1
|
Zhou Z, Sicairos B, Zhou J, Du Y. Proteomic Analysis Reveals Major Proteins and Pathways That Mediate the Effect of 17-β-Estradiol in Cell Division and Apoptosis in Breast Cancer MCF7 Cells. J Proteome Res 2024; 23:4835-4848. [PMID: 39392593 DOI: 10.1021/acs.jproteome.4c00102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Despite extensive research, the genes/proteins and pathways responsible for the physiological effects of estrogen remain elusive. In this study, we determined the effect of estrogen on global protein expression in breast cancer MCF7 cells using a proteomic method. The expression of 77 cytosolic, 74 nuclear, and 81 membrane/organelle proteins was significantly altered by 17-β-estradiol (E2). Protein enrichment analyses suggest that E2 may stimulate cell division primarily by promoting the G1 to S phase transition and advancing the G2/M checkpoint. The effect of E2 on cell survival was complex, as it could simultaneously enhance and inhibit apoptosis. Bioinformatics analysis suggests that E2 may enhance apoptosis by promoting the accumulation of the pore-forming protein Bax in the mitochondria and inhibit apoptosis by activating the PI3K/AKT/mTOR signaling pathway. We verified the activation of the PI3K signaling and the accumulation of Bax in the membrane/organelle fraction in E2-treated cells using immunoblotting. Treatment of MCF7 cells with E2 and the PI3K inhibitor Ly294002 significantly enhanced apoptosis compared to those treated with E2 alone, suggesting that combining estrogen with a PI3K inhibitor could be a promising strategy for treating ERα-positive breast cancer. Interestingly, many of the E2-upregulated proteins contained the HEAT, KH, and RRM domains.
Collapse
Affiliation(s)
- Zhenqi Zhou
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Brihget Sicairos
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Jianhong Zhou
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Yuchun Du
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
2
|
Tylden ES, Delgado AB, Lukic M, Moi L, Busund LTR, Pedersen MI, Lombardi AP, Olsen KS. Roles of miR-20a-5p in breast cancer based on the clinical and multi-omic (CAMO) cohort and in vitro studies. Sci Rep 2024; 14:25022. [PMID: 39443510 PMCID: PMC11499649 DOI: 10.1038/s41598-024-75557-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
MicroRNAs are involved in breast cancer development and progression, holding potential as biomarkers and therapeutic targets or tools. The roles of miR-20a-5p, a member of the oncogenic miR-17-92 cluster, remain poorly understood in the context of breast cancer. In this study, we elucidate the role of miR-20a-5p in breast cancer by examining its associations with breast cancer risk factors and clinicopathological features, and its functional roles in vitro. Tissue microarrays from 313 CAMO cohort breast cancer surgical specimens were constructed, in situ hybridization was performed and miR-20a-5p expression was semiquantitatively scored in tumor stromal fibroblasts, and in the cytoplasm and nuclei of cancer cells. In vitro analysis of the effect of miR-20a-5p transfection on proliferation, migration and invasion was performed in three breast cancer cell lines. High stromal miR-20a-5p was associated with higher Ki67 expression, and higher odds of relapse, compared to low expression. Compared to postmenopausal women, women who were premenopausal at diagnosis had higher odds of high stromal and cytoplasmic miR-20a-5p expression. Cytoplasmic miR-20a-5p was significantly associated with tumor grade. In tumors with high cytoplasmic miR-20a-5p expression compared to low expression, there was a tendency towards having a basal-like subtype and high Ki67. In contrast, high nuclear miR-20a-5p in cancer cells was associated with smaller tumor size and lower odds of lymph node metastasis, compared to low nuclear expression. Transfection with miR-20a-5p in breast cancer cell lines led to increased migration and invasion in vitro. While the majority of our results point towards an oncogenic role, some of our findings indicate that the associations of miR-20a-5p with breast cancer related risk factors and outcomes may vary based on tissue- and subcellular location. Larger studies are needed to validate our findings and further investigate the clinical utility of miR-20a-5p.
Collapse
Affiliation(s)
- Eline Sol Tylden
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromso, Norway
| | - André Berli Delgado
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromso, Norway
| | - Marko Lukic
- Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromso, Norway
| | - Line Moi
- Department of Clinical Pathology, University Hospital of North Norway, Tromso, Norway
| | - Lill-Tove Rasmussen Busund
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromso, Norway
- Department of Clinical Pathology, University Hospital of North Norway, Tromso, Norway
| | - Mona Irene Pedersen
- Department of Clinical Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromso, Norway
| | - Ana Paola Lombardi
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromso, Norway
| | - Karina Standahl Olsen
- Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromso, Norway.
| |
Collapse
|
3
|
Majer AD, Hua X, Katona BW. Menin in Cancer. Genes (Basel) 2024; 15:1231. [PMID: 39336822 PMCID: PMC11431421 DOI: 10.3390/genes15091231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
The protein menin is encoded by the MEN1 gene and primarily serves as a nuclear scaffold protein, regulating gene expression through its interaction with and regulation of chromatin modifiers and transcription factors. While the scope of menin's functions continues to expand, one area of growing investigation is the role of menin in cancer. Menin is increasingly recognized for its dual function as either a tumor suppressor or a tumor promoter in a highly tumor-dependent and context-specific manner. While menin serves as a suppressor of neuroendocrine tumor growth, as seen in the cancer risk syndrome multiple endocrine neoplasia type 1 (MEN1) syndrome caused by pathogenic germline variants in MEN1, recent data demonstrate that menin also suppresses cholangiocarcinoma, pancreatic ductal adenocarcinoma, gastric adenocarcinoma, lung adenocarcinoma, and melanoma. On the other hand, menin can also serve as a tumor promoter in leukemia, colorectal cancer, ovarian and endometrial cancers, Ewing sarcoma, and gliomas. Moreover, menin can either suppress or promote tumorigenesis in the breast and prostate depending on hormone receptor status and may also have mixed roles in hepatocellular carcinoma. Here, we review the rapidly expanding literature on the role and function of menin across a broad array of different cancer types, outlining tumor-specific differences in menin's function and mechanism of action, as well as identifying its therapeutic potential and highlighting areas for future investigation.
Collapse
Affiliation(s)
- Ariana D Majer
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xianxin Hua
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bryson W Katona
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Lauby SC, Lapp HE, Salazar M, Semyrenko S, Chauhan D, Margolis AE, Champagne FA. Postnatal maternal care moderates the effects of prenatal bisphenol exposure on offspring neurodevelopmental, behavioral, and transcriptomic outcomes. PLoS One 2024; 19:e0305256. [PMID: 38861567 PMCID: PMC11166292 DOI: 10.1371/journal.pone.0305256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 05/28/2024] [Indexed: 06/13/2024] Open
Abstract
Bisphenols (BP), including BPA and "BPA-free" structural analogs, are commonly used plasticizers that are present in many plastics and are known endocrine disrupting chemicals. Prenatal exposure to BPA has been associated with negative neurodevelopmental and behavioral outcomes in children and in rodent models. Prenatal BPA exposure has also been shown to impair postnatal maternal care provisioning, which can also affect offspring neurodevelopment and behavior. However, there is limited knowledge regarding the biological effects of prenatal exposure to bisphenols other than BPA and the interplay between prenatal bisphenol exposure and postnatal maternal care on adult behavior. The purpose of the current study was to determine the interactive impact of prenatal bisphenol exposure and postnatal maternal care on neurodevelopment and behavior in rats. Our findings suggest that the effects of prenatal bisphenol exposure on eye-opening, adult attentional set shifting and anxiety-like behavior in the open field are dependent on maternal care in the first five days of life. Interestingly, maternal care might also attenuate the effects of prenatal bisphenol exposure on eye opening and adult attentional set shifting. Finally, transcriptomic profiles in male and female medial prefrontal cortex and amygdala suggest that the interactive effects of prenatal bisphenol exposure and postnatal maternal care converge on estrogen receptor signaling and are involved in biological processes related to gene expression and protein translation and synthesis. Overall, these findings indicate that postnatal maternal care plays a critical role in the expression of the effects of prenatal bisphenol exposure on neurodevelopment and adult behavior. Understanding the underlying biological mechanisms involved might allow us to identify potential avenues to mitigate the adverse effects of prenatal bisphenol exposure and improve health and well-being in human populations.
Collapse
Affiliation(s)
- Samantha C. Lauby
- Department of Psychology, College of Liberal Arts, University of Texas at Austin, Austin, Texas, United States of America
- Center for Molecular Carcinogenesis and Toxicology, University of Texas at Austin, Austin, Texas, United States of America
| | - Hannah E. Lapp
- Department of Psychology, College of Liberal Arts, University of Texas at Austin, Austin, Texas, United States of America
| | - Melissa Salazar
- Department of Psychology, College of Liberal Arts, University of Texas at Austin, Austin, Texas, United States of America
| | - Sofiia Semyrenko
- Department of Psychology, College of Liberal Arts, University of Texas at Austin, Austin, Texas, United States of America
| | - Danyal Chauhan
- Department of Psychology, College of Liberal Arts, University of Texas at Austin, Austin, Texas, United States of America
| | - Amy E. Margolis
- Department of Psychiatry, Columbia University Irving Medical Center, New York City, New York, United States of America
| | - Frances A. Champagne
- Department of Psychology, College of Liberal Arts, University of Texas at Austin, Austin, Texas, United States of America
- Center for Molecular Carcinogenesis and Toxicology, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
5
|
Sun T, Golestani R, Zhan H, Krishnamurti U, Harigopal M, Zhong M, Liang Y. Clinicopathologic Characteristics of MYC Copy Number Amplification in Breast Cancer. Int J Surg Pathol 2024:10668969241256109. [PMID: 38839260 DOI: 10.1177/10668969241256109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Introduction. MYC overexpression is a known phenomenon in breast cancer. This study investigates the correlation of MYC gene copy number amplification and MYC protein overexpression with coexisting genetic abnormalities and associated clinicopathologic features in breast cancer patients. Methods. The study analyzed data from 81 patients with localized or metastatic breast cancers using targeted next-generation sequencing and MYC immunohistochemical studies, along with pathological and clinical data. Results. Applying the criteria of MYC/chromosome 8 ratio ≥5, MYC copy number amplified tumors (n = 11, 14%) were associated with invasive ductal carcinoma (91% vs 68%, P = .048), poorly differentiated (grade 3, 64% vs 30%, P = .032), mitotically active (Nottingham mitotic score 3, 71% vs 20%, P = .004), estrogen receptor (ER)-negative (45% vs 12%, P = .008), and triple-negative (56% vs 12%, P = .013) compared to MYC non-amplified tumors. Among MYC-amplified breast cancer patients, those with triple-negative status showed significantly shorter disease-free survival time than non-triple negative MYC-amplified patients (median survival month: 25.5 vs 127.6, P = .049). MYC amplification is significantly associated with TP53 mutation (P = .007). The majority (10 of 11; 91%) of MYC-amplified tumors showed positive c-MYC immunostaining. Conclusion. Breast cancers with MYC copy number amplication display distinct clinicopathologic characteristics indicative of more aggressive behavior.
Collapse
Affiliation(s)
- Tong Sun
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Reza Golestani
- Department of Pathology, Cayuga Medical Center, Ithaca, NY, USA
| | - Haiying Zhan
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Uma Krishnamurti
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Malini Harigopal
- Department of Pathology, The Mount Sinai Hospital, New York, NY, USA
| | - Minghao Zhong
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Yuanxin Liang
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
6
|
Yip HYK, Shin SY, Chee A, Ang CS, Rossello FJ, Wong LH, Nguyen LK, Papa A. Integrative modeling uncovers p21-driven drug resistance and prioritizes therapies for PIK3CA-mutant breast cancer. NPJ Precis Oncol 2024; 8:20. [PMID: 38273040 PMCID: PMC10810864 DOI: 10.1038/s41698-024-00496-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/21/2023] [Indexed: 01/27/2024] Open
Abstract
Utility of PI3Kα inhibitors like BYL719 is limited by the acquisition of genetic and non-genetic mechanisms of resistance which cause disease recurrence. Several combination therapies based on PI3K inhibition have been proposed, but a way to systematically prioritize them for breast cancer treatment is still missing. By integrating published and in-house studies, we have developed in silico models that quantitatively capture dynamics of PI3K signaling at the network-level under a BYL719-sensitive versus BYL719 resistant-cell state. Computational predictions show that signal rewiring to alternative components of the PI3K pathway promote resistance to BYL719 and identify PDK1 as the most effective co-target with PI3Kα rescuing sensitivity of resistant cells to BYL719. To explore whether PI3K pathway-independent mechanisms further contribute to BYL719 resistance, we performed phosphoproteomics and found that selection of high levels of the cell cycle regulator p21 unexpectedly promoted drug resistance in T47D cells. Functionally, high p21 levels favored repair of BYL719-induced DNA damage and bypass of the associated cellular senescence. Importantly, targeted inhibition of the check-point inhibitor CHK1 with MK-8776 effectively caused death of p21-high T47D cells, thus establishing a new vulnerability of BYL719-resistant breast cancer cells. Together, our integrated studies uncover hidden molecular mediators causing resistance to PI3Kα inhibition and provide a framework to prioritize combination therapies for PI3K-mutant breast cancer.
