1
|
Güçlü-Geyik F, Erginel T, Güleç Ç, Köseoğlu-Büyükkaya P, Erginel-Ünaltuna N. Methylation of the ESR1 promoters in visceral adipose tissue and its relationship with obesity. Mol Biol Rep 2024; 51:1144. [PMID: 39531130 DOI: 10.1007/s11033-024-10091-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Obesity is associated with decreased ESR1 expression level in visceral adipose tissue. However, it is unclear exactly what mechanisms are responsible for this decline. The aim of this study was to investigate the impact of aberrant methylation of the ESR1 alternative promoters on decreased ESR1 expression and its connection to obesity. METHODS Visceral adipose tissues and peripheral blood cells were obtained from 21 patients (non-obese and obese) undergoing inguinal hernia or gallbladder removal. Alternative promoter regions, C, E2 and F of the ESR1 gene, were analyzed by Methylation-Specific PCR (MSP) and mRNA levels were measured by quantitative real-time PCR (qPCR) in both visceral adipose tissue and peripheral blood cells. All statistical analyses were performed by SPSS (23.0). RESULTS The methylation percentage in the three promoter regions of ESR1 was not different in obese individuals compared to non-obese individuals. We observed that promoter C had the highest methylation frequency in obese patients, although it was not statistically significant. Additionally, we observed that the hypermethylation of ESR1's promoter C was significantly associated with lower mRNA expression level in obesity (p = 0.020). CONCLUSION This study suggests that methylation of ESR1 promoter C may be a factor in the development of obesity or a consequence of obesity. Further studies with advanced methods and larger study groups are needed to clarify this issue.
Collapse
Affiliation(s)
- Filiz Güçlü-Geyik
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Vakif Gureba Cad, 34080, Sehremini, Istanbul, Turkey.
| | - Turgay Erginel
- Department of General Surgery, Istanbul Training and Research Hospital, Istanbul, Turkey
| | - Çağrı Güleç
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Pınar Köseoğlu-Büyükkaya
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Nihan Erginel-Ünaltuna
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
2
|
Tamura I, Miyamoto K, Hatanaka C, Shiroshita A, Fujimura T, Shirafuta Y, Mihara Y, Maekawa R, Taketani T, Sato S, Matsumoto K, Tamura H, Sugino N. Nuclear actin assembly is an integral part of decidualization in human endometrial stromal cells. Commun Biol 2024; 7:830. [PMID: 38992143 PMCID: PMC11239864 DOI: 10.1038/s42003-024-06492-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 06/21/2024] [Indexed: 07/13/2024] Open
Abstract
Decidualization of the human endometrium is critical for establishing pregnancy and is entailed by differentiation of endometrial stromal cells (ESCs) into decidual cells. During decidualization, the actin cytoskeleton is dynamically reorganized for the ESCs' morphological and functional changes. Although actin dynamically alters its polymerized state upon external stimuli not only in the cytoplasm, but also in the nucleus, nuclear actin dynamics during decidualization have not been elucidated. Here, we show that nuclear actin was specifically assembled during decidualization of human ESCs. This decidualization-specific formation of nuclear actin filaments was disassembled following the withdrawal of the decidualization stimulus, suggesting its reversible process. Mechanistically, RNA-seq analyses revealed that the forced disassembly of nuclear actin resulted in the suppression of decidualization, accompanied with the abnormal upregulation of cell proliferation genes, leading to incomplete cell cycle arrest. CCAAT/enhancer-binding protein beta (C/EBPβ), an important regulator for decidualization, was responsible for downregulation of the nuclear actin exporter, thus accelerating nuclear actin accumulation and its assembly for decidualization. Taken together, we demonstrate that decidualization-specific nuclear actin assembly induces cell cycle arrest for establishing the decidualized state of ESCs. We propose that not only the cytoplasmic actin, but also nuclear actin dynamics profoundly affect decidualization process in humans for ensuring pregnancy.
Collapse
Affiliation(s)
- Isao Tamura
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan.
| | - Kei Miyamoto
- Laboratory of Molecular Developmental Biology, Faculty of Biology-Oriented Science and Technology, Kindai University, Wakayama, 649-6493, Japan.
- Laboratory of Animal Reproductive Physiology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan.
| | - Chiharu Hatanaka
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Amon Shiroshita
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Taishi Fujimura
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Yuichiro Shirafuta
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Yumiko Mihara
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Ryo Maekawa
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Toshiaki Taketani
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Shun Sato
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Kazuya Matsumoto
- Laboratory of Molecular Developmental Biology, Faculty of Biology-Oriented Science and Technology, Kindai University, Wakayama, 649-6493, Japan
| | - Hiroshi Tamura
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Norihiro Sugino
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| |
Collapse
|
3
|
Dresler SR, Pinto BI, Salanga MC, Propper CR, Berry SR, Kellar RS. Arsenic Impairs Wound Healing Processes in Dermal Fibroblasts and Mice. Int J Mol Sci 2024; 25:2161. [PMID: 38396835 PMCID: PMC10888720 DOI: 10.3390/ijms25042161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Inorganic arsenic (NaAsO2) is a naturally occurring metalloid found in water resources globally and in the United States at concentrations exceeding the U.S. Environmental Protection Agency Maximum Contamination Level of 10 ppb. While exposure to arsenic has been linked to cancer, cardiovascular disease, and skin lesions, the impact of arsenic exposure on wound healing is not fully understood. Cultured dermal fibroblasts exposed to NaAsO2 displayed reduced migration (scratch closure), proliferation, and viability with a lowest observable effect level (LOEL) of 10 µM NaAsO2 following 24 h exposure. An enrichment of Matrix Metalloproteinase 1 (MMP1) transcripts was observed at a LOEL of 1 µM NaAsO2 and 24 h exposure. In vivo, C57BL/6 mice were exposed to 10 µM NaAsO2 in their drinking water for eight weeks, then subjected to two full thickness dorsal wounds. Wounds were evaluated for closure after 6 days. Female mice displayed a significant reduction in wound closure and higher erythema levels, while males showed no effects. Gene expression analysis from skin excised from the wound site revealed significant enrichment in Arsenic 3-Methyltransferase (As3mt) and Estrogen Receptor 2 (Esr2) mRNA in the skin of female mice. These results indicate that arsenic at environmentally relevant concentrations may negatively impact wound healing processes in a sex-specific manner.
Collapse
Affiliation(s)
- Sara R. Dresler
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA; (S.R.D.); (B.I.P.); (M.C.S.); (C.R.P.); (S.R.B.)
| | - Bronson I. Pinto
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA; (S.R.D.); (B.I.P.); (M.C.S.); (C.R.P.); (S.R.B.)
| | - Matthew C. Salanga
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA; (S.R.D.); (B.I.P.); (M.C.S.); (C.R.P.); (S.R.B.)
| | - Catherine R. Propper
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA; (S.R.D.); (B.I.P.); (M.C.S.); (C.R.P.); (S.R.B.)
| | - Savannah R. Berry
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA; (S.R.D.); (B.I.P.); (M.C.S.); (C.R.P.); (S.R.B.)
| | - Robert S. Kellar
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA; (S.R.D.); (B.I.P.); (M.C.S.); (C.R.P.); (S.R.B.)
- Center for Materials Interfaces in Research & Applications, ¡MIRA!, Flagstaff, AZ 86011, USA
| |
Collapse
|
4
|
Shao X, Fu X, Yang J, Sui W, Li S, Yang W, Lin X, Zhang Y, Jia M, Liu H, Liu W, Han L, Yu Y, Deng Y, Zhang T, Yang J, Hu P. The asymmetrical ESR1 signaling in muscle progenitor cells determines the progression of adolescent idiopathic scoliosis. Cell Discov 2023; 9:44. [PMID: 37185898 PMCID: PMC10130095 DOI: 10.1038/s41421-023-00531-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 02/21/2023] [Indexed: 05/17/2023] Open
Abstract
Adolescent Idiopathic Scoliosis (AIS) is a common pediatric skeletal disease highly occurred in females. The pathogenesis of AIS has not been fully elucidated. Here, we reveal that ESR1 (Estrogen Receptor 1) expression declines in muscle stem/progenitor cells at the concave side of AIS patients. Furthermore, ESR1 is required for muscle stem/progenitor cell differentiation and disrupted ESR1 signaling leads to differentiation defects. The imbalance of ESR1 signaling in the para-spinal muscles induces scoliosis in mice, while reactivation of ESR1 signaling at the concave side by an FDA approved drug Raloxifene alleviates the curve progression. This work reveals that the asymmetric inactivation of ESR1 signaling is one of the causes of AIS. Reactivation of ESR1 signaling in para-spinal muscle by Raloxifene at the concave side could be a new strategy to treat AIS.
