinghua Deng
- Clinical Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao, China
| | - Jingdong Mao
- Clinical Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao, China
| | - Liyin Du
- Clinical Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao, China
| |
Collapse
|
7
|
McAvey B, Kuokkanen S, Zhu L, Pollard JW. The selective progesterone receptor modulator, telapristone acetate, is a mixed antagonist/agonist in the human and mouse endometrium and inhibits pregnancy in mice. F&S SCIENCE 2021; 2:59-70. [PMID: 35559765 DOI: 10.1016/j.xfss.2021.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 12/30/2020] [Accepted: 01/08/2021] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To investigate the effect of the selective progesterone receptor modulator, telapristone acetate (CDB-4124), on endometrial biology and reproductive outcomes. Ovariectomized and hormone-treated CD1 female mice, CD1 female mice with xenotransplants of reconstructed human endometrial tissue, mated wildtype female mice, and cultured human endometrial stromal cells (hESCs) were treated with CDB-4124, followed by the assessment of endometrial cell deoxyribonucleic acid (DNA) proliferation, stromal decidual response, and embryo implantation. DESIGN Experimental study. SETTING Academic research laboratory. PATIENTS Healthy volunteer women from the community were recruited for endometrial biopsies. ANIMALS CD1 out-bred mice (Charles River Laboratories) and nude mice, NU/J (Jackson Laboratories, Bar Harbor, ME). INTERVENTION Treatment of mice and hESCs with CDB-4124. MAIN OUTCOME MEASURE The effect of CDB-4124 on endometrial cell morphology and DNA synthesis, decidual response, and mouse embryo implantation. RESULTS CDB-4124 inhibited estradiol-induced epithelial DNA synthesis in the mouse uterus and xenotransplanted human endometrium. This antiproliferative effect was less than that of progesterone (P4) and was observed when CDB-4124 was administered alone or concomitantly with P4. In the uterine epithelium, CDB-4124 acted as a P4 agonist and partial antagonist. In contrast, CDB-4124 acted as a complete P4 antagonist in the uterine stroma, where it blocked P4's action to induce a decidual response in the pseudopregnant mouse uterus and wildtype mouse uterus after copulation. In mated female mice, CDB-4124 impaired embryo implantation. Similarly, CDB-4124 inhibited the morphological and biochemical transformations of hESCs to decidual cells in vitro. CONCLUSION CDB-4124 exerts mixed P4 antagonistic/agonistic effects in the human and mouse endometrium, which result in failed embryo implantation because of the absence of stromal decidualization.
Collapse
Affiliation(s)
- Beth McAvey
- Department of Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York; Ichan School of Medicine, RMA, New York
| | - Satu Kuokkanen
- Department of Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York; NYU Langone Reproductive Specialists of NY, NYU Langone School of Medicine, NYU Langone Long Island School of Medicine, Mineola, New York
| | - Liyin Zhu
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Jeffrey W Pollard
- Department of Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York; Medical Research Council Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburg, Edinburgh, United Kingdom.
| |
Collapse
|
8
|
Akaeda S, Hirota Y, Fukui Y, Aikawa S, Shimizu-Hirota R, Kaku T, Gebril M, Hirata T, Hiraoka T, Matsuo M, Haraguchi H, Saito-Kanatani M, Takeda N, Fujii T, Osuga Y. Retinoblastoma protein promotes uterine epithelial cell cycle arrest and necroptosis for embryo invasion. EMBO Rep 2021; 22:e50927. [PMID: 33399260 DOI: 10.15252/embr.202050927] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 11/18/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
Retinoblastoma protein (RB) encoded by Rb1 is a prominent inducer of cell cycle arrest (CCA). The hormone progesterone (P4 ) promotes CCA in the uterine epithelium and previous studies indicated that P4 activates RB by reducing the phosphorylated, inactive form of RB. Here, we show that embryo implantation is impaired in uterine-specific Rb1 knockout mice. We observe persistent cell proliferation of the Rb1-deficient uterine epithelium until embryo attachment, loss of epithelial necroptosis, and trophoblast phagocytosis, which correlates with subsequent embryo invasion failure, indicating that Rb1-induced CCA and necroptosis of uterine epithelium are involved in embryo invasion. Pre-implantation P4 supplementation is sufficient to restore these defects and embryo invasion. In Rb1-deficient uterine epithelial cells, TNFα-primed necroptosis is impaired, which is rescued by the treatment with a CCA inducer thymidine or P4 through the upregulation of TNF receptor type 2. TNFα is expressed in the luminal epithelium and the embryo at the embryo attachment site. These results provide evidence that uterine Rb1-induced CCA is involved in TNFα-primed epithelial necroptosis at the implantation site for successful embryo invasion.
Collapse
Affiliation(s)
- Shun Akaeda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasushi Hirota
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Frontier Outstanding Research for Clinical Empowerment (FORCE), Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| | - Yamato Fukui
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shizu Aikawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryoko Shimizu-Hirota
- Department of Internal Medicine, Center of Preventive Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Tetsuaki Kaku
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mona Gebril
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoyuki Hirata
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takehiro Hiraoka
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mitsunori Matsuo
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hirofumi Haraguchi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mayuko Saito-Kanatani
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Norihiko Takeda
- Center for Molecular Medicine, Jichi Medical University, Shimotuke, Tochigi, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Matsumoto T, Chino H, Akiya M, Hashimura M, Yokoi A, Tochimoto M, Nakagawa M, Jiang Z, Saegusa M. Requirements of LEFTY and Nodal overexpression for tumor cell survival under hypoxia in glioblastoma. Mol Carcinog 2020; 59:1409-1419. [PMID: 33111989 DOI: 10.1002/mc.23265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/07/2020] [Accepted: 10/13/2020] [Indexed: 01/06/2023]
Abstract
Glioblastomas (GBM) contain numerous hypoxic foci associated with a rare fraction of glioma stem cells (GSCs). Left-right determination factor (LEFTY) and Nodal, members of the transforming growth factor β (TGF-β) superfamily, have glycogen synthase kinase 3β (GSK-3β) phosphorylation motifs and are linked with stemness in human malignancies. Herein, we investigated the roles of LEFTY and Nodal in GBM hypoxic foci. In clinical samples, significantly higher expression of LEFTY, Nodal, phospho (p) GSK-3β, pSmad2, and Nestin, as well as higher apoptotic and lower proliferation rates, were observed in nonpseudopalisading (non-Ps) perinecrotic lesions as compared to Ps and non-necrotic tumor lesions, with a positive correlation between LEFTY, Nodal, pGSK-3β, or pSmad2 scores. In KS-1, a GBM cell line that lacks endogenous Nodal expression, treatment with the hypoxic mimetic CoCl2 increased LEFTY, pGSK-3β, and pSmad2 levels, but decreased pAkt levels. Moreover, the promoter for LEFTY, but not Nodal, was activated by Smad2 or TGF-β1, suggesting that overexpression of LEFTY and Nodal may be due to Akt-independent GSK-3β inactivation, with or without cooperation of the TGF-β1/Smad2 axis. LEFTY and Nodal overexpression increased proliferation rates and reduced susceptibility to CoCl2 -induced apoptosis, and increased the expression of epithelial-mesenchymal transition (EMT)/GSC-related markers. An increased ALDH1high population and more efficient spheroid formation was also observed in LEFTY-overexpressing cells. These findings suggest that LEFTY and Nodal may contribute to cell survival in non-Ps GBM perinecrotic lesions, leading to alterations in apoptosis, proliferation, or EMT/GCS features.
Collapse
Affiliation(s)
- Toshihide Matsumoto
- Department of Pathology, Kitasato University School of Medicine, Kanagawa, Japan
| | - Hiromi Chino
- Department of Pathology, Kitasato University School of Medicine, Kanagawa, Japan
| | - Masashi Akiya
- Department of Pathology, Kitasato University School of Medicine, Kanagawa, Japan
| | - Miki Hashimura
- Department of Pathology, Kitasato University School of Medicine, Kanagawa, Japan
| | - Ako Yokoi
- Department of Pathology, Kitasato University School of Medicine, Kanagawa, Japan
| | - Masataka Tochimoto
- Department of Pathology, Kitasato University School of Medicine, Kanagawa, Japan
| | - Mayu Nakagawa
- Department of Pathology, Kitasato University School of Medicine, Kanagawa, Japan
| | - Zesong Jiang
- Department of Pathology, Kitasato University School of Medicine, Kanagawa, Japan
| | - Makoto Saegusa
- Department of Pathology, Kitasato University School of Medicine, Kanagawa, Japan
| |
Collapse
|
10
|
Ersoy Canillioglu Y, Erkanli Senturk G. Alterations of IL-1 and VEGF After Ischemia-Reperfusion Injured Uterus and Ovary in Rats. Medeni Med J 2020; 35:106-115. [PMID: 32733759 PMCID: PMC7384508 DOI: 10.5222/mmj.2020.67026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/10/2020] [Indexed: 12/15/2022] Open
Abstract
Objective: Ischemia/reperfusion injury causes parenchymal and endothelial cell damage as a result of inflammation. Vascular endothelial growth factor (VEGF) expressed in every kind of tissue in human body has important roles in migration, proliferation, endothelial cell permeability, angiogenesis and vasculogenesis. IL-1 is a one of the cytokine family members, and plays important roles in hematopoiesis, inflammatory reactions and immune system regulation. Furthermore, auto-inflammatory diseases are treated by IL-1 as therapeutic agent. The aim of this study is to observe changes of VEGF and IL-1 immunreactivity in ischemia/reperfused rat uterus and ovary. Method: Rats were separated into two groups. Control group and ischemia/reperfusion group which rats were subjected to 45 min ischemia/45 min reperfusion. Samples from uterus and ovary were fixed with 10% neutral formaldehyde and stained with H&E. VEGF and IL-1 immunohistochemistry was applied. Results: Histopathological results showed severe degeneration of endometrium in uterus and ovarian follicles in ischemia/reperfusion group. VEGF and IL-1 immunoreactivity increased in uteruses and ovaries of ischemia/reperfusion group when compared to control group Conclusion In consequence, the present results suggest that VEGF and IL-1 may be potential detection marker for ischemia/reperfusion injured uterus and ovary. Moreover, VEGF and IL-1 might be in relation with each other to regenerate uterus and ovary.
Collapse
Affiliation(s)
| | - Gozde Erkanli Senturk
- Istanbul University-Cerrahpasa, Cerrahpaşa Medical Faculty, Department of Histology and Embryology, Istanbul, Turkey
| |
Collapse
|
11
|
Fonseca PAS, Suárez-Vega A, Cánovas A. Weighted Gene Correlation Network Meta-Analysis Reveals Functional Candidate Genes Associated with High- and Sub-Fertile Reproductive Performance in Beef Cattle. Genes (Basel) 2020; 11:genes11050543. [PMID: 32408659 PMCID: PMC7290847 DOI: 10.3390/genes11050543] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
Improved reproductive efficiency could lead to economic benefits for the beef industry, once the intensive selection pressure has led to a decreased fertility. However, several factors limit our understanding of fertility traits, including genetic differences between populations and statistical limitations. In the present study, the RNA-sequencing data from uterine samples of high-fertile (HF) and sub-fertile (SF) animals was integrated using co-expression network meta-analysis, weighted gene correlation network analysis, identification of upstream regulators, variant calling, and network topology approaches. Using this pipeline, top hub-genes harboring fixed variants (HF × SF) were identified in differentially co-expressed gene modules (DcoExp). The functional prioritization analysis identified the genes with highest potential to be key-regulators of the DcoExp modules between HF and SF animals. Consequently, 32 functional candidate genes (10 upstream regulators and 22 top hub-genes of DcoExp modules) were identified. These genes were associated with the regulation of relevant biological processes for fertility, such as embryonic development, germ cell proliferation, and ovarian hormone regulation. Additionally, 100 candidate variants (single nucleotide polymorphisms (SNPs) and insertions and deletions (INDELs)) were identified within those genes. In the long-term, the results obtained here may help to reduce the frequency of subfertility in beef herds, reducing the associated economic losses caused by this condition.
