1
|
Lee CL, Chuang CK, Chiu HC, Chang YH, Tu YR, Lo YT, Lin HY, Lin SP. Application of whole exome sequencing in the diagnosis of muscular disorders: a study of Taiwanese pediatric patients. Front Genet 2024; 15:1365729. [PMID: 38818036 PMCID: PMC11137626 DOI: 10.3389/fgene.2024.1365729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
Background Muscular dystrophies and congenital myopathies encompass various inherited muscular disorders that present diagnostic challenges due to clinical complexity and genetic heterogeneity. Methods This study aimed to investigate the use of whole exome sequencing (WES) in diagnosing muscular disorders in pediatric patients in Taiwan. Out of 161 pediatric patients suspected to have genetic/inherited myopathies, 115 received a molecular diagnosis through conventional tests, single gene testing, and gene panels. The remaining 46 patients were divided into three groups: Group 1 (multiplex ligation-dependent probe amplification-negative Duchenne muscular dystrophy) with three patients (6.5%), Group 2 (various forms of muscular dystrophies) with 21 patients (45.7%), and Group 3 (congenital myopathies) with 22 patients (47.8%). Results WES analysis of these groups found pathogenic variants in 100.0% (3/3), 57.1% (12/21), and 68.2% (15/22) of patients in Groups 1 to 3, respectively. WES had a diagnostic yield of 65.2% (30 patients out of 46), detecting 30 pathogenic or potentially pathogenic variants across 28 genes. Conclusion WES enables the diagnosis of rare diseases with symptoms and characteristics similar to congenital myopathies and muscular dystrophies, such as muscle weakness. Consequently, this approach facilitates targeted therapy implementation and appropriate genetic counseling.
Collapse
Affiliation(s)
- Chung-Lin Lee
- Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- Department of Rare Disease Center, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, Mackay Medical College, Taipei, Taiwan
- Mackay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
| | - Chih-Kuang Chuang
- Division of Genetics and Metabolism, Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
- College of Medicine, Fu-Jen Catholic University, Taipei, Taiwan
| | - Huei-Ching Chiu
- Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan
| | - Ya-Hui Chang
- Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Rare Disease Center, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yuan-Rong Tu
- Division of Genetics and Metabolism, Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yun-Ting Lo
- Department of Rare Disease Center, MacKay Memorial Hospital, Taipei, Taiwan
| | - Hsiang-Yu Lin
- Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Rare Disease Center, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, Mackay Medical College, Taipei, Taiwan
- Mackay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
- Division of Genetics and Metabolism, Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Shuan-Pei Lin
- Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Rare Disease Center, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, Mackay Medical College, Taipei, Taiwan
- Division of Genetics and Metabolism, Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Infant and Child Care, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| |
Collapse
|
2
|
Lail G, Siu VM, Leung A. Clinical Reasoning: A 19-Month-Old Girl With Infantile-Onset Myopathy and White Matter Changes. Neurology 2024; 102:e209258. [PMID: 38484275 DOI: 10.1212/wnl.0000000000209258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/17/2024] [Indexed: 03/19/2024] Open
Abstract
We describe the case of a 19-month-old girl presenting with gross motor delays, hypotonia, diminished deep tendon reflexes, hyperCKaemia, extensive white matter changes on MRI brain, and electromyography studies consistent with myopathy. The differential diagnosis for infantile-onset hypotonia and muscle weakness is broad. It includes numerous subtypes of genetic disorders, including congenital muscular dystrophies, congenital myopathies, congenital myasthenic syndromes, spinal muscular atrophy, single-gene genetic syndromes, and inborn errors of metabolism. We outline our clinical approach leading to the diagnosis of a distinctive genetic neuromuscular condition essential for neurologists and geneticists working with patients of all ages to recognize.
Collapse
Affiliation(s)
- Gurnoor Lail
- From the Department of Paediatrics, Division of Medical Genetics (G.L., V.M.S.), and Department of Medical Imaging (A.L.), Western University, London, Ontario, Canada
| | - Victoria M Siu
- From the Department of Paediatrics, Division of Medical Genetics (G.L., V.M.S.), and Department of Medical Imaging (A.L.), Western University, London, Ontario, Canada
| | - Andrew Leung
- From the Department of Paediatrics, Division of Medical Genetics (G.L., V.M.S.), and Department of Medical Imaging (A.L.), Western University, London, Ontario, Canada
| |
Collapse
|
3
|
Safwat S, Flannery KP, El Beheiry AA, Mokhtar MM, Abdalla E, Manzini MC. Genetic blueprint of congenital muscular dystrophies with brain malformations in Egypt: A report of 11 families. Neurogenetics 2024; 25:93-102. [PMID: 38296890 PMCID: PMC11076401 DOI: 10.1007/s10048-024-00745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/12/2024] [Indexed: 02/02/2024]
Abstract
Congenital muscular dystrophies (CMDs) are a group of rare muscle disorders characterized by early onset hypotonia and motor developmental delay associated with brain malformations with or without eye anomalies in the most severe cases. In this study, we aimed to uncover the genetic basis of severe CMD in Egypt and to determine the efficacy of whole exome sequencing (WES)-based genetic diagnosis in this population. We recruited twelve individuals from eleven families with a clinical diagnosis of CMD with brain malformations that fell into two groups: seven patients with suspected dystroglycanopathy and five patients with suspected merosin-deficient CMD. WES was analyzed by variant filtering using multiple approaches including splicing and copy number variant (CNV) analysis. We identified likely pathogenic variants in FKRP in two cases and variants in POMT1, POMK, and B3GALNT2 in three individuals. All individuals with merosin-deficient CMD had truncating variants in LAMA2. Further analysis in one of the two unsolved cases showed a homozygous protein-truncating variant in Feline Leukemia Virus subgroup C Receptor 1 (FLVCR1). FLVCR1 loss of function has never been previously reported. Yet, loss of function of its paralog, FLVCR2, causes lethal hydranencephaly-hydrocephaly syndrome (Fowler Syndrome) which should be considered in the differential diagnosis for dystroglycanopathy. Overall, we reached a diagnostic rate of 86% (6/7) for dystroglycanopathies and 100% (5/5) for merosinopathy. In conclusion, our results provide further evidence that WES is an important diagnostic method in CMD in developing countries to improve the diagnostic rate, management plan, and genetic counseling for these disorders.
Collapse
Affiliation(s)
- Sylvia Safwat
- Department of Neuroscience and Cell Biology, Child Health Institute of New Jersey, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Kyle P Flannery
- Department of Neuroscience and Cell Biology, Child Health Institute of New Jersey, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Ahmed A El Beheiry
- Department of Radiodiagnosis and Interventional Radiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Mohamed M Mokhtar
- Department of Radiodiagnosis and Interventional Radiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ebtesam Abdalla
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - M Chiara Manzini
- Department of Neuroscience and Cell Biology, Child Health Institute of New Jersey, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
| |
Collapse
|
4
|
Abstract
The diagnostic and referral workflow for children with neuromuscular disorders is evolving, particularly as newborn screening programs are expanding in tandem with novel therapeutic developments. However, for the children who present with symptoms and signs of potential neuromuscular disorders, anatomic localization, guided initially by careful history and physical examination, continues to be the cardinal initial step in the diagnostic evaluation. It is important to consider whether the localization is more likely to be in the lower motor neuron, peripheral nerve, neuromuscular junction, or muscle. After that, disease etiologies can be divided broadly into inherited versus acquired categories. Considerations of localization and etiologies will help generate a differential diagnosis, which in turn will guide diagnostic testing. Once a diagnosis is made, it is important to be aware of current treatment options, as a number of new therapies for some of these disorders have been approved in recent years. Families are also increasingly interested in clinical research, which may include natural history studies and interventional clinical trials. Such research has proliferated for rare neuromuscular diseases, leading to exciting advances in diagnostic and therapeutic technologies, promising dramatic changes in the landscape of these disorders in the years to come.
Collapse
Affiliation(s)
- Geetanjali Rathore
- Division of Neurology, Department of Pediatrics, University of Nebraska College of Medicine, Omaha, Nebraska
| | - Peter B Kang
- Paul and Sheila Wellstone Muscular Dystrophy Center and Department of Neurology, University of Minnesota Medical School, Minneapolis, Minnesota; Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
5
|
Li L, Umbach DM, Li Y, Halani P, Shi M, Ahn M, Yeung DSC, Vaughn B, Fan ZJ. Sleep apnoea and hypoventilation in patients with five major types of muscular dystrophy. BMJ Open Respir Res 2023; 10:10/1/e001506. [PMID: 37072321 PMCID: PMC10124300 DOI: 10.1136/bmjresp-2022-001506] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/31/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND The characteristics of and relationship between sleep apnoea and hypoventilation in patients with muscular dystrophy (MD) remain to be fully understood. METHODS We analysed 104 in-laboratory sleep studies of 73 patients with MD with five common types (DMD-Duchenne, Becker MD, CMD-congenital, LGMD-limb-girdle and DM-myotonic dystrophy). We used generalised estimating equations to examine differences among these types for outcomes. RESULTS Patients in all five types had high risk of sleep apnoea with 53 of the 73 patients (73%) meeting the diagnostic criteria in at least one study. Patients with DM had higher risk of sleep apnoea compared with patients with LGMD (OR=5.15, 95% CI 1.47 to 18.0; p=0.003). Forty-three per cent of patients had hypoventilation with observed prevalence higher in CMD (67%), DMD (48%) and DM (44%). Hypoventilation and sleep apnoea were associated in those patients (unadjusted OR=2.75, 95% CI 1.15 to 6.60; p=0.03), but the association weakened after adjustment (OR=2.32, 95% CI 0.92 to 5.81; p=0.08). In-sleep average heart rate was about 10 beats/min higher in patients with CMD and DMD compared with patients with DM (p=0.0006 and p=0.02, respectively, adjusted for multiple testing). CONCLUSION Sleep-disordered breathing is common in patients with MD but each type has its unique features. Hypoventilation was only weakly associated with sleep apnoea; thus, high clinical suspicion is needed for diagnosing hypoventilation. Identifying the window when respiratory muscle weakness begins to cause hypoventilation is important for patients with MD; it enables early intervention with non-invasive ventilation-a therapy that should both lengthen the expected life of these patients and improve its quality.Cite Now.
Collapse
Affiliation(s)
- Leping Li
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - David M Umbach
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Yuanyuan Li
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Pallav Halani
- Division of Pediatric Pulmonology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Min Shi
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Mihye Ahn
- Department of Mathematics and Statistics, University of Nevada Reno, Reno, Nevada, USA
| | - Deryck S C Yeung
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Bradley Vaughn
- Department of Neurology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Zheng Jane Fan
- Department of Neurology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
6
|
Gannon NP, Quanbeck ZA, Miller DJ. The influence of viral respiratory season on perioperative outcomes in patients undergoing spinal fusion for neuromuscular scoliosis. Spine Deform 2023; 11:407-414. [PMID: 36205854 DOI: 10.1007/s43390-022-00593-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/18/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE Respiratory complications are common following neuromuscular scoliosis (NMS) spinal fusion. Concern exists regarding the safety to perform complicated procedures in winter months when viral respiratory illness is common. The purpose of this study was to compare perioperative outcomes in children with NMS undergoing spinal fusion during peak (November-March) or non-peak (April-October) viral season. METHODS The Health Care and Utilization Project (HCUP) Kids' inpatient database (KID) from 2006 to 2012 was reviewed. Children 20 years or younger who underwent spinal fusion for NMS were included. Patients were grouped by date of surgery during peak or non-peak viral season. Continuous variables were compared using t tests and categorical variables were compared using the Rao-Scott Chi-square test. Weighted logistic regression models were performed. RESULTS This study identified 5082 records, including 1711 and 3371 patients who had surgery in peak and non-peak viral seasons, respectively. Patients who had spinal fusion during peak viral season were less likely to experience respiratory failure (p = 0.0008) and did not demonstrate an increased incidence of aspiration pneumonia (p = 0.26), respiratory complication (p = 0.43), or mortality (p = 0.68). Respiratory failure was associated with younger age (p = 0.0031), the presence of a tracheostomy (p < 0.0001), and the number of chronic conditions (p < 0.0001). Higher number of chronic medical conditions (mean of 5.0) was associated with an increased risk of in-hospital mortality (p < 0.0001), aspiration pneumonia (p = 0.0009), and respiratory failure (p < 0.0001). CONCLUSION Spinal fusion for NMS during peak viral season has a lower risk of respiratory failure without an increase in mortality or other complications compared to during non-peak viral season.
Collapse
Affiliation(s)
- Nicholas P Gannon
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Zachary A Quanbeck
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Daniel J Miller
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN, USA. .,Gillette Children's Specialty Healthcare, 200 University Avenue East, St. Paul, MN, USA.
| |
Collapse
|
7
|
Khan MW, Raza SA, Raza M, Rogers E, Riel-Romero RMS. Coexistence of a Heterozygous Caveolin-3 Deletion and a Novel Dystrophin Gene Mutation in a Duchenne Muscular Dystrophy Patient. Cureus 2023; 15:e34704. [PMID: 36909082 PMCID: PMC9995560 DOI: 10.7759/cureus.34704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Inherited muscular abnormalities are debilitating disorders that greatly diminish the quality of life in affected individuals. Mutations in proteins such as dystrophin and caveolin, which together with other proteins form structural connections between the cytoskeleton and the extracellular matrix, are frequently the culprit of muscular dystrophies. In this case report, we describe a patient with a novel pathogenic dystrophin mutation co-existing with a caveolin-3 deletion. While genetically composed of this unique combination, the patient phenotypically presented with a primary clinical manifestation of Duchenne muscular dystrophy (DMD) in contrast to other cases of dual mutations in dystrophin and dystrophin-associated proteins.