Collapse
Affiliation(s)
- Hon Yan Kelvin Yip
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Sung-Young Shin
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Annabel Chee
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Ching-Seng Ang
- Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Fernando J Rossello
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, 3052, Australia
- Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, VIC, 3052, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Lee Hwa Wong
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Lan K Nguyen
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia.
| | - Antonella Papa
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
7
|
Roy P, Kandel R, Sawant N, Singh KP. Estrogen-induced reactive oxygen species, through epigenetic reprogramming, causes increased growth in breast cancer cells. Mol Cell Endocrinol 2024; 579:112092. [PMID: 37858609 DOI: 10.1016/j.mce.2023.112092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Despite the progress made in cancer diagnosis and treatment, breast cancer remains the second leading cause of cancer-related death among the women. Exposure to elevated levels of endogenous estrogen or environmental estrogenic chemicals is an important risk factor for breast cancer. Estrogen metabolites and ROS generated during estrogen metabolism are known to play a critical role in estrogen carcinogenesis. However, the molecular mechanisms through which estrogen-induced ROS regulate gene expression is not clear. Epigenetic changes of DNA methylation and histone modifications are known to regulate genes expression. Therefore, the objective of this study was to evaluate whether estrogen-induced ROS, through aberrant expression of epigenetic regulatory genes and epigenetic reprogramming, causes growth of breast cancer cells. Estrogen responsive MCF-7 and T47D human breast cancer cells were exposed to natural estrogen 17 beta-estradiol (E2) and synthetic estrogen Diethylstilbestrol (DES) both alone and in combination with antioxidant N-acetyl cysteine. Effects of NAC-mediated scavenging of estrogen-induced ROS on cell growth, gene expression, and histone modifications were measured. The result of MTT and cell cycle analysis revealed significant abrogation of E2 and DES-induced growth by scavenging ROS through NAC. E2 and DES caused significant changes in expression of epigenetic regulatory genes for DNA methylation and histone modifications as well as changes in both gene activating and repressive marks in the Histone H3. NAC restored the expression of epigenetic regulatory genes and changes in histone marks. Novel findings of this study suggest that estrogen can induce growth of breast cancer cells through ROS-dependent regulation of epigenetic regulatory genes and epigenetic reprogramming of histone marks.
Collapse
Affiliation(s)
- Priti Roy
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, 79409, USA
| | - Ramji Kandel
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, 79409, USA
| | - Neha Sawant
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, 79409, USA
| | - Kamaleshwar P Singh
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
8
|
Iwasaki T, Tokumori M, Matsubara M, Ojima F, Kamigochi K, Aizawa S, Ogoshi M, Kimura AP, Takeuchi S, Takahashi S. A regulatory mechanism of mouse kallikrein 1 gene expression by estrogen. Mol Cell Endocrinol 2023; 577:112044. [PMID: 37580010 DOI: 10.1016/j.mce.2023.112044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023]
Abstract
Tissue kallikrein 1 (Klk1) is a serine protease that degrades several proteins including insulin-like growth factor binding protein-3 and extracellular matrix molecules. Klk1 mRNA expression in the mouse uterus was increased by estradiol-17β (E2). The present study aimed to clarify the regulatory mechanism for Klk1 expression by estrogen. The promoter analysis of the 5'-flanking region of Klk1 showed that the minimal promoter of Klk1 existed in the -136/+24 region, and the estrogen-responsive region in the -433/-136 region. Tamoxifen increased Klk1 mRNA expression and the promoter activity, suggesting the involvement of AP-1 sites. Site-directed mutagenesis for the putative AP-1 sites in the -433/-136 region showed that the two putative AP-1 sites were involved in the regulation of Klk1 expression. Binding of estrogen receptor α (ERα) to the -433/-136 region was revealed by Chip assay. These results indicated that ERα bound the two putative AP-1 sites and transactivated Klk1 in the mouse uterus.
Collapse
Affiliation(s)
- Takumi Iwasaki
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Megumi Tokumori
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Misaki Matsubara
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Fumiya Ojima
- Department of Natural Sciences and Biology, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Kana Kamigochi
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Sayaka Aizawa
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Maho Ogoshi
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Atsushi P Kimura
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Sakae Takeuchi
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Sumio Takahashi
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.
| |
Collapse
|
9
|
Lauby SC, Lapp HE, Salazar M, Semyrenko S, Chauhan D, Margolis AE, Champagne FA. Postnatal maternal care moderates the effects of prenatal bisphenol exposure on offspring neurodevelopmental, behavioral, and transcriptomic outcomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.19.558481. [PMID: 37786706 PMCID: PMC10541647 DOI: 10.1101/2023.09.19.558481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Bisphenols (BPs), including BPA and "BPA-free" structural analogs, are commonly used plasticizers that are present in many plastics and are known endocrine disrupting chemicals. Prenatal exposure to BPA has been associated with negative neurodevelopmental and behavioral outcomes in children and rodent models. Prenatal BPA exposure has also been shown to impair postnatal maternal care provisioning, which can also affect offspring neurodevelopment and behavior. However, there is limited knowledge regarding the biological effects of prenatal exposure to bisphenols other than BPA and the interplay between prenatal BP exposure and postnatal maternal care on adult behavior. The purpose of the current study was to determine the interactive impact of prenatal BP exposure and postnatal maternal care on neurodevelopment and behavior. Our findings suggest that the effects of prenatal BP exposure on eye-opening, adult attentional set shifting and anxiety-like behavior in the open field are dependent on maternal care in the first five days of life. Interestingly, maternal care might also attenuate the effects of prenatal BP exposure on eye opening and adult attentional set shifting. Finally, transcriptomic profiles in male and female medial prefrontal cortex and amygdala suggest that the interactive effects of prenatal BP exposure and postnatal maternal care converge on estrogen receptor signaling and are involved in biological processes related to gene expression and protein translation and synthesis. Overall, these findings indicate that postnatal maternal care plays a critical role in the expression of the effects of prenatal BP exposure on neurodevelopment and adult behavior. Understanding the underlying biological mechanisms involved might allow us to identify potential avenues to mitigate the adverse effects of prenatal BP exposure and improve health and well-being in human populations.
Collapse
Affiliation(s)
- Samantha C Lauby
- Department of Psychology, College of Liberal Arts, University of Texas at Austin
- Center for Molecular Carcinogenesis and Toxicology, University of Texas at Austin
| | - Hannah E Lapp
- Department of Psychology, College of Liberal Arts, University of Texas at Austin
| | - Melissa Salazar
- Department of Psychology, College of Liberal Arts, University of Texas at Austin
| | - Sofiia Semyrenko
- Department of Psychology, College of Liberal Arts, University of Texas at Austin
| | - Danyal Chauhan
- Department of Psychology, College of Liberal Arts, University of Texas at Austin
| | - Amy E Margolis
- Department of Psychiatry, Columbia University Irving Medical Center
| | - Frances A Champagne
- Department of Psychology, College of Liberal Arts, University of Texas at Austin
- Center for Molecular Carcinogenesis and Toxicology, University of Texas at Austin
| |
Collapse
|
10
|
Tapia JL, McDonough JC, Cauble EL, Gonzalez CG, Teteh DK, Treviño LS. Parabens Promote Protumorigenic Effects in Luminal Breast Cancer Cell Lines With Diverse Genetic Ancestry. J Endocr Soc 2023; 7:bvad080. [PMID: 37409182 PMCID: PMC10318621 DOI: 10.1210/jendso/bvad080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Indexed: 07/07/2023] Open
Abstract
Context One in 8 women will develop breast cancer in their lifetime. Yet, the burden of disease is greater in Black women. Black women have a 40% higher mortality rate than White women, and a higher incidence of breast cancer at age 40 and younger. While the underlying cause of this disparity is multifactorial, exposure to endocrine disrupting chemicals (EDCs) in hair and other personal care products has been associated with an increased risk of breast cancer. Parabens are known EDCs that are commonly used as preservatives in hair and other personal care products, and Black women are disproportionately exposed to products containing parabens. Objective Studies have shown that parabens impact breast cancer cell proliferation, death, migration/invasion, and metabolism, as well as gene expression in vitro. However, these studies were conducted using cell lines of European ancestry; to date, no studies have utilized breast cancer cell lines of West African ancestry to examine the effects of parabens on breast cancer progression. Like breast cancer cell lines with European ancestry, we hypothesize that parabens promote protumorigenic effects in breast cancer cell lines of West African ancestry. Methods Luminal breast cancer cell lines with West African ancestry (HCC1500) and European ancestry (MCF-7) were treated with biologically relevant doses of methylparaben, propylparaben, and butylparaben. Results Following treatment, estrogen receptor target gene expression and cell viability were examined. We observed altered estrogen receptor target gene expression and cell viability that was paraben and cell line specific. Conclusion This study provides greater insight into the tumorigenic role of parabens in the progression of breast cancer in Black women.
Collapse
Affiliation(s)
- Jazma L Tapia
- Division of Health Equities, Department of Population Sciences, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Jillian C McDonough
- Division of Health Equities, Department of Population Sciences, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Emily L Cauble
- Division of Health Equities, Department of Population Sciences, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Cesar G Gonzalez
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Dede K Teteh
- Department of Health Sciences, Crean College of Health and Behavioral Sciences, Chapman University, Orange, CA 92866, USA
| | - Lindsey S Treviño
- Division of Health Equities, Department of Population Sciences, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
11
|
Kasarinaite A, Sinton M, Saunders PTK, Hay DC. The Influence of Sex Hormones in Liver Function and Disease. Cells 2023; 12:1604. [PMID: 37371074 PMCID: PMC10296738 DOI: 10.3390/cells12121604] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
The liver performs a multitude of bodily functions, whilst retaining the ability to regenerate damaged tissue. In this review, we discuss sex steroid biology, regulation of mammalian liver physiology and the development of new model systems to improve our understanding of liver biology in health and disease. A major risk factor for the development of liver disease is hepatic fibrosis. Key drivers of this process are metabolic dysfunction and pathologic activation of the immune system. Although non-alcoholic fatty liver disease (NAFLD) is largely regarded as benign, it does progress to non-alcoholic steatohepatitis in a subset of patients, increasing their risk of developing cirrhosis and hepatocellular carcinoma. NAFLD susceptibility varies across the population, with obesity and insulin resistance playing a strong role in the disease development. Additionally, sex and age have been identified as important risk factors. In addition to the regulation of liver biochemistry, sex hormones also regulate the immune system, with sexual dimorphism described for both innate and adaptive immune responses. Therefore, sex differences in liver metabolism, immunity and their interplay are important factors to consider when designing, studying and developing therapeutic strategies to treat human liver disease. The purpose of this review is to provide the reader with a general overview of sex steroid biology and their regulation of mammalian liver physiology.
Collapse
Affiliation(s)
- Alvile Kasarinaite
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4UU, UK
| | - Matthew Sinton
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow G12 9TA, UK
| | - Philippa T. K. Saunders
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4UU, UK
| | - David C. Hay
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4UU, UK
| |
Collapse
|
12
|
Pegram M, Jackisch C, Johnston SRD. Estrogen/HER2 receptor crosstalk in breast cancer: combination therapies to improve outcomes for patients with hormone receptor-positive/HER2-positive breast cancer. NPJ Breast Cancer 2023; 9:45. [PMID: 37258523 DOI: 10.1038/s41523-023-00533-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/04/2023] [Indexed: 06/02/2023] Open
Abstract
The human epidermal growth factor receptor 2 (HER2) is overexpressed in 13-22% of breast cancers (BC). Approximately 60-70% of HER2+ BC co-express hormone receptors (HRs). HR/HER2 co-expression modulates response to both anti-HER2-directed and endocrine therapy due to "crosstalk" between the estrogen receptor (ER) and HER2 pathways. Combined HER2/ER blockade may be an effective treatment strategy for patients with HR+/HER2+ BC in the appropriate clinical setting(s). In this review, we provide an overview of crosstalk between the ER and HER2 pathways, summarize data from recently published and ongoing clinical trials, and discuss clinical implications for targeted treatment of HR+/HER2+ BC.
Collapse
Affiliation(s)
- Mark Pegram
- Stanford Cancer Institute, Stanford, CA, USA.
| | - Christian Jackisch
- Obstetrics and Gynaecology and Breast Cancer Center, Klinikum Offenbach GmbH, Offenbach, Germany
| | | |
Collapse
|
13
|
Wang W, Spurgeon ME, Pope A, McGregor S, Ward-Shaw E, Gronski E, Lambert PF. Stress keratin 17 and estrogen support viral persistence and modulate the immune environment during cervicovaginal murine papillomavirus infection. Proc Natl Acad Sci U S A 2023; 120:e2214225120. [PMID: 36917668 PMCID: PMC10041145 DOI: 10.1073/pnas.2214225120] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 02/10/2023] [Indexed: 03/16/2023] Open
Abstract
A murine papillomavirus, MmuPV1, infects both cutaneous and mucosal epithelia of laboratory mice and can be used to model high-risk human papillomavirus (HPV) infection and HPV-associated disease. We have shown that estrogen exacerbates papillomavirus-induced cervical disease in HPV-transgenic mice. We have also previously identified stress keratin 17 (K17) as a host factor that supports MmuPV1-induced cutaneous disease. Here, we sought to test the role of estrogen and K17 in MmuPV1 infection and associated disease in the female reproductive tract. We experimentally infected wild-type and K17 knockout (K17KO) mice with MmuPV1 in the female reproductive tract in the presence or absence of exogenous estrogen for 6 mon. We observed that a significantly higher percentage of K17KO mice cleared the virus as opposed to wild-type mice. In estrogen-treated wild-type mice, the MmuPV1 viral copy number was significantly higher compared to untreated mice by as early as 2 wk postinfection, suggesting that estrogen may help facilitate MmuPV1 infection and/or establishment. Consistent with this, viral clearance was not observed in either wild-type or K17KO mice when treated with estrogen. Furthermore, neoplastic disease progression and cervical carcinogenesis were supported by the presence of K17 and exacerbated by estrogen treatment. Subsequent analyses indicated that estrogen treatment induces a systemic immunosuppressive state in MmuPV1-infected animals and that both estrogen and K17 modulate the local intratumoral immune microenvironment within MmuPV1-induced neoplastic lesions. Collectively, these findings suggest that estrogen and K17 act at multiple stages of papillomavirus-induced disease at least in part via immunomodulatory mechanisms.