Collapse
Affiliation(s)
- Pablo A. S. Fonseca
- Correspondence: (P.A.S.F.); (A.C.); Tel.: +1-519-824-4120 (ext. 56295) (A.C.)
| | | | - Angela Cánovas
- Correspondence: (P.A.S.F.); (A.C.); Tel.: +1-519-824-4120 (ext. 56295) (A.C.)
| |
Collapse
|
12
|
The Expression of ERK1/2 in Female Yak ( Bos grunniens) Reproductive Organs. Animals (Basel) 2020; 10:ani10020334. [PMID: 32093255 PMCID: PMC7070411 DOI: 10.3390/ani10020334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/15/2020] [Accepted: 02/16/2020] [Indexed: 11/16/2022] Open
Abstract
The main reproductive organs undergo different histological appearances and physiological processes under different reproductive statuses. The variation of these organs depends on a delicate regulation of cell proliferation, differentiation, and apoptosis. Extracellular signal-regulated kinases1/2 (ERK1/2) are members of the mitogen-activated protein kinase (MAPK) super family. They have important roles in regulating various biological processes of different cells, tissues, and organ types. Activated ERK1/2 generally promotes cell survival, but under certain conditions, ERK1/2 also have the function of inducing apoptosis. It is widely believed that ERK1/2 play a significant role in regulating the reproductive processes of mammals. The goal of our research is to investigate the expression and distribution of ERK1/2 in the yak's main reproductive organs during different stages. In the present study, samples of the ovary, oviduct, and uterus of 15 adult female yak were collected and used in the experiment. The ERK1/2 proteins, localization, and quantitative expression of their mRNA were investigated using immunohistochemistry (IHC), western blot (WB) and relative quantitative real-time polymerase chain reaction (RT-PCR). The results indicated that ERK1/2 proteins and their mRNA were highly expressed in the ovary of the luteal phase and gestation period, in the oviduct of the luteal phase, and in the uterus of the luteal phase and gestation period. Immunohistochemical analysis revealed a strong distribution of ERK1/2 proteins in follicular granulosa cells, granular luteal cells, villous epithelial cells of the oviduct, endometrial glandular epithelium, and luminal epithelium. These results demonstrated that the expression of ERK1 and ERK2 proteins and their mRNA in the yak's ovary, oviduct, and uterus varies with the stage of the reproductive cycle. The variation character of ERK1 and ERK 2 expression in the yak's main reproductive organs during different stages implies that they play an important role in regulating the reproductive function under different physiological statuses.
Collapse
|
13
|
Endocrine therapy in endometrial cancer: An old dog with new tricks. Gynecol Oncol 2019; 153:175-183. [DOI: 10.1016/j.ygyno.2018.12.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/15/2018] [Accepted: 12/17/2018] [Indexed: 12/11/2022]
|
14
|
Lin YS, Lu SY, Wu HP, Chang CF, Chiu YT, Yang HT, Chao PM. Is frying oil a dietary source of an endocrine disruptor? Anti-estrogenic effects of polar compounds from frying oil in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:18-27. [PMID: 30412894 DOI: 10.1016/j.ecoenv.2018.10.111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/16/2018] [Accepted: 10/30/2018] [Indexed: 06/08/2023]
Abstract
The objective was to investigate endocrine-disrupting effects of polar compounds from oxidized frying oil. Estrogenicity of polar compounds was tested with a rat uterotrophic bioassay. Dietary oxidized frying oil (containing 51% polar compounds) or polar compounds isolated from it were incorporated into feed (in lieu of fresh soybean oil) and fed to ovariectomized rats, with or without treatment with exogenous ethynyl estradiol. Exogenous estrogen restored uterine weight, and caused histological abnormalities (stratified epithelia and conglomerate glands) as well as proliferation of uterine epithelial cells. However, tamoxifen or polar compounds reduced these effects. Furthermore, tamoxifen or polar compounds down-regulated uterine mRNA expression of estrogen receptor (ER)-target genes, implicating reduced ER activity in this hypo-uterotrophic effect. Inhibition of ER signaling and mitosis by polar compounds were attributed to reduced MAPK and AKT activation, as well as a reduced ligand binding domain-transactivity of ERα/β. We concluded polar compounds from frying oil are potential endocrine-disrupting chemicals, with implications for food and environmental safety.
Collapse
Affiliation(s)
- Yu-Shun Lin
- Department of Nutrition, China Medical University, Taichung 404, Taiwan
| | - Shui-Yuan Lu
- Department of Applied Toxicology, Taiwan Agricultural Chemicals and Toxic Substances Research Institute, Taichung 413, Taiwan
| | - Hai-Ping Wu
- Department of Nutrition, China Medical University, Taichung 404, Taiwan
| | - Chi-Fen Chang
- Department of Anatomy, School of Medicine, China Medical University, Taichung 404, Taiwan
| | - Yung-Tsung Chiu
- Department of Medical Education and Research, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Hui-Ting Yang
- Department of Nutrition, China Medical University, Taichung 404, Taiwan
| | - Pei-Min Chao
- Department of Nutrition, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
15
|
Yuan DZ, Lei Y, Zhao D, Pan JL, Zhao YB, Nie L, Liu M, Long Y, Zhang JH, Yue LM. Progesterone-Induced miR-145/miR-143 Inhibits the Proliferation of Endometrial Epithelial Cells. Reprod Sci 2019; 26:233-243. [PMID: 29661100 DOI: 10.1177/1933719118768687] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Our previous study showed that progesterone (P4) can specifically regulate the expression of some microRNAs (miRNAs) in endometrial epithelium. In the present study, we verified the P4-dependent expression of miR-145/miR-143 in endometrial epithelial cells, explored the regulative mechanism of the P4 receptor (PR), and investigated their effects on the proliferation of endometrial epithelial cells. Our results showed that P4 can induce the expression of miR-145/143 in endometrial epithelial cells by acting on the PR A subtype. P4-induced miR-145/143 can inhibit the expression of cyclin D2 by binding to cyclin D2 mRNA 3'UTR. It can also inhibit cell proliferation in mouse endometrial epithelium by arresting the cell cycle during the G1-S checkpoint. Furthermore, miR-145 and miR-143 can inhibit the proliferation of human endometrial cancer cells. In conclusion, P4-induced miR-145/miR-143 is an important regulator in the proliferation of endometrial epithelial cells, and it can also inhibit the proliferation of human endometrial cancer cells. Our study indicates miRNAs are important mechanism of P4 in inhibiting the proliferation of endometrial epithelial cells. And these miRNAs are potential candidates for the diagnosis of endometrial cancer and therapeutic targets.
Collapse
Affiliation(s)
- Dong-Zhi Yuan
- 1 Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Yi Lei
- 1 Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Dan Zhao
- 1 Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Jun-Li Pan
- 1 Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - You-Bo Zhao
- 1 Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Li Nie
- 1 Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Min Liu
- 1 Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Yun Long
- 1 Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Jin-Hu Zhang
- 1 Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Li-Min Yue
- 1 Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
16
|
Inside the Endometrial Cell Signaling Subway: Mind the Gap(s). Int J Mol Sci 2018; 19:ijms19092477. [PMID: 30134622 PMCID: PMC6164241 DOI: 10.3390/ijms19092477] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/03/2018] [Accepted: 08/04/2018] [Indexed: 12/13/2022] Open
Abstract
Endometrial cells perceive and respond to their microenvironment forming the basis of endometrial homeostasis. Errors in endometrial cell signaling are responsible for a wide spectrum of endometrial pathologies ranging from infertility to cancer. Intensive research over the years has been decoding the sophisticated molecular means by which endometrial cells communicate to each other and with the embryo. The objective of this review is to provide the scientific community with the first overview of key endometrial cell signaling pathways operating throughout the menstrual cycle. On this basis, a comprehensive and critical assessment of the literature was performed to provide the tools for the authorship of this narrative review summarizing the pivotal components and signaling cascades operating during seven endometrial cell fate “routes”: proliferation, decidualization, implantation, migration, breakdown, regeneration, and angiogenesis. Albeit schematically presented as separate transit routes in a subway network and narrated in a distinct fashion, the majority of the time these routes overlap or occur simultaneously within endometrial cells. This review facilitates identification of novel trajectories of research in endometrial cellular communication and signaling. The meticulous study of endometrial signaling pathways potentiates both the discovery of novel therapeutic targets to tackle disease and vanguard fertility approaches.
Collapse
|
17
|
Cerbón J, Baranda-Avila N, Falcón-Muñoz A, Camacho-Arroyo I, Cerbón M. Sphingolipid synthesis and role in uterine epithelia proliferation. Reproduction 2018; 156:173-183. [DOI: 10.1530/rep-17-0667] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 06/04/2018] [Indexed: 12/12/2022]
Abstract
Sphingolipids are involved in the regulation of cell proliferation. It has been reported that diacylglycerol and sphingosine-1-phosphate generation, during the synthesis of phospho-sphingolipids, is necessary for both, G1-S transition of cell cycle during the sustained activation of protein kinase C in various cell models (MDCK,SaccharomycesandEntamoeba) and AKT pathway activation. During the estrous cycle of the rat, AKT signaling is the main pathway involved in the regulation of uterine cell proliferation. The aim of the present study was to investigate the role of sphingolipid synthesis during proliferation of uterine cells in the estrous cycle of the rat. On metestrus day, when both luminal and glandular uterine epithelia present the maximal BrdU-labeled cells (S phase cells), there was an increase in the relative abundance of total sphingomyelins, as compared to estrus day. Myriocin, a sphingolipid synthesis inhibitor administered on estrus day, before the new cell cycle of epithelial cells is initiated, decreased the abundance of sphingomyelin, accompanied by proliferation arrest in uterine epithelial cells on metestrus day. In order to study the sphingolipid signaling pathway affected by myriocin, we evaluated the activation of the PKC-AKT-GSK3b-Cyclin D3 pathway. We observed that total and phosphorylated protein kinase C diminished in uterine epithelial cells of myriocin treated animals. Interestingly, cyclin D3 nuclear localization was blocked by myriocin, concomitantly with a decrease in nuclear pRb expression. In conclusion, we demonstrate that sphingolipid synthesis and signaling are involved in uterine epithelial cell proliferation during the estrous cycle of the rat.