Collapse
Affiliation(s)
| | - Syed Ali Raza
- Neurology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Madiha Raza
- Neurology, Ziauddin University, Karachi, PAK
| | - Eli Rogers
- Neurology, University of Rochester, Rochester, USA
| | | |
Collapse
|
8
|
Santini GT, Shah PP, Karnay A, Jain R. Aberrant chromatin organization at the nexus of laminopathy disease pathways. Nucleus 2022; 13:300-312. [PMID: 36503349 PMCID: PMC9746625 DOI: 10.1080/19491034.2022.2153564] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/02/2022] [Accepted: 11/11/2022] [Indexed: 12/14/2022] Open
Affiliation(s)
- Garrett T. Santini
- Departments of Medicine and Cell and Developmental Biology, Penn Cardiovascular Institute, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Parisha P. Shah
- Departments of Medicine and Cell and Developmental Biology, Penn Cardiovascular Institute, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Ashley Karnay
- Departments of Medicine and Cell and Developmental Biology, Penn Cardiovascular Institute, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Rajan Jain
- Departments of Medicine and Cell and Developmental Biology, Penn Cardiovascular Institute, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
9
|
Devlin I, Williams KL, Shrubsole K. Fragmented care and missed opportunities: the experiences of adults with myasthenia gravis in accessing and receiving allied health care in Australia. Disabil Rehabil 2022:1-9. [PMID: 35786287 DOI: 10.1080/09638288.2022.2094481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE Although allied health services are important adjuncts to medical care for people with myasthenia gravis (MG), the underutilisation of these services is not well understood within the Australian context. It is critical to explore patients' perceptions to develop services that meet consumer needs. This study, therefore, sought to obtain insight into MG patients' perspectives and experiences, in addition to the outcomes, of accessing allied health services. MATERIALS AND METHODS Thirteen Australian adults with MG participated in semi-structured interviews. Qualitative analysis was conducted inductively using thematic content analysis. RESULTS Four themes were identified: (1) missed opportunities and unmet care needs were common, due to frequent patient-provider communication breakdowns and a lack of referral protocols, (2) personal factors - patient self-advocacy influenced their perceived need, with some lacking confidence to seek help, (3) perceived benefit and health provider capacities - most valued allied health despite differing perceptions of health professionals' attitudes, skills, and willingness to learn, and (4) a resultant fragmentation of care between services was universal. CONCLUSIONS Findings highlighted a need for clear referral pathways, coordinated multidisciplinary care, improved access to community-based services and education for allied health professionals about MG.Implications for rehabilitationAdults with myasthenia gravis (MG) report a lack of referral pathways to allied health services, leading to unmet needs and fragmented care.Although there is a perceived benefit to allied health care, experiences are impacted by health provider capacity and attitudes.There needs to be an overall shift towards multidisciplinary care for people with MG, and the development of clear referral pathways.Specific education about MG should be available for allied health professionals to improve their knowledge and skills in treating this population.
Collapse
Affiliation(s)
- Isobel Devlin
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia
| | - Katrina L Williams
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia
| | - Kirstine Shrubsole
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia.,Faculty of Health, Southern Cross University, Gold Coast, Australia.,Queensland Aphasia Research Centre, The University of Queensland, Brisbane, Australia
| |
Collapse
|
10
|
Navas Nazario A, Cooper FI, Weber-Guzman F, Finkel RS. The Use of Autologous Blood Patch in Ullrich Muscular Dystrophy and Recurrent Pneumothorax. Cureus 2022; 14:e25961. [PMID: 35812575 PMCID: PMC9262640 DOI: 10.7759/cureus.25961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2022] [Indexed: 11/05/2022] Open
|
11
|
Visrodia P, Patel NJ, Burford M, Hamilton MA, Patel JK, Kobashigawa JA, Kittleson MM. Heart transplantation in muscular dystrophy: Single-center analysis. Clin Transplant 2022; 36:e14645. [PMID: 35293038 DOI: 10.1111/ctr.14645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Cardiac involvement may occur in many forms of muscular dystrophy (MD). While cardiac disease may progress to warrant heart transplantation (HTx), there may be contraindications related to extra-cardiac disease including pulmonary and skeletal muscle involvement that limit overall survival and impairs post-transplant rehabilitation efforts. This study describes the MD HTx experience at a single high-volume center. METHODS We examined the clinical characteristics and outcomes of patients with MD with heart failure (HF) (n = 28), patients with MD status post HTx (n = 20) and non-MD HTx control group (n = 40) matched 2:1 for age at transplant, sex, listing status, and antibody sensitization. RESULTS Patients with MD who underwent HTx had increased ventilator days (2 vs 1 days, p = 0.013), increased hospital length of stay (20 vs 12 days, p = 0.022), and increased discharge to inpatient rehab (60% vs 8%, p<0.001). By one year post HTx, patients with MD more often required assistive devices for walking (55% vs 10%, p = 0.01). Nonetheless, post-HTx survival was similar at 1 year (100% vs 97.5%, p = 0.48) and 5 years (95.0% vs 87.5%, p = 0.36). Of the HTx recipients with MD, 95% were followed by a neurologist, 60% by a neuromuscular specialist as part of the Muscular Dystrophy Association Clinic at our center. CONCLUSION Transplantation is a feasible option for patients with MD and advanced heart failure. MD patients who undergo transplantation may benefit from multidisciplinary specialized care to optimize MD-related morbidity. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Parth Visrodia
- Department of Internal Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Nikhil J Patel
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Matthew Burford
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Michele A Hamilton
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Jignesh K Patel
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Jon A Kobashigawa
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Michelle M Kittleson
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
12
|
Lazovic M, Nikolic D, Boyer FC, Borg K, Ceravolo MG, Zampolini M, Kiekens C. Evidence based position paper on Physical and Rehabilitation Medicine practice for people with muscular dystrophies. Eur J Phys Rehabil Med 2021; 57:1036-1044. [PMID: 34823337 DOI: 10.23736/s1973-9087.21.07121-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Muscular dystrophies present a group of inherited degenerative disorder that are characterized by progressive muscular weakness. This evidence-based position paper represents the official position of the European Union through the UEMS PRM Section. The aim of the paper is to evaluate the role of the physical and rehabilitation medicine (PRM) physician and PRM practice for people with muscular dystrophies. A systematic review of the literature and a consensus procedure by means of a Delphi process have been performed involving the delegates of all European countries represented in the UEMS PRM Section. The systematic literature review is reported together with thirty-three recommendations resulting from the Delphi procedure. The role of the PRM physician is to assess the functional status of persons with muscular dystrophy and to plan, monitor and lead PRM program in an interdisciplinary setting within a multiprofessional team.
Collapse
Affiliation(s)
- Milica Lazovic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia - .,Institute for Rehabilitation, Belgrade, Serbia -
| | - Dejan Nikolic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,Department of Physical Medicine and Rehabilitation, University Children's Hospital, Belgrade, Serbia
| | - François C Boyer
- PRM Department, Sebastopol Hospital, Reims Champagne Ardenne University, Reims, France
| | - Kristian Borg
- Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden
| | - Maria G Ceravolo
- Department of Experimental and Clinical Medicine, Neurorehabilitation Clinic, University Hospital of Ancona, Politecnica delle Marche University, Ancona, Italy
| | - Mauro Zampolini
- Department of Rehabilitation, San Giovanni Battista Hospital, Foligno, Perugia, Italy
| | | |
Collapse
|
13
|
Ito M, Tauscher-Wisniewski S, Smulders RA, Wojtkowski T, Yamada A, Koibuchi A, Uz T, Marek GJ, Goldwater RD. Single- and multiple-dose safety, tolerability, pharmacokinetic, and pharmacodynamic profiles of ASP0367, or bocidelpar sulfate, a novel modulator of peroxisome proliferator-activated receptor delta in healthy adults: Results from a phase 1 study. Muscle Nerve 2021; 65:110-120. [PMID: 34642949 PMCID: PMC9298414 DOI: 10.1002/mus.27436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 10/04/2021] [Accepted: 10/09/2021] [Indexed: 01/24/2023]
Abstract
Introduction/Aims ASP0367, or bocidelpar sulfate, is an orally administered small molecule that potently and selectively modulates peroxisome proliferator–activated receptor δ (PPARδ) to address mitochondrial dysfunction occurring in diseases including primary mitochondrial myopathy and Duchenne muscular dystrophy. The objectives of this first‐in‐human trial were to evaluate the safety/tolerability, pharmacokinetics, and pharmacodynamics of ASP0367 in healthy participants. Methods In this double‐blind phase 1 study, adult participants were randomized to single or multiple ascending oral doses of ASP0367 or placebo. The study duration was 1 and 14 days, respectively. Pharmacokinetic parameters under fed conditions were also evaluated. Results A total of 64 (single‐dose cohort) and 37 (multiple‐dose cohort) participants were included in the study. After single doses of 1 to 120 mg, ASP0367 was rapidly absorbed, with median time to maximum plasma concentration (tmax) of 1.50 to 2.24 hours under fasting conditions; ASP0367 concentrations declined in a multiphasic manner after reaching maximum plasma concentration. Under fed conditions, tmax was delayed 1.7 hours. After multiple once‐daily doses, mean half‐life of ASP0367 10 to 75 mg ranged from 14.1 to 17.5 hours; steady state was reached after 4 days. Negligible accumulation was observed after repeated dosing. No participants receiving ASP0367 discontinued treatment, and all treatment‐emergent adverse events were mild to moderate in severity; none were considered drug‐related. No clinically significant changes were observed on laboratory or electrocardiographic evaluation. Treatment‐ and dose‐dependent upregulation of six PPARδ target genes was observed with single and multiple doses of ASP0367. Discussion ASP0367, or bocidelpar sulfate, was well tolerated; rapid absorption, roughly dose‐proportional bioavailability, and effects on PPARδ target genes were demonstrated in healthy adult participants.
Collapse
Affiliation(s)
- Mototsugu Ito
- Astellas Pharma Global Development, Inc., Northbrook, Illinois, USA
| | | | | | | | | | | | - Tolga Uz
- Astellas Pharma Global Development, Inc., Northbrook, Illinois, USA
| | - Gerard J Marek
- Astellas Pharma Global Development, Inc., Northbrook, Illinois, USA
| | | |
Collapse
|
14
|
Zambon AA, Muntoni F. Congenital muscular dystrophies: What is new? Neuromuscul Disord 2021; 31:931-942. [PMID: 34470717 DOI: 10.1016/j.nmd.2021.07.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/06/2021] [Accepted: 07/13/2021] [Indexed: 12/11/2022]
Abstract
Congenital muscular dystrophies (CMDs) are a group of inherited conditions defined by muscle weakness occurring before the acquisition of ambulation, delayed motor milestones, and characterised by muscle dystrophic pathology. A large number of genes - at least 35- are responsible for CMD phenotypes, and it is therefore not surprising that CMDs comprise a wide spectrum of phenotypes, with variable involvement of cardiac/respiratory muscles, central nervous system, and ocular structures. The identification of several new genes over the past few years has further expanded both the clinical and the molecular spectrum underlying CMDs. Comprehensive gene panels allow to arrive at a final diagnosis in around 60% of cases, suggesting that both new genes, and unusual mutations of the currently known genes are likely to account for the remaining cases. The aim of this review is to present the most recent advances in this field. We will outline recent natural history studies that provide additional information on disease progression, discuss recently discovered genes and the current status of the most promising therapeutic options.
Collapse
Affiliation(s)
- Alberto A Zambon
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, 30 Guilford street, London, United Kingdom; Neuromuscular Repair Unit, Institute of Experimental Neurology (InSpe), Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, 30 Guilford street, London, United Kingdom; NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom.
| |
Collapse
|
15
|
Gotthelf M, Townsend D, Durfee W. A video game based hand grip system for measuring muscle force in children. J Neuroeng Rehabil 2021; 18:113. [PMID: 34246310 PMCID: PMC8272373 DOI: 10.1186/s12984-021-00908-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 06/28/2021] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND While new therapies are continuously introduced to treat muscular dystrophy, current assessment tests are challenging to quantify, cannot be used in non-ambulatory patients, or can de-motivate pediatric patients. We developed a simple, engaging, upper-limb assessment tool that measures muscle strength and fatigue in children, including children with muscular dystrophy. The device is a bio-feedback grip sensor that motivates children to complete maximal and fatiguing grip protocols through a game-based interface. METHODS To determine if the new system provided the same maximum grip force as what is reported in the literature, data was collected from 311 participants without muscle disease (186 M, 125 F), ages 6 to 30, each of whom played the four minute grip game once. We compared maximum voluntary contraction at the start of the test to normative values reported in the literature using Welch's unequal variances t-tests. In addition, we collected data on a small number of participants with muscle disease to determine if the assessment system could be used by the target patient population. RESULTS Of the 311 participants without muscle disease that started the test, all but one completed the game. The maximum voluntary contraction data, when categorized by age, matched literature values for hand grip force within an acceptable range. Grip forced increased with age and differed by gender, and most participants exhibited fatigue during the game, including a degradation in tracking ability as the game progressed. Of the 13 participants with muscle disease, all but one completed the game. CONCLUSIONS The study demonstrated the technical feasibility and validity of the new hand grip device, and indicated that the device can be used to assess muscle force and fatigue in longitudinal studies of children with muscular dystrophy.
