1
|
Zhang F, Liu YX, Zhu YY, Yu QY, Msigwa SS, Zeng ZH, Zhang X, Wu HM, Zhu JH. Epidemiologic Risk and Prevention and Interventions in Parkinson Disease: From a Nutrition-Based Perspective. J Nutr 2025; 155:1019-1030. [PMID: 39900185 DOI: 10.1016/j.tjnut.2025.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/21/2025] [Accepted: 01/29/2025] [Indexed: 02/05/2025] Open
Abstract
Parkinson disease (PD) is a prevalent neurodegenerative disorder associated with aging. Current treatments for PD primarily focus on alleviating symptoms rather than altering the progression of the disease. The sporadic form of PD, which accounts for most cases, is thought to arise from a complex interaction between genetic predispositions and environmental factors. This review aimed to examine epidemiologic evidence regarding nutrition-related exposure factors and their associations with risk of developing PD. We proposed a tentative conclusion for each factor based on the available evidence. These associations may vary by gender and depend on dietary intake patterns and adherence. We also reviewed clinical trials on nutrition-related interventions for PD symptoms and progression. Future clinical trials may benefit from combining nutrition factors in intervention and testing within single-gender cohorts or subgroups defined by epidemiologic outcomes.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Neurology and Institute of Geriatric Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Nutrition and Diseases and Center for Research, School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yu-Xian Liu
- Department of Neurology and Institute of Geriatric Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yun-Yue Zhu
- Institute of Nutrition and Diseases and Center for Research, School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiu-Yan Yu
- Department of Epidemiology and Statistics, School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Samwel Sylvester Msigwa
- Department of Neurology and Institute of Geriatric Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhi-Hai Zeng
- Institute of Nutrition and Diseases and Center for Research, School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiong Zhang
- Department of Neurology and Institute of Geriatric Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hong-Mei Wu
- Institute of Nutrition and Diseases and Center for Research, School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Jian-Hong Zhu
- Department of Neurology and Institute of Geriatric Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Nutrition and Diseases and Center for Research, School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
2
|
Ostrakhovitch EA, Ono K, Yamasaki TR. Metabolomics in Parkinson's Disease and Correlation with Disease State. Metabolites 2025; 15:208. [PMID: 40137172 PMCID: PMC11944848 DOI: 10.3390/metabo15030208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/18/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025] Open
Abstract
Changes in the level of metabolites, small molecules that are intermediates produced by metabolism or catabolism, are associated with developing diseases. Metabolite signatures in body fluids such as plasma, cerebrospinal fluid, urine, and saliva are associated with Parkinson's disease. Here, we discuss alteration of metabolites in the TCA cycle, pentose phosphate pathway, kynurenic network, and redox system. We also summarize the efforts of many research groups to differentiate between metabolite profiles that characterize PD motor progression and dyskinesia, gait and balance, and non-motor symptoms such as depression and cognitive decline. Understanding how changes in metabolites lead to progression in PD may allow for the identification of individuals at the earliest stage of the disease and the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Elena A. Ostrakhovitch
- Department of Neurology, University of Kentucky, Lexington, KY 40536, USA;
- Lexington VA Medical Center, Department of Neurology, Lexington, KY 40502, USA
| | - Kenjiro Ono
- Department of Neurology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan;
| | - Tritia R. Yamasaki
- Department of Neurology, University of Kentucky, Lexington, KY 40536, USA;
- Lexington VA Medical Center, Department of Neurology, Lexington, KY 40502, USA
| |
Collapse
|
3
|
Simard M, Mélançon K, Berthiaume L, Tremblay C, Pshevorskiy L, Julien P, Rajput AH, Rajput A, Calon F. Postmortem Fatty Acid Abnormalities in the Cerebellum of Patients with Essential Tremor. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2341-2359. [PMID: 39215908 PMCID: PMC11585516 DOI: 10.1007/s12311-024-01736-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Fatty acids play many critical roles in brain function but have not been investigated in essential tremor (ET), a frequent movement disorder suspected to involve cerebellar dysfunction. Here, we report a postmortem comparative analysis of fatty acid profiles by gas chromatography in the cerebellar cortex from ET patients (n = 15), Parkinson's disease (PD) patients (n = 15) and Controls (n = 17). Phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylinositol (PI)/ phosphatidylserine (PS) were separated by thin-layer chromatography and analyzed separately. First, the total amounts of fatty acids retrieved from the cerebellar cortex were lower in ET patients compared with PD patients, including monounsaturated (MUFA) and polyunsaturated fatty acids (PUFA). The diagnosis of ET was associated with lower cerebellar levels of saturated fatty acids (SFA) and PUFA (DHA and ARA) in the PE fraction specifically, but with a higher relative content of dihomo-γ-linolenic acid (DGLA; 20:3 ω-6) in the PC fraction. In contrast, a diagnosis of PD was associated with higher absolute concentrations of SFA, MUFA and ω-6 PUFA in the PI + PS fractions. However, relative PI + PS contents of ω-6 PUFA were lower in both PD and ET patients. Finally, linear regression analyses showed that the ω-3:ω-6 PUFA ratio was positively associated with age of death, but inversely associated with insoluble α-synuclein. Although it remains unclear how these FA changes in the cerebellum are implicated in ET or PD pathophysiology, they may be related to an ongoing neurodegenerative process or to dietary intake differences. The present findings provide a window of opportunity for lipid-based therapeutic nutritional intervention.
Collapse
Affiliation(s)
- Mélissa Simard
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| | - Koralie Mélançon
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Room T-2-67 (CHUL) 2705 boul. Laurier, Québec, QC, G1V 4G2, Canada
| | - Line Berthiaume
- Faculté de Médecine, Université Laval, Québec, QC, Canada
- Axe Endocrinologie et Néphrologie, Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, Canada
| | - Cyntia Tremblay
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Room T-2-67 (CHUL) 2705 boul. Laurier, Québec, QC, G1V 4G2, Canada
| | - Laura Pshevorskiy
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Room T-2-67 (CHUL) 2705 boul. Laurier, Québec, QC, G1V 4G2, Canada
| | - Pierre Julien
- Faculté de Médecine, Université Laval, Québec, QC, Canada
- Axe Endocrinologie et Néphrologie, Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, Canada
| | - Ali H Rajput
- Division of Neurology, Royal University Hospital, University of Saskatchewan, Saskatoon, SK, Canada
| | - Alex Rajput
- Division of Neurology, Royal University Hospital, University of Saskatchewan, Saskatoon, SK, Canada
| | - Frédéric Calon
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada.
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Room T-2-67 (CHUL) 2705 boul. Laurier, Québec, QC, G1V 4G2, Canada.
| |
Collapse
|
4
|
Anwar L, Ahmad E, Imtiaz M, Ahmad M, Faisal Aziz M, Ibad T. The Impact of Diet on Parkinson's Disease: A Systematic Review. Cureus 2024; 16:e70337. [PMID: 39469346 PMCID: PMC11513219 DOI: 10.7759/cureus.70337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder with complex etiology. Emerging evidence suggests that diet may play a role in PD risk, progression, and symptom management. However, the relationship between dietary factors and PD remains poorly understood. This systematic review aimed to synthesize and evaluate the current evidence on the associations between dietary patterns, specific nutrients, and PD risk, progression, and symptom management. We conducted a comprehensive literature search in major databases for studies published up to 2024. Eligible studies included prospective cohorts, case-control studies, randomized controlled trials, and cross-sectional analyses investigating the relationship between diet and PD. Data extraction and quality assessment were performed independently by two reviewers. Eleven studies met the inclusion criteria. Adherence to healthy dietary patterns, particularly those rich in fruits, vegetables, whole grains, and fish, was consistently associated with reduced PD risk. Conversely, Western-style diets high in processed foods and red meat were linked to increased risk. Specific nutrients, including antioxidants and vitamins K and C, showed potential neuroprotective effects, while high iron intake was associated with increased PD risk. Diet quality was found to influence PD symptoms, particularly non-motor symptoms like constipation. Emerging evidence suggested a role for the gut microbiome in mediating diet-PD relationships. Specialized diets, such as ketogenic and low-carbohydrate diets, showed promise in managing PD symptoms in small-scale studies. This review provides evidence for the significant role of diet in PD risk, progression, and symptom management. Dietary interventions have the potential to serve as complementary approaches to existing PD therapies. However, the complex nature of the diet-PD relationship necessitates further research, particularly well-designed long-term randomized controlled trials, to develop evidence-based, personalized dietary recommendations for PD prevention and management.
Collapse
Affiliation(s)
| | | | | | | | | | - Talha Ibad
- Medicine, Services Hospital Lahore, Lahore, PAK
| |
Collapse
|
5
|
Talebi S, Khodagholi F, Bahaeddin Z, Ansari Dezfouli M, Zeinaddini-Meymand A, Berchi Kankam S, Foolad F, Alijaniha F, Fayazi Piranghar F. Does hazelnut consumption affect brain health and function against neurodegenerative diseases? Nutr Neurosci 2024; 27:1008-1024. [PMID: 38151890 DOI: 10.1080/1028415x.2023.2296164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
INTRODUCTION A healthy daily diet and consuming certain nutrients, such as polyphenols, vitamins, and unsaturated fatty acids, may help neuronal health maintenance. Polyphenolic chemicals, which have antioxidant and anti-inflammatory properties, are involved in the neuroprotective pathway. Because of their nutritional value, nuts have been shown in recent research to be helpful in neuroprotection. OBJECTIVE Hazelnut is often consumed worldwide in various items, including processed foods, particularly in bakery, chocolate, and confectionery products. This nut is an excellent source of vitamins, amino acids, tocopherols, phytosterols, polyphenols, minerals, and unsaturated fatty acids. Consuming hazelnut may attenuate the risk of neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, and Huntington's disease due to its anti-inflammatory and anti-oxidant qualities. RESULTS Many documents introduce hazelnut as an excellent choice to provide neuroprotection against neurodegenerative disorders and there is some direct proof of its neuroprotective effects. DISCUSSION So hazelnut consumption in daily diet may reduce neurodegenerative disease risk and be advantageous in reducing the imposed costs of dealing with neurodegenerative diseases.
Collapse
Affiliation(s)
- Shadi Talebi
- Traditional Medicine Clinical Trial Research Center, Shahed University, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Bahaeddin
- Traditional Medicine Clinical Trial Research Center, Shahed University, Tehran, Iran
| | - Mitra Ansari Dezfouli
- Faculty of Medicine, Department of Neurology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | | | - Forough Foolad
- Faculty of Medical Sciences, Department of Physiology, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Alijaniha
- Traditional Medicine Clinical Trial Research Center, Shahed University, Tehran, Iran
- School of Persian Medicine, Department of Traditional Persian Medicine, Shahed University, Tehran, Iran
| | | |
Collapse
|
6
|
van Zonneveld SM, van den Oever EJ, Haarman BCM, Grandjean EL, Nuninga JO, van de Rest O, Sommer IEC. An Anti-Inflammatory Diet and Its Potential Benefit for Individuals with Mental Disorders and Neurodegenerative Diseases-A Narrative Review. Nutrients 2024; 16:2646. [PMID: 39203783 PMCID: PMC11357610 DOI: 10.3390/nu16162646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
This narrative review synthesizes current evidence regarding anti-inflammatory dietary patterns and their potential benefits for individuals with mental disorders and neurodegenerative diseases. Chronic low-grade inflammation is increasingly recognized as a key factor in the etiology and progression of these conditions. The review examines the evidence for the anti-inflammatory and neuroprotective properties of dietary components and food groups, focusing on whole foods rather than specific nutrients or supplements. Key dietary components showing potential benefits include fruits and vegetables (especially berries and leafy greens), whole grains, legumes, fatty fish rich in omega-3, nuts (particularly walnuts), olive oil, and fermented foods. These foods are generally rich in antioxidants, dietary fiber, and bioactive compounds that may help modulate inflammation, support gut health, and promote neuroprotection. Conversely, ultra-processed foods, red meat, and sugary beverages may be harmful. Based on this evidence, we designed the Brain Anti-Inflammatory Nutrition (BrAIN) diet. The mechanisms of this diet include the modulation of the gut microbiota and the gut-brain axis, the regulation of inflammatory pathways, a reduction in oxidative stress, and the promotion of neuroplasticity. The BrAIN diet shows promise as an aid to manage mental and neurodegenerative disorders.