Collapse
|
18
|
Tsuji M, Tanaka T, Nagashima R, Sagisaka Y, Tousen Y, Nishide Y, Ishimi Y, Ishimi Y. Effect of daidzein and equol on DNA replication in MCF-7 cells. J Biochem 2018; 163:371-380. [PMID: 29346578 DOI: 10.1093/jb/mvy006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 10/30/2017] [Indexed: 11/13/2022] Open
Abstract
It has been reported that daidzein and equol stimulate DNA replication and proliferation of MCF-7 cells. However, their molecular mechanisms of action are still unclear. We examined the effects of daidzein and equol on DNA replication of MCF-7 cells, focusing on MCM2-7 proteins, which function as the replicative helicase. In the presence of either 1 μM of daidzein or equol, the number of cells in S-phase, which was determined by detecting bromodeoxyuridine incorporated into replicated DNA, almost doubled. The total amounts of MCM7 protein and chromatin-bound MCM7 protein increased in the presence of daidzein. The data suggest that phytoestrogens facilitate cell cycle progression in G1-phase by increasing the level of MCM proteins. In the presence of phytoestrogens, phosphorylation of Rb and levels of MCM2, 3 and 7 mRNA increased, suggesting that stimulation of MCM2-7 transcription is involved in the cell cycle progression. Under the same conditions, double-stranded DNA breakage in logarithmically growing MCF-7 cells, which was detected using anti-γ-H2AX antibodies, did not increase in the presence of equol.
Collapse
Affiliation(s)
- Mako Tsuji
- Ibaraki University, Mito, Ibaraki 310-8512, Japan
| | | | | | | | - Yuko Tousen
- National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo 162-8636, Japan
| | - Yoriko Nishide
- National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo 162-8636, Japan
| | - Yoshiko Ishimi
- National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo 162-8636, Japan
| | - Yukio Ishimi
- Ibaraki University, Mito, Ibaraki 310-8512, Japan
| |
Collapse
|
19
|
Pir2/Rnf144b is a potential endometrial cancer biomarker that promotes cell proliferation. Cell Death Dis 2018; 9:504. [PMID: 29724995 PMCID: PMC5938710 DOI: 10.1038/s41419-018-0521-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/18/2018] [Accepted: 03/23/2018] [Indexed: 12/11/2022]
Abstract
Endometrial cancer is one of the most common gynaecological cancers in developed countries. Its incidence has increased 20% over the last decade and the death rate has increased >100% over the past two decades. Current models for prediction of prognosis and treatment response are suboptimal, and as such biomarkers to support clinical decision-making and contribute to individualised treatment are needed. In this study, we show that the E3-ubiquitin ligase PIR2/RNF144B is a potential targetable biomarker in endometrial cancer. At transcript level, it is expressed both in normal endometrium and tumour samples, but at protein level, it is expressed in tumours only. By using endometrial cancer cell lines, we demonstrated that PIR2/RNF144B is stabilised via phosphorylation downstream of GSK3β and this is necessary for the proliferation of endometrial cancer cells, in the absence of oestrogenic growth stimuli. Here, inactivation of GSK3β activity is associated with loss of PIR2/RNF144B protein and consequent inhibition of cell proliferation. Our results, therefore, substantiate PIR2/RNF144B as a novel candidate for targeted therapy in endometrial cancer.
Collapse
|
20
|
Liang YX, Liu L, Jin ZY, Liang XH, Fu YS, Gu XW, Yang ZM. The high concentration of progesterone is harmful for endometrial receptivity and decidualization. Sci Rep 2018; 8:712. [PMID: 29335465 PMCID: PMC5768702 DOI: 10.1038/s41598-017-18643-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 12/14/2017] [Indexed: 11/09/2022] Open
Abstract
Progesterone is required for the establishment and maintenance of mammalian pregnancy and widely used for conservative treatment of luteal phase deficiency in clinics. However, there are limited solid evidences available for the optimal timing and dose of progesterone therapy, especially for the possible adverse effects on implantation and decidualization when progesterone is administrated empirically. In our study, mouse models were used to examine effects of excess progesterone on embryo implantation and decidualization. Our data indicate that excess progesterone is not only harmful for mouse implantation, but also impairs mouse decidualization. In excess progesterone-treated mice, the impaired LIF/STAT3 pathway and dysregulated endoplasmic reticulum stress may lead to the inhibition of embryo implantation and decidualization. It is possible that the decrease in birth weight of excess progesterone-treated mice is due to a compromised embryo implantation and decidualization. Furthermore, excess progesterone compromises in vitro decidualization of human endometrial stromal cells.
Collapse
Affiliation(s)
- Yu-Xiang Liang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Li Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhi-Yong Jin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xiao-Huan Liang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yong-Sheng Fu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xiao-Wei Gu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zeng-Ming Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
21
|
The decline of pregnancy rate and abnormal uterine responsiveness of steroid hormones in aging mice. Reprod Biol 2017; 17:305-311. [DOI: 10.1016/j.repbio.2017.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/14/2017] [Accepted: 09/01/2017] [Indexed: 02/03/2023]
|
22
|
Kuokkanen S, Zhu L, Pollard JW. Xenografted tissue models for the study of human endometrial biology. Differentiation 2017; 98:62-69. [PMID: 29156254 DOI: 10.1016/j.diff.2017.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 01/10/2023]
Abstract
The human endometrium undergoes extensive morphological, biochemical and molecular changes under the influence of female sex steroid hormones. Besides the fact that estrogen stimulates endometrial cell proliferation and progesterone inhibits this proliferation and induces differentiation, there is limited knowledge about precise molecular mechanisms underlying human endometrial biology. The importance of paracrine signaling in endometrial physiology explains why in vitro culture of endometrial cells has been challenging. Researchers, therefore, have developed alternative experimental in vivo models for the study of endometrial biology. The objective of this review is to summarize the recent developments and work on these in vivo endometrial research models. The in vivo recombinant tissue models in which wild-type endometrial cells are combined with endometrial cells from a gene-targeted mouse strain followed by xenografting to host mice have been critical in confirming the significance of paracrine signaling between the epithelium and stroma in the growth regulation of the endometrium. Additionally, these studies have uncovered differences between the mouse and human, emphasizing the need for the development of experimental models specifically of the human endometrium. Recently, xenotransplants of human endometrial fragments into the subcutaneous space of host mice and endometrial xenografts of dissociated and recombined epithelial and stromal cells beneath the kidney capsule of immunodeficient host mice have proven to be highly promising tools for in vivo research of endometrial functions. For the first time, the latter approach provides an immense opportunity for the application of genome engineering, such as targeted ablation of endometrial genes for example by using CRISPR/CAS9 system. This research will begin to elucidate the functional role of specific genes in this complex tissue. Another advantage of xenotransplantation and xenograft models of the human endometrium is their use to investigate endometrial effects of new compounds and drugs without needing to give them to women. Underpinning the molecular mechanisms underlying endometrial functions is critical to ultimately advance our understanding of endometrial pathophysiology and develop targeted therapies to prevent and cure endometrial pathologies as well as enhance endometrial function when it is desired for fertility.
Collapse
Affiliation(s)
- Satu Kuokkanen
- Department of Obstetrics and Gynecology&Women's Health, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
| | - Liyin Zhu
- Department of Obstetrics and Gynecology&Women's Health, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States; Department of Developmental&Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Jeffrey W Pollard
- Department of Obstetrics and Gynecology&Women's Health, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States; Department of Developmental&Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States; MRC Centre for Reproductive Health, University of Edinburgh, UK.
| |
Collapse
|
23
|
Lee SH, Kim BJ, Kim UH. The critical role of uterine CD31 as a post-progesterone signal in early pregnancy. Reproduction 2017; 154:595-605. [DOI: 10.1530/rep-17-0419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 07/11/2017] [Accepted: 07/31/2017] [Indexed: 11/08/2022]
Abstract
CD31 has been shown to play a role in endothelial cell migration and angiogenesis, which are critical to the formation and function of the endometrium and myometrium in uterine development during early pregnancy. However, the role of CD31 in uterine receptivity during blastocyst implantation is poorly understood. The pregnancy rate in CD31−/− female mice mated with CD31+/+ male mice was higher than that observed in CD31+/+ female mice mated with CD31+/+ male mice. During the receptive phase of implantation, uterine glands were more developed in CD31−/− mice than in CD31+/+ mice, and the uterine weights of CD31−/− mice were increased. Leukemia inhibitory factor (LIF) was highly expressed in the CD31−/− mice during implantation and the expression of LIF was up-regulated by estradiol-17β (E2) + progesterone (P4) in ovariectomized CD31−/− mice, compared with CD31+/+ mice at 8 h after hormone treatment. E2-induced protein synthesis was inhibited by P4 in the CD31+/+ uterus, but not in the uterus of CD31−/− mice. Also, STAT3, HAND2, LIF, and mTOR signals were enhanced in CD31−/− mice. Stromal DNA replication was highly activated in the uterus of CD31−/− mice, manifested by upregulated cyclin series signaling and PCNA expression after E2 + P4treatment. Collectively, CD31 inhibits E2-mediated epithelial proliferation via recruitment and phosphorylation of SHP-2 upon receiving P4signal in early pregnancy.
Collapse
|
24
|
Pazhohan A, Amidi F, Akbari-Asbagh F, Seyedrezazadeh E, Farzadi L, Khodarahmin M, Mehdinejadiani S, Sobhani A. The Wnt/β-catenin signaling in endometriosis, the expression of total and active forms of β-catenin, total and inactive forms of glycogen synthase kinase-3β, WNT7a and DICKKOPF-1. Eur J Obstet Gynecol Reprod Biol 2017; 220:1-5. [PMID: 29107840 DOI: 10.1016/j.ejogrb.2017.10.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 10/05/2017] [Accepted: 10/30/2017] [Indexed: 02/07/2023]
Abstract
OBJECTIVES The cyclical changes in proliferation and differentiation of endometrial cells are regulated by estrogen and progesterone via modulating Wnt/β-catenin signaling. Imbalance in the expression of estrogen and progesterone receptors causes progesterone resistance in endometriosis patients. The aim of this study was to investigate the expression of some main components of Wnt/β-catenin signaling including WNT7a, DKK-1, β-catenin, and GSK-3β in eutopic endometrium and peritoneal endometriotic lesions of endometriosis patients compared to healthy endometrium in the mid-secretory phase of menstrual cycle. STUDY DESIGN This prospective study was performed, during a 12 months period from December 2015 to November 2016, on healthy women as the control group (n=14) and endometriosis patients (n=34). We used real-time polymerase chain reaction and Western blot techniques. RESULTS Protein and mRNA expression of DKK-1 were significantly down-regulated in both endometriotic lesions and eutopic endometrium of endometriosis group. We also demonstrated that the expression of non-phosphorylated β-catenin (active form) and phosphorylated GSK-3β (inactive form) were up-regulated in endometriosis patients. The mRNA levels of β-catenin, GSK-3β, and WNT7a, as well as the protein levels of total β-catenin, total GSK-3β, and WNT7a in endometriosis group, were not significantly different with those in control group. The patterns of mRNA and protein expression of all interested factors in the lesions were similar to those in the eutopic endometrium of same patients. CONCLUSIONS It seems that the aberrant activation of Wnt/β-catenin signaling in the secretory phase of the menstrual cycle in endometriosis has two essential elements: excessive inactivation of GSK-3β and suppression of the expression of Wnt signaling inhibitor DKK-1. Interventions in this signaling pathway may allow for the exploration of potential new targets for the control of development and progression of endometriosis.
