1
|
Wang B, Gannon M, Pattanayak R, Scholz K, Pair FS, Stone WJ, Ekkatine R, Liu Z, Yacoubian TA. 14-3-3θ phosphorylation exacerbates alpha-synuclein aggregation and toxicity. Neurobiol Dis 2025; 206:106801. [PMID: 39805369 DOI: 10.1016/j.nbd.2025.106801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/23/2024] [Accepted: 01/09/2025] [Indexed: 01/16/2025] Open
Abstract
Aggregation of alpha-synuclein (αsyn) plays an integral role in Parkinson's disease (PD) and Dementia with Lewy bodies (DLB). 14-3-3θ is a highly expressed brain protein with chaperone-like activity that regulates αsyn folding. 14-3-3θ overexpression reduces αsyn aggregation, transmission between cells, and neuronal loss, while 14-3-3 inhibition promotes αsyn pathology. We previously observed increased 14-3-3θ phosphorylation at serine 232 in human PD and DLB brains. Here we examine 14-3-3θ phosphorylation's effects on αsyn aggregation and toxicity. Using a paracrine αsyn model, we found that the non-phosphorylatable S232A 14-3-3θ protected while the phosphomimetic S232D 14-3-3θ failed to protect against αsyn paracrine toxicity. The S232A mutant reduced oligomerization of released αsyn while the S232D mutant did not. The S232D mutant showed significant reduction in αsyn binding compared to wildtype or S232A 14-3-3θ. Using knock-in mouse models expressing the S232A or S232D mutation in the cortex and hippocampus, we examined the impact of S232 phosphorylation on αsyn aggregation in the αsyn preformed fibril (PFF) model. Primary neurons from S232D mice showed increased αsyn inclusion formation compared to neurons from Cre control mice upon PFF treatment. In contrast, neurons from S232A mice showed reduced αsyn inclusions. αSyn PFF injection into the dorsolateral striatum induced higher αsyn inclusion numbers in the sensorimotor cortex of S232D mice compared to Cre control mice. In conclusion, 14-3-3θ phosphorylation at S232 interrupts the ability of 14-3-3θ to bind and regulate αsyn aggregation. Increased 14-3-3θ phosphorylation observed in human PD and DLB likely accelerates neurodegeneration in these disorders.
Collapse
Affiliation(s)
- Bing Wang
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America
| | - Mary Gannon
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America
| | - Rudradip Pattanayak
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America
| | - Kasandra Scholz
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America
| | - Frank Sanders Pair
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America
| | - William J Stone
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America
| | - Roschongporn Ekkatine
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America
| | - Zhongyu Liu
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America
| | - Talene A Yacoubian
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America.
| |
Collapse
|
2
|
Zalon AJ, Quiriconi DJ, Pitcairn C, Mazzulli JR. α-Synuclein: Multiple pathogenic roles in trafficking and proteostasis pathways in Parkinson's disease. Neuroscientist 2024; 30:612-635. [PMID: 38420922 PMCID: PMC11358363 DOI: 10.1177/10738584241232963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Parkinson's disease (PD) is a common age-related neurodegenerative disorder characterized by the loss of dopaminergic neurons in the midbrain. A hallmark of both familial and sporadic PD is the presence of Lewy body inclusions composed mainly of aggregated α-synuclein (α-syn), a presynaptic protein encoded by the SNCA gene. The mechanisms driving the relationship between α-syn accumulation and neurodegeneration are not completely understood, although recent evidence indicates that multiple branches of the proteostasis pathway are simultaneously perturbed when α-syn aberrantly accumulates within neurons. Studies from patient-derived midbrain cultures that develop α-syn pathology through the endogenous expression of PD-causing mutations show that proteostasis disruption occurs at the level of synthesis/folding in the endoplasmic reticulum (ER), downstream ER-Golgi trafficking, and autophagic-lysosomal clearance. Here, we review the fundamentals of protein transport, highlighting the specific steps where α-syn accumulation may intervene and the downstream effects on proteostasis. Current therapeutic efforts are focused on targeting single pathways or proteins, but the multifaceted pathogenic role of α-syn throughout the proteostasis pathway suggests that manipulating several targets simultaneously will provide more effective disease-modifying therapies for PD and other synucleinopathies.
Collapse
Affiliation(s)
- Annie J Zalon
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Drew J Quiriconi
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Caleb Pitcairn
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Joseph R Mazzulli
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
3
|
Flores N, Rivillas-Acevedo L, Caballero J, Melo F, Caballero L, Areche C, Fuentealba D, Aguilar F, Cornejo A. Rosmarinic acid turned α-syn oligomers into non-toxic species preserving microtubules in Raw 264.7 cells. Bioorg Chem 2024; 151:107669. [PMID: 39067421 DOI: 10.1016/j.bioorg.2024.107669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder worldwide, and the therapeutic is focused on several approaches including the inhibition of fibril formation by small compounds, avoiding the formation of cytotoxic oligomers. Thus, we decided to explore the capacity of compounds carrying catechol moieties to inhibit the progression of α-synuclein. Overall, the compounds rosmarinic acid (1), carnosic acid (2), carnosol (3), epiisorosmanol (4), and rosmanol (5) avoid the progression of fibril formation assessed by Thiofavine T (ThT), and atomic force microscopy images showed that morphology is influenced for the actions of compounds over fibrillization. Moreover, ITC experiments showed a Kd varying from 28 to 51 µM, the ΔG showed that the reaction between compounds and α-syn is spontaneous, and ΔH is associated with an exothermic reaction, suggesting the interactions of hydrogen bonds among compounds and α-syn. Docking experiments reinforce this idea showing the intermolecular interactions are mostly hydrogen bonding within the sites 2, 9, and 3/13 of α-synuclein, and compounds 1 and 5. Thus, compound 1, rosmarinic acid, interestingly interacts better with site 9 through catechol and Lysines. In cultured Raw 264. 7 cells, the presence of compounds showed that most of them can promote cell differentiation, especially rosmarinic acid, and rosmanol, both preserving tubulin cytoskeleton. However, once we evaluated whether or not the aggregates pre-treated with compounds could prevent the disruption of microtubules of Raw 264.7 cells, only pre-treated aggregates with rosmarinic acid prevented the disruption of the cytoskeleton. Altogether, we showed that especially rosmarinic acid not only inhibits α-syn but stabilizes the remaining aggregates turning them into not-toxic to Raw 264.7 cells suggesting a main role in cell survival and antigen processing in response to external α-syn aggregates.
Collapse
Affiliation(s)
- Nicolás Flores
- Departamento de Tecnología Médica, Universidad Andrés Bello, Echaurren 183, Santiago, Chile
| | - Lina Rivillas-Acevedo
- Centro de Investigación En Dinámica Celular, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, C.P. 60209 Cuernavaca, Morelos. México
| | - Julio Caballero
- Center for Bioinformatics and Molecular Modelling, Faculty of Engineering, University of Talca 2 Norte 685, 3465548 Talca, Chile
| | - Francisco Melo
- Departamento de Física. Universidad de Santiago Avenida Ecuador 3493, 9170124, Chile; Center for Soft Matter Research, SMAT-C, Usach, Avenida Bernardo ÓHiggins 3363 Estación Central, Santiago, Chile
| | - Leonardo Caballero
- Departamento de Física. Universidad de Santiago Avenida Ecuador 3493, 9170124, Chile; Center for Soft Matter Research, SMAT-C, Usach, Avenida Bernardo ÓHiggins 3363 Estación Central, Santiago, Chile
| | - Carlos Areche
- Department of Chemistry, Faculty of Sciences., University of Chile, Las Palmeras 3425, Ñuñoa, 7800003 Santiago, Chile
| | - Denis Fuentealba
- Laboratorio de Química Supramolecular Y Fotobiología, Departamento de Química Física, Escuela DeQuímica, Facultad de Química Y de Farmacia, Pontificia Universidad Católica de Chile Macul, 7820436 Santiago, Chile
| | - Felipe Aguilar
- Departamento de Ciencias Naturales Y Tecnología, Universidad de Aysén, Obispo Vielmo 62, Coyhaique, Chile
| | - Alberto Cornejo
- Departamento de Tecnología Médica, Universidad Andrés Bello, Echaurren 183, Santiago, Chile.
| |
Collapse
|
4
|
Hrabos D, Poggiolini I, Civitelli L, Galli E, Esapa C, Saarma M, Lindholm P, Parkkinen L. Unfolded protein response markers Grp78 and eIF2alpha are upregulated with increasing alpha-synuclein levels in Lewy body disease. Neuropathol Appl Neurobiol 2024; 50:e12999. [PMID: 39036837 DOI: 10.1111/nan.12999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/23/2024]
Abstract
AIMS Endoplasmic reticulum stress followed by the unfolded protein response is one of the cellular mechanisms contributing to the progression of α-synuclein pathology in Parkinson's disease and other Lewy body diseases. We aimed to investigate the activation of endoplasmic reticulum stress and its correlation with α-synuclein pathology in human post-mortem brain tissue. METHODS We analysed brain tissue from 45 subjects-14 symptomatic patients with Lewy body disease, 19 subjects with incidental Lewy body disease, and 12 healthy controls. The analysed brain regions included the medulla, pons, midbrain, striatum, amygdala and entorhinal, temporal, frontal and occipital cortex. We analysed activation of endoplasmic reticulum stress via levels of the unfolded protein response-related proteins (Grp78, eIF2α) and endoplasmic reticulum stress-regulating neurotrophic factors (MANF, CDNF). RESULTS We showed that regional levels of two endoplasmic reticulum-localised neurotrophic factors, MANF and CDNF, did not change in response to accumulating α-synuclein pathology. The concentration of MANF negatively correlated with age in specific regions. eIF2α was upregulated in the striatum of Lewy body disease patients and correlated with increased α-synuclein levels. We found the upregulation of chaperone Grp78 in the amygdala and nigral dopaminergic neurons of Lewy body disease patients. Grp78 levels in the amygdala strongly correlated with soluble α-synuclein levels. CONCLUSIONS Our data suggest a strong but regionally specific change in Grp78 and eIF2α levels, which positively correlates with soluble α-synuclein levels. Additionally, MANF levels decreased in dopaminergic neurons in the substantia nigra. Our research suggests that endoplasmic reticulum stress activation is not associated with Lewy pathology but rather with soluble α-synuclein concentration and disease progression.
Collapse
Affiliation(s)
- Dominik Hrabos
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
- Department of Clinical and Molecular Pathology, Palacky University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
- Department of Neurology, Palacky University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| | - Ilaria Poggiolini
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
| | - Livia Civitelli
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
| | - Emilia Galli
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Chris Esapa
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Science and Innovation Campus, Didcot, UK
| | - Mart Saarma
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Päivi Lindholm
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Laura Parkkinen
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Anwar MM, Pérez-Martínez L, Pedraza-Alva G. Exploring the Significance of Microglial Phenotypes and Morphological Diversity in Neuroinflammation and Neurodegenerative Diseases: From Mechanisms to Potential Therapeutic Targets. Immunol Invest 2024; 53:891-946. [PMID: 38836373 DOI: 10.1080/08820139.2024.2358446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Studying various microglial phenotypes and their functions in neurodegenerative diseases is crucial due to the intricate nature of their phenomics and their vital immunological role. Microglia undergo substantial phenomic changes, encompassing morphological, transcriptional, and functional aspects, resulting in distinct cell types with diverse structures, functions, properties, and implications. The traditional classification of microglia as ramified, M1 (proinflammatory), or M2 (anti-inflammatory) phenotypes is overly simplistic, failing to capture the wide range of recently identified microglial phenotypes in various brain regions affected by neurodegenerative diseases. Altered and activated microglial phenotypes deviating from the typical ramified structure are significant features of many neurodegenerative conditions. Understanding the precise role of each microglial phenotype is intricate and sometimes contradictory. This review specifically focuses on elucidating recent modifications in microglial phenotypes within neurodegenerative diseases. Recognizing the heterogeneity of microglial phenotypes in diseased states can unveil novel therapeutic strategies for targeting microglia in neurodegenerative diseases. Moreover, the exploration of the use of healthy isolated microglia to mitigate disease progression has provided an innovative perspective. In conclusion, this review discusses the dynamic landscape of mysterious microglial phenotypes, emphasizing the need for a nuanced understanding to pave the way for innovative therapeutic strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Mai M Anwar
- Department of Biochemistry, National Organization for Drug Control and Research (NODCAR)/Egyptian Drug Authority (EDA), Cairo, Egypt
| | - Leonor Pérez-Martínez
- Neuroimmunobiology Laboratory, Department of Molecular Medicine and Bioprocesses, Institute of Biotechnology, National Autonomous University of Mexico, Cuernavaca, Morelos, Mexico
| | - Gustavo Pedraza-Alva
- Neuroimmunobiology Laboratory, Department of Molecular Medicine and Bioprocesses, Institute of Biotechnology, National Autonomous University of Mexico, Cuernavaca, Morelos, Mexico
| |
Collapse
|
6
|
Scholz K, Pattanayak R, Roschonporn E, Pair FS, Nobles A, Yacoubian TA. Rab27b promotes lysosomal function and alpha-synuclein clearance in neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599785. [PMID: 38979346 PMCID: PMC11230153 DOI: 10.1101/2024.06.20.599785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Alpha-synuclein (αsyn) is the key pathogenic protein implicated in synucleinopathies including Parkinson's Disease (PD) and Dementia with Lewy Bodies (DLB). In these diseases, αsyn is thought to spread between cells where it accumulates and induces pathology; however, mechanisms that drive its propagation or aggregation are poorly understood. We have previously reported that the small GTPase Rab27b is elevated in human PD and DLB and that it can mediate the autophagic clearance and toxicity of αsyn in a paracrine αsyn cell culture neuronal model. Here, we expanded our previous work and further characterized a role for Rab27b in neuronal lysosomal processing and αsyn clearance. We found that Rab27b KD in this αsyn inducible neuronal model resulted in lysosomal dysfunction and increased αsyn levels in lysosomes. Similar lysosomal proteolytic defects and enzymatic dysfunction were observed in both primary neuronal cultures and brain lysates from Rab27b knockout (KO) mice. αSyn aggregation was exacerbated in Rab27b KO neurons upon treatment with αsyn preformed fibrils. We found no changes in lysosomal counts or lysosomal pH in either model, but we did identify defects in acidic vesicle trafficking in Rab27b KO primary neurons which may drive lysosomal dysfunction and promote αsyn aggregation. Rab27b OE enhanced lysosomal activity and reduced insoluble αsyn accumulation. Finally we found elevated Rab27b levels in human postmortem incidental Lewy Body Disease (iLBD) subjects relative to healthy controls. These data suggest a role for Rab27b in neuronal lysosomal activity and identify it as a potential therapeutic target in synucleinopathies.