Collapse
Affiliation(s)
- Sophie M. van Zonneveld
- Department of Biomedical Sciences, Cognitive Neuroscience Center, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Ellen J. van den Oever
- Department of Biomedical Sciences, Cognitive Neuroscience Center, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Benno C. M. Haarman
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Emmy L. Grandjean
- Department of Biomedical Sciences, Cognitive Neuroscience Center, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Jasper O. Nuninga
- Department of Biomedical Sciences, Cognitive Neuroscience Center, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Ondine van de Rest
- Department of Human Nutrition and Health, Wageningen University & Research, 6708 WE Wageningen, The Netherlands
| | - Iris E. C. Sommer
- Department of Biomedical Sciences, Cognitive Neuroscience Center, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
7
|
Hu W, Wang W, Liao H, Bulloch G, Zhang X, Shang X, Huang Y, Hu Y, Yu H, Yang X, He M, Zhu Z. Metabolic profiling reveals circulating biomarkers associated with incident and prevalent Parkinson's disease. NPJ Parkinsons Dis 2024; 10:130. [PMID: 38982064 PMCID: PMC11233508 DOI: 10.1038/s41531-024-00713-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 04/19/2024] [Indexed: 07/11/2024] Open
Abstract
The metabolic profile predating the onset of Parkinson's disease (PD) remains unclear. We aim to investigate the metabolites associated with incident and prevalent PD and their predictive values in the UK Biobank participants with metabolomics and genetic data at the baseline. A panel of 249 metabolites was quantified using a nuclear magnetic resonance analytical platform. PD was ascertained by self-reported history, hospital admission records and death registers. Cox proportional hazard models and logistic regression models were used to investigate the associations between metabolites and incident and prevalent PD, respectively. Area under receiver operating characteristics curves (AUC) were used to estimate the predictive values of models for future PD. Among 109,790 participants without PD at the baseline, 639 (0.58%) individuals developed PD after one year from the baseline during a median follow-up period of 12.2 years. Sixty-eight metabolites were associated with incident PD at nominal significance (P < 0.05), spanning lipids, lipid constituent of lipoprotein subclasses and ratios of lipid constituents. After multiple testing corrections (P < 9 × 10-4), polyunsaturated fatty acids (PUFA) and omega-6 fatty acids remained significantly associated with incident PD, and PUFA was shared by incident and prevalent PD. Additionally, 14 metabolites were exclusively associated with prevalent PD, including amino acids, fatty acids, several lipoprotein subclasses and ratios of lipids. Adding these metabolites to the conventional risk factors yielded a comparable predictive performance to the risk-factor-based model (AUC = 0.766 vs AUC = 0.768, P = 0.145). Our findings suggested metabolic profiles provided additional knowledge to understand different pathways related to PD before and after its onset.
Collapse
Affiliation(s)
- Wenyi Hu
- Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Centre for Eye Research Australia; Ophthalmology, University of Melbourne, Melbourne, VIC, Australia
- Department of Surgery (Ophthalmology), The University of Melbourne, Melbourne, VIC, Australia
| | - Wei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Huan Liao
- Neural Regeneration Group, Institute of Reconstructive Neurobiology, University of Bonn, Bonn, Germany
| | - Gabriella Bulloch
- Centre for Eye Research Australia; Ophthalmology, University of Melbourne, Melbourne, VIC, Australia
| | - Xiayin Zhang
- Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xianwen Shang
- Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Centre for Eye Research Australia; Ophthalmology, University of Melbourne, Melbourne, VIC, Australia
- Department of Surgery (Ophthalmology), The University of Melbourne, Melbourne, VIC, Australia
| | - Yu Huang
- Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yijun Hu
- Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Honghua Yu
- Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xiaohong Yang
- Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| | - Mingguang He
- Department of Surgery (Ophthalmology), The University of Melbourne, Melbourne, VIC, Australia.
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong SAR, China.
- Research Centre for SHARP Vision, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China.
| | - Zhuoting Zhu
- Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
- Centre for Eye Research Australia; Ophthalmology, University of Melbourne, Melbourne, VIC, Australia.
- Department of Surgery (Ophthalmology), The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
8
|
Clemente-Suárez VJ, Redondo-Flórez L, Beltrán-Velasco AI, Belinchón-deMiguel P, Ramos-Campo DJ, Curiel-Regueros A, Martín-Rodríguez A, Tornero-Aguilera JF. The Interplay of Sports and Nutrition in Neurological Health and Recovery. J Clin Med 2024; 13:2065. [PMID: 38610829 PMCID: PMC11012304 DOI: 10.3390/jcm13072065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
This comprehensive review explores the dynamic relationship between sports, nutrition, and neurological health. Focusing on recent clinical advancements, it examines how physical activity and dietary practices influence the prevention, treatment, and rehabilitation of various neurological conditions. The review highlights the role of neuroimaging in understanding these interactions, discusses emerging technologies in neurotherapeutic interventions, and evaluates the efficacy of sports and nutritional strategies in enhancing neurological recovery. This synthesis of current knowledge aims to provide a deeper understanding of how lifestyle factors can be integrated into clinical practices to improve neurological outcomes.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.C.-R.); (J.F.T.-A.)
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/Tajo s/n, Villaviciosa de Odón, 28670 Madrid, Spain;
| | | | - Pedro Belinchón-deMiguel
- Department of Nursing and Nutrition, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain;
| | - Domingo Jesús Ramos-Campo
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science-INEF, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Agustín Curiel-Regueros
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.C.-R.); (J.F.T.-A.)
| | - Alexandra Martín-Rodríguez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.C.-R.); (J.F.T.-A.)
| | - José Francisco Tornero-Aguilera
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.C.-R.); (J.F.T.-A.)
| |
Collapse
|
9
|
Huang W, Xiao Y, Zhang L, Liu H. Association between a body shape index and Parkinson's disease: A large cross-sectional study from NHANES. Heliyon 2024; 10:e26557. [PMID: 38420444 PMCID: PMC10900994 DOI: 10.1016/j.heliyon.2024.e26557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
Objective To further evaluate the connection between obesity and Parkinson's disease, we utilized A body shape index which normalizes waist circumference for Body mass index. Derived from the National Health and Nutrition Examination Survey. Methods Based on National Health and Nutrition Examination Survey data from 2005 to 2018, this study included 31,933 adult participants in total. First, all the participants were divided into the Parkinson's disease group and non-Parkinson's disease group, respectively. Next, according to their quartiles of A body shape index levels, they were further classified into Q1 group (0.058-0.077), Q2 group (0.078-0.081), Q3 group (0.082-0.084), and Q4 group (0.085-0.117). A body shape index was the primary exposure, while Parkinson's disease was the primary outcome. A body shape index is defined by waist circumference divided by Body mass index2/3 × height1/2, and the expected value of waist circumference based on height and weight derived empirically from National Health and Nutrition Examination Survey. Consequently, A body shape index and Parkinson's disease were analyzed through multifactor logistic regression. Results According to the unadjusted multivariate logistic analysis, the Q4 group had a greater likelihood of acquiring Parkinson's disease than the Q1 group [OR = 4.519, 95% CI: 3.094-6.600; P < 0.001]. After adjusting the demographic variables such as age, sex, and race, Q4 group was at a higher risk of Parkinson's disease acquisition than Q1 [OR (95% CI): 2.677 (1.774-4.038); P < 0.001]. Compared with Q1 group, the male participants were in a greater chance of getting Parkinson's disease than female participants in Q4 group, as shown by subgroup analysis by gender [male vs. female: OR = 6.563 (3.289-13.098) vs. OR = 3.827 (2.398-6.108); Interaction P-value<0.001]. Conclusions There is a non-linear positive correlation between the adult A body shape index and the risk of Parkinson's disease. Adults are at a greater risk of getting Parkinson's disease as A body shape index rises, and the link is particularly strong among men aged 20 to 59.
Collapse
Affiliation(s)
- Wei Huang
- Department of Orthopaedics, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Yingqi Xiao
- Department of Pulmonary and Critical Care Medicine, Dongguan Tungwah Hospital, Dongguan, China
| | - Li Zhang
- Department of Pulmonary and Critical Care Medicine, Dongguan Tungwah Hospital, Dongguan, China
| | - Hu Liu
- Department of Orthopaedics, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| |
Collapse
|
10
|
Nagy-Grócz G, Spekker E, Vécsei L. Kynurenines, Neuronal Excitotoxicity, and Mitochondrial Oxidative Stress: Role of the Intestinal Flora. Int J Mol Sci 2024; 25:1698. [PMID: 38338981 PMCID: PMC10855176 DOI: 10.3390/ijms25031698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
The intestinal flora has been the focus of numerous investigations recently, with inquiries not just into the gastrointestinal aspects but also the pathomechanism of other diseases such as nervous system disorders and mitochondrial diseases. Mitochondrial disorders are the most common type of inheritable metabolic illness caused by mutations of mitochondrial and nuclear DNA. Despite the intensive research, its diagnosis is usually difficult, and unfortunately, treating it challenges physicians. Metabolites of the kynurenine pathway are linked to many disorders, such as depression, schizophrenia, migraine, and also diseases associated with impaired mitochondrial function. The kynurenine pathway includes many substances, for instance kynurenic acid and quinolinic acid. In this review, we would like to show a possible link between the metabolites of the kynurenine pathway and mitochondrial stress in the context of intestinal flora. Furthermore, we summarize the possible markers of and future therapeutic options for the kynurenine pathway in excitotoxicity and mitochondrial oxidative stress.
Collapse
Affiliation(s)
- Gábor Nagy-Grócz
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary;
- Faculty of Health Sciences and Social Studies, University of Szeged, Temesvári krt. 31., H-6726 Szeged, Hungary
- Preventive Health Sciences Research Group, Incubation Competence Centre of the Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, H-6720 Szeged, Hungary
| | | | - László Vécsei
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary;
- HUN-REN-SZTE Neuroscience Research Group, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| |
Collapse
|
11
|
Lin F, Shi Y, Zheng J, Li Y, Chen X, Zou X, Hong Y, Chen K, Zeng Y, Ye Q, Chen X, Chen X, Wang Y, Cai G. Fish oil supplementation, physical activity and risk of incident Parkinson's disease: results of longitudinal analysis from the UK Biobank. Front Aging Neurosci 2024; 15:1304629. [PMID: 38348197 PMCID: PMC10859434 DOI: 10.3389/fnagi.2023.1304629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/31/2023] [Indexed: 02/15/2024] Open
Abstract
Objective Evidence on the individual and combined relationship of physical activity (PA) and fish oil supplement use on the incidence of Parkinson's disease (PD) risk remains lacking. Materials and methods This UK population-based prospective cohort study, involving 385,275 UK Biobank participants, collected PA and fish oil supplement data via touchscreen questionnaires. Using Cox proportional hazards models and restricted cubic splines to examined the associations between use of fish oil supplements, PA and PD risk. Results During a median 12.52-year follow-up, 2,131 participants incident PD. Analysis showed that fish oil supplement users had a lower PD risk [hazard ratio (HR), 0.89; 95% confidence interval (CI), 0.82-0.98]. The adjusted HRs for the PD incidence were 0.96 (95% CI, 0.95-0.98) for total PA; 0.93 (95% CI, 0.90-0.96) for moderate PA; 0.95 (95% CI, 0.91-0.99) for vigorous PA and 0.93 (95% CI, 0.89-0.98) for walking activity. Significant interactions were found between fish oil supplement use and total PA (P for interaction = 0.011), moderate PA (P for interaction = 0.015), and walking activity (P for interaction = 0.029) in relation to PD incidence. Conclusion Both fish oil supplement use and PA were associated with a reduced risk of PD, and the effect of PA in reducing the risk of PD was more pronounced when fish oil supplement was used.
Collapse
Affiliation(s)
- Fabin Lin
- Department of Neurology, Institute of Clinical Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- School of Basic Medical Science, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yisen Shi
- Department of Neurology, Institute of Clinical Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- School of Basic Medical Science, Fujian Medical University, Fuzhou, China
| | - Jiayi Zheng
- Department of Neurology, Institute of Clinical Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- School of Basic Medical Science, Fujian Medical University, Fuzhou, China
| | - Yueping Li
- Department of Neurology, Institute of Clinical Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Xuanjie Chen
- School of Basic Medical Science, Fujian Medical University, Fuzhou, China
| | - Xinyang Zou
- Department of Neurology, Institute of Clinical Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- School of Basic Medical Science, Fujian Medical University, Fuzhou, China
| | - Yi Hong
- School of Basic Medical Science, Fujian Medical University, Fuzhou, China
| | - Ke Chen
- Department of Neurology, Institute of Clinical Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- School of Basic Medical Science, Fujian Medical University, Fuzhou, China
| | - Yuqi Zeng
- Department of Neurology, Institute of Clinical Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Qinyong Ye
- Department of Neurology, Institute of Clinical Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Xiaochun Chen
- Department of Neurology, Institute of Clinical Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Xinyan Chen
- Department of Neurology, Institute of Clinical Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Yingqing Wang
- Department of Neurology, Institute of Clinical Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Guoen Cai
- Department of Neurology, Institute of Clinical Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
12
|
Gątarek P, Kałużna-Czaplińska J. Integrated metabolomics and proteomics analysis of plasma lipid metabolism in Parkinson's disease. Expert Rev Proteomics 2024; 21:13-25. [PMID: 38346207 DOI: 10.1080/14789450.2024.2315193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/24/2024] [Indexed: 02/16/2024]
Abstract
INTRODUCTION Metabolomics and proteomics are two growing fields of science which may shed light on the molecular mechanisms that contribute to neurodegenerative diseases. Studies focusing on these aspects can reveal specific metabolites and proteins that can halt or reverse the progressive neurodegenerative process leading to dopaminergic cell death in the brain. AREAS COVERED In this article, an overview of the current status of metabolomic and proteomic profiling in the neurodegenerative disease such as Parkinson's disease (PD) is presented. We discuss the importance of state-of-the-art metabolomics and proteomics using advanced analytical methodologies and their potential for discovering new biomarkers in PD. We critically review the research to date, highlighting how metabolomics and proteomics can have an important impact on early disease diagnosis, future therapy development and the identification of new biomarkers. Finally, we will discuss interactions between lipids and α-synuclein (SNCA) and also consider the role of SNCA in lipid metabolism. EXPERT OPINION Metabolomic and proteomic studies contribute to understanding the biological basis of PD pathogenesis, identifying potential biomarkers and introducing new therapeutic strategies. The complexity and multifactorial nature of this disease requires a comprehensive approach, which can be achieved by integrating just these two omic studies.