Collapse
Affiliation(s)
- Azar Pazhohan
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fardin Amidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Firoozeh Akbari-Asbagh
- Department of Obstetrics and Gynecology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ensiyeh Seyedrezazadeh
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Laya Farzadi
- Department of Obstetrics and Gynecology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahshad Khodarahmin
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Aligholi Sobhani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
25
|
Pan JL, Yuan DZ, Zhao YB, Nie L, Lei Y, Liu M, Long Y, Zhang JH, Blok LJ, Burger CW, Yue LM. Progesterone-induced miR-133a inhibits the proliferation of endometrial epithelial cells. Acta Physiol (Oxf) 2017; 219:683-692. [PMID: 27458709 DOI: 10.1111/apha.12762] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 04/16/2016] [Accepted: 07/21/2016] [Indexed: 12/28/2022]
Abstract
AIM This study aimed to understand the role of miR-133a in progesterone actions, explore the regulative mechanism of the progesterone receptor, and investigate the effects of miR-133a on the progesterone-inhibited proliferation of mouse endometrial epithelial cells. METHODS The expression of miR-133a induced by progesterone was detected by quantitative real-time PCR both in vivo and in vitro. Ishikawa subcell lines stably transfected with progesterone receptor subtypes were used to determine the receptor mechanism of progesterone inducing miR-133a. Specific miR-133a mimics or inhibitors were transfected into mouse uteri and primary cultured endometrial epithelial cells to overexpress or downregulate the miR-133a. The roles of miR-133a in the cell cycle and proliferation of endometrial epithelial cells were analysed by flow cytometry and Edu incorporation analysis. The protein levels of cyclinD2 in uterine tissue sections and primary cultured endometrial epithelial cells were determined by immunohistochemistry and Western blot analysis. RESULTS Progesterone could induce miR-133a expression in a PRB-dependent manner in endometrial epithelial cells. miR-133a inhibited endometrial epithelial cell proliferation by arresting cell cycle at the G1 -S transition. Moreover, miR-133a acted as an inhibitor in downregulating cyclinD2 in endometrial epithelial cells. CONCLUSION We showed for the first time that progesterone-induced miR-133a inhibited the proliferation of endometrial epithelial cells by downregulating cyclinD2. Our research indicated an important mechanism for progesterone inhibiting the proliferation of endometrial epithelial cells by inducing special miRNAs to inhibit positive regulatory proteins in the cell cycle.
Collapse
Affiliation(s)
- J.-l. Pan
- Department of Physiology; West China School of Preclinical and Forensic Medicine; Sichuan University; Chengdu China
| | - D.-z. Yuan
- Department of Physiology; West China School of Preclinical and Forensic Medicine; Sichuan University; Chengdu China
| | - Y.-b. Zhao
- Department of Physiology; West China School of Preclinical and Forensic Medicine; Sichuan University; Chengdu China
| | - L. Nie
- Department of Physiology; West China School of Preclinical and Forensic Medicine; Sichuan University; Chengdu China
| | - Y. Lei
- Department of Physiology; West China School of Preclinical and Forensic Medicine; Sichuan University; Chengdu China
| | - M. Liu
- Department of Physiology; West China School of Preclinical and Forensic Medicine; Sichuan University; Chengdu China
| | - Y. Long
- Department of Physiology; West China School of Preclinical and Forensic Medicine; Sichuan University; Chengdu China
| | - J.-h. Zhang
- Department of Physiology; West China School of Preclinical and Forensic Medicine; Sichuan University; Chengdu China
| | - L. J. Blok
- Department of Obstetrics and Gynecology; Erasmus Medical Center; Rotterdam the Netherlands
| | - C. W. Burger
- Department of Obstetrics and Gynecology; Erasmus Medical Center; Rotterdam the Netherlands
| | - L.-m. Yue
- Department of Physiology; West China School of Preclinical and Forensic Medicine; Sichuan University; Chengdu China
| |
Collapse
|
26
|
Ørbo A, Arnes M, Lyså LM, Borgfeldt C, Straume B. HE4 is a novel tissue marker for therapy response and progestin resistance in medium- and low-risk endometrial hyperplasia. Br J Cancer 2016; 115:725-30. [PMID: 27537387 PMCID: PMC5023780 DOI: 10.1038/bjc.2016.247] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/04/2016] [Accepted: 07/12/2016] [Indexed: 11/12/2022] Open
Abstract
Background: The aim of the present study was to investigate whether changes in the tissue expression of human epididymis-specific protein 4 (HE4) could predict therapy resistance and relapse after progestin hormone therapy for medium- and low-risk endometrial hyperplasia. Methods: Endometrial biopsies were obtained from women participating in a multicentre RCT performed according to the CONSORT guidelines; the women were randomly assigned to either LNG-IUS; 10 mg of oral medroxyprogesterone acetate (MPA) administered for 10 days per cycle; or 10 mg of oral MPA administered daily for 6 months. Of the 153 women who completed therapy, 141 had adequate material for immunohistochemistry in pre- and post-treatment biopsies. An antibody to HE4 (clone 12A2 monoclonal IgG1 antibody, Fujirebio Diagnostics, Inc.) was used for the immunohistochemical staining of the pre- and post-treatment biopsies from each participant. The expression of HE4 staining was evaluated by the histological score (H-score) using light microscopy. Results: Changes in the expression of HE4 (H-score) during therapy were related to the therapy group (P<0.001) and therapy response (P<0.001) of the individuals but could not predict relapse (P>0.05). Changes in the intracellular bodies were shown to predict both the therapy response (P=0.038) and relapse (P=0.014). Conclusions: Changes in the expression of HE4 during progestin therapy regimens can predict therapy response or indicate progestin resistance for medium- and low-risk endometrial hyperplasia.
Collapse
Affiliation(s)
- Anne Ørbo
- Department of Clinical Pathology, University Hospital of Tromsø, N-9038 Tromsø, Norway.,Research Group for Gynaecologic Oncology, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, N-9037 Tromsø, Norway
| | - Marit Arnes
- Research Group for Gynaecologic Oncology, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, N-9037 Tromsø, Norway
| | - Lena Myreng Lyså
- Department of Clinical Pathology, University Hospital of Tromsø, N-9038 Tromsø, Norway
| | - Christer Borgfeldt
- Department of Obstetrics and Gynecology, Skåne University Hospital, Lund, Sweden
| | - Bjørn Straume
- Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, N-9037 Tromsø, Norway
| |
Collapse
|
27
|
Rosario GX, Cheng JG, Stewart CL. Gene expression analysis in the compartments of the murine uterus. Differentiation 2016; 91:42-9. [DOI: 10.1016/j.diff.2015.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/16/2015] [Accepted: 10/16/2015] [Indexed: 10/22/2022]
|
28
|
Zhou Y, Tian L, Zhang YC, Guo BF, Zhou QW. Apoptotic effects of psiRNA-STAT3 on 4T1 breast cancer cells in vitro. Asian Pac J Cancer Prev 2015; 15:6977-82. [PMID: 25169471 DOI: 10.7314/apjcp.2014.15.16.6977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The aim of this study was to investigate the effect of a Lipofectamine2000 (Life2000) Transfection Reagent transfected psiRNA-STAT3 plasmid on 4T1 breast cancer cells. MATERIALS AND METHODS MTT was used to detect the cell proliferation of breast cancer 4T1 cells at different periods (0h, 6h, 8h, 10h); the cell cycle was assessed by flow cytometry; variation of apoptosis and mitochondrial membrane potential was observed under a fluorescence microscope; immunohistochemical staining was used to determine the expression of caspase-3 and cyclin-D1 protein. RESULTS An obvious effect of inhibition to 4T1 cancer cells could be observed at 8h after the psiRNA-STAT3 was transfected. Typical alterations of apoptotic morphological features were visible in the psiRNA-STAT3 treatment group. Mitochondrial membrane potential decreased significantly, the number of cells was increased in G0/G1 phase, and the number of cells was decreased in S phase, and the data were statistically significant (p<0.05), compared with the Scramble and Mock groups. Expression of caspase-3 protein was increased significantly, while that of cyclin D1 was significantly decreased. CONCLUSIONS Life2000 transfected psiRNA-STAT3 plasmid can inhibit 4T1 tumor cell proliferation and promote apoptosis of 4T1 tumor cells, which process depends on the regulation of expression of cyclin D1 and caspase-3 protein.
Collapse
Affiliation(s)
- Yue Zhou
- School of Pharmacy, 2Department of Breast Surgery , The Second Clinical Hospital, 3Department of Plastic Surgery, the China- Japan Union Hospital, 4Department of Biology and Medical Engineering, Institute of Regenerative Medicine, Jilin University, Changchun, China E-mail : ,
| | | | | | | | | |
Collapse
|
29
|
Abstract
Progesterone and progesterone receptors (PRs) are essential for the development and cyclical regulation of hormone-responsive tissues including the breast and reproductive tract. Altered functions of PR isoforms contribute to the pathogenesis of tumors that arise in these tissues. In the breast, progesterone acts in concert with estrogen to promote proliferative and pro-survival gene programs. In sharp contrast, progesterone inhibits estrogen-driven growth in the uterus and protects the ovary from neoplastic transformation. Progesterone-dependent actions and associated biology in diverse tissues and tumors are mediated by two PR isoforms, PR-A and PR-B. These isoforms are subject to altered transcriptional activity or expression levels, differential crosstalk with growth factor signaling pathways, and distinct post-translational modifications and cofactor-binding partners. Herein, we summarize and discuss the recent literature focused on progesterone and PR isoform-specific actions in breast, uterine, and ovarian cancers. Understanding the complexity of context-dependent PR actions in these tissues is critical to developing new models that will allow us to advance our knowledge base with the goal of revealing novel and efficacious therapeutic regimens for these hormone-responsive diseases.