Collapse
Affiliation(s)
- Wei Wang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI53705
| | - Megan E. Spurgeon
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI53705
| | - Ali Pope
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI53705
| | - Stephanie McGregor
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI53705
| | - Ella Ward-Shaw
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI53705
| | - Ellery Gronski
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI53705
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI53705
| |
Collapse
|
14
|
Treeck O, Haerteis S, Ortmann O. Non-Coding RNAs Modulating Estrogen Signaling and Response to Endocrine Therapy in Breast Cancer. Cancers (Basel) 2023; 15:cancers15061632. [PMID: 36980520 PMCID: PMC10046587 DOI: 10.3390/cancers15061632] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
The largest part of human DNA is transcribed into RNA that does not code for proteins. These non-coding RNAs (ncRNAs) are key regulators of protein-coding gene expression and have been shown to play important roles in health, disease and therapy response. Today, endocrine therapy of ERα-positive breast cancer (BC) is a successful treatment approach, but resistance to this therapy is a major clinical problem. Therefore, a deeper understanding of resistance mechanisms is important to overcome this resistance. An increasing amount of evidence demonstrate that ncRNAs affect the response to endocrine therapy. Thus, ncRNAs are considered versatile biomarkers to predict or monitor therapy response. In this review article, we intend to give a summary and update on the effects of microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) on estrogen signaling in BC cells, this pathway being the target of endocrine therapy, and their role in therapy resistance. For this purpose, we reviewed articles on these topics listed in the PubMed database. Finally, we provide an assessment regarding the clinical use of these ncRNA types, particularly their circulating forms, as predictive BC biomarkers and their potential role as therapy targets to overcome endocrine resistance.
Collapse
Affiliation(s)
- Oliver Treeck
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany
- Correspondence:
| | - Silke Haerteis
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany
| | - Olaf Ortmann
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
15
|
Najnin RA, Al Mahmud MR, Rahman MM, Takeda S, Sasanuma H, Tanaka H, Murakawa Y, Shimizu N, Akter S, Takagi M, Sunada T, Akamatsu S, He G, Itou J, Toi M, Miyaji M, Tsutsui KM, Keeney S, Yamada S. ATM suppresses c-Myc overexpression in the mammary epithelium in response to estrogen. Cell Rep 2023; 42:111909. [PMID: 36640339 PMCID: PMC10023214 DOI: 10.1016/j.celrep.2022.111909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/27/2022] [Accepted: 12/12/2022] [Indexed: 12/31/2022] Open
Abstract
ATM gene mutation carriers are predisposed to estrogen-receptor-positive breast cancer (BC). ATM prevents BC oncogenesis by activating p53 in every cell; however, much remains unknown about tissue-specific oncogenesis after ATM loss. Here, we report that ATM controls the early transcriptional response to estrogens. This response depends on topoisomerase II (TOP2), which generates TOP2-DNA double-strand break (DSB) complexes and rejoins the breaks. When TOP2-mediated ligation fails, ATM facilitates DSB repair. After estrogen exposure, TOP2-dependent DSBs arise at the c-MYC enhancer in human BC cells, and their defective repair changes the activation profile of enhancers and induces the overexpression of many genes, including the c-MYC oncogene. CRISPR/Cas9 cleavage at the enhancer also causes c-MYC overexpression, indicating that this DSB causes c-MYC overexpression. Estrogen treatment induced c-Myc protein overexpression in mammary epithelial cells of ATM-deficient mice. In conclusion, ATM suppresses the c-Myc-driven proliferative effects of estrogens, possibly explaining such tissue-specific oncogenesis.
Collapse
Affiliation(s)
- Rifat Ara Najnin
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Kyoto 606-8501, Japan
| | - Md Rasel Al Mahmud
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Kyoto 606-8501, Japan
| | - Md Maminur Rahman
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Kyoto 606-8501, Japan
| | - Shunichi Takeda
- Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Hiroyuki Sasanuma
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Kyoto 606-8501, Japan
| | - Hisashi Tanaka
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yasuhiro Murakawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; IFOM-the FIRC Institute of Molecular Oncology, Milan, Italy; Department of Medical Systems Genomics, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Institute for Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| | - Naoto Shimizu
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Kyoto 606-8501, Japan
| | - Salma Akter
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Kyoto 606-8501, Japan
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Takuro Sunada
- Department of Urology, Graduate School of Medicine, Kyoto University, 54 Shougoin Kawahara-cho, Kyoto 606-8507, Japan
| | - Shusuke Akamatsu
- Department of Urology, Graduate School of Medicine, Kyoto University, 54 Shougoin Kawahara-cho, Kyoto 606-8507, Japan
| | - Gang He
- Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Junji Itou
- Breast Cancer Unit, Kyoto University Hospital, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Masakazu Toi
- Breast Cancer Unit, Kyoto University Hospital, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Mary Miyaji
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kimiko M Tsutsui
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shintaro Yamada
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Kyoto 606-8501, Japan; Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
16
|
Lestaurtinib induces DNA damage that is related to estrogen receptor activation. Curr Res Toxicol 2022; 4:100102. [PMID: 36619290 PMCID: PMC9816669 DOI: 10.1016/j.crtox.2022.100102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/26/2022] Open
Abstract
A number of chemicals in the environment pose a threat to human health. Recent studies indicate estradiol induces DNA damage through the activation of the estrogen receptor alpha (ERα). Given that many environmental chemical compounds act like hormones once they enter the human body, it is possible that they induce DNA damage in the same way as estradiol, which is of great concern to females with the BRCA1 mutation. In this study, we developed an antibody-based high content method measuring γH2AX, a biomarker for DNA damage, to test a subset of 907 chemical compounds in MCF7 cells. The assay was optimized for a 1536 well plate format and had a satisfactory assay performance with Z-factor of 0.67. From the screening, we identified 128 compounds that induce γH2AX expression in the cells. These compounds were further examined for their γH2AX induction in the presence of an ER inhibitor, tamoxifen. After tamoxifen treatment, four compounds induced less γH2AX expression compared to those without tamoxifen treatment, suggesting these compounds induced γH2AX that is related to ERα activation. These four compounds were chosen for further studies to assess their ERα activating capability and c-MYC induction. Only lestaurtinib, a selective tyrosine kinase inhibitor, induced ERα activation, which was confirmed by both ERα beta-lactamase reporter gene assay and molecular docking analysis. Lestaurtinib also increased c-MYC expression, a target gene of ERα signaling, measured by the quantitative PCR method. This data suggests that lestaurtinib acts as a DNA damage inducer that is related to ERα activation.
Collapse
|
17
|
Hanusek K, Karczmarski J, Litwiniuk A, Urbańska K, Ambrozkiewicz F, Kwiatkowski A, Martyńska L, Domańska A, Bik W, Paziewska A. Obesity as a Risk Factor for Breast Cancer-The Role of miRNA. Int J Mol Sci 2022; 23:ijms232415683. [PMID: 36555323 PMCID: PMC9779381 DOI: 10.3390/ijms232415683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Breast cancer (BC) is the most common cancer diagnosed among women in the world, with an ever-increasing incidence rate. Due to the dynamic increase in the occurrence of risk factors, including obesity and related metabolic disorders, the search for new regulatory mechanisms is necessary. This will help a complete understanding of the pathogenesis of breast cancer. The review presents the mechanisms of obesity as a factor that increases the risk of developing breast cancer and that even initiates the cancer process in the female population. The mechanisms presented in the paper relate to the inflammatory process resulting from current or progressive obesity leading to cell metabolism disorders and disturbed hormonal metabolism. All these processes are widely regulated by the action of microRNAs (miRNAs), which may constitute potential biomarkers influencing the pathogenesis of breast cancer and may be a promising target of anti-cancer therapies.
Collapse
Affiliation(s)
- Karolina Hanusek
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Jakub Karczmarski
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Anna Litwiniuk
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Katarzyna Urbańska
- Department of General, Oncological, Metabolic and Thoracic Surgery, Military Institute of Medicine, 128 Szaserów St, 04-141 Warsaw, Poland
| | - Filip Ambrozkiewicz
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 32300 Pilsen, Czech Republic
| | - Andrzej Kwiatkowski
- Department of General, Oncological, Metabolic and Thoracic Surgery, Military Institute of Medicine, 128 Szaserów St, 04-141 Warsaw, Poland
| | - Lidia Martyńska
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Anita Domańska
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Wojciech Bik
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Agnieszka Paziewska
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
- Faculty of Medical and Health Sciences, Institute of Health Sciences, Siedlce University of Natural Sciences and Humanities, 08-110 Siedlce, Poland
- Correspondence:
| |
Collapse
|
18
|
Riojas AM, Reeves KD, Shade RE, Puppala SR, Christensen CL, Birnbaum S, Glenn JP, Li C, Shaltout H, Hall-Ursone S, Cox LA. Blood pressure and the kidney cortex transcriptome response to high-sodium diet challenge in female nonhuman primates. Physiol Genomics 2022; 54:443-454. [PMID: 36062883 PMCID: PMC9639778 DOI: 10.1152/physiolgenomics.00144.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 11/22/2022] Open
Abstract
Blood pressure (BP) is influenced by genetic variation and sodium intake with sex-specific differences; however, studies to identify renal molecular mechanisms underlying the influence of sodium intake on BP in nonhuman primates (NHP) have focused on males. To address the gap in our understanding of molecular mechanisms regulating BP in female primates, we studied sodium-naïve female baboons (n = 7) fed a high-sodium (HS) diet for 6 wk. We hypothesized that in female baboons variation in renal transcriptional networks correlates with variation in BP response to a high-sodium diet. BP was continuously measured for 64-h periods throughout the study by implantable telemetry devices. Sodium intake, blood samples for clinical chemistries, and ultrasound-guided kidney biopsies were collected before and after the HS diet for RNA-Seq and bioinformatic analyses. We found that on the LS diet but not the HS diet, sodium intake and serum 17 β-estradiol concentration correlated with BP. Furthermore, kidney transcriptomes differed by diet-unbiased weighted gene coexpression network analysis revealed modules of genes correlated with BP on the HS diet but not the LS diet. Our results showed variation in BP on the HS diet correlated with variation in novel kidney gene networks regulated by ESR1 and MYC; i.e., these regulators have not been associated with BP regulation in male humans or rodents. Validation of the mechanisms underlying regulation of BP-associated gene networks in female NHP will inform better therapies toward greater precision medicine for women.
Collapse
Affiliation(s)
- Angelica M Riojas
- Molecular Medicine and Translational Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Kimberly D Reeves
- Center for Precision Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Robert E Shade
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas
| | - Sobha R Puppala
- Center for Precision Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | | | - Shifra Birnbaum
- Molecular Services Core, Texas Biomedical Research Institute, San Antonio, Texas
| | - Jeremy P Glenn
- Molecular Services Core, Texas Biomedical Research Institute, San Antonio, Texas
| | - Cun Li
- Department of Animal Science, University of Wyoming, Laramie, Wyoming
| | - Hossam Shaltout
- Hypertension and Vascular Research Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Shannan Hall-Ursone
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas
| | - Laura A Cox
- Center for Precision Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas
| |
Collapse
|
19
|
Ors A, Chitsazan AD, Doe AR, Mulqueen RM, Ak C, Wen Y, Haverlack S, Handu M, Naldiga S, Saldivar J, Mohammed H. Estrogen regulates divergent transcriptional and epigenetic cell states in breast cancer. Nucleic Acids Res 2022; 50:11492-11508. [PMID: 36318267 PMCID: PMC9723652 DOI: 10.1093/nar/gkac908] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/20/2022] [Accepted: 10/20/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancers are known to be driven by the transcription factor estrogen receptor and its ligand estrogen. While the receptor's cis-binding elements are known to vary between tumors, heterogeneity of hormone signaling at a single-cell level is unknown. In this study, we systematically tracked estrogen response across time at a single-cell level in multiple cell line and organoid models. To accurately model these changes, we developed a computational tool (TITAN) that quantifies signaling gradients in single-cell datasets. Using this approach, we found that gene expression response to estrogen is non-uniform, with distinct cell groups expressing divergent transcriptional networks. Pathway analysis suggested the two most distinct signatures are driven separately by ER and FOXM1. We observed that FOXM1 was indeed activated by phosphorylation upon estrogen stimulation and silencing of FOXM1 attenuated the relevant gene signature. Analysis of scRNA-seq data from patient samples confirmed the existence of these divergent cell groups, with the FOXM1 signature predominantly found in ER negative cells. Further, multi-omic single-cell experiments indicated that the different cell groups have distinct chromatin accessibility states. Our results provide a comprehensive insight into ER biology at the single-cell level and potential therapeutic strategies to mitigate resistance to therapy.
Collapse
Affiliation(s)
| | | | - Aaron Reid Doe
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97201, USA
| | - Ryan M Mulqueen
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97201, USA
| | - Cigdem Ak
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97201, USA
| | - Yahong Wen
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97201, USA
| | - Syber Haverlack
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97201, USA
| | - Mithila Handu
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97201, USA
| | - Spandana Naldiga
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97201, USA
| | - Joshua C Saldivar
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97201, USA,Division of Oncological Sciences, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97201, USA
| | | |
Collapse
|
20
|
Roy S, Saha S, Dhar D, Chakraborty P, Singha Roy K, Mukherjee C, Gupta A, Bhattacharyya S, Roy A, Sengupta S, Roychoudhury S, Nath S. Molecular crosstalk between CUEDC2 and ERα influences the clinical outcome by regulating mitosis in breast cancer. Cancer Gene Ther 2022; 29:1697-1706. [PMID: 35732909 DOI: 10.1038/s41417-022-00494-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/13/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023]
Abstract
Development of endocrine resistance in hormone-receptor-positive (HR+ve) subtype and lack of definitive target in triple-negative subtype challenge breast cancer management. Contributing to such endocrine resistance is a protein called CUEDC2. It degrades hormone receptors, estrogen receptor-α (ERα) and progesterone receptor. Higher level of CUEDC2 in ERα+ve breast cancer corresponded to poorer disease prognosis. It additionally influences mitotic progression. However, the crosstalk of these two CUEDC2-driven functions in the outcome of breast cancer remained elusive. We showed that CUEDC2 degrades ERα during mitosis, utilising the mitotic-ubiquitination-machinery. We elucidated the importance of mitosis-specific phosphorylation of CUEDC2 in this process. Furthermore, upregulated CUEDC2 overrode mitotic arrest, increasing aneuploidy. Finally, recruiting a prospective cohort of breast cancer, we found significantly upregulated CUEDC2 in HR-ve cases. Moreover, individuals with higher CUEDC2 levels showed a poorer progression-free-survival. Together, our data confirmed that CUEDC2 up-regulation renders ERα+ve malignancies to behave essentially as HR-ve tumors with the prevalence of aneuploidy. This study finds CUEDC2 as a potential prognostic marker and a therapeutic target in the clinical management of breast cancer.