Collapse
|
7
|
Ponzini E. Tear biomarkers. Adv Clin Chem 2024; 120:69-115. [PMID: 38762243 DOI: 10.1016/bs.acc.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
An extensive exploration of lacrimal fluid molecular biomarkers in understanding and diagnosing a spectrum of ocular and systemic diseases is presented. The chapter provides an overview of lacrimal fluid composition, elucidating the roles of proteins, lipids, metabolites, and nucleic acids within the tear film. Pooled versus single-tear analysis is discussed to underline the benefits and challenges associated with both approaches, offering insights into optimal strategies for tear sample analysis. Subsequently, an in-depth analysis of tear collection methods is presented, with a focus on Schirmer's test strips and microcapillary tubes methods. Alternative tear collection techniques are also explored, shedding light on their applicability and advantages. Variability factors, including age, sex, and diurnal fluctuations, are examined in the context of their impact on tear biomarker analysis. The main body of the chapter is dedicated to discussing specific biomarkers associated with ocular discomfort and a wide array of ocular diseases. From dry eye disease and thyroid-associated ophthalmopathy to keratoconus, age-related macular degeneration, diabetic retinopathy, and glaucoma, the intricate relationship between molecular biomarkers and these conditions is thoroughly dissected. Expanding beyond ocular pathologies, the chapter explores the applicability of tear biomarkers in diagnosing systemic diseases such as multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer's disease, Parkinson's disease, and cancer. This broader perspective underscores the potential of lacrimal fluid analysis in offering non-invasive diagnostic tools for conditions with far-reaching implications.
Collapse
Affiliation(s)
- Erika Ponzini
- Department of Materials Science, University of Milano Bicocca, Milan, Italy; COMiB Research Center, University of Milano Bicocca, Milan, Italy.
| |
Collapse
|
8
|
Orzari LO, Silva LRGE, de Freitas RC, Brazaca LC, Janegitz BC. Lab-made disposable screen-printed electrochemical sensors and immunosensors modified with Pd nanoparticles for Parkinson's disease diagnostics. Mikrochim Acta 2024; 191:76. [PMID: 38172448 DOI: 10.1007/s00604-023-06158-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024]
Abstract
A new conductive ink based on the addition of carbon black to a poly(vinyl alcohol) matrix is developed and investigated for electrochemical sensing and biosensing applications. The produced devices were characterized using morphological and electrochemical techniques and modified with Pd nanoparticles to enhance electrical conductivity and reaction kinetics. With the aid of chemometrics, the parameters for metal deposition were investigated and the sensor was applied to the determination of Parkinson's disease biomarkers, specifically epinephrine and α-synuclein. A linear behavior was obtained in the range 0.75 to 100 μmol L-1 of the neurotransmitter, and the device displayed a limit of detection (LOD) of 0.051 μmol L-1. The three-electrode system was then tested using samples of synthetic cerebrospinal fluid. Afterward, the device was modified with specific antibodies to quantify α-synuclein using electrochemical impedance spectroscopy. In phosphate buffer, a linear range was obtained for α-synuclein concentrations from 1.5 to 15 μg mL-1, with a calculated LOD of 0.13 μg mL-1. The proposed immunosensor was also applied to blood serum samples, and, in this case, the linear range was observed from 6.0 to 100.5 μg mL-1 of α-synuclein, with a LOD = 1.3 µg mL-1. Both linear curves attend the range for the real diagnosis, demonstrating its potential application to complex matrices.
Collapse
Affiliation(s)
- Luiz Otávio Orzari
- Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, Araras, SP, 13600-970, Brazil
- Department of Physics, Chemistry and Mathematics, Federal University of São Carlos, Sorocaba, SP, 18052-780, Brazil
| | - Luiz Ricardo Guterres E Silva
- Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, Araras, SP, 13600-970, Brazil
- Department of Physics, Chemistry and Mathematics, Federal University of São Carlos, Sorocaba, SP, 18052-780, Brazil
| | - Rafaela Cristina de Freitas
- Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, Araras, SP, 13600-970, Brazil
- Department of Physics, Chemistry and Mathematics, Federal University of São Carlos, Sorocaba, SP, 18052-780, Brazil
| | - Laís Canniatti Brazaca
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, 13566-590, Brazil
| | - Bruno Campos Janegitz
- Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, Araras, SP, 13600-970, Brazil.
| |
Collapse
|
9
|
Bou Ghanem A, Hussayni Y, Kadbey R, Ratel Y, Yehya S, Khouzami L, Ghadieh HE, Kanaan A, Azar S, Harb F. Exploring the complexities of 1C metabolism: implications in aging and neurodegenerative diseases. Front Aging Neurosci 2024; 15:1322419. [PMID: 38239489 PMCID: PMC10794399 DOI: 10.3389/fnagi.2023.1322419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
The intricate interplay of one-carbon metabolism (OCM) with various cellular processes has garnered substantial attention due to its fundamental implications in several biological processes. OCM serves as a pivotal hub for methyl group donation in vital biochemical reactions, influencing DNA methylation, protein synthesis, and redox balance. In the context of aging, OCM dysregulation can contribute to epigenetic modifications and aberrant redox states, accentuating cellular senescence and age-associated pathologies. Furthermore, OCM's intricate involvement in cancer progression is evident through its capacity to provide essential one-carbon units crucial for nucleotide synthesis and DNA methylation, thereby fueling uncontrolled cell proliferation and tumor development. In neurodegenerative disorders like Alzheimer's and Parkinson's, perturbations in OCM pathways are implicated in the dysregulation of neurotransmitter synthesis and mitochondrial dysfunction, contributing to disease pathophysiology. This review underscores the profound impact of OCM in diverse disease contexts, reinforcing the need for a comprehensive understanding of its molecular complexities to pave the way for targeted therapeutic interventions across inflammation, aging and neurodegenerative disorders.
Collapse
Affiliation(s)
- Ayman Bou Ghanem
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Yaman Hussayni
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Raghid Kadbey
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Yara Ratel
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Shereen Yehya
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Lara Khouzami
- College of Natural and Health Sciences, Zayed University, Dubai, United Arab Emirates
| | - Hilda E. Ghadieh
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
- AUB Diabetes, American University of Beirut Medical Center, Beirut, Lebanon
| | - Amjad Kanaan
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Sami Azar
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Frederic Harb
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
- AUB Diabetes, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
10
|
Yamakado H, Takahashi R. Experimental Animal Models of Prodromal Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2024; 14:S369-S379. [PMID: 38427504 PMCID: PMC11492006 DOI: 10.3233/jpd-230393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 03/03/2024]
Abstract
There is an estimated 35-45% loss of striatal dopamine at the time of diagnosis of Parkinson's disease (PD), and cases clinically diagnosed in the early stages may already be pathologically in advanced stages. Recent large-scale clinical trials of disease-modifying therapies (DMT) also suggest the necessity of targeting patients at earlier stages of the disease. From this perspective, the prodromal phase of PD is currently the focus of attention, emphasizing the need for a prodromal mouse model that accurately reflects the pathophysiology, along with early biomarkers. To establish prodromal animal model of PD with high face validity that reflects the disease state, the model must possess high construct validity that accurately incorporates clinical and pathological features in the prodromal phase. Furthermore, as a preclinical model of DMT, the model must possess high predictive validity to accurately evaluate the response to intervention. This review provides an overview of animal models which reflect the characteristics of prodromal PD, including alpha-synuclein (aS) accumulation and associated early non-motor symptoms, with a focus on the aS propagation model and genetic model. In addition, we discuss the challenges associated with these models. The genetic model often fails to induce motor symptoms, while aS propagation models skip the crucial step of initial aS aggregate formation, thereby not fully replicating the entire natural course of the disease. Identifying factors that induce the transition from prodromal to symptomatic phase is important as a preclinical model for DMT to prevent or delay the onset of the disease.
Collapse
Affiliation(s)
- Hodaka Yamakado
- Department of Therapeutics for Multiple System Atrophy, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
11
|
Burns J, Buck AC, D’ Souza S, Dube A, Bardien S. Nanophytomedicines as Therapeutic Agents for Parkinson's Disease. ACS OMEGA 2023; 8:42045-42061. [PMID: 38024675 PMCID: PMC10652730 DOI: 10.1021/acsomega.3c04862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/11/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023]
Abstract
Phytochemicals are promising therapeutics for various neurodegenerative disorders, including Parkinson's disease (PD). However, their efficacy, pharmacokinetic properties, and penetration across the blood-brain barrier can be improved using delivery systems such as nanoparticles. We reviewed recently published work in which nanoparticles were used to deliver phytochemicals toward PD treatment. The studies show that nanoparticles not only improve the pharmacological effect of the phytochemicals but also enable targeting to the brain and crossing of the blood-brain barrier. Various ligands were added to the nanoparticles to improve blood-brain barrier transportation. The promising findings from the published studies reveal that more research into nanophytomedicine approaches as therapeutic targets for PD is warranted, especially since they have the potential to protect against key features of PD, including α-synuclein aggregation, mitochondrial dysfunction, and dopaminergic neuronal death. Furthermore, future directions should involve smart designs to tailor nanoparticles for improved therapeutic delivery by modifying their features, such as architecture, surface and material properties, targeting ligands, and responsiveness.
Collapse
Affiliation(s)
- Jessica Burns
- Division
of Molecular Biology and Human Genetics, Faculty of Medicine and Health
Sciences, Stellenbosch University, Stellenbosch, Cape Town 7600, South Africa
| | - Amy Claire Buck
- Division
of Molecular Biology and Human Genetics, Faculty of Medicine and Health
Sciences, Stellenbosch University, Stellenbosch, Cape Town 7600, South Africa
| | - Sarah D’ Souza
- School
of Pharmacy, University of the Western Cape, Bellville, Cape Town 7535, South Africa
| | - Admire Dube
- School
of Pharmacy, University of the Western Cape, Bellville, Cape Town 7535, South Africa
| | - Soraya Bardien
- Division
of Molecular Biology and Human Genetics, Faculty of Medicine and Health
Sciences, Stellenbosch University, Stellenbosch, Cape Town 7600, South Africa
- South
African Medical Research Council/Stellenbosch University Genomics
of Brain Disorders Research Unit, Stellenbosch
University, Stellenbosch, Cape Town 7600, South Africa
| |
Collapse
|
12
|
Berg SZ, Berg J. Melanin: a unifying theory of disease as exemplified by Parkinson's, Alzheimer's, and Lewy body dementia. Front Immunol 2023; 14:1228530. [PMID: 37841274 PMCID: PMC10570809 DOI: 10.3389/fimmu.2023.1228530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023] Open
Abstract
Melanin, a ubiquitous dark pigment, plays important roles in the immune system, including scavenging reactive oxygen species formed in response to ultraviolet radiation absorption, absorbing metals, thermal regulation, drug uptake, innate immune system functions, redox, and energy transduction. Many tissue types, including brain, heart, arteries, ovaries, and others, contain melanin. Almost all cells contain precursors to melanin. A growing number of diseases in which there is a loss of melanin and/or neuromelanin are increasingly thought to have infectious etiologies, for example, Alzheimer's disease (AD), Parkinson's disease (PD), Lewy Body Dementia (LBD), and vitiligo. AD, PD, LBD, and vitiligo have been linked with herpesvirus, which enters melanosomes and causes apoptosis, and with gut dysbiosis and inflammation. Herpesvirus is also linked with gut dysbiosis and inflammation. We theorize that under normal healthy states, melanin retains some of the energy it absorbs from electromagnetic radiation, which is then used to fuel cells, and energy from ATP is used to compliment that energy supply. We further theorize that loss of melanin reduces the energy supply of cells, which in the case of AD, PD, and LBD results in an inability to sustain immune system defenses and remove the plaques associated with the disease, which appear to be part of the immune system's attempt to eradicate the pathogens seen in these neurodegenerative diseases. In addition, in an attempt to explain why removing these plaques does not result in improvements in cognition and mood and why cognitions and moods in these individuals have ebbs and flows, we postulate that it is not the plaques that cause the cognitive symptoms but, rather, inflammation in the brain resulting from the immune system's response to pathogens. Our theory that energy retained in melanin fuels cells in an inverse relationship with ATP is supported by studies showing alterations in ATP production in relationship to melanin levels in melanomas, vitiligo, and healthy cells. Therefore, alteration of melanin levels may be at the core of many diseases. We propose regulating melanin levels may offer new avenues for treatment development.