Collapse
Affiliation(s)
- Paulina Gątarek
- Institute Of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Lodz, Poland
- CONEM Poland Chemistry and Nutrition Research Group, Lodz University of Technology, Lodz, Poland
| | - Joanna Kałużna-Czaplińska
- Institute Of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Lodz, Poland
- CONEM Poland Chemistry and Nutrition Research Group, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
13
|
Alrouji M, Al-Kuraishy HM, Al-Mahammadawy AKAA, Al-Gareeb AI, Saad HM, Batiha GES. The potential role of cholesterol in Parkinson's disease neuropathology: perpetrator or victim. Neurol Sci 2023; 44:3781-3794. [PMID: 37428278 DOI: 10.1007/s10072-023-06926-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by deposition of α-synuclein and aggregation of Lewy bodies. Cholesterol is involved with PD neuropathology in bidirectional ways that could be protective or harmful. Thus, the objective of the present review was to verify the potential role of cholesterol in PD neuropathology. Deregulation of ion channels and receptors induced by cholesterol alteration suggests a possible mechanism for the neuroprotective effects of cholesterol against PD development. However, high serum cholesterol level increases PD risk indirectly by 27-hydroxycholesterol which induces oxidative stress, inflammation, and apoptosis. Besides, hypercholesterolemia triggers the accumulation of cholesterol in macrophages and immune cells leading to the release of pro-inflammatory cytokines with progression of neuroinflammation subsequently. Additionally, cholesterol increases aggregation of α-synuclein and induces degeneration of dopaminergic neurons (DN) in the substantia nigra (SN). Hypercholesterolemia may lead to cellular Ca2+ overload causing synaptic and the development of neurodegeneration. In conclusion, cholesterol has bidirectional effects on PD neuropathology and might be protective or harmful.
Collapse
Affiliation(s)
- Mohammed Alrouji
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra, 11961, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, Al-Mustansiriyah University, M.B.Ch.B, FRCP; Box, Baghdad, 14132, Iraq
| | | | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, Al-Mustansiriyah University, M.B.Ch.B, FRCP; Box, Baghdad, 14132, Iraq
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matrouh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Al Beheira, 22511, Egypt.
| |
Collapse
|
14
|
Berthouzoz E, Lazarevic V, Zekeridou A, Castro M, Debove I, Aybek S, Schrenzel J, Burkhard PR, Fleury V. Oral and intestinal dysbiosis in Parkinson's disease. Rev Neurol (Paris) 2023; 179:937-946. [PMID: 36934020 DOI: 10.1016/j.neurol.2022.12.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/29/2022] [Accepted: 12/10/2022] [Indexed: 03/18/2023]
Abstract
The suspicion of an origin of Parkinson's disease (PD) at the periphery of the body and the involvement of environmental risk factors in the pathogenesis of PD have directed the attention of the scientific community towards the microbiota. The microbiota represents all the microorganisms residing both in and on a host. It plays an essential role in the physiological functioning of the host. In this article, we review the dysbiosis repeatedly demonstrated in PD and how it influences PD symptoms. Dysbiosis is associated with both motor and non-motor PD symptoms. In animal models, dysbiosis only promotes symptoms in individuals genetically susceptible to Parkinson's disease, suggesting that dysbiosis is a risk factor but not a cause of Parkinson's disease. We also review how dysbiosis contributes to the pathophysiology of PD. Dysbiosis induces numerous and complex metabolic changes, resulting in increased intestinal permeability, local and systemic inflammation, production of bacterial amyloid proteins that promote α-synuclein aggregation, as well as a decrease in short-chain fatty acid-producing bacteria that have anti-inflammatory and neuroprotective potential. In addition, we review how dysbiosis decreases the efficacy of dopaminergic treatments. We then discuss the interest of dysbiosis analysis as a biomarker of Parkinson's disease. Finally, we give an overview of how interventions modulating the gut microbiota such as dietary interventions, pro-biotics, intestinal decontamination and fecal microbiota transplantation could influence the course of PD.
Collapse
Affiliation(s)
- E Berthouzoz
- Faculty of Medicine, University of Geneva, Centre Médical Universitaire, 1211 Geneva 4, Switzerland
| | - V Lazarevic
- Faculty of Medicine, University of Geneva, Centre Médical Universitaire, 1211 Geneva 4, Switzerland; Genomic Research Laboratory, Department of Infectious Diseases, University Hospital of Geneva, 1211 Geneva 14, Switzerland
| | - A Zekeridou
- Division of Regenerative Dentistry and Periodontology, University Clinic of Dental Medicine, University of Geneva, 1211 Geneva 4, Switzerland
| | - M Castro
- Movement disorders Unit, Department of Neurology, University Hospital of Lausanne, 1011 Lausanne, Switzerland
| | - I Debove
- Movement disorders Unit, Department of Neurology, Inselspital, 3010 Bern, Switzerland
| | - S Aybek
- Psychosomatic Medicine Unit, Department of Neurology, Inselspital, 3010 Bern, Switzerland
| | - J Schrenzel
- Faculty of Medicine, University of Geneva, Centre Médical Universitaire, 1211 Geneva 4, Switzerland; Genomic Research Laboratory, Department of Infectious Diseases, University Hospital of Geneva, 1211 Geneva 14, Switzerland
| | - P R Burkhard
- Faculty of Medicine, University of Geneva, Centre Médical Universitaire, 1211 Geneva 4, Switzerland; Movement disorders Unit, Division of Neurology, Department of Clinical Neurosciences, University Hospital of Geneva, 1211 Geneva 14, Switzerland
| | - V Fleury
- Faculty of Medicine, University of Geneva, Centre Médical Universitaire, 1211 Geneva 4, Switzerland; Movement disorders Unit, Division of Neurology, Department of Clinical Neurosciences, University Hospital of Geneva, 1211 Geneva 14, Switzerland.
| |
Collapse
|
15
|
Zailani H, Satyanarayanan SK, Liao WC, Hsu YT, Huang SY, Gałecki P, Su KP, Chang JPC. Roles of Omega-3 Polyunsaturated Fatty Acids in Managing Cognitive Impairment in Chronic Obstructive Pulmonary Disease: A Review. Nutrients 2023; 15:4363. [PMID: 37892438 PMCID: PMC10609799 DOI: 10.3390/nu15204363] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) contributes significantly to the death of people worldwide, especially the elderly. An essential feature of COPD is pulmonary inflammation, which results from long-term exposure to noxious substances from cigarette smoking and other environmental pollutants. Pulmonary inflammatory mediators spill over to the blood, leading to systemic inflammation, which is believed to play a significant role in the onset of a host of comorbidities associated with COPD. A substantial comorbidity of concern in COPD patients that is often overlooked in COPD management is cognitive impairment. The exact pathophysiology of cognitive impairment in COPD patients remains a mystery; however, hypoxia, oxidative stress, systemic inflammation, and cerebral manifestations of these conditions are believed to play crucial roles. Furthermore, the use of medications to treat cognitive impairment symptomatology in COPD patients has been reported to be associated with life-threatening adverse effects, hence the need for alternative medications with reduced side effects. In this Review, we aim to discuss the impact of cognitive impairment in COPD management and the potential mechanisms associated with increased risk of cognitive impairment in COPD patients. The promising roles of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) in improving cognitive deficits in COPD patients are also discussed. Interestingly, ω-3 PUFAs can potentially enhance the cognitive impairment symptomatology associated with COPD because they can modulate inflammatory processes, activate the antioxidant defence system, and promote amyloid-beta clearance from the brain. Thus, clinical studies are crucial to assess the efficacy of ω-3 PUFAs in managing cognitive impairment in COPD patients.
Collapse
Grants
- MOST 109-2320-B-038-057-MY3, 109-2320-B-039-066, 110-2321-B-006-004, 111-2321-B-006-008, 110-2811-B-039-507, 110-2320-B-039-048-MY2, and 110-2320-B-039-047-MY3, 110-2813-C-039-327-B, 110-2314-B-039-029-MY3, 111-2314-B-039-041-MY3 Ministry of Science and Technology, Taiwan
- ANHRF 109-31, 109-40, 110-13, 110-26, 110-44, 110-45, 111-27, and 111-28 An-Nan Hospital, China Medical University, Tainan, Taiwan
- CMRC-CMA-2 Higher Education Sprout Project by the Ministry of Education (MOE), Taiwan
- CMU 110-AWARD-02, CMU108-SR-106, CMU110-N-17, CMU110-SR-73 China Medical University, Taichung, Taiwan
- CRS-108-048, DMR-105-053, DMR-109-102, DMR-109-244, DMR-HHC-109-11, DMR-HHC-109-12, DMR-HHC-110-10, DMR-110-124, DMR-111-245 and DMR-HHC-111-8 China Medical University Hospital, Taichung, Taiwan
Collapse
Affiliation(s)
- Halliru Zailani
- Mind-Body Interface Laboratory (MBI-Lab), Department of Psychiatry, China Medical University Hospital, Taichung 404327, Taiwan; (H.Z.); (S.K.S.)
- Graduate Institute of Nutrition, China Medical University, Taichung 404, Taiwan
- Department of Biochemistry, Ahmadu Bello University, Zaria 810106, Nigeria
| | - Senthil Kumaran Satyanarayanan
- Mind-Body Interface Laboratory (MBI-Lab), Department of Psychiatry, China Medical University Hospital, Taichung 404327, Taiwan; (H.Z.); (S.K.S.)
| | - Wei-Chih Liao
- Division of Pulmonary and Critical Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung 404327, Taiwan
| | - Yi-Ting Hsu
- Department of Neurology, China Medical University Hospital, Taichung 404327, Taiwan;
| | - Shih-Yi Huang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan
- Nutrition Research Centre, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Piotr Gałecki
- Department of Adult Psychiatry, Medical University of Lodz, 91-229 Lodz, Poland;
| | - Kuan-Pin Su
- Mind-Body Interface Laboratory (MBI-Lab), Department of Psychiatry, China Medical University Hospital, Taichung 404327, Taiwan; (H.Z.); (S.K.S.)
- College of Medicine, China Medical University, Taichung 404, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
- An-Nan Hospital, China Medical University, Tainan 717, Taiwan
| | - Jane Pei-Chen Chang
- Mind-Body Interface Laboratory (MBI-Lab), Department of Psychiatry, China Medical University Hospital, Taichung 404327, Taiwan; (H.Z.); (S.K.S.)
- College of Medicine, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
16
|
Zeng Z, Cen Y, Wang L, Luo X. Association between dietary inflammatory index and Parkinson's disease from National Health and Nutrition Examination Survey (2003-2018): a cross-sectional study. Front Neurosci 2023; 17:1203979. [PMID: 37547135 PMCID: PMC10398569 DOI: 10.3389/fnins.2023.1203979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Objected To explore the association between Parkinson's disease (PD) and dietary inflammatory index (DII) scores in adults over 40 years old in the US. Method Data were collected from the National Health and Nutrition Examination Survey (NHANES) conducted from 2003 to 2018. A total of 21,994 participants were included in the study. A weighted univariate and multivariable logistic regression analysis was performed to investigate the association between the DII and PD, in which continuous variables or categorical variables grouped by tertiles was used. The relationship between DII and PD has been further investigated using propensity score matching (PSM) and a subgroup analysis stratified based on DII and PD characteristics. Moreover, restricted cubic spline (RCS) analysis was conducted to examine whether there was a nonlinear association between DII and PD. Results A total of 21,994 participants were obtained for statistical analysis, made up of 263 patients with PD and 21,731 participants without PD. Univariate and multivariable logistics regression analysis showed DII to be positively associated with PD before and after matching. Subgroup analysis revealed a statistical difference in non-Hispanic whites, but RCS analysis suggested that there was no nonlinear relationship between the DII and PD. Conclusion For participants over 40 years of age, higher DII scores were positively correlated with PD. In addition, these results support the ability of diet to be used as an intervention strategy for managing PD.