Collapse
Affiliation(s)
- Xiexiang Shao
- Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Fu
- Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingfan Yang
- Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenyuan Sui
- Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sheng Li
- Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjun Yang
- Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingzuan Lin
- Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanyuan Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- Centre Testing International Medical Laboratory (CTI-Medlab), Shanghai, China
| | - Minzhi Jia
- Centre Testing International Medical Laboratory (CTI-Medlab), Shanghai, China
| | - Huan Liu
- Centre Testing International Medical Laboratory (CTI-Medlab), Shanghai, China
| | - Wei Liu
- Centre Testing International Medical Laboratory (CTI-Medlab), Shanghai, China
| | - Lili Han
- Centre Testing International Medical Laboratory (CTI-Medlab), Shanghai, China
| | - Yang Yu
- Centre Testing International Medical Laboratory (CTI-Medlab), Shanghai, China
| | - Yaolong Deng
- Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyuan Zhang
- Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junlin Yang
- Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ping Hu
- Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
5
|
Maekawa R, Ota Y, Ota I, Mihara Y, Takasaki H, Sato S, Tamura I, Shirafuta Y, Shinagawa M, Fujimura T, Shiroshita A, Yoneda T, Kawamoto‐Jozaki M, Matsui F, Taketani T, Sugino N. Combined histological and DNA methylome profiling approaches may provide insights into the pathophysiology of ovarian endometriomas. Reprod Med Biol 2023; 22:e12548. [PMID: 38107653 PMCID: PMC10721957 DOI: 10.1002/rmb2.12548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/10/2023] [Accepted: 10/13/2023] [Indexed: 12/19/2023] Open
Abstract
Purpose To test the theory that invaginated ovarian surface epithelium and endometrial implants on the ovary form ovarian endometriomas. Methods Adhesion sites of ovarian endometrioma on the peritoneum and consecutive ovarian endometrioma cyst wall, called non-adhesion sites, were histologically examined. DNA methylomes of the adhesion sites, non-adhesion sites, and blueberry spots were compared with those of ovary, endometrium, and peritoneum. Results The non-adhesion sites showed an ovarian surface epithelium-like structure near the adhesion site, which continued to a columnar epithelium-like structure. Calretinin staining was strong in the ovarian surface epithelium-like structure but weak in the columnar epithelium-like structure. Estrogen receptors were absent in the ovarian surface epithelium-like structure, but present in the columnar epithelium-like structure. The adhesion sites had endometrial gland-like structures that expressed estrogen receptors. Analyses of DNA methylomes classified the non-adhesion sites and ovaries into the same group, suggesting that ovarian endometriomas originate from the ovarian surface epithelium. The adhesion sites, blueberry spots and peritoneum were classified in the same group, suggesting that the adhesion sites and blueberry spots originate from the peritoneum. Conclusions The present results support the invagination theory. Ovarian endometriomas consist of invaginated ovarian surface epithelium with celomic metaplasia and endometrium implants on the peritoneum.
Collapse
Affiliation(s)
- Ryo Maekawa
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Yoshiaki Ota
- Department of Obstetrics and GynecologyKawasaki Medical SchoolKurashikiJapan
| | - Ikuko Ota
- IKuko Ota Women's Medical CenterKurashikiJapan
| | - Yumiko Mihara
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Hitomi Takasaki
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Shun Sato
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Isao Tamura
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Yuichiro Shirafuta
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Masahiro Shinagawa
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Taishi Fujimura
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Amon Shiroshita
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Toshihide Yoneda
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Mai Kawamoto‐Jozaki
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Fuka Matsui
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Toshiaki Taketani
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Norihiro Sugino
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| |
Collapse
|
6
|
Maekawa R, Sato S, Tamehisa T, Sakai T, Kajimura T, Sueoka K, Sugino N. Different DNA methylome, transcriptome and histological features in uterine fibroids with and without MED12 mutations. Sci Rep 2022; 12:8912. [PMID: 35618793 PMCID: PMC9135739 DOI: 10.1038/s41598-022-12899-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/16/2022] [Indexed: 12/16/2022] Open
Abstract
Somatic mutations in Mediator complex subunit 12 (MED12m) have been reported as a biomarker of uterine fibroids (UFs). However, the role of MED12m is still unclear in the pathogenesis of UFs. Therefore, we investigated the differences in DNA methylome, transcriptome, and histological features between MED12m-positive and -negative UFs. DNA methylomes and transcriptomes were obtained from MED12m-positive and -negative UFs and myometrium, and hierarchically clustered. Differentially expressed genes in comparison with the myometrium and co-expressed genes detected by weighted gene co-expression network analysis were subjected to gene ontology enrichment analyses. The amounts of collagen fibers and the number of blood vessels and smooth muscle cells were histologically evaluated. Hierarchical clustering based on DNA methylation clearly separated the myometrium, MED12m-positive, and MED12m-negative UFs. MED12m-positive UFs had the increased activities of extracellular matrix formation, whereas MED12m-negative UFs had the increased angiogenic activities and smooth muscle cell proliferation. The MED12m-positive and -negative UFs had different DNA methylation, gene expression, and histological features. The MED12m-positive UFs form the tumor with a rich extracellular matrix and poor blood vessels and smooth muscle cells compared to the MED12m-negative UFs, suggesting MED12 mutations affect the tissue composition of UFs.
Collapse
Affiliation(s)
- Ryo Maekawa
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube, 755-8505, Japan.
| | - Shun Sato
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube, 755-8505, Japan
| | - Tetsuro Tamehisa
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube, 755-8505, Japan
| | - Takahiro Sakai
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube, 755-8505, Japan
| | - Takuya Kajimura
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube, 755-8505, Japan
| | - Kotaro Sueoka
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube, 755-8505, Japan
| | - Norihiro Sugino
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube, 755-8505, Japan
| |
Collapse
|
7
|
Takagi H, Tamura I, Fujimura T, Doi-Tanaka Y, Shirafuta Y, Mihara Y, Maekawa R, Taketani T, Sato S, Tamura H, Sugino N. Transcriptional coactivator PGC-1α contributes to decidualization by forming a histone-modifying complex with C/EBPβ and p300. J Biol Chem 2022; 298:101874. [PMID: 35358514 PMCID: PMC9048111 DOI: 10.1016/j.jbc.2022.101874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/17/2022] Open
Abstract
We previously reported that CCAAT/enhancer-binding protein beta (C/EBPβ) is the pioneer factor inducing transcription enhancer mark H3K27 acetylation (H3K27ac) in the promoter and enhancer regions of genes encoding insulin-like growth factor–binding protein-1 (IGFBP-1) and prolactin (PRL) and that this contributes to decidualization of human endometrial stromal cells (ESCs). Peroxisome proliferator–activated receptor gamma coactivator 1-alpha (PGC-1α; PPARGC1A) is a transcriptional coactivator known to regulate H3K27ac. However, although PGC-1α is expressed in ESCs, the potential role of PGC-1α in mediating decidualization is unclear. Here, we investigated the involvement of PGC-1α in the regulation of decidualization. We incubated ESCs with cAMP to induce decidualization and knocked down PPARGC1A to inhibit cAMP-induced expression of IGFBP-1 and PRL. We found cAMP increased the recruitment of PGC-1α and p300 to C/EBPβ-binding sites in the promoter and enhancer regions of IGFBP-1 and PRL, corresponding with increases in H3K27ac. Moreover, PGC-1α knockdown inhibited these increases, suggesting PGC-1α forms a histone-modifying complex with C/EBPβ and p300 at these regions. To further investigate the regulation of PGC-1α, we focused on C/EBPβ upstream of PGC-1α. We found cAMP increased C/EBPβ recruitment to the novel enhancer regions of PPARGC1A. Deletion of these enhancers decreased PGC-1α expression, indicating that C/EBPβ upregulates PGC-1α expression by binding to novel enhancer regions. In conclusion, PGC-1α is upregulated by C/EBPβ recruitment to novel enhancers and contributes to decidualization by forming a histone-modifying complex with C/EBPβ and p300, thereby inducing epigenomic changes in the promoters and enhancers of IGFBP-1 and PRL.