Collapse
Affiliation(s)
- Stacie Z. Berg
- Department of Translational Biology, William Edwards LLC, Baltimore, MD, United States
| | - Jonathan Berg
- Department of Translational Biology, William Edwards LLC, Baltimore, MD, United States
| |
Collapse
|
13
|
Tahavvori A, Gargari MK, Yazdani Y, Mamalo AS, Beilankouhi EAV, Valilo M. Involvement of antioxidant enzymes in Parkinson's disease. Pathol Res Pract 2023; 249:154757. [PMID: 37598566 DOI: 10.1016/j.prp.2023.154757] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/22/2023]
Abstract
Similar to many other diseases, the etiology of Parkinson's disease (PD) is multifactorial and includes both genetic and environmental factors. Exposure to pesticides and the production of reactive oxygen species (ROS) in the body, mainly in electron transporter complexes 1 and 2 in the inner mitochondrial membrane, are two primary environmental risk factors for this disease. Increased accumulation of ROS and oxidative stress (OS) trigger a series of reactions that can lead to the aggregation of misfolded proteins, DNA damage, autophagy, and apoptosis, which may adversely affect cell function. These processes cause diseases such as coronary artery disease (CAD), Alzheimer's disease (AD), and PD. As indicated in previous studies, ROS is considered a critical regulator in the progression of PD. The human body contains several antioxidant molecules, such as vitamin A, vitamin C, bilirubin, and uric acid, as well as antioxidant enzymes including paraoxonase (PON), glutathione reductase (GR), glutathione peroxidase (GPx), catalase (CAT), and superoxide dismutase (SOD). Therefore, based on the canonical function of the antioxidant enzymes in PD, In the present review, we attempted to examine the function of antioxidant enzymes in PD.
Collapse
Affiliation(s)
- Amir Tahavvori
- M, D, Internal Department, Urmia University of Medical Sciences, Urmia, Iran
| | - Morad Kohandel Gargari
- Imamreza Hospital, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yalda Yazdani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Soleimani Mamalo
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Mohammad Valilo
- Department of Biochemistry, Urmia University of Medical Sciences Faculty of Medicine, Urmia, Iran.
| |
Collapse
|
14
|
Kuzkina A, Rößle J, Seger A, Panzer C, Kohl A, Maltese V, Musacchio T, Blaschke SJ, Tamgüney G, Kaulitz S, Rak K, Scherzad A, Zimmermann PH, Klussmann JP, Hackenberg S, Volkmann J, Sommer C, Sommerauer M, Doppler K. Combining skin and olfactory α-synuclein seed amplification assays (SAA)-towards biomarker-driven phenotyping in synucleinopathies. NPJ Parkinsons Dis 2023; 9:79. [PMID: 37248217 DOI: 10.1038/s41531-023-00519-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 05/05/2023] [Indexed: 05/31/2023] Open
Abstract
Seed amplification assays (SAA) are becoming commonly used in synucleinopathies to detect α-synuclein aggregates. Studies in Parkinson's disease (PD) and isolated REM-sleep behavior disorder (iRBD) have shown a considerably lower sensitivity in the olfactory epithelium than in CSF or skin. To get an insight into α-synuclein (α-syn) distribution within the nervous system and reasons for low sensitivity, we compared SAA assessment of nasal brushings and skin biopsies in PD (n = 27) and iRBD patients (n = 18) and unaffected controls (n = 30). α-syn misfolding was overall found less commonly in the olfactory epithelium than in the skin, which could be partially explained by the nasal brushing matrix exerting an inhibitory effect on aggregation. Importantly, the α-syn distribution was not uniform: there was a higher deposition of misfolded α-syn across all sampled tissues in the iRBD cohort compared to PD (supporting the notion of RBD as a marker of a more malignant subtype of synucleinopathy) and in a subgroup of PD patients, misfolded α-syn was detectable only in the olfactory epithelium, suggestive of the recently proposed brain-first PD subtype. Assaying α-syn of diverse origins, such as olfactory (part of the central nervous system) and skin (peripheral nervous system), could increase diagnostic accuracy and allow better stratification of patients.
Collapse
Affiliation(s)
- A Kuzkina
- University Hospital Würzburg (UKW), Department of Neurology, Josef-Schneider-Str. 11, 97080, Würzburg, Germany.
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
- Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital, Boston, MA, 02115, USA.
| | - J Rößle
- University Hospital Würzburg (UKW), Department of Neurology, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - A Seger
- University Hospital Cologne, Department of Neurology, Faculty of Medicine, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - C Panzer
- University Hospital Würzburg (UKW), Department of Neurology, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - A Kohl
- University Hospital Würzburg (UKW), Department of Neurology, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - V Maltese
- University Hospital Würzburg (UKW), Department of Neurology, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - T Musacchio
- University Hospital Würzburg (UKW), Department of Neurology, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - S J Blaschke
- University Hospital Cologne, Department of Neurology, Faculty of Medicine, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - G Tamgüney
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
- Institute of Biological Information Processing (Structural Biochemistry: IBI-7), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - S Kaulitz
- University Hospital Würzburg (UKW), Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - K Rak
- University Hospital Würzburg (UKW), Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - A Scherzad
- University Hospital Würzburg (UKW), Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - P H Zimmermann
- University of Cologne, Medical Faculty, Department of Otorhinolaryngology, Head and Neck Surgery, Kerpener Strasse 62, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University Hospital Cologne, Robert-Koch-Strasse 21, 50931, Cologne, Germany
| | - J P Klussmann
- University of Cologne, Medical Faculty, Department of Otorhinolaryngology, Head and Neck Surgery, Kerpener Strasse 62, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University Hospital Cologne, Robert-Koch-Strasse 21, 50931, Cologne, Germany
| | - S Hackenberg
- University Hospital Würzburg (UKW), Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
- RWTH Aachen University, Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Aachen, Germany
| | - J Volkmann
- University Hospital Würzburg (UKW), Department of Neurology, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - C Sommer
- University Hospital Würzburg (UKW), Department of Neurology, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - M Sommerauer
- University Hospital Cologne, Department of Neurology, Faculty of Medicine, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany
| | - K Doppler
- University Hospital Würzburg (UKW), Department of Neurology, Josef-Schneider-Str. 11, 97080, Würzburg, Germany.
| |
Collapse
|
15
|
Koeglsperger T, Rumpf SL, Schließer P, Struebing FL, Brendel M, Levin J, Trenkwalder C, Höglinger GU, Herms J. Neuropathology of incidental Lewy body & prodromal Parkinson's disease. Mol Neurodegener 2023; 18:32. [PMID: 37173733 PMCID: PMC10182593 DOI: 10.1186/s13024-023-00622-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a progressive neurodegenerative disorder associated with a loss of dopaminergic (DA) neurons. Despite symptomatic therapies, there is currently no disease-modifying treatment to halt neuronal loss in PD. A major hurdle for developing and testing such curative therapies results from the fact that most DA neurons are already lost at the time of the clinical diagnosis, rendering them inaccessible to therapy. Understanding the early pathological changes that precede Lewy body pathology (LBP) and cell loss in PD will likely support the identification of novel diagnostic and therapeutic strategies and help to differentiate LBP-dependent and -independent alterations. Several previous studies identified such specific molecular and cellular changes that occur prior to the appearance of Lewy bodies (LBs) in DA neurons, but a concise map of such early disease events is currently missing. METHODS Here, we conducted a literature review to identify and discuss the results of previous studies that investigated cases with incidental Lewy body disease (iLBD), a presumed pathological precursor of PD. RESULTS Collectively, our review demonstrates numerous cellular and molecular neuropathological changes occurring prior to the appearance of LBs in DA neurons. CONCLUSIONS Our review provides the reader with a summary of early pathological events in PD that may support the identification of novel therapeutic and diagnostic targets and aid to the development of disease-modifying strategies in PD.
Collapse
Affiliation(s)
- Thomas Koeglsperger
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany.
- Department of Translational Brain Research, DZNE-German Center for Neurodegenerative Diseases, 81377, Munich, Germany.
| | - Svenja-Lotta Rumpf
- Department of Translational Brain Research, DZNE-German Center for Neurodegenerative Diseases, 81377, Munich, Germany
| | - Patricia Schließer
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Felix L Struebing
- Department of Translational Brain Research, DZNE-German Center for Neurodegenerative Diseases, 81377, Munich, Germany
- Centre for Neuropathology and Prion Research, LMU Munich, Munich, Germany
| | - Matthias Brendel
- Department of Translational Brain Research, DZNE-German Center for Neurodegenerative Diseases, 81377, Munich, Germany
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany
| | - Johannes Levin
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany
- Clinical Study Unit, DZNE - German Center for Neurodegenerative Diseases, 81377, Munich, Germany
| | - Claudia Trenkwalder
- Paracelsus-Elena Klinik, Kassel, Germany
- Department of Neurosurgery, University Medical Center Goettingen, Goettingen, Germany
| | - Günter U Höglinger
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
- Department of Neurology, Medizinische Hochschule Hannover (MHH), Hannover, Germany
| | - Jochen Herms
- Department of Translational Brain Research, DZNE-German Center for Neurodegenerative Diseases, 81377, Munich, Germany
- Centre for Neuropathology and Prion Research, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany
| |
Collapse
|
16
|
Chahine LM, Merchant K, Siderowf A, Sherer T, Tanner C, Marek K, Simuni T. Proposal for a Biologic Staging System of Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2023; 13:297-309. [PMID: 37066922 DOI: 10.3233/jpd-225111] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
The Parkinson's disease (PD) research field has seen the advent of several promising biomarkers and a deeper understanding of the clinical features of the disease from the earliest stages of pathology to manifest disease. Despite progress, a biologically based PD staging system does not exist. Such staging would be a useful framework within which to model the disease, develop and validate biomarkers, guide therapeutic development, and inform clinical trials design. We propose that the presence of aggregated neuronal α-synuclein, dopaminergic neuron dysfunction/degeneration, and clinical signs and symptoms identifies a group of individuals that have Lewy body pathology, which in early stages manifests with what is now referred to as prodromal non-motor features and later stages with the manifestations of PD and related Lewy body diseases as defined by clinical diagnostic criteria. Based on the state of the field, we herein propose a definition and staging of PD based on biology. We present the biologic basis for such a staging system and review key assumptions and evidence that support the proposed approach. We identify gaps in knowledge and delineate crucial research priorities that will inform the ultimate integrated biologic staging system for PD.
Collapse
Affiliation(s)
- Lana M Chahine
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kalpana Merchant
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Andrew Siderowf
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Todd Sherer
- The Michael J Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Caroline Tanner
- Department of Neurology, Weill Institute for Neurosciences, University of San Francisco, San Francisco, CA, USA
| | | | - Tanya Simuni
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
17
|
Isik S, Yeman Kiyak B, Akbayir R, Seyhali R, Arpaci T. Microglia Mediated Neuroinflammation in Parkinson’s Disease. Cells 2023; 12:cells12071012. [PMID: 37048085 PMCID: PMC10093562 DOI: 10.3390/cells12071012] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Parkinson’s Disease (PD) is the second most common neurodegenerative disorder seen, especially in the elderly. Tremor, shaking, movement problems, and difficulty with balance and coordination are among the hallmarks, and dopaminergic neuronal loss in substantia nigra pars compacta of the brain and aggregation of intracellular protein α-synuclein are the pathological characterizations. Neuroinflammation has emerged as an involving mechanism at the initiation and development of PD. It is a complex network of interactions comprising immune and non-immune cells in addition to mediators of the immune response. Microglia, the resident macrophages in the CNS, take on the leading role in regulating neuroinflammation and maintaining homeostasis. Under normal physiological conditions, they exist as “homeostatic” but upon pathological stimuli, they switch to the “reactive state”. Pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes are used to classify microglial activity with each phenotype having its own markers and released mediators. When M1 microglia are persistent, they will contribute to various inflammatory diseases, including neurodegenerative diseases, such as PD. In this review, we focus on the role of microglia mediated neuroinflammation in PD and also signaling pathways, receptors, and mediators involved in the process, presenting the studies that associate microglia-mediated inflammation with PD. A better understanding of this complex network and interactions is important in seeking new therapies for PD and possibly other neurodegenerative diseases.