Collapse
Affiliation(s)
- Zhaohao Zeng
- Department of Neurology, Shenzhen People’s Hospital, The Second Clinical Medical College, The First Affiliated Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, Guangdong, China
- The First Clinical Medical College of Jinan University, Guangzhou, Guangdong, China
- The Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Xiaogan, Hubei, China
| | - Yanmei Cen
- The First Clinical Medical College of Jinan University, Guangzhou, Guangdong, China
| | - Lu Wang
- Department of Neurology, The Central Hospital of Xiaogan, Xiaogan, Hubei, China
| | - Xiaoguang Luo
- Department of Neurology, Shenzhen People’s Hospital, The Second Clinical Medical College, The First Affiliated Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, Guangdong, China
- The Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Xiaogan, Hubei, China
| |
Collapse
|
17
|
Fernandez RF, Wilson ES, Diaz V, Martínez-Gardeazabal J, Foguth R, Cannon JR, Jackson SN, Hermann BP, Eells JB, Ellis JM. Lipid metabolism in dopaminergic neurons influences light entrainment. J Neurochem 2023; 165:379-390. [PMID: 36815399 PMCID: PMC10155601 DOI: 10.1111/jnc.15793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/20/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023]
Abstract
Dietary lipids, particularly omega-3 polyunsaturated fatty acids, are speculated to impact behaviors linked to the dopaminergic system, such as movement and control of circadian rhythms. However, the ability to draw a direct link between dopaminergic omega-3 fatty acid metabolism and behavioral outcomes has been limited to the use of diet-based approaches, which are confounded by systemic effects. Here, neuronal lipid metabolism was targeted in a diet-independent manner by manipulation of long-chain acyl-CoA synthetase 6 (ACSL6) expression. ACSL6 performs the initial reaction for cellular fatty acid metabolism and prefers the omega-3 polyunsaturated fatty acid, docosahexaenoic acid (DHA). The loss of Acsl6 in mice (Acsl6-/- ) depletes neuronal membranes of DHA content and results in phenotypes linked to dopaminergic control, such as hyperlocomotion, impaired short-term spatial memory, and imbalances in dopamine neurochemistry. To investigate the role of dopaminergic ACSL6 on these outcomes, a dopaminergic neuron-specific ACSL6 knockout mouse was generated (Acsl6DA-/- ). Acsl6DA-/- mice demonstrated hyperlocomotion and imbalances in striatal dopamine neurochemistry. Circadian rhythms of both the Acsl6-/- and the Acsl6DA-/- mice were similar to control mice under basal conditions. However, upon light entrainment, a mimetic of jet lag, both the complete knockout of ACSL6 and the dopaminergic-neuron-specific loss of ACSL6 resulted in a longer recovery to entrainment compared to control mice. In conclusion, these data demonstrate that ACSL6 in dopaminergic neurons alters dopamine metabolism and regulation of light entrainment suggesting that DHA metabolism mediated by ACSL6 plays a role in dopamine neuron biology.
Collapse
Affiliation(s)
- Regina F. Fernandez
- Department of Physiology and East Carolina Diabetes and Obesity institute, Brody School of Medicine at East Carolina University, Greenville, North Carolina, USA
| | - Emily S. Wilson
- Department of Physiology and East Carolina Diabetes and Obesity institute, Brody School of Medicine at East Carolina University, Greenville, North Carolina, USA
| | - Victoria Diaz
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas San Antonio, San Antonio, Texas, USA
| | | | - Rachel Foguth
- School of Health Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Jason R. Cannon
- School of Health Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Shelley N. Jackson
- National Institute on Drug Abuse, Intramural Research Program, Translational Analytical Core, Baltimore, Maryland, USA
| | - Brian P. Hermann
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas San Antonio, San Antonio, Texas, USA
| | - Jeffrey B. Eells
- Department of Anatomy and Cell Biology, East Carolina University, Brody School of Medicine, Greenville, North Carolina, USA
| | - Jessica M. Ellis
- Department of Physiology and East Carolina Diabetes and Obesity institute, Brody School of Medicine at East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
18
|
Zhu X, Huang S, Kang W, Chen P, Liu J. Associations between polyunsaturated fatty acid concentrations and Parkinson's disease: A two-sample Mendelian randomization study. Front Aging Neurosci 2023; 15:1123239. [PMID: 36909950 PMCID: PMC9992541 DOI: 10.3389/fnagi.2023.1123239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/02/2023] [Indexed: 02/24/2023] Open
Abstract
Introduction Observational studies demonstrated controversial effect of polyunsaturated fatty acids (PUFAs) on Parkinson's disease (PD) with limited causality evidence. Randomized control trials showed possible improvement in PD symptoms with PUFA supplement but had small study population and limited intervention time. Methods A two-sample Mendelian randomization was designed to evaluate the causal relevance between PUFAs and PD, using genetic variants of PUFAs as instrumental variables and PD data from the largest genome-wide association study as outcome. Inverse variance weighted (IVW) method was applied to obtain the primary outcome. Mendelian randomization Egger regression, weighted median and weighted mode methods were exploited to assist result analyses. Strict Mendelian randomization and multivariable Mendelian randomization (MVMR) were used to estimate direct effects of PUFAs on PD, eliminating pleiotropic effect. Debiased inverse variance weighted estimator was implemented when weak instrument bias was introduced into the analysis. A variety of sensitivity analyses were utilized to assess validity of the results. Results Our study included 33,674 PD cases and 449,056 controls. Higher plasma level of arachidonic acid (AA) was associated with a 3% increase of PD risk per 1-standard deviation (SD) increase of AA (IVW; Odds ratio (OR)=1.03 [95% confidence interval (CI) 1.01-1.04], P = 2.24E-04). After MVMR (IVW; OR=1.03 [95% CI 1.02-1.04], P =6.15E-08) and deletion of pleiotropic single-nucleotide polymorphisms overlapping with other lipids (IVW; OR=1.03 [95% CI 1.01-1.05], P =5.88E-04), result was still significant. Increased level of eicosapentaenoic acid (EPA) showed possible relevance with increased PD risk after adjustment of pleiotropy (MVMR; OR=1.05 [95% CI 1.01-1.08], P =5.40E-03). Linoleic acid (LA), docosahexaenoic acid (DHA), docosapentaenoic acid (DPA) and alpha-linolenic acid (ALA) were found not causally relevant to PD risk. Various sensitivity analyses verified the validity of our results. In conclusion, our findings from Mendelian randomization suggested that elevated levels of AA and possibly EPA might be linked to a higher risk of PD. No association between PD risk and LA, DHA, DPA, or ALA was found. Discussion The odds ratio for plasma AA and PD risk was weak. It is important to approach our results with caution in clinical practice and to conduct additional studies on the relationship between PUFAs and PD risk.
Collapse
Affiliation(s)
- Xue Zhu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sijia Huang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenyan Kang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peizhan Chen
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
19
|
The Polyunsaturated Fatty Acid EPA, but Not DHA, Enhances Neurotrophic Factor Expression through Epigenetic Mechanisms and Protects against Parkinsonian Neuronal Cell Death. Int J Mol Sci 2022; 23:ijms232416176. [PMID: 36555817 PMCID: PMC9788369 DOI: 10.3390/ijms232416176] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/28/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
ω-3 Polyunsaturated fatty acids (PUFAs) have been found to exert many actions, including neuroprotective effects. In this regard, the exact molecular mechanisms are not well understood. Parkinson's disease (PD) is the second most common age-related neurodegenerative disease. Emerging evidence supports the hypothesis that PD is the result of complex interactions between genetic abnormalities, environmental toxins, mitochondrial dysfunction, and other cellular processes, such as DNA methylation. In this context, BDNF (brain-derived neurotrophic factor) and GDNF (glial cell line-derived neurotrophic factor) have a pivotal role because they are both involved in neuron differentiation, survival, and synaptogenesis. In this study, we aimed to elucidate the potential role of two PUFAs, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and their effects on BDNF and GDNF expression in the SH-SY5Y cell line. Cell viability was determined using the MTT assay, and flow cytometry analysis was used to verify the level of apoptosis. Transmission electron microscopy was performed to observe the cell ultrastructure and mitochondria morphology. BDNF and GDNF protein levels and mRNA were assayed by Western blotting and RT-PCR, respectively. Finally, methylated and hydroxymethylated DNA immunoprecipitation were performed in the BDNF and GDNF promoter regions. EPA, but not DHA, is able (i) to reduce the neurotoxic effect of neurotoxin 6-hydroxydopamine (6-OHDA) in vitro, (ii) to re-establish mitochondrial function, and (iii) to increase BNDF and GDNF expression via epigenetic mechanisms.
Collapse
|
20
|
The Interplay between Gut Microbiota and Parkinson's Disease: Implications on Diagnosis and Treatment. Int J Mol Sci 2022; 23:ijms232012289. [PMID: 36293176 PMCID: PMC9603886 DOI: 10.3390/ijms232012289] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
The bidirectional interaction between the gut microbiota (GM) and the Central Nervous System, the so-called gut microbiota brain axis (GMBA), deeply affects brain function and has an important impact on the development of neurodegenerative diseases. In Parkinson’s disease (PD), gastrointestinal symptoms often precede the onset of motor and non-motor manifestations, and alterations in the GM composition accompany disease pathogenesis. Several studies have been conducted to unravel the role of dysbiosis and intestinal permeability in PD onset and progression, but the therapeutic and diagnostic applications of GM modifying approaches remain to be fully elucidated. After a brief introduction on the involvement of GMBA in the disease, we present evidence for GM alterations and leaky gut in PD patients. According to these data, we then review the potential of GM-based signatures to serve as disease biomarkers and we highlight the emerging role of probiotics, prebiotics, antibiotics, dietary interventions, and fecal microbiota transplantation as supportive therapeutic approaches in PD. Finally, we analyze the mutual influence between commonly prescribed PD medications and gut-microbiota, and we offer insights on the involvement also of nasal and oral microbiota in PD pathology, thus providing a comprehensive and up-to-date overview on the role of microbial features in disease diagnosis and treatment.
Collapse
|
21
|
Abstract
The global burden of Parkinson's disease (PD) has increased from 2.5 to 6.1 million since the 1990s. This is expected to rise as the world population ages and lives longer. With the current consensus on the existence of a prediagnostic phase of PD, which can be divided into a preclinical stage and a prodromal stage, we can better define the risk markers and prodromal markers of PD in the broader context of PD pathogenesis. Here, we review this pathogenetic process, and discuss the evidence behind various heritability factors, exposure to pesticides and farming, high dairy consumption, and traumatic brain injuries that have been known to raise PD risk. Physical activity, early active lifestyle, high serum uric acid, caffeine consumption, exposure to tobacco, nonsteroidal anti-inflammatory drugs, and calcium channel blockers, as well as the Mediterranean and the MIND diets are observed to lower PD risk. This knowledge, when combined with ways to identify at-risk populations and early prodromal PD patients, can help the clinician make practical recommendations. Most importantly, it helps us set the parameters for epidemiological studies and create the paradigms for clinical trials.
Collapse
Affiliation(s)
- Suraj Rajan
- Division of Movement Disorders, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Bonnie Kaas
- Division of Movement Disorders, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
22
|
Glucosinolates and Omega-3 Fatty Acids from Mustard Seeds: Phytochemistry and Pharmacology. PLANTS 2022; 11:plants11172290. [PMID: 36079672 PMCID: PMC9459965 DOI: 10.3390/plants11172290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/22/2022]
Abstract
Seeds from mustard (genera Brassica spp. and Sinapsis spp.), are known as a rich source of glucosinolates and omega-3 fatty acids. These compounds are widely known for their health benefits that include reducing inflammation and lowering the risk of cardiovascular diseases and cancer. This review presented a synthesis of published literature from Google Scholar, PubMed, Scopus, Sci Finder, and Web of Science regarding the different glucosinolates and omega-3 fatty acids isolated from mustard seeds. We presented an overview of extraction, isolation, purification, and structure elucidation of glucosinolates from the seeds of mustard plants. Moreover, we presented a compilation of in vitro, in vivo, and clinical studies showing the potential health benefits of glucosinolates and omega-3 fatty acids. Previous studies showed that glucosinolates have antimicrobial, antipain, and anticancer properties while omega-3 fatty acids are useful for their pharmacologic effects against sleep disorders, anxiety, cerebrovascular disease, neurodegenerative disease, hypercholesterolemia, and diabetes. Further studies are needed to investigate other naturally occurring glucosinolates and omega-3 fatty acids, improve and standardize the extraction and isolation methods from mustard seeds, and obtain more clinical evidence on the pharmacological applications of glucosinolates and omega-3 fatty acids from mustard seeds.