Collapse
Affiliation(s)
- Haruka Takagi
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Isao Tamura
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube, Japan.
| | - Taishi Fujimura
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Yumiko Doi-Tanaka
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Yuichiro Shirafuta
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Yumiko Mihara
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Ryo Maekawa
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Toshiaki Taketani
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Shun Sato
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Hiroshi Tamura
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Norihiro Sugino
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| |
Collapse
|
8
|
Chimento A, De Luca A, Avena P, De Amicis F, Casaburi I, Sirianni R, Pezzi V. Estrogen Receptors-Mediated Apoptosis in Hormone-Dependent Cancers. Int J Mol Sci 2022; 23:1242. [PMID: 35163166 PMCID: PMC8835409 DOI: 10.3390/ijms23031242] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
It is known that estrogen stimulates growth and inhibits apoptosis through estrogen receptor(ER)-mediated mechanisms in many cancer cell types. Interestingly, there is strong evidence that estrogens can also induce apoptosis, activating different ER isoforms in cancer cells. It has been observed that E2/ERα complex activates multiple pathways involved in both cell cycle progression and apoptotic cascade prevention, while E2/ERβ complex in many cases directs the cells to apoptosis. However, the exact mechanism of estrogen-induced tumor regression is not completely known. Nevertheless, ERs expression levels of specific splice variants and their cellular localization differentially affect outcome of estrogen-dependent tumors. The goal of this review is to provide a general overview of current knowledge on ERs-mediated apoptosis that occurs in main hormone dependent-cancers. Understanding the molecular mechanisms underlying the induction of ER-mediated cell death will be useful for the development of specific ligands capable of triggering apoptosis to counteract estrogen-dependent tumor growth.
Collapse
Affiliation(s)
- Adele Chimento
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Arianna De Luca
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Paola Avena
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Francesca De Amicis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Ivan Casaburi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Rosa Sirianni
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Vincenzo Pezzi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, Arcavacata di Rende, 87036 Cosenza, Italy
| |
Collapse
|
9
|
Peng X, Luo H, Kong X, Wang J. Metrics for evaluating differentially methylated region sets predicted from BS-seq data. Brief Bioinform 2021; 23:6454651. [PMID: 34874989 DOI: 10.1093/bib/bbab475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 11/13/2022] Open
Abstract
Investigating differentially methylated regions (DMRs) presented in different tissues or cell types can help to reveal the mechanisms behind the tissue-specific gene expression. The identified tissue-/disease-specific DMRs also can be used as feature markers for spotting the tissues-of-origins of cell-free DNA (cfDNA) in noninvasive diagnosis. In recent years, many methods have been proposed to detect DMRs. However, due to the lack of benchmark DMRs, it is difficult for researchers to choose proper methods and select desirable DMR sets for downstream studies. The application of DMRs, used as feature markers, can be benefited by the longer length of DMRs containing more CpG sites when a threshold is given for the methylation differences of DMRs. According to this, two metrics ($Qn$ and $Ql$), in which the CpG numbers and lengths of DMRs with different methylation differences are weighted differently, are proposed in this paper to evaluate the DMR sets predicted by different methods on BS-seq data. DMR sets predicted by eight methods on both simulated datasets and real BS-seq datasets are evaluated by the proposed metrics, the benchmark-based metrics, and the enrichment analysis of biological data, including genomic features, transcription factors and histones. The rank correlation analysis shows that the $Qn$ and $Ql$ are highly correlated to the benchmark metrics for simulated datasets and the biological data enrichment analysis for real BS-seq data. Therefore, with no need for additional biological data, the proposed metrics can help researchers selecting a more suitable DMR set on a certain BS-seq dataset.
Collapse
Affiliation(s)
- Xiaoqing Peng
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410038, China.,Institute of Molecular Precision Medicine, Xiangya Hospital, Key Laboratory of Molecular Precision Medicine of Hunan Province, Central South University, Changsha, Hunan 410038, China
| | - Hongze Luo
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Xiangyan Kong
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Jianxin Wang
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
10
|
Tamura I, Fujimura T, Doi-Tanaka Y, Takagi H, Shirafuta Y, Kajimura T, Mihara Y, Maekawa R, Taketani T, Sato S, Tamura H, Sugino N. The essential glucose transporter GLUT1 is epigenetically upregulated by C/EBPβ and WT1 during decidualization of the endometrium. J Biol Chem 2021; 297:101150. [PMID: 34478711 PMCID: PMC8458984 DOI: 10.1016/j.jbc.2021.101150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 11/29/2022] Open
Abstract
Human endometrial stromal cells (ESCs) differentiate into decidual cells by the action of progesterone, which is essential for implantation and maintenance of pregnancy. We previously reported that glucose uptake by human ESCs increases during decidualization and that glucose is indispensable for decidualization. Although glucose transporter 1 (GLUT1) is upregulated during decidualization, it remains unclear whether it is involved in glucose uptake. Here, we attempted to determine the role of GLUT1 during decidualization as well as the factors underlying its upregulation. ESCs were incubated with cAMP to induce decidualization. Knockdown of GLUT1 suppressed cAMP-increased glucose uptake and the expressions of specific markers of decidualization, IGF-binding protein-1 (IGFBP-1), and prolactin (PRL). To investigate the regulation of GLUT1 expression, we focused on CCAAT enhancer-binding protein β (C/EBPβ) and Wilms' tumor 1 (WT1) as the upstream transcription factors regulating GLUT1 expression. Knockdown of either C/EBPβ or WT1 suppressed cAMP-increased GLUT1 expression and glucose uptake. cAMP treatment also increased the recruitment of C/EBPβ and WT1 to the GLUT1 promoter region. Interestingly, cAMP increased the H3K27 acetylation (H3K27ac) and p300 recruitment in the GLUT1 promoter region. Knockdown of C/EBPβ or WT1 inhibited these events, indicating that both C/EBPβ and WT1 contribute to the increase of H3K27ac by recruiting p300 to the GLUT1 promoter region during decidualization. These findings indicate that GLUT1 is involved in glucose uptake in ESCs during decidualization, thus facilitating the establishment of pregnancy.
Collapse
Affiliation(s)
- Isao Tamura
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube, Japan.
| | - Taishi Fujimura
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Yumiko Doi-Tanaka
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Haruka Takagi
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Yuichiro Shirafuta
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Takuya Kajimura
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Yumiko Mihara
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Ryo Maekawa
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Toshiaki Taketani
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Shun Sato
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Hiroshi Tamura
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Norihiro Sugino
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| |
Collapse
|
11
|
Methylation of Estrogen Receptor 1 Gene in the Paraspinal Muscles of Girls with Idiopathic Scoliosis and Its Association with Disease Severity. Genes (Basel) 2021; 12:genes12060790. [PMID: 34064195 PMCID: PMC8224318 DOI: 10.3390/genes12060790] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022] Open
Abstract
Idiopathic scoliosis (IS) is a multifactorial disease with epigenetic modifications. Tissue dependent and differentially methylated regions (T-DMRs) may regulate tissue-specific expression of the estrogen receptor 1 gene (ESR1). This study aimed to analyze methylation levels within T-DMR1 and T-DMR2 and its concatenation with ESR1 expression of IS patients. The study involved 87 tissue samples (deep paravertebral muscles, both on the convex and the concave side of the curve, and from back superficial muscles) from 29 girls who underwent an operation due to IS. Patient subgroups were analyzed according to Cobb angle ≤70° vs. >70°. Methylation was significantly higher in the superficial muscles than in deep paravertebral muscles in half of the T-DMR1 CpGs and all T-DMR2 CpGs. The methylation level correlated with ESR1 expression level on the concave, but not convex, side of the curvature in a majority of the T-DMR2 CpGs. The T-DMR2 methylation level in the deep paravertebral muscles on the curvature's concave side was significantly lower in patients with a Cobb angle ≤70° in four CpGs. DNA methylation of the T-DMRs is specific to muscle tissue location and may be related to ESR1 expression regulation. Additionally, the difference in T-DMR2 methylation may be associated with IS severity.
Collapse
|
12
|
Collins JM, Wang D. Co-expression of drug metabolizing cytochrome P450 enzymes and estrogen receptor alpha (ESR1) in human liver: racial differences and the regulatory role of ESR1. Drug Metab Pers Ther 2021; 36:205-214. [PMID: 33823094 DOI: 10.1515/dmpt-2020-0160] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/03/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVES The function and expression of cytochrome P450 (CYP) drug metabolizing enzymes is highly variable, greatly affecting drug exposure, and therapeutic outcomes. The expression of these enzymes is known to be controlled by many transcription factors (TFs), including ligand-free estrogen receptor alpha (ESR1, in the absence of estrogen). However, the relationship between the expression of ESR1, other TFs, and CYP enzymes in human liver is still unclear. METHODS Using real-time PCR, we quantified the mRNA levels of 12 CYP enzymes and nine TFs in 246 human liver samples from European American (EA, n = 133) and African American (AA, n = 113) donors. RESULTS Our results showed higher expression levels of ESR1 and six CYP enzymes in EA than in AA. Partial least square regression analysis showed that ESR1 is the top-ranking TF associating with the expression of eight CYP enzymes, six of which showed racial difference in expression. Conversely, four CYP enzymes without racial difference in expression did not have ESR1 as a top-ranking TF. These results indicate that ESR1 may contribute to variation in CYP enzyme expression between these two ancestral backgrounds. CONCLUSIONS These results are consistent with our previous study showing ESR1 as a master regulator for the expression of several CYP enzymes. Therefore, factors affecting ESR1 expression may have broad influence on drug metabolism through altered expression of CYP enzymes.