Collapse
Affiliation(s)
- Stuti Roy
- Department of Basic and Translational Research, Saroj Gupta Cancer Centre and Research Institute, Thakurpukur, Kolkata, India
| | - Suryendu Saha
- Department of Basic and Translational Research, Saroj Gupta Cancer Centre and Research Institute, Thakurpukur, Kolkata, India
| | - Debanil Dhar
- Department of Basic and Translational Research, Saroj Gupta Cancer Centre and Research Institute, Thakurpukur, Kolkata, India
| | - Puja Chakraborty
- Department of Basic and Translational Research, Saroj Gupta Cancer Centre and Research Institute, Thakurpukur, Kolkata, India
| | - Kumar Singha Roy
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | | | - Arnab Gupta
- Department of Surgery, Saroj Gupta Cancer Centre and Research Institute, Thakurpukur, Kolkata, India
| | - Samir Bhattacharyya
- Department of Surgery, Saroj Gupta Cancer Centre and Research Institute, Thakurpukur, Kolkata, India
| | - Anup Roy
- Department of Pathology, Nil Ratan Sircar Medical College and Hospital, Kolkata, India
| | | | - Susanta Roychoudhury
- Department of Basic and Translational Research, Saroj Gupta Cancer Centre and Research Institute, Thakurpukur, Kolkata, India.,CSIR-Indian Institute of Chemical Biology, CN-06, CN Block, Sector V, Kolkata, India
| | - Somsubhra Nath
- Department of Basic and Translational Research, Saroj Gupta Cancer Centre and Research Institute, Thakurpukur, Kolkata, India.
| |
Collapse
|
21
|
Lee SH, Lim CL, Shen W, Tan SMX, Woo ARE, Yap YHY, Sian CAS, Goh WWB, Yu WP, Li L, Lin VCL. Activation function 1 of progesterone receptor is required for progesterone antagonism of oestrogen action in the uterus. BMC Biol 2022; 20:222. [PMID: 36199058 PMCID: PMC9535881 DOI: 10.1186/s12915-022-01410-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Progesterone receptor (PGR) is a master regulator of uterine function through antagonistic and synergistic interplays with oestrogen receptors. PGR action is primarily mediated by activation functions AF1 and AF2, but their physiological significance is unknown. RESULTS We report the first study of AF1 function in mice. The AF1 mutant mice are infertile with impaired implantation and decidualization. This is associated with a delay in the cessation of epithelial proliferation and in the initiation of stromal proliferation at preimplantation. Despite tissue selective effect on PGR target genes, AF1 mutations caused global loss of the antioestrogenic activity of progesterone in both pregnant and ovariectomized models. Importantly, the study provides evidence that PGR can exert an antioestrogenic effect by genomic inhibition of Esr1 and Greb1 expression. ChIP-Seq data mining reveals intermingled PGR and ESR1 binding on Esr1 and Greb1 gene enhancers. Chromatin conformation analysis shows reduced interactions in these genes' loci in the mutant, coinciding with their upregulations. CONCLUSION AF1 mediates genomic inhibition of ESR1 action globally whilst it also has tissue-selective effect on PGR target genes.
Collapse
Affiliation(s)
- Shi Hao Lee
- grid.59025.3b0000 0001 2224 0361School of Biological Sciences, Nanyang Technological University, Singapore, 637551 Singapore
| | - Chew Leng Lim
- grid.59025.3b0000 0001 2224 0361School of Biological Sciences, Nanyang Technological University, Singapore, 637551 Singapore
| | - Wei Shen
- grid.35155.370000 0004 1790 4137College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Samuel Ming Xuan Tan
- grid.59025.3b0000 0001 2224 0361School of Biological Sciences, Nanyang Technological University, Singapore, 637551 Singapore
| | - Amanda Rui En Woo
- grid.59025.3b0000 0001 2224 0361School of Biological Sciences, Nanyang Technological University, Singapore, 637551 Singapore
| | - Yeannie H. Y. Yap
- grid.59025.3b0000 0001 2224 0361School of Biological Sciences, Nanyang Technological University, Singapore, 637551 Singapore ,grid.459705.a0000 0004 0366 8575Present Address: Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Bandar Saujana Putra, 42610 Jenjarom, Selangor Malaysia
| | - Caitlyn Ang Su Sian
- grid.59025.3b0000 0001 2224 0361School of Biological Sciences, Nanyang Technological University, Singapore, 637551 Singapore
| | - Wilson Wen Bin Goh
- grid.59025.3b0000 0001 2224 0361School of Biological Sciences, Nanyang Technological University, Singapore, 637551 Singapore
| | - Wei-Ping Yu
- grid.185448.40000 0004 0637 0221Animal Gene Editing Laboratory (AGEL), Biological Resource Centre, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673 Singapore ,grid.418812.60000 0004 0620 9243Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673 Singapore
| | - Li Li
- College of Informatics, Huazhong Agricultural University, Wuhan, China.
| | - Valerie C. L. Lin
- grid.59025.3b0000 0001 2224 0361School of Biological Sciences, Nanyang Technological University, Singapore, 637551 Singapore
| |
Collapse
|
22
|
Zhang X, Yang Y, Li D, Wu Z, Liu H, Zhao Z, Zhu H, Xie F, Li X. MOF negatively regulates estrogen receptor α signaling via CUL4B-mediated protein degradation in breast cancer. Front Oncol 2022; 12:868866. [PMID: 36212422 PMCID: PMC9539768 DOI: 10.3389/fonc.2022.868866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Abstract
Estrogen receptor α (ERα) is the dominant tumorigenesis driver in breast cancer (BC), and ERα-positive BC (ERα+ BC) accounts for more than two-thirds of BC cases. MOF (males absent on the first) is a highly conserved histone acetyltransferase that acetylates lysine 16 of histone H4 (H4K16) and several non-histone proteins. Unbalanced expression of MOF has been identified, and high MOF expression predicted a favorable prognosis in BC. However, the association of MOF with ERα and the regulatory mechanisms of MOF in ERα signaling remain elusive. Our study revealed that the expression of MOF is negatively correlated with that of ERα in BC. In ERα+ BC cells, MOF overexpression downregulated the protein abundance of ERα in both cytoplasm and nucleus, thus attenuating ERα-mediated transactivation as well as cellular proliferation and in vivo tumorigenicity of BC cells. MOF promoted ERα protein degradation through CUL4B-mediated ubiquitin–proteasome pathway and induced HSP90 hyperacetylation that led to the loss of chaperone protection of HSP90 to ERα. We also revealed that suppression of MOF restored ERα expression and increased the sensitivity of ERα-negative BC cells to tamoxifen treatment. These results provide a new insight into the tumor-suppressive role of MOF in BC via negatively regulating ERα action, suggesting that MOF might be a potential therapeutic target for BC.
Collapse
Affiliation(s)
- Xu Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Yang Yang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Danyang Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
- Rehabilitation Center, Qilu Hospital, Cheelo College of Medicine, Shandong University, Jinan, China
| | - Zhen Wu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Haoyu Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Ziyan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Hongying Zhu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Fei Xie
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Xiangzhi Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
- *Correspondence: Xiangzhi Li,
| |
Collapse
|
23
|
Takada I, Miyazaki T, Goto Y, Kanzawa H, Matsubara T, Namikawa-Kanai H, Shigefuku S, Ono S, Nakajima E, Morishita Y, Honda A, Furukawa K, Ikeda N. Involvement of 27-hydroxycholesterol on the progression of non-small cell lung cancer via the estrogen receptor. Am J Cancer Res 2022; 12:4241-4253. [PMID: 36225627 PMCID: PMC9548011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/03/2022] [Indexed: 06/16/2023] Open
Abstract
The oxysterol 27-hydroxycholesterol (27HC) promotes the proliferation of breast cancer cells as a selective estrogen receptor modulator (SERM), but it is mostly produced by alveolar macrophages in vivo. The present study evaluated hypothesis that 27HC may also promote the proliferation of lung cancer cells. In the tumor and nontumor regions of lung tissue from 23 patients with non-small cell lung cancer (NSCLC) who underwent lung cancer surgery, we compared the 27HC content and its synthetic and catabolic enzyme expressions (CYP27A1 and CYP7B1), the expressions of the estrogen receptor (ER) gene and its target gene cMYC by using high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS), real-time RT-PCR, and immunohistochemical staining. In addition, we evaluated the effects of 27HC and β-estradiol (E2) treatments on the proliferation of a cultured lung cancer cell line (H23 cells) expressing ERβ. In squamous cell carcinoma and in adenocarcinoma, the 27HC content was significantly higher in the tumor region than in the nontumor region, and in cancer grade III than in the other cancer grades. CYP27A1-positive macrophages were histologically detected in the nontumor regions of both cancer types, whereas the gene and protein expressions of ERβ, as well as the CYP7B1 and cMYC genes, were significantly increased in the tumor tissues. In cultured H23 cells, proliferation was significantly increased by 27HC and E2 treatments for 48 h. Similar to breast cancer, the present results supported idea that the 27HC produced from alveolar macrophages promotes the proliferation of lung cancer cells highly expressing ER through the SERM action. Therefore, 27HC should be an important target for cancer therapy of NSCLC.
Collapse
Affiliation(s)
- Ikki Takada
- Division of Thoracic Surgery, Department of Surgery, Tokyo Medical UniversityTokyo, Japan
| | - Teruo Miyazaki
- Joint Research Center, Tokyo Medical University Ibaraki Medical CenterIbaraki, Japan
| | - Yushi Goto
- Department of Thoracic Surgery, Tokyo Medical University Ibaraki Medical CenterIbaraki, Japan
| | - Hiroya Kanzawa
- Department of Thoracic Surgery, Tokyo Medical University Ibaraki Medical CenterIbaraki, Japan
| | - Taisuke Matsubara
- Division of Thoracic Surgery, Department of Surgery, Tokyo Medical UniversityTokyo, Japan
| | - Haruka Namikawa-Kanai
- Division of Thoracic Surgery, Department of Surgery, Tokyo Medical UniversityTokyo, Japan
| | - Shunsuke Shigefuku
- Division of Thoracic Surgery, Department of Surgery, Tokyo Medical UniversityTokyo, Japan
| | - Shotaro Ono
- Department of Thoracic Surgery, Tokyo Medical University Ibaraki Medical CenterIbaraki, Japan
| | - Eiji Nakajima
- Division of Thoracic Surgery, Department of Surgery, Tokyo Medical UniversityTokyo, Japan
| | - Yukio Morishita
- Diagnostic Pathology Division, Tokyo Medical University Ibaraki Medical CenterIbaraki, Japan
| | - Akira Honda
- Joint Research Center, Tokyo Medical University Ibaraki Medical CenterIbaraki, Japan
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical CenterIbaraki, Japan
| | - Kinya Furukawa
- Department of Thoracic Surgery, Tokyo Medical University Ibaraki Medical CenterIbaraki, Japan
| | - Norihiko Ikeda
- Division of Thoracic Surgery, Department of Surgery, Tokyo Medical UniversityTokyo, Japan
| |
Collapse
|
24
|
A novel oncogenic enhancer of estrogen receptor-positive breast cancer. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:836-851. [PMID: 36159594 PMCID: PMC9463563 DOI: 10.1016/j.omtn.2022.08.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/17/2022] [Indexed: 11/22/2022]
|
25
|
Xu N, Chen Y, Guo D, Deng Y, Guo W, Liu X, Wang Y, Lu H, Liu A, Zhu J, Li F. Rhein promotes the proliferation of keratinocytes by targeting oestrogen receptors for skin ulcer treatment. BMC Complement Med Ther 2022; 22:209. [PMID: 35932049 PMCID: PMC9354312 DOI: 10.1186/s12906-022-03691-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/28/2022] [Indexed: 11/10/2022] Open
Abstract
Background The Sheng-ji Hua-yu (SJHY) formula is a quite effective Traditional Chinese Medicines (TCM) in the treatment of delayed diabetic wounds. Previous research has shown that the SJHY formula has significant anti-inflammatory and wound-healing effects, but the precise mechanism remains unknown. The purpose of this study was to evaluate the effects of rhein, a compound extracted from SJHY formula, in keratinocytes and to investigate the underlying mechanisms. Methods Microscale thermophoresis (MST) technology was used to confirm that rhein binds directly to oestrogen receptors (ERs). Rhein was then used to treat keratinocytes in vitro. Cell cycle and proliferation analysis, Real-time polymerase chain reaction (RT-PCR) and Western-blot were conducted. Results Rhein increased the proportion of cells in the S phase of the cell cycle and promoted keratinocyte proliferation. ICI 182,780, an ER inhibitor, was also used to treat keratinocytes. The expression of c-myc mRNA and protein induced by rhein was antagonized by ICI 182,780, indicating that this induction is ER dependent. Intervention with ICI 182,780 had no effect on the upregulation of FosB and JunD, indicating that activator protein 1 (AP-1) members (FosB and JunD) are involved in rhein-induced c-myc mRNA and protein expression but does not require the ER. Conclusion The present study found that rhein stimulates keratinocyte proliferation by activating the oestrogen signalling pathway via the oestrogen receptor, which induces the expression of c-myc in collaboration with FosB and JunD, thereby accelerating the process of re-epithelialization. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03691-1.