Collapse
|
23
|
Berg D, Crotty GF, Keavney JL, Schwarzschild MA, Simuni T, Tanner C. Path to Parkinson Disease Prevention: Conclusion and Outlook. Neurology 2022; 99:76-83. [PMID: 35970586 DOI: 10.1212/wnl.0000000000200793] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/12/2022] [Indexed: 01/19/2023] Open
Abstract
Tremendous progress in our understanding of the pathophysiology and clinical manifestations of the prodromal phase of Parkinson disease (PD) offers a unique opportunity to start therapeutic interventions as early as possible to slow or even stop the progression to clinically manifest motor PD. A Parkinson's Prevention Conference, "Planning for Prevention of Parkinson's: A trial design symposium and workshop" was convened to discuss all issues that need to be addressed before the launch of the first PD prevention study. In this review, we summarize the major opportunities and challenges in designing prevention trials in PD, organized by the following critical trial design questions: Who (should be enrolled)? What (to test)? How (to measure prevention)? and the pivotal question, When during the prodromal disease (should we start these trials)? We outline the implications of these questions and their meaning for a responsible, sustainable, and fruitful further planning for prevention trials. Despite the great progress that has been made, it needs to be acknowledged that several queries remain to be carefully considered and addressed because prevention trials are being planned and become a reality.
Collapse
Affiliation(s)
- Daniela Berg
- From the Department of Neurology (D.B.), Christian-Albrechts-University, Kiel, Germany; Molecular Neurobiology Laboratory (G.F.C., M.A.S.), Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown; Harvard Medical School (G.F.C., M.A.S.), Boston, MA; Parkinson's Foundation Research Advocates Program (J.L.K.), Parkinson's Foundation, Miami, FL/New York, NY; Northwestern University Feinberg School of Medicine (T.S.), Weill Institute for Neuroscience (C.T.), Department of Neurology, University of California - San Francisco; and Parkinson's Disease Research Education and Clinical Center (C.T.), San Francisco Veterans Affairs Medical Center
| | - Grace F Crotty
- From the Department of Neurology (D.B.), Christian-Albrechts-University, Kiel, Germany; Molecular Neurobiology Laboratory (G.F.C., M.A.S.), Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown; Harvard Medical School (G.F.C., M.A.S.), Boston, MA; Parkinson's Foundation Research Advocates Program (J.L.K.), Parkinson's Foundation, Miami, FL/New York, NY; Northwestern University Feinberg School of Medicine (T.S.), Weill Institute for Neuroscience (C.T.), Department of Neurology, University of California - San Francisco; and Parkinson's Disease Research Education and Clinical Center (C.T.), San Francisco Veterans Affairs Medical Center
| | - Jessi L Keavney
- From the Department of Neurology (D.B.), Christian-Albrechts-University, Kiel, Germany; Molecular Neurobiology Laboratory (G.F.C., M.A.S.), Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown; Harvard Medical School (G.F.C., M.A.S.), Boston, MA; Parkinson's Foundation Research Advocates Program (J.L.K.), Parkinson's Foundation, Miami, FL/New York, NY; Northwestern University Feinberg School of Medicine (T.S.), Weill Institute for Neuroscience (C.T.), Department of Neurology, University of California - San Francisco; and Parkinson's Disease Research Education and Clinical Center (C.T.), San Francisco Veterans Affairs Medical Center
| | - Michael A Schwarzschild
- From the Department of Neurology (D.B.), Christian-Albrechts-University, Kiel, Germany; Molecular Neurobiology Laboratory (G.F.C., M.A.S.), Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown; Harvard Medical School (G.F.C., M.A.S.), Boston, MA; Parkinson's Foundation Research Advocates Program (J.L.K.), Parkinson's Foundation, Miami, FL/New York, NY; Northwestern University Feinberg School of Medicine (T.S.), Weill Institute for Neuroscience (C.T.), Department of Neurology, University of California - San Francisco; and Parkinson's Disease Research Education and Clinical Center (C.T.), San Francisco Veterans Affairs Medical Center
| | - Tanya Simuni
- From the Department of Neurology (D.B.), Christian-Albrechts-University, Kiel, Germany; Molecular Neurobiology Laboratory (G.F.C., M.A.S.), Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown; Harvard Medical School (G.F.C., M.A.S.), Boston, MA; Parkinson's Foundation Research Advocates Program (J.L.K.), Parkinson's Foundation, Miami, FL/New York, NY; Northwestern University Feinberg School of Medicine (T.S.), Weill Institute for Neuroscience (C.T.), Department of Neurology, University of California - San Francisco; and Parkinson's Disease Research Education and Clinical Center (C.T.), San Francisco Veterans Affairs Medical Center.
| | - Caroline Tanner
- From the Department of Neurology (D.B.), Christian-Albrechts-University, Kiel, Germany; Molecular Neurobiology Laboratory (G.F.C., M.A.S.), Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown; Harvard Medical School (G.F.C., M.A.S.), Boston, MA; Parkinson's Foundation Research Advocates Program (J.L.K.), Parkinson's Foundation, Miami, FL/New York, NY; Northwestern University Feinberg School of Medicine (T.S.), Weill Institute for Neuroscience (C.T.), Department of Neurology, University of California - San Francisco; and Parkinson's Disease Research Education and Clinical Center (C.T.), San Francisco Veterans Affairs Medical Center
| |
Collapse
|
24
|
Sun X, Xue L, Wang Z, Xie A. Update to the Treatment of Parkinson's Disease Based on the Gut-Brain Axis Mechanism. Front Neurosci 2022; 16:878239. [PMID: 35873830 PMCID: PMC9299103 DOI: 10.3389/fnins.2022.878239] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/20/2022] [Indexed: 12/27/2022] Open
Abstract
Gastrointestinal (GI) symptoms represented by constipation were significant non-motor symptoms of Parkinson’s disease (PD) and were considered early manifestations and aggravating factors of the disease. This paper reviewed the research progress of the mechanism of the gut-brain axis (GBA) in PD and discussed the roles of α-synuclein, gut microbiota, immune inflammation, neuroendocrine, mitochondrial autophagy, and environmental toxins in the mechanism of the GBA in PD. Treatment of PD based on the GBA theory has also been discussed, including (1) dietary therapy, such as probiotics, vitamin therapy, Mediterranean diet, and low-calorie diet, (2) exercise therapy, (3) drug therapy, including antibiotics; GI peptides; GI motility agents, and (4) fecal flora transplantation can improve the flora. (5) Vagotomy and appendectomy were associated but not recommended.
Collapse
Affiliation(s)
- Xiaohui Sun
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Li Xue
- Recording Room, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zechen Wang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Anmu Xie
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
25
|
Nutrition and Gut–Brain Pathways Impacting the Onset of Parkinson’s Disease. Nutrients 2022; 14:nu14142781. [PMID: 35889738 PMCID: PMC9323908 DOI: 10.3390/nu14142781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 02/07/2023] Open
Abstract
An emerging body of literature suggests that long-term gut inflammation may be a silent driver of Parkinson’s disease (PD) pathogenesis. Importantly, specific nutritive patterns might improve gut health for PD risk reduction. Here, we review the current literature on the nutritive patterns and inflammatory markers as a predictor for early detection of PD. This knowledge might be used to foster the detection of early nutritive patterns and preclinical biomarkers to potentially alter PD development and progression.
Collapse
|
26
|
Bianchi VE, Rizzi L, Somaa F. The role of nutrition on Parkinson's disease: a systematic review. Nutr Neurosci 2022; 26:605-628. [PMID: 35730414 DOI: 10.1080/1028415x.2022.2073107] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND Parkinson's disease (PD) in elderly patients is the second most prevalent neurodegenerative disease. The pathogenesis of PD is associated with dopaminergic neuron degeneration of the substantia nigra in the basal ganglia, causing classic motor symptoms. Oxidative stress, mitochondrial dysfunction, and neuroinflammation have been identified as possible pathways in laboratory investigations. Nutrition, a potentially versatile factor from all environmental factors affecting PD, has received intense research scrutiny. METHODS A systematic search was conducted in the MEDLINE, EMBASE, and WEB OF SCIENCE databases from 2000 until the present. Only randomized clinical trials (RCTs), observational case-control studies, and follow-up studies were included. RESULTS We retrieved fifty-two studies that met the inclusion criteria. Most selected studies investigated the effects of malnutrition and the Mediterranean diet (MeDiet) on PD incidence and progression. Other investigations contributed evidence on the critical role of microbiota, vitamins, polyphenols, dairy products, coffee, and alcohol intake. CONCLUSIONS There are still many concerns regarding the association between PD and nutrition, possibly due to underlying genetic and environmental factors. However, there is a body of evidence revealing that correcting malnutrition, gut microbiota, and following the MeDiet reduced the onset of PD and reduced clinical progression. Other factors, such as polyphenols, polyunsaturated fatty acids, and coffee intake, can have a potential protective effect. Conversely, milk and its accessory products can increase PD risk. Nutritional intervention is essential for neurologists to improve clinical outcomes and reduce the disease progression of PD.
Collapse
Affiliation(s)
| | - Laura Rizzi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Fahad Somaa
- King Abdulaziz University, Department of occupational therapy. Jeddah, Makkah, Saudi Arabia
| |
Collapse
|
27
|
Fang H, Zhuang Z, Huang L, Zhao W, Niu J. Dietary Klebsormidium sp. Supplementation Improves Growth Performance, Antioxidant and Anti-Inflammatory Status, Metabolism, and Mid-Intestine Morphology of Litopenaeus Vannamei. Front Nutr 2022; 9:857351. [PMID: 35634387 PMCID: PMC9136981 DOI: 10.3389/fnut.2022.857351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/07/2022] [Indexed: 11/14/2022] Open
Abstract
Filamentous microalga Klebsormidium sp. has huge potential to become a natural and healthy additive in aquatic feed since it contains various bioactive nutrients, such as linoleic acid (LA), carotenoids, and chlorophylls. Therefore, an eight-week feeding experiment was performed to evaluate the effects of dietary Klebsormidium sp. on the growth performance, antioxidant and anti-inflammatory status, metabolism, and mid-intestine morphology of Litopenaeus vannamei. Two isonitrogenous and isolipid diets supplemented with and without 5% Klebsormidium sp. were prepared. Results showed that L. vannamei fed with Klebsormidium sp. had better growth performance and feed utilization by optimizing mid-intestine morphology and improving the carbohydrate metabolism. In addition, Klebsormidium sp. also enhanced the antioxidant capacity of L. vannamei by downregulating antioxidant parameters (hepatopancreas T-SOD, hepatopancreas GSH-PX, hemolymph T-SOD, hemolymph MDA) and RNA expression levels of antioxidant genes (gsh-px and cat). Furthermore, the supplementations of dietary Klebsormidium sp. significantly improved hepatopancreas health by downregulating RNA expression levels of pro-inflammatory related genes (relish and rho). Therefore, a dose of 5% Klebsormidium sp. is recommended for the daily diet of L. vannamei to improve the growth performance, antioxidant and anti-inflammatory status, metabolism, and mid-intestine morphology of shrimp.
Collapse
Affiliation(s)
- HaoHang Fang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Institute of Marine Research, Bergen, Norway
| | - ZhenXiao Zhuang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - LuoDong Huang
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Wei Zhao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Wei Zhao
| | - Jin Niu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Jin Niu
| |
Collapse
|
28
|
Rahimmi A, Tozandehjani S, Daraei M, Khademerfan M. The neuroprotective roles of Dietary Micronutrients on Parkinson’s disease: a review. Mol Biol Rep 2022; 49:8051-8060. [DOI: 10.1007/s11033-022-07345-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 12/01/2022]
|
29
|
Khalid W, Gill P, Arshad MS, Ali A, Ranjha MMAN, Mukhtar S, Afzal F, Maqbool Z. Functional behavior of DHA and EPA in the formation of babies brain at different stages of age, and protect from different brain-related diseases. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2070642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Waseem Khalid
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Poonam Gill
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | | | - Anwar Ali
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, China
| | | | - Shanza Mukhtar
- Department of Nutrition and Dietetics, The University of Faisalabad, Pakistan
| | - Fareed Afzal
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Zahra Maqbool
- Department of Food Science, Government College University, Faisalabad, Pakistan
| |
Collapse
|
30
|
Erdogan MK, Gundogdu R, Yapar Y, Gecibesler IH, Kirici M, Behcet L, Tuzun B, Taslimi P. The Evaluation of Anticancer, Antioxidant, Antidiabetic and Anticholinergic Potentials of Endemic
Rhabdosciadium microcalycinum
Supported by Molecular Docking Study. ChemistrySelect 2022. [DOI: 10.1002/slct.202200400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Mehmet Kadir Erdogan
- Department of Molecular Biology and Genetics Faculty of Arts and Sciences Bingol University 12000 Bingol Turkey
| | - Ramazan Gundogdu
- Department of Pharmacy Services Vocational School of Health Services Bingol University 12000- Bingol Turkey
| | - Yakup Yapar
- Department of Molecular Biology and Genetics Faculty of Arts and Sciences Bingol University 12000 Bingol Turkey
| | - Ibrahim Halil Gecibesler
- Department of Occupational Health and Safety Faculty of Health Science Bingol University 12000- Bingol Turkey
| | - Mahinur Kirici
- Department of Chemistry Faculty of Arts and Sciences Bingol University 12000- Bingol Turkey
| | - Lutfi Behcet
- Department of Molecular Biology and Genetics Faculty of Arts and Sciences Bingol University 12000 Bingol Turkey
| | - Burak Tuzun
- Plant and Animal Production Department Technical Sciences Vocational School of Sivas Sivas Cumhuriyet University Sivas Turkey
| | - Parham Taslimi
- Department of Biotechnology Faculty of Science Bartin University 74100 - Bartin Turkey
| |
Collapse
|
31
|
Dietary fat intake and risk of Parkinson disease: results from the Swedish National March Cohort. Eur J Epidemiol 2022; 37:603-613. [PMID: 35416636 PMCID: PMC9288363 DOI: 10.1007/s10654-022-00863-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/15/2022] [Indexed: 11/28/2022]
Abstract
Background Following progressive aging of the population worldwide, the prevalence of Parkinson disease is expected to increase in the next decades. Primary prevention of the disease is hampered by limited knowledge of preventable causes. Recent evidence regarding diet and Parkinson disease is inconsistent and suggests that dietary habits such as fat intake may have a role in the etiology. Objective To investigate the association between intake of total and specific types of fat with the incidence of Parkinson disease. Methods Participants from the Swedish National March Cohort were prospectively followed-up from 1997 to 2016. Dietary intake was assessed at baseline using a validated food frequency questionnaire. Food items intake was used to estimate fat intake, i.e. the exposure variable, using the Swedish Food Composition Database. Total, saturated, monounsaturated and polyunsaturated fat intake were categorized into quartiles. Parkinson disease incidence was ascertained through linkages to Swedish population-based registers. Cox proportional hazards regression models were used to estimate hazard ratios (HR) with 95% confidence intervals (CI) of the association between fat intake from total or specific types of fats and the incidence of Parkinson disease. The lowest intake category was used as reference. Isocaloric substitution models were also fitted to investigate substitution effects by replacing energy from fat intake with other macronutrients or specific types of fat. Results 41,597 participants were followed up for an average of 17.6 years. Among them, 465 developed Parkinson disease. After adjusting for potential confounders, the highest quartile of saturated fat intake was associated with a 41% increased risk of Parkinson disease compared to the lowest quartile (HR Q4 vs. Q1: 1.41; 95% CI: 1.04–1.90; p for trend: 0.03). Total, monounsaturated or polyunsaturated fat intake were not significantly associated with Parkinson disease. The isocaloric substitution models did not show any effect. Conclusions We found that a higher consumption of large amounts of saturated fat might be associated with an increased risk of Parkinson disease. A diet low in saturated fat might be beneficial for disease prevention. Supplementary Information The online version contains supplementary material available at 10.1007/s10654-022-00863-8.