Collapse
Affiliation(s)
- Sevim Isik
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Uskudar University, Uskudar, Istanbul 34662, Turkey
- Stem Cell Research and Application Center (USKOKMER), Uskudar University, Uskudar, Istanbul 34662, Turkey
- Correspondence: ; Tel.: +90-216-400-2222 (ext. 2462)
| | - Bercem Yeman Kiyak
- Stem Cell Research and Application Center (USKOKMER), Uskudar University, Uskudar, Istanbul 34662, Turkey
- Department of Molecular Medicine, Institute of Hamidiye Health Sciences, University of Health Sciences, Uskudar, Istanbul 34668, Turkey
| | - Rumeysa Akbayir
- Stem Cell Research and Application Center (USKOKMER), Uskudar University, Uskudar, Istanbul 34662, Turkey
- Department of Molecular Biology, Institute of Science, Uskudar University, Uskudar, Istanbul 34662, Turkey
| | - Rama Seyhali
- Stem Cell Research and Application Center (USKOKMER), Uskudar University, Uskudar, Istanbul 34662, Turkey
- Department of Molecular Biology, Institute of Science, Uskudar University, Uskudar, Istanbul 34662, Turkey
| | - Tahire Arpaci
- Stem Cell Research and Application Center (USKOKMER), Uskudar University, Uskudar, Istanbul 34662, Turkey
- Department of Molecular Biology, Institute of Science, Uskudar University, Uskudar, Istanbul 34662, Turkey
| |
Collapse
|
18
|
Dong-Chen X, Yong C, Yang X, Chen-Yu S, Li-Hua P. Signaling pathways in Parkinson's disease: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8:73. [PMID: 36810524 PMCID: PMC9944326 DOI: 10.1038/s41392-023-01353-3] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 01/16/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide, and its treatment remains a big challenge. The pathogenesis of PD may be related to environmental and genetic factors, and exposure to toxins and gene mutations may be the beginning of brain lesions. The identified mechanisms of PD include α-synuclein aggregation, oxidative stress, ferroptosis, mitochondrial dysfunction, neuroinflammation, and gut dysbiosis. The interactions among these molecular mechanisms complicate the pathogenesis of PD and pose great challenges to drug development. At the same time, the diagnosis and detection of PD are also one of obstacles to the treatment of PD due to its long latency and complex mechanism. Most conventional therapeutic interventions for PD possess limited effects and have serious side effects, heightening the need to develop novel treatments for this disease. In this review, we systematically summarized the pathogenesis, especially the molecular mechanisms of PD, the classical research models, clinical diagnostic criteria, and the reported drug therapy strategies, as well as the newly reported drug candidates in clinical trials. We also shed light on the components derived from medicinal plants that are newly identified for their effects in PD treatment, with the expectation to provide the summary and outlook for developing the next generation of drugs and preparations for PD therapy.
Collapse
Affiliation(s)
- Xu Dong-Chen
- College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, P. R. China
| | - Chen Yong
- College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, P. R. China
| | - Xu Yang
- College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, P. R. China
| | - ShenTu Chen-Yu
- College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, P. R. China
| | - Peng Li-Hua
- College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, P. R. China. .,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, P. R. China.
| |
Collapse
|
19
|
Xie J, Xie L, Wei H, Li XJ, Lin L. Dynamic Regulation of DNA Methylation and Brain Functions. BIOLOGY 2023; 12:152. [PMID: 36829430 PMCID: PMC9952911 DOI: 10.3390/biology12020152] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
DNA cytosine methylation is a principal epigenetic mechanism underlying transcription during development and aging. Growing evidence suggests that DNA methylation plays a critical role in brain function, including neurogenesis, neuronal differentiation, synaptogenesis, learning, and memory. However, the mechanisms underlying aberrant DNA methylation in neurodegenerative diseases remain unclear. In this review, we provide an overview of the contribution of 5-methycytosine (5mC) and 5-hydroxylcytosine (5hmC) to brain development and aging, with a focus on the roles of dynamic 5mC and 5hmC changes in the pathogenesis of neurodegenerative diseases, particularly Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Identification of aberrant DNA methylation sites could provide potential candidates for epigenetic-based diagnostic and therapeutic strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Li Lin
- Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| |
Collapse
|
20
|
Mamelak M. The Treatment of Parkinson's Disease with Sodium Oxybate. Curr Mol Pharmacol 2023; 16:564-579. [PMID: 36330625 DOI: 10.2174/1874467216666221103121135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/06/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Abstract
Sodiun Oxybate (SO) has a number of attributes that may mitigate the metabolic stress on the substantia nigra pars compacta (SNpc) dopaminergic (DA) neurons in Parkinson's disease (PD). These neurons function at the borderline of energy sufficiency. SO is metabolized to succinate and supplies energy to the cell by generating ATP. SO is a GABAB agonist and, as such, also arrests the high energy requiring calcium pace-making activity of these neurons. In addition, blocking calcium entry impedes the synaptic release and subsequent neurotransmission of aggregated synuclein species. As DA neurons degenerate, a homeostatic failure exposes these neurons to glutamate excitotoxicity, which in turn accelerates the damage. SO inhibits the neuronal release of glutamate and blocks its agonistic actions. Most important, SO generates NADPH, the cell's major antioxidant cofactor. Excessive free radical production within DA neurons and even more so within activated microglia are early and key features of the degenerative process that are present long before the onset of motor symptoms. NADPH maintains cell glutathione levels and alleviates oxidative stress and its toxic consequences. SO, a histone deacetylase inhibitor also suppresses the expression of microglial NADPH oxidase, the major source of free radicals in Parkinson brain. The acute clinical use of SO at night has been shown to reduce daytime sleepiness and fatigue in patients with PD. With long-term use, its capacity to supply energy to DA neurons, impede synuclein transmission, block excitotoxicity and maintain an anti-oxidative redox environment throughout the night may delay the onset of PD and slow its progress.
Collapse
Affiliation(s)
- Mortimer Mamelak
- Department of Psychiatry, Baycrest Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Abstract
The global burden of Parkinson's disease (PD) has increased from 2.5 to 6.1 million since the 1990s. This is expected to rise as the world population ages and lives longer. With the current consensus on the existence of a prediagnostic phase of PD, which can be divided into a preclinical stage and a prodromal stage, we can better define the risk markers and prodromal markers of PD in the broader context of PD pathogenesis. Here, we review this pathogenetic process, and discuss the evidence behind various heritability factors, exposure to pesticides and farming, high dairy consumption, and traumatic brain injuries that have been known to raise PD risk. Physical activity, early active lifestyle, high serum uric acid, caffeine consumption, exposure to tobacco, nonsteroidal anti-inflammatory drugs, and calcium channel blockers, as well as the Mediterranean and the MIND diets are observed to lower PD risk. This knowledge, when combined with ways to identify at-risk populations and early prodromal PD patients, can help the clinician make practical recommendations. Most importantly, it helps us set the parameters for epidemiological studies and create the paradigms for clinical trials.
Collapse
Affiliation(s)
- Suraj Rajan
- Division of Movement Disorders, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Bonnie Kaas
- Division of Movement Disorders, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
22
|
Arnold MR, Coughlin DG, Brumbach BH, Smirnov DS, Concha-Marambio L, Farris CM, Ma Y, Kim Y, Wilson EN, Kaye JA, Hiniker A, Woltjer RL, Galasko DR, Quinn JF. α-Synuclein Seed Amplification in CSF and Brain from Patients with Different Brain Distributions of Pathological α-Synuclein in the Context of Co-Pathology and Non-LBD Diagnoses. Ann Neurol 2022; 92:650-662. [PMID: 35808984 PMCID: PMC9489647 DOI: 10.1002/ana.26453] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The purpose of this study was to determine the sensitivity and specificity of α-synuclein seed amplification assay (αSyn-SAA) in antemortem and postmortem cerebrospinal fluid (CSF) of autopsy-confirmed patients with different distributions of pathological αSyn, co-pathologies, and clinical diagnoses. METHODS The αSyn-SAA was used to test antemortem CSF samples from 119 subjects with a variety of clinical syndromes and standardized neuropathological examinations from Oregon Health and Science University (OHSU) and University of California San Diego (UCSD; 56 additional postmortem CSF samples available). The αSyn-SAA was also applied to frontal cortex and amygdala homogenates. Sensitivity and specificity were compared across distributions of αSyn pathology. Clinical data and co-pathologies were compared across αSyn-SAA positive and negative groups. RESULTS Fifty-three individuals without and 66 with αSyn-pathology (neocortical [n = 38], limbic [n = 7], and amygdala-predominant [n = 21]) were included. There was a sensitivity of 97.8% and specificity of 98.1% of the αSyn-SAA to identify patients with limbic/neocortical pathology from antemortem CSF. Sensitivity to detect amygdala-predominant pathology was only 14.3%. Postmortem CSF and brain tissue αSyn-SAA analyses also showed higher assay positivity in samples from limbic/neocortical cases. INTERPRETATION CSF αSyn-SAA reliably identifies αSyn seeds in patients with diffuse αSyn pathology in the context of co-pathology and non-Lewy body disease (LBD) diagnoses. The analysis of brain homogenates suggests that pathological αSyn in the amygdala might differ from pathological αSyn in the frontal cortex. The αSyn-SAA might facilitate the differential diagnosis of dementias with mixed pathologies. ANN NEUROL 2022;92:650-662.
Collapse
Affiliation(s)
- Moriah R. Arnold
- Medical Scientist Training Program, Oregon Health and Science University
| | | | | | | | | | | | | | | | - Yongya Kim
- Department of Neurosciences, University of California San Diego
| | - Edward N. Wilson
- Department of Neurology & Neurological Sciences, Stanford University
| | - Jeffrey A. Kaye
- Department of Neurology, Oregon Health and Science University
| | - Annie Hiniker
- Department of Pathology, University of California San Diego
| | | | - Doug R. Galasko
- Department of Neurosciences, University of California San Diego
| | - Joseph F. Quinn
- Department of Neurology, Oregon Health and Science University
- Portland VA Medical Center, Parkinson’s Disease Research Education and Clinical Care Center (PADRECC)
| |
Collapse
|
23
|
Miner KM, Jamenis AS, Bhatia TN, Clark RN, Rajasundaram D, Sauvaigo S, Mason DM, Posimo JM, Abraham N, DeMarco BA, Hu X, Stetler RA, Chen J, Sanders LH, Luk KC, Leak RK. α-synucleinopathy exerts sex-dimorphic effects on the multipurpose DNA repair/redox protein APE1 in mice and humans. Prog Neurobiol 2022; 216:102307. [PMID: 35710046 PMCID: PMC9514220 DOI: 10.1016/j.pneurobio.2022.102307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 04/05/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022]
Abstract
Lewy body disorders are characterized by oxidative damage to DNA and inclusions rich in aggregated forms of α-synuclein. Among other roles, apurinic/apyrimidinic endonuclease 1 (APE1) repairs oxidative DNA damage, and APE1 polymorphisms have been linked to cases of Lewy body disorders. However, the link between APE1 and α-synuclein is unexplored. We report that knockdown or inhibition of APE1 amplified inclusion formation in primary hippocampal cultures challenged with preformed α-synuclein fibrils. Fibril infusions into the mouse olfactory bulb/anterior olfactory nucleus (OB/AON) elicited a modest decrease in APE1 expression in the brains of male mice but an increase in females. Similarly, men with Lewy body disorders displayed lower APE1 expression in the OB and amygdala compared to women. Preformed fibril infusions of the mouse OB/AON induced more robust base excision repair of DNA lesions in females than males. No fibril-mediated loss of APE1 expression was observed in male mice when the antioxidant N-acetylcysteine was added to their diet. These findings reveal a potential sex-biased link between α-synucleinopathy and APE1 in mice and humans. Further studies are warranted to determine how this multifunctional protein modifies α-synuclein inclusions and, conversely, how α-synucleinopathy and biological sex interact to modify APE1.
Collapse
Affiliation(s)
- Kristin M Miner
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Anuj S Jamenis
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Tarun N Bhatia
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Rachel N Clark
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, Rangos Research Center, UPMC Children's Hospital of Pittsburgh, PA 15224, USA
| | | | - Daniel M Mason
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Jessica M Posimo
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Nevil Abraham
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Brett A DeMarco
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Xiaoming Hu
- Department of Neurology, University of Pittsburgh, PA 15213, USA
| | - R Anne Stetler
- Department of Neurology, University of Pittsburgh, PA 15213, USA
| | - Jun Chen
- Department of Neurology, University of Pittsburgh, PA 15213, USA
| | - Laurie H Sanders
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kelvin C Luk
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19147, USA
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA.
| |
Collapse
|
24
|
Ponzini E, Santambrogio C, De Palma A, Mauri P, Tavazzi S, Grandori R. Mass spectrometry-based tear proteomics for noninvasive biomarker discovery. MASS SPECTROMETRY REVIEWS 2022; 41:842-860. [PMID: 33759206 PMCID: PMC9543345 DOI: 10.1002/mas.21691] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/16/2021] [Accepted: 03/03/2021] [Indexed: 05/05/2023]
Abstract
The lacrimal film has attracted increasing interest in the last decades as a potential source of biomarkers of physiopathological states, due to its accessibility, moderate complexity, and responsiveness to ocular and systemic diseases. High-performance liquid chromatography-mass spectrometry (LC-MS) has led to effective approaches to tear proteomics, despite the intrinsic limitations in sample amounts. This review focuses on the recent progress in strategy and technology, with an emphasis on the potential for personalized medicine. After an introduction on lacrimal-film composition, examples of applications to biomarker discovery are discussed, comparing approaches based on pooled-sample and single-tear analysis. Then, the most critical steps of the experimental pipeline, that is, tear collection, sample fractionation, and LC-MS implementation, are discussed with reference to proteome-coverage optimization. Advantages and challenges of the alternative procedures are highlighted. Despite the still limited number of studies, tear quantitative proteomics, including single-tear investigation, could offer unique contributions to the identification of low-invasiveness, sustained-accessibility biomarkers, and to the development of personalized approaches to therapy and diagnosis.