Collapse
|
26
|
Abou Ziki R, Teinturier R, Luo Y, Cerutti C, Vanacker JM, Poulard C, Bachelot T, Diab-Assaf M, Treilleux I, Zhang CX, Le Romancer M. MEN1 silencing triggers the dysregulation of mTORC1 and MYC pathways in ER+ breast cancer cells. Endocr Relat Cancer 2022; 29:451-465. [PMID: 35583188 DOI: 10.1530/erc-21-0337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/18/2022] [Indexed: 12/24/2022]
Abstract
Menin, encoded by the MEN1 gene, has been identified as a critical factor regulating ESR1 transcription, playing an oncogenic role in ER+ breast cancer (BC) cells. Here, we further dissected the consequences of menin inactivation in ER+ BC cells by focusing on factors within two major pathways involved in BC, mTOR and MYC. MEN1 silencing in MCF7 and T-47D resulted in an increase in phosphor-p70S6K1, phosphor-p85S6K1 and phosphor-4EBP1 expression. The use of an AKT inhibitor inhibited the activation of S6K1 and S6RP triggered by MEN1 knockdown (KD). Moreover, MEN1 silencing in ER+ BC cells led to increased formation of the eIF4E and 4G complex. Clinical studies showed that patients with menin-low breast cancer receiving tamoxifen plus everolimus displayed a trend toward better overall survival. Importantly, MEN1 KD in MCF7 and T-47D cells led to reduced MYC expression. ChIP analysis demonstrated that menin bound not only to the MYC promoter but also to its 5' enhancer. Furthermore, E2-treated MEN1 KD MCF7 cells displayed a decrease in MYC activation, suggesting its role in estrogen-mediated MYC transcription. Finally, expression data mining in tumors revealed a correlation between the expression of MEN1 mRNA and that of several mTORC1 components and targets and a significant inverse correlation between MEN1 and two MYC inhibitory factors, MYCBP2 and MYCT1, in ER+ BC. The current work thus highlights altered mTORC1 and MYC pathways after menin inactivation in ER+ BC cells, providing insight into the crosstalk between menin, mTORC1 and MYC in ER+ BC.
Collapse
Affiliation(s)
- Razan Abou Ziki
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Romain Teinturier
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Yakun Luo
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Catherine Cerutti
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Jean-Marc Vanacker
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Coralie Poulard
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Thomas Bachelot
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| | - Mona Diab-Assaf
- Faculty of Sciences II, Lebanese University Fanar, Beirut, Lebanon
| | | | - Chang Xian Zhang
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Muriel Le Romancer
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| |
Collapse
|
27
|
Estrogen Induces c-myc Transcription by Binding to Upstream ERE Element in Promoter. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12146853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Estrogen Receptor α(ERα) is reported to regulate the expression of many target genes by binding to specific estrogen response elements (EREs) in their promoters. c-myc is known to be over-expressed in most of the human carcinomas due to dysregulated transcription, translation, or protein stability. Estrogen (E) can induce the c-myc expression by binding to an upstream enhancer element in its promoter. This suggests that elevated estradiol (E2), a potent form of estrogen, levels could induce the expression of c-myc in breast cancer (BC). The expression of c-myc and estradiol were induced at Stage III and Stage IV of breast cancer. c-myc and estradiol expression was also associated with the established risk factors of breast cancer, such as BMI. Age at the time of the disease was alsocorrelated with the relative expression of c-myc and estradiol (p < 0.0007 and p < 0.000001). The correlation coefficient (R = 0.462) shows a positive relationship between estradiol bound ER, ER, and c-myc. Docking energy −229 kJ/mol suggests the binding affinity of estradiol bound ER binding to 500 bp upstream of proximal promotor of c-myc at three distinct positions. The data presented in this study proposed that the expression of c-myc and estradiol are directly correlated in breast cancer. The prognostic utility of an induced level of c-myc associated with the normal status of the c-myc gene and estradiol for patients with metastatic carcinoma should be explored further.
Collapse
|
28
|
Yu P, Zhang J, Zhu A, Kong W, Shen X. LncRNA PVT1 Regulates miR-1207-5p to Affect Colon Cancer Proliferation and Migration via the Wnt6/β-catenin2 Pathway. Genet Test Mol Biomarkers 2022; 26:307-315. [PMID: 35763386 DOI: 10.1089/gtmb.2021.0259] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: We aimed to evaluate the effects of lncRNA PTV1 on colon cancer proliferation and migration via the Wnt6/β-catenin2 pathway. Materials and Methods: A total of 117 colon cancer and normal adjacent tissue samples were collected. LncRNA PVT1 and miR-1207-5p expressions in these samples and colon cancer cell lines were detected by Quantitative reverse transcription-polymerase chain reaction (qRT-PCR). LncRNA PVT1-silencing cells and miR-1207-5p-overexpressing Caco-2-siPVT1 cells were constructed, respectively. The effects of lncRNA PVT1 silencing on cell proliferation were assessed by MTT and colony formation assays. The effects on invasion and migration were tested by Transwell and scratch assays respectively. The targeting regulatory relationship between miR-1207-5p and Wnt6 was analyzed by a dual-luciferase reporter assay. The relationship between lncRNA PVT1 and miR-1207-5p was studied by RNA-binding protein immunoprecipitation and RNA pull-down assays. The expressions of proteins in the Wnt6/β-catenin2 pathway were detected by Western blotting. Results: The lncRNA PVT1 mRNA expression in colon cancer tissue was significantly higher than that in normal adjacent tissue (p < 0.05). The expression in lncRNA PVT1-silencing cells was significantly down-regulated (p < 0.05). The colonies of Caco-2-siPVT1 cells decreased, accompanied by a reduced number of cells penetrating Matrigel and migration (p < 0.05). Compared with siPVT1 + NC group, the number of colonies and migration of siPVT1 + miR-1207-5p-overexpressing group increased significantly (p < 0.05). There was a targeting relationship between miR-1207-5p and PVT1. MiR-1207-5p had a targeted binding site with Wnt6. The protein expressions of Wnt6/β-catenin2 in Caco-2-siPVT1 group were significantly lower than those of control and Caco-2-siNC groups (p < 0.05). Conclusion: LncRNA PVT1 was highly expressed in colon cancer. It may enhance the proliferation and migration of colon cancer cells by up-regulating miR-1207-5p level and enhancing the Wnt6/β-catenin2 pathway.
Collapse
Affiliation(s)
- Panpan Yu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Gastrointestinal Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Zhang
- Department of Gastrointestinal Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Akao Zhu
- Department of Gastrointestinal Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wencheng Kong
- Department of Gastrointestinal Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoqun Shen
- Department of Gastrointestinal Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
29
|
Polarity protein SCRIB interacts with SLC3A2 to regulate proliferation and tamoxifen resistance in ER+ breast cancer. Commun Biol 2022; 5:403. [PMID: 35501367 PMCID: PMC9061724 DOI: 10.1038/s42003-022-03363-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 04/13/2022] [Indexed: 11/08/2022] Open
Abstract
Estrogen receptor (ER) positive breast cancer represents 75% of all breast cancers in women. Although patients with ER+ cancers receive endocrine therapies, more than 30% develop resistance and succumb to the disease, highlighting the need to understand endocrine resistance. Here we show an unexpected role for the cell polarity protein SCRIB as a tumor-promoter and a regulator of endocrine resistance in ER-positive breast cancer cells. SCRIB expression is induced by estrogen signaling in a MYC-dependent manner. SCRIB interacts with SLC3A2, a heteromeric component of leucine amino acid transporter SLC7A5. SLC3A2 binds to the N-terminus of SCRIB to facilitate the formation of SCRIB/SLC3A2/LLGL2/SLC7A5 quaternary complex required for membrane localization of the amino acid transporter complex. Both SCRIB and SLC3A2 are required for cell proliferation and tamoxifen resistance in ER+ cells identifying a new role for the SCRIB/SLC3A2 complex in ER+ breast cancer.
Collapse
|
30
|
Zhang S, Shang P, Gao K, Zhao G, Zhou J, Chen R, Ning X, Guo C. Dynamics of estrogen-induced ROS and DNA strand break generation in estrogen receptor α-positive breast cancer. Biochem Biophys Res Commun 2022; 602:170-178. [PMID: 35278890 DOI: 10.1016/j.bbrc.2022.02.089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 11/17/2022]
Abstract
DNA repair machinery is involved in estrogen-dependent transactivation. Mounting evidence suggests that mechanisms underlying estrogen-induced DNA damage are complicated. To date estrogen-induced DNA oxidation and its impact on ERα-mediated transaction remains ambiguous. Herein, we found that the process of 17β-estradiol (E2)-induced ROS production can be approximately divided into two phases according to responding time and generation mechanisms. The intracellular Ca2+ fluctuation and ERα-dependent transcription lead to temporospatially different oxidative DNA damage. Further, we demonstrate that DNA oxidation is dispensable for estrogen-responsive gene expression. Dynamics of estrogen-induced DNA strand break generation also show two-phase pattern and topoisomerase-mediated DNA stand breaks are essential in estrogen signaling. Collectively, our findings have provided new insights into oxidative DNA damage in estrogen signaling.
Collapse
Affiliation(s)
- Shaolong Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Pengzhao Shang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Kun Gao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Guomeng Zhao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Jingping Zhou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Rong Chen
- School of Science, China Pharmaceutical University, Nanjing, PR China
| | - Xiaoju Ning
- Ningxia Traditional Chinese Medicine hospital and Research Institute of Traditional Chinese Medicine, Yinchuan, PR China
| | - Changying Guo
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China.
| |
Collapse
|
31
|
Herber CB, Yuan C, Chang A, Wang JC, Cohen I, Leitman DC. 2',3',4'-Trihydroxychalcone changes estrogen receptor α regulation of genes and breast cancer cell proliferation by a reprogramming mechanism. Mol Med 2022; 28:44. [PMID: 35468719 PMCID: PMC9036729 DOI: 10.1186/s10020-022-00470-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 04/06/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Menopausal hormone therapy (MHT) is recommended for only five years to treat vasomotor symptoms and vulvovaginal atrophy because of safety concerns with long-term treatment. We investigated the ability of 2',3',4'-trihydroxychalcone (2',3',4'-THC) to modulate estrogen receptor (ER)-mediated responses in order to find drug candidates that could potentially prevent the adverse effects of long-term MHT treatment. METHODS Transfection assays, real time-polymerase chain reaction, and microarrays were used to evaluate the effects of 2',3',4'-THC on gene regulation. Radioligand binding studies were used to determine if 2',3',4'-THC binds to ERα. Cell proliferation was examined in MCF-7 breast cancer cells by using growth curves and flow cytometry. Western blots were used to determine if 2',3',4'-THC alters the E2 activation of the MAPK pathway and degradation of ERα. Chromatin immunoprecipitation was used to measure ERα binding to genes. RESULTS The 2',3',4'-THC/E2 combination produced a synergistic activation with ERα on reporter and endogenous genes in human U2OS osteosarcoma cells. Microarrays identified 824 genes that we termed reprogrammed genes because they were not regulated in U2OS-ERα cells unless they were treated with 2',3',4'-THC and E2 at the same time. 2',3',4'-THC blocked the proliferation of MCF-7 cells by preventing the E2-induced activation of MAPK and c-MYC transcription. The antiproliferative mechanism of 2',3',4'-THC differs from selective estrogen receptor modulators (SERMs) because 2',3',4'-THC did not bind to the E2 binding site in ERα like SERMs. CONCLUSION Our study suggests that 2',3',4'-THC may represent a new class of ERα modulators that do not act as a direct agonists or antagonists. We consider 2',3',4'-THC to be a reprogramming compound, since it alters the activity of ERα on gene regulation and cell proliferation without competing with E2 for binding to ERα. The addition of a reprogramming drug to estrogens in MHT may offer a new strategy to overcome the adverse proliferative effects of estrogen in MHT by reprogramming ERα as opposed to an antagonist mechanism that involves blocking the binding of estrogen to ERα.
Collapse
Affiliation(s)
- Candice B Herber
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, 94720-3104, USA
- DENALI Therapeutics, 161 Oyster Point Blvd, South San Francisco, CA, 94080, USA
| | - Chaoshen Yuan
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, 94720-3104, USA
- Iaterion, University of California, QB3, 1700 4th Street Byers Hall, Suite 214, San Francisco, CA, 94158, USA
| | - Anthony Chang
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, 94720-3104, USA
- Biomedical Sciences Program, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Jen-Chywan Wang
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, 94720-3104, USA
| | - Isaac Cohen
- Iaterion, University of California, QB3, 1700 4th Street Byers Hall, Suite 214, San Francisco, CA, 94158, USA
| | - Dale C Leitman
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, 94720-3104, USA.
- Iaterion, University of California, QB3, 1700 4th Street Byers Hall, Suite 214, San Francisco, CA, 94158, USA.
| |
Collapse
|
32
|
Fukuda M, Tojo Y, Sato A, Saito H, Nakanishi A, Miki Y. BRCA2 represses the transcriptional activity of pS2 by E2-ERα. Biochem Biophys Res Commun 2022; 588:75-82. [PMID: 34952473 DOI: 10.1016/j.bbrc.2021.12.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/15/2021] [Indexed: 02/07/2023]
Abstract
Germline mutations to the breast cancer 2 (BRCA2) gene have been associated with hereditary breast cancer. In addition to estrogen uptake, BRCA2 expression increases in the S phase of the cell cycle and largely contributes to DNA damage repair associated with DNA replication. However, the role of BRCA2 in estrogen induction remains unclear. An expression plasmid was created to induce BRCA2 activation upon the addition of estradiol by introducing mutations to the binding sequences for the transcription factors USF1, E2F1, and NF-κB within the promoter region of BRCA2. Then, the estrogen receptor (ER) sites of the proteins that interact with BRCA2 upon the addition of estradiol were identified. Both proteins were bound by the helical domain of BRCA2 and activation function-2 of the ER, suggesting that this binding may regulate the transcriptional activity of pS2, a target gene of the estradiol-ER, by suppressing the binding of SRC-1, a coactivator required for activation of the transcription factor.