Collapse
|
32
|
Balomenos V, Bounou L, Charisis S, Stamelou M, Ntanasi E, Georgiadi K, Mourtzinos I, Tzima K, Anastasiou CA, Xiromerisiou G, Maraki M, Yannakoulia M, Kosmidis MH, Dardiotis E, Hadjigeorgiou G, Sakka P, Stefanis L, Scarmeas N. Dietary Inflammatory Index score and prodromal Parkinson's disease incidence: The HELIAD study. J Nutr Biochem 2022; 105:108994. [PMID: 35341916 DOI: 10.1016/j.jnutbio.2022.108994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/21/2021] [Accepted: 02/22/2022] [Indexed: 11/30/2022]
Abstract
AIM The aim of the present study was to investigate the association of the inflammatory potential of diet with prodromal Parkinson's disease (pPD) probability and incidence among community-dwelling older individuals without clinical features of parkinsonism at baseline. METHODS The sample consisted of 1,030 participants 65 years old or older, drawn from a population-based cohort study of older adults in Greece (Hellenic Longitudinal Investigation of Aging and Diet - HELIAD). We calculated pPD probability, according to International Parkinson and Movement Disorder Society research criteria. Dietary Inflammatory Index (DII) was used to measure the dietary inflammatory potential, with higher index score reflecting a more pro-inflammatory diet. Associations of baseline DII with pPD probability cross-sectionally, and with possible/probable pPD incidence (pPD probability ≥30%) during the follow-up period, were examined via general linear models and generalized estimating equations, respectively. RESULTS Cross-sectionally, one unit increase of DII score[DII (min, max) = -5.83, 6.01]was associated with 4.9% increased pPD probability [β=0.049, 95%CI (0.025-0.090), p<0.001]. Prospectively, 62 participants developed pPD during 3.1±0.9 (mean±SD) years of follow-up. One unit increase in DII was associated with 20.3% increased risk for developing pPD [RR=1.203, 95%CI (1.070-1.351), p=0.002]. Participants in the highest tertile of DII score were 2.6 times more likely to develop pPD [β=2.594, 95%CI (1.332-5.050), p=0.005], compared to those in the lowest tertile. CONCLUSION More pro-inflammatory diet was related with higher pPD probability and pPD incidence (pPD probability ≥30%) in a community-dwelling older adult population. Further studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Vassilis Balomenos
- School of Medicine, Democritus University of Thrace, Dragana, Alexandroupolis, GR-68100, Greece
| | - Lamprini Bounou
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens, Medical School, 72-74 Vasilissis Sofias Str., Athens, GR-115 28, Greece
| | - Socratis Charisis
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens, Medical School, 72-74 Vasilissis Sofias Str., Athens, GR-115 28, Greece; Department of Neurology, Health Science Center at San Antonio, University of Texas, 7703 Floyd Curl Drive, San Antonio, Texas, TX 78229, USA
| | - Maria Stamelou
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens, Medical School, 72-74 Vasilissis Sofias Str., Athens, GR-115 28, Greece; Parkinson's Disease and Movement Disorders Department, Hygeia Hospital, 4, Erythrou Stavrou Str. & Kifisias Av., Marousi, Athens, GR-151 23, Greece; Medical School, University of Cyprus, 93 Ayiou Nikolaou Str., Egkomi Nicosia, CY-2408, Cyprus
| | - Eva Ntanasi
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens, Medical School, 72-74 Vasilissis Sofias Str., Athens, GR-115 28, Greece
| | - Kyriaki Georgiadi
- School of Medicine, Democritus University of Thrace, Dragana, Alexandroupolis, GR-68100, Greece
| | - Ioannis Mourtzinos
- Department of Food Science and Technology, Faculty of Agriculture, Aristotle University of Thessaloniki, P.O. Box 256, Thessaloniki, GR-54124, Greece
| | - Katerina Tzima
- Department of Food Biosciences, Teagasc Food Research Centre, Ashtown, D15 DY05, Dublin, Ireland
| | - Costas A Anastasiou
- Department of Nutrition and Dietetics, Harokopio University, 70 Eleftheriou Venizelou Str., Kallithea, Athens, GR-176 76, Greece
| | - Georgia Xiromerisiou
- School of Medicine, University of Thessaly, 22 Papakiriazi Str., Larissa, GR-41222, Greece
| | - Maria Maraki
- Department of Nutrition and Dietetics, Harokopio University, 70 Eleftheriou Venizelou Str., Kallithea, Athens, GR-176 76, Greece; Section of Sport Medicine and Biology of Exercise, School of Physical Education and Sport Science, National and Kapodistrian University of Athens, 41 Ethnikis Antistasis Str., Dafni, Athens, GR-17237, Greece
| | - Mary Yannakoulia
- Department of Nutrition and Dietetics, Harokopio University, 70 Eleftheriou Venizelou Str., Kallithea, Athens, GR-176 76, Greece.
| | - Mary H Kosmidis
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, University Campus, Thessaloniki, GR- 54124, Greece
| | - Efthimios Dardiotis
- School of Medicine, University of Thessaly, 22 Papakiriazi Str., Larissa, GR-41222, Greece
| | - Georgios Hadjigeorgiou
- Medical School, University of Cyprus, 93 Ayiou Nikolaou Str., Egkomi Nicosia, CY-2408, Cyprus
| | - Paraskevi Sakka
- Athens Association of Alzheimer's Disease and Related Disorders, 8 Zinonos Eleatou Str., Marousi, GR-151 23, Greece
| | - Leonidas Stefanis
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens, Medical School, 72-74 Vasilissis Sofias Str., Athens, GR-115 28, Greece; Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou Str., Athens, GR-115 27, Greece
| | - Nikolaos Scarmeas
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens, Medical School, 72-74 Vasilissis Sofias Str., Athens, GR-115 28, Greece; Taub Institute for Research in Alzheimer's Disease and the Aging Brain, The Gertrude H. Sergievsky Center, Department of Neurology, Columbia University, 630 West 168th Str., New York, NY 10032, USA
| |
Collapse
|
33
|
Belingheri M, Chiu YHM, Renzetti S, Bhasin D, Wen C, Placidi D, Oppini M, Covolo L, Padovani A, Lucchini RG. Relationships of Nutritional Factors and Agrochemical Exposure with Parkinson's Disease in the Province of Brescia, Italy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:3309. [PMID: 35328997 PMCID: PMC8954923 DOI: 10.3390/ijerph19063309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 12/04/2022]
Abstract
Environmental exposures to agrochemicals and nutritional factors may be associated with Parkinson's Disease (PD). None of the studies to date has examined the combined effects of diet and agricultural chemical exposure together. To address these research gaps, we aimed to assess the association of nutritional factors and agrochemical exposure with the risk of PD. A hospital-based case-control study was conducted. Multivariable logistic regressions were used to estimate the association of nutritional and agrochemical exposures with PD, adjusting for gender, age, socio-economic status, head injury, family history, smoking, metals exposure, and α-synuclein gene polymorphism. Weighted Quantile Sum (WQS) regression was applied to examine the effect of dietary components as a mixture. We recruited 347 cases and 389 controls. Parent history of PD (OR = 4.15, 95%CI: 2.10, 8.20), metals exposure (OR = 2.50, 95%CI: 1.61-3.89), SNCA rs356219 polymorphism (OR = 1.39, 95%CI: 1.04-1.87 for TC vs. TT; OR = 2.17, 95%CI: 1.43-3.28 for CC vs. TT), agrochemical exposures (OR = 2.11, 95%CI: 1.41-3.16), and being born in the Brescia province (OR = 1.83, 95%CI: 1.17-2.90) were significantly associated with PD. Conversely, fish intake and coffee consumption had a protective effect. The study confirmed the role of environmental exposures in the genesis of PD. Fish intake and coffee consumption are protective factors even when agricultural chemical exposures exist. Genetic factors and metals exposure were confirmed as risk factors for PD.
Collapse
Affiliation(s)
- Michael Belingheri
- School of Medicine and Surgery, University of Milano-Bicocca, 20090 Monza, Italy
| | - Yueh-Hsiu Mathilda Chiu
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (Y.-H.M.C.); (C.W.)
| | - Stefano Renzetti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy; (S.R.); (D.P.); (M.O.); (L.C.); (R.G.L.)
| | - Deepika Bhasin
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Chi Wen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (Y.-H.M.C.); (C.W.)
| | - Donatella Placidi
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy; (S.R.); (D.P.); (M.O.); (L.C.); (R.G.L.)
| | - Manuela Oppini
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy; (S.R.); (D.P.); (M.O.); (L.C.); (R.G.L.)
| | - Loredana Covolo
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy; (S.R.); (D.P.); (M.O.); (L.C.); (R.G.L.)
| | - Alessandro Padovani
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy;
| | - Roberto G. Lucchini
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy; (S.R.); (D.P.); (M.O.); (L.C.); (R.G.L.)
- Department of Environmental Health Sciences, School of Public Health and Social Work, Florida International University, Miami, FL 11200, USA
| |
Collapse
|
34
|
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease and affects about 1% of the population over the age of 60 years in industrialised countries. The aim of this review is to examine nutrition in PD across three domains: dietary intake and the development of PD; whole body metabolism in PD and the effects of PD symptoms and treatment on nutritional status. In most cases, PD is believed to be caused by a combination of genetic and environmental factors and although there has been much research in the area, evidence suggests that poor dietary intake is not a risk factor for the development of PD. The evidence about body weight changes in both the prodromal and symptomatic phases of PD is inconclusive and is confounded by many factors. Malnutrition in PD has been documented as has sarcopaenia, although the prevalence of the latter remains uncertain due to a lack of consensus in the definition of sarcopaenia. PD symptoms, including those which are gastrointestinal and non-gastrointestinal, are known to adversely affect nutritional status. Similarly, PD treatments can cause nausea, vomiting and constipation, all of which can adversely affect nutritional status. Given that the prevalence of PD will increase as the population ages, it is important to understand the interplay between PD, comorbidities and nutritional status. Further research may contribute to the development of interventional strategies to improve symptoms, augment care and importantly, enhance the quality of life for patients living with this complex neurodegenerative disease.