Collapse
Affiliation(s)
- Caroline H Diep
- HematologyOncology, and Transplantation DivisionDepartments of MedicinePharmacologyMasonic Cancer Center, University of Minnesota, Delivery Code 2812, Cancer Cardiology Research Building, 2231 6th Street SE, Minneapolis, Minnesota 55455, USADivision of Physiology and GrowthDepartment of Animal Science, University of Minnesota, Minneapolis, Minnesota 55108, USA
| | - Andrea R Daniel
- HematologyOncology, and Transplantation DivisionDepartments of MedicinePharmacologyMasonic Cancer Center, University of Minnesota, Delivery Code 2812, Cancer Cardiology Research Building, 2231 6th Street SE, Minneapolis, Minnesota 55455, USADivision of Physiology and GrowthDepartment of Animal Science, University of Minnesota, Minneapolis, Minnesota 55108, USA
| | - Laura J Mauro
- HematologyOncology, and Transplantation DivisionDepartments of MedicinePharmacologyMasonic Cancer Center, University of Minnesota, Delivery Code 2812, Cancer Cardiology Research Building, 2231 6th Street SE, Minneapolis, Minnesota 55455, USADivision of Physiology and GrowthDepartment of Animal Science, University of Minnesota, Minneapolis, Minnesota 55108, USA
| | - Todd P Knutson
- HematologyOncology, and Transplantation DivisionDepartments of MedicinePharmacologyMasonic Cancer Center, University of Minnesota, Delivery Code 2812, Cancer Cardiology Research Building, 2231 6th Street SE, Minneapolis, Minnesota 55455, USADivision of Physiology and GrowthDepartment of Animal Science, University of Minnesota, Minneapolis, Minnesota 55108, USA
| | - Carol A Lange
- HematologyOncology, and Transplantation DivisionDepartments of MedicinePharmacologyMasonic Cancer Center, University of Minnesota, Delivery Code 2812, Cancer Cardiology Research Building, 2231 6th Street SE, Minneapolis, Minnesota 55455, USADivision of Physiology and GrowthDepartment of Animal Science, University of Minnesota, Minneapolis, Minnesota 55108, USA HematologyOncology, and Transplantation DivisionDepartments of MedicinePharmacologyMasonic Cancer Center, University of Minnesota, Delivery Code 2812, Cancer Cardiology Research Building, 2231 6th Street SE, Minneapolis, Minnesota 55455, USADivision of Physiology and GrowthDepartment of Animal Science, University of Minnesota, Minneapolis, Minnesota 55108, USA
| |
Collapse
|
30
|
Wang Y, Zhu L, Kuokkanen S, Pollard JW. Activation of protein synthesis in mouse uterine epithelial cells by estradiol-17β is mediated by a PKC-ERK1/2-mTOR signaling pathway. Proc Natl Acad Sci U S A 2015; 112:E1382-91. [PMID: 25733860 PMCID: PMC4371960 DOI: 10.1073/pnas.1418973112] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The uterine epithelium of mice and humans undergoes cyclical waves of cell proliferation and differentiation under the regulation of estradiol-17β (E2) and progesterone (P4). These epithelial cells respond to E2 with increased protein and DNA synthesis, whereas P4 inhibits only the E2-induced DNA synthetic response. Here we show that E2 regulates protein synthesis in these epithelial cells through activating PKC that in turn stimulates ERK1/2 to phosphorylate and thereby activate the central regulator of protein synthesis mechanistic target of rapamycin (mTOR). This mTOR pathway is not inhibited by P4. Inhibitor studies with an estrogen receptor (ESR1) antagonist showed the dependence of this mTOR pathway on ESR1 but that once activated, a phosphorylation cascade independent of ESR1 propagates the pathway. E2 also stimulates an IGF1 receptor (IGF1R) to PI3 kinase to AKT to GSK-3β pathway required for activation of the canonical cell cycle machinery that is inhibited by P4. PKC activation did not stimulate this pathway nor does inhibition of PKC or ERK1/2 affect it. These studies therefore indicate a mechanism whereby DNA and protein synthesis are regulated by two ESR1-activated pathways that run in parallel with only the one responsible for the initiation of DNA synthesis blocked by P4. Inhibition of mTOR by rapamycin in vivo resulted in inhibition of E2-induced protein and DNA synthesis. Proliferative diseases of the endometrium such as endometriosis and cancer are common and E2 dependent. Thus, defining this mTOR pathway suggests that local (intrauterine or peritoneal) rapamycin administration might be a therapeutic option for these diseases.
Collapse
Affiliation(s)
- Yuxiang Wang
- Center for the Study of Reproductive Biology and Women's Health, Departments of Developmental and Molecular Biology and
| | - Liyin Zhu
- Center for the Study of Reproductive Biology and Women's Health, Departments of Developmental and Molecular Biology and
| | - Satu Kuokkanen
- Center for the Study of Reproductive Biology and Women's Health, Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, NY 10461; and
| | - Jeffrey W Pollard
- Center for the Study of Reproductive Biology and Women's Health, Departments of Developmental and Molecular Biology and Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, NY 10461; and Medical Research Council Centre for Reproductive Health, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| |
Collapse
|
31
|
Kim HR, Kim YS, Yoon JA, Lyu SW, Shin H, Lim HJ, Hong SH, Lee DR, Song H. Egr1 is rapidly and transiently induced by estrogen and bisphenol A via activation of nuclear estrogen receptor-dependent ERK1/2 pathway in the uterus. Reprod Toxicol 2014; 50:60-7. [PMID: 25461906 DOI: 10.1016/j.reprotox.2014.10.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 09/20/2014] [Accepted: 10/10/2014] [Indexed: 10/24/2022]
Abstract
Coordinate actions of ovarian estrogen (E2) and progesterone (P4) via their own receptors are critical for establishing uterine receptivity for embryo implantation in the uterus. E2 regulates expression of an array of genes to mediate its major actions on heterogeneous uterine cell types. Here we have investigated regulatory mechanism(s) of E2 and bisphenol A (BPA), an endocrine disruptor with potent estrogenic activity on expression of early growth response 1 (Egr1), a zinc finger transcription factor that regulates cell growth, differentiation and apoptosis in the uterus. Egr1 was rapidly and transiently induced by E2 and BPA mainly in stromal cells via nuclear estrogen receptor (ER)-ERK1/2 pathway. ICI 182,780, an ER antagonist, effectively inhibited their actions on EGR1 expression following ERK1/2 phosphorylation. Administration of pharmacological inhibitors for ERK1/2, but not AKT significantly blocked EGR1 expression induced by E2 and BPA. P4 effectively dampened action(s) of E2 and BPA on Egr1 expression via nuclear progesterone receptor. Its antagonistic effects were partially interfered with RU486 pretreatment. Interestingly, EGR1 is specifically induced in stromal cells surrounding implanting blastocyst. Collectively, our results show that through nuclear ER-dependent ERK1/2 phosphorylation, not only E2 but also endocrine disruptors with estrogenic activity such as BPA rapidly and transiently induce Egr1 which may be important for embryo implantation and decidualization in mouse uterus.
Collapse
Affiliation(s)
- Hye-Ryun Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seoul 135-081, Republic of Korea
| | - Yeon Sun Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seoul 135-081, Republic of Korea
| | - Jung Ah Yoon
- Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul 135-081, Republic of Korea
| | - Sang Woo Lyu
- Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul 135-081, Republic of Korea
| | - Hyejin Shin
- Department of Biomedical Science and Technology, Institute of Biomedical Science and Technology, Konkuk University, Seoul 143-701, Republic of Korea
| | - Hyunjung J Lim
- Department of Biomedical Science and Technology, Institute of Biomedical Science and Technology, Konkuk University, Seoul 143-701, Republic of Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, Kangwon National University, Chuncheon, Kangwon 200-701, Republic of Korea; Stem Cell Institute, Kangwon National University, Chuncheon, Kangwon 200-701, Republic of Korea
| | - Dong Ryul Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seoul 135-081, Republic of Korea
| | - Haengseok Song
- Department of Biomedical Science, College of Life Science, CHA University, Seoul 135-081, Republic of Korea; Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul 135-081, Republic of Korea.
| |
Collapse
|
32
|
Franco-Murillo Y, Miranda-Rodríguez JA, Rendón-Huerta E, Montaño LF, Cornejo GV, Gómez LP, Valdez-Morales FJ, Gonzalez-Sanchez I, Cerbón M. Unremitting cell proliferation in the secretory phase of eutopic endometriosis: involvement of pAkt and pGSK3β. Reprod Sci 2014; 22:502-10. [PMID: 25194152 DOI: 10.1177/1933719114549843] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Endometriosis is linked to altered cell proliferation and stem cell markers c-kit/stem cell factor (SCF) in ectopic endometrium. Our aim was to investigate whether c-kit/SCF also plays a role in eutopic endometrium. DESIGN Eutopic endometrium obtained from 35 women with endometriosis and 25 fertile eumenorrheic women was analyzed for in situ expression of SCF/c-kit, Ki67, RAC-alpha serine/threonine-protein kinase (Akt), phosphorylated RAC-alpha serine/threonin-protein kinase (pAkt), Glycogen synthase kinase 3 beta (GSK3β), and phosphorylated glycogen synthase kinase 3 beta (pGSK3β), throughout the menstrual cycle. RESULTS Expression of Ki67 and SCF was higher in endometriosis than in control tissue (P < .05) and greater in secretory rather than proliferative (P < .01) endometrium in endometriosis. Expression of c-kit was also higher in endometriosis although similar in both phases. Expression of Akt and GSK3β was identical in all samples and cycle phases, whereas pAkt and pGSK3β, opposed to control tissue, remained overexpressed in the secretory phase in endometriosis. CONCLUSION Unceasing cell proliferation in the secretory phase of eutopic endometriosis is linked to deregulation of c-kit/SCF-associated signaling pathways.
Collapse
Affiliation(s)
- Yanira Franco-Murillo
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico, Federal District, Mexico
| | | | - Erika Rendón-Huerta
- Departamento Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Mexico, Federal District, Mexico
| | - Luis F Montaño
- Departamento Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Mexico, Federal District, Mexico
| | | | - Lucila Poblano Gómez
- Servicio de Ginecología y Obstetricia, Hospital Español, Mexico, Federal District, Mexico
| | | | - Ignacio Gonzalez-Sanchez
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico, Federal District, Mexico
| | - Marco Cerbón
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico, Federal District, Mexico
| |
Collapse
|
33
|
Yuan DZ, Yu LL, Qu T, Zhang SM, Zhao YB, Pan JL, Xu Q, He YP, Zhang JH, Yue LM. Identification and characterization of progesterone- and estrogen-regulated MicroRNAs in mouse endometrial epithelial cells. Reprod Sci 2014; 22:223-34. [PMID: 24925854 DOI: 10.1177/1933719114537714] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In endometrial epithelial cells, progesterone (P4) functions in regulating the cell structure and opposing the effects of estrogen. However, the mechanisms of P4 that oppose the effects of estrogen remain unclear. MicroRNAs (miRNAs) are important posttranscriptional regulators that are involved in various physiological and pathological processes. Whether P4 directly induces miRNA expression to antagonize estrogen in endometrial epithelium is unclear. In this study, total RNAs were extracted from endometrial epithelium of ovariectomized mice, which were treated with estrogen alone or a combination of estrogen and P4. MicroRNA high-throughput sequencing with bioinformatics analysis was used to identify P4-induced miRNAs, predict their potential target genes, and analyze their possible biological functions. We observed that 146 mature miRNAs in endometrial epithelial cells were significantly upregulated by P4. These miRNAs were extensively involved in multiple biological processes. The miRNA-145a demonstrated a possible function in the antiproliferative action of P4 on endometrial epithelial cells.
Collapse
Affiliation(s)
- Dong-zhi Yuan
- Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China
| | - Lin-lin Yu
- Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China
| | - Ting Qu
- Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China
| | - Shi-mao Zhang
- Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China
| | - You-bo Zhao
- Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China
| | - Jun-li Pan
- Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China
| | - Qian Xu
- Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China
| | - Ya-Ping He
- Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China
| | - Jin-hu Zhang
- Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China
| | - Li-min Yue
- Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
34
|
Goodwin EC, Motamedi N, Lipovsky A, Fernández-Busnadiego R, DiMaio D. Expression of DNAJB12 or DNAJB14 causes coordinate invasion of the nucleus by membranes associated with a novel nuclear pore structure. PLoS One 2014; 9:e94322. [PMID: 24732912 PMCID: PMC3986390 DOI: 10.1371/journal.pone.0094322] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 03/15/2014] [Indexed: 11/18/2022] Open
Abstract
DNAJB12 and DNAJB14 are transmembrane proteins in the endoplasmic reticulum (ER) that serve as co-chaperones for Hsc70/Hsp70 heat shock proteins. We demonstrate that over-expression of DNAJB12 or DNAJB14 causes the formation of elaborate membranous structures within cell nuclei, which we designate DJANGOS for DNAJ-associated nuclear globular structures. DJANGOS contain DNAJB12, DNAJB14, Hsc70 and markers of the ER lumen and ER and nuclear membranes. Strikingly, they are evenly distributed underneath the nuclear envelope and are of uniform size in any one nucleus. DJANGOS are composed primarily of single-walled membrane tubes and sheets that connect to the nuclear envelope via a unique configuration of membranes, in which the nuclear pore complex appears anchored exclusively to the outer nuclear membrane, allowing both the inner and outer nuclear membranes to flow past the circumference of the nuclear pore complex into the nucleus. DJANGOS break down rapidly during cell division and reform synchronously in the daughter cell nuclei, demonstrating that they are dynamic structures that undergo coordinate formation and dissolution. Genetic studies showed that the chaperone activity of DNAJ/Hsc70 is required for the formation of DJANGOS. Further analysis of these structures will provide insight into nuclear pore formation and function, activities of molecular chaperones, and mechanisms that maintain membrane identity.