Collapse
Affiliation(s)
- Joseph M Collins
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Danxin Wang
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
13
|
Tamura I, Maekawa R, Jozaki K, Ohkawa Y, Takagi H, Doi-Tanaka Y, Shirafuta Y, Mihara Y, Taketani T, Sato S, Tamura H, Sugino N. Transcription factor C/EBPβ induces genome-wide H3K27ac and upregulates gene expression during decidualization of human endometrial stromal cells. Mol Cell Endocrinol 2021; 520:111085. [PMID: 33232782 DOI: 10.1016/j.mce.2020.111085] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 12/22/2022]
Abstract
We previously reported that H3K27 acetylation (H3K27ac) increases throughout the genome during decidualization of human endometrial stromal cells (ESCs). However, its mechanisms have not been clarified. We also reported that C/EBPβ acts as a pioneer factor initiating chromatin remodeling by increasing H3K27ac of IGFBP-1 and PRL promoters. Therefore, C/EBPβ may be involved in the genome-wide increase of H3K27ac during decidualization. In this study, we investigated whether C/EBPβ causes genome-wide H3K27ac modifications and regulates gene expressions during decidualization. cAMP was used to induce decidualization. Three types of cells (control cells, cAMP-treated cells, and cAMP-treated + C/EBPβ-knockdowned cells by siRNA) were generated. Of 4190 genes that were upregulated by cAMP, C/EBPβ knockdown inhibited these upregulation in 2239 genes (53.4%), indicating that they are under the regulation of C/EBPβ. cAMP increased H3K27ac in 1272 of the 2239 genes. C/EBPβ knockdown abolished the increase of H3K27ac in almost all genes (1263 genes, 99.3%), suggesting that C/EBPβ can upregulate gene expression by increasing H3K27ac. To investigate how C/EBPβ regulates H3K27ac throughout the genome, we tested the hypothesis that C/EBPβ binds to its binding regions and recruits cofactors with histone acetyltransferase activities. To do this, we collated our ChIP-sequence data with public ChIP-sequence database of transcription factors, and found that p300 is the most likely cofactor that binds to the H3K27ac-increased-regions with C/EBPβ. ChIP-qPCR of several genes confirmed that C/EBPβ binds to the target regions, recruits p300, and increases H3K27ac. Our genome-wide analysis revealed that C/EBPβ induces H3K27ac throughout the genome and upregulates gene expressions during decidualization by recruiting p300 to the promoters.
Collapse
Affiliation(s)
- Isao Tamura
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Japan.
| | - Ryo Maekawa
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Japan
| | - Kosuke Jozaki
- Department of Immunology, Yamaguchi University Graduate School of Medicine, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Japan
| | - Haruka Takagi
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Japan
| | - Yumiko Doi-Tanaka
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Japan
| | - Yuichiro Shirafuta
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Japan
| | - Yumiko Mihara
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Japan
| | - Toshiaki Taketani
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Japan
| | - Shun Sato
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Japan
| | - Hiroshi Tamura
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Japan
| | - Norihiro Sugino
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Japan
| |
Collapse
|
14
|
Zou H, Shi M, He F, Guan C, Lu W. Expression of corticotropin releasing hormone in olive flounder (Paralichthys olivaceus) and its transcriptional regulation by c-Fos and the methylation of promoter. Comp Biochem Physiol B Biochem Mol Biol 2021; 251:110523. [DOI: 10.1016/j.cbpb.2020.110523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/26/2020] [Accepted: 10/09/2020] [Indexed: 12/27/2022]
|
15
|
Ragia G, Manolopoulos VG. Assessing COVID-19 susceptibility through analysis of the genetic and epigenetic diversity of ACE2-mediated SARS-CoV-2 entry. Pharmacogenomics 2020; 21:1311-1329. [PMID: 33243086 PMCID: PMC7694444 DOI: 10.2217/pgs-2020-0092] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
There is considerable variation in disease course among individuals infected with SARS-CoV-2. Many of them do not exhibit any symptoms, while some others proceed to develop COVID-19; however, severity of COVID-19 symptoms greatly differs among individuals. Focusing on the early events related to SARS-CoV-2 entry to cells through the ACE2 pathway, we describe how variability in (epi)genetic factors can conceivably explain variability in disease course. We specifically focus on variations in ACE2, TMPRSS2 and FURIN genes, as central components for SARS-CoV-2 infection, and on other molecules that modulate their expression such as CALM, ADAM-17, AR and ESRs. We propose a genetic classifier for predicting SARS-CoV-2 infectivity potential as a preliminary tool for identifying the at-risk-population. This tool can serve as a dynamic scaffold being updated and adapted to validated (epi)genetic data. Overall, the proposed approach holds potential for better personalization of COVID-19 handling.
Collapse
Affiliation(s)
- Georgia Ragia
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| | - Vangelis G Manolopoulos
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis, 68100, Greece.,Clinical Pharmacology & Pharmacogenetics Unit, Academic General Hospital of Alexandroupolis, Alexandroupolis, 68100, Greece
| |
Collapse
|
16
|
Fernández R, Ramírez K, Gómez-Gil E, Cortés-Cortés J, Mora M, Aranda G, Zayas ED, Esteva I, Almaraz MC, Guillamon A, Pásaro E. Gender-Affirming Hormone Therapy Modifies the CpG Methylation Pattern of the ESR1 Gene Promoter After Six Months of Treatment in Transmen. J Sex Med 2020; 17:1795-1806. [PMID: 32636163 DOI: 10.1016/j.jsxm.2020.05.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/25/2020] [Accepted: 05/27/2020] [Indexed: 01/15/2023]
Abstract
BACKGROUND Brain sexual differentiation is a process that results from the effects of sex steroids on the developing brain. Evidence shows that epigenetics plays a main role in the formation of enduring brain sex differences and that the estrogen receptor α (ESR1) is one of the implicated genes. AIM To analyze whether the methylation of region III (RIII) of the ESR1 promoter is involved in the biological basis of gender dysphoria. METHODS We carried out a prospective study of the CpG methylation profile of RIII (-1,188 to -790 bp) of the ESR1 promoter using bisulfite genomic sequencing in a cisgender population (10 men and 10 women) and in a transgender population (10 trans men and 10 trans women), before and after 6 months of gender-affirming hormone treatment. Cisgender and transgender populations were matched by geographical origin, age, and sex. DNAs were treated with bisulfite, amplified, cloned, and sequenced. At least 10 clones per individual from independent polymerase chain reactions were sequenced. The analysis of 671 bisulfite sequences was carried out with the QUMA (QUantification tool for Methylation Analysis) program. OUTCOMES The main outcome of this study was RIII analysis using bisulfite genomic sequencing. RESULTS We found sex differences in RIII methylation profiles in cisgender and transgender populations. Cismen showed a higher methylation degree than ciswomen at CpG sites 297, 306, 509, and at the total fragment (P ≤ .003, P ≤ .026, P ≤ .001, P ≤ .006). Transmen showed a lower methylation level than trans women at sites 306, 372, and at the total fragment (P ≤ .0001, P ≤ .018, P ≤ .0107). Before the hormone treatment, transmen showed the lowest methylation level with respect to cisgender and transgender populations, whereas transwomen reached an intermediate methylation level between both the cisgender groups. After the hormone treatment, transmen showed a statistically significant methylation increase, whereas transwomen showed a non-significant methylation decrease. After the hormone treatment, the RIII methylation differences between transmen and transwomen disappeared, and both transgender groups reached an intermediate methylation level between both the cisgender groups. CLINICAL IMPLICATIONS Clinical implications in the hormonal treatment of trans people. STRENGTHS & LIMITATIONS Increasing the number of regions analyzed in the ESR1 promoter and increasing the number of tissues analyzed would provide a better understanding of the variation in the methylation pattern. CONCLUSIONS Our data showed sex differences in RIII methylation patterns in cisgender and transgender populations before the hormone treatment. Furthermore, before the hormone treatment, transwomen and transmen showed a characteristic methylation profile, different from both the cisgender groups. But the hormonal treatment modified RIII methylation in trans populations, which are now more similar to their gender. Therefore, our results suggest that the methylation of RIII could be involved in gender dysphoria. Fernández R, Ramírez K, Gómez-Gil E, et al. Gender-Affirming Hormone Therapy Modifies the CpG Methylation Pattern of the ESR1 Gene Promoter After Six Months of Treatment in Transmen. J Sex Med 2020;17:1795-1806.