Collapse
Affiliation(s)
- Mark Gotthelf
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, USA
| | - DeWayne Townsend
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, USA
| | - William Durfee
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, USA.
| |
Collapse
|
16
|
Lombardo ME, Carraro E, Sancricca C, Armando M, Catteruccia M, Mazzone E, Ricci G, Salamino F, Santorelli FM, Filosto M. Management of motor rehabilitation in individuals with muscular dystrophies. 1 st Consensus Conference report from UILDM - Italian Muscular Dystrophy Association (Rome, January 25-26, 2019). ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2021; 40:72-87. [PMID: 34355124 PMCID: PMC8290512 DOI: 10.36185/2532-1900-046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/09/2021] [Indexed: 11/03/2022]
Abstract
Muscular dystrophy (MD) is a group of neuromuscular diseases characterized by progressive muscle weakness due to various mutations in several genes involved in muscle structure and function. The age at onset, evolution and severity of the different forms of MD can vary and there is often impairment of motor function and activities of daily living. Although there have been important scientific advances with regard to pharmacological therapies for many forms of MD, rehabilitation management remains central to ensuring the patient's psychophysical well-being. Here we report the results of an Italian consensus conference promoted by UILDM (Unione Italiana Lotta alla Distrofia Muscolare, the Italian Muscular Dystrophy Association) in order to establish general indications and agreed protocols for motor rehabilitation of the different forms of MD.
Collapse
Affiliation(s)
| | - Elena Carraro
- Neuromuscular Omnicentre, Fondazione Serena Onlus, Milan, Italy
| | - Cristina Sancricca
- Centro di Riabilitazione UILDM Lazio ONLUS, Rome, Italy
- UOC Neurofisiopatologia, Dipartimento Scienze dell’Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Michela Armando
- Department of Rehabilitation, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Michela Catteruccia
- Unit of Neuromuscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Department of Neurosciences, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Elena Mazzone
- Physioterapist and international trainer for therapeutic trials, Rome, Italy
| | - Giulia Ricci
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | | | - Massimiliano Filosto
- Department of Clinical and Experimental Sciences, University of Brescia; NeMO-Brescia Clinical Center for Neuromuscular Diseases, Brescia, Italy
| |
Collapse
|
17
|
Coppens S, Barnard AM, Puusepp S, Pajusalu S, Õunap K, Vargas-Franco D, Bruels CC, Donkervoort S, Pais L, Chao KR, Goodrich JK, England EM, Weisburd B, Ganesh VS, Gudmundsson S, O'Donnell-Luria A, Nigul M, Ilves P, Mohassel P, Siddique T, Milone M, Nicolau S, Maroofian R, Houlden H, Hanna MG, Quinlivan R, Beiraghi Toosi M, Ghayoor Karimiani E, Costagliola S, Deconinck N, Kadhim H, Macke E, Lanpher BC, Klee EW, Łusakowska A, Kostera-Pruszczyk A, Hahn A, Schrank B, Nishino I, Ogasawara M, El Sherif R, Stojkovic T, Nelson I, Bonne G, Cohen E, Boland-Augé A, Deleuze JF, Meng Y, Töpf A, Vilain C, Pacak CA, Rivera-Zengotita ML, Bönnemann CG, Straub V, Handford PA, Draper I, Walter GA, Kang PB. A form of muscular dystrophy associated with pathogenic variants in JAG2. Am J Hum Genet 2021; 108:840-856. [PMID: 33861953 PMCID: PMC8206160 DOI: 10.1016/j.ajhg.2021.03.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/26/2021] [Indexed: 02/09/2023] Open
Abstract
JAG2 encodes the Notch ligand Jagged2. The conserved Notch signaling pathway contributes to the development and homeostasis of multiple tissues, including skeletal muscle. We studied an international cohort of 23 individuals with genetically unsolved muscular dystrophy from 13 unrelated families. Whole-exome sequencing identified rare homozygous or compound heterozygous JAG2 variants in all 13 families. The identified bi-allelic variants include 10 missense variants that disrupt highly conserved amino acids, a nonsense variant, two frameshift variants, an in-frame deletion, and a microdeletion encompassing JAG2. Onset of muscle weakness occurred from infancy to young adulthood. Serum creatine kinase (CK) levels were normal or mildly elevated. Muscle histology was primarily dystrophic. MRI of the lower extremities revealed a distinct, slightly asymmetric pattern of muscle involvement with cores of preserved and affected muscles in quadriceps and tibialis anterior, in some cases resembling patterns seen in POGLUT1-associated muscular dystrophy. Transcriptome analysis of muscle tissue from two participants suggested misregulation of genes involved in myogenesis, including PAX7. In complementary studies, Jag2 downregulation in murine myoblasts led to downregulation of multiple components of the Notch pathway, including Megf10. Investigations in Drosophila suggested an interaction between Serrate and Drpr, the fly orthologs of JAG1/JAG2 and MEGF10, respectively. In silico analysis predicted that many Jagged2 missense variants are associated with structural changes and protein misfolding. In summary, we describe a muscular dystrophy associated with pathogenic variants in JAG2 and evidence suggests a disease mechanism related to Notch pathway dysfunction.
Collapse
Affiliation(s)
- Sandra Coppens
- Center of Human Genetics, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Alison M Barnard
- Department of Physical Therapy, University of Florida College of Public Health and Health Professions, Gainesville, FL 32610, USA
| | - Sanna Puusepp
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu 50406, Estonia; Institute of Clinical Medicine, University of Tartu, Tartu 50406, Estonia
| | - Sander Pajusalu
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu 50406, Estonia; Institute of Clinical Medicine, University of Tartu, Tartu 50406, Estonia
| | - Katrin Õunap
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu 50406, Estonia; Institute of Clinical Medicine, University of Tartu, Tartu 50406, Estonia
| | - Dorianmarie Vargas-Franco
- Division of Pediatric Neurology, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Christine C Bruels
- Division of Pediatric Neurology, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, NINDS, NIH, Bethesda, MD 20892, USA
| | - Lynn Pais
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Analytic and Translational Genetics Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Katherine R Chao
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Analytic and Translational Genetics Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Julia K Goodrich
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Analytic and Translational Genetics Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Eleina M England
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Analytic and Translational Genetics Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ben Weisburd
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Analytic and Translational Genetics Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Vijay S Ganesh
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Analytic and Translational Genetics Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Sanna Gudmundsson
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Analytic and Translational Genetics Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Anne O'Donnell-Luria
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Analytic and Translational Genetics Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mait Nigul
- Department of Radiology, Tartu University Hospital, Tartu 50406, Estonia
| | - Pilvi Ilves
- Institute of Clinical Medicine, University of Tartu, Tartu 50406, Estonia; Department of Radiology, Tartu University Hospital, Tartu 50406, Estonia
| | - Payam Mohassel
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, NINDS, NIH, Bethesda, MD 20892, USA
| | - Teepu Siddique
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | - Stefan Nicolau
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Reza Maroofian
- Department of Neuromuscular Disorders, University College London Institute of Neurology, London WC1E 6BT, UK
| | - Henry Houlden
- Department of Neuromuscular Disorders, University College London Institute of Neurology, London WC1E 6BT, UK
| | - Michael G Hanna
- Department of Neuromuscular Disorders, University College London Institute of Neurology, London WC1E 6BT, UK
| | - Ros Quinlivan
- Department of Neuromuscular Disorders, University College London Institute of Neurology, London WC1E 6BT, UK
| | - Mehran Beiraghi Toosi
- Pediatric Neurology Department, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad 9176999311, Iran
| | - Ehsan Ghayoor Karimiani
- Molecular and Clinical Sciences Institute, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK; Innovative Medical Research Center, Mashhad Branch, Islamic Azad University, Mashhad 9187147578, Iran
| | - Sabine Costagliola
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moleculaire, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Nicolas Deconinck
- Centre de Référence Neuromusculaire and Paediatric Neurology Department, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, 1020 Brussels, Belgium
| | - Hazim Kadhim
- Neuropathology Unit, Department of Anatomic Pathology and Reference Center for Neuromuscular Pathology, Brugmann University Hospital-Children's Hospital, Université Libre de Bruxelles, 1020 Brussels, Belgium
| | - Erica Macke
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Brendan C Lanpher
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA; Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Eric W Klee
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA; Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Anna Łusakowska
- Department of Neurology, Medical University of Warsaw, 02-091 Warsaw, Poland
| | | | - Andreas Hahn
- Department of Child Neurology, Justus-Liebig-University Giessen, 35390 Giessen, Germany
| | - Bertold Schrank
- Department of Neurology, DKD HELIOS Klinik Wiesbaden, 65191 Wiesbaden, Germany
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan
| | - Masashi Ogasawara
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan
| | - Rasha El Sherif
- Myo-Care Neuromuscular Center, Myo-Care National Foundation, Cairo 11865, Egypt
| | - Tanya Stojkovic
- APHP, Nord-Est/Ile-de-France Neuromuscular Reference Center, Myology Institute, Pitié-Salpêtrière Hospital, 75013 Paris, France; Sorbonne Université, INSERM, Center of Research in Myology, UMRS974, 75651 Paris Cedex 13, France
| | - Isabelle Nelson
- Sorbonne Université, INSERM, Center of Research in Myology, UMRS974, 75651 Paris Cedex 13, France
| | - Gisèle Bonne
- Sorbonne Université, INSERM, Center of Research in Myology, UMRS974, 75651 Paris Cedex 13, France
| | - Enzo Cohen
- Sorbonne Université, INSERM, Center of Research in Myology, UMRS974, 75651 Paris Cedex 13, France
| | - Anne Boland-Augé
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, 91057 Evry, France
| | - Jean-François Deleuze
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, 91057 Evry, France
| | - Yao Meng
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Ana Töpf
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 3BZ, UK
| | - Catheline Vilain
- Center of Human Genetics, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Christina A Pacak
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USA; Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Department of Neurology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, NINDS, NIH, Bethesda, MD 20892, USA
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 3BZ, UK
| | - Penny A Handford
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Isabelle Draper
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | - Glenn A Walter
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Peter B Kang
- Division of Pediatric Neurology, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USA; Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Department of Neurology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Institute for Translational Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| |
Collapse
|
18
|
El Kadiri Y, Ratbi I, Laarabi FZ, Kriouile Y, Sefiani A, Lyahyai J. Identification of a novel LAMA2 c.2217G > A, p.(Trp739*) mutation in a Moroccan patient with congenital muscular dystrophy: a case report. BMC Med Genomics 2021; 14:113. [PMID: 33882917 PMCID: PMC8060993 DOI: 10.1186/s12920-021-00959-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/12/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Merosin-deficient congenital muscular dystrophy type 1A (MDC1A) is a rare autosomal recessive genetic condition caused by deleterious mutations in the LAMA2 gene encoding the laminin-α2 chain. It is the most frequent subtype of congenital muscular dystrophies (CMDs) characterized by total laminin-α2 deficiency with muscle weakness at birth or in the first six months of life. To the best of our knowledge, this study reports the first molecular diagnosis and genetic defect of this heterogeneous form of CMD performed in a Moroccan medical genetic center using next-generation sequencing (NGS). It allows us to expand the mutational spectrum of the LAMA2 gene. CASE PRESENTATION We report the case of a female Moroccan child with clinical and paraclinical features in favor of a CMD. She has global congenital hypotonia with generalized muscle weakness, psychomotor retardation, increased serum creatine kinase, and normal brain scan at the age of six months. Targeted NGS leads to the identification of a novel homozygous nonsense mutation c.2217G > A, p.(Trp739*) in the exon 16 of LAMA2. Sanger sequencing confirmed this mutation in the affected patient and showed that her parents are heterozygous carriers. CONCLUSIONS A modern genetic analysis by NGS improves the genetic diagnosis pathway for adequate genetic counseling of affected families more precisely. An accession number from the National Center for Biotechnology Information (NCBI) ClinVar database was retrieved for this novel LAMA2 mutation.
Collapse
Affiliation(s)
- Youssef El Kadiri
- Centre de Recherche en Génomique des Pathologies Humaines (GENOPATH), Faculté de Médecine et de Pharmacie, Mohammed V University in Rabat, 10100, Rabat, Morocco.
- Département de Génétique Médicale, Institut National d'Hygiène, BP 769 Agdal, 10090, Rabat, Morocco.
| | - Ilham Ratbi
- Centre de Recherche en Génomique des Pathologies Humaines (GENOPATH), Faculté de Médecine et de Pharmacie, Mohammed V University in Rabat, 10100, Rabat, Morocco
| | - Fatima Zahra Laarabi
- Département de Génétique Médicale, Institut National d'Hygiène, BP 769 Agdal, 10090, Rabat, Morocco
| | - Yamna Kriouile
- Unité de Neuropédiatrie et Maladies Neuro-Métaboliques, Service de Pédiatrie 2- Hôpital d'enfants, Rabat, Morocco
| | - Abdelaziz Sefiani
- Centre de Recherche en Génomique des Pathologies Humaines (GENOPATH), Faculté de Médecine et de Pharmacie, Mohammed V University in Rabat, 10100, Rabat, Morocco
- Département de Génétique Médicale, Institut National d'Hygiène, BP 769 Agdal, 10090, Rabat, Morocco
| | - Jaber Lyahyai
- Centre de Recherche en Génomique des Pathologies Humaines (GENOPATH), Faculté de Médecine et de Pharmacie, Mohammed V University in Rabat, 10100, Rabat, Morocco
| |
Collapse
|
19
|
François-Heude MC, Walther-Louvier U, Espil-Taris C, Beze-Beyrie P, Rivier F, Baudou E, Uro-Coste E, Rigau V, Martin Negrier ML, Rendu J, Morales RJ, Pégeot H, Thèze C, Lacourt D, Coville AC, Cossée M, Cances C. Evaluating next-generation sequencing in neuromuscular diseases with neonatal respiratory distress. Eur J Paediatr Neurol 2021; 31:78-87. [PMID: 33667896 DOI: 10.1016/j.ejpn.2021.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/18/2020] [Accepted: 01/19/2021] [Indexed: 02/09/2023]
Abstract
With the exception of infantile spinal muscular atrophy (SMA) and congenital myotonic dystrophy 1 (DM1), congenital myopathies and muscular dystrophies with neonatal respiratory distress pose diagnostic challenges. Next-generation sequencing (NGS) provides hope for the diagnosis of these rare diseases. We evaluated the efficiency of next-generation sequencing (NGS) in ventilated newborns with peripheral hypotonia. We compared the results of our previous study in a cohort of 19 patients analysed by Sanger sequencing from 2007 to 2012, with a diagnostic yield of 26% (5/19), and those of a new retrospective study in 28 patients from 2007 to 2018 diagnosed using MyoPanel, a neuromuscular disease panel, with a diagnostic yield of 43% (12/28 patients). Pathogenic variants were found in five genes: ACTA1 (n = 4 patients), RYR1 (n = 2), CACNA1S (n = 1), NEB (n = 3), and MTM1 (n = 2). Myopanel increased the diagnosis of congenital neuromuscular diseases, but more than half the patients remained undiagnosed. Whole exome sequencing did not seem to fully respond to this diagnostic limitation. Therefore, explorations with whole genome sequencing will be the next step.