Collapse
|
35
|
Abstract
Parkinson's disease (PD) is characterized by dysfunction of the nigrostriatal system, loss of dopamine neurons and intracellular aggregation of α-synuclein. Recently, both clinical and experimental studies have reported that neuroinflammation and oxidative stress markedly contribute to the etiology of PD. Current clinical pharmacotherapies only temporarily relieve the symptoms of PD, accompanied by many side effects. Hence, searching for natural anti-inflammatory, anti-oxidative and neuroprotective agents has received great attention. Polyunsaturated fatty acids (PUFAs), especially omega (n)-3, are essential lipid nutrients in the human diet and important components of cell membranes. Together by competing with the production of n-6 PUFAs, the precursors of inflammatory mediators, n-3 PUFAs can inhibit microglial activity and neuroinflammation, protect astrocyte function to produce neurotrophins, thereby normalizing neurotransmission and improving neurodegeneration. Thus, with regard to the hypotheses of PD, our and other's recent studies have demonstrated that n-3 PUFAs may improve PD by inhibiting proinflammatory cytokine release, promoting neurotrophic factor expression, recovering mitochondrial function and membrane fluidity, decreasing the levels of oxidant production, maintaining α-synuclein proteostasis, calcium homeostasis, axonal transport, and reducing endoplasmic reticulum stress. This review mainly introduces and analyzes the effect of n-3 PUFA treatments on PD-related behavioral and neuropathological abnormalities in clinical patients and different cellular and animal models of PD. Finally, the limitations and future work in n-3 PUFAs anti-PD area are discussed.
Collapse
Affiliation(s)
- Peng Li
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, People's Republic of China
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Cai Song
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, People's Republic of China
- Marine Medicine Research and Development Center of Shenzhen Institutes of Guangdong Ocean University, Shenzhen, People's Republic of China
| |
Collapse
|
36
|
Vega OM, Cepeda C. Converging evidence in support of omega-3 polyunsaturated fatty acids as a potential therapy for Huntington's disease symptoms. Rev Neurosci 2021; 32:871-886. [PMID: 33818039 PMCID: PMC10017201 DOI: 10.1515/revneuro-2021-0013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/12/2021] [Indexed: 12/26/2022]
Abstract
Huntington's disease (HD) is a genetic, inexorably fatal neurodegenerative disease. Patient average survivability is up to 20 years after the onset of symptoms. Those who suffer from the disease manifest motor, cognitive, and psychiatric impairments. There is indirect evidence suggesting that omega-3 polyunsaturated fatty acids (ω-3 PUFA) could have alleviating effects on most of HD symptoms. These include beneficial effects against cachexia and weight loss, decrease of cognitive impairment over time, and improvement of psychiatric symptoms such as depression and irritability. Furthermore, there is a positive correlation between consumption of ω-3 PUFAs in diets and prevalence of HD, as well as direct effects on the disease via release of serotonin. Unfortunately, to date, very few studies have examined the effects of ω-3 PUFAs in HD, both on the symptoms and on disease progression. This paper reviews evidence in the literature suggesting that ω-3 PUFAs can be used in neurodegenerative disorders. This information can be extrapolated to support further research of ω-3 PUFAs and their potential use for HD treatment.
Collapse
Affiliation(s)
- Owen M Vega
- Intellectual and Developmental Disabilities Research Center, Jane and Terry Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine, University of California Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, Jane and Terry Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine, University of California Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90095, USA
| |
Collapse
|
37
|
Yemula N, Dietrich C, Dostal V, Hornberger M. Parkinson's Disease and the Gut: Symptoms, Nutrition, and Microbiota. JOURNAL OF PARKINSON'S DISEASE 2021; 11:1491-1505. [PMID: 34250955 PMCID: PMC8609682 DOI: 10.3233/jpd-212707] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 06/22/2021] [Indexed: 12/24/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide, characterized by symptoms of bradykinesia, rigidity, postural instability, and tremor. Recently, there has been a growing focus on the relationship between the gut and the development of PD. Emerging to the forefront, an interesting concept has developed suggesting that the initial pathophysiological changes occur in the gastrointestinal tract before changes are seen within the brain. This review is aimed at highlighting the relationship between PD and the gastrointestinal tract, along with the supporting evidence for this. Firstly, we will focus on the gastrointestinal conditions and symptoms which commonly affects patients, including both upper and lower gastrointestinal issues. Secondly, the impact of nutrition and diet on neurological health and PD physiology, with particular emphasis on commonly consumed items including macronutrients and micronutrients. Finally, variability of the gut microbiome will also be discussed and its link with both the symptoms and signs of PD. The evidence presented in this review highly suggests that the initial pathogenesis in the gut may proceed the development of prodromal PD subtypes, and therefore building on this further could be imperative and lead to earlier diagnosis with new and improved therapeutics.
Collapse
Affiliation(s)
- Nehal Yemula
- Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Celina Dietrich
- Faculty of Health and Medical Sciences, University of East Anglia, Norwich, United Kingdom
| | - Vaclav Dostal
- Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Michael Hornberger
- Faculty of Health and Medical Sciences, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
38
|
Shen W, Jiang L, Zhao J, Wang H, Hu M, Chen L, Chen Y. Bioactive lipids and their metabolism: new therapeutic opportunities for Parkinson's disease. Eur J Neurosci 2021; 55:846-872. [PMID: 34904314 DOI: 10.1111/ejn.15566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 11/28/2022]
Abstract
Parkinson's disease (PD) is a neurological disorder characterized by motor dysfunction, which can also be associated with non-motor symptoms. Its pathogenesis is thought to stem from a loss of dopaminergic neurons in the substantia nigra pars compacta and the formation of Lewy bodies containing aggregated α-synuclein. Recent works suggested that lipids might play a pivotal role in the pathophysiology of PD. In particular, the so-called "bioactive" lipids whose changes in the concentration may lead to functional consequences and affect many pathophysiological processes, including neuroinflammation, are closely related to PD in terms of symptoms, disease progression, and incidence. This study aimed to explore the molecular metabolism and physiological functions of bioactive lipids, such as fatty acids (mainly unsaturated fatty acids), eicosanoids, endocannabinoids, oxysterols, representative sphingolipids, diacylglycerols, and lysophosphatidic acid, in the development of PD. The knowledge of bioactive lipids in PD gained through preclinical and clinical studies is expected to improve the understanding of disease pathogenesis and provide novel therapeutic avenues.
Collapse
Affiliation(s)
- Wenjing Shen
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Li Jiang
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jingyi Zhao
- Department of Neurology, Dalian Medical University, Dalian, Liaoning, China
| | - Haili Wang
- Department of Neurology, Dalian Medical University, Dalian, Liaoning, China
| | - Meng Hu
- The Second Xiangya Hospital, Central Sounth University, Changsha, Hunan Province, China
| | - Lanlan Chen
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yingzhu Chen
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
39
|
Pantzaris M, Loukaides G, Paraskevis D, Kostaki EG, Patrikios I. Neuroaspis PLP10™, a nutritional formula rich in omega-3 and omega-6 fatty acids with antioxidant vitamins including gamma-tocopherol in early Parkinson's disease: A randomized, double-blind, placebo-controlled trial. Clin Neurol Neurosurg 2021; 210:106954. [PMID: 34607196 DOI: 10.1016/j.clineuro.2021.106954] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 09/01/2021] [Accepted: 09/13/2021] [Indexed: 12/19/2022]
Abstract
In the present study, we investigated whether Neuroaspis PLP10™, a well-designed intervention, rich in omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs) with specific antioxidant vitamins, may exert positive action in the improvement of Parkinson's disease symptoms and perhaps delay the progression of the disease when used as an adjuvant to the conventional treatment. Forty patients were randomized 1:1 to receive either 20 ml dose, once daily, of control (pure virgin olive oil) or Neuroaspis PLP 10™, a formula containing a mixture of omega-3 (810 mg Eicosapentaenoic acid and 4140 mg Docosahexaenoic acid) and omega-6 fatty acids (1800 mg gamma-Linolenic acid and 3150 mg Linoleic acid) (1:1 w/w), with 0.6 mg vitamin A, vitamin E (22 mg) plus pure gamma (γ)-tocopherol (760 mg), for a total of 30 months in a randomized double-blind, placebo-controlled trial. Participants completed assessments based on the Hoehn and Yahr Staging Scale of Parkinson's Disease (HY scale) and the Unified Parkinson's Disease Rating Scale (UPDRS) III. Overall, for this small sample size clinical trial, Neuroaspis PLP10™ supplementation as an adjuvant treatment for 30 months in PD patients significantly delayed disease progression according to UPDRS (p ≤ 0.05) Vs placebo.
Collapse
Affiliation(s)
- Marios Pantzaris
- Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus; School of Molecular Medicine, Cyprus Institute of Neurology and Genetics, Cyprus; PALUPA Medical Ltd, Nicosia, Cyprus.
| | - George Loukaides
- Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus; PALUPA Medical Ltd, Nicosia, Cyprus
| | - Dimitrios Paraskevis
- School of Medicine, European University Cyprus, Cyprus; Department of Hygiene Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelia-Georgia Kostaki
- Department of Hygiene Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Patrikios
- School of Medicine, European University Cyprus, Cyprus; PALUPA Medical Ltd, Nicosia, Cyprus.
| |
Collapse
|
40
|
Wu F, Wang DD, Shi HH, Wang CC, Xue CH, Wang YM, Zhang TT. N-3 PUFA-Deficiency in Early Life Exhibits Aggravated MPTP-Induced Neurotoxicity in Old Age while Supplementation with DHA/EPA-Enriched Phospholipids Exerts a Neuroprotective Effect. Mol Nutr Food Res 2021; 65:e2100339. [PMID: 34378848 DOI: 10.1002/mnfr.202100339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/04/2021] [Indexed: 11/10/2022]
Abstract
INTRODUCTION Malnutrition in early life affects the growth and development of fetus and children, which has a long-term impact on adult health. Previous studies reveal a relationship between dietary omega-3 polyunsaturated fatty acid (n-3 PUFA) content, brain development, and the prevalence of neurodevelopmental disorders and inflammation. However, it is unclear about the effect of n-3 PUFA-deficiency in early life on the development of Parkinson's disease (PD) in old age, as well as the neuroprotective effect of DHA- and EPA-enriched phospholipids (DHA/EPA-PLs) supplemented in old age in long-term n-3 PUFA-deficient mice. METHODS AND RESULTS The PD mice induced by 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP) in n-3 PUFA-adequate (N) and -deficient (DEF) group are supplemented with a DHA/EPA-PLs diet for 2 weeks (N+DPL, DEF+DPL). DHA/EPA-PLs supplementation significantly protects against MPTP-induced impairments. The DEF+DPL group shows poorer motor performance, the loss of dopaminergic neurons, mitochondrial dysfunction, and neurodevelopment delay than the N+DPL group, and still did not recover to the Control level. CONCLUSIONS Dietary n-3 PUFA-deficiency in early life exhibits more aggravated MPTP-induced neurotoxicity in old age, than DHA/EPA-PLs supplementation recovers brain DHA levels and exerts neuroprotective effects in old age in long-term n-3 PUFA-deficient mice, which might provide a potential dietary guidance.
Collapse
Affiliation(s)
- Fang Wu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Dan-Dan Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Hao-Hao Shi
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Cheng-Cheng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Chang-Hu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266003, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong Province, 266237, China
| | - Yu-Ming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266003, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong Province, 266237, China
| | - Tian-Tian Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266003, China
| |
Collapse
|
41
|
Dietary intake and plasma levels of polyunsaturated fatty acids in early-stage Parkinson's disease. Sci Rep 2021; 11:12489. [PMID: 34127758 PMCID: PMC8203700 DOI: 10.1038/s41598-021-92029-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/26/2021] [Indexed: 11/09/2022] Open
Abstract
Polyunsaturated fatty acids (PUFA) are important for neuronal function and may contribute to the development of neurodegenerative diseases. Here, we investigated the correlation between dietary intake and plasma concentrations of PUFA and their associations with clinical severity in early-stage Parkinson’s disease (PD). In a case–control study with 38 patients with PD and 33 controls, we assessed dietary intake using food frequency questionnaires and simultaneously measured the plasma levels of five PUFA. No differences were observed in dietary total energy and lipid intake, including PUFA, between patients with PD and controls. However, α-linolenic acid (ALA), linoleic acid (LA), and arachidonic acid (AA) plasma levels were lower in patients with PD. The association between dietary intake and plasma PUFA concentrations was not significant in patients with PD. ALA and LA plasma levels were inversely correlated with motor severity in patients with PD, while docosahexaenoic acid and AA plasma levels were positively correlated with non-motor symptoms after controlling for age and sex.