Collapse
Affiliation(s)
- Mio Fukuda
- Department of Specialized Surgeries, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Yo Tojo
- Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Ami Sato
- Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hiroko Saito
- Department of Genetic Diagnosis, The Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Akira Nakanishi
- Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| | - Yoshio Miki
- Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan; Department of Genetic Diagnosis, The Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan.
| |
Collapse
|
33
|
Malbeteau L, Pham HT, Eve L, Stallcup MR, Poulard C, Le Romancer M. How Protein Methylation Regulates Steroid Receptor Function. Endocr Rev 2022; 43:160-197. [PMID: 33955470 PMCID: PMC8755998 DOI: 10.1210/endrev/bnab014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Indexed: 02/06/2023]
Abstract
Steroid receptors (SRs) are members of the nuclear hormonal receptor family, many of which are transcription factors regulated by ligand binding. SRs regulate various human physiological functions essential for maintenance of vital biological pathways, including development, reproduction, and metabolic homeostasis. In addition, aberrant expression of SRs or dysregulation of their signaling has been observed in a wide variety of pathologies. SR activity is tightly and finely controlled by post-translational modifications (PTMs) targeting the receptors and/or their coregulators. Whereas major attention has been focused on phosphorylation, growing evidence shows that methylation is also an important regulator of SRs. Interestingly, the protein methyltransferases depositing methyl marks are involved in many functions, from development to adult life. They have also been associated with pathologies such as inflammation, as well as cardiovascular and neuronal disorders, and cancer. This article provides an overview of SR methylation/demethylation events, along with their functional effects and biological consequences. An in-depth understanding of the landscape of these methylation events could provide new information on SR regulation in physiology, as well as promising perspectives for the development of new therapeutic strategies, illustrated by the specific inhibitors of protein methyltransferases that are currently available.
Collapse
Affiliation(s)
- Lucie Malbeteau
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Ha Thuy Pham
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Louisane Eve
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Michael R Stallcup
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Coralie Poulard
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Muriel Le Romancer
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| |
Collapse
|
34
|
Corchado-Cobos R, García-Sancha N, Mendiburu-Eliçabe M, Gómez-Vecino A, Jiménez-Navas A, Pérez-Baena MJ, Holgado-Madruga M, Mao JH, Cañueto J, Castillo-Lluva S, Pérez-Losada J. Pathophysiological Integration of Metabolic Reprogramming in Breast Cancer. Cancers (Basel) 2022; 14:cancers14020322. [PMID: 35053485 PMCID: PMC8773662 DOI: 10.3390/cancers14020322] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Tumors exhibit metabolic changes that differentiate them from the normal tissues from which they derive. These metabolic changes favor tumor growth, are primarily induced by cancer cells, and produce metabolic and functional changes in the surrounding stromal cells. There is a close functional connection between the metabolic changes in tumor cells and those that appear in the surrounding stroma. A better understanding of intratumoral metabolic interactions may help identify new vulnerabilities that will facilitate new, more individualized treatment strategies against cancer. We review the metabolic changes described in tumor and stromal cells and their functional changes and then consider, in depth, the metabolic interactions between the cells of the two compartments. Although these changes are generic, we illustrate them mainly with reference to examples in breast cancer. Abstract Metabolic changes that facilitate tumor growth are one of the hallmarks of cancer. The triggers of these metabolic changes are located in the tumor parenchymal cells, where oncogenic mutations induce an imperative need to proliferate and cause tumor initiation and progression. Cancer cells undergo significant metabolic reorganization during disease progression that is tailored to their energy demands and fluctuating environmental conditions. Oxidative stress plays an essential role as a trigger under such conditions. These metabolic changes are the consequence of the interaction between tumor cells and stromal myofibroblasts. The metabolic changes in tumor cells include protein anabolism and the synthesis of cell membranes and nucleic acids, which all facilitate cell proliferation. They are linked to catabolism and autophagy in stromal myofibroblasts, causing the release of nutrients for the cells of the tumor parenchyma. Metabolic changes lead to an interstitium deficient in nutrients, such as glucose and amino acids, and acidification by lactic acid. Together with hypoxia, they produce functional changes in other cells of the tumor stroma, such as many immune subpopulations and endothelial cells, which lead to tumor growth. Thus, immune cells favor tissue growth through changes in immunosuppression. This review considers some of the metabolic changes described in breast cancer.
Collapse
Affiliation(s)
- Roberto Corchado-Cobos
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (M.M.-E.); (A.G.-V.); (A.J.-N.); (M.J.P.-B.); (J.C.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain;
| | - Natalia García-Sancha
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (M.M.-E.); (A.G.-V.); (A.J.-N.); (M.J.P.-B.); (J.C.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain;
| | - Marina Mendiburu-Eliçabe
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (M.M.-E.); (A.G.-V.); (A.J.-N.); (M.J.P.-B.); (J.C.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain;
| | - Aurora Gómez-Vecino
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (M.M.-E.); (A.G.-V.); (A.J.-N.); (M.J.P.-B.); (J.C.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain;
| | - Alejandro Jiménez-Navas
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (M.M.-E.); (A.G.-V.); (A.J.-N.); (M.J.P.-B.); (J.C.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain;
| | - Manuel Jesús Pérez-Baena
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (M.M.-E.); (A.G.-V.); (A.J.-N.); (M.J.P.-B.); (J.C.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain;
| | - Marina Holgado-Madruga
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain;
- Departamento de Fisiología y Farmacología, Universidad de Salamanca, 37007 Salamanca, Spain
- Instituto de Neurociencias de Castilla y León (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA;
- Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Javier Cañueto
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (M.M.-E.); (A.G.-V.); (A.J.-N.); (M.J.P.-B.); (J.C.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain;
- Departamento de Dermatología, Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007 Salamanca, Spain
- Complejo Asistencial Universitario de Salamanca, 37007 Salamanca, Spain
| | - Sonia Castillo-Lluva
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain
- Correspondence: (S.C.-L.); (J.P-L.)
| | - Jesús Pérez-Losada
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (M.M.-E.); (A.G.-V.); (A.J.-N.); (M.J.P.-B.); (J.C.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain;
- Correspondence: (S.C.-L.); (J.P-L.)
| |
Collapse
|
35
|
High BRCA1 gene expression increases the risk of early distant metastasis in ER + breast cancers. Sci Rep 2022; 12:77. [PMID: 34996912 PMCID: PMC8741892 DOI: 10.1038/s41598-021-03471-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 10/11/2021] [Indexed: 12/24/2022] Open
Abstract
Although the function of the BRCA1 gene has been extensively studied, the relationship between BRCA1 gene expression and tumor aggressiveness remains controversial in sporadic breast cancers. Because the BRCA1 protein is known to regulate estrogen signaling, we selected microarray data of ER+ breast cancers from the GEO public repository to resolve previous conflicting findings. The BRCA1 gene expression level in highly proliferative luminal B tumors was shown to be higher than that in luminal A tumors. Survival analysis using a cure model indicated that patients of early ER+ breast cancers with high BRCA1 expression developed rapid distant metastasis. In addition, the proliferation marker genes MKI67 and PCNA, which are characteristic of aggressive tumors, were also highly expressed in patients with high BRCA1 expression. The associations among high BRCA1 expression, high proliferation marker expression, and high risk of distant metastasis emerged in independent datasets, regardless of tamoxifen treatment. Tamoxifen therapy could improve the metastasis-free fraction of high BRCA1 expression patients. Our findings link BRCA1 expression with proliferation and possibly distant metastasis via the ER signaling pathway. We propose a testable hypothesis based on these consistent results and offer an interpretation for our reported associations.
Collapse
|
36
|
Targeting Estrogens and Various Estrogen-Related Receptors against Non-Small Cell Lung Cancers: A Perspective. Cancers (Basel) 2021; 14:cancers14010080. [PMID: 35008242 PMCID: PMC8750572 DOI: 10.3390/cancers14010080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/08/2021] [Accepted: 12/16/2021] [Indexed: 12/20/2022] Open
Abstract
Non-small cell lung cancers (NSCLCs) account for ~85% of lung cancer cases worldwide. Mammalian lungs are exposed to both endogenous and exogenous estrogens. The expression of estrogen receptors (ERs) in lung cancer cells has evoked the necessity to evaluate the role of estrogens in the disease progression. Estrogens, specifically 17β-estradiol, promote maturation of several tissue types including lungs. Recent epidemiologic data indicate that women have a higher risk of lung adenocarcinoma, a type of NSCLC, when compared to men, independent of smoking status. Besides ERs, pulmonary tissues both in healthy physiology and in NSCLCs also express G-protein-coupled ERs (GPERs), epidermal growth factor receptor (EGFRs), estrogen-related receptors (ERRs) and orphan nuclear receptors. Premenopausal females between the ages of 15 and 50 years synthesize a large contingent of estrogens and are at a greater risk of developing NSCLCs. Estrogen-ER/GPER/EGFR/ERR-mediated activation of various cell signaling molecules regulates NSCLC cell proliferation, survival and apoptosis. This article sheds light on the most recent achievements in the elucidation of sequential biochemical events in estrogen-activated cell signaling pathways involved in NSCLC severity with insight into the mechanism of regulation by ERs/GPERs/EGFRs/ERRs. It further discusses the success of anti-estrogen therapies against NSCLCs.
Collapse
|
37
|
Luo Y, Vlaeminck-Guillem V, Teinturier R, Abou Ziki R, Bertolino P, Le Romancer M, Zhang CX. The scaffold protein menin is essential for activating the MYC locus and MYC-mediated androgen receptor transcription in androgen receptor-dependent prostate cancer cells. Cancer Commun (Lond) 2021; 41:1427-1430. [PMID: 34850609 PMCID: PMC8696212 DOI: 10.1002/cac2.12217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/18/2021] [Accepted: 09/07/2021] [Indexed: 12/20/2022] Open
Affiliation(s)
- Yakun Luo
- Department of Tumor Escape, Resistance and Immunity, Université Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France
| | - Virginie Vlaeminck-Guillem
- Department of Tumor Escape, Resistance and Immunity, Université Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France.,Centre de Biologie Sud, Hôpital Lyon Sud, Hospices Civils de Lyon, Pierre-Bénite, 69310, France
| | - Romain Teinturier
- Department of Tumor Escape, Resistance and Immunity, Université Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France
| | - Razan Abou Ziki
- Department of Tumor Escape, Resistance and Immunity, Université Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France
| | - Philippe Bertolino
- Department of Tumor Escape, Resistance and Immunity, Université Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France
| | - Muriel Le Romancer
- Department of Tumor Escape, Resistance and Immunity, Université Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France
| | - Chang Xian Zhang
- Department of Tumor Escape, Resistance and Immunity, Université Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France
| |
Collapse
|
38
|
Elsers DA, Masoud EM, Kamel NAMH, Ahmed AM. Immunohistochemical signaling pathways of triple negative and triple positive breast cancers: What is new? Ann Diagn Pathol 2021; 55:151831. [PMID: 34634762 DOI: 10.1016/j.anndiagpath.2021.151831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/19/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Breast cancer (BC) is a heterogeneous disease with different clinically heterogeneous phenotypes. Triple negative BC (TNBC) (ER-/PR-/HER2-) and triple positive BC (TPBC) (ER+/PR+/HER2+) are characterized by unique clinical behavior and therapeutic challenges. However, their exact molecular pathogenesis is not well studied. This study aims to evaluate the immunohistochemical expression of androgen receptor (AR) and c-Myc in TPBCs and TNBCs, correlate their expression with the clinicopathologic features, and assess the correlation between AR and c-Myc expression in TPBCs and TNBCs. MATERIAL AND METHODS AR and c-Myc were immunohistochemically assessed in 45 TNBC and 15 TPBC specimens. RESULTS AR expression was detected in 17.7% of TNBC and in all TPBC specimens. c-Myc was expressed in 46.7% of TNBC and in all TPBC specimens. AR and c-Myc expression in TNBC was not associated with any of the clinicopathological features. In TPBC, AR expression was higher in older age, larger size, higher stage, and lymph node metastasis while c-Myc expression was higher in tumors with perineural invasion. This is the first study that reported a significant positive correlation between AR and c-Myc expression in TNBC and TPBC. CONCLUSION The current results suggested that AR and c-Myc proteins may contribute to the pathogenesis of TNBC and TPBC. The positive correlation between the two proteins in these subtypes sheds new light on a distinct pathway by which BC cells can modulate their proliferation. Targeting both molecules may provide new therapeutic approaches to improve therapeutic sensitivity and patients' outcomes of these subtypes.
Collapse
Affiliation(s)
- Dalia A Elsers
- Pathology Department, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | - Eman Mostafa Masoud
- Pathology Department, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | | | - Asmaa M Ahmed
- Pathology Department, Faculty of Medicine, Assiut University, Assiut, Egypt.
| |
Collapse
|
39
|
Bardia A, Su F, Solovieff N, Im SA, Sohn J, Lee KS, Campos-Gomez S, Jung KH, Colleoni M, Vázquez RV, Franke F, Hurvitz S, Harbeck N, Chow L, Taran T, Rodriguez Lorenc K, Babbar N, Tripathy D, Lu YS. Genomic Profiling of Premenopausal HR+ and HER2- Metastatic Breast Cancer by Circulating Tumor DNA and Association of Genetic Alterations With Therapeutic Response to Endocrine Therapy and Ribociclib. JCO Precis Oncol 2021; 5:PO.20.00445. [PMID: 34504990 PMCID: PMC8423397 DOI: 10.1200/po.20.00445] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 04/14/2021] [Accepted: 07/28/2021] [Indexed: 12/31/2022] Open
Abstract
PURPOSE This analysis evaluated the genomic landscape of premenopausal patients with hormone receptor–positive and human epidermal growth factor receptor 2–negative advanced breast cancer and the association of genetic alterations with response to ribociclib in the phase III MONALEESA-7 trial. METHODS Premenopausal patients were randomly assigned 1:1 to receive endocrine therapy plus ribociclib or placebo. Plasma collected at baseline was sequenced using targeted next-generation sequencing for approximately 600 relevant cancer genes. The association of circulating tumor DNA alterations with progression-free survival (PFS) was evaluated to identify biomarkers of response and resistance to ribociclib. RESULTS Baseline circulating tumor DNA was sequenced in 565 patients; 489 had evidence of ≥ 1 alteration. The most frequent alterations included PIK3CA (28%), TP53 (19%), CCND1 (10%), MYC (8%), GATA3 (8%), receptor tyrosine kinases (17%), and the Chr8p11.23 locus (12%). A treatment benefit of ribociclib was seen with wild-type (hazard ratio [HR] 0.45 [95% CI, 0.33 to 0.62]) and altered (HR 0.57 [95% CI, 0.36 to 0.9]) PIK3CA. Overall, patients with altered CCND1 had shorter PFS regardless of treatment, suggesting CCND1 as a potential prognostic biomarker. Benefit with ribociclib was seen in patients with altered (HR 0.21 [95% CI, 0.08 to 0.54]) or wild-type (HR 0.52 [95% CI, 0.39 to 0.68]) CCND1, but greater benefit was observed with altered, suggesting predictive potential of CCND1. Alterations in TP53, MYC, Chr8p11.23 locus, and receptor tyrosine kinases were associated with worse PFS, but ribociclib benefit was independent of alteration status. CONCLUSION In this study—to our knowledge, the first large study of premenopausal patients with hormone receptor–positive and human epidermal growth factor receptor 2–negative advanced breast cancer—multiple genomic alterations were associated with poor outcome. A PFS benefit of ribociclib was observed regardless of gene alteration status, although in this exploratory analysis, a magnitude of benefits varied by alteration.