Collapse
Affiliation(s)
- Rosa Fernández
- Departamento de Psicología, Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña (UDC), Campus de Elviña, A Coruña, Spain; Instituto de Investigación Biomédica de A Coruña (INIBIC), CHUAC, SERGAS, A Coruña, Spain.
| | - Karla Ramírez
- Departamento de Psicología, Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña (UDC), Campus de Elviña, A Coruña, Spain; Instituto de Investigación Biomédica de A Coruña (INIBIC), CHUAC, SERGAS, A Coruña, Spain
| | - Esther Gómez-Gil
- Unidad de Identidad de Género, Instituto de Neurociencias, Hospital Clínic, I.D.I.B.A.P.S., Barcelona, Spain
| | - Joselyn Cortés-Cortés
- Departamento de Psicología, Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña (UDC), Campus de Elviña, A Coruña, Spain; Instituto de Investigación Biomédica de A Coruña (INIBIC), CHUAC, SERGAS, A Coruña, Spain
| | - Mireia Mora
- Departmento de Endocrinología y Nutrición, Hospital Clínic, Barcelona, Spain
| | - Gloria Aranda
- Departmento de Endocrinología y Nutrición, Hospital Clínic, Barcelona, Spain
| | - Enrique Delgado Zayas
- Departamento de Psicología, Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña (UDC), Campus de Elviña, A Coruña, Spain; Instituto de Investigación Biomédica de A Coruña (INIBIC), CHUAC, SERGAS, A Coruña, Spain
| | - Isabel Esteva
- Servicio de Endocrinología y Nutrición, Unidad de Identidad de Género del Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Mari Cruz Almaraz
- Servicio de Endocrinología y Nutrición, Unidad de Identidad de Género del Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Antonio Guillamon
- Departamento de Psicobiología, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - Eduardo Pásaro
- Departamento de Psicología, Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña (UDC), Campus de Elviña, A Coruña, Spain; Instituto de Investigación Biomédica de A Coruña (INIBIC), CHUAC, SERGAS, A Coruña, Spain
| |
Collapse
|
17
|
Chen Q, Zhang Y, Meng Q, Wang S, Yu X, Cai D, Cheng P, Li Y, Bian H. Liuwei Dihuang prevents postmenopausal atherosclerosis and endothelial cell apoptosis via inhibiting DNMT1-medicated ERα methylation. JOURNAL OF ETHNOPHARMACOLOGY 2020; 252:112531. [PMID: 31926314 DOI: 10.1016/j.jep.2019.112531] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 08/13/2019] [Accepted: 12/25/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The classical and traditional Chinese medicine prescription, Liuwei Dihuang (LWDH), has been commonly used to treat the menopausal syndrome. It has been reported that LWDH could improve estrogen receptor α (ERα) expression to prevent atherosclerosis (AS), while the mechanism of LWDH on regulating ERα expression was still unknown. AIM OF THE STUDY To reveal the mechanism of LWDH on regulating the ERα expression. MATERIALS AND METHODS The protective effect of LWDH on Hcy-induced apoptosis of human umbilical vein endothelial cells (HUVECs) was examined. The expression of ERα and DNA methyltransferases 1 (DNMT1) were detected by Western blot and real-time polymerase chain reaction (RT-PCR). The methylation rate of the ERα gene was assayed by the bisulfite sequencing PCR (BSP). High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS) was applied to determine the level of S-Adenosyl methionine (SAM) and S-Adenosyl homocysteine (SAH). In vivo, the ApoE-/- mice were ovariectomized to establish postmenopausal atherosclerosis (AS) model. RESULTS In vitro study showed that LWDH protects HUVECs from Hcy-induced apoptosis. Treatment with LWDH significantly increased the ERα expression and reduced the methylation rate of the ERα gene by inhibiting the DNMT1 expression. The level of main methyl donor SAM and the ration of SAM/SAH were reduced by LWDH. In vivo, LWDH prevented the formation of plaque and reduced the concentration of Hcy. In addition, LWDH upregulated the ERα expression, as well as inhibiting the expression of DNMT1 in atherosclerotic mice. CONCLUSIONS LWDH exerted protective effects on postmenopausal AS mice, and HUVECs treated with Hcy. LWDH increased of ERα expression via inhibiting DNMT1-dependent ERα methylation.
Collapse
Affiliation(s)
- Qi Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yuhan Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Qinghai Meng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Suyun Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xichao Yu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Danfeng Cai
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Peng Cheng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yu Li
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Huimin Bian
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
18
|
Tamura I, Takagi H, Doi-Tanaka Y, Shirafuta Y, Mihara Y, Shinagawa M, Maekawa R, Taketani T, Sato S, Tamura H, Sugino N. Wilms tumor 1 regulates lipid accumulation in human endometrial stromal cells during decidualization. J Biol Chem 2020; 295:4673-4683. [PMID: 32098869 DOI: 10.1074/jbc.ra120.012841] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/22/2020] [Indexed: 11/06/2022] Open
Abstract
We previously reported that the transcription factor Wilms tumor 1 (WT1) regulates the expression of insulin-like growth factor-binding protein-1 (IGFBP-1) and prolactin (PRL) during decidualization of human endometrial stromal cells (ESCs). However, other roles of WT1 in decidualization remain to be fully clarified. Here, we investigated how WT1 regulates the physiological functions of human ESCs during decidualization. We incubated ESCs isolated from proliferative-phase endometrium with cAMP to induce decidualization, knocked down WT1 with siRNA, and generated three types of treatments (nontreated cells, cAMP-treated cells, and cAMP-treated + WT1-knockdown cells). To identify WT1-regulated genes, we used gene microarrays and compared the transcriptome data obtained among these three treatments. We observed that WT1 up-regulates 121 genes during decidualization, including several genes involved in lipid transport. The WT1 knockdown inhibited lipid accumulation (LA) in the cAMP-induced ESCs. To examine the mechanisms by which WT1 regulates LA, we focused on very low-density lipoprotein receptor (VLDLR), which is involved in lipoprotein uptake. We found that cAMP up-regulates VLDLR and that the WT1 knockdown inhibits it. Results of ChIP assays revealed that cAMP increases the recruitment of WT1 to the promoter region of the VLDLR gene, indicating that WT1 regulates VLDLR expression. Moreover, VLDLR knockdown inhibited cAMP-induced LA, and VLDLR overexpression reverted the suppression of LA caused by the WT1 knockdown. Taken together, our results indicate that WT1 enhances lipid storage by up-regulating VLDLR expression in human ESCs during decidualization.
Collapse
Affiliation(s)
- Isao Tamura
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube 755-8505, Japan
| | - Haruka Takagi
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube 755-8505, Japan
| | - Yumiko Doi-Tanaka
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube 755-8505, Japan
| | - Yuichiro Shirafuta
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube 755-8505, Japan
| | - Yumiko Mihara
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube 755-8505, Japan
| | - Masahiro Shinagawa
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube 755-8505, Japan
| | - Ryo Maekawa
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube 755-8505, Japan
| | - Toshiaki Taketani
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube 755-8505, Japan
| | - Shun Sato
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube 755-8505, Japan
| | - Hiroshi Tamura
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube 755-8505, Japan
| | - Norihiro Sugino
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube 755-8505, Japan
| |
Collapse
|
19
|
Wang D, Lu R, Rempala G, Sadee W. Ligand-Free Estrogen Receptor α (ESR1) as Master Regulator for the Expression of CYP3A4 and Other Cytochrome P450 Enzymes in the Human Liver. Mol Pharmacol 2019; 96:430-440. [PMID: 31399483 PMCID: PMC6724575 DOI: 10.1124/mol.119.116897] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/01/2019] [Indexed: 12/25/2022] Open
Abstract
Cytochrome P450 3A4 isoform (CYP3A4) transcription is controlled by hepatic transcription factors (TFs), but how TFs dynamically interact remains uncertain. We hypothesize that several TFs form a regulatory network with nonlinear, dynamic, and hierarchical interactions. To resolve complex interactions, we have applied a computational approach for estimating Sobol's sensitivity indices (SSI) under generalized linear models to existing liver RNA expression microarray data (GSE9588) and RNA-seq data from genotype-tissue expression (GTEx), generating robust importance ranking of TF effects and interactions. The SSI-based analysis identified TFs and interacting TF pairs, triplets, and quadruplets involved in CYP3A4 expression. In addition to known CYP3A4 TFs, estrogen receptor α (ESR1) emerges as key TF with the strongest main effect and as the most frequently included TF interacting partner. Model predictions were validated using small interfering RNA (siRNA)/short hairpin RNA (shRNA) gene knockdown and clustered regularly interspaced short palindromic repeats (CRISPR)-mediated transcriptional activation of ESR1 in biliary epithelial Huh7 cells and human hepatocytes in the absence of estrogen. Moreover, ESR1 and known CYP3A4 TFs mutually regulate each other. Detectable in both male and female hepatocytes without added estrogen, the results demonstrate a role for unliganded ESR1 in CYP3A4 expression consistent with unliganded ESR1 signaling reported in other cell types. Added estrogen further enhances ESR1 effects. We propose a hierarchical regulatory network for CYP3A4 expression directed by ESR1 through self-regulation, cross regulation, and TF-TF interactions. We also demonstrate that ESR1 regulates the expression of other P450 enzymes, suggesting broad influence of ESR1 on xenobiotics metabolism in human liver. Further studies are required to understand the mechanisms underlying role of ESR1 in P450 regulation. SIGNIFICANCE STATEMENT: This study focuses on identifying key transcription factors and regulatory networks for CYP3A4, the main drug metabolizing enzymes in liver. We applied a new computational approach (Sobol's sensitivity analysis) to existing hepatic gene expression data to determine the role of transcription factors in regulating CYP3A4 expression, and used molecular genetics methods (siRNA/shRNA gene knockdown and CRISPR-mediated transcriptional activation) to test these interactions in life cells. This approach reveals a robust network of TFs, including their putative interactions and the relative impact of each interaction. We find that ESR1 serves as a key transcription factor function in regulating CYP3A4, and it appears to be acting at least in part in a ligand-free fashion.