Collapse
Affiliation(s)
- Marie-Céline François-Heude
- AOC (Atlantique-Occitanie-Caraïbe) Reference Centre for Neuromuscular Disorders, Neuropaediatric Department, Toulouse University Hospital, Toulouse, France
| | - Ulrike Walther-Louvier
- AOC (Atlantique-Occitanie-Caraïbe) Reference Centre for Neuromuscular Disorders, Neuropaediatric Department, Montpellier University Hospital, Montpellier, France
| | - Caroline Espil-Taris
- AOC (Atlantique-Occitanie-Caraïbe) Reference Centre for Neuromuscular Disorders, Neuropaediatric Department, Bordeaux University Hospital, Aquitaine, France
| | | | - François Rivier
- AOC (Atlantique-Occitanie-Caraïbe) Reference Centre for Neuromuscular Disorders, Neuropaediatric Department, Montpellier University Hospital, Montpellier, France
| | - Eloise Baudou
- AOC (Atlantique-Occitanie-Caraïbe) Reference Centre for Neuromuscular Disorders, Neuropaediatric Department, Toulouse University Hospital, Toulouse, France
| | - Emmanuelle Uro-Coste
- Department of Pathology, Toulouse University Hospital, Toulouse, France; INSERM U1037, Cancer Research Centre of Toulouse (CRCT), Toulouse, France
| | - Valérie Rigau
- AOC (Atlantique-Occitanie-Caraïbe) Reference Centre for Neuromuscular Disorders, Aquitaine, France; Department of Pathology, Centre Hospitalier Universitaire Montpellier, Montpellier, France
| | | | - John Rendu
- INSERM U1216, Grenoble Alpes University Hospital, University of Grenoble Alpes, Grenoble, France
| | - Raul Juntas Morales
- Laboratory of Rare Genetic Diseases (LGMR), University of Montpellier, Montpellier, France
| | - Henri Pégeot
- Molecular Genetics Laboratory, Montpellier University Hospital Centre, Montpellier, France
| | - Corinne Thèze
- Molecular Genetics Laboratory, Montpellier University Hospital Centre, Montpellier, France
| | - Delphine Lacourt
- Molecular Genetics Laboratory, Montpellier University Hospital Centre, Montpellier, France
| | - Anne Cécile Coville
- AOC (Atlantique-Occitanie-Caraïbe) Reference Centre for Neuromuscular Disorders, Neuropaediatric Department, Toulouse University Hospital, Toulouse, France
| | - Mireille Cossée
- Laboratory of Rare Genetic Diseases (LGMR), University of Montpellier, Montpellier, France; Molecular Genetics Laboratory, Montpellier University Hospital Centre, Montpellier, France
| | - Claude Cances
- AOC (Atlantique-Occitanie-Caraïbe) Reference Centre for Neuromuscular Disorders, Neuropaediatric Department, Toulouse University Hospital, Toulouse, France.
| |
Collapse
|
20
|
Talenti G, Robson C, Severino MS, Alves CA, Chitayat D, Dahmoush H, Smith L, Muntoni F, Blaser SI, D'Arco F. Characteristic Cochlear Hypoplasia in Patients with Walker-Warburg Syndrome: A Radiologic Study of the Inner Ear in α-Dystroglycan-Related Muscular Disorders. AJNR Am J Neuroradiol 2021; 42:167-172. [PMID: 33122211 PMCID: PMC7814787 DOI: 10.3174/ajnr.a6858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 08/16/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Walker-Warburg syndrome, muscle-eye-brain disease, and Fukuyama congenital muscular dystrophy are α-dystroglycan-related muscular disorders associated with brain malformations and eye abnormalities in which no structural inner ear abnormality has been described radiologically. We collected patients from 6 tertiary pediatric hospitals and reported the radiologic features and frequency of inner ear dysplasias. MATERIALS AND METHODS Patients previously diagnosed clinicoradiologically with Walker-Warburg syndrome, muscle-eye-brain disease, or Fukuyama congenital muscular dystrophy were included. We recorded the pathogenic variant, when available. Brain MR imaging and/or CT findings were reviewed in consensus, and inner ear anomalies were classified according to previous description in the literature. We then correlated the clinicoradiologic phenotype with the inner ear phenotype. RESULTS Thirteen patients fulfilled the criteria for the Walker-Warburg syndrome phenotype, 8 for muscle-eye-brain disease, and 3 for Fukuyama congenital muscular dystrophy. A dysplastic cochlea was demonstrated in 17/24. The most frequent finding was a pronounced cochlear hypoplasia type 4 with a very small anteriorly offset turn beyond the normal-appearing basal turn (12/13 patients with Walker-Warburg syndrome and 1/11 with muscle-eye-brain disease or Fukuyama congenital muscular dystophy). Two of 8 patients with muscle-eye-brain disease, 1/3 with Fukuyama congenital muscular dystrophy, and 1/13 with Walker-Warburg syndrome showed a less severe cochlear hypoplasia type 4. The remaining patients without Walker-Warburg syndrome were healthy. The vestibule and lateral semicircular canals of all patients were normal. Cranial nerve VIII was present in all patients with diagnostic MR imaging. CONCLUSIONS Most patients with the severe α-dystroglycanopathy Walker-Warburg syndrome phenotype have a highly characteristic cochlear hypoplasia type 4. Patients with the milder variants, muscle-eye-brain disease and Fukuyama congenital muscular dystrophy, more frequently have a normal cochlea or milder forms of hypoplasia.
Collapse
Affiliation(s)
- G Talenti
- From the Department of Diagnostics and Pathology (G.T.), Neuroradiology Unit, Verona University Hospital, Verona, Italy
| | - C Robson
- Division of Neuroradiology (C.R.), Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - M S Severino
- Neuroradiology Unit (M.S.S.), Istituti di Ricovero e Cura a Carattere Scientifico, Istituto Giannina Gaslini, Genova, Italy
| | - C A Alves
- Departments of Radiology and Division of Neuroradiology (C.A.A.), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - D Chitayat
- The Prenatal Diagnosis and Medical Genetics Program (D.C.), Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - H Dahmoush
- Department of Radiology (H.D.), Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, California
| | - L Smith
- Dental and Maxillofacial Surgery Department (L.S.), Great Ormond Street Hospital, London, UK
| | - F Muntoni
- Dubowitz Neuromuscular Centre (F.M.), UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital, London, UK
| | - S I Blaser
- Division of Neuroradiology (S.I.B.), Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - F D'Arco
- Neuroradiology Unit (F.D.), Department of Radiology, Great Ormond Street Hospital for Children, National Health Service Trust, London, UK felice.d'
| |
Collapse
|
21
|
Abstract
Many neuromuscular disorders (NMD) are complicated by respiratory failure. These patients are best managed in a multidisciplinary outpatient clinic to provide timely access to the various disciplines they require. The key mainstay of treatment of respiratory failure in patients with NMD is noninvasive ventilation, supported by secretion clearance, speech and language therapy, optimisation of nutrition and the maintenance of mobility. Patients with specific conditions may also require cardiology, neurology, orthopaedics, urology and psychological services. The respiratory NMD multidisciplinary team should also provide access to palliative care, and caregiver health and wellbeing should also be reviewed at clinical reviews. The future of care for the respiratory NMD patient will increasingly involve home services and telehealth and the clinic should be equipped and resourced to deliver these. Although not all health systems will be able to provide all elements of the multidisciplinary team discussed here, this review provides the “ideal” recipe for the adult multidisciplinary team and the evidence base underpinning this from which a clinic can be developed. Care for neuromuscular-related respiratory failure is complex and is best delivered in a multidisciplinary context. The future will increasingly involve home services and telehealth, and their burden needs to be considered when establishing this service.https://bit.ly/33fNsMT
Collapse
Affiliation(s)
- Neeraj M Shah
- Lane Fox Respiratory Service, St Thomas' Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK.,Lane Fox Clinical Respiratory Physiology Centre, Guy's and St Thomas' NHS Foundation Trust, London, UK.,Centre for Human and Applied Physiological Sciences (CHAPS), King's College London, London, UK
| | - Patrick B Murphy
- Lane Fox Respiratory Service, St Thomas' Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK.,Lane Fox Clinical Respiratory Physiology Centre, Guy's and St Thomas' NHS Foundation Trust, London, UK.,Centre for Human and Applied Physiological Sciences (CHAPS), King's College London, London, UK
| | - Georgios Kaltsakas
- Lane Fox Respiratory Service, St Thomas' Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK.,Lane Fox Clinical Respiratory Physiology Centre, Guy's and St Thomas' NHS Foundation Trust, London, UK.,Centre for Human and Applied Physiological Sciences (CHAPS), King's College London, London, UK
| |
Collapse
|
22
|
Beecroft SJ, Lamont PJ, Edwards S, Goullée H, Davis MR, Laing NG, Ravenscroft G. The Impact of Next-Generation Sequencing on the Diagnosis, Treatment, and Prevention of Hereditary Neuromuscular Disorders. Mol Diagn Ther 2020; 24:641-652. [PMID: 32997275 DOI: 10.1007/s40291-020-00495-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2020] [Indexed: 12/13/2022]
Abstract
The impact of high-throughput sequencing in genetic neuromuscular disorders cannot be overstated. The ability to rapidly and affordably sequence multiple genes simultaneously has enabled a second golden age of Mendelian disease gene discovery, with flow-on impacts for rapid genetic diagnosis, evidence-based treatment, tailored therapy development, carrier-screening, and prevention of disease recurrence in families. However, there are likely many more neuromuscular disease genes and mechanisms to be discovered. Many patients and families remain without a molecular diagnosis following targeted panel sequencing, clinical exome sequencing, or even genome sequencing. Here we review how massively parallel, or next-generation, sequencing has changed the field of genetic neuromuscular disorders, and anticipate future benefits of recent technological innovations such as RNA-seq implementation and detection of tandem repeat expansions from short-read sequencing.
Collapse
Affiliation(s)
- Sarah J Beecroft
- Neurogenetic Diseases Group, Centre for Medical Research, QEII Medical Centre, University of Western Australia, 6 Verdun St, Nedlands, WA, 6009, Australia.,Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, 6009, Australia
| | | | - Samantha Edwards
- Neurogenetic Diseases Group, Centre for Medical Research, QEII Medical Centre, University of Western Australia, 6 Verdun St, Nedlands, WA, 6009, Australia.,Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, 6009, Australia
| | - Hayley Goullée
- Neurogenetic Diseases Group, Centre for Medical Research, QEII Medical Centre, University of Western Australia, 6 Verdun St, Nedlands, WA, 6009, Australia.,Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, 6009, Australia
| | - Mark R Davis
- Neurogenetic Unit, Department of Diagnostic Genomics, PP Block, QEII Medical Centre, Nedlands, WA, Australia
| | - Nigel G Laing
- Neurogenetic Diseases Group, Centre for Medical Research, QEII Medical Centre, University of Western Australia, 6 Verdun St, Nedlands, WA, 6009, Australia.,Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, 6009, Australia.,Neurogenetic Clinic, Royal Perth Hospital, Perth, Australia
| | - Gianina Ravenscroft
- Neurogenetic Diseases Group, Centre for Medical Research, QEII Medical Centre, University of Western Australia, 6 Verdun St, Nedlands, WA, 6009, Australia. .,Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, 6009, Australia.
| |
Collapse
|
23
|
Cauley ES, Pittman A, Mummidivarpu S, Karimiani EG, Martinez S, Moroni I, Boostani R, Podini D, Mora M, Jamshidi Y, Hoffman EP, Manzini MC. Novel mutation identification and copy number variant detection via exome sequencing in congenital muscular dystrophy. Mol Genet Genomic Med 2020; 8:e1387. [PMID: 32936536 PMCID: PMC7667317 DOI: 10.1002/mgg3.1387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022] Open
Abstract
Background Congenital muscular dystrophy type 1A (MDC1A), also termed merosin‐deficient congenital muscular dystrophy (CMD), is a severe form of CMD caused by mutations in the laminin α2 gene (LAMA2). Of the more than 300 likely pathogenic variants found in the Leiden Open Variant Database, the majority are truncating mutations leading to complete LAMA2 loss of function, but multiple copy number variants (CNVs) have also been reported with variable frequency. Methods We collected a cohort of individuals diagnosed with likely MDC1A and sought to identify both single nucleotide variants and small and larger CNVs via exome sequencing by extending the analysis of sequencing data to detect splicing changes and CNVs. Results Standard exome analysis identified multiple novel LAMA2 variants in our cohort, but only four cases carried biallelic variants. Since likely truncating LAMA2 variants are often found in heterozygosity without a second allele, we performed additional splicing and CNV analysis on exome data and identified one splice change outside of the canonical sequences and three CNVs, in the remaining four cases. Conclusions Our findings support the expectation that a portion of MDC1A cases may be caused by at least one CNV allele and show how these changes can be effectively identified by additional analysis of existing exome data.