Collapse
Affiliation(s)
- Aditya Bardia
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA
| | - Fei Su
- Novartis Pharmaceuticals Corporation, East Hanover, NJ
| | | | - Seock-Ah Im
- Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Joohyuk Sohn
- Yonsei Cancer Center, Yonsei University Health System, Seoul, South Korea
| | - Keun Seok Lee
- Center for Breast Cancer, National Cancer Center, Goyang, South Korea
| | - Saul Campos-Gomez
- Centro Oncológico Estatal, Instituto de Seguridad Social del Estado de México y Municipios, Toluca, Mexico
| | - Kyung Hae Jung
- Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Marco Colleoni
- Division of Medical Senology, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | | | - Fabio Franke
- Hospital de Caridade de Ijuí, CACON, Ijuí, Brazil
| | - Sara Hurvitz
- University of California, Los Angeles Jonsson Comprehensive Cancer Center, Los Angeles, CA
| | - Nadia Harbeck
- Department of Obstetrics and Gynecology, Breast Center, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Louis Chow
- Organisation for Oncology and Translational Research, Hong Kong, China
| | - Tetiana Taran
- Novartis Pharmaceuticals Corporation, East Hanover, NJ
| | | | | | - Debu Tripathy
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yen-Shen Lu
- National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
40
|
Karaca B, Bakır E, Yerer MB, Cumaoğlu A, Hamurcu Z, Eken A. Doxazosin and erlotinib have anticancer effects in the endometrial cancer cell and important roles in ERα and Wnt/β-catenin signaling pathways. J Biochem Mol Toxicol 2021; 35:e22905. [PMID: 34463000 DOI: 10.1002/jbt.22905] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 06/23/2021] [Accepted: 08/20/2021] [Indexed: 12/27/2022]
Abstract
ERα and Wnt/β-catenin pathways are critical for the progression of most endometrial cancers. We aimed to investigate the cytotoxic and apoptotic effects of tamoxifen and quinazoline derivative drugs of doxazosin and erlotinib, and their roles in ERα and Wnt/β-catenin signaling pathways in human endometrial cancer RL 95-2 cell. 3-(4,5-Dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide assay and xCELLigence systems were performed to evaluate cytotoxicity. Furthermore, apoptotic induction was tested by Annexin V analysis. Caspase-3 and -9 activity and changes in the mitochondrial membrane potential were evaluated. The level of reactive oxygen species was measured by incubating with dichlorofluorescein diacetate. Protein ratios of p-ERα/ERα, GSK3β/p-GSK3β, and p-β-catenin/β-catenin and expression levels of ESR1, EGFR, c-Myc genes were evaluated to elucidate mechanisms in signaling pathways. We found that the tested drugs showed cytotoxic and apoptotic effects in the cells. Doxazosin significantly reduced ESR1 expression, slightly reduced the p-β-catenin/β-catenin ratio and c-Myc expression. Erlotinib significantly increased c-Myc expression while significantly decreasing the p-β-catenin/β-catenin and p-ERα/ERα ratio, and ESR1 expression. However, we observed that the cells develop resistance to erlotinib over a certain concentration, suggesting that ERα, ESR1, EGFR, and c-Myc may be a new target for overcoming drug resistance in the treatment of endometrial cancer. We also observed that erlotinib and doxazosin play an important role in the ERα signaling pathway and can act as potent inhibitors of PKA and/or tyrosine kinase in the Wnt/β-catenin signaling pathway in RL 95-2 cell. In conclusion, doxazosin and erlotinib may have a possible therapeutic potential in human endometrial cancer.
Collapse
Affiliation(s)
- Büşra Karaca
- Hakan Çetinsaya Good Clinical Practice and Research Center, Erciyes University, Kayseri, Turkey
| | - Elçin Bakır
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Mükerrem Betül Yerer
- Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Ahmet Cumaoğlu
- Department of Biochemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Zuhal Hamurcu
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Turkey.,Betül-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - Ayşe Eken
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| |
Collapse
|
41
|
Luo Y, Vlaeminck-Guillem V, Baron S, Dallel S, Zhang CX, Le Romancer M. MEN1 silencing aggravates tumorigenic potential of AR-independent prostate cancer cells through nuclear translocation and activation of JunD and β-catenin. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:270. [PMID: 34446068 PMCID: PMC8393735 DOI: 10.1186/s13046-021-02058-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/02/2021] [Indexed: 11/16/2022]
Abstract
Background Recent studies highlighted the increased frequency of AR-low or -negative prostate cancers (PCas) and the importance of AR-independent mechanisms in driving metastatic castration-resistant PCa (mCRPC) development and progression. Several previous studies have highlighted the involvement of the MEN1 gene in PCa. In the current study, we focused on its role specifically in AR-independent PCa cells. Methods Cell tumorigenic features were evaluated by proliferation assay, foci formation, colony formation in soft agar, wound healing assay and xenograft experiments in mice. Quantitative RT-PCR, Western blot and immunostaining were performed to determine the expression of different factors in human PCa lines. Different ChIP-qPCR-based assays were carried out to dissect the action of JunD and β-catenin. Results We found that MEN1 silencing in AR-independent cell lines, DU145 and PC3, resulted in an increase in anchorage independence and cell migration, accompanied by sustained MYC expression. By searching for factors known to positively regulate MYC expression and play a relevant role in PCa development and progression, we uncovered that MEN1-KD triggered the nuclear translocation of JunD and β-catenin. ChIP and 3C analyses further demonstrated that MEN1-KD led to, on the one hand, augmented binding of JunD to the MYC 5′ enhancer and increased formation of loop structure, and on the other hand, increased binding of β-catenin to the MYC promoter. Moreover, the expression of several molecular markers of EMT, including E-cadherin, BMI1, Twist1 and HIF-1α, was altered in MEN1-KD DU145 and PC3 cells. In addition, analyses using cultured cells and PC3-GFP xenografts in mice demonstrated that JunD and β-catenin are necessary for the altered tumorigenic potential triggered by MEN1 inactivation in AR-independent PCa cells. Finally, we observed a significant negative clinical correlation between MEN1 and CTNNB1 mRNA expression in primary PCa and mCRPC datasets. Conclusions Our current work highlights an unrecognized oncosuppressive role for menin specifically in AR-independent PCa cells, through the activation of JunD and β-catenin pathways. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02058-7.
Collapse
Affiliation(s)
- Yakun Luo
- Université Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008, Lyon, France
| | - Virginie Vlaeminck-Guillem
- Université Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008, Lyon, France.,Centre de biologie Sud, Hôpital Lyon Sud, Hospices Civils de Lyon, 69310, Pierre-Bénite, France
| | - Silvère Baron
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28 Place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
| | - Sarah Dallel
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28 Place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
| | - Chang Xian Zhang
- Université Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008, Lyon, France.
| | - Muriel Le Romancer
- Université Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008, Lyon, France
| |
Collapse
|
42
|
Lopes R, Sprouffske K, Sheng C, Uijttewaal ECH, Wesdorp AE, Dahinden J, Wengert S, Diaz-Miyar J, Yildiz U, Bleu M, Apfel V, Mermet-Meillon F, Krese R, Eder M, Olsen AV, Hoppe P, Knehr J, Carbone W, Cuttat R, Waldt A, Altorfer M, Naumann U, Weischenfeldt J, deWeck A, Kauffmann A, Roma G, Schübeler D, Galli GG. Systematic dissection of transcriptional regulatory networks by genome-scale and single-cell CRISPR screens. SCIENCE ADVANCES 2021; 7:eabf5733. [PMID: 34215580 PMCID: PMC11057712 DOI: 10.1126/sciadv.abf5733] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 05/21/2021] [Indexed: 06/13/2023]
Abstract
Millions of putative transcriptional regulatory elements (TREs) have been cataloged in the human genome, yet their functional relevance in specific pathophysiological settings remains to be determined. This is critical to understand how oncogenic transcription factors (TFs) engage specific TREs to impose transcriptional programs underlying malignant phenotypes. Here, we combine cutting edge CRISPR screens and epigenomic profiling to functionally survey ≈15,000 TREs engaged by estrogen receptor (ER). We show that ER exerts its oncogenic role in breast cancer by engaging TREs enriched in GATA3, TFAP2C, and H3K27Ac signal. These TREs control critical downstream TFs, among which TFAP2C plays an essential role in ER-driven cell proliferation. Together, our work reveals novel insights into a critical oncogenic transcription program and provides a framework to map regulatory networks, enabling to dissect the function of the noncoding genome of cancer cells.
Collapse
Affiliation(s)
- Rui Lopes
- Disease area Oncology, Novartis Institute for Biomedical Research, CH-4002 Basel, Switzerland.
| | - Kathleen Sprouffske
- Disease area Oncology, Novartis Institute for Biomedical Research, CH-4002 Basel, Switzerland
| | - Caibin Sheng
- Disease area Oncology, Novartis Institute for Biomedical Research, CH-4002 Basel, Switzerland
| | - Esther C H Uijttewaal
- Disease area Oncology, Novartis Institute for Biomedical Research, CH-4002 Basel, Switzerland
| | - Adriana Emma Wesdorp
- Disease area Oncology, Novartis Institute for Biomedical Research, CH-4002 Basel, Switzerland
| | - Jan Dahinden
- Disease area Oncology, Novartis Institute for Biomedical Research, CH-4002 Basel, Switzerland
| | - Simon Wengert
- Disease area Oncology, Novartis Institute for Biomedical Research, CH-4002 Basel, Switzerland
| | - Juan Diaz-Miyar
- Disease area Oncology, Novartis Institute for Biomedical Research, CH-4002 Basel, Switzerland
| | - Umut Yildiz
- Disease area Oncology, Novartis Institute for Biomedical Research, CH-4002 Basel, Switzerland
| | - Melusine Bleu
- Disease area Oncology, Novartis Institute for Biomedical Research, CH-4002 Basel, Switzerland
| | - Verena Apfel
- Disease area Oncology, Novartis Institute for Biomedical Research, CH-4002 Basel, Switzerland
| | - Fanny Mermet-Meillon
- Disease area Oncology, Novartis Institute for Biomedical Research, CH-4002 Basel, Switzerland
| | - Rok Krese
- Disease area Oncology, Novartis Institute for Biomedical Research, CH-4002 Basel, Switzerland
| | - Mathias Eder
- Disease area Oncology, Novartis Institute for Biomedical Research, CH-4002 Basel, Switzerland
| | - André Vidas Olsen
- Biotech Research and Innovation Centre (BRIC), The Finsen Laboratory, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Philipp Hoppe
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Judith Knehr
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Walter Carbone
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Rachel Cuttat
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Annick Waldt
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Marc Altorfer
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Ulrike Naumann
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Joachim Weischenfeldt
- Biotech Research and Innovation Centre (BRIC), The Finsen Laboratory, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Antoine deWeck
- Disease area Oncology, Novartis Institute for Biomedical Research, CH-4002 Basel, Switzerland
| | - Audrey Kauffmann
- Disease area Oncology, Novartis Institute for Biomedical Research, CH-4002 Basel, Switzerland
| | - Guglielmo Roma
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Faculty of Sciences, University of Basel, Basel, Switzerland
| | - Giorgio G Galli
- Disease area Oncology, Novartis Institute for Biomedical Research, CH-4002 Basel, Switzerland.
| |
Collapse
|
43
|
Waddell AR, Huang H, Liao D. CBP/p300: Critical Co-Activators for Nuclear Steroid Hormone Receptors and Emerging Therapeutic Targets in Prostate and Breast Cancers. Cancers (Basel) 2021; 13:2872. [PMID: 34201346 PMCID: PMC8229436 DOI: 10.3390/cancers13122872] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 01/10/2023] Open
Abstract
The CREB-binding protein (CBP) and p300 are two paralogous lysine acetyltransferases (KATs) that were discovered in the 1980s-1990s. Since their discovery, CBP/p300 have emerged as important regulatory proteins due to their ability to acetylate histone and non-histone proteins to modulate transcription. Work in the last 20 years has firmly established CBP/p300 as critical regulators for nuclear hormone signaling pathways, which drive tumor growth in several cancer types. Indeed, CBP/p300 are critical co-activators for the androgen receptor (AR) and estrogen receptor (ER) signaling in prostate and breast cancer, respectively. The AR and ER are stimulated by sex hormones and function as transcription factors to regulate genes involved in cell cycle progression, metabolism, and other cellular functions that contribute to oncogenesis. Recent structural studies of the AR/p300 and ER/p300 complexes have provided critical insights into the mechanism by which p300 interacts with and activates AR- and ER-mediated transcription. Breast and prostate cancer rank the first and forth respectively in cancer diagnoses worldwide and effective treatments are urgently needed. Recent efforts have identified specific and potent CBP/p300 inhibitors that target the acetyltransferase activity and the acetytllysine-binding bromodomain (BD) of CBP/p300. These compounds inhibit AR signaling and tumor growth in prostate cancer. CBP/p300 inhibitors may also be applicable for treating breast and other hormone-dependent cancers. Here we provide an in-depth account of the critical roles of CBP/p300 in regulating the AR and ER signaling pathways and discuss the potential of CBP/p300 inhibitors for treating prostate and breast cancer.