Collapse
Affiliation(s)
- Danxin Wang
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, Florida (D.W.); Department of Clinical Sciences, Bioinformatics Core Facility, University of Texas Southwestern Medical Center, Dallas, Texas (R.L.); and Mathematical Bioscience Institute, (G.R.) and Center for Pharmacogenomics, Department of Cancer Biology and Genetics, College of Medicine (W.S.), Ohio State University, Columbus, Ohio
| | - Rong Lu
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, Florida (D.W.); Department of Clinical Sciences, Bioinformatics Core Facility, University of Texas Southwestern Medical Center, Dallas, Texas (R.L.); and Mathematical Bioscience Institute, (G.R.) and Center for Pharmacogenomics, Department of Cancer Biology and Genetics, College of Medicine (W.S.), Ohio State University, Columbus, Ohio
| | - Grzegorz Rempala
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, Florida (D.W.); Department of Clinical Sciences, Bioinformatics Core Facility, University of Texas Southwestern Medical Center, Dallas, Texas (R.L.); and Mathematical Bioscience Institute, (G.R.) and Center for Pharmacogenomics, Department of Cancer Biology and Genetics, College of Medicine (W.S.), Ohio State University, Columbus, Ohio
| | - Wolfgang Sadee
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, Florida (D.W.); Department of Clinical Sciences, Bioinformatics Core Facility, University of Texas Southwestern Medical Center, Dallas, Texas (R.L.); and Mathematical Bioscience Institute, (G.R.) and Center for Pharmacogenomics, Department of Cancer Biology and Genetics, College of Medicine (W.S.), Ohio State University, Columbus, Ohio
| |
Collapse
|
20
|
Mori T, Ito F, Koshiba A, Kataoka H, Takaoka O, Okimura H, Khan KN, Kitawaki J. Local estrogen formation and its regulation in endometriosis. Reprod Med Biol 2019; 18:305-311. [PMID: 31607790 PMCID: PMC6780031 DOI: 10.1002/rmb2.12285] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/03/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND It has been well established that endometriosis is an estrogen-dependent disease. Although the exact pathogenesis of the disease is still unclear, it is known to be characterized by estrogen-dependent growth and maintenance of the ectopic endometrium and increased local estrogen production. METHODS The authors reviewed studies on local estrogen production and estrogen activities mediated by estrogen receptors in endometriotic tissues. MAIN FINDINGS Aberrant expression of several enzymes in local endometriotic lesions contributed to the production and metabolism of estrogens. Aromatase was one of the key therapeutic targets for the regulation of local estrogen formation. Our findings suggest that PGC-1a, a transcriptional coactivator-modulating steroid hormone, regulates aromatase expression and activity. Estrogen activities mediated by different types of estrogen receptors abnormally elevated in local tissues could also be involved in the development of endometriosis. The authors demonstrated that the isoflavone aglycone, a partial agonist of the estrogen receptor, suppressed the formation of endometriotic lesions. CONCLUSIONS Local estrogen production and estrogen activity mediated by estrogen receptors are important potential therapeutic targets for endometriosis.
Collapse
Affiliation(s)
- Taisuke Mori
- Department of Obstetrics and Gynecology, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Fumitake Ito
- Department of Obstetrics and Gynecology, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Akemi Koshiba
- Department of Obstetrics and Gynecology, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Hisashi Kataoka
- Department of Obstetrics and Gynecology, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Osamu Takaoka
- Department of Obstetrics and Gynecology, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Hiroyuki Okimura
- Department of Obstetrics and Gynecology, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Khaleque N. Khan
- Department of Obstetrics and Gynecology, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Jo Kitawaki
- Department of Obstetrics and Gynecology, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| |
Collapse
|
21
|
Gegenhuber B, Tollkuhn J. Sex Differences in the Epigenome: A Cause or Consequence of Sexual Differentiation of the Brain? Genes (Basel) 2019; 10:genes10060432. [PMID: 31181654 PMCID: PMC6627918 DOI: 10.3390/genes10060432] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 12/19/2022] Open
Abstract
Females and males display differences in neural activity patterns, behavioral responses, and incidence of psychiatric and neurological diseases. Sex differences in the brain appear throughout the animal kingdom and are largely a consequence of the physiological requirements necessary for the distinct roles of the two sexes in reproduction. As with the rest of the body, gonadal steroid hormones act to specify and regulate many of these differences. It is thought that transient hormonal signaling during brain development gives rise to persistent sex differences in gene expression via an epigenetic mechanism, leading to divergent neurodevelopmental trajectories that may underlie sex differences in disease susceptibility. However, few genes with a persistent sex difference in expression have been identified, and only a handful of studies have employed genome-wide approaches to assess sex differences in epigenomic modifications. To date, there are no confirmed examples of gene regulatory elements that direct sex differences in gene expression in the brain. Here, we review foundational studies in this field, describe transcriptional mechanisms that could act downstream of hormone receptors in the brain, and suggest future approaches for identification and validation of sex-typical gene programs. We propose that sexual differentiation of the brain involves self-perpetuating transcriptional states that canalize sex-specific development.
Collapse
Affiliation(s)
- Bruno Gegenhuber
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| | - Jessica Tollkuhn
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
22
|
Jozaki K, Tamura I, Takagi H, Shirafuta Y, Mihara Y, Shinagawa M, Maekawa R, Taketani T, Asada H, Sato S, Tamura H, Sugino N. Glucose regulates the histone acetylation of gene promoters in decidualizing stromal cells. Reproduction 2019; 157:457-464. [DOI: 10.1530/rep-18-0393] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 02/25/2019] [Indexed: 12/31/2022]
Abstract
Decidualization stimuli activate the insulin signaling pathway and increase the glucose uptake in human endometrial stromal cells (ESCs). The inductions of prolactin (PRL) and IGF-binding protein-1 (IGFBP1), specific markers of decidualization, were inhibited by incubating ESCs under low glucose concentrations. These results suggested that decidualization stimuli activate the insulin signaling pathway, which contributes to decidualization through the increase of glucose uptake. Here, we investigated the mechanisms by which glucose regulates decidualization. ESCs were incubated with cAMP to induce decidualization. We examined whether low glucose affects the expression levels of transcription factors that induce decidualization. Forkhead box O1 (FOXO1) expression was significantly suppressed under low glucose conditions. Knockdown of FOXO1 by siRNA inhibited the expression levels of PRL and IGFBP1 during decidualization. Taken together, our results showed that low glucose inhibits decidualization by decreasing FOXO1 expression. We also examined the levels of histone H3K27 acetylation (H3K27ac), which is related to active transcription, of the promoter regions of FOXO1, PRL and IGFBP1 by ChIP assay. The H3K27ac levels of these promoter regions were increased by decidualization under normal glucose conditions, but not under low glucose conditions. Thus, our results show that glucose is indispensable for decidualization by activating the histone modification status of the promoters of PRL, IGFBP1 and FOXO1.