Collapse
Affiliation(s)
- Erika Ponzini
- Materials Science DepartmentUniversity of Milano‐BicoccaMilanItaly
| | - Carlo Santambrogio
- Department of Biotechnology and BiosciencesUniversity of Milano‐BicoccaMilanItaly
| | - Antonella De Palma
- Institute for Biomedical TechnologiesNational Research Council (ITB‐CNR)Segrate (MI)Italy
| | - Pierluigi Mauri
- Institute for Biomedical TechnologiesNational Research Council (ITB‐CNR)Segrate (MI)Italy
| | - Silvia Tavazzi
- Materials Science DepartmentUniversity of Milano‐BicoccaMilanItaly
- COMiBUniversity of Milano‐BicoccaMilanItaly
| | - Rita Grandori
- Department of Biotechnology and BiosciencesUniversity of Milano‐BicoccaMilanItaly
| |
Collapse
|
25
|
Wendimu MY, Hooks SB. Microglia Phenotypes in Aging and Neurodegenerative Diseases. Cells 2022; 11:2091. [PMID: 35805174 PMCID: PMC9266143 DOI: 10.3390/cells11132091] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 02/08/2023] Open
Abstract
Neuroinflammation is a hallmark of many neurodegenerative diseases (NDs) and plays a fundamental role in mediating the onset and progression of disease. Microglia, which function as first-line immune guardians of the central nervous system (CNS), are the central drivers of neuroinflammation. Numerous human postmortem studies and in vivo imaging analyses have shown chronically activated microglia in patients with various acute and chronic neuropathological diseases. While microglial activation is a common feature of many NDs, the exact role of microglia in various pathological states is complex and often contradictory. However, there is a consensus that microglia play a biphasic role in pathological conditions, with detrimental and protective phenotypes, and the overall response of microglia and the activation of different phenotypes depends on the nature and duration of the inflammatory insult, as well as the stage of disease development. This review provides a comprehensive overview of current research on the various microglia phenotypes and inflammatory responses in health, aging, and NDs, with a special emphasis on the heterogeneous phenotypic response of microglia in acute and chronic diseases such as hemorrhagic stroke (HS), Alzheimer's disease (AD), and Parkinson's disease (PD). The primary focus is translational research in preclinical animal models and bulk/single-cell transcriptome studies in human postmortem samples. Additionally, this review covers key microglial receptors and signaling pathways that are potential therapeutic targets to regulate microglial inflammatory responses during aging and in NDs. Additionally, age-, sex-, and species-specific microglial differences will be briefly reviewed.
Collapse
Affiliation(s)
| | - Shelley B. Hooks
- Hooks Lab, Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
26
|
Kasen A, Houck C, Burmeister AR, Sha Q, Brundin L, Brundin P. Upregulation of α-synuclein following immune activation: Possible trigger of Parkinson's disease. Neurobiol Dis 2022; 166:105654. [DOI: 10.1016/j.nbd.2022.105654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 12/20/2022] Open
|
27
|
Motor and non-motor circuit disturbances in early Parkinson disease: which happens first? Nat Rev Neurosci 2022; 23:115-128. [PMID: 34907352 DOI: 10.1038/s41583-021-00542-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2021] [Indexed: 12/15/2022]
Abstract
For the last two decades, pathogenic concepts in Parkinson disease (PD) have revolved around the toxicity and spread of α-synuclein. Thus, α-synuclein would follow caudo-rostral propagation from the periphery to the central nervous system, first producing non-motor manifestations (such as constipation, sleep disorders and hyposmia), and subsequently impinging upon the mesencephalon to account for the cardinal motor features before reaching the neocortex as the disease evolves towards dementia. This model is the prevailing theory of the principal neurobiological mechanism of disease. Here, we scrutinize the temporal evolution of motor and non-motor manifestations in PD and suggest that, even though the postulated bottom-up mechanisms are likely to be involved, early involvement of the nigrostriatal system is a key and prominent pathophysiological mechanism. Upcoming studies of detailed clinical manifestations with newer neuroimaging techniques will allow us to more closely define, in vivo, the role of α-synuclein aggregates with respect to neuronal loss during the onset and progression of PD.
Collapse
|
28
|
Gao A, McCoy HM, Zaman V, Shields DC, Banik NL, Haque A. Calpain activation and progression of inflammatory cycles in Parkinson's disease. FRONT BIOSCI-LANDMRK 2022; 27:20. [PMID: 35090325 PMCID: PMC9723550 DOI: 10.31083/j.fbl2701020] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/01/2021] [Accepted: 12/14/2021] [Indexed: 07/27/2023]
Abstract
Parkinson's disease (PD) is a progressive, neurodegenerative condition of the central nervous system (CNS) affecting 6.3 million people worldwide with no curative treatments. Current therapies aim to mitigate PD's effects and offer symptomatic relief for patients. Multiple pathways are involved in the pathogenesis of PD, leading to neuroinflammation and the destruction of dopaminergic neurons in the CNS. This review focuses on PD pathology and the role of calpain, a neutral protease, as a regulator of various immune cells such as T-cells, microglia and astrocytes which lead to persistent neuroinflammatory responses and neuronal loss in both the brain and spinal cord (SC). Calpain plays a significant role in the cleavage and aggregation of toxic α-synuclein (α-syn), a presynaptic neural protein, and other organelles, contributing to mitochondrial dysfunction and oxidative stress. α-Syn aggregation results in the formation of Lewy bodies (LB) that further contribute to neuronal damage through lipid bilayer penetration, calcium ion (Ca2+) influx, oxidative stress and damage to the blood brain barrier (BBB). Dysfunctional mitochondria destabilize cytosolic Ca2+ concentrations, raising intracellular Ca2+; this leads to excessive calpain activation and persistent inflammatory responses. α-Syn aggregation also results in the disruption of dopamine synthesis through phosphorylation of tyrosine hydroxylase (TH), a key enzyme involved in the conversion of tyrosine to levodopa (L-DOPA), the amino acid precursor to dopamine. Decreased dopamine levels result in altered dopamine receptor (DR) signaling, ultimately activating pro-inflammatory T-cells to further contribute to the inflammatory response. All of these processes, together, result in neuroinflammation, degeneration and ultimately neuronal death seen in PD. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP-a prodrug to the neurotoxin 1-methyl-4-phenylpyridinium (MPP+)), rotenone (an environmental neurotoxin), and 6-hydroxydopamine (6-OHDA - a neurotoxic synthetic organic compound) induce PD-like conditions when injected into rodents. All three agents work through similar mechanisms and lead to degeneration of dopaminergic neurons in the substantia nigra (SN) and more recently discovered in motor neurons of the spinal cord (SC). These neurotoxins also increase calpain activity, furthering the neuroinflammatory response. Hence, calpain inhibitors have been posited as potential therapeutics for PD to prevent calpain-related inflammation and neurodegenerative responses in not only the SN but the SC as well.
Collapse
Affiliation(s)
- Andrew Gao
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Hannah M. McCoy
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Vandana Zaman
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC 29401, USA
| | - Donald C. Shields
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Naren L. Banik
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC 29401, USA
| | - Azizul Haque
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC 29401, USA
| |
Collapse
|
29
|
Yang T, Liu Y, Li J, Xu H, Li S, Xiong L, Wang T. Advances in clinical basic research: Performance, treatments, and mechanisms of Parkinson disease. IBRAIN 2021; 7:362-378. [PMID: 37786563 PMCID: PMC10529016 DOI: 10.1002/ibra.12011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/05/2021] [Accepted: 12/05/2021] [Indexed: 02/05/2023]
Abstract
The loss of neuronal in the substantia nigra of the elderly contributes to striatal damage and plays a critical part in the common forms of neurodegenerative diseases such as Parkinson disease (PD). The deficit of dopamine is one of the most familiar neuropathological features of PD as well as α-Synuclein aggregation. The peripheral autonomic nervous system is also affected negatively during the course of the disease, although the subsistent of dyskinesias and else major motor characteristic deficits take significant role in the diagnostic methods during clinical practice, which is related to a number of non-motor symptoms that might increase aggregate risks. Multiple pathways and mechanisms are involved in the molecular pathogenesis: α-Synuclein, neuronal homeostasis, mitochondrial function, oxidative stress, as well as neuroinflammation. Investigations in the last few years for diagnostic biomarkers used neuroimaging, including single photon emission computed tomography as well as cutting-edge magnetic resonance imaging techniques, which has been presented to facilitate discrepant diagnosis. Pharmacological treatment is also important and efficient in equal measure. In addition to reliance on striatal dopamine replacement therapy, many solutions that are used for motor or nonmotor symptoms in these patients are available.
Collapse
Affiliation(s)
- Ting‐Ting Yang
- Department of AnesthesiologyZunyi Medical UniversityZunyiGuizhouChina
| | - Yu‐Cong Liu
- Department of AnesthesiologyZunyi Medical UniversityZunyiGuizhouChina
| | - Jing Li
- Department of AnesthesiologyZunyi Medical UniversityZunyiGuizhouChina
| | - Hui‐Chan Xu
- Department of AnesthesiologyZunyi Medical UniversityZunyiGuizhouChina
| | - Shun‐Lian Li
- Department of AnesthesiologyZunyi Medical UniversityZunyiGuizhouChina
| | - Liu‐Lin Xiong
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Ting‐Hua Wang
- Department of Anesthesiology, Translational Neuroscience Center, Institute of Neurological Disease, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
30
|
Tiklová K, Gillberg L, Volakakis N, Lundén-Miguel H, Dahl L, Serrano GE, Adler CH, Beach TG, Perlmann T. Disease Duration Influences Gene Expression in Neuromelanin-Positive Cells From Parkinson's Disease Patients. Front Mol Neurosci 2021; 14:763777. [PMID: 34867188 PMCID: PMC8632647 DOI: 10.3389/fnmol.2021.763777] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
Analyses of gene expression in cells affected by neurodegenerative disease can provide important insights into disease mechanisms and relevant stress response pathways. Major symptoms in Parkinson’s disease (PD) are caused by the degeneration of midbrain dopamine (mDA) neurons within the substantia nigra. Here we isolated neuromelanin-positive dopamine neurons by laser capture microdissection from post-mortem human substantia nigra samples recovered at both early and advanced stages of PD. Neuromelanin-positive cells were also isolated from individuals with incidental Lewy body disease (ILBD) and from aged-matched controls. Isolated mDA neurons were subjected to genome-wide gene expression analysis by mRNA sequencing. The analysis identified hundreds of dysregulated genes in PD. Results showed that mostly non-overlapping genes were differentially expressed in ILBD, subjects who were early after diagnosis (less than five years) and those autopsied at more advanced stages of disease (over five years since diagnosis). The identity of differentially expressed genes suggested that more resilient, stably surviving DA neurons were enriched in samples from advanced stages of disease, either as a consequence of positive selection of a less vulnerable long-term surviving mDA neuron subtype or due to up-regulation of neuroprotective gene products.
Collapse
Affiliation(s)
- Katarína Tiklová
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.,Ludwig Institute for Cancer Research, Stockholm, Sweden
| | - Linda Gillberg
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.,Ludwig Institute for Cancer Research, Stockholm, Sweden
| | | | | | - Lina Dahl
- Ludwig Institute for Cancer Research, Stockholm, Sweden
| | - Geidy E Serrano
- Banner Sun Health Research Institute, Sun City, AZ, United States
| | - Charles H Adler
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, United States
| | - Thomas G Beach
- Banner Sun Health Research Institute, Sun City, AZ, United States
| | - Thomas Perlmann
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
31
|
Charisis S, Ntanasi E, Stamelou M, Xiromerisiou G, Maraki M, Veskoukis AS, Yannakoulia M, Kosmidis MH, Anastasiou CA, Giagkou N, Dardiotis E, Hadjigeorgiou G, Sakka P, Kouretas D, Stefanis L, Scarmeas N. Plasma Glutathione and Prodromal Parkinson's Disease Probability. Mov Disord 2021; 37:200-205. [PMID: 34695238 DOI: 10.1002/mds.28826] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/08/2021] [Accepted: 09/30/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND A decrease in glutathione (GSH) levels is considered one of the earliest biochemical changes in Parkinson's disease (PD). OBJECTIVE The authors explored the potential role of plasma GSH as a risk/susceptibility biomarker for prodromal PD (pPD) by examining its longitudinal associations with pPD probability trajectories. METHODS A total of 405 community-dwelling participants (median age [interquartile range] = 73.2 [7.41] years) without clinical features of parkinsonism were followed for a mean (standard deviation) of 3.0 (0.9) years. RESULTS A 1 μmol/L increase in plasma GSH was associated with 0.4% (95% confidence interval [CI], 0.1%-0.7%; P = 0.017) less increase in pPD probability for 1 year of follow-up. Compared with participants in the lowest GSH tertile, participants in the highest GSH tertile had a 12.9% (95% CI, 22.4%-2.2%; P = 0.020) slower rate of increase of pPD probability for 1 year of follow-up. CONCLUSION Plasma GSH was associated with pPD probability trajectories; therefore, it might assist in the identification of individuals who are likely to reach the threshold for pPD diagnosis more rapidly. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Sokratis Charisis
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece.,Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Eva Ntanasi
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece.,Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | - Maria Stamelou
- Parkinson's Disease and Movement Disorders Department, HYGEIA Hospital, Athens, Greece.,Department of Neurology, Philipps University, Marburg, Germany
| | | | - Maria Maraki
- Section of Sport Medicine and Biology of Exercise, School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece.,Department of Nutrition and Dietetics, School of Health Sciences, Hellenic Mediterranean University, Crete, Greece
| | | | - Mary Yannakoulia
- Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | - Mary H Kosmidis
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Nikolaos Giagkou
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece.,Parkinson's Disease and Movement Disorders Department, HYGEIA Hospital, Athens, Greece
| | | | | | - Paraskevi Sakka
- Athens Association of Alzheimer's Disease and Related Disorders, Athens, Greece
| | - Demetrios Kouretas
- Department of Biochemistry-Biotechnology, University of Thessaly, Larisa, Greece
| | - Leonidas Stefanis
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece.,Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Nikolaos Scarmeas
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece.,Taub Institute for Research in Alzheimer's Disease and the Aging Brain, the Gertrude H. Sergievsky Center, Department of Neurology, Columbia University, New York, New York, USA
| |
Collapse
|
32
|
Shan FY, Fung KM, Zieneldien T, Kim J, Cao C, Huang JH. Examining the Toxicity of α-Synuclein in Neurodegenerative Disorders. Life (Basel) 2021; 11:life11111126. [PMID: 34833002 PMCID: PMC8621244 DOI: 10.3390/life11111126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Neurodegenerative disorders are complex disorders that display a variety of clinical manifestations. The second-most common neurodegenerative disorder is Parkinson’s disease, and the leading pathological protein of the disorder is considered to be α-synuclein. Nonetheless, α-synuclein accumulation also seems to result in multiple system atrophy and dementia with Lewy bodies. In order to obtain a more proficient understanding in the pathological progression of these synucleinopathies, it is crucial to observe the post-translational modifications of α-synuclein and the conformations of α-synuclein, as well as its role in the dysfunction of cellular pathways. Abstract α-synuclein is considered the main pathological protein in a variety of neurodegenerative disorders, such as Parkinson’s disease, multiple system atrophy, and dementia with Lewy bodies. As of now, numerous studies have been aimed at examining the post-translational modifications of α-synuclein to determine their effects on α-synuclein aggregation, propagation, and oligomerization, as well as the potential cellular pathway dysfunctions caused by α-synuclein, to determine the role of the protein in disease progression. Furthermore, α-synuclein also appears to contribute to the fibrilization of tau and amyloid beta, which are crucial proteins in Alzheimer’s disease, advocating for α-synuclein’s preeminent role in neurodegeneration. Due to this, investigating the mechanisms of toxicity of α-synuclein in neurodegeneration may lead to a more proficient understanding of the timeline progression in neurodegenerative synucleinopathies and could thereby lead to the development of potent targeted therapies.
Collapse
Affiliation(s)
- Frank Y. Shan
- Department of Anatomic Pathology, Baylor Scott & White Medical Center, College of Medicine, Texas A&M University, Temple, TX 76508, USA
- Correspondence: (F.Y.S.); (T.Z.)
| | - Kar-Ming Fung
- Department of Pathology, University of Oklahoma Medical Center, University of Oklahoma, Norman, OK 73019, USA;
| | - Tarek Zieneldien
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33620, USA; (J.K.); (C.C.)
- Correspondence: (F.Y.S.); (T.Z.)
| | - Janice Kim
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33620, USA; (J.K.); (C.C.)
| | - Chuanhai Cao
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33620, USA; (J.K.); (C.C.)
| | - Jason H. Huang
- Department of Neurosurgery, Baylor Scott & White Medical Center, College of Medicine, Texas A&M University, Temple, TX 76508, USA;
| |
Collapse
|
33
|
Lavrova AV, Gretskaya NM, Bezuglov VV. Role of Oxidative Stress in the Etiology of Parkinson’s Disease: Advanced Therapeutic Products. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021050307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Riederer P, Monoranu C, Strobel S, Iordache T, Sian-Hülsmann J. Iron as the concert master in the pathogenic orchestra playing in sporadic Parkinson's disease. J Neural Transm (Vienna) 2021; 128:1577-1598. [PMID: 34636961 PMCID: PMC8507512 DOI: 10.1007/s00702-021-02414-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/29/2021] [Indexed: 02/07/2023]
Abstract
About 60 years ago, the discovery of a deficiency of dopamine in the nigro-striatal system led to a variety of symptomatic therapeutic strategies to supplement dopamine and to substantially improve the quality of life of patients with Parkinson's disease (PD). Since these seminal developments, neuropathological, neurochemical, molecular biological and genetic discoveries contributed to elucidate the pathology of PD. Oxidative stress, the consequences of reactive oxidative species, reduced antioxidative capacity including loss of glutathione, excitotoxicity, mitochondrial dysfunction, proteasomal dysfunction, apoptosis, lysosomal dysfunction, autophagy, suggested to be causal for ɑ-synuclein fibril formation and aggregation and contributing to neuroinflammation and neural cell death underlying this devastating disorder. However, there are no final conclusions about the triggered pathological mechanism(s) and the follow-up of pathological dysfunctions. Nevertheless, it is a fact, that iron, a major component of oxidative reactions, as well as neuromelanin, the major intraneuronal chelator of iron, undergo an age-dependent increase. And ageing is a major risk factor for PD. Iron is significantly increased in the substantia nigra pars compacta (SNpc) of PD. Reasons for this finding include disturbances in iron-related import and export mechanisms across the blood-brain barrier (BBB), localized opening of the BBB at the nigro-striatal tract including brain vessel pathology. Whether this pathology is of primary or secondary importance is not known. We assume that there is a better fit to the top-down hypotheses and pathogens entering the brain via the olfactory system, then to the bottom-up (gut-brain) hypothesis of PD pathology. Triggers for the bottom-up, the dual-hit and the top-down pathologies include chemicals, viruses and bacteria. If so, hepcidin, a regulator of iron absorption and its distribution into tissues, is suggested to play a major role in the pathogenesis of iron dyshomeostasis and risk for initiating and progressing ɑ-synuclein pathology. The role of glial components to the pathology of PD is still unknown. However, the dramatic loss of glutathione (GSH), which is mainly synthesized in glia, suggests dysfunction of this process, or GSH uptake into neurons. Loss of GSH and increase in SNpc iron concentration have been suggested to be early, may be even pre-symptomatic processes in the pathology of PD, despite the fact that they are progression factors. The role of glial ferritin isoforms has not been studied so far in detail in human post-mortem brain tissue and a close insight into their role in PD is called upon. In conclusion, "iron" is a major player in the pathology of PD. Selective chelation of excess iron at the site of the substantia nigra, where a dysfunction of the BBB is suggested, with peripherally acting iron chelators is suggested to contribute to the portfolio and therapeutic armamentarium of anti-Parkinson medications.
Collapse
Affiliation(s)
- P Riederer
- Clinic and Policlinic for Psychiatry, Psychosomatics and Psychotherapy, University Hospital Wuerzburg, University of Wuerzburg, Wuerzburg, Germany. .,Department of Psychiatry, University of Southern Denmark, Odense, Denmark.
| | - C Monoranu
- Institute of Pathology, Department of Neuropathology, University of Wuerzburg, Wuerzburg, Germany
| | - S Strobel
- Institute of Pathology, Department of Neuropathology, University of Wuerzburg, Wuerzburg, Germany
| | - T Iordache
- George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, Târgu Mureș, Romania
| | - J Sian-Hülsmann
- Department of Medical Physiology, University of Nairobi, P.O. Box 30197, Nairobi, 00100, Kenya
| |
Collapse
|
35
|
Karabayir I, Butler L, Goldman SM, Kamaleswaran R, Gunturkun F, Davis RL, Ross GW, Petrovitch H, Masaki K, Tanner CM, Tsivgoulis G, Alexandrov AV, Chinthala LK, Akbilgic O. Predicting Parkinson's Disease and Its Pathology via Simple Clinical Variables. JOURNAL OF PARKINSONS DISEASE 2021; 12:341-351. [PMID: 34602502 PMCID: PMC8842767 DOI: 10.3233/jpd-212876] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: Parkinson’s disease (PD) is a chronic, disabling neurodegenerative disorder. Objective: To predict a future diagnosis of PD using questionnaires and simple non-invasive clinical tests. Methods: Participants in the prospective Kuakini Honolulu-Asia Aging Study (HAAS) were evaluated biannually between 1995–2017 by PD experts using standard diagnostic criteria. Autopsies were sought on all deaths. We input simple clinical and risk factor variables into an ensemble-tree based machine learning algorithm and derived models to predict the probability of developing PD. We also investigated relationships of predictive models and neuropathologic features such as nigral neuron density. Results: The study sample included 292 subjects, 25 of whom developed PD within 3 years and 41 by 5 years. 116 (46%) of 251 subjects not diagnosed with PD underwent autopsy. Light Gradient Boosting Machine modeling of 12 predictors correctly classified a high proportion of individuals who developed PD within 3 years (area under the curve (AUC) 0.82, 95%CI 0.76–0.89) or 5 years (AUC 0.77, 95%CI 0.71–0.84). A large proportion of controls who were misclassified as PD had Lewy pathology at autopsy, including 79%of those who died within 3 years. PD probability estimates correlated inversely with nigral neuron density and were strongest in autopsies conducted within 3 years of index date (r = –0.57, p < 0.01). Conclusion: Machine learning can identify persons likely to develop PD during the prodromal period using questionnaires and simple non-invasive tests. Correlation with neuropathology suggests that true model accuracy may be considerably higher than estimates based solely on clinical diagnosis.
Collapse
Affiliation(s)
- Ibrahim Karabayir
- Department of Health Informatics, Parkinson School of Health Sciences and Public Health Loyola University Chicago, Maywood, IL, USA.,Kirklareli University, Kirklareli, Turkey
| | - Liam Butler
- Department of Health Informatics, Parkinson School of Health Sciences and Public Health Loyola University Chicago, Maywood, IL, USA
| | - Samuel M Goldman
- University of California San Francisco, San Francisco, CA, USA.,San Francisco VA Health Care System, San Francisco, CA, USA
| | | | - Fatma Gunturkun
- University of Tennessee Health Sciences Center, Knoxville, TN, USA
| | - Robert L Davis
- University of Tennessee Health Sciences Center, Knoxville, TN, USA
| | - G Webster Ross
- Veterans Affairs Pacific Islands Health Care System, Honolulu, HI, USA.,Department of Geriatric Medicine, University of Hawaii, Honolulu, HI, USA
| | - Helen Petrovitch
- Veterans Affairs Pacific Islands Health Care System, Honolulu, HI, USA.,Department of Geriatric Medicine, University of Hawaii, Honolulu, HI, USA
| | - Kamal Masaki
- Department of Geriatric Medicine, University of Hawaii, Honolulu, HI, USA.,Kuakini Medical Center, Honolulu, HI, USA
| | - Caroline M Tanner
- University of California San Francisco, San Francisco, CA, USA.,San Francisco VA Health Care System, San Francisco, CA, USA
| | | | | | | | - Oguz Akbilgic
- Department of Health Informatics, Parkinson School of Health Sciences and Public Health Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
36
|
Wu TT, Liu T, Li X, Chen YJ, Chen TJ, Zhu XY, Chen JL, Li Q, Liu Y, Feng Y, Wu YC. TET2-mediated Cdkn2A DNA hydroxymethylation in midbrain dopaminergic neuron injury of Parkinson's disease. Hum Mol Genet 2021; 29:1239-1252. [PMID: 32037456 DOI: 10.1093/hmg/ddaa022] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/03/2020] [Accepted: 02/03/2020] [Indexed: 12/31/2022] Open
Abstract
It has been reported that abnormal epigenetic modification is associated with the occurrence of Parkinson's disease (PD). Here, we found that a ten-eleven translocation 2 (TET2), a staff of the DNA hydroxylases family, was increased in dopaminergic neurons in vitro and in vivo. Genome-wide mapping of DNA 5-hydroxymethylcytosine (5-hmC)-sequencing has revealed an aberrant epigenome 5-hmC landscape in 1-methyl-4-phenylpyridinium iodide (MPP+)-induced SH-SY5Y cells. The TET family of DNA hydroxylases could reverse DNA methylation by oxidization of 5-methylcytosine (5-mC) to 5-hmC. However, the relationship between modification of DNA hydroxymethylation and the pathogenesis of PD is not clear. According to the results of 5-hmC-sequencing studies, 5-hmC was associated with gene-rich regions in the genomes related to cell cycle, especially gene-cyclin-dependent kinase inhibitor 2A (Cdkn2A). Downregulation of TET2 expression could significantly rescue MPP+-stimulated SH-SY5Y cell damage and cell cycle arrest. Meanwhile, knockdown of Tet2 expression in the substantia nigra pars compacta of MPTP-induced PD mice resulted in attenuated MPTP-induced motor deficits and dopaminergic neuronal injury via p16 suppression. In this study, we demonstrated a critical function of TET2 in PD development via the CDKN2A activity-dependent epigenetic pathway, suggesting a potential new strategy for epigenetic therapy.