Collapse
Affiliation(s)
- Edward C. Goodwin
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Nasim Motamedi
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Alex Lipovsky
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, United States of America
| | | | - Daniel DiMaio
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Molecular Biophysics & Biochemistry, Yale School of Medicine, New Haven, Connecticut, United States of America
- Yale Cancer Center, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
35
|
Wei M, He Q, Yang Z, Wang Z, Zhang Q, Liu B, Gu Q, Su L, Yu Y, Zhu Z, Zhang G. Integrity of the LXXLL motif in Stat6 is required for the inhibition of breast cancer cell growth and enhancement of differentiation in the context of progesterone. BMC Cancer 2014; 14:10. [PMID: 24401087 PMCID: PMC4021501 DOI: 10.1186/1471-2407-14-10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 09/17/2013] [Indexed: 11/13/2022] Open
Abstract
Background Progesterone is essential for the proliferation and differentiation of mammary gland epithelium. Studies of breast cancer cells have demonstrated a biphasic progesterone response consisting of an initial proliferative burst followed by sustained growth arrest. However, the transcriptional factors acting with the progesterone receptor (PR) to mediate the effects of progesterone on mammary cell growth and differentiation remain to be determined. Recently, it was demonstrated that signal transducer and activator of transcription 6 (Stat6) is a cell growth suppressor. Similar to progesterone-bound PR, Stat6 acts by inducing the expression of the G1 cyclin-dependent kinase inhibitors p21 and p27. The possible interaction between Stat6 and progesterone pathways in mammary cells was therefore investigated in the present study. Methods ChIP and luciferase were assayed to determine whether Stat6 induces p21 and p27 expression by recruitment at the proximal Sp1-binding sites of the gene promoters. Immunoprecipitation and Western blotting were performed to investigate the interaction between Stat6 and PR-B. The cellular DNA content and cell cycle distribution in breast cancer cells were analyzed by FACS. Results We found that Stat6 interacts with progesterone-activated PR in T47D cells. Stat6 synergizes with progesterone-bound PR to transactivate the p21 and p27 gene promoters at the proximal Sp1-binding sites. Moreover, Stat6 overexpression and knockdown, respectively, increased or prevented the induction of p21 and p27 gene expression by progesterone. Stat6 knockdown also abolished the inhibitory effects of progesterone on pRB phosphorylation, G1/S cell cycle progression, and cell proliferation. In addition, knockdown of Stat6 expression prevented the induction of breast cell differentiation markers, previously identified as progesterone target genes. Finally, Stat6 gene expression levels increased following progesterone treatment, indicating a positive auto-regulatory loop between PR and Stat6. Conclusions Taken together, these data identify Stat6 as a coactivator of PR mediating the growth-inhibitory and differentiation effects of progesterone on breast cancer cells.
Collapse
Affiliation(s)
- Min Wei
- Breast Department, International Peace Maternity and Child Health Hospital, Shanghai Jiaotong University, Shanghai 200030, People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Xiong F, Jiang M, Huang Z, Chen M, Chen K, Zhou J, Yin L, Tang Y, Wang M, Ye L, Zhan Z, Duan J, Fu H, Zhang X. A novel herbal formula induces cell cycle arrest and apoptosis in association with suppressing the PI3K/AKT pathway in human lung cancer A549 cells. Integr Cancer Ther 2013; 13:152-60. [PMID: 24105357 DOI: 10.1177/1534735413503544] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
AIM OF THE STUDY In recent years, the incidence of lung cancer, as well as the mortality rate from this disease, has increased. Moreover, because of acquired drug resistance and adverse side effects, the effectiveness of current therapeutics used for the treatment of lung cancer has decreased significantly. Chinese medicine has been shown to have significant antitumor effects and is increasingly being used for the treatment of cancer. However, as the mechanisms of action for many Chinese medicines are undefined, the application of Chinese medicine for the treatment of cancer is limited. The formula tested has been used clinically by the China National Traditional Chinese Medicine Master, Professor Zhonging Zhou for treatment of cancer. In this article, we examine the efficacy of Ke formula in the treatment of non-small cell lung cancer and elucidate its mechanism of action. METHODS A Balb/c nude mouse xenograft model using A549 cells was previously established. The mice were randomly divided into normal, mock, Ke, cisplatin (DDP), and co-formulated (Ke + DDP) groups. After 15 days of drug administration, the animals were sacrificed, body weight and tumor volume were recorded, and the tumor-inhibiting rate was calculated. A cancer pathway finder polymerase chain reaction array was used to monitor the expression of 88 genes in tumor tissue samples. The potential antiproliferation mechanism was also investigated by Western blot analysis. RESULTS Ke formula minimized chemotherapy-related weight loss in tumor-bearing mice without exhibiting distinct toxicity. Ke formula also inhibited tumor growth, which was associated with the downregulation of genes in the PI3K/AKT, MAPK, and WNT/β-catenin pathways. The results from Western blot analyses further indicated that Ke blocked the cell cycle progression at the G1/S phase and induced apoptosis mainly via the PI3K/AKT pathway. CONCLUSION Ke formula inhibits tumor growth in an A549 xenograft mouse model with no obvious side effects. Moreover, Ke exhibits synergistic antitumor effects when combined with DDP. The mechanism of action of Ke is to induce cell cycle arrest and apoptosis by suppressing the PI3K/AKT pathway. Further research will be required to determine the mechanism of action behind the synergistic effect of Ke and DDP.
Collapse
Affiliation(s)
- Fei Xiong
- Nanjing University of Chinese Medicine, Nanjing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Vasquez YM, DeMayo FJ. Role of nuclear receptors in blastocyst implantation. Semin Cell Dev Biol 2013; 24:724-35. [PMID: 23994285 DOI: 10.1016/j.semcdb.2013.08.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/12/2013] [Accepted: 08/13/2013] [Indexed: 12/14/2022]
Abstract
The regulation of blastocyst implantation in the uterus is orchestrated by the ovarian hormones estrogen and progesterone. These hormones act via their nuclear receptors to direct the transcriptional activity of the endometrial compartments and create a defined period in which the uterus is permissive to embryo implantation termed the "window of receptivity". Additional members of the nuclear receptor family have also been described to have a potential role in endometrial function. Much of what we know about the function of these nuclear receptors during implantation we have learned from the use of mouse models. Transgenic murine models with targeted gene ablation have allowed us to identify a complex network of paracrine signaling between the endometrial epithelium and stroma. While some of the critical molecules have been identified, the mechanism underlying the intricate communication between endometrial compartments during the implantation window has not been fully elucidated. Defining this mechanism will help identify markers of a receptive uterine environment, ultimately providing a useful tool to help improve the fertility outlook for reproductively challenged couples. The aim of this review is to outline our current understanding of how nuclear receptors and their effector molecules regulate blastocyst implantation in the endometrium.
Collapse
Affiliation(s)
- Y M Vasquez
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
38
|
Baranda-Avila N, Mendoza-Rodríguez CA, Morimoto S, Camacho-Arroyo I, Guerra-Araiza C, Langley E, Cerbón M. Agonistic activity of ICI 182 780 on activation of GSK 3β/AKT pathway in the rat uterus during the estrous cycle. Steroids 2013; 78:717-25. [PMID: 23583603 DOI: 10.1016/j.steroids.2013.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 03/11/2013] [Accepted: 03/21/2013] [Indexed: 02/02/2023]
Abstract
We examined the ability of ICI 182,780 (ICI) to block uterine cell proliferation via protein kinase b/AKT pathway in the uterus of the rat during the estrous cycle. Intact rats, with regular estrous cycles, received a subcutaneous (s.c.) injection of either vehicle or ICI at 08:00 h on the day of proestrus or at 00:00 h on the day of estrus and sacrificed at 13:00 h of metaestrus. Estradiol (E₂) and progesterone (P₄) plasma levels were measured by radioimmunoassay. Both ICI treatments, induced a significant decrease (p<0.01) in uterine estrogen receptor alpha (ERα) content, had no effect on uterine progesterone receptor (PR) protein expression and caused marked nuclear localization of cyclin D1, in both luminal and glandular uterine epithelium, as compared to vehicle-treated animals. Furthermore, we detected that ICI treatment induced glycogen synthase kinase (Gsk3-β) Ser 9 phosphorylation, which correlates with cyclin D1 nuclear localization. However, some differences were observed between the two different time schedules of administration. We observed that the administration of ICI at 08:00 h on proestrus day produced a 15% inhibition of luminal epithelial cell proliferation, reduced uterine wet weight by 21% and caused reduction of Akt phosphorylation at Ser 473 as compared to vehicle-treated animals, whereas ICI treatment at 00:00 h on estrus day had no effect on these parameters. The overall results indicate that ICI may exert agonistic and antagonistic effects on uterine cell proliferation through differential activation of the Akt pathway depending on the administration period during the estrous cycle, and indicates that the mechanism of cell proliferation during the physiological conditions of the estrous cycle, is under a different and more complex regulation than in the ovariectomized + E₂ animal model.
Collapse
Affiliation(s)
- Noemi Baranda-Avila
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de Mexico, Mexico D.F. 04510, Mexico
| | | | | | | | | | | | | |
Collapse
|
39
|
Nozaki R, Murata S, Nowatari T, Maruyama T, Ikeda N, Kawasaki T, Fukunaga K, Ohkohchi N. Effects of thrombopoietin on growth of hepatocellular carcinoma: Is thrombopoietin therapy for liver disease safe or not? Hepatol Res 2013; 43:610-20. [PMID: 23157389 DOI: 10.1111/hepr.12006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 09/19/2012] [Accepted: 10/15/2012] [Indexed: 12/13/2022]
Abstract
AIM Liver cirrhosis (LC) is the end stage of chronic liver disease. No definitive pharmacological treatment is currently available. We previously reported that thrombopoietin (TPO) promoted liver regeneration and improved liver cirrhosis by increasing platelet count. TPO is therefore considered to be a therapeutic agent for LC; however, it is unclear whether TPO has proliferative effects on hepatocellular carcinoma (HCC), which arises frequently in cirrhotic livers. In this study, we examined the effects of TPO on growth of HCC. METHODS Expression of the TPO receptor, myeloproliferative leukemia virus oncogene (MPL) was examined in various liver tumor cell lines and liver cell types. In an in vitro study, the effects of TPO on signal transduction, cell proliferation, migration and invasion were examined in Huh7 cells, in which MPL is highly expressed. In an in vivo study, we subcutaneously transplanted Huh7 cells into nude mice that were divided into a TPO-treated group and a control group, and the tumor volume of each group was measured. RESULTS MPL was expressed strongly in hepatocytes but not in other cell types. Among liver tumor cell lines, Huh7 showed the highest expression of MPL. In Huh7, the addition of TPO activated Akt phosphorylation but not cell proliferation, migration or invasion. In the mouse experiment, there was no significant difference in tumor volume between the two groups. CONCLUSION TPO had no proliferative effect on HCC in vitro or in vivo, and could therefore be useful in the treatment of liver cirrhosis.