Collapse
Affiliation(s)
- Aaron R. Waddell
- UF Health Cancer Center, Department of Anatomy and Cell Biology, University Florida College of Medicine, 2033 Mowry Road, Gainesville, FL 32610, USA;
| | - Haojie Huang
- Departments of Biochemistry and Molecular Biology and Urology, Mayo Clinic College of Medicine and Science, 200 First St. SW, Rochester, MN 55905, USA;
| | - Daiqing Liao
- UF Health Cancer Center, Department of Anatomy and Cell Biology, University Florida College of Medicine, 2033 Mowry Road, Gainesville, FL 32610, USA;
| |
Collapse
|
44
|
Waddell A, Mahmud I, Ding H, Huo Z, Liao D. Pharmacological Inhibition of CBP/p300 Blocks Estrogen Receptor Alpha (ERα) Function through Suppressing Enhancer H3K27 Acetylation in Luminal Breast Cancer. Cancers (Basel) 2021; 13:2799. [PMID: 34199844 PMCID: PMC8200112 DOI: 10.3390/cancers13112799] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/23/2021] [Accepted: 05/29/2021] [Indexed: 01/10/2023] Open
Abstract
Estrogen receptor alpha (ER) is the oncogenic driver for ER+ breast cancer (BC). ER antagonists are the standard-of-care treatment for ER+ BC; however, primary and acquired resistance to these agents is common. CBP and p300 are critical ER co-activators and their acetyltransferase (KAT) domain and acetyl-lysine binding bromodomain (BD) represent tractable drug targets, but whether CBP/p300 inhibitors can effectively suppress ER signaling remains unclear. We report that the CBP/p300 KAT inhibitor A-485 and the BD inhibitor GNE-049 downregulate ER, attenuate estrogen-induced c-Myc and Cyclin D1 expression, and inhibit growth of ER+ BC cells through inducing senescence. Microarray and RNA-seq analysis demonstrates that A-485 or EP300 (encoding p300) knockdown globally inhibits expression of estrogen-regulated genes, confirming that ER inhibition is an on-target effect of A-485. Using ChIP-seq, we report that A-485 suppresses H3K27 acetylation in the enhancers of ER target genes (including MYC and CCND1) and this correlates with their decreased expression, providing a mechanism underlying how CBP/p300 inhibition downregulates ER gene network. Together, our results provide a preclinical proof-of-concept that CBP/p300 represent promising therapeutic targets in ER+ BC for inhibiting ER signaling.
Collapse
Affiliation(s)
- Aaron Waddell
- Department of Anatomy and Cell Biology, University Florida College of Medicine, UF Health Cancer Center, 2033 Mowry Road, Gainesville, FL 32610, USA; (A.W.); (I.M.)
| | - Iqbal Mahmud
- Department of Anatomy and Cell Biology, University Florida College of Medicine, UF Health Cancer Center, 2033 Mowry Road, Gainesville, FL 32610, USA; (A.W.); (I.M.)
| | - Haocheng Ding
- Departments of Biostatistics, University Florida College of Medicine, 2004 Mowry Road, Gainesville, FL 32610, USA; (H.D.); (Z.H.)
| | - Zhiguang Huo
- Departments of Biostatistics, University Florida College of Medicine, 2004 Mowry Road, Gainesville, FL 32610, USA; (H.D.); (Z.H.)
| | - Daiqing Liao
- Department of Anatomy and Cell Biology, University Florida College of Medicine, UF Health Cancer Center, 2033 Mowry Road, Gainesville, FL 32610, USA; (A.W.); (I.M.)
| |
Collapse
|
45
|
Expression of Estrogen Receptor- and Progesterone Receptor-Regulating MicroRNAs in Breast Cancer. Genes (Basel) 2021; 12:genes12040582. [PMID: 33923732 PMCID: PMC8073827 DOI: 10.3390/genes12040582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/17/2022] Open
Abstract
In ~70% of breast cancer (BC) cases, estrogen and progesterone receptors (ER and PR) are overexpressed, which can change during tumor progression. Expression changes of these receptors during cancer initiation and progression can be caused by alterations in microRNA (miR, miRNA) expression. To assess the association of BC progression with aberrant expression of miRNAs that target ER and PR mRNAs, we quantified miR-19b, -222, -22, -378a, and -181a in BC samples (n = 174) by real-time PCR. Underexpression of miR-222 and miR-378a in stage T2–T4 BC was characteristic for HER2-overexpressing tumors. In addition, the expression of miR-181a and miR-378a was higher in these tumors than in tumors with a HER2 IHC score of 0 or 1+. In tumors with a Ki-67 index ≥ 14%, all tested miRNAs were underexpressed in BC with a high Allred PR score (6–8). In ER-and-PR–negative tumors, miR-22, miR-222, miR-181a, and miR-378a underexpression was associated with Ki-67 index > 35% (median value). MiR-19b and miR-22 underexpression could be a marker of lymph node metastasis in ER- and/or PR-positive tumors with HER2 IHC score 0. Thus, the association of miR-19b, miR-22, miR-222, miR-378a, and miR-181a levels with BC characteristics is influenced by the status of tumor ER, PR, HER2, and Ki-67.
Collapse
|
46
|
Simeone P, Tacconi S, Longo S, Lanuti P, Bravaccini S, Pirini F, Ravaioli S, Dini L, Giudetti AM. Expanding Roles of De Novo Lipogenesis in Breast Cancer. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:3575. [PMID: 33808259 PMCID: PMC8036647 DOI: 10.3390/ijerph18073575] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/12/2021] [Accepted: 03/27/2021] [Indexed: 12/23/2022]
Abstract
In recent years, lipid metabolism has gained greater attention in several diseases including cancer. Dysregulation of fatty acid metabolism is a key component in breast cancer malignant transformation. In particular, de novo lipogenesis provides the substrate required by the proliferating tumor cells to maintain their membrane composition and energetic functions during enhanced growth. However, it appears that not all breast cancer subtypes depend on de novo lipogenesis for fatty acid replenishment. Indeed, while breast cancer luminal subtypes rely on de novo lipogenesis, the basal-like receptor-negative subtype overexpresses genes involved in the utilization of exogenous-derived fatty acids, in the synthesis of triacylglycerols and lipid droplets, and fatty acid oxidation. These metabolic differences are specifically associated with genomic and proteomic changes that can perturb lipogenic enzymes and related pathways. This behavior is further supported by the observation that breast cancer patients can be stratified according to their molecular profiles. Moreover, the discovery that extracellular vesicles act as a vehicle of metabolic enzymes and oncometabolites may provide the opportunity to noninvasively define tumor metabolic signature. Here, we focus on de novo lipogenesis and the specific differences exhibited by breast cancer subtypes and examine the functional contribution of lipogenic enzymes and associated transcription factors in the regulation of tumorigenic processes.
Collapse
Affiliation(s)
- Pasquale Simeone
- Department of Medicine and Aging Sciences, University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (P.S.); (P.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy
| | - Stefano Tacconi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy; (S.T.); (S.L.)
| | - Serena Longo
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy; (S.T.); (S.L.)
| | - Paola Lanuti
- Department of Medicine and Aging Sciences, University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (P.S.); (P.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy
| | - Sara Bravaccini
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (S.B.); (F.P.); (S.R.)
| | - Francesca Pirini
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (S.B.); (F.P.); (S.R.)
| | - Sara Ravaioli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (S.B.); (F.P.); (S.R.)
| | - Luciana Dini
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy;
- CNR Nanotec, 73100 Lecce, Italy
| | - Anna M. Giudetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy; (S.T.); (S.L.)
| |
Collapse
|
47
|
Saha S, Dey S, Nath S. Steroid Hormone Receptors: Links With Cell Cycle Machinery and Breast Cancer Progression. Front Oncol 2021; 11:620214. [PMID: 33777765 PMCID: PMC7994514 DOI: 10.3389/fonc.2021.620214] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
Progression of cells through cell cycle consists of a series of events orchestrated in a regulated fashion. Such processes are influenced by cell cycle regulated expression of various proteins where multiple families of transcription factors take integral parts. Among these, the steroid hormone receptors (SHRs) represent a connection between the external hormone milieu and genes that control cellular proliferation. Therefore, understanding the molecular connection between the transcriptional role of steroid hormone receptors and cell cycle deserves importance in dissecting cellular proliferation in normal as well as malignant conditions. Deregulation of cell cycle promotes malignancies of various origins, including breast cancer. Indeed, SHR members play crucial role in breast cancer progression as well as management. This review focuses on SHR-driven cell cycle regulation and moving forward, attempts to discuss the role of SHR-driven crosstalk between cell cycle anomalies and breast cancer.
Collapse
Affiliation(s)
- Suryendu Saha
- Department of Basic and Translational Research, Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| | - Samya Dey
- Department of Basic and Translational Research, Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| | - Somsubhra Nath
- Department of Basic and Translational Research, Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| |
Collapse
|
48
|
Wang L, Zhang S, Wang X. The Metabolic Mechanisms of Breast Cancer Metastasis. Front Oncol 2021; 10:602416. [PMID: 33489906 PMCID: PMC7817624 DOI: 10.3389/fonc.2020.602416] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is one of the most common malignancy among women worldwide. Metastasis is mainly responsible for treatment failure and is the cause of most breast cancer deaths. The role of metabolism in the progression and metastasis of breast cancer is gradually being emphasized. However, the regulatory mechanisms that conduce to cancer metastasis by metabolic reprogramming in breast cancer have not been expounded. Breast cancer cells exhibit different metabolic phenotypes depending on their molecular subtypes and metastatic sites. Both intrinsic factors, such as MYC amplification, PIK3CA, and TP53 mutations, and extrinsic factors, such as hypoxia, oxidative stress, and acidosis, contribute to different metabolic reprogramming phenotypes in metastatic breast cancers. Understanding the metabolic mechanisms underlying breast cancer metastasis will provide important clues to develop novel therapeutic approaches for treatment of metastatic breast cancer.
Collapse
Affiliation(s)
- Lingling Wang
- Department of Breast Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China.,Department of Surgical Oncology and Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shizhen Zhang
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaochen Wang
- Department of Breast Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China
| |
Collapse
|
49
|
Oladejo AO, Li Y, Wu X, Imam BH, Shen W, Ding XZ, Wang S, Yan Z. MicroRNAome: Potential and Veritable Immunomolecular Therapeutic and Diagnostic Baseline for Lingering Bovine Endometritis. Front Vet Sci 2020; 7:614054. [PMID: 33426032 PMCID: PMC7785807 DOI: 10.3389/fvets.2020.614054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/18/2020] [Indexed: 12/28/2022] Open
Abstract
The bovine endometrium is a natural pathogen invasion barrier of the uterine tissues' endometrial epithelial cells that can resist foreign pathogen invasion by controlling the inflammatory immune response. Some pathogens suppress the innate immune system of the endometrium, leading to prolonged systemic inflammatory response through the blood circulation or cellular degradation resulting in bovine endometritis by bacterial endotoxins. The microRNA (miRNA) typically involves gene expression in multicellular organisms in post-transcription regulation by affecting both the stability and the translation of messenger RNA. Accumulated evidence suggests that miRNAs are important regulators of genes in several cellular processes. They are a class of endogenous non-coding RNAs, which play pivotal roles in the inflammatory response of reproductive diseases. Studies confirmed that miRNAs play a key regulatory role in various inflammatory diseases by mediating the molecular mechanism of inflammatory cytokines via signal pathways. It implicates some miRNAs in the occurrence of bovine endometritis, resorting to regulating the activities of some inflammatory cytokines, chemokine, differentially expressed genes, and protein through modulating of specific cellular signal pathways functions. This review dwells on improving the knowledge of the role of miRNAs involvement in inflammatory response as to early diagnosis, control, and prevention of bovine endometritis and consequently enlighten on the molecular improvement of the genes coded by various differentially expressed miRNA through the need to adopt recent genetic technologies and the development of new pharmaceutical preparations.
Collapse
Affiliation(s)
- Ayodele Olaolu Oladejo
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, China.,Department of Animal Health Technology, Oyo State College of Agriculture and Technology, Igbo-Ora, Nigeria
| | - Yajuan Li
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, China
| | - Xiaohu Wu
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, China
| | - Bereket Habte Imam
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, China
| | - Wenxiang Shen
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, China
| | - Xue Zhi Ding
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, China
| | - Shengyi Wang
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, China
| | - Zuoting Yan
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, China
| |
Collapse
|
50
|
Estrogen Receptors and Estrogen-Induced Uterine Vasodilation in Pregnancy. Int J Mol Sci 2020; 21:ijms21124349. [PMID: 32570961 PMCID: PMC7352873 DOI: 10.3390/ijms21124349] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022] Open
Abstract
Normal pregnancy is associated with dramatic increases in uterine blood flow to facilitate the bidirectional maternal–fetal exchanges of respiratory gases and to provide sole nutrient support for fetal growth and survival. The mechanism(s) underlying pregnancy-associated uterine vasodilation remain incompletely understood, but this is associated with elevated estrogens, which stimulate specific estrogen receptor (ER)-dependent vasodilator production in the uterine artery (UA). The classical ERs (ERα and ERβ) and the plasma-bound G protein-coupled ER (GPR30/GPER) are expressed in UA endothelial cells and smooth muscle cells, mediating the vasodilatory effects of estrogens through genomic and/or nongenomic pathways that are likely epigenetically modified. The activation of these three ERs by estrogens enhances the endothelial production of nitric oxide (NO), which has been shown to play a key role in uterine vasodilation during pregnancy. However, the local blockade of NO biosynthesis only partially attenuates estrogen-induced and pregnancy-associated uterine vasodilation, suggesting that mechanisms other than NO exist to mediate uterine vasodilation. In this review, we summarize the literature on the role of NO in ER-mediated mechanisms controlling estrogen-induced and pregnancy-associated uterine vasodilation and our recent work on a “new” UA vasodilator hydrogen sulfide (H2S) that has dramatically changed our view of how estrogens regulate uterine vasodilation in pregnancy.
Collapse
|