Collapse
Affiliation(s)
- Edmund S Cauley
- Department of Pharmacology and Physiology, Institute for Neuroscience, The George Washington University, Washington, DC, USA
| | - Alan Pittman
- Molecular and Clinical Sciences Institute, St. George's, University of London, London, United Kingdom
| | - Swati Mummidivarpu
- Departments of Pharmaceutical Sciences and Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY, USA
| | - Ehsan G Karimiani
- Molecular and Clinical Sciences Institute, St. George's, University of London, London, United Kingdom.,Innovative Medical Research Center, Islamic Azad University, Mashhad, Iran
| | - Samantha Martinez
- Department of Pharmacology and Physiology, Institute for Neuroscience, The George Washington University, Washington, DC, USA
| | - Isabella Moroni
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Reza Boostani
- Department of Neurology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Daniele Podini
- Department of Forensic Sciences, The George Washington University, Washington, DC, USA
| | - Marina Mora
- Division of Neuromuscular Diseases and Neuroimmunology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Yalda Jamshidi
- Molecular and Clinical Sciences Institute, St. George's, University of London, London, United Kingdom
| | - Eric P Hoffman
- Departments of Pharmaceutical Sciences and Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY, USA
| | - M Chiara Manzini
- Department of Pharmacology and Physiology, Institute for Neuroscience, The George Washington University, Washington, DC, USA.,Child Health Institute of New Jersey and Department of Neuroscience and Cell Biology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| |
Collapse
|
24
|
Sawnani H, Mayer OH, Modi AC, Pascoe JE, McConnell K, McDonough JM, Rutkowski AM, Hossain MM, Szczesniak R, Tadesse DG, Schuler CL, Amin R. Randomized trial of lung hyperinflation therapy in children with congenital muscular dystrophy. Pediatr Pulmonol 2020; 55:2471-2478. [PMID: 32658385 PMCID: PMC9047443 DOI: 10.1002/ppul.24954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/07/2020] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Respiratory compromise in congenital muscular dystrophy (CMD) occurs, in part, from chest wall contractures. Passive stretch with hyperinsufflation therapy could reduce related costo-vertebral joint contractures. We sought to examine the impact of hyperinsufflation use on lung function and quality of life in children with CMD. STUDY DESIGN We conducted a randomized controlled trial on hyperinsufflation therapy in children with CMD at two centers. An individualized hyperinsufflation regimen of 15 minutes twice daily using a cough assist device over a 12 months period was prescribed. We measured lung function, quality of life, and adherence. To demonstrate reproducibility, pulmonary function was measured twice on the same day. A mixed-effects regression model adjusting for confounders was used to assess the effects of hyperinsufflation. RESULTS We enrolled 34 participants in the study; 31 completed the trial (n = 17 treatment group and n = 14 controls). Participants in the treatment group demonstrated a relative gain in lung volume measured at 4 and 8 months, but not at 12 months. The control group required increases in the maximum insufflation pressures to achieve maximum lung volumes while the treatment group did not. Adherence was best early in the study, peaking at the first visit and decreasing at subsequent visits. Caregiver-reported quality of life was higher in the treatment group. CONCLUSION Hyperinsufflation therapy is effective in increasing and sustaining lung volume over time. Adherence, however, was inconsistent and difficult to maintain. Further research should determine if improved adherence leads to sustained benefits of hyperinsufflation.
Collapse
Affiliation(s)
- Hemant Sawnani
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Oscar H Mayer
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Avani C Modi
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.,Division of Behavioral Medicine and Clinical Psychology, Center for Treatment Adherence and Self-Management, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - John E Pascoe
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Keith McConnell
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Joseph M McDonough
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | - Md Monir Hossain
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.,Division of Epidemiology and Biostatistics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Rhonda Szczesniak
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.,Division of Epidemiology and Biostatistics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Dawit G Tadesse
- Division of Epidemiology and Biostatistics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Christine L Schuler
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.,Division of Hospital Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Raouf Amin
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
25
|
Wallace B, Smith KT, Thomas S, Conway KM, Westfield C, Andrews JG, Weinert RO, Do TQN, Street N. Characterization of individuals with selected muscular dystrophies from the expanded pilot of the Muscular Dystrophy Surveillance, Tracking and Research Network (MD STARnet) in the United States. Birth Defects Res 2020; 113:560-569. [PMID: 32710484 DOI: 10.1002/bdr2.1764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/10/2020] [Accepted: 06/26/2020] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Data on muscular dystrophies (MDs), a heterogeneous group of heritable diseases hallmarked by progressive muscle deterioration, are scarce. OBJECTIVE We describe cross-sectional sociodemographic and clinical characteristics of individuals with congenital, distal, Emery-Dreifuss, facioscapulohumeral, limb-girdle, myotonic, or oculopharyngeal MD. METHODS The study was conducted in four sites (Arizona, Colorado, Iowa, and 12 western New York counties) as a pilot expansion of the Muscular Dystrophy Surveillance, Tracking and Research Network, funded by the Centers for Disease Control and Prevention. MDs were detected in healthcare facilities and administrative data sources using International Classification of Disease codes. Our sample contains 1,723 individuals with a MD diagnosis and a healthcare encounter between January 1, 2007 and December 31, 2011. RESULTS AND CONCLUSIONS Individuals were mostly non-Hispanic and white. Median ages ranged from 9.2 to 66.0 years. Most (98%) had health insurance. The proportion of individuals who were disabled or unable to work increased with age (range: 8.6-46.4%). People with limb-girdle MD aged ≥18 years were more likely to be nonambulatory (range: 24.5-44.7%). The percentages of individuals with documented clinical interventions during the surveillance period were low. The most common cause of death was respiratory causes (46.3-57.1%); an ICD-10 code for MD (G71.1 or G71.0) was reported for nearly one-half. Our findings show wide variability in sociodemographic and clinical characteristics across MDs.
Collapse
Affiliation(s)
- Bailey Wallace
- Oak Ridge Institute for Science and Education, Atlanta, Georgia, USA.,Centers for Disease Control and Prevention (CDC), National Center on Birth Defects and Developmental Disabilities, Atlanta, Georgia, USA
| | - K Tiffany Smith
- Centers for Disease Control and Prevention (CDC), National Center on Birth Defects and Developmental Disabilities, Atlanta, Georgia, USA.,Carter Consulting, Inc., Atlanta, Georgia, USA
| | - Shiny Thomas
- New York State Department of Health, Albany, New York, USA
| | - Kristin M Conway
- Department of Epidemiology, The University of Iowa, Iowa City, Iowa, USA
| | | | | | - Richard O Weinert
- Colorado Department of Public Health and Environment (CDPHE), Denver, Colorado, USA
| | - Thuy Quynh N Do
- Centers for Disease Control and Prevention (CDC), National Center on Birth Defects and Developmental Disabilities, Atlanta, Georgia, USA.,Bristol Meyers Squibb, Lawrenceville, New Jersey, USA
| | - Natalie Street
- Centers for Disease Control and Prevention (CDC), National Center on Birth Defects and Developmental Disabilities, Atlanta, Georgia, USA
| | | |
Collapse
|
26
|
Laventhal NT, Graham RJ, Rasmussen SA, Urion DK, Kang PB. Ethical decision-making for children with neuromuscular disorders in the COVID-19 crisis. Neurology 2020; 95:260-265. [PMID: 32482844 DOI: 10.1212/wnl.0000000000009936] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/22/2020] [Indexed: 11/15/2022] Open
Abstract
The sudden appearance and proliferation of coronavirus disease 2019 has forced societies and governmental authorities across the world to confront the possibility of resource constraints when critical care facilities are overwhelmed by the sheer numbers of grievously ill patients. As governments and health care systems develop and update policies and guidelines regarding the allocation of resources, patients and families affected by chronic disabilities, including many neuromuscular disorders that affect children and young adults, have become alarmed at the possibility that they may be determined to have less favorable prognoses due to their underlying diagnoses and thus be assigned to lower priority groups. It is important for health care workers, policymakers, and government officials to be aware that the long-term prognoses for children and young adults with neuromuscular disorders are often more promising than previously believed due to a better understanding of the natural history of these diseases, benefits of multidisciplinary supportive care, and novel molecular therapies that can dramatically improve the disease course. Although the realities of a global pandemic have the potential to require a shift from our usual, highly individualistic standards of care to crisis standards of care, shifting priorities should nonetheless be informed by good facts. Resource allocation guidelines with the potential to affect children and young adults with neuromuscular disorders should take into account the known trajectory of acute respiratory illness in this population and rely primarily on contemporary long-term outcome data.
Collapse
Affiliation(s)
- Naomi T Laventhal
- From the Division of Neonatal-Perinatal Medicine (N.T.L.), Department of Pediatrics, University of Michigan School of Medicine and C.S. Mott Children's Hospital; Center for Bioethics and Social Sciences in Medicine (N.T.L.), University of Michigan, Ann Arbor, MI; Department of Anesthesiology (R.J.G.), Critical Care and Pain Medicine, Boston Children's Hospital and Department of Anaesthesia (R.J.G.), Harvard Medical School, Boston, MA; Department of Pediatrics (S.A.R.), University of Florida College of Medicine; Department of Epidemiology (S.A.R.), University of Florida College of Medicine and College of Public Health and Health Professions, Gainesville, FL; Department of Neurology (D.K.U.), Boston Children's Hospital and Harvard Medical School, Boston, MA; Division of Pediatric Neurology (P.B.K.), Department of Pediatrics, University of Florida College of Medicine; and Department of Neurology and Department of Molecular Genetics and Microbiology (P.B.K.), University of Florida College of Medicine, Gainesville, FL
| | - Robert J Graham
- From the Division of Neonatal-Perinatal Medicine (N.T.L.), Department of Pediatrics, University of Michigan School of Medicine and C.S. Mott Children's Hospital; Center for Bioethics and Social Sciences in Medicine (N.T.L.), University of Michigan, Ann Arbor, MI; Department of Anesthesiology (R.J.G.), Critical Care and Pain Medicine, Boston Children's Hospital and Department of Anaesthesia (R.J.G.), Harvard Medical School, Boston, MA; Department of Pediatrics (S.A.R.), University of Florida College of Medicine; Department of Epidemiology (S.A.R.), University of Florida College of Medicine and College of Public Health and Health Professions, Gainesville, FL; Department of Neurology (D.K.U.), Boston Children's Hospital and Harvard Medical School, Boston, MA; Division of Pediatric Neurology (P.B.K.), Department of Pediatrics, University of Florida College of Medicine; and Department of Neurology and Department of Molecular Genetics and Microbiology (P.B.K.), University of Florida College of Medicine, Gainesville, FL
| | - Sonja A Rasmussen
- From the Division of Neonatal-Perinatal Medicine (N.T.L.), Department of Pediatrics, University of Michigan School of Medicine and C.S. Mott Children's Hospital; Center for Bioethics and Social Sciences in Medicine (N.T.L.), University of Michigan, Ann Arbor, MI; Department of Anesthesiology (R.J.G.), Critical Care and Pain Medicine, Boston Children's Hospital and Department of Anaesthesia (R.J.G.), Harvard Medical School, Boston, MA; Department of Pediatrics (S.A.R.), University of Florida College of Medicine; Department of Epidemiology (S.A.R.), University of Florida College of Medicine and College of Public Health and Health Professions, Gainesville, FL; Department of Neurology (D.K.U.), Boston Children's Hospital and Harvard Medical School, Boston, MA; Division of Pediatric Neurology (P.B.K.), Department of Pediatrics, University of Florida College of Medicine; and Department of Neurology and Department of Molecular Genetics and Microbiology (P.B.K.), University of Florida College of Medicine, Gainesville, FL
| | - David K Urion
- From the Division of Neonatal-Perinatal Medicine (N.T.L.), Department of Pediatrics, University of Michigan School of Medicine and C.S. Mott Children's Hospital; Center for Bioethics and Social Sciences in Medicine (N.T.L.), University of Michigan, Ann Arbor, MI; Department of Anesthesiology (R.J.G.), Critical Care and Pain Medicine, Boston Children's Hospital and Department of Anaesthesia (R.J.G.), Harvard Medical School, Boston, MA; Department of Pediatrics (S.A.R.), University of Florida College of Medicine; Department of Epidemiology (S.A.R.), University of Florida College of Medicine and College of Public Health and Health Professions, Gainesville, FL; Department of Neurology (D.K.U.), Boston Children's Hospital and Harvard Medical School, Boston, MA; Division of Pediatric Neurology (P.B.K.), Department of Pediatrics, University of Florida College of Medicine; and Department of Neurology and Department of Molecular Genetics and Microbiology (P.B.K.), University of Florida College of Medicine, Gainesville, FL
| | - Peter B Kang
- From the Division of Neonatal-Perinatal Medicine (N.T.L.), Department of Pediatrics, University of Michigan School of Medicine and C.S. Mott Children's Hospital; Center for Bioethics and Social Sciences in Medicine (N.T.L.), University of Michigan, Ann Arbor, MI; Department of Anesthesiology (R.J.G.), Critical Care and Pain Medicine, Boston Children's Hospital and Department of Anaesthesia (R.J.G.), Harvard Medical School, Boston, MA; Department of Pediatrics (S.A.R.), University of Florida College of Medicine; Department of Epidemiology (S.A.R.), University of Florida College of Medicine and College of Public Health and Health Professions, Gainesville, FL; Department of Neurology (D.K.U.), Boston Children's Hospital and Harvard Medical School, Boston, MA; Division of Pediatric Neurology (P.B.K.), Department of Pediatrics, University of Florida College of Medicine; and Department of Neurology and Department of Molecular Genetics and Microbiology (P.B.K.), University of Florida College of Medicine, Gainesville, FL.
| |
Collapse
|
27
|
Datta N, Ghosh PS. Update on Muscular Dystrophies with Focus on Novel Treatments and Biomarkers. Curr Neurol Neurosci Rep 2020; 20:14. [DOI: 10.1007/s11910-020-01034-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Solé G, Salort-Campana E, Pereon Y, Stojkovic T, Wahbi K, Cintas P, Adams D, Laforet P, Tiffreau V, Desguerre I, Pisella LI, Molon A, Attarian S. Guidance for the care of neuromuscular patients during the COVID-19 pandemic outbreak from the French Rare Health Care for Neuromuscular Diseases Network. Rev Neurol (Paris) 2020; 176:507-515. [PMID: 32354651 PMCID: PMC7167585 DOI: 10.1016/j.neurol.2020.04.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 04/16/2020] [Indexed: 12/12/2022]
Abstract
In France, the epidemic phase of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began in February 2020 and resulted in the implementation of emergency measures and a degradation in the organization of neuromuscular reference centers. In this special context, the French Rare Health Care for Neuromuscular Diseases Network (FILNEMUS) has established guidance in an attempt to homogenize the management of neuromuscular (NM) patients within the French territory. Hospitalization should be reserved for emergencies, the conduct of treatments that cannot be postponed, check-ups for which the diagnostic delay may result in a loss of survival chance, and cardiorespiratory assessments for which the delay could be detrimental to the patient. A national strategy was adopted during a period of 1 to 2 months concerning treatments usually administered in hospitalization. NM patients treated with steroid/immunosuppressants for a dysimmune pathology should continue all of their treatments in the absence of any manifestations suggestive of COVID-19. A frequently asked questions (FAQ) sheet has been compiled and updated on the FILNEMUS website. Various support systems for self-rehabilitation and guided exercises have been also provided on the website. In the context of NM diseases, particular attention must be paid to two experimental COVID-19 treatments, hydroxycholoroquine and azithromycin: risk of exacerbation of myasthenia gravis and QT prolongation in patients with pre-existing cardiac involvement. The unfavorable emergency context related to COVID-19 may specially affect the potential for intensive care admission (ICU) for people with NMD. In order to preserve the fairest medical decision, a multidisciplinary working group has listed the neuromuscular diseases with a good prognosis, usually eligible for resuscitation admission in ICU and, for other NM conditions, the positive criteria suggesting a good prognosis. Adaptation of the use of noninvasive ventilation (NIV) make it possible to limit nebulization and continue using NIV in ventilator-dependent patients.
Collapse
Affiliation(s)
- G Solé
- Reference Center for Neuromuscular Disorders AOC, Department of Neurology, Nerve-Muscle Unit, CHU Bordeaux (Pellegrin University Hospital), place Amélie-Raba-Léon, 33076 Bordeaux, France
| | - E Salort-Campana
- Reference Center of Neuromuscular disorders and ALS, Timone University Hospital, AP-HM, 13385 Marseille, France; Medical Genetics, Aix-Marseille Université, Inserm UMR_1251, 13005 Marseille, France
| | - Y Pereon
- CHU Nantes, Reference Center for Neuromuscular Disorders AOC, Hôtel-Dieu, Nantes, France
| | - T Stojkovic
- Reference Center of Neuromuscular Disorders Nord/Est/Île-de-France, Sorbonne Université, AP-HP, Hôpital Pitié-Salpêtrière, Inserm UMR_S 974, Paris, France
| | - K Wahbi
- AP-HP, Cochin Hospital, Cardiology Department, FILNEMUS, Centre de Référence de Pathologie Neuromusculaire Nord/Est/Île-de-France, Paris-Descartes, Sorbonne Paris Cité University, 75006 Paris, France; INSERM Unit 970, Paris Cardiovascular Research Centre (PARCC), Paris, France
| | - P Cintas
- Reference Center of Neuromuscular Disorders AOC, Toulouse, University Hospitals, 31000 Toulouse, France
| | - D Adams
- Department of Neurology, CHU Bicetre, Hôpitaux Universitaires Paris Sud, Paris, France
| | - P Laforet
- Nord/Est/Île-de-France Neuromuscular Reference Center, Neurology Department, Raymond-Poincaré Teaching Hospital, AP-HP, Garches, France; INSERM U1179, END-ICAP, Versailles-Saint-Quentin-en-Yvelines University, Université Paris Saclay, Montigny-le-Bretonneux, France
| | - V Tiffreau
- Reference Center of Neuromuscular Disorders Nord/Est/Île-de-France, Hôpital Pierre-Swynghedauw, CHU de Lille, EA 7369 URePSSS, 59000 Lille, France
| | - I Desguerre
- Reference Center of Neuromuscular Disorders Nord/Est/Île-de-France, Pediatric Neurology Department, Necker-Enfants-Malades Hospital, AP-HP, Paris, France
| | | | - A Molon
- Filnemus, AP-HM, Marseille, France
| | - S Attarian
- Reference Center of Neuromuscular disorders and ALS, Timone University Hospital, AP-HM, 13385 Marseille, France; Medical Genetics, Aix-Marseille Université, Inserm UMR_1251, 13005 Marseille, France.
| | | |
Collapse
|
29
|
Clinical and genomic characteristics of LAMA2 related congenital muscular dystrophy in a patients' cohort from Qatar. A population specific founder variant. Neuromuscul Disord 2020; 30:457-471. [PMID: 32444167 DOI: 10.1016/j.nmd.2020.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/22/2022]
Abstract
Congenital LAMA2 related muscular dystrophy (LAMA2-RD), the most commonly recognized type of congenital muscular dystrophies, has been described in patients' cohorts from Europe and the UK but not from Middle-Eastern. This study aimed to reveal the prevalence, clinical and genomic characteristics of congenital LAMA2-RD in a patient's cohort of 17 families (21 patients) from the Gulf and Middle East. Affected subjects exhibited the classic phenotype of generalized hypotonia, developmental delay, and progressive muscular weakness. Despite the homogeneous background of most of our patients, clinical variability was evident; however, none of our patients was able to achieve independent ambulation. The associated features of nephrocalcinosis, infantile-onset osteopenia, and cardiac arrest were first described in this study. LAMA2 mutations constituted 48% of the genetic causes underlying congenital muscular dystrophies (CMDs) in our patients. We estimated a point prevalence of 0.8 in 100.000 for LAMA2-RD in Qatar, relatively higher compared to that described in Europe's studies. The founder mutation and high rate of consanguinity are potential contributors. This study identified five LAMA2 truncating variants, two novel and three recurrent, of which the c.6488delA-frameshift that was found in 12 unrelated Qatari families, highlighting a founder mutation in Qatari patients. The two novel variants involved an acceptor splice site and N-terminus deletion that removes the LAMA2 promoter, exon1, and part of intron1. The "residual" expression of LAMA2 transcript and protein associated with this large N-terminus deletion suggested an alternative promoter that, while seems to be activated, acts less efficiently.
Collapse
|
30
|
Abstract
The peripheral nervous system (PNS) is composed of motor neurons, nerve roots, plexuses, peripheral nerves (motor, sensory and autonomic), neuromuscular junction, and skeletal muscles. Disorders of the PNS in neonates most frequently cause weakness, hypotonia, and contractures, which may be generalized or focal. Since these findings may also occur with brain and spinal cord lesions, key features of the history and neurologic exam, together with diagnostic testing, are helpful in reaching a diagnosis. This review covers the diagnostic approach to PNS disorders in the neonate and includes a discussion of representative diseases of the motor neuron, brachial plexus, peripheral nerves, neuromuscular junction, and muscles. The importance of reaching a precise genetic diagnosis is highlighted with a discussion of current and emerging treatments for neonatal PNS diseases, particularly spinal muscular atrophy.
Collapse
Affiliation(s)
- Alex J Fay
- Department of Neurology, University of California, San Francisco, San Francisco, CA.
| |
Collapse
|
31
|
Mercuri E, Bönnemann CG, Muntoni F. Muscular dystrophies. Lancet 2019; 394:2025-2038. [PMID: 31789220 DOI: 10.1016/s0140-6736(19)32910-1] [Citation(s) in RCA: 260] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 09/02/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022]
Abstract
Muscular dystrophies are primary diseases of muscle due to mutations in more than 40 genes, which result in dystrophic changes on muscle biopsy. Now that most of the genes responsible for these conditions have been identified, it is possible to accurately diagnose them and implement subtype-specific anticipatory care, as complications such as cardiac and respiratory muscle involvement vary greatly. This development and advances in the field of supportive medicine have changed the standard of care, with an overall improvement in the clinical course, survival, and quality of life of affected individuals. The improved understanding of the pathogenesis of these diseases is being used for the development of novel therapies. In the most common form, Duchenne muscular dystrophy, a few personalised therapies have recently achieved conditional approval and many more are at advanced stages of clinical development. In this Seminar, we concentrate on clinical manifestations, molecular pathogenesis, diagnostic strategy, and therapeutic developments for this group of conditions.
Collapse
Affiliation(s)
- Eugenio Mercuri
- Pediatric Neurology Unit, Università Cattolica del Sacro Cuore Roma, Rome, Italy; Nemo Clinical Centre, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, University College London, Great Ormond Street Institute of Child Health, London, UK; National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, London, UK.
| |
Collapse
|
32
|
Gois Beghini D, Iwao Horita S, Monteiro da Fonseca Cardoso L, Anastacio Alves L, Nagaraju K, Henriques-Pons A. A Promising Future for Stem-Cell-Based Therapies in Muscular Dystrophies-In Vitro and In Vivo Treatments to Boost Cellular Engraftment. Int J Mol Sci 2019; 20:ijms20215433. [PMID: 31683627 PMCID: PMC6861917 DOI: 10.3390/ijms20215433] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/28/2019] [Accepted: 09/23/2019] [Indexed: 02/06/2023] Open
Abstract
Muscular dystrophies (MD) are a group of genetic diseases that lead to skeletal muscle wasting and may affect many organs (multisystem). Unfortunately, no curative therapies are available at present for MD patients, and current treatments mainly address the symptoms. Thus, stem-cell-based therapies may present hope for improvement of life quality and expectancy. Different stem cell types lead to skeletal muscle regeneration and they have potential to be used for cellular therapies, although with several limitations. In this review, we propose a combination of genetic, biochemical, and cell culture treatments to correct pathogenic genetic alterations and to increase proliferation, dispersion, fusion, and differentiation into new or hybrid myotubes. These boosted stem cells can also be injected into pretreate recipient muscles to improve engraftment. We believe that this combination of treatments targeting the limitations of stem-cell-based therapies may result in safer and more efficient therapies for MD patients. Matricryptins have also discussed.
Collapse
Affiliation(s)
- Daniela Gois Beghini
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro (RJ) 21040-900, Brazil.
| | - Samuel Iwao Horita
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro (RJ) 21040-900, Brazil.
| | | | - Luiz Anastacio Alves
- Laboratório de Comunicação Celular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro (RJ) 21040-900, Brazil.
| | - Kanneboyina Nagaraju
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, New York, NY 13902, USA.
| | - Andrea Henriques-Pons
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro (RJ) 21040-900, Brazil.
| |
Collapse
|
33
|
Kim SY, Kim WJ, Kim H, Choi SA, Lee JS, Cho A, Jang SS, Lim BC, Kim KJ, Kim JI, Hahn SH, Chae JH. Collagen VI-related myopathy: Expanding the clinical and genetic spectrum. Muscle Nerve 2019; 58:381-388. [PMID: 29406609 DOI: 10.1002/mus.26093] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 01/24/2018] [Accepted: 02/05/2018] [Indexed: 12/22/2022]
Abstract
INTRODUCTION We aimed to analyze the clinical and genetic characteristics of collagen VI-related myopathy. METHODS We analyzed the clinical course and mutation spectrum in patients with collagen VI gene mutations among our congenital muscular dystrophy cohort. RESULTS Among 24 patients with mutations in collagen VI coding genes, 13 (54.2%) were categorized as Ullrich type, and 11 (45.8%) as non-Ullrich type. Congenital orthopedic problems were similarly observed in both types, yet multiple joint contractures were found only in the Ullrich type. Clinical courses and pathology findings varied between patients. Mutations in COL6A1, COL6A2, and COL6A3 were found in 15 (65%), 3 (13%), and 5 (22%) patients, respectively, without genotype-phenotype association. Five novel variants were detected. DISCUSSION We verified clinical heterogeneity of collagen VI-related myopathy, which emphasizes the importance of genetic testing. Genotype-phenotype association or early predictors for progression were not identified. Multiple joint contractures predict rapid deterioration. Muscle Nerve 58: 381-388, 2018.
Collapse
Affiliation(s)
- Soo Yeon Kim
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, 101 Daehakro Jongno-gu, Seoul, Korea, 110-744
| | - Woo Joong Kim
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, 101 Daehakro Jongno-gu, Seoul, Korea, 110-744
| | - Hyuna Kim
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, 101 Daehakro Jongno-gu, Seoul, Korea, 110-744
| | - Sun Ah Choi
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, 101 Daehakro Jongno-gu, Seoul, Korea, 110-744
| | - Jin Sook Lee
- Department of Pediatrics, Department of Genome Medicine and Science, Gachon University Gil Medical Center, Incheon, Korea
| | - Anna Cho
- Department of Pediatrics, Ewha Womans University College of Medicine, Seoul, Korea
| | - Se Song Jang
- Department of biomedical Science, Seoul National University Graduate School, Seoul, Korea
| | - Byung Chan Lim
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, 101 Daehakro Jongno-gu, Seoul, Korea, 110-744
| | - Ki Joong Kim
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, 101 Daehakro Jongno-gu, Seoul, Korea, 110-744
| | - Jong-Il Kim
- Department of biomedical Science, Seoul National University Graduate School, Seoul, Korea.,Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Si Houn Hahn
- Department of Genome Medicine and Science, Gachon University Gil Medical Center, Incheon, Korea.,Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA.,Seattle Children's Hospital, Seattle, Washington, USA
| | - Jong-Hee Chae
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, 101 Daehakro Jongno-gu, Seoul, Korea, 110-744
| |
Collapse
|
34
|
Alteration of mitochondrial membrane inner potential in three Italian patients with megaconial congenital muscular dystrophy carrying new mutations in CHKB gene. Mitochondrion 2019; 47:24-29. [PMID: 30986505 DOI: 10.1016/j.mito.2019.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 02/09/2019] [Accepted: 04/10/2019] [Indexed: 11/20/2022]
Abstract
Congenital Muscular Dystrophies (CMDs) are a heterogeneous group of autosomal recessive disorders presenting at birth with psychomotor delay, cognitive impairment, muscle weakness and hypotonia. Here we described an alteration of mitochondrial inner membrane potential and mitochondrial network in cells derived from Italian patients carrying three novel mutations in CHKB gene, recently associated with "megaconial CMD". On the bases of our findings, we hypothesize that the mitochondrial membrane potential alteration, presumably as a consequence of the altered biosynthesis of phosphatidylcholine, could be responsible for the peculiar morphological aspect of mitochondria in this disease and might be involved in the disease pathogenesis.
Collapse
|
35
|
Mercuri E, Pera MC, Brogna C. Neonatal hypotonia and neuromuscular conditions. HANDBOOK OF CLINICAL NEUROLOGY 2019; 162:435-448. [PMID: 31324324 DOI: 10.1016/b978-0-444-64029-1.00021-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The differential diagnosis of neonatal hypotonia is a complex task, as in newborns hypotonia can be the presenting sign of different underlying causes, including peripheral and central nervous system involvement and genetic and metabolic diseases. This chapter describes how a combined approach, based on the combination of clinical signs and new genetic techniques, can help not only to establish when the hypotonia is related to peripheral involvement but also to achieve an accurate and early diagnosis of the specific neuromuscular diseases with neonatal onset. The early identification of such disorders is important, as this allows early intervention with disease-specific standards of care and, more importantly, because of the possibility to treat some of them, such as spinal muscular atrophy, with therapeutic approaches that have recently become available.
Collapse
Affiliation(s)
- Eugenio Mercuri
- Department of Pediatric Neurology, Catholic University, Rome, Italy.
| | | | - Claudia Brogna
- Department of Pediatric Neurology, Catholic University, Rome, Italy
| |
Collapse
|
36
|
Anderson J, Tay G, Denby G, Robinson J, Douglas J, Robinson P, Curtin D. Improving service delivery for neuromuscular diseases: a survey of consumers at a tertiary Australian hospital. Intern Med J 2018; 48:1520-1524. [PMID: 30517984 DOI: 10.1111/imj.14123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/18/2018] [Accepted: 05/25/2018] [Indexed: 11/30/2022]
Abstract
Patients with neuromuscular diseases benefit from coordinated multidisciplinary care to achieve best outcomes. The integration of multi-specialty healthcare delivered in a single clinic can be challenging for service providers due to cost and resource limitation. Our cross-sectional survey of 53 adult patients with neuromuscular disease across Queensland revealed only 27% support the introduction of an integrated multidisciplinary clinic. The most cited reason for opposition to a multidisciplinary clinic was a perceived loss of contact with one's usual doctor. Modifying service delivery in neuromuscular disease is a complex undertaking and will need input from numerous stakeholders.
Collapse
Affiliation(s)
- James Anderson
- Respiratory Department, Sunshine Coast University Hospital, Brisbane, Queensland, Australia.,Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - George Tay
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia.,Sleep Disorders Centre, The Prince Charles Hospital, Brisbane, Queensland, Australia
| | - George Denby
- Sleep Disorders Centre, The Prince Charles Hospital, Brisbane, Queensland, Australia
| | - Jan Robinson
- Sleep Disorders Centre, The Prince Charles Hospital, Brisbane, Queensland, Australia
| | - James Douglas
- Sleep Disorders Centre, The Prince Charles Hospital, Brisbane, Queensland, Australia
| | - Peter Robinson
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia.,Sleep Disorders Centre, The Prince Charles Hospital, Brisbane, Queensland, Australia
| | - Deanne Curtin
- Sleep Disorders Centre, The Prince Charles Hospital, Brisbane, Queensland, Australia
| |
Collapse
|
37
|
Noritz G, Naprawa J, Apkon SD, Kinnett K, Racca F, Vroom E, Birnkrant DJ. Primary Care and Emergency Department Management of the Patient With Duchenne Muscular Dystrophy. Pediatrics 2018; 142:S90-S98. [PMID: 30275253 DOI: 10.1542/peds.2018-0333k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/26/2018] [Indexed: 12/26/2022] Open
Abstract
Primary care providers (PCPs) are usually the first point of contact with the health care system for patients with Duchenne muscular dystrophy (DMD), and patients often present to emergency departments in which providers have little experience in dealing with this condition. With this article, we give primary care and emergency medicine providers a background in the common issues that affect people with DMD. By acquiring some specialized knowledge about the multisystem medical complications of DMD and by applying general principles of primary care, such as timely immunization, anticipatory safety counseling, behavioral screening, and routine nutritional and developmental assessments, the PCP can be a valued and effective medical provider to patients with DMD. The PCP can provide access to and effective coordination among the patient's specialty caregivers. Moreover, the PCP can become a trusted advisor to the patient and his family about important medical decisions, as well as issues in the psychosocial, behavioral, and educational domains. This article also contains a "pocket guide" used to assess and manage common urgent medical problems that cause patients with DMD to seek care in the emergency department. With the background information discussed in this article, both PCPs and emergency medicine physicians can skillfully care for patients with DMD in their respective settings, optimizing patient outcomes.
Collapse
Affiliation(s)
| | - James Naprawa
- Department of Emergency Medicine, UCSF Benioff Children's Hospital, University of California, San Francisco, Oakland, California
| | | | - Kathi Kinnett
- Parent Project Muscular Dystrophy, Hackensack, New Jersey
| | | | - Elizabeth Vroom
- Duchenne Parent Project Netherlands, Amsterdam, Netherlands; and
| | - David J Birnkrant
- MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
38
|
COL6A and LAMA2 Mutation Congenital Muscular Dystrophy: A Clinical and Electrophysiological Study. J Clin Neuromuscul Dis 2018; 19:108-116. [PMID: 29465610 DOI: 10.1097/cnd.0000000000000198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES COL6A and LAMA2 are subtypes of congenital muscular dystrophy. METHODS Retrospective chart review of clinical findings, spirometry, muscle histology, muscle ultrasound, neuroimaging, and Electromyography (EMG)/Nerve Conduction Study data in genetically confirmed COL6A and LAMA2 subjects. RESULTS We identified 8 COL6A and 6 LAMA2 subjects: the female-to-male ratio was 1.3:1 and the mean age was 11.9 ± 3.6 years. Gross motor delays since birth, proximal muscle weakness, and contractures were noted in both groups. Joint hyperlaxity and skin changes (follicular hyperkeratosis and muscle biopsy scar thinning) were unique to COL6A. Severe scoliosis, macrocephaly, and nonambulatory status were common in LAMA2. Increasing age was associated with poor respiratory function in COL6A. There was central "cloud appearance" on rectus femoris muscle ultrasound in COL6A and white matter T2 hyperintensity on brain magnetic resonance imaging in LAMA2. LAMA2 also showed demyelinating polyneuropathy. Neurogenic changes on EMG and muscle histology were noted in 37% and 33% of COL6A cases, respectively. CONCLUSIONS COL6A has unique skin changes, central cloud appearance on muscle ultrasound. LAMA2 has demyelinating polyneuropathy and white matter changes on brain imaging. The presence of neurogenic changes on EMG and muscle histology in COL6A suggests motor axonal neuropathy. Genetic testing remains the gold standard in confirming COL6A congenital muscular dystrophy.
Collapse
|
39
|
|
40
|
Fu XN, Xiong H. Genetic and Clinical Advances of Congenital Muscular Dystrophy. Chin Med J (Engl) 2018; 130:2624-2631. [PMID: 29067961 PMCID: PMC5678264 DOI: 10.4103/0366-6999.217091] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Objective: The aim was to update the genetic and clinical advances of congenital muscular dystrophy (CMD), based on a systematic review of the literature from 1991 to 2017. Data Sources: Articles in English published in PubMed from 1991 to 2017 English were searched. The terms used in the literature searches were CMD. Study Selection: The task force initially identified citations for 98 published articles. Of the 98 articles, 52 studies were selected after further detailed review. Three articles, which were not written in English, were excluded from the study. This study referred to all the important and English literature in full. Results: CMD is a group of early-onset disorders encompassing great clinical and genetic heterogeneity. Patients present with muscle weakness typically from birth to early infancy, delay or arrest of gross motor development, and joint and/or spinal rigidity. The diagnosis of CMD relies on clinical findings, brain and muscle imaging, muscle biopsy histology, muscle and/or skin immunohistochemical staining, and molecular genetic testing. Conclusions: Advances in next-generation sequencing and histopathological techniques have enabled the recognition of distinct CMD subtypes supported by specific gene identification. Genetic counseling and multidisciplinary management of CMD play an important role in help patients and their family. Further elucidation of the significant clinical and genetic heterogeneity, therapeutic targets, and the clinical care for patients remains our challenge for the future.
Collapse
Affiliation(s)
- Xiao-Na Fu
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Hui Xiong
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
41
|
Creaney M, Moriarty RM, Milner M, Murphy C. Dexmedetomidine, high-flow nasal oxygen and sugammadex-reversal of rocuronium: overcoming anaesthetic challenges in a parturient with congenital muscular dystrophy presenting for caesarean section. Int J Obstet Anesth 2018; 34:108-112. [DOI: 10.1016/j.ijoa.2018.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/30/2018] [Accepted: 02/06/2018] [Indexed: 10/18/2022]
|
42
|
Al-Ghamdi F, Darras BT, Ghosh PS. Spectrum of Neuromuscular Disorders With HyperCKemia From a Tertiary Care Pediatric Neuromuscular Center. J Child Neurol 2018; 33:389-396. [PMID: 29577809 DOI: 10.1177/0883073818758455] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Elevated creatine kinase is a useful screening test in the diagnostic workup of patients with neuromuscular disorders. We did a retrospective study of children with hyperCKemia (>175 IU/L) who were followed in the neuromuscular program of a tertiary care pediatric center from 2005 to 2016. Patients with hyperCKemia were divided into 2 groups: myopathic and nonmyopathic. Within the myopathic group, there were 3 arbitrary subgroups based on creatine kinase values: A (creatine kinase >10 times normal), B (creatine kinase 5-10 times normal), and C (creatine kinase 1-5 times normal). The 3 major categories of myopathies across all the subgroups were muscular dystrophies (commonest) followed by metabolic myopathies and inflammatory myopathies. Among the nonmyopathic causes of hyperCKemia, spinal muscular atrophy was the commonest. Muscular dystrophies should be considered in children with hyperCKemia, muscle weakness, or calf hypertrophy, and metabolic myopathies to be considered in children with recurrent rhabdomyolysis.
Collapse
Affiliation(s)
- Fouad Al-Ghamdi
- 1 Department of Neurology, Boston Children's Hospital, Boston, MA, USA.,2 King Fahad Specialist Hospital, Al Muraikabat, Dammam, Saudi Arabia
| | - Basil T Darras
- 1 Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Partha S Ghosh
- 1 Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| |
Collapse
|
43
|
Dowling JJ, D. Gonorazky H, Cohn RD, Campbell C. Treating pediatric neuromuscular disorders: The future is now. Am J Med Genet A 2018; 176:804-841. [PMID: 28889642 PMCID: PMC5900978 DOI: 10.1002/ajmg.a.38418] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 12/12/2022]
Abstract
Pediatric neuromuscular diseases encompass all disorders with onset in childhood and where the primary area of pathology is in the peripheral nervous system. These conditions are largely genetic in etiology, and only those with a genetic underpinning will be presented in this review. This includes disorders of the anterior horn cell (e.g., spinal muscular atrophy), peripheral nerve (e.g., Charcot-Marie-Tooth disease), the neuromuscular junction (e.g., congenital myasthenic syndrome), and the muscle (myopathies and muscular dystrophies). Historically, pediatric neuromuscular disorders have uniformly been considered to be without treatment possibilities and to have dire prognoses. This perception has gradually changed, starting in part with the discovery and widespread application of corticosteroids for Duchenne muscular dystrophy. At present, several exciting therapeutic avenues are under investigation for a range of conditions, offering the potential for significant improvements in patient morbidities and mortality and, in some cases, curative intervention. In this review, we will present the current state of treatment for the most common pediatric neuromuscular conditions, and detail the treatment strategies with the greatest potential for helping with these devastating diseases.
Collapse
Affiliation(s)
- James J. Dowling
- Division of NeurologyHospital for Sick ChildrenTorontoOntarioCanada
- Program for Genetics and Genome BiologyHospital for Sick ChildrenTorontoOntarioCanada
- Departments of Paediatrics and Molecular GeneticsUniversity of TorontoTorontoOntarioCanada
| | | | - Ronald D. Cohn
- Program for Genetics and Genome BiologyHospital for Sick ChildrenTorontoOntarioCanada
- Departments of Paediatrics and Molecular GeneticsUniversity of TorontoTorontoOntarioCanada
| | - Craig Campbell
- Department of PediatricsClinical Neurological SciencesEpidemiologyWestern UniversityLondonOntarioCanada
| |
Collapse
|
44
|
Liewluck T, Milone M. Untangling the complexity of limb-girdle muscular dystrophies. Muscle Nerve 2018; 58:167-177. [PMID: 29350766 DOI: 10.1002/mus.26077] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2018] [Indexed: 12/16/2022]
Abstract
The limb-girdle muscular dystrophies (LGMDs) are a group of genetically heterogeneous, autosomal inherited muscular dystrophies with a childhood to adult onset, manifesting with hip- and shoulder-girdle muscle weakness. When the term LGMD was first conceptualized in 1954, it was thought to be a single entity. Currently, there are 8 autosomal dominant (LGMD1A-1H) and 26 autosomal recessive (LGMD2A-2Z) variants according to the Online Mendelian Inheritance in Man database. In addition, there are other genetically identified muscular dystrophies with an LGMD phenotype not yet classified as LGMD. This highlights the entanglement of LGMDs, which represents an area in continuous expansion. Herein we aim to simplify the complexity of LGMDs by subgrouping them on the basis of the underlying defective protein and impaired function. Muscle Nerve 58: 167-177, 2018.
Collapse
Affiliation(s)
- Teerin Liewluck
- Department of Neurology, Mayo Clinic, 200 First Street SW Rochester, Minnesota, 55905, USA
| | - Margherita Milone
- Department of Neurology, Mayo Clinic, 200 First Street SW Rochester, Minnesota, 55905, USA
| |
Collapse
|
45
|
Qiao C, Dai Y, Nikolova VD, Jin Q, Li J, Xiao B, Li J, Moy SS, Xiao X. Amelioration of Muscle and Nerve Pathology in LAMA2 Muscular Dystrophy by AAV9-Mini-Agrin. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 9:47-56. [PMID: 29766020 PMCID: PMC5948311 DOI: 10.1016/j.omtm.2018.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 01/11/2018] [Indexed: 01/19/2023]
Abstract
LAMA2-related muscular dystrophy (LAMA2 MD) is the most common and fatal form of early-onset congenital muscular dystrophies. Due to the large size of the laminin α2 cDNA and heterotrimeric structure of the protein, it is challenging to develop a gene-replacement therapy. Our group has developed a novel adeno-associated viral (AAV) vector carrying the mini-agrin, which is a non-homologous functional substitute for the mutated laminin α2. A significant therapeutic effect in skeletal muscle was observed in our previous study using AAV serotype 1 (AAV1). In this investigation, we examined AAV9 vector, which has more widespread transduction than AAV1, to determine if the therapeutic effects could be further improved. As expected, AAV9-mini-agrin treatment offered enhanced therapeutic effects over the previously used AAV1-mini-agrin in extending mouse lifespan and improvement of muscle pathology. Additionally, overexpression of mini-agrin in peripheral nerves of dyw/dyw mice partially amended nerve pathology as evidenced by improved motor function and sensorimotor processing, partial restoration of myelination, partial restoration of basement membrane via EM examination, as well as decreased regeneration of Schwann cells. In conclusion, our studies indicate that overexpression of mini-agrin into dyw/dyw mice offers profound therapeutic effects in both skeletal muscle and nervous system.
Collapse
Affiliation(s)
- Chunping Qiao
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yi Dai
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, Beijing, China 100730
| | - Viktoriya D Nikolova
- Department of Psychiatry, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Carolina Institute for Developmental Disabilities, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Quan Jin
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jianbin Li
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bin Xiao
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Juan Li
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sheryl S Moy
- Department of Psychiatry, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Carolina Institute for Developmental Disabilities, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Xiao Xiao
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Carolina Institute for Developmental Disabilities, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
46
|
Abstract
Patients and their family members often ask about genetic testing for asymptomatic individuals who are at risk for developing a genetic disorder. Ordering a genetic test is a complex process involving consideration of many basic ethical principles including autonomy, beneficence, and nonmaleficence, as well as the physician's duty to act in the patient's best interest. Physicians have many choices regarding what tests to order, and they must develop the knowledge and skills to best discuss genetic testing with their patients. Integration of core ethical principles into these processes will permit physicians to best serve their patients when obtaining informed consent, considering advantages and harms of potential results, disclosing those results, and providing follow-up.
Collapse
|
47
|
Paganoni S, Nicholson K, Leigh F, Swoboda K, Chad D, Drake K, Haley K, Cudkowicz M, Berry JD. Developing multidisciplinary clinics for neuromuscular care and research. Muscle Nerve 2017. [PMID: 28632945 PMCID: PMC5656914 DOI: 10.1002/mus.25725] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multidisciplinary care is considered the standard of care for both adult and pediatric neuromuscular disorders and has been associated with improved quality of life, resource utilization, and health outcomes. Multidisciplinary care is delivered in multidisciplinary clinics that coordinate care across multiple specialties by reducing travel burden and streamlining care. In addition, the multidisciplinary care setting facilitates the integration of clinical research, patient advocacy, and care innovation (e.g., telehealth). Yet, multidisciplinary care requires substantial commitment of staff time and resources. We calculated personnel costs in our ALS clinic in 2015 and found an average cost per patient visit of $580, of which only 45% was covered by insurance reimbursement. In this review, we will describe classic and emerging concepts in multidisciplinary care models for adult and pediatric neuromuscular disease. We will then explore the financial impact of multidisciplinary care with emphasis on sustainability and metrics to demonstrate quality and value. Muscle Nerve 56: 848-858, 2017.
Collapse
Affiliation(s)
- Sabrina Paganoni
- Harvard Medical School, Department of Neurology, Massachusetts General Hospital (MGH), Boston, Massachusetts, USA.,Neurological Clinical Research Institute (NCRI), Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, Massachusetts, USA
| | - Katie Nicholson
- Harvard Medical School, Department of Neurology, Massachusetts General Hospital (MGH), Boston, Massachusetts, USA.,Neurological Clinical Research Institute (NCRI), Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Fawn Leigh
- Harvard Medical School, Department of Neurology, Massachusetts General Hospital (MGH), Boston, Massachusetts, USA
| | - Kathryn Swoboda
- Harvard Medical School, Department of Neurology, Massachusetts General Hospital (MGH), Boston, Massachusetts, USA
| | - David Chad
- Harvard Medical School, Department of Neurology, Massachusetts General Hospital (MGH), Boston, Massachusetts, USA
| | - Kristin Drake
- Harvard Medical School, Department of Neurology, Massachusetts General Hospital (MGH), Boston, Massachusetts, USA.,Neurological Clinical Research Institute (NCRI), Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kellen Haley
- Harvard Medical School, Department of Neurology, Massachusetts General Hospital (MGH), Boston, Massachusetts, USA.,Neurological Clinical Research Institute (NCRI), Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Merit Cudkowicz
- Harvard Medical School, Department of Neurology, Massachusetts General Hospital (MGH), Boston, Massachusetts, USA.,Neurological Clinical Research Institute (NCRI), Massachusetts General Hospital, Boston, Massachusetts, USA
| | - James D Berry
- Harvard Medical School, Department of Neurology, Massachusetts General Hospital (MGH), Boston, Massachusetts, USA.,Neurological Clinical Research Institute (NCRI), Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
48
|
Pascoe JE, Sawnani H, Mayer OH, McConnell K, McDonough JM, White C, Rutkowski AM, Amin RS, Modi AC. Adherence and barriers to hyperinsufflation in children with congenital muscular dystrophy. Pediatr Pulmonol 2017; 52:939-945. [PMID: 27875025 PMCID: PMC6827716 DOI: 10.1002/ppul.23645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 11/09/2016] [Accepted: 11/10/2016] [Indexed: 01/06/2023]
Abstract
BACKGROUND Congenital muscular dystrophy (CMD) is a rare, inherited neuromuscular disease characterized by progressive muscle weakness, thoracic insufficiency, and ultimately respiratory failure. Adherence to respiratory therapies in children with neuromuscular disorders is unknown. This study examined the multimodal assessment of adherence and barriers to 15 min, twice daily hyperinsufflation in children with CMD. Adherence was hypothesized to be greater than 50% and discomfort, embarrassment, and difficulty finding time were hypothesized to be barriers. METHODS Participants included 18 children with CMD. Personalized hyperinsufflation settings were determined based on pressure-volume measurements at each study visit. Adherence was measured by a daily phone diary (DPD) and by electronic data download from the hyperinsufflation device. The DPD was conducted twice over a 48-hr period to capture a weekend and weekday, with the goal being 60 min of hyperinsufflation over the 48 hr (100% adherence). The hyperinsufflation objective electronic data reflected daily use of hyperinsufflation for the same 48-hr period. Data from DPD and the corresponding hyperinsufflation device data were used for analyses. RESULTS Adherence to hyperinsufflation was 40% via DPD and 44% for electronic data, with strong convergence between methods (r = 0.75, P < 0.001). Surprisingly, 53% of participants reported no barriers despite low adherence. Social distractions and family obligations were identified as barriers. There were no differences in adherence between those who did and did not endorse barriers to hyperinsufflation (DPD: t(13) = 0.44, P = n.s.; hyperinsufflation device: t(13) = -0.23, P = n.s.). CONCLUSION Adherence to hyperinsufflation is a significant problem in children with CMD and families have difficulty identifying adherence barriers. An important next step is to encourage open dialog around adherence barriers and promote adherence behaviors via intervention. Pediatr Pulmonol. 2017; 52:939-945. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- John E Pascoe
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Division of Behavioral Medicine and Clinical Psychology, Center for Treatment Adherence and Self-Management, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Hemant Sawnani
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Oscar H Mayer
- Division of Pulmonary Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Keith McConnell
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Joseph M McDonough
- Division of Pulmonary Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Cynthia White
- Division of Respiratory Therapy, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | | - Raouf S Amin
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Avani C Modi
- Division of Behavioral Medicine and Clinical Psychology, Center for Treatment Adherence and Self-Management, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
49
|
Kassardjian CD, Amato AA, Boon AJ, Childers MK, Klein CJ. The utility of genetic testing in neuromuscular disease: A consensus statement from the AANEM on the clinical utility of genetic testing in diagnosis of neuromuscular disease. Muscle Nerve 2017; 54:1007-1009. [PMID: 27554703 DOI: 10.1002/mus.25387] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2016] [Indexed: 01/16/2023]
Abstract
INTRODUCTION The aim of this consensus statement is to provide a recommendation from AANEM experts on the clinical utility of genetic testing. It is not meant to recommend or endorse any specific genetic testing methodology or algorithm. METHODS The AANEM Professional Practice Committee reached a consensus based on expert opinion on the utility of genetic testing in neuromuscular diseases and made recommendations on factors that physicians and patients should consider when deciding whether to proceed with such testing. RESULTS Despite the costs of genetic testing, these tests can be both valuable and beneficial in the diagnosis and treatment of neuromuscular diseases in many situations. CONCLUSIONS The AANEM believes that performing genetic testing to arrive at a specific molecular diagnosis is a critical step in providing high-quality care to neuromuscular patients. The cost of testing should not be a deterrent, as there are important clinical, safety, psychosocial, and research benefits. Muscle Nerve 54: 1007-1009, 2016.
Collapse
Affiliation(s)
- Charles D Kassardjian
- Policy Department, American Association of Neuromuscular & Electrodiagnostic Medicine, Rochester, Minnesota, USA
| | - Anthony A Amato
- Policy Department, American Association of Neuromuscular & Electrodiagnostic Medicine, Rochester, Minnesota, USA
| | - Andrea J Boon
- Policy Department, American Association of Neuromuscular & Electrodiagnostic Medicine, Rochester, Minnesota, USA
| | - Martin K Childers
- Policy Department, American Association of Neuromuscular & Electrodiagnostic Medicine, Rochester, Minnesota, USA
| | - Christopher J Klein
- Policy Department, American Association of Neuromuscular & Electrodiagnostic Medicine, Rochester, Minnesota, USA
| | -
- Policy Department, American Association of Neuromuscular & Electrodiagnostic Medicine, Rochester, Minnesota, USA
| |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW To summarize current literature describing the respiratory complications of neuromuscular disease (NMD) and the effect of respiratory interventions and to explore new gene therapies for patients with NMD. RECENT FINDINGS Measurements of respiratory function focus on vital capacity and maximal inspiratory and expiratory pressure and show decline over time. Management of respiratory complications includes lung volume recruitment, mechanical insufflation-exsufflation, chest physiotherapy and assisted ventilation. Lung volume recruitment can slow the progression of lung restriction. New gene-specific therapies for Duchenne muscular dystrophy and spinal muscular atrophy have the potential to preserve respiratory function longitudinally. However, the long-term therapeutic benefit remains unknown. SUMMARY Although NMDs are heterogeneous, many lead to progressive muscle weakness that compromises the function of the respiratory system including upper airway tone, cough and secretion clearance and chest wall support. Respiratory therapies augment or support the normal function of these components of the respiratory system. From a respiratory perspective, the new mutation and gene-specific therapies for NMD are likely to confer long-term therapeutic benefit. More sensitive and standard tools to assess respiratory function longitudinally are needed to monitor respiratory complications in children with NMD, particularly the youngest patients.
Collapse
|