Collapse
Affiliation(s)
- Reiji Nozaki
- Department of Surgery, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Seo MK, Cho HY, Lee CH, Koo KA, Park YK, Lee JG, Lee BJ, Park SW, Kim YH. Antioxidant and Proliferative Activities of Bupleuri Radix Extract Against Serum Deprivation in SH-SY5Y Cells. Psychiatry Investig 2013; 10:81-8. [PMID: 23483021 PMCID: PMC3590436 DOI: 10.4306/pi.2013.10.1.81] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 11/06/2012] [Accepted: 11/06/2012] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE Bupleuri Radix (BR) is a major component of several Oriental herbal medicines used to treat stress and mental illness. There are evidences that antidepressant drugs modulate oxidative damage implicated in the pathophysiology of neuropsychiatric disorder, including depression. The aim of the present study was to investigate antioxidant and proliferative effects of BR against oxidative stress induced by serum deprivation in SH-SY5Y cells. METHODS We examined the antioxidant effects of BR on a number of measures, including cell viability, formation of reactive oxygen species (ROS), superoxide dismutase (SOD) activity and levels of both Bcl-2 and Bax. We also investigated the effects of BR on cell proliferation using the bromodeoxyuridine (BrdU) assay, and used Western blot analysis to measure changes in expression of the cell cycle phase regulators. RESULTS 1) Serum deprivation significantly induced the loss of cell viability, the formation of ROS, the reduction of SOD activity, down-regulation of Bcl-2 expression and up-regulation of Bax expression. However, BR extract reversed these effects in dose-dependent manner. 2) Serum deprivation significantly reduced cell proliferation. Western blot analysis revealed that serum deprivation significantly decreased cyclinD1 and phosphorylated retinoblastoma (pRb) expression, and increased p27 expression. On the other hand, BR dose dependently reversed these effects. CONCLUSION This study suggests that aqueous extract of BR may exert potent antioxidant effects and also play an important role in regulating cell cycle progression during neurogenesis. These effects of BR may be a potentially important mechanism of antidepressant underlying the observed antioxidant and proliferative effects.
Collapse
Affiliation(s)
- Mi Kyoung Seo
- Department of Psychiatry, Inje University School of Medicine, Busan, Republic of Korea
- Paik Institute for Clinical Research, Inje University, Busan, Republic of Korea
| | - Hye Yeon Cho
- Paik Institute for Clinical Research, Inje University, Busan, Republic of Korea
| | - Chan Hong Lee
- Paik Institute for Clinical Research, Inje University, Busan, Republic of Korea
| | - Kyung Ah Koo
- Department of Biological Science, University of the Science in Philadelphia, Philadelphia, PA, USA
| | - Yong Ki Park
- College of Oriental Medicine, Dongguk University, Gyeongju, Republic of Korea
| | - Jung Goo Lee
- Department of Psychiatry, Inje University School of Medicine, Busan, Republic of Korea
- Department of Psychiatry, Haeundae Paik Hospital, Inje University, Busan, Republic of Korea
- Paik Institute for Clinical Research, Inje University, Busan, Republic of Korea
| | - Bong Ju Lee
- Department of Psychiatry, Inje University School of Medicine, Busan, Republic of Korea
- Department of Psychiatry, Haeundae Paik Hospital, Inje University, Busan, Republic of Korea
| | - Sung Woo Park
- Paik Institute for Clinical Research, Inje University, Busan, Republic of Korea
| | - Young Hoon Kim
- Department of Psychiatry, Inje University School of Medicine, Busan, Republic of Korea
- Department of Psychiatry, Haeundae Paik Hospital, Inje University, Busan, Republic of Korea
- Paik Institute for Clinical Research, Inje University, Busan, Republic of Korea
| |
Collapse
|
41
|
Zhang S, Lin H, Kong S, Wang S, Wang H, Wang H, Armant DR. Physiological and molecular determinants of embryo implantation. Mol Aspects Med 2013; 34:939-80. [PMID: 23290997 DOI: 10.1016/j.mam.2012.12.011] [Citation(s) in RCA: 356] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 12/25/2012] [Accepted: 12/26/2012] [Indexed: 01/19/2023]
Abstract
Embryo implantation involves the intimate interaction between an implantation-competent blastocyst and a receptive uterus, which occurs in a limited time period known as the window of implantation. Emerging evidence shows that defects originating during embryo implantation induce ripple effects with adverse consequences on later gestation events, highlighting the significance of this event for pregnancy success. Although a multitude of cellular events and molecular pathways involved in embryo-uterine crosstalk during implantation have been identified through gene expression studies and genetically engineered mouse models, a comprehensive understanding of the nature of embryo implantation is still missing. This review focuses on recent progress with particular attention to physiological and molecular determinants of blastocyst activation, uterine receptivity, blastocyst attachment and uterine decidualization. A better understanding of underlying mechanisms governing embryo implantation should generate new strategies to rectify implantation failure and improve pregnancy rates in women.
Collapse
Affiliation(s)
- Shuang Zhang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; Graduate School of the Chinese Academy of Sciences, Beijing 100039, PR China
| | | | | | | | | | | | | |
Collapse
|
42
|
Toh MF, Mendonca E, Eddie SL, Endsley MP, Lantvit DD, Petukhov PA, Burdette JE. Kaempferol Exhibits Progestogenic Effects in Ovariectomized Rats. ACTA ACUST UNITED AC 2013; 5:136. [PMID: 25844270 DOI: 10.4172/2157-7536.1000136] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Progesterone (P4) plays a central role in women's health. Synthetic progestins are used clinically in hormone replacement therapy (HRT), oral contraceptives, and for the treatment of endometriosis and infertility. Unfortunately, synthetic progestins are associated with side effects, including cardiovascular disease and breast cancer. Botanical dietary supplements are widely consumed for the alleviation of a variety of gynecological issues, but very few studies have characterized natural compounds in terms of their ability to bind to and activate progesterone receptors (PR). Kaempferol is a flavonoid that functions as a non-steroidal selective progesterone receptor modulator (SPRM) in vitro. This study investigated the molecular and physiological effects of kaempferol in the ovariectomized rat uteri. METHODS Since genistein is a phytoestrogen that was previously demonstrated to increase uterine weight and proliferation, the ability of kaempferol to block genistein action in the uterus was investigated. Analyses of proliferation, steroid receptor expression, and induction of well-established PR-regulated targets Areg and Hand2 were completed using histological analysis and qPCR gene induction experiments. In addition, kaempferol in silico binding analysis was completed for PR. The activation of estrogen and androgen receptor signalling was determined in vitro. RESULTS Molecular docking analysis confirmed that kaempferol adopts poses that are consistent with occupying the ligand-binding pocket of PRA. Kaempferol induced expression of PR regulated transcriptional targets in the ovariectomized rat uteri, including Hand2 and Areg. Consistent with progesterone-l ke activity, kaempferol attenuated genistein-induced uterine luminal epithelial proliferation without increasing uterine weight. Kaempferol signalled without down regulating PR expression in vitro and in vivo and without activating estrogen and androgen receptors. CONCLUSION Taken together, these data suggest that kaempferol is a unique natural PR modulator that activates PR signaling in vitro and in vivo without triggering PR degradation.
Collapse
Affiliation(s)
- May Fern Toh
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Emma Mendonca
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Sharon L Eddie
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Michael P Endsley
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Daniel D Lantvit
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Pavel A Petukhov
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Joanna E Burdette
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
43
|
Zhang S, Kong S, Lu J, Wang Q, Chen Y, Wang W, Wang B, Wang H. Deciphering the molecular basis of uterine receptivity. Mol Reprod Dev 2012; 80:8-21. [PMID: 23070972 DOI: 10.1002/mrd.22118] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 09/26/2012] [Indexed: 11/11/2022]
Abstract
Uterine receptivity is defined as a limited time period during which the uterus enters into an appropriately differentiated state that is ready for the initiation of implantation by competent blastocysts. Although various cellular aspects and molecular pathways involved in uterine receptivity have been identified by gene expression studies and genetically engineered mouse models, a comprehensive understanding of the window of uterine receptivity is still missing. This review focuses on the recent progress in this area, with particular focus on the molecular basis of stromal-epithelial dialogue and crosstalk between the blastocyst and the uterus during implantation. A better understanding of the underlying mechanisms governing the window of uterine receptivity is hoped to generate new strategies to correct implantation failure and to improve pregnancy rates in women.
Collapse
Affiliation(s)
- Shuang Zhang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Zhang L, Patterson AL, Zhang L, Teixeira JM, Pru JK. Endometrial stromal beta-catenin is required for steroid-dependent mesenchymal-epithelial cross talk and decidualization. Reprod Biol Endocrinol 2012; 10:75. [PMID: 22958837 PMCID: PMC3462133 DOI: 10.1186/1477-7827-10-75] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 09/04/2012] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Beta-catenin is part of a protein complex associated with adherens junctions. When allowed to accumulate to sufficient levels in its dephosphorylated form, beta-catenin serves as a transcriptional co-activator associated with a number of signaling pathways, including steroid hormone signaling pathways. METHODS To investigate the role of beta-catenin in progesterone (P₄) signaling and female reproductive physiology, conditional ablation of Ctnnb1 from the endometrial mesenchymal (i.e. stromal and myometrial), but not epithelial, compartment was accomplished using the Amhr2-Cre mice. Experiments were conducted to assess the ability of mutant female mice to undergo pregnancy and pseudopregnancy by or through oil-induced decidualization. The ability of uteri from mutant female mice to respond to estrogen (E₂) and P₄ was also determined. RESULTS Conditional deletion of Ctnnb1 from the mesenchymal compartment of the uterus resulted in infertility stemming, in part, from complete failure of the uterus to decidualize. E₂-stimulated epithelial cell mitosis and edematization were not altered in mutant uteri indicating that the mesenchyme is capable of responding to E₂. However, exposure of ovariectomized mutant female mice to a combined E₂ and P₄ hormone regimen consistent with early pregnancy revealed that mesenchymal beta-catenin is essential for indirectly opposing E₂-induced epithelial proliferation by P₄ and in some mice resulted in development of endometrial metaplasia. Lastly, beta-catenin is also required for the induced expression of genes that are known to play a fundamental role in decidualization such as Ihh, Ptch1, Gli1 and Muc1 CONCLUSIONS Three salient points derive from these studies. First, the findings demonstrate a mechanistic linkage between the P₄ and beta-catenin signaling pathways. Second, they highlight an under appreciated role for the mesenchymal compartment in indirectly mediating P₄ signaling to the epithelium, a process that intimately involves mesenchymal beta-catenin. Third, the technical feasibility of deleting genes in the mesenchymal compartment of the uterus in an effort to understand decidualization and post-natal interactions with the overlying epithelium has been demonstrated. It is concluded that beta-catenin plays an integral role in selective P₄-directed epithelial-mesenchymal communication in both the estrous cycling and gravid uterus.