Collapse
|
42
|
Manippa V. RE: Italian breakfast in mind: The effect of caffeine, carbohydrate and protein on physiological state, mood and cognitive performance. Physiol Behav 2021; 237:113462. [PMID: 33992666 DOI: 10.1016/j.physbeh.2021.113462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Valerio Manippa
- Department of Psychological, Health and Territorial Sciences, University G. "d'Annunzio" of Chieti-Pescara, Chieti, Italy.
| |
Collapse
|
43
|
Obesity and aging: Molecular mechanisms and therapeutic approaches. Ageing Res Rev 2021; 67:101268. [PMID: 33556548 DOI: 10.1016/j.arr.2021.101268] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 01/19/2021] [Accepted: 02/02/2021] [Indexed: 02/08/2023]
Abstract
The epidemic of obesity is a major challenge for health policymakers due to its far-reaching effects on population health and potentially overwhelming financial burden on healthcare systems. Obesity is associated with an increased risk of developing acute and chronic diseases, including hypertension, stroke, myocardial infarction, cardiovascular disease, diabetes, and cancer. Interestingly, the metabolic dysregulation associated with obesity is similar to that observed in normal aging, and substantial evidence suggests the potential of obesity to accelerate aging. Therefore, understanding the mechanism of fat tissue dysfunction in obesity could provide insights into the processes that contribute to the metabolic dysfunction associated with the aging process. Here, we review the molecular and cellular mechanisms underlying both obesity and aging, and how obesity and aging can predispose individuals to chronic health complications. The potential of lifestyle and pharmacological interventions to counter obesity and obesity-related pathologies, as well as aging, is also addressed.
Collapse
|
44
|
Abstract
The links between diet and Parkinson's disease (PD) are unclear and incomprehensible. However, numerous studies have demonstrated the correlation between diet, nutrients and health condition in PD patients. They indicate the possibility of management of the disease, which might be possible through nutrition. Pharmaceutical treatment as well as a complementary holistic approach to the patients should be considered. It is of critical importance to understand how the diet and nutrients might influence PD. A better understanding of the relationship between diet and PD could help to better manage the disease explain promising therapeutic approaches, minimize motor and nonmotor symptoms and disease progression based on a personalized diet. In this review, the recent literature on the observed nutrition disorders and the possible role of diet and nutrients in the prevention and potential regression of PD, as well as dietary interventions and supplementation used to manage the disease is revised.
Collapse
Affiliation(s)
- Paulina Gątarek
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Lodz, Poland
| | - Joanna Kałużna-Czaplińska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
45
|
Lorente-Picón M, Laguna A. New Avenues for Parkinson's Disease Therapeutics: Disease-Modifying Strategies Based on the Gut Microbiota. Biomolecules 2021; 11:433. [PMID: 33804226 PMCID: PMC7998286 DOI: 10.3390/biom11030433] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is a multifactorial neurodegenerative disorder that currently affects 1% of the population over the age of 60 years, and for which no disease-modifying treatments exist. Neurodegeneration and neuropathology in different brain areas are manifested as both motor and non-motor symptoms in patients. Recent interest in the gut-brain axis has led to increasing research into the gut microbiota changes in PD patients and their impact on disease pathophysiology. As evidence is piling up on the effects of gut microbiota in disease development and progression, another front of action has opened up in relation to the potential usage of microbiota-based therapeutic strategies in treating gastrointestinal alterations and possibly also motor symptoms in PD. This review provides status on the different strategies that are in the front line (i.e., antibiotics; probiotics; prebiotics; synbiotics; dietary interventions; fecal microbiota transplantation, live biotherapeutic products), and discusses the opportunities and challenges the field of microbiome research in PD is facing.
Collapse
Affiliation(s)
- Marina Lorente-Picón
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Ariadna Laguna
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| |
Collapse
|
46
|
Tiwari A, Melchor-Martínez EM, Saxena A, Kapoor N, Singh KJ, Saldarriaga-Hernández S, Parra-Saldívar R, Iqbal HMN. Therapeutic attributes and applied aspects of biological macromolecules (polypeptides, fucoxanthin, sterols, fatty acids, polysaccharides, and polyphenols) from diatoms - A review. Int J Biol Macromol 2021; 171:398-413. [PMID: 33422516 DOI: 10.1016/j.ijbiomac.2020.12.219] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/26/2020] [Accepted: 12/30/2020] [Indexed: 02/08/2023]
Abstract
Diatoms are ubiquitous, biologically widespread, and have global significance due to their unique silica cell wall composition and noteworthy applied aspects. Diatoms are being extensively exploited for environmental monitoring, reconstruction, and stratigraphic correlation. However, considering all the rich elements of diatoms biology, the current literature lacks sufficient information on the therapeutic attributes and applied aspects of biological macromolecules from diatoms, hampering added advances in all aspects of diatom biology. Diatoms offer numerous high-value compounds, such as fatty acids, polysaccharides, polypeptides, pigments, and polyphenols. Diatoms with a high content of PUFA's are targets of transformation into high-value products through microalgal technologies due to their wide application and growing market as nutraceuticals and food supplements. Diatoms are renewable biomaterial, which can be used to develop drug delivery systems due to biocompatibility, surface area, cost-effective ratio, and ease in surface modifications. Innovative approaches are needed to envisage cost-effective ways for the isolation of bioactive compounds, enhance productivity, and elucidate the detailed mechanism of action. This review spotlights the notable applications of diatoms and their biologically active constituents, such as fucoxanthin and omega 3 fatty acids, among others with unique structural and functional entities.
Collapse
Affiliation(s)
- Archana Tiwari
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, India.
| | | | - Abhishek Saxena
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Neha Kapoor
- Department of Chemistry, Hindu College, University of Delhi, New Delhi, India
| | - Kawal Jeet Singh
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, India
| | | | | | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| |
Collapse
|
47
|
Drolet J, Buchner-Duby B, Stykel MG, Coackley C, Kang JX, Ma DWL, Ryan SD. Docosahexanoic acid signals through the Nrf2-Nqo1 pathway to maintain redox balance and promote neurite outgrowth. Mol Biol Cell 2021; 32:511-520. [PMID: 33502893 PMCID: PMC8101469 DOI: 10.1091/mbc.e20-09-0599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Evidence suggests that n-3 polyunsaturated fatty acids may act as activators of the Nrf2 antioxidant pathway. The antioxidant response, in turn, promotes neuronal differentiation and neurite outgrowth. Nrf2 has recently been suggested to be a cell intrinsic mediator of docosohexanoic acid (DHA) signaling. In the current study, we assessed whether DHA-mediated axodendritic development was dependent on activation of the Nrf2 pathway and whether Nrf2 protected from agrochemical-induced neuritic retraction. Expression profiling of the DHA-enriched Fat-1 mouse brain relative to wild type showed a significant enrichment of genes associated with neuronal development and neuronal projection and genes associated with the Nrf2-transcriptional pathway. Moreover, we found that primary cortical neurons treated with DHA showed a dose-dependent increase in Nrf2 transcriptional activity and Nrf2-target gene expression. DHA-mediated activation of Nrf2 promoted neurite outgrowth and inhibited oxidative stress-induced neuritic retraction evoked by exposure to agrochemicals. Finally, we provide evidence that this effect is largely dependent on induction of the Nrf2-target gene NAD(P)H: (quinone acceptor) oxidoreductase 1 (NQO1), and that silencing of either Nrf2 or Nqo1 blocks the effects of DHA on the axodendritic compartment. Collectively, these data support a role for the Nrf2-NQO1 pathway in DHA-mediated axodendritic development and protection from agrochemical exposure.
Collapse
Affiliation(s)
- Jennifer Drolet
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Brodie Buchner-Duby
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Morgan G Stykel
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Carla Coackley
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jing X Kang
- Laboratory for Lipid Medicine and Technology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129
| | - David W L Ma
- Department of Human Health and Nutritional Sciences, The University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Scott D Ryan
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph, ON N1G 2W1, Canada.,Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA 92121
| |
Collapse
|
48
|
Contribution of DHA diols (19,20-DHDP) produced by cytochrome P450s and soluble epoxide hydrolase to the beneficial effects of DHA supplementation in the brains of rotenone-induced rat models of Parkinson's disease. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158858. [PMID: 33279658 DOI: 10.1016/j.bbalip.2020.158858] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/17/2020] [Accepted: 11/27/2020] [Indexed: 01/13/2023]
Abstract
Docosahexaenoic acid (DHA) has been shown to have neuroprotective effects in Parkinson's disease, but the underlying mechanism has not been fully elucidated. DHA is metabolized to DHA epoxides (EDPs) and hydroxides by cytochrome P450s (P450s), and EDPs are further hydroxylated to the corresponding diols, dihydroxydocosapentaenoic acids (DHDPs) by soluble epoxide hydrolase (sEH). In the present study, we investigated the roles of these DHA metabolites in the beneficial effects of DHA supplementation on a rotenone-induced rat model of Parkinson's disease. Metabolite analysis by LC-MS revealed that CYP2A1, 2C11, 2C13, 2C23, and 2E1 contributed to the formation of EDPs, and these P450s and sEH were expressed in the rat brain. We found that DHA supplementation in rats improved the motor dysfunction induced by rotenone. In addition, DHA reversed the decrease in tyrosine hydroxylase and the increase in lipid peroxidation generated by rotenone in the striatum. DHA supplementation also induced mRNA expression of antioxidant genes, such as sod1 and catalase, and Nrf2 protein expression in the striatum. However, these effects of DHA supplementation were eliminated by cosupplementation with the sEH inhibitor TPPU. Supplementation with DHA increased the amount of 19,20-DHDP in the rat brain, while the amount of EDPs was not significantly increased. In addition, TPPU suppressed the increase in DHDPs and increased EDPs in the brain. In PC12 cells, 19,20-DHDP increased the mRNA levels of sod1 and catalase along with Nrf2 induction. This study suggests that DHA metabolites-DHDPs generated by P450s and sEH-have an important role in improving rotenone-induced Parkinson's disease.
Collapse
|
49
|
Yokoi K, Hattori M, Satake Y, Tanaka Y, Sato M, Hashizume A, Hori A, Kawashima M, Hirakawa A, Watanabe H, Katsuno M. Longitudinal analysis of premotor anthropometric and serological markers of Parkinson's disease. Sci Rep 2020; 10:20524. [PMID: 33239649 PMCID: PMC7688961 DOI: 10.1038/s41598-020-77415-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 11/10/2020] [Indexed: 12/02/2022] Open
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative disorder in which nonmotor symptoms, such as constipation and hyposmia, precede the onset of motor symptoms by 20 years. The aim of this study was to identify biomarkers at the premotor stage of PD. We assessed the differences in longitudinal changes in anthropometric and serological indices obtained from health check-up data before and after the onset of motor symptoms between male and female PD patients and healthy subjects. We enrolled 22 male and 23 female PD patients and 60 male and 60 female healthy controls. A mixed-effects model was used to estimate the trajectory of each clinical marker over the years before and after motor symptoms onset in the PD subjects, which were then compared with the trajectories of the healthy controls. The results showed a premotor blood pressure increase in female PD patients and premotor decreases in haematocrit, total cholesterol and low-density lipoprotein cholesterol in the male patients. Our results indicated that blood pressure, haematocrit and serum cholesterol levels are potential premotor markers of PD. Additionally, the changes in anthropometric and serological indices before PD motor symptoms onset were sex specific.
Collapse
Affiliation(s)
- Katsunori Yokoi
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Makoto Hattori
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yuki Satake
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yasuhiro Tanaka
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Maki Sato
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Atsushi Hashizume
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Akihiro Hori
- Kumiai Kosei Hospital, Takayama, Gifu, 5068502, Japan
| | | | - Akihiro Hirakawa
- Department of Clinical Biostatistics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 1138510, Japan
| | - Hirohisa Watanabe
- Brain & Mind Research Centre, Nagoya University Graduate School of Medicine, Nagoya, 4668560, Japan
- Department of Neurology, Fujita Medical University, Toyoake, Aichi, 4701192, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| |
Collapse
|
50
|
Sarparast M, Dattmore D, Alan J, Lee KSS. Cytochrome P450 Metabolism of Polyunsaturated Fatty Acids and Neurodegeneration. Nutrients 2020; 12:E3523. [PMID: 33207662 PMCID: PMC7696575 DOI: 10.3390/nu12113523] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022] Open
Abstract
Due to the aging population in the world, neurodegenerative diseases have become a serious public health issue that greatly impacts patients' quality of life and adds a huge economic burden. Even after decades of research, there is no effective curative treatment for neurodegenerative diseases. Polyunsaturated fatty acids (PUFAs) have become an emerging dietary medical intervention for health maintenance and treatment of diseases, including neurodegenerative diseases. Recent research demonstrated that the oxidized metabolites, particularly the cytochrome P450 (CYP) metabolites, of PUFAs are beneficial to several neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease; however, their mechanism(s) remains unclear. The endogenous levels of CYP metabolites are greatly affected by our diet, endogenous synthesis, and the downstream metabolism. While the activity of omega-3 (ω-3) CYP PUFA metabolites and omega-6 (ω-6) CYP PUFA metabolites largely overlap, the ω-3 CYP PUFA metabolites are more active in general. In this review, we will briefly summarize recent findings regarding the biosynthesis and metabolism of CYP PUFA metabolites. We will also discuss the potential mechanism(s) of CYP PUFA metabolites in neurodegeneration, which will ultimately improve our understanding of how PUFAs affect neurodegeneration and may identify potential drug targets for neurodegenerative diseases.
Collapse
Affiliation(s)
- Morteza Sarparast
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA;
| | - Devon Dattmore
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA;
| | - Jamie Alan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA;
| | - Kin Sing Stephen Lee
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA;
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA;
| |
Collapse
|