Collapse
Affiliation(s)
- Ting-Ting Wu
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, P.R. China
| | - Xuan Li
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Ya-Jing Chen
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Tian-Jiao Chen
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Xiao-Ying Zhu
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Jiu-Lin Chen
- Shanghai Geriatric Institute of Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, P.R. China
| | - Qing Li
- The State Key Laboratory of Medical Neurobiology, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Ye Liu
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Ya Feng
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Yun-Cheng Wu
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| |
Collapse
|
37
|
Sackner-Bernstein J. Estimates of Intracellular Dopamine in Parkinson's Disease: A Systematic Review and Meta-Analysis. JOURNAL OF PARKINSONS DISEASE 2021; 11:1011-1018. [PMID: 34024786 PMCID: PMC8461729 DOI: 10.3233/jpd-212715] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: The hallmark of Parkinson’s disease is depletion of dopamine in the basal ganglia. Models of Parkinson’s disease include dopamine as a contributor to disease progression. However, intraneuronal levels of dopamine have not been reported. Objective: Meta-analytic methods were utilized to determine intracellular dopamine levels in Parkinson’s disease. Methods: A systematic review of the literature and frequentist meta-analyses were performed. Dopamine levels were scaled for cell and axon numbers as well as VMAT2 protein levels. Results: Reduced tissue dopamine, dopaminergic cell bodies and VMAT2 protein were confirmed. The ratio of Parkinson’s to normal brain intracellular dopamine scaled for either cell or axon number, each with VMAT2 level in the caudate ranged from 1.49 to 1.87 (p = 0.51 and p = 0.12, respectively) and in the putamen from 0.75 to 4.61 (p = 0.40 and 0.001, respectively). Conclusion: Free, intracellular dopamine levels are not reduced in Parkinson’s disease compared to normals to a similar degree as are total tissue concentrations, supporting the relevance of modulating VMAT2, neuromelanin and/or dopamine synthesis as rational neuroprotective strategies.
Collapse
|
38
|
Tandon A, Singh SJ, Chaturvedi RK. Nanomedicine against Alzheimer's and Parkinson's Disease. Curr Pharm Des 2021; 27:1507-1545. [PMID: 33087025 DOI: 10.2174/1381612826666201021140904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/06/2020] [Accepted: 08/18/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's and Parkinson's are the two most rampant neurodegenerative disorders worldwide. Existing treatments have a limited effect on the pathophysiology but are unable to fully arrest the progression of the disease. This is due to the inability of these therapeutic molecules to efficiently cross the blood-brain barrier. We discuss how nanotechnology has enabled researchers to develop novel and efficient nano-therapeutics against these diseases. The development of nanotized drug delivery systems has permitted an efficient, site-targeted, and controlled release of drugs in the brain, thereby presenting a revolutionary therapeutic approach. Nanoparticles are also being thoroughly studied and exploited for their role in the efficient and precise diagnosis of neurodegenerative conditions. We summarize the role of different nano-carriers and RNAi-conjugated nanoparticle-based therapeutics for their efficacy in pre-clinical studies. We also discuss the challenges underlying the use of nanomedicine with a focus on their route of administration, concentration, metabolism, and any toxic effects for successful therapeutics in these diseases.
Collapse
Affiliation(s)
- Ankit Tandon
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Sangh J Singh
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Rajnish K Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| |
Collapse
|
39
|
Huynh B, Fu Y, Kirik D, Shine JM, Halliday GM. Comparison of Locus Coeruleus Pathology with Nigral and Forebrain Pathology in Parkinson's Disease. Mov Disord 2021; 36:2085-2093. [PMID: 33899954 DOI: 10.1002/mds.28615] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/16/2021] [Accepted: 03/25/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Pathology in the noradrenergic A6 locus coeruleus has not been compared with more rostral dopaminergic A9 substantia nigra and A10 ventral tegmental area, and cholinergic Ch4 basal nucleus and Ch1/2 septal regions in the same cases of Parkinson's disease (PD). OBJECTIVE To determine whether there is a gradient of caudal to rostral cell loss in PD. METHODS Postmortem brains were collected from longitudinally followed donors with PD (n = 14) and aged-matched healthy donors (n = 13), six with restricted brainstem Lewy pathology (RLP), fixed in formalin and serial tissue slabs processed for cell and pathological quantitation. Noradrenergic A6 neurons were assessed and compared with previously published midbrain and basal forebrain data. From these data, regression estimates of pathological onset and progression were determined. RESULTS Restricted Lewy pathology (RLP) cases had high pathological variability but no significant reduction in neurons. Pathology containing A6 neuron loss started at PD diagnosis and progressed faster (2.4% p.a) than the loss of dopaminergic A9 neurons (2% loss p.a.). Cases with dementia had significantly more pathology in noradrenergic and cholinergic neurons, had greater noradrenergic A6 neuron loss (29% more, progressing at 3.2% p.a.), and a selective loss of lateral A10 nonmelanized dopamine-producing neurons (starting a decade following diagnosis). CONCLUSIONS These findings show that in the same Parkinson's disease cases cell loss in these neurotransmitter systems does not follow a strict caudal to rostral trajectory and suggests symptom onset may relate to substantial pathology in the noradrenergic A6 locus coeruleus neurons in people with reduced dopamine-producing A9 substantia nigra neurons. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Benjamin Huynh
- ForeFront Research Team, Brain and Mind Centre and Faculty of Medicine and Health School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Yuhong Fu
- ForeFront Research Team, Brain and Mind Centre and Faculty of Medicine and Health School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Deniz Kirik
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - James M Shine
- ForeFront Research Team, Brain and Mind Centre and Faculty of Medicine and Health School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | | |
Collapse
|
40
|
LRRK2 at the Crossroad of Aging and Parkinson's Disease. Genes (Basel) 2021; 12:genes12040505. [PMID: 33805527 PMCID: PMC8066012 DOI: 10.3390/genes12040505] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 01/01/2023] Open
Abstract
Parkinson's disease (PD) is a heterogeneous neurodegenerative disease characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta and the widespread occurrence of proteinaceous inclusions known as Lewy bodies and Lewy neurites. The etiology of PD is still far from clear, but aging has been considered as the highest risk factor influencing the clinical presentations and the progression of PD. Accumulating evidence suggests that aging and PD induce common changes in multiple cellular functions, including redox imbalance, mitochondria dysfunction, and impaired proteostasis. Age-dependent deteriorations in cellular dysfunction may predispose individuals to PD, and cellular damages caused by genetic and/or environmental risk factors of PD may be exaggerated by aging. Mutations in the LRRK2 gene cause late-onset, autosomal dominant PD and comprise the most common genetic causes of both familial and sporadic PD. LRRK2-linked PD patients show clinical and pathological features indistinguishable from idiopathic PD patients. Here, we review cellular dysfunctions shared by aging and PD-associated LRRK2 mutations and discuss how the interplay between the two might play a role in PD pathologies.
Collapse
|
41
|
Galiano-Landeira J, Torra A, Vila M, Bové J. CD8 T cell nigral infiltration precedes synucleinopathy in early stages of Parkinson's disease. Brain 2021; 143:3717-3733. [PMID: 33118032 DOI: 10.1093/brain/awaa269] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 06/16/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022] Open
Abstract
There is no consensus on the exact role of the adaptive immune system in Parkinson's disease pathogenesis, although there is increasing evidence that it is somehow involved. Moreover, T cell infiltration in the brain has not been thoroughly studied in Parkinson's disease and no study has assessed the infiltration in incidental Lewy body diseases cases that are considered to be early presymptomatic stages of the disease. In this study, we performed an immunohistochemistry/immunofluorescence quantitative and phenotypic assessment of T cell infiltration in human substantia nigra pars compacta and analysed the correlations with neuronal death and synucleinopathy throughout different stages of the disease. We included two groups of incidental Lewy disease in the study. One of the groups, which is believed to be the earliest stage of the disease, showed α-synuclein aggregates only in the olfactory bulb. The second group also presented α-synuclein aggregates in the substantia nigra. We also assessed the formation of different α-synuclein aggregates throughout the different stages of the unified staging system for Lewy body disorders (I to IV). We found that CD8 T cells were increased in diagnosed Parkinson's disease cases compared to the control group and their density positively correlated with neuronal death. Some of the infiltrating CD8 T cells were indeed contacting dopaminergic neurons. No differences were found regarding CD4 T cells. In the earliest stage of the disease, when substantia nigra α-synuclein aggregation is absent, we found a robust CD8 T cell infiltration and no dopaminergic neuronal death yet. Conversely, in the next stage we found neuronal loss and a milder CD8 T cell infiltration. CD8 T cell infiltration paralleled that of α-synuclein accumulation and neuronal death throughout stages II to IV. We also confirmed that CD8 T cells in charge of immune surveillance and involved in the aetiopathogenesis of the disease are equipped with cytolytic enzymes (granzyme A, B and K) and/or proinflammatory cytokines (interferon gamma), and that phenotypic differences were observed between early and late stages of the disease. We also demonstrate that a high proportion of nigral CD8 T cells are tissue resident memory T cells. Our results show that nigral cytotoxic CD8 T cell infiltration is an earlier pathogenic event than α-synuclein aggregation and neuronal death and that it parallels the progression of neuronal death and synucleinopathy in Parkinson's disease. Overall, our study suggests that CD8 T cell cytotoxic attack may initiate and propagate neuronal death and synucleinopathy in Parkinson's disease.
Collapse
Affiliation(s)
- Jordi Galiano-Landeira
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| | - Albert Torra
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| | - Miquel Vila
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain.,Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Barcelona, Catalonia, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Catalonia, Spain
| | - Jordi Bové
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| |
Collapse
|
42
|
Niu F, Sharma A, Wang Z, Feng L, Muresanu DF, Sahib S, Tian ZR, Lafuente JV, Buzoianu AD, Castellani RJ, Nozari A, Patnaik R, Wiklund L, Sharma HS. Co-administration of TiO 2-nanowired dl-3-n-butylphthalide (dl-NBP) and mesenchymal stem cells enhanced neuroprotection in Parkinson's disease exacerbated by concussive head injury. PROGRESS IN BRAIN RESEARCH 2020; 258:101-155. [PMID: 33223034 DOI: 10.1016/bs.pbr.2020.09.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
dl-3-n-butylphthalide (dl-NBP) is a powerful antioxidant compound with profound neuroprotective effects in stroke and brain injury. However, its role in Parkinson's disease (PD) is not well known. Traumatic brain injury (TBI) is one of the key factors in precipitating PD like symptoms in civilians and particularly in military personnel. Thus, it would be interesting to explore the possible neuroprotective effects of NBP in PD following concussive head injury (CHI). In this chapter effect of nanowired delivery of NBP together with mesenchymal stem cells (MSCs) in PD with CHI is discussed based on our own investigations. It appears that CHI exacerbates PD pathophysiology in terms of p-tau, α-synuclein (ASNC) levels in the cerebrospinal fluid (CSF) and the loss of TH immunoreactivity in substantia niagra pars compacta (SNpc) and striatum (STr) along with dopamine (DA), dopamine decarboxylase (DOPAC). And homovanillic acid (HVA). Our observations are the first to show that a combination of NBP with MSCs when delivered using nanowired technology induces superior neuroprotective effects in PD brain pathology exacerbated by CHI, not reported earlier.
Collapse
Affiliation(s)
- Feng Niu
- CSPC NBP Pharmaceutical Medicine, Shijiazhuang, Hebei Province, China
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Zhenguo Wang
- CSPC NBP Pharmaceutical Medicine, Shijiazhuang, Hebei Province, China
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Shijiazhuang, Hebei Province, China
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
43
|
Wakabayashi K. Where and how alpha-synuclein pathology spreads in Parkinson's disease. Neuropathology 2020; 40:415-425. [PMID: 32750743 DOI: 10.1111/neup.12691] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022]
Abstract
In Parkinson's disease (PD), neuronal alpha-synuclein aggregates are distributed throughout the nervous system, including the brain, spinal cord, sympathetic ganglia, submandibular gland, enteric nervous system, cardiac and pelvic plexuses, adrenal medulla, and skin. Thus, PD is a progressive multiorgan disease clinically associated with various motor and nonmotor symptoms. The earliest PD-related lesions appear to develop in the olfactory bulb, dorsal vagal nucleus, and possibly also the peripheral autonomic nervous system. The brain is closely connected with the enteric nervous system via axons of the efferent fibers of the dorsal nucleus of vagal nerve. Anatomical connections also exist between the olfactory bulb and brainstem. Accumulating evidence from experimental studies indicates that transneuronal propagation of misfolded alpha-synuclein is involved in the progression of PD. However, it cannot be ruled out that alpha-synuclein pathology in PD is multicentric in origin. Based on pathological findings from studies on human materials, the present review will update the progression pattern of alpha-synuclein pathology in PD.
Collapse
Affiliation(s)
- Koichi Wakabayashi
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
44
|
de Oliveira FF, Machado FC, Sampaio G, Marin SDMC, Naffah-Mazzacoratti MDG, Bertolucci PHF. Neuropsychiatric feature profiles of patients with Lewy body dementia. Clin Neurol Neurosurg 2020; 194:105832. [DOI: 10.1016/j.clineuro.2020.105832] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 02/22/2020] [Accepted: 04/02/2020] [Indexed: 01/17/2023]
|
45
|
Ubeda-Bañon I, Saiz-Sanchez D, Flores-Cuadrado A, Rioja-Corroto E, Gonzalez-Rodriguez M, Villar-Conde S, Astillero-Lopez V, Cabello-de la Rosa JP, Gallardo-Alcañiz MJ, Vaamonde-Gamo J, Relea-Calatayud F, Gonzalez-Lopez L, Mohedano-Moriano A, Rabano A, Martinez-Marcos A. The human olfactory system in two proteinopathies: Alzheimer's and Parkinson's diseases. Transl Neurodegener 2020; 9:22. [PMID: 32493457 PMCID: PMC7271529 DOI: 10.1186/s40035-020-00200-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/20/2020] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's and Parkinson's diseases are the most prevalent neurodegenerative disorders. Their etiologies are idiopathic, and treatments are symptomatic and orientated towards cognitive or motor deficits. Neuropathologically, both are proteinopathies with pathological aggregates (plaques of amyloid-β peptide and neurofibrillary tangles of tau protein in Alzheimer's disease, and Lewy bodies mostly composed of α-synuclein in Parkinson's disease). These deposits appear in the nervous system in a predictable and accumulative sequence with six neuropathological stages. Both disorders present a long prodromal period, characterized by preclinical signs including hyposmia. Interestingly, the olfactory system, particularly the anterior olfactory nucleus, is initially and preferentially affected by the pathology. Cerebral atrophy revealed by magnetic resonance imaging must be complemented by histological analyses to ascertain whether neuronal and/or glial loss or neuropil remodeling are responsible for volumetric changes. It has been proposed that these proteinopathies could act in a prion-like manner in which a misfolded protein would be able to force native proteins into pathogenic folding (seeding), which then propagates through neurons and glia (spreading). Existing data have been examined to establish why some neuronal populations are vulnerable while others are resistant to pathology and to what extent glia prevent and/or facilitate proteinopathy spreading. Connectomic approaches reveal a number of hubs in the olfactory system (anterior olfactory nucleus, olfactory entorhinal cortex and cortical amygdala) that are key interconnectors with the main hubs (the entorhinal-hippocampal-cortical and amygdala-dorsal motor vagal nucleus) of network dysfunction in Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Isabel Ubeda-Bañon
- Neuroplasticity and Neurodegeneration Laboratory, Ciudad Real Medical School, CRIB, University of Castilla-La Mancha, 13005 Ciudad Real, Spain
| | - Daniel Saiz-Sanchez
- Neuroplasticity and Neurodegeneration Laboratory, Ciudad Real Medical School, CRIB, University of Castilla-La Mancha, 13005 Ciudad Real, Spain
| | - Alicia Flores-Cuadrado
- Neuroplasticity and Neurodegeneration Laboratory, Ciudad Real Medical School, CRIB, University of Castilla-La Mancha, 13005 Ciudad Real, Spain
| | - Ernesto Rioja-Corroto
- Neuroplasticity and Neurodegeneration Laboratory, Ciudad Real Medical School, CRIB, University of Castilla-La Mancha, 13005 Ciudad Real, Spain
| | - Melania Gonzalez-Rodriguez
- Neuroplasticity and Neurodegeneration Laboratory, Ciudad Real Medical School, CRIB, University of Castilla-La Mancha, 13005 Ciudad Real, Spain
| | - Sandra Villar-Conde
- Neuroplasticity and Neurodegeneration Laboratory, Ciudad Real Medical School, CRIB, University of Castilla-La Mancha, 13005 Ciudad Real, Spain
| | - Veronica Astillero-Lopez
- Neuroplasticity and Neurodegeneration Laboratory, Ciudad Real Medical School, CRIB, University of Castilla-La Mancha, 13005 Ciudad Real, Spain
| | | | | | - Julia Vaamonde-Gamo
- Neurology Service, Ciudad Real General University Hospital, 13005 Ciudad Real, Spain
| | | | - Lucia Gonzalez-Lopez
- Pathology Service, Ciudad Real General University Hospital, 13005 Ciudad Real, Spain
| | | | - Alberto Rabano
- Neuropathology Department and Tissue Bank, CIEN Foundation, Carlos III Health Institute, Madrid, Spain
| | - Alino Martinez-Marcos
- Neuroplasticity and Neurodegeneration Laboratory, Ciudad Real Medical School, CRIB, University of Castilla-La Mancha, 13005 Ciudad Real, Spain
| |
Collapse
|
46
|
Beach TG, Adler CH, Zhang N, Serrano GE, Sue LI, Driver-Dunckley E, Mehta SH, Zamrini EE, Sabbagh MN, Shill HA, Belden CM, Shprecher DR, Caselli RJ, Reiman EM, Davis KJ, Long KE, Nicholson LR, Intorcia AJ, Glass MJ, Walker JE, Callan MM, Oliver JC, Arce R, Gerkin RC. Severe hyposmia distinguishes neuropathologically confirmed dementia with Lewy bodies from Alzheimer's disease dementia. PLoS One 2020; 15:e0231720. [PMID: 32320406 PMCID: PMC7176090 DOI: 10.1371/journal.pone.0231720] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/30/2020] [Indexed: 11/19/2022] Open
Abstract
Many subjects with neuropathologically-confirmed dementia with Lewy bodies (DLB) are never diagnosed during life, instead being categorized as Alzheimer's disease dementia (ADD) or unspecified dementia. Unrecognized DLB therefore is a critical impediment to clinical studies and treatment trials of both ADD and DLB. There are studies that suggest that olfactory function tests may be able to distinguish DLB from ADD, but few of these had neuropathological confirmation of diagnosis. We compared University of Pennsylvania Smell Identification Test (UPSIT) results in 257 subjects that went on to autopsy and neuropathological examination. Consensus clinicopathological diagnostic criteria were used to define ADD and DLB, as well as Parkinson's disease with dementia (PDD), with (PDD+AD) or without (PDD-AD) concurrent AD; a group with ADD and Lewy body disease (LBD) not meeting criteria for DLB (ADLB) and a clinically normal control group were also included. The subjects with DLB, PDD+AD and PDD-AD all had lower (one-way ANOVA p < 0.0001, pairwise Bonferroni p < 0.05) first and mean UPSIT scores than the ADD, ADLB or control groups. For DLB subjects with first and mean UPSIT scores less than 20 and 17, respectively, Firth logistic regression analysis, adjusted for age, gender and mean MMSE score, conferred statistically significant odds ratios of 17.5 and 18.0 for the diagnosis, vs ADD. For other group comparisons (PDD+AD and PDD-AD vs ADD) and UPSIT cutoffs of 17, the same analyses resulted in odds ratios ranging from 16.3 to 31.6 (p < 0.0001). To our knowledge, this is the largest study to date comparing olfactory function in subjects with neuropathologically-confirmed LBD and ADD. Olfactory function testing may be a convenient and inexpensive strategy for enriching dementia studies or clinical trials with DLB subjects, or conversely, reducing the inclusion of DLB subjects in ADD studies or trials.
Collapse
Affiliation(s)
- Thomas G. Beach
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Charles H. Adler
- Department of Neurology, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Nan Zhang
- Department of Biostatistics, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Geidy E. Serrano
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Lucia I. Sue
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | | | - Shayamal H. Mehta
- Department of Neurology, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Edouard E. Zamrini
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Marwan N. Sabbagh
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, Nevada, United States of America
| | - Holly A. Shill
- Barrow Neurological Institute, Phoenix, Arizona, United States of America
| | - Christine M. Belden
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - David R. Shprecher
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Richard J. Caselli
- Department of Neurology, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Eric M. Reiman
- Banner Alzheimer’s Institute, Phoenix, Arizona, United States of America
| | - Kathryn J. Davis
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Kathy E. Long
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Lisa R. Nicholson
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Anthony J. Intorcia
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Michael J. Glass
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Jessica E. Walker
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Michael M. Callan
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Javon C. Oliver
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Richard Arce
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Richard C. Gerkin
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
47
|
Fujishiro H, Kosaka K. When does cerebral β‐amyloid deposition begin in Lewy body dementia? ACTA ACUST UNITED AC 2020. [DOI: 10.1111/ncn3.12372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hiroshige Fujishiro
- Department of Psychiatry Kawasaki Memorial Hospital Miyamae Kawasaki Japan
- Department of Psychiatry Nagoya University Graduate School of Medicine Showa, Nagoya Japan
- Department of Psychiatry Yokohama City University School of Medicine Kanazawa, Yokohama Japan
| | - Kenji Kosaka
- Department of Psychiatry Yokohama City University School of Medicine Kanazawa, Yokohama Japan
| |
Collapse
|
48
|
Kon T, Tomiyama M, Wakabayashi K. Neuropathology of Lewy body disease: Clinicopathological crosstalk between typical and atypical cases. Neuropathology 2019; 40:30-39. [PMID: 31498507 DOI: 10.1111/neup.12597] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 12/21/2022]
Abstract
Lewy body disease (LBD) is characterized by the presence of Lewy bodies (LBs) and Lewy neurites and comprises a diagnostic spectrum that includes Parkinson's disease (PD), PD with dementia, and dementia with LBs. LBs and Lewy neurites are insoluble aggregates composed mainly of phosphorylated α-synuclein and can be widely distributed throughout the central and peripheral nervous systems. The distribution of LBs may determine the LBD phenotype. Braak hypothesized that Lewy pathology progresses ascendingly from the peripheral nervous system to the olfactory bulbs and brainstem and then to other brain regions. Braak's PD staging suggests that LBD is a prion-like disease. Most typical PD cases fit with Braak's PD staging, but the scheme fails in some cases. Alzheimer's disease, progressive supranuclear palsy, corticobasal syndrome, multiple system atrophy, frontotemporal lobar degeneration, Creutzfeldt-Jakob disease, cerebrovascular diseases, and essential tremor are common misdiagnoses for pathologically confirmed LBD. LBD exhibits considerable heterogeneity in both clinical and pathological settings, which makes clinical diagnosis challenging.
Collapse
Affiliation(s)
- Tomoya Kon
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.,Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Masahiko Tomiyama
- Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Koichi Wakabayashi
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
49
|
Molecular Imaging of the Dopamine Transporter. Cells 2019; 8:cells8080872. [PMID: 31405186 PMCID: PMC6721747 DOI: 10.3390/cells8080872] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 02/06/2023] Open
Abstract
Dopamine transporter (DAT) single-photon emission tomography (SPECT) with (123)Ioflupane is a widely used diagnostic tool for patients with suspected parkinsonian syndromes, as it assists with differentiating between Parkinson’s disease (PD) or atypical parkinsonisms and conditions without a presynaptic dopaminergic deficit such as essential tremor, vascular and drug-induced parkinsonisms. Recent evidence supports its utility as in vivo proof of degenerative parkinsonisms, and DAT imaging has been proposed as a potential surrogate marker for dopaminergic nigrostriatal neurons. However, the interpretation of DAT-SPECT imaging may be challenged by several factors including the loss of DAT receptor density with age and the effect of certain drugs on dopamine uptake. Furthermore, a clear, direct relationship between nigral loss and DAT decrease has been controversial so far. Striatal DAT uptake could reflect nigral neuronal loss once the loss exceeds 50%. Indeed, reduction of DAT binding seems to be already present in the prodromal stage of PD, suggesting both an early synaptic dysfunction and the activation of compensatory changes to delay the onset of symptoms. Despite a weak correlation with PD severity and progression, quantitative measurements of DAT binding at baseline could be used to predict the emergence of late-disease motor fluctuations and dyskinesias. This review addresses the possibilities and limitations of DAT-SPECT in PD and, focusing specifically on regulatory changes of DAT in surviving DA neurons, we investigate its role in diagnosis and its prognostic value for motor complications as disease progresses.
Collapse
|
50
|
Vitanova KS, Stringer KM, Benitez DP, Brenton J, Cummings DM. Dementia associated with disorders of the basal ganglia. J Neurosci Res 2019; 97:1728-1741. [PMID: 31392765 DOI: 10.1002/jnr.24508] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 01/12/2023]
Abstract
Dementia is now the leading cause of death in the United Kingdom, accounting for over 12% of all deaths and is the fifth most common cause of death worldwide. As treatments for heart disease and cancers improve and the population ages, the number of sufferers will only increase, with the chance of developing dementia doubling every 5 years after the age of 65. Finding an effective treatment is ever more critical to avert this pandemic health (and economic) crisis. To date, most dementia-related research has focused on the cortex and the hippocampus; however, with dementia becoming more fully recognized as aspects of diseases historically categorized as motor disorders (e.g., Parkinson's and Huntington's diseases), the role of the basal ganglia in dementia is coming to the fore. Conversely, it is highly likely that neuronal pathways in these structures traditionally considered as spared in Alzheimer's disease are also affected, particularly in later stages of the disease. In this review, we examine some of the limited evidence linking the basal ganglia to dementia.
Collapse
Affiliation(s)
- Karina S Vitanova
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| | - Katie M Stringer
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK.,Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Diana P Benitez
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| | - Jonathan Brenton
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| | - Damian M Cummings
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| |
Collapse
|