Collapse
Affiliation(s)
- Ling Zhang
- Vincent Center for Reproductive Biology, Vincent Obstetrics and Gynecology Service, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, 02114, USA
| | - Amanda L Patterson
- Department of Animal Sciences, Center for Reproductive Biology, Washington State University, Pullman, WA, 99164, USA
| | - Lihua Zhang
- Vincent Center for Reproductive Biology, Vincent Obstetrics and Gynecology Service, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, 02114, USA
| | - Jose M Teixeira
- Vincent Center for Reproductive Biology, Vincent Obstetrics and Gynecology Service, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, 02114, USA
| | - James K Pru
- Department of Animal Sciences, Center for Reproductive Biology, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
45
|
Comprehensive review on the HSC70 functions, interactions with related molecules and involvement in clinical diseases and therapeutic potential. Pharmacol Ther 2012; 136:354-74. [PMID: 22960394 DOI: 10.1016/j.pharmthera.2012.08.014] [Citation(s) in RCA: 195] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 08/14/2012] [Indexed: 12/28/2022]
Abstract
Heat shock cognate protein 70 (HSC70) is a constitutively expressed molecular chaperone which belongs to the heat shock protein 70 (HSP70) family. HSC70 shares some of the structural and functional similarity with HSP70. HSC70 also has different properties compared with HSP70 and other heat shock family members. HSC70 performs its full functions by the cooperation of co-chaperones. It interacts with many other molecules as well and regulates various cellular functions. It is also involved in various diseases and may become a biomarker for diagnosis and potential therapeutic targets for design, discovery, and development of novel drugs to treat various diseases. In this article, we provide a comprehensive review on HSC70 from the literatures including the basic general information such as classification, structure and cellular location, genetics and function, as well as its protein association and interaction with other proteins. In addition, we also discussed the relationship of HSC70 and related clinical diseases such as cancer, cardiovascular, neurological, hepatic and many other diseases and possible therapeutic potential and highlight the progress and prospects of research in this field. Understanding the functions of HSC70 and its interaction with other molecules will help us to reveal other novel properties of this protein. Scientists may be able to utilize this protein as a biomarker and therapeutic target to make significant advancement in scientific research and clinical setting in the future.
Collapse
|
46
|
Liu F, Gao X, Yu H, Yuan D, Zhang J, He Y, Yue L. The role of progesterone and its receptor on cyclin G1 expression in endometrial carcinoma cells. Reprod Sci 2012; 19:1205-10. [PMID: 22649121 DOI: 10.1177/1933719112446073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cyclin G1 protein is expressed in normal endometrial epithelial cells in a progesterone-dependent manner. It is an important mediator of the inhibiting effect of progesterone on cell proliferation. Moreover, the expression of cyclin G1 is also found to be decreased in human endometrial carcinoma cells (ECCs). To study the mechanism of decrease in the expression levels of cyclin G1, 3 ECC cell lines, Ishikawa, HEC-1-B, and KLE cells were treated with progesterone (P(4)). The KLE cells, in which progesterone receptor (PR) expression was absent, were transfected with PR-expressing plasmid before treatment with P(4). The results showed that cyclin G1 expression increased in Ishikawa and HEC-1-B cells after treatment with P(4), additionally the cell proliferation was suppressed but not in KLE cells. When the PR-expressing plasmid was transfected into KLE cells, the effect of P(4) was restored. Our data suggest that the deficiency of progesterone and its receptors is an important cause of the decreased expression of cyclin G1 in endometrial carcinoma, which may account for carcinogenesis and development of endometrial carcinomas.
Collapse
Affiliation(s)
- Fang Liu
- Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China
| | | | | | | | | | | | | |
Collapse
|
47
|
KLF15 negatively regulates estrogen-induced epithelial cell proliferation by inhibition of DNA replication licensing. Proc Natl Acad Sci U S A 2012; 109:E1334-43. [PMID: 22538816 DOI: 10.1073/pnas.1118515109] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In the epithelial compartment of the uterus, estradiol-17β (E(2)) induces cell proliferation while progesterone (P(4)) inhibits this response and causes differentiation of the cells. In this study, we identified the mechanism whereby E(2) and P(4) reciprocally regulate the expression of minichromosome maintenance (MCM)-2, a protein that is an essential component of the hexameric MCM-2 to 7 complex required for DNA synthesis initiation. We show in the uterine epithelium that Kruppel-like transcription (KLF) factors, KLF 4 and 15, are inversely expressed; most importantly, they bind to the Mcm2 promoter under the regulation of E(2) and P(4)E(2), respectively. After P(4)E(2) exposure and in contrast to E(2) treated mice, the Mcm2 promoter displays increased histone 3 (H3) methylation and the recruitment of histone deacetylase 1 and 3 with the concomitant deacetylation of H3. This increased methylation and decreased acetylation is associated with an inhibition of RNA polymerase II binding, indicating an inactive Mcm2 promoter following P(4)E(2) treatment. Using transient transfection assays in the Ishikawa endometrial cell line, we demonstrate that Mcm2 promoter activity is hormonally stimulated by E(2) and that KLF15 inhibits this E(2) enhanced transcription. KLF15 expression also blocks Ishikawa cell proliferation through inhibition of MCM2 protein level. Importantly, in vivo expression of KLF15 in an estrogenized uterus mimics P(4)'s action by inhibiting E(2)-induced uterine epithelial MCM-2 expression and DNA synthesis. KLF15 is therefore a downstream physiological mediator of progesterone's cell cycle inhibitory action in the uterine epithelium.
Collapse
|
48
|
Joshi A, Wang H, Jiang G, Douglas W, Chan JSY, Korach KS, Ellenson LH. Endometrial tumorigenesis in Pten(+/-) mice is independent of coexistence of estrogen and estrogen receptor α. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:2536-47. [PMID: 22503752 DOI: 10.1016/j.ajpath.2012.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 01/23/2012] [Accepted: 03/01/2012] [Indexed: 10/28/2022]
Abstract
Numerous studies support the role for mutations in the phosphatase and tensin homologue (PTEN) tumor suppressor gene and unopposed estrogen stimulation in the pathogenesis of uterine endometrioid carcinoma. However, the relation between PTEN signaling and estrogen/estrogen receptor in endometrial tumorigenesis remains unresolved. We used genetically engineered mice as a model to address this relation. Mice with a single deleted Pten allele (Pten(+/-)) spontaneously develop complex atypical hyperplasia and ~20% develop endometrial cancer. To determine the effect of removing endogenous estrogen, we performed oophorectomies on Pten(+/-) mice. Although there was a reduction in the number and severity of hyperplastic lesions, the endometrial phenotype persisted, suggesting that Pten mutation, independent of estrogen, can initiate the development of complex atypical hyperplasia. To recapitulate the situation in women with unopposed estrogen, we implanted 17β-estradiol pellets in adult female Pten heterozygous mice, resulting in increased carcinoma incidence. Because studies have shown that estrogen largely acts on the endometrium via estrogen receptor ERα, we generated Pten(+/-)ERα(-/-) mice. Strikingly, 88.9% of Pten(+/-)ERα(-/-) mice developed endometrial hyperplasia/carcinoma. Furthermore, Pten(+/-)ERα(-/-) mice showed a higher incidence of in situ and invasive carcinoma, suggesting that endometrial tumorigenesis can progress in the absence of ERα. Thus, the relation between Pten alterations and estrogen signaling in the development of endometrial carcinoma is complex; the results presented herein have important implications for the treatment of endometrial hyperplasia and carcinoma in women.
Collapse
Affiliation(s)
- Ayesha Joshi
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Kaore SN, Langade DK, Yadav VK, Sharma P, Thawani VR, Sharma R. Novel actions of progesterone: what we know today and what will be the scenario in the future? J Pharm Pharmacol 2012; 64:1040-62. [DOI: 10.1111/j.2042-7158.2012.01464.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Abstract
Objectives
This article is aimed to review the novel actions of progesterone, which otherwise is considered as a female reproductive hormone. The article focuses on its important physiological actions in males too and gives an overview of its novel perspectives in disorders of central and peripheral nervous system.
Key findings
Progesterone may have a potential benefit in treatment of traumatic brain injury, various neurological disorders and male related diseases like benign prostatic hypertrophy (BPH), prostate cancer and osteoporosis. Norethisterone (NETA), a progesterone derivative, decreases bone mineral loss in male castrated mice suggesting its role in osteoporosis. In the future, progesterone may find use as a male contraceptive too, but still needs confirmatory trials for safety, tolerability and acceptability. Megestrol acetate, a progesterone derivative is preferred in prostatic cancer. Further, it may find utility in nicotine addiction, traumatic brain injury (recently entered Phase III trial) and Alzheimer's disease, diabetic neuropathy and crush injuries. Studies also suggest role of progesterone in stroke, for which further clinical trials are needed. The non genomic actions of progesterone may be in part responsible for these novel actions.
Summary
Although progesterone has shown promising role in various non-hormonal benefits, further clinical studies are needed to prove its usefulness in conditions like stroke, traumatic brain injury, neuropathy and crush injury. In male related illnesses like BPH and prostatic Ca, it may prove a boon in near future. New era of hormonal male contraception may be initiated by use of progesterone along with testosterone.
Collapse
Affiliation(s)
- Shilpa N Kaore
- Department of Pharmacology, Peoples College of Medical Sciences & Research Center, Bhopal, Madhya Pradesh, India
| | - Deepak Kumar Langade
- Department of Pharmacology, Peoples College of Medical Sciences & RC, Bhopal, Madhya Pradesh, India
| | - Vijay Kumar Yadav
- Department of Pharmacology, Peoples College of Medical Sciences & RC, Bhopal, Madhya Pradesh, India
| | - Parag Sharma
- Department of Pharmacology, Peoples College of Medical Sciences & RC, Bhopal, Madhya Pradesh, India
| | - Vijay R Thawani
- Department of Pharmacology, VCSG GMSRI, Srinagar and Pauri Garhwal, Uttarakhand, India
| | - Raj Sharma
- Department of Pharmacology, Govt medical College, Jagdalpur, Chhatisgarh, India
| |
Collapse
|
50
|
Franco HL, Rubel CA, Large MJ, Wetendorf M, Fernandez-Valdivia R, Jeong JW, Spencer TE, Behringer RR, Lydon JP, Demayo FJ. Epithelial progesterone receptor exhibits pleiotropic roles in uterine development and function. FASEB J 2011; 26:1218-27. [PMID: 22155565 DOI: 10.1096/fj.11-193334] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The ovarian steroid progesterone, acting through the progesterone receptor (PR), coordinates endometrial epithelial-stromal cell communication, which is critical for its development and function. PR expression in these cellular compartments is under tight temporal and endocrine control. Although ex vivo studies demonstrated the importance of stromal PR expression, they failed to show a role for epithelial PR in uterine function. Here, the in vivo role of PR in the uterine epithelium is defined using floxed PR (PR(f/f)) mice crossed to Wnt7a-Cre mice. Progesterone was unable to stimulate the expression of its epithelial target genes, including Ihh, in the Wnt7a-Cre(+)PR(f/-) mice. Analysis was conducted on Ihh to determine whether PR directly regulates epithelial gene transcription. ChIP-on-chip analysis identified PR binding sites in the 5'-flanking region of Ihh. Cotransfection of the proximal Ihh promoter with PR demonstrated that PR directly regulates Ihh transcription. Female Wnt7a-Cre(+)PR(f/-) mice are infertile due to defects in embryo attachment, stromal cell decidualization, and the inability to cease estrogen-induced epithelial cell proliferation. Finally, progesterone was unable to inhibit neonatal endometrial glandular development in Wnt7a-Cre(+)PR(f/-) mice. Thus, epithelial PR is necessary for the regulation of progesterone epithelial target gene expression, as well as uterine function and development.
Collapse
Affiliation(s)
- Heather L Franco
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|