Collapse
|
23
|
Maekawa R, Tamura I, Shinagawa M, Mihara Y, Sato S, Okada M, Taketani T, Tamura H, Sugino N. Genome-wide DNA methylation analysis revealed stable DNA methylation status during decidualization in human endometrial stromal cells. BMC Genomics 2019; 20:324. [PMID: 31035926 PMCID: PMC6489213 DOI: 10.1186/s12864-019-5695-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/15/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND During decidualization in endometrial stromal cells (ESCs), expressions of a number of genes and epigenetic modifications of histones are altered. However, there is little information about whether DNA methylation, which is another epigenetic mechanism, also changes during decidualization. Here, we examined the genome-wide DNA methylation profiles in ESCs during decidualization and their associations with the changes of gene expressions and histone modifications. RESULTS ESCs were incubated with estradiol and medroxyprogesterone acetate for 14 days to induce decidualization. The genome-wide DNA methylation profiles were compared between the non-decidualized ESCs and the decidualized ESCs. Of 482,005 CpGs, only 23 CpGs (0.0048%) showed different DNA methylation statuses. The DNA methylation statuses of the differentially expressed genes and the regions with different histone modifications (H3K4 tri-methylation and H3K27 acetylation) were also compared between the ESCs. In the upregulated and downregulated genes in decidualized ESCs, DNA methylation statuses around the promoter region of the genes did not significantly differ between the ESCs. In the regions with different histone modification, DNA methylation statuses did not differ between the ESCs. The differentially expressed genes and the differential histone modification regions were hypomethylated. CONCLUSIONS Culturing ESCs with estrogen/progesterone did not distort the physiological pattern of DNA methylation, although mRNA expression and histone modifications were dynamically altered. A genome-wide DNA methylation analysis revealed stable DNA methylation statuses during decidualization in human endometrial stromal cells. DNA hypomethylation is maintained for the variable changes of histone modifications and gene expression during decidualization.
Collapse
Affiliation(s)
- Ryo Maekawa
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minami Kogushi 1-1-1, Ube, 755-8505 Japan
| | - Isao Tamura
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minami Kogushi 1-1-1, Ube, 755-8505 Japan
| | - Masahiro Shinagawa
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minami Kogushi 1-1-1, Ube, 755-8505 Japan
| | - Yumiko Mihara
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minami Kogushi 1-1-1, Ube, 755-8505 Japan
| | - Shun Sato
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minami Kogushi 1-1-1, Ube, 755-8505 Japan
| | - Maki Okada
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minami Kogushi 1-1-1, Ube, 755-8505 Japan
| | - Toshiaki Taketani
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minami Kogushi 1-1-1, Ube, 755-8505 Japan
| | - Hiroshi Tamura
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minami Kogushi 1-1-1, Ube, 755-8505 Japan
| | - Norihiro Sugino
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minami Kogushi 1-1-1, Ube, 755-8505 Japan
| |
Collapse
|
24
|
Maekawa R, Mihara Y, Sato S, Okada M, Tamura I, Shinagawa M, Shirafuta Y, Takagi H, Taketani T, Tamura H, Sugino N. Aberrant DNA methylation suppresses expression of estrogen receptor 1 (ESR1) in ovarian endometrioma. J Ovarian Res 2019; 12:14. [PMID: 30728052 PMCID: PMC6364435 DOI: 10.1186/s13048-019-0489-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 01/28/2019] [Indexed: 12/22/2022] Open
Abstract
Background In ovarian endometriomas (OE), the expression statuses of various steroid hormone receptors are altered compared with their expression statuses in eutopic endometrium (EE). For example, in OE, the expressions of estrogen receptor 1 (ESR1), which encodes ERα, and progesterone receptor (PGR) are downregulated, while the expression of ESR2, which encodes ERβ, is upregulated. The causes of these changes are unclear. DNA methylation of a specific region of a gene can result in tissue-specific gene expression. Such regions are called tissue-dependent and differentially methylated regions (T-DMRs). We previously reported that the tissue-specific expression of ESR1 is regulated by DNA methylation of a T-DMR in normal tissues. In the present study, we examined whether aberrant DNA methylation of the T-DMR is associated with the altered expressions of ESR1, ESR2 and PGR in OE. Results Gene expression levels of ESR1, ESR2 and PGR were measured by quantitative RT-PCR. The expression levels of ESR1 and PGR were significantly lower and the expression level of ESR2 was significantly higher in OE than in EE. DNA methylation statuses were examined with an Infinium HumanMethylation450K BeadChip and sodium bisulfite sequencing. DNA methylation at the T-DMRs of ESR1 were significantly higher in OE than in EE, but no significant differences were observed in the DNA methylation statuses of ESR2 and PGR. Conclusions Aberrant DNA methylation of the T-DMR was associated with the impaired expression of ESR1, but not the altered expressions of ESR2 and PGR, in OE.
Collapse
Affiliation(s)
- Ryo Maekawa
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan.
| | - Yumiko Mihara
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Shun Sato
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Maki Okada
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Isao Tamura
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Masahiro Shinagawa
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Yuichiro Shirafuta
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Haruka Takagi
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Toshiaki Taketani
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Hiroshi Tamura
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Norihiro Sugino
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| |
Collapse
|
25
|
C/EBPβ regulates Vegf gene expression in granulosa cells undergoing luteinization during ovulation in female rats. Sci Rep 2019; 9:714. [PMID: 30679486 PMCID: PMC6345775 DOI: 10.1038/s41598-018-36566-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 11/23/2018] [Indexed: 11/08/2022] Open
Abstract
The ovulatory LH-surge increases Vegf gene expression in granulosa cells (GCs) undergoing luteinization during ovulation. To understand the factors involved in this increase, we examined the roles of two transcription factors and epigenetic mechanisms in rat GCs. GCs were obtained from rats treated with eCG before, 4 h, 8 h, 12 h and 24 h after hCG injection. Vegf mRNA levels gradually increased after hCG injection and reached a peak at 12 h. To investigate the mechanism by which Vegf is up-regulated after hCG injection, we focused on C/EBPβ and HIF1α. Their protein expression levels were increased at 12 h. The binding activity of C/EBPβ to the Vegf promoter region increased after hCG injection whereas that of HIF1α did not at this time point. The C/EBPβ binding site had transcriptional activities whereas the HIF1α binding sites did not have transcriptional activities under cAMP stimulation. The levels of H3K9me3 and H3K27me3, which are transcriptional repression markers, decreased in the C/EBPβ binding region after hCG injection. The chromatin structure of this region becomes looser after hCG injection. These results show that C/EBPβ regulates Vegf gene expression with changes in histone modifications and chromatin structure of the promoter region in GCs undergoing luteinization during ovulation.
Collapse
|
26
|
Tamura I, Jozaki K, Sato S, Shirafuta Y, Shinagawa M, Maekawa R, Taketani T, Asada H, Tamura H, Sugino N. The distal upstream region of insulin-like growth factor-binding protein-1 enhances its expression in endometrial stromal cells during decidualization. J Biol Chem 2018; 293:5270-5280. [PMID: 29453285 DOI: 10.1074/jbc.ra117.000234] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 02/06/2018] [Indexed: 11/06/2022] Open
Abstract
We have previously shown that decidualization of human endometrial stromal cells (ESCs) causes a genome-wide increase in the levels of acetylation of histone-H3 Lys-27 (H3K27ac). We also reported that the distal gene regions, more than 3 kb up- or downstream of gene transcription start sites have increased H3K27ac levels. Insulin-like growth factor-binding protein-1 (IGFBP-1) is a specific decidualization marker and has increased H3K27ac levels in its distal upstream region (-4701 to -7501 bp). Here, using a luciferase reporter gene construct containing this IGFBP-1 upstream region, we tested the hypothesis that it is an IGFBP-1 enhancer. To induce decidualization, we incubated ESCs with cAMP and found that cAMP increased luciferase expression, indicating that decidualization increased the transcriptional activity from the IGFBP-1 upstream region. Furthermore, CRISPR/Cas9-mediated deletion of this region in HepG2 cells significantly reduced IGFBP-1 expression, confirming its role as an IGFBP-1 enhancer. A ChIP assay revealed that cAMP increased the recruitment of the transcriptional regulators CCAAT enhancer-binding protein β (C/EBPβ), forkhead box O1 (FOXO1), and p300 to the IGFBP-1 enhancer in ESCs. Of note, C/EBPβ knockdown inhibited the stimulatory effects of cAMP on the levels of H3K27ac, chromatin opening, and p300 recruitment at the IGFBP-1 enhancer. These results indicate that the region -4701 to -7501 bp upstream of IGFBP-1 functions as an enhancer for IGFBP-1 expression in ESCs undergoing decidualization, that C/EBPβ and FOXO1 bind to the enhancer region to up-regulate IGFBP-1 expression, and that C/EBPβ induces H3K27ac by recruiting p300 to the IGFBP-1 enhancer.
Collapse
Affiliation(s)
- Isao Tamura
- From the Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube 755-8505, Japan
| | - Kosuke Jozaki
- From the Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube 755-8505, Japan
| | - Shun Sato
- From the Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube 755-8505, Japan
| | - Yuichiro Shirafuta
- From the Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube 755-8505, Japan
| | - Masahiro Shinagawa
- From the Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube 755-8505, Japan
| | - Ryo Maekawa
- From the Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube 755-8505, Japan
| | - Toshiaki Taketani
- From the Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube 755-8505, Japan
| | - Hiromi Asada
- From the Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube 755-8505, Japan
| | - Hiroshi Tamura
- From the Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube 755-8505, Japan
| | - Norihiro Sugino
- From the Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube 755-8505, Japan
| |
Collapse
|
27
|
Colón-Caraballo M, Flores-Caldera I. Translational Aspects of the Endometriosis Epigenome. EPIGENETICS IN HUMAN DISEASE 2018:717-749. [DOI: 10.1016/b978-0-12-812215-0.00023-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
28
|
Targeting the Epigenome as a Novel Therapeutic Approach for Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1026:287-313. [DOI: 10.1007/978-981-10-6020-5_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Tamura I, Shirafuta Y, Jozaki K, Kajimura T, Shinagawa M, Maekawa R, Taketani T, Asada H, Sato S, Tamura H, Sugino N. Novel Function of a Transcription Factor WT1 in Regulating Decidualization in Human Endometrial Stromal Cells and Its Molecular Mechanism. Endocrinology 2017; 158:3696-3707. [PMID: 28977591 DOI: 10.1210/en.2017-00478] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/12/2017] [Indexed: 12/28/2022]
Abstract
The Wilms tumor suppressor gene (WT1) encodes an essential transcription factor regulating mammalian urogenital development. However, the function of WT1 in human endometrium is still unclear. The current study examined the involvement of WT1 in the regulation of IGF-binding protein-1 (IGFBP-1) and prolactin (PRL), which are specific markers of decidualization, in human endometrial stromal cells (ESCs) undergoing decidualization. ESCs isolated from proliferative-phase endometrium were incubated with cyclic adenosine monophosphate (cAMP) to induce decidualization. cAMP increased WT1 expression with the induction of IGFBP-1 and PRL. Knockdown of WT1 by small interfering RNA inhibited cAMP-induced expression of IGFBP-1 and PRL. cAMP also induced the recruitment of WT1 to the IGFBP-1 and PRL promoters. To investigate the mechanism by which WT1 is upregulated by cAMP, we focused on C/EBPβ, a gene that regulates the expression of many genes during decidualization. Knockdown of C/EBPβ decreased cAMP-increased WT1 expression. cAMP increased the recruitment of C/EBPβ to the WT1 enhancer that is located approximately 14,000 bp downstream from the transcription start site. To test the endogenous function of the WT1 enhancer region on WT1 expression, the endogenous WT1 enhancer region was deleted by CRISPR/Cas9 system in HEK293 cells. The increase of WT1 expression by cAMP was not observed in the enhancer-deleted clones. Chromatin immunoprecipitation assay revealed that this enhancer region has high levels of H3K27ac and H3K4me1, which are active enhancer marks. These results show the role of WT1 in regulating decidualization in human ESCs. C/EBPβ is an upstream gene that regulates WT1 expression by binding to the novel enhancer region.
Collapse
Affiliation(s)
- Isao Tamura
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube 755-8505, Japan
| | - Yuichiro Shirafuta
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube 755-8505, Japan
| | - Kousuke Jozaki
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube 755-8505, Japan
| | - Takuya Kajimura
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube 755-8505, Japan
| | - Masahiro Shinagawa
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube 755-8505, Japan
| | - Ryo Maekawa
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube 755-8505, Japan
| | - Toshiaki Taketani
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube 755-8505, Japan
| | - Hiromi Asada
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube 755-8505, Japan
| | - Shun Sato
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube 755-8505, Japan
| | - Hiroshi Tamura
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube 755-8505, Japan
| | - Norihiro Sugino
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube 755-8505, Japan
| |
Collapse
|
30
|
Tran TKA, MacFarlane GR, Kong RYC, O'Connor WA, Yu RMK. Potential mechanisms underlying estrogen-induced expression of the molluscan estrogen receptor (ER) gene. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 179:82-94. [PMID: 27592181 DOI: 10.1016/j.aquatox.2016.08.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 08/23/2016] [Indexed: 06/06/2023]
Abstract
In vertebrates, estrogens and estrogen mimicking chemicals modulate gene expression mainly through a genomic pathway mediated by the estrogen receptors (ERs). Although the existence of an ER orthologue in the mollusc genome has been known for some time, its role in estrogen signalling has yet to be deciphered. This is largely due to its constitutive (ligand-independent) activation and a limited mechanistic understanding of its regulation. To fill this knowledge gap, we cloned and characterised an ER cDNA (sgER) and the 5'-flanking region of the gene from the Sydney rock oyster Saccostrea glomerata. The sgER cDNA is predicted to encode a 477-amino acid protein that contains a DNA-binding domain (DBD) and a ligand-binding domain (LBD) typically conserved among both vertebrate and invertebrate ERs. A comparison of the sgER LBD sequence with those of other ligand-dependent ERs revealed that the sgER LBD is variable at several conserved residues known to be critical for ligand binding and receptor activation. Ligand binding assays using fluorescent-labelled E2 and purified sgER protein confirmed that sgER is devoid of estrogen binding. In silico analysis of the sgER 5'-flanking sequence indicated the presence of three putative estrogen responsive element (ERE) half-sites and several putative sites for ER-interacting transcription factors, suggesting that the sgER promoter may be autoregulated by its own gene product. sgER mRNA is ubiquitously expressed in adult oyster tissues, with the highest expression found in the ovary. Ovarian expression of sgER mRNA was significantly upregulated following in vitro and in vivo exposure to 17β-estradiol (E2). Notably, the activation of sgER expression by E2 in vitro was abolished by the specific ER antagonist ICI 182, 780. To determine whether sgER expression is epigenetically regulated, the in vivo DNA methylation status of the putative proximal promoter in ovarian tissues was assessed using bisulfite genomic sequencing. The results showed that the promoter is predominantly hypomethylated (with 0-3.3% methylcytosines) regardless of sgER mRNA levels. Overall, our investigations suggest that the estrogen responsiveness of sgER is regulated by a novel ligand-dependent receptor, presumably via a non-genomic pathway(s) of estrogen signalling.
Collapse
Affiliation(s)
- Thi Kim Anh Tran
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia; Department of Agriculture, Forestry and Fisheries, Vinh University, 182 Le Duan St., Vinh City, Nghe An, Vietnam
| | - Geoff R MacFarlane
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Richard Yuen Chong Kong
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region, China
| | - Wayne A O'Connor
- New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, NSW 2316, Australia
| | - Richard Man Kit Yu
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
31
|
Maekawa R, Lee L, Okada M, Asada H, Shinagawa M, Tamura I, Sato S, Tamura H, Sugino N. Changes in gene expression of histone modification enzymes in rat granulosa cells undergoing luteinization during ovulation. J Ovarian Res 2016; 9:15. [PMID: 26979106 PMCID: PMC4793631 DOI: 10.1186/s13048-016-0225-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/09/2016] [Indexed: 12/20/2022] Open
Abstract
Background The ovulatory LH surge rapidly alters the expression of steroidogenesis-related genes such as steroidogenic acute regulatory protein (StAR) in granulosa cells (GCs) undergoing luteinization. We recently reported that histone modifications contribute to these changes. Histone modifications are regulated by a variety of histone modification enzymes. This study investigated the changes in gene expression of histone modification enzymes in rat GCs undergoing luteinization after the induction of ovulation. The extracellular regulated kinase (ERK)-1/2 is a mediator in the intracellular signaling pathway stimulated by the ovulatory LH surge and regulates the expression of a number of genes in GCs. We further investigated whether ERK-1/2 is involved in the regulation of the histone modification at the StAR promoter region in GCs undergoing luteinization. Results GCs were obtained from rats treated with equine chorionic gonadotropin (CG) before (0 h) and after human (h) CG injection. The expressions of 84 genes regulating histone modifications or DNA methylation were measured using a PCR array. Five genes (HDAC4, HDAC10, EZH2, SETDB2, and CIITA) were identified as histone acetylation- or histone methylation-related genes, and were significantly altered after hCG injection. None of the genes were related to DNA methylation. mRNA levels of EZH2, SETDB2, HDAC4, and HDAC10 decreased and CIITA mRNA levels increased 4 or 12 h after hCG injection. GCs isolated after eCG injection were incubated with hCG for 4 h to induce luteinization. StAR mRNA levels were significantly increased by hCG accompanied by the increase in H3K4me3 of the StAR promoter region. StAR mRNA expression was inhibited by the ERK inhibitor with the significant decrease of H3K4me3. These results suggest that hCG increases StAR gene expression through the ERK-1/2-mediated signaling which is also associated with histone modification of the promoter region. Conclusions Gene expressions of histone modification enzymes change in GCs undergoing luteinization after ovulation induction. This change may play important roles in regulating the expression of various genes during the early stage of luteinization, which may be critical for the subsequent corpus luteum formation.
Collapse
Affiliation(s)
- Ryo Maekawa
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Lifa Lee
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Maki Okada
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Hiromi Asada
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Masahiro Shinagawa
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Isao Tamura
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Shun Sato
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Hiroshi Tamura
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Norihiro Sugino
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan.
| |
Collapse
|