1
|
Paatela EM, St Amant FG, Hamm DC, Bennett SR, Gujral TS, van der Maarel SM, Tapscott SJ. A discrete region of the D4Z4 is sufficient to initiate epigenetic silencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.639175. [PMID: 40027792 PMCID: PMC11870474 DOI: 10.1101/2025.02.19.639175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The DUX4 transcription factor is briefly expressed in the early embryo and is epigenetically repressed in somatic tissues. Loss of epigenetic repression can result in the aberrant expression of DUX4 in skeletal muscle and can cause facioscapulohumeral dystrophy (FSHD). Multiple factors have been identified as necessary to maintain epigenetic silencing of DUX4 in skeletal muscle, but whether specific sequences at the DUX4 locus are sufficient for epigenetic silencing has been unknown. We cloned fragments of the D4Z4 macrosatellite repeat, the DNA region that encompasses the DUX4 retrogene, adjacent to a reporter driven by a constitutive promoter and identified a single fragment sufficient to epigenetically repress reporter gene expression. Previously identified suppressors of DUX4 expression-SETDB1, ATF7IP, SIN3A/B, and LRIF1-were necessary for silencing activity and p38 inhibitors enhanced suppression. These findings identify a key regulatory sequence for D4Z4 epigenetic repression and establish a model system for mechanistic and discovery studies.
Collapse
|
2
|
Gérard L, Delourme M, Tardy C, Ganne B, Perrin P, Chaix C, Trani JP, Eudes N, Laberthonnière C, Bertaux K, Missirian C, Bassez G, Behin A, Cintas P, Cluse F, De La Cruz E, Delmont E, Evangelista T, Fradin M, Hadouiri N, Kouton L, Laforêt P, Lefeuvre C, Magot A, Manel V, Nectoux J, Pegat A, Sole G, Spinazzi M, Stojkovic T, Svahn J, Tard C, Thauvin C, Verebi C, Salort Campana E, Attarian S, Nguyen K, Badache A, Bernard R, Magdinier F. SMCHD1 genetic variants in type 2 facioscapulohumeral dystrophy and challenges in predicting pathogenicity and disease penetrance. Eur J Hum Genet 2024:10.1038/s41431-024-01781-x. [PMID: 39725690 DOI: 10.1038/s41431-024-01781-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 12/09/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024] Open
Abstract
The molecular diagnosis of type 1 facioscapulohumeral muscular dystrophy (FSHD1) relies on the detection of a shortened D4Z4 array at the 4q35 locus. Until recently, the diagnosis of FSHD2 relied solely on the absence of a shortened D4Z4 allele in clinically affected patients. It is now established that most FSHD2 cases carry a heterozygous variant in the SMCHD1 gene. A decrease in D4Z4 DNA methylation is observed in both FSHD1 and FSHD2 patients. To refine the molecular diagnosis of FSHD2, we performed a molecular diagnosis of SMCHD1 in 54 patients with a clinical diagnosis of FSHD. All patients carry a D4Z4 array of more than 10 D4Z4 units, or a cis-duplication of the locus. Forty-eight of them carry a variant in SMCHD1 and six other cases are hemizygous for the 18p32 locus encompassing SMCHD1. Genetic and epigenetic analyses were considered to assess the pathogenicity of new SMCHD1 variants and of variants previously classified as likely pathogenic. In comparison to the healthy population and FSHD1 patients, we defined a threshold of 40% of methylation at the D4Z4 DR1 site as associated with SMCHD1 variants or SMCHD1 hemizygosity. We also showed that the number of D4Z4 on the shortest 4q allele ranges from 11 up to 35 units in these same patients. Using variant interpretation and protein structure prediction tools, we also highlight the difficulty in interpreting the impact of pathogenic variants on SMCHD1 function. Our study further emphasizes the intriguing relationship between D4Z4 methylation, SMCHD1 variants with SMCHD1 protein structure-function in FSHD.
Collapse
Affiliation(s)
- Laurène Gérard
- Service de Génétique Médicale, Biogénopôle, Hôpitaux Universitaires de Marseille, Marseille, France
| | - Mégane Delourme
- Aix-Marseille Univ-INSERM, Marseille Medical Genetics, Marseille, France
| | - Charlotte Tardy
- Service de Génétique Médicale, Biogénopôle, Hôpitaux Universitaires de Marseille, Marseille, France
- Aix-Marseille Univ-INSERM, Marseille Medical Genetics, Marseille, France
| | - Benjamin Ganne
- Aix-Marseille Univ-INSERM, Marseille Medical Genetics, Marseille, France
| | - Pierre Perrin
- Aix-Marseille Univ-INSERM, Marseille Medical Genetics, Marseille, France
| | - Charlene Chaix
- Service de Génétique Médicale, Biogénopôle, Hôpitaux Universitaires de Marseille, Marseille, France
| | | | - Nathalie Eudes
- Aix-Marseille Univ-INSERM, Marseille Medical Genetics, Marseille, France
| | | | - Karine Bertaux
- Service de Génétique Médicale, Biogénopôle, Hôpitaux Universitaires de Marseille, Marseille, France
- Centre de ressources Biologiques, Biogénopôle, Hôpitaux Universitaires de Marseille, Biogénopôle, 13005, Marseille, France
| | - Chantal Missirian
- Service de Génétique Médicale, Biogénopôle, Hôpitaux Universitaires de Marseille, Marseille, France
- Aix-Marseille Univ-INSERM, Marseille Medical Genetics, Marseille, France
| | - Guillaume Bassez
- APHP, Service de Neuromyologie, Institut de Myologie, GH Pitié-Salpêtrière, Paris, France
- Neuromuscular Morphology Unit, Neuromuscular Investigation Center, Institute of Myology, Pitié-Salpêtrière Hospital, Paris, France
| | - Anthony Behin
- APHP, Service de Neuromyologie, Institut de Myologie, GH Pitié-Salpêtrière, Paris, France
| | - Pascal Cintas
- Centre de référence neuromusculaire, CHU Toulouse Purpan, Toulouse, France
| | - Florent Cluse
- Electroneuromyography and Neuromuscular Diseases Unit, Pierre Wertheimer Hospital, Hospices Civils de Lyon, Bron, France
| | - Elisa De La Cruz
- Département de Neurologie, CHU Gui de Chauliac, Montpellier, France
| | - Emilien Delmont
- Centre de références des Maladies neuromusculaires et de la SLA, Hôpitaux Universitaires de Marseille, Hôpital Timone Adulte, Marseille, France
| | - Teresinha Evangelista
- APHP, Service de Neuromyologie, Institut de Myologie, GH Pitié-Salpêtrière, Paris, France
- Neuromuscular Morphology Unit, Neuromuscular Investigation Center, Institute of Myology, Pitié-Salpêtrière Hospital, Paris, France
| | - Mélanie Fradin
- Service de génétique Médicale CHU Rennes, Rennes, Centre de Compétences Maladies Neuromusculaires de Rennes, Rennes, France
| | - Nawale Hadouiri
- INSERM-Université Bourgogne U1231, Equipe GAD Génétique des Anomalies du Développement Dijon, Dijon, France
- Pôle Rééducation-Réadaptation, CHU Dijon-Bourgogne, Dijon, France
| | - Ludivine Kouton
- Centre de références des Maladies neuromusculaires et de la SLA, Hôpitaux Universitaires de Marseille, Hôpital Timone Adulte, Marseille, France
| | - Pascal Laforêt
- Neurology Department, Raymond Poincaré University Hospital, Garches, APHP, Paris, France
- Nord-Est-Ile-de-France Neuromuscular Reference Center, Ile-de-Franc, FHU PHENIX, France
| | - Claire Lefeuvre
- Neurology Department, Raymond Poincaré University Hospital, Garches, APHP, Paris, France
| | - Armelle Magot
- Centre de Référence des Maladies Neuromusculaires AOC, CHU de Nantes, Filnemus, Euro-NMD, Nantes, France
| | - Véronique Manel
- L'Escale, Service de Médecine Physique et de Réadaptation Pédiatrique, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, Groupement Est, Bron, France
| | - Juliette Nectoux
- Service de Médecine Génomique des Maladies de Système et d'Organe, Fédération de Génétique et de Médecine Génomique, APHP Centre - Université Paris Cité, Hôpital Cochin, 75014, Paris, France
| | - Antoine Pegat
- Electroneuromyography and Neuromuscular Diseases Unit, Pierre Wertheimer Hospital, Hospices Civils de Lyon, Bron, France
| | - Guilhem Sole
- Centre de Référence des Maladies Neuromusculaires AOC, Service de Neurologie et Maladies Neuromusculaires, FILNEMUS, EURONMD, Hôpital Pellegrin, CHU de Bordeaux, Bordeaux, France
| | - Marco Spinazzi
- Neuromuscular Reference Center, Department of Neurology, CHU d'Angers, d'Angers, France
| | - Tanya Stojkovic
- APHP, Service de Neuromyologie, Institut de Myologie, GH Pitié-Salpêtrière, Paris, France
| | - Juliette Svahn
- Electroneuromyography and Neuromuscular Diseases Unit, Pierre Wertheimer Hospital, Hospices Civils de Lyon, Bron, France
| | - Celine Tard
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000, Lille, France
- Centre de référence des maladies neuromusculaires Nord/Est/Ile- de- France, Lille, France
| | - Christel Thauvin
- INSERM-Université Bourgogne U1231, Equipe GAD Génétique des Anomalies du Développement Dijon, Dijon, France
- Centre de Génétique, Hôpital d'Enfants, CHU Dijon Bourgogne, Dijon, France
| | - Camille Verebi
- Service de Médecine Génomique des Maladies de Système et d'Organe, Fédération de Génétique et de Médecine Génomique, APHP Centre - Université Paris Cité, Hôpital Cochin, 75014, Paris, France
| | - Emmanuelle Salort Campana
- Aix-Marseille Univ-INSERM, Marseille Medical Genetics, Marseille, France
- Centre de références des Maladies neuromusculaires et de la SLA, Hôpitaux Universitaires de Marseille, Hôpital Timone Adulte, Marseille, France
| | - Shahram Attarian
- Aix-Marseille Univ-INSERM, Marseille Medical Genetics, Marseille, France
- Centre de références des Maladies neuromusculaires et de la SLA, Hôpitaux Universitaires de Marseille, Hôpital Timone Adulte, Marseille, France
| | - Karine Nguyen
- Service de Génétique Médicale, Biogénopôle, Hôpitaux Universitaires de Marseille, Marseille, France
- Aix-Marseille Univ-INSERM, Marseille Medical Genetics, Marseille, France
| | - Ali Badache
- Aix-Marseille Univ-INSERM, Marseille Medical Genetics, Marseille, France
| | - Rafaëlle Bernard
- Service de Génétique Médicale, Biogénopôle, Hôpitaux Universitaires de Marseille, Marseille, France
- Aix-Marseille Univ-INSERM, Marseille Medical Genetics, Marseille, France
| | | |
Collapse
|
3
|
Strafella C, Megalizzi D, Trastulli G, Proietti Piorgo E, Colantoni L, Tasca G, Monforte M, Zampatti S, Primiano G, Sancricca C, Bortolani S, Torchia E, Ravera B, Torri F, Gadaleta G, Risi B, Caria F, Gerardi F, Carraro E, Gioiosa V, Garibaldi M, Tufano L, Frezza E, Massa R, Caltagirone C, Pennisi EM, Petrucci A, Pane M, Frongia A, Gragnani F, Scutifero M, Mandich P, Grandis M, Maioli MA, Casali C, Manfroi E, Politano L, Passamano L, Petillo R, Rodolico C, Pugliese A, Previtali SC, Sansone V, Vercelli L, Mongini TE, Ricci G, Siciliano G, Filosto M, Ricci E, Cascella R, Giardina E. Integrating D4Z4 methylation analysis into clinical practice: improvement of FSHD molecular diagnosis through distinct thresholds for 4qA/4qA and 4qA/4qB patients. Clin Epigenetics 2024; 16:148. [PMID: 39438900 PMCID: PMC11520157 DOI: 10.1186/s13148-024-01747-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Facioscapulohumeral dystrophy (FSHD) is a myopathy characterized by the loss of repressive epigenetic features affecting the D4Z4 locus (4q35). The assessment of DNA methylation at two regions (DUX4-PAS and DR1) of D4Z4 locus proved to be an effective method to detect epigenetic signatures compatible with FSHD. The present study aims at validating the employment of this method into clinical practice and improving the protocol by refining the classification thresholds of 4qA/4qA patients. To this purpose, 218 subjects with clinical suspicion of FSHD collected in 2022-2023 were analyzed. Each participant underwent in parallel the traditional FSHD molecular testing (D4Z4 sizing) and the proposed methylation assay. The results provided by both analyses were compared to evaluate the concordance and calculate the performance metrics of the methylation test. RESULTS Among the 218 subjects, the 4q variant type distribution was 54% 4qA/4qA, 43% 4qA/4qB and 3% 4qB/4qB. The methylation analysis was performed only on carriers of at least one 4qA allele. After refining the classification threshold, the test reached the following performance metrics: sensitivity = 0.90, specificity = 1.00 and accuracy = 0.93. These results confirmed the effectiveness of the methylation assay in identifying patients with genetic signature compatible with FSHD1 and FSHD2 based on their DUX4-PAS and DR1 profile, respectively. The methylation data were also evaluated with respect to the clinical information. CONCLUSIONS The study confirmed the ability of the method to accurately identify methylation profiles compatible with FSHD genetic signatures considering the 4q genotype. Moreover, the test allows the detection of hypomethylated profiles in asymptomatic patients, suggesting its potential application in identifying preclinical conditions in patients with positive family history and FSHD genetic signatures. Furthermore, the present work emphasizes the importance of interpreting methylation profiles considering the patients' clinical data.
Collapse
Affiliation(s)
- Claudia Strafella
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Via Ardeatina 306-354, 00179, Rome, Italy
| | - Domenica Megalizzi
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Via Ardeatina 306-354, 00179, Rome, Italy
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, Via Montpellier 1, 00133, Rome, Italy
| | - Giulia Trastulli
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Via Ardeatina 306-354, 00179, Rome, Italy
- Department of System Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133, Rome, Italy
| | - Emma Proietti Piorgo
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Via Ardeatina 306-354, 00179, Rome, Italy
| | - Luca Colantoni
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Via Ardeatina 306-354, 00179, Rome, Italy
| | - Giorgio Tasca
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trusts, Newcastle Upon Tyne, NE1 3BZ, UK
| | - Mauro Monforte
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Stefania Zampatti
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Via Ardeatina 306-354, 00179, Rome, Italy
| | - Guido Primiano
- Neurofisiopathology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Cristina Sancricca
- Neurofisiopathology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Sara Bortolani
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Eleonora Torchia
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Beatrice Ravera
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Francesca Torri
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - Giulio Gadaleta
- Presidio Molinette e OIRM (SS Malattie Neuromuscolari e SC Neuropsichiatria Infantile), AOU Città della Salute e della Scienza di Torino, Corso Bramante 88, 10126, Turin, Italy
| | - Barbara Risi
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, Via Paolo Richiedei, 16, 25064, Brescia, Italy
| | - Filomena Caria
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, Via Paolo Richiedei, 16, 25064, Brescia, Italy
| | - Francesca Gerardi
- The NEMO Center in Milan, Neurorehabilitation Unit,, University of Milan, ASST Niguarda Hospital, Piazza Dell'Ospedale Maggiore 3, 20161, Milan, Italy
| | - Elena Carraro
- The NEMO Center in Milan, Neurorehabilitation Unit,, University of Milan, ASST Niguarda Hospital, Piazza Dell'Ospedale Maggiore 3, 20161, Milan, Italy
| | - Valeria Gioiosa
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Corso Della Repubblica 79, 4100, Latina, Italy
| | - Matteo Garibaldi
- Neuromuscular and Rare Disease Centre, Sant'Andrea Hospital, Via Di Grottarossa 1035-1039, 00189, Rome, Italy
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, SAPIENZA University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Laura Tufano
- Neuromuscular and Rare Disease Centre, Sant'Andrea Hospital, Via Di Grottarossa 1035-1039, 00189, Rome, Italy
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, SAPIENZA University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Erica Frezza
- Department of Systems Medicine, Neurology Unit, Tor Vergata University of Rome, Via Montpellier 1, 00133, Rome, Italy
| | - Roberto Massa
- Department of Systems Medicine, Neurology Unit, Tor Vergata University of Rome, Via Montpellier 1, 00133, Rome, Italy
| | - Carlo Caltagirone
- Department of Clinical and Behavioral Neurology, IRCCS Fondazione Santa Lucia, Via Ardeatina 306-354, 00179, Rome, Italy
| | - Elena Maria Pennisi
- UOC of Neurology, San Filippo Neri Hospital, Via Giovanni Martinotti 20, 00135, Rome, Italy
| | - Antonio Petrucci
- Department of Neurology and Neurophysiopathology, Azienda Ospedaliera San Camillo Forlanini, Circonvallazione Gianicolense, 87, 00149, Rome, Italy
| | - Marika Pane
- Pediatric Neurology, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy
- Centro Clinico Nemo, Fondazione Agostino Gemelli IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Annalia Frongia
- Centro Clinico Nemo, Fondazione Agostino Gemelli IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Francesca Gragnani
- Neurology and Neurophysiopathology Unit, Sandro Pertini Hospital, Via Dei Monti Tiburtini 385, 00157, Rome, Italy
| | - Marianna Scutifero
- Cardiomyology and Medical Genetics, University of Campania Luigi Vanvitelli, Via Santa Maria Di Costantinopoli 16, 80138, Naples, Italy
| | - Paola Mandich
- IRCCS Ospedale Policlinico San Martino - UOC Genetica Medica, Largo R. Benzi 10, 16132, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, University of Genova, Largo Paolo Daneo 3, 16132, Genoa, Italy
| | - Marina Grandis
- IRCCS Ospedale Policlinico San Martino - UOC Genetica Medica, Largo R. Benzi 10, 16132, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, University of Genova, Largo Paolo Daneo 3, 16132, Genoa, Italy
| | | | - Carlo Casali
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Corso Della Repubblica 79, 4100, Latina, Italy
| | - Elisabetta Manfroi
- Department of Neuroscience- Neurogenetics, Santa Maria Hospital, Viale Tristano Di Joannuccio, 05100, Terni, Italy
| | - Luisa Politano
- Cardiomyology and Medical Genetics, University of Campania Luigi Vanvitelli, Via Santa Maria Di Costantinopoli 16, 80138, Naples, Italy
| | - Luigia Passamano
- Cardiomyology and Medical Genetics, University of Campania Luigi Vanvitelli, Via Santa Maria Di Costantinopoli 16, 80138, Naples, Italy
| | - Roberta Petillo
- Medical and Laboratory Genetics Unit, A.O.R.N. 'Antonio Cardarelli', Via A. Cardarelli 9, 80131, Naples, Italy
| | - Carmelo Rodolico
- Department of Clinical and Experimental Medicine, University of Messina, Piazza Pugliatti 1, 98122, Messina, Italy
| | - Alessia Pugliese
- Department of Clinical and Experimental Medicine, University of Messina, Piazza Pugliatti 1, 98122, Messina, Italy
| | - Stefano Carlo Previtali
- Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Valeria Sansone
- The NEMO Center in Milan, Neurorehabilitation Unit,, University of Milan, ASST Niguarda Hospital, Piazza Dell'Ospedale Maggiore 3, 20161, Milan, Italy
| | - Liliana Vercelli
- Presidio Molinette e OIRM (SS Malattie Neuromuscolari e SC Neuropsichiatria Infantile), AOU Città della Salute e della Scienza di Torino, Corso Bramante 88, 10126, Turin, Italy
| | - Tiziana Enrica Mongini
- Presidio Molinette e OIRM (SS Malattie Neuromuscolari e SC Neuropsichiatria Infantile), AOU Città della Salute e della Scienza di Torino, Corso Bramante 88, 10126, Turin, Italy
| | - Giulia Ricci
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - Massimiliano Filosto
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, Via Paolo Richiedei, 16, 25064, Brescia, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Enzo Ricci
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy
- Istituto Di Neurologia, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy
| | - Raffaella Cascella
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Via Ardeatina 306-354, 00179, Rome, Italy
- Department of Biomedical Sciences, Catholic University Our Lady of Good Counsel, Sheshi Nënë Tereza 4, 1010, Tiranë, Albania
| | - Emiliano Giardina
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Via Ardeatina 306-354, 00179, Rome, Italy.
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, Via Montpellier 1, 00133, Rome, Italy.
| |
Collapse
|
4
|
Megalizzi D, Trastulli G, Colantoni L, Proietti Piorgo E, Primiano G, Sancricca C, Caltagirone C, Cascella R, Strafella C, Giardina E. Deciphering the Complexity of FSHD: A Multimodal Approach as a Model for Rare Disorders. Int J Mol Sci 2024; 25:10949. [PMID: 39456731 PMCID: PMC11507453 DOI: 10.3390/ijms252010949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Rare diseases are heterogeneous diseases characterized by various symptoms and signs. Due to the low prevalence of such conditions (less than 1 in 2000 people), medical expertise is limited, knowledge is poor and patients' care provided by medical centers is inadequate. An accurate diagnosis is frequently challenging and ongoing research is also insufficient, thus complicating the understanding of the natural progression of the rarest disorders. This review aims at presenting the multimodal approach supported by the integration of multiple analyses and disciplines as a valuable solution to clarify complex genotype-phenotype correlations and promote an in-depth examination of rare disorders. Taking into account the literature from large-scale population studies and ongoing technological advancement, this review described some examples to show how a multi-skilled team can improve the complex diagnosis of rare diseases. In this regard, Facio-Scapulo-Humeral muscular Dystrophy (FSHD) represents a valuable example where a multimodal approach is essential for a more accurate and precise diagnosis, as well as for enhancing the management of patients and their families. Given their heterogeneity and complexity, rare diseases call for a distinctive multidisciplinary approach to enable diagnosis and clinical follow-up.
Collapse
Affiliation(s)
- Domenica Megalizzi
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, Via Ardeatina 306-354, 00179 Rome, Italy; (D.M.); (G.T.); (L.C.); (E.P.P.); (R.C.); (C.S.)
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Giulia Trastulli
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, Via Ardeatina 306-354, 00179 Rome, Italy; (D.M.); (G.T.); (L.C.); (E.P.P.); (R.C.); (C.S.)
- Department of System Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Luca Colantoni
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, Via Ardeatina 306-354, 00179 Rome, Italy; (D.M.); (G.T.); (L.C.); (E.P.P.); (R.C.); (C.S.)
| | - Emma Proietti Piorgo
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, Via Ardeatina 306-354, 00179 Rome, Italy; (D.M.); (G.T.); (L.C.); (E.P.P.); (R.C.); (C.S.)
| | - Guido Primiano
- Neurophysiopathology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy; (G.P.); (C.S.)
| | - Cristina Sancricca
- Neurophysiopathology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy; (G.P.); (C.S.)
| | - Carlo Caltagirone
- Department of Clinical and Behavioral Neurology, IRCCS Fondazione Santa Lucia, Via Ardeatina 306-354, 00179 Rome, Italy;
| | - Raffaella Cascella
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, Via Ardeatina 306-354, 00179 Rome, Italy; (D.M.); (G.T.); (L.C.); (E.P.P.); (R.C.); (C.S.)
- Department of Chemical-Toxicological and Pharmacological Evaluation of Drugs, Catholic University Our Lady of Good Counsel, 1000 Tirana, Albania
| | - Claudia Strafella
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, Via Ardeatina 306-354, 00179 Rome, Italy; (D.M.); (G.T.); (L.C.); (E.P.P.); (R.C.); (C.S.)
| | - Emiliano Giardina
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, Via Ardeatina 306-354, 00179 Rome, Italy; (D.M.); (G.T.); (L.C.); (E.P.P.); (R.C.); (C.S.)
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
5
|
Potabattula R, Durackova J, Kießling S, Michler A, Hahn T, Schorsch M, Trapphoff T, Dieterle S, Haaf T. D4Z4 Hypomethylation in Human Germ Cells. Cells 2024; 13:1497. [PMID: 39273067 PMCID: PMC11394335 DOI: 10.3390/cells13171497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/19/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Expression of the double homeobox 4 (DUX4) transcription factor is highly regulated in early embryogenesis and is subsequently epigenetically silenced. Ectopic expression of DUX4 due to hypomethylation of the D4Z4 repeat array on permissive chromosome 4q35 alleles is associated with facioscapulohumeral muscular dystrophy (FSHD). In peripheral blood samples from 188 healthy individuals, D4Z4 methylation was highly variable, ranging from 19% to 76%, and was not affected by age. In 48 FSHD2 patients, D4Z4 methylation varied from 3% to 30%. Given that DUX4 is one of the earliest transcribed genes after fertilization, the D4Z4 array is expected to be unmethylated in mature germ cells. Deep bisulfite sequencing of 188 mainly normozoospermic sperm samples revealed an average methylation of 2.5% (range 0.3-22%). Overall, the vast majority (78%) of individual sperm cells displayed no methylation at all. In contrast, only 19 (17.5%) of 109 individual germinal vesicle (GV) oocytes displayed D4Z4 methylation <2.5%. However, it is not unexpected that immature GV oocytes which are not usable for assisted reproduction are endowed with D4Z4 (up to 74%) hypermethylation and/or abnormal (PEG3 and GTL2) imprints. Although not significant, it is interesting to note that the pregnancy rate after assisted reproduction was higher for donors of sperm samples and oocytes with <2.5% methylation.
Collapse
Affiliation(s)
- Ramya Potabattula
- Institute of Human Genetics, Julius Maximilians University, 97074 Wuerzburg, Germany; (R.P.); (J.D.); (S.K.); (A.M.)
| | - Jana Durackova
- Institute of Human Genetics, Julius Maximilians University, 97074 Wuerzburg, Germany; (R.P.); (J.D.); (S.K.); (A.M.)
| | - Sarah Kießling
- Institute of Human Genetics, Julius Maximilians University, 97074 Wuerzburg, Germany; (R.P.); (J.D.); (S.K.); (A.M.)
| | - Alina Michler
- Institute of Human Genetics, Julius Maximilians University, 97074 Wuerzburg, Germany; (R.P.); (J.D.); (S.K.); (A.M.)
| | - Thomas Hahn
- Fertility Center Wiesbaden, 65189 Wiesbaden, Germany; (T.H.); (M.S.)
| | - Martin Schorsch
- Fertility Center Wiesbaden, 65189 Wiesbaden, Germany; (T.H.); (M.S.)
| | - Tom Trapphoff
- Fertility Center Dortmund, 44135 Dortmund, Germany; (T.T.); (S.D.)
| | - Stefan Dieterle
- Fertility Center Dortmund, 44135 Dortmund, Germany; (T.T.); (S.D.)
- Division of Reproductive Medicine and Infertility, Department of Obstetrics and Gynecology, Witten/Herdecke University, 44135 Dortmund, Germany
| | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University, 97074 Wuerzburg, Germany; (R.P.); (J.D.); (S.K.); (A.M.)
| |
Collapse
|
6
|
Hangul C, Ozcan F, Darbas S, Uysal H, Koc AF, Berker Karauzum S. Progesterone may be a regulator and B12 could be an indicator of the proximal D4Z4 repeat methylation status on 4q35ter. J Neurochem 2024; 168:3209-3220. [PMID: 39105526 DOI: 10.1111/jnc.16196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/09/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024]
Abstract
Facioscapulohumeral dystrophy (FSHD) has a hypomethylation-related epigenetic background and exhibits a different course in male and female patients. The differences between males and females have been linked to the levels of sex hormones. This study is the first to investigate the possible effect of these hormones on methylation status. We hypothesized that the levels of sex-related hormones, estradiol, testosterone, progesterone, and prolactin might be associated with the methylation status of the proximal part of the D4Z4. We also investigated the effect of fT3, folic acid, and vitamin B12 levels. We collected blood from 28 FSHD patients and 28 controls. DNA was extracted from each individual for bisulfite methylation analysis and serum was separated for biochemical analysis of estradiol, testosterone, progesterone, prolactin, fT3, folic acid, and B12 analysis. Methylation analysis was specified to the DR1, 5P regions and the proximal region covering both DR1 and 5P. Methylation levels were compared between FSHD patients and controls. The correlation of methylation levels with estradiol, testosterone, progesterone, prolactin, fT3, folic acid, and B12 was investigated. We found that the 5P region and the proximal region were significantly hypomethylated in FSHD patients compared to the controls, but not the DR1 region. Male patients exhibited a significant reduction in DNA methylation compared to male controls. Older FSHD patients exhibited a notable decrease in fT3 levels and hypomethylation of the 5P region. Analyses of each CpG revealed seven hypomethylated positions that were significantly different from the control group. Two of the positions demonstrated a correlation with progesterone in the control group. With the exception of one position, the methylation levels were inversely correlated with vitamin B12 in FSHD patients. The results of our study indicate that the methylation of the proximal D4Z4 region, particularly at specific positions, may be associated with progesterone. In addition, vitamin B12 may be an indicator of hypomethylation. We suggest that examining position-specific methylations may be a useful approach for the development of epigenetic treatment modalities.
Collapse
Affiliation(s)
- Ceren Hangul
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Filiz Ozcan
- Dialysis Programme, Vocational School of Health Services, Antalya Bilim University, Antalya, Turkey
| | - Sule Darbas
- Tissue Typing Laboratory, Akdeniz University Hospital, Antalya, Turkey
| | - Hilmi Uysal
- Department of Neurology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Ayse Filiz Koc
- Department of Neurology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Sibel Berker Karauzum
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| |
Collapse
|
7
|
Arends T, Hamm DC, van der Maarel S, Tapscott SJ. Facioscapulohumeral Dystrophy: Molecular Basis and Therapeutic Opportunities. Cold Spring Harb Perspect Biol 2024:a041492. [PMID: 39009417 PMCID: PMC11733064 DOI: 10.1101/cshperspect.a041492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Facioscapulohumeral dystrophy (FSHD) is caused by misexpression of the early embryonic transcription factor Double Homeobox Protein 4 (DUX4) in skeletal muscle. DUX4 is normally expressed at the 4-cell stage of the human embryo and initiates a portion of the first wave of embryonic gene expression that establishes the totipotent cells of the embryo. Following brief expression, the DUX4 locus is suppressed by epigenetic silencing and remains silenced in nearly all somatic cells. Mutations that cause FSHD decrease the efficiency of epigenetic silencing of the DUX4 locus and result in aberrant expression of this transcription factor in skeletal muscles. DUX4 expression in these skeletal muscles reactivates part of the early totipotent program and suppresses the muscle program-resulting in a progressive muscular dystrophy that affects some muscles earlier than others. These advances in understanding the cause of FSHD have led to multiple therapeutic strategies that are now entering clinical trials.
Collapse
Affiliation(s)
- Tessa Arends
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| | - Danielle C Hamm
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| | - Silvère van der Maarel
- Department of Human Genetics, Leiden University Medical Center, 2333 ZC Leiden, Netherlands
| | - Stephen J Tapscott
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
- Department of Neurology, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
8
|
Megalizzi D, Trastulli G, Caputo V, Colantoni L, Caltagirone C, Strafella C, Cascella R, Giardina E. Epigenetic profiling of the D4Z4 locus: Optimization of the protocol for studying DNA methylation at single CpG site level. Electrophoresis 2023; 44:1588-1594. [PMID: 37565369 DOI: 10.1002/elps.202300058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/27/2023] [Accepted: 07/30/2023] [Indexed: 08/12/2023]
Abstract
The alteration of epigenetic modifications, including DNA methylation, can contribute to the etiopathogenesis and progression of many diseases. Among them, facioscapulohumeral dystrophy (FSHD) is a muscular disorder characterized by the loss of repressive epigenetic features affecting the D4Z4 locus (4q35). As a consequence, these alterations are responsible for DNA hypomethylation and a transcriptional-active chromatin conformation change that, in turn, lead to the aberrant expression of DUX4 in muscle cells. In the present study, methylation levels of 29 CpG sites of the DR1 region (within each repeat unit of the D4Z4 macrosatellite) were assessed on 335 subjects by employing primers designed for enhancing the performance of the assay. First, the DR1 original primers were optimized by adding M13 oligonucleotide tails. Moreover, the DR1 reverse primer was replaced with a degenerate one. As a result, the protocol optimization allowed a better sequencing resolution and a more accurate evaluation of DR1 methylation levels. Moreover, the assessment of the repeatability of measurements proved the reliability and robustness of the assay. The optimized protocol emerges as an excellent method to detect methylation levels compatible with FSHD.
Collapse
Affiliation(s)
- Domenica Megalizzi
- Genomic Medicine Laboratory-UILDM, Santa Lucia Foundation IRCCS, Rome, Italy
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Giulia Trastulli
- Genomic Medicine Laboratory-UILDM, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Valerio Caputo
- Genomic Medicine Laboratory-UILDM, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Luca Colantoni
- Genomic Medicine Laboratory-UILDM, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Carlo Caltagirone
- Department of Clinical and Behavioral Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Claudia Strafella
- Genomic Medicine Laboratory-UILDM, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Raffaella Cascella
- Genomic Medicine Laboratory-UILDM, Santa Lucia Foundation IRCCS, Rome, Italy
- Department of Biomedical Sciences, Catholic University Our Lady of Good Counsel, Tirana, Albania
| | - Emiliano Giardina
- Genomic Medicine Laboratory-UILDM, Santa Lucia Foundation IRCCS, Rome, Italy
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| |
Collapse
|
9
|
Tapia Del Fierro A, den Hamer B, Benetti N, Jansz N, Chen K, Beck T, Vanyai H, Gurzau AD, Daxinger L, Xue S, Ly TTN, Wanigasuriya I, Iminitoff M, Breslin K, Oey H, Krom YD, van der Hoorn D, Bouwman LF, Johanson TM, Ritchie ME, Gouil QA, Reversade B, Prin F, Mohun T, van der Maarel SM, McGlinn E, Murphy JM, Keniry A, de Greef JC, Blewitt ME. SMCHD1 has separable roles in chromatin architecture and gene silencing that could be targeted in disease. Nat Commun 2023; 14:5466. [PMID: 37749075 PMCID: PMC10519958 DOI: 10.1038/s41467-023-40992-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/07/2023] [Indexed: 09/27/2023] Open
Abstract
The interplay between 3D chromatin architecture and gene silencing is incompletely understood. Here, we report a novel point mutation in the non-canonical SMC protein SMCHD1 that enhances its silencing capacity at endogenous developmental targets. Moreover, it also results in enhanced silencing at the facioscapulohumeral muscular dystrophy associated macrosatellite-array, D4Z4, resulting in enhanced repression of DUX4 encoded by this repeat. Heightened SMCHD1 silencing perturbs developmental Hox gene activation, causing a homeotic transformation in mice. Paradoxically, the mutant SMCHD1 appears to enhance insulation against other epigenetic regulators, including PRC2 and CTCF, while depleting long range chromatin interactions akin to what is observed in the absence of SMCHD1. These data suggest that SMCHD1's role in long range chromatin interactions is not directly linked to gene silencing or insulating the chromatin, refining the model for how the different levels of SMCHD1-mediated chromatin regulation interact to bring about gene silencing in normal development and disease.
Collapse
Affiliation(s)
- Andres Tapia Del Fierro
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- The Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Bianca den Hamer
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Natalia Benetti
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- The Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Natasha Jansz
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- The Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Kelan Chen
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- The Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Tamara Beck
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Hannah Vanyai
- Crick Advanced Light Microscopy Facility, The Francis Crick Institute, London, UK
| | - Alexandra D Gurzau
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- The Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Lucia Daxinger
- Queensland Institute of Medical Research, Brisbane, QLD, Australia
| | - Shifeng Xue
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Thanh Thao Nguyen Ly
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Iromi Wanigasuriya
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- The Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Megan Iminitoff
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- The Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Kelsey Breslin
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Harald Oey
- Queensland Institute of Medical Research, Brisbane, QLD, Australia
| | - Yvonne D Krom
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Dinja van der Hoorn
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Linde F Bouwman
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Timothy M Johanson
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- The Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Matthew E Ritchie
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- The Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Quentin A Gouil
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- The Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Bruno Reversade
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
- Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Fabrice Prin
- Crick Advanced Light Microscopy Facility, The Francis Crick Institute, London, UK
| | - Timothy Mohun
- Crick Advanced Light Microscopy Facility, The Francis Crick Institute, London, UK
| | | | - Edwina McGlinn
- EMBL Australia, Monash University, Clayton, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - James M Murphy
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- The Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Andrew Keniry
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- The Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Jessica C de Greef
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Marnie E Blewitt
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.
- The Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
10
|
Butterfield RJ, Dunn DM, Duval B, Moldt S, Weiss RB. Deciphering D4Z4 CpG methylation gradients in fascioscapulohumeral muscular dystrophy using nanopore sequencing. Genome Res 2023; 33:1439-1454. [PMID: 37798116 PMCID: PMC10620044 DOI: 10.1101/gr.277871.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/02/2023] [Indexed: 10/07/2023]
Abstract
Fascioscapulohumeral muscular dystrophy (FSHD) is caused by a unique genetic mechanism that relies on contraction and hypomethylation of the D4Z4 macrosatellite array on the Chromosome 4q telomere allowing ectopic expression of the DUX4 gene in skeletal muscle. Genetic analysis is difficult because of the large size and repetitive nature of the array, a nearly identical array on the 10q telomere, and the presence of divergent D4Z4 arrays scattered throughout the genome. Here, we combine nanopore long-read sequencing with Cas9-targeted enrichment of 4q and 10q D4Z4 arrays for comprehensive genetic analysis including determination of the length of the 4q and 10q D4Z4 arrays with base-pair resolution. In the same assay, we differentiate 4q from 10q telomeric sequences, determine A/B haplotype, identify paralogous D4Z4 sequences elsewhere in the genome, and estimate methylation for all CpGs in the array. Asymmetric, length-dependent methylation gradients were observed in the 4q and 10q D4Z4 arrays that reach a hypermethylation point at approximately 10 D4Z4 repeat units, consistent with the known threshold of pathogenic D4Z4 contractions. High resolution analysis of individual D4Z4 repeat methylation revealed areas of low methylation near the CTCF/insulator region and areas of high methylation immediately preceding the DUX4 transcriptional start site. Within the DUX4 exons, we observed a waxing/waning methylation pattern with a 180-nucleotide periodicity, consistent with phased nucleosomes. Targeted nanopore sequencing complements recently developed molecular combing and optical mapping approaches to genetic analysis for FSHD by adding precision of the length measurement, base-pair resolution sequencing, and quantitative methylation analysis.
Collapse
Affiliation(s)
- Russell J Butterfield
- Department of Pediatrics, University of Utah, Salt Lake City, Utah 84108, USA;
- Department of Neurology, University of Utah, Salt Lake City, Utah 84132, USA
| | - Diane M Dunn
- Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA
| | - Brett Duval
- Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA
| | - Sarah Moldt
- Department of Pediatrics, University of Utah, Salt Lake City, Utah 84108, USA
| | - Robert B Weiss
- Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
11
|
Strafella C, Caputo V, Bortolani S, Torchia E, Megalizzi D, Trastulli G, Monforte M, Colantoni L, Caltagirone C, Ricci E, Tasca G, Cascella R, Giardina E. Whole exome sequencing highlights rare variants in CTCF, DNMT1, DNMT3A, EZH2 and SUV39H1 as associated with FSHD. Front Genet 2023; 14:1235589. [PMID: 37674478 PMCID: PMC10477786 DOI: 10.3389/fgene.2023.1235589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/09/2023] [Indexed: 09/08/2023] Open
Abstract
Introduction: Despite the progress made in the study of Facioscapulohumeral Dystrophy (FSHD), the wide heterogeneity of disease complicates its diagnosis and the genotype-phenotype correlation among patients and within families. In this context, the present work employed Whole Exome Sequencing (WES) to investigate known and unknown genetic contributors that may be involved in FSHD and may represent potential disease modifiers, even in presence of a D4Z4 Reduced Allele (DRA). Methods: A cohort of 126 patients with clinical signs of FSHD were included in the study, which were characterized by D4Z4 sizing, methylation analysis and WES. Specific protocols were employed for D4Z4 sizing and methylation analysis, whereas the Illumina® Next-Seq 550 system was utilized for WES. The study included both patients with a DRA compatible with FSHD diagnosis and patients with longer D4Z4 alleles. In case of patients harboring relevant variants from WES, the molecular analysis was extended to the family members. Results: The WES data analysis highlighted 20 relevant variants, among which 14 were located in known genetic modifiers (SMCHD1, DNMT3B and LRIF1) and 6 in candidate genes (CTCF, DNMT1, DNMT3A, EZH2 and SUV39H1). Most of them were found together with a permissive short (4-7 RU) or borderline/long DRA (8-20 RU), supporting the possibility that different genes can contribute to disease heterogeneity in presence of a FSHD permissive background. The segregation and methylation analysis among family members, together with clinical findings, provided a more comprehensive picture of patients. Discussion: Our results support FSHD pathomechanism being complex with a multigenic contribution by several known (SMCHD1, DNMT3B, LRIF1) and possibly other candidate genes (CTCF, DNMT1, DNMT3A, EZH2, SUV39H1) to disease penetrance and expressivity. Our results further emphasize the importance of extending the analysis of molecular findings within the proband's family, with the purpose of providing a broader framework for understanding single cases and allowing finer genotype-phenotype correlations in FSHD-affected families.
Collapse
Affiliation(s)
- Claudia Strafella
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Valerio Caputo
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Sara Bortolani
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Eleonora Torchia
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Domenica Megalizzi
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Giulia Trastulli
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Mauro Monforte
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Luca Colantoni
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Carlo Caltagirone
- Department of Clinical and Behavioral Neurology, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Enzo Ricci
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Neurologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giorgio Tasca
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trusts, Newcastle UponTyne, United Kingdom
| | - Raffaella Cascella
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Biomedical Sciences, Catholic University Our Lady of Good Counsel, Tirana, Albania
| | - Emiliano Giardina
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
- Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| |
Collapse
|
12
|
Laberthonnière C, Delourme M, Chevalier R, Dion C, Ganne B, Hirst D, Caron L, Perrin P, Adélaïde J, Chaffanet M, Xue S, Nguyen K, Reversade B, Déjardin J, Baudot A, Robin J, Magdinier F. In skeletal muscle and neural crest cells, SMCHD1 regulates biological pathways relevant for Bosma syndrome and facioscapulohumeral dystrophy phenotype. Nucleic Acids Res 2023; 51:7269-7287. [PMID: 37334829 PMCID: PMC10415154 DOI: 10.1093/nar/gkad523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/15/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023] Open
Abstract
Many genetic syndromes are linked to mutations in genes encoding factors that guide chromatin organization. Among them, several distinct rare genetic diseases are linked to mutations in SMCHD1 that encodes the structural maintenance of chromosomes flexible hinge domain containing 1 chromatin-associated factor. In humans, its function as well as the impact of its mutations remains poorly defined. To fill this gap, we determined the episignature associated with heterozygous SMCHD1 variants in primary cells and cell lineages derived from induced pluripotent stem cells for Bosma arhinia and microphthalmia syndrome (BAMS) and type 2 facioscapulohumeral dystrophy (FSHD2). In human tissues, SMCHD1 regulates the distribution of methylated CpGs, H3K27 trimethylation and CTCF at repressed chromatin but also at euchromatin. Based on the exploration of tissues affected either in FSHD or in BAMS, i.e. skeletal muscle fibers and neural crest stem cells, respectively, our results emphasize multiple functions for SMCHD1, in chromatin compaction, chromatin insulation and gene regulation with variable targets or phenotypical outcomes. We concluded that in rare genetic diseases, SMCHD1 variants impact gene expression in two ways: (i) by changing the chromatin context at a number of euchromatin loci or (ii) by directly regulating some loci encoding master transcription factors required for cell fate determination and tissue differentiation.
Collapse
Affiliation(s)
| | - Mégane Delourme
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille 13005, France
| | - Raphaël Chevalier
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille 13005, France
| | - Camille Dion
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille 13005, France
| | - Benjamin Ganne
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille 13005, France
| | - David Hirst
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille 13005, France
| | - Leslie Caron
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille 13005, France
| | - Pierre Perrin
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille 13005, France
| | - José Adélaïde
- Aix Marseille Univ, INSERM, CNRS, Institut Paoli Calmette, Centre de Recherche en Cancérologie de Marseille, Laboratory of predictive Oncology, Marseille 13009, France
| | - Max Chaffanet
- Aix Marseille Univ, INSERM, CNRS, Institut Paoli Calmette, Centre de Recherche en Cancérologie de Marseille, Laboratory of predictive Oncology, Marseille 13009, France
| | - Shifeng Xue
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
- Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Karine Nguyen
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille 13005, France
- Département de Génétique Médicale, AP-HM, Hôpital d’enfants de la Timone, Marseille 13005, France
| | - Bruno Reversade
- Genome Institute of Singapore, A*STAR, Singapore, Singapore
- Department of Medical Genetics, Koç University, School of Medicine, Istanbul, Turkey
- Department of Physiology, Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Laboratory of Human Genetics & Therapeutics, Smart-Health Initiative, BESE, KAUST, Thuwal, Saudi Arabia
| | - Jérôme Déjardin
- Institut de Génétique Humaine, UMR 9002, CNRS–Université de Montpellier, Montpellier 34000, France
| | - Anaïs Baudot
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille 13005, France
| | - Jérôme D Robin
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille 13005, France
| | | |
Collapse
|
13
|
Šikrová D, Testa AM, Willemsen I, van den Heuvel A, Tapscott SJ, Daxinger L, Balog J, van der Maarel SM. SMCHD1 and LRIF1 converge at the FSHD-associated D4Z4 repeat and LRIF1 promoter yet display different modes of action. Commun Biol 2023; 6:677. [PMID: 37380887 DOI: 10.1038/s42003-023-05053-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 06/17/2023] [Indexed: 06/30/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is caused by the epigenetic derepression of the 4q-linked D4Z4 macrosatellite repeat resulting in inappropriate expression of the D4Z4 repeat-encoded DUX4 gene in skeletal muscle. In 5% of FSHD cases, D4Z4 chromatin relaxation is due to germline mutations in one of the chromatin modifiers SMCHD1, DNMT3B or LRIF1. The mechanism of SMCHD1- and LRIF1-mediated D4Z4 repression is not clear. We show that somatic loss-of-function of either SMCHD1 or LRIF1 does not result in D4Z4 chromatin changes and that SMCHD1 and LRIF1 form an auxiliary layer of D4Z4 repressive mechanisms. We uncover that SMCHD1, together with the long isoform of LRIF1, binds to the LRIF1 promoter and silences LRIF1 expression. The interdependency of SMCHD1 and LRIF1 binding differs between D4Z4 and the LRIF1 promoter, and both loci show different transcriptional responses to either early developmentally or somatically perturbed chromatin function of SMCHD1 and LRIF1.
Collapse
Affiliation(s)
- Darina Šikrová
- Department of Human Genetics, Leiden University Medical Center, 2333ZC, Leiden, The Netherlands
| | - Alessandra M Testa
- Department of Human Genetics, Leiden University Medical Center, 2333ZC, Leiden, The Netherlands
- Department of Biomedical Sciences, University of Padua, 35100, Padua, Italy
| | - Iris Willemsen
- Department of Human Genetics, Leiden University Medical Center, 2333ZC, Leiden, The Netherlands
| | - Anita van den Heuvel
- Department of Human Genetics, Leiden University Medical Center, 2333ZC, Leiden, The Netherlands
| | - Stephen J Tapscott
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Lucia Daxinger
- Department of Human Genetics, Leiden University Medical Center, 2333ZC, Leiden, The Netherlands
| | - Judit Balog
- Department of Human Genetics, Leiden University Medical Center, 2333ZC, Leiden, The Netherlands
| | - Silvère M van der Maarel
- Department of Human Genetics, Leiden University Medical Center, 2333ZC, Leiden, The Netherlands.
| |
Collapse
|
14
|
Erdmann H, Scharf F, Gehling S, Benet-Pagès A, Jakubiczka S, Becker K, Seipelt M, Kleefeld F, Knop KC, Prott EC, Hiebeler M, Montagnese F, Gläser D, Vorgerd M, Hagenacker T, Walter MC, Reilich P, Neuhann T, Zenker M, Holinski-Feder E, Schoser B, Abicht A. Methylation of the 4q35 D4Z4 repeat defines disease status in facioscapulohumeral muscular dystrophy. Brain 2023; 146:1388-1402. [PMID: 36100962 DOI: 10.1093/brain/awac336] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/06/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Genetic diagnosis of facioscapulohumeral muscular dystrophy (FSHD) remains a challenge in clinical practice as it cannot be detected by standard sequencing methods despite being the third most common muscular dystrophy. The conventional diagnostic strategy addresses the known genetic parameters of FSHD: the required presence of a permissive haplotype, a size reduction of the D4Z4 repeat of chromosome 4q35 (defining FSHD1) or a pathogenic variant in an epigenetic suppressor gene (consistent with FSHD2). Incomplete penetrance and epistatic effects of the underlying genetic parameters as well as epigenetic parameters (D4Z4 methylation) pose challenges to diagnostic accuracy and hinder prediction of clinical severity. In order to circumvent the known limitations of conventional diagnostics and to complement genetic parameters with epigenetic ones, we developed and validated a multistage diagnostic workflow that consists of a haplotype analysis and a high-throughput methylation profile analysis (FSHD-MPA). FSHD-MPA determines the average global methylation level of the D4Z4 repeat array as well as the regional methylation of the most distal repeat unit by combining bisulphite conversion with next-generation sequencing and a bioinformatics pipeline and uses these as diagnostic parameters. We applied the diagnostic workflow to a cohort of 148 patients and compared the epigenetic parameters based on FSHD-MPA to genetic parameters of conventional genetic testing. In addition, we studied the correlation of repeat length and methylation level within the most distal repeat unit with age-corrected clinical severity and age at disease onset in FSHD patients. The results of our study show that FSHD-MPA is a powerful tool to accurately determine the epigenetic parameters of FSHD, allowing discrimination between FSHD patients and healthy individuals, while simultaneously distinguishing FSHD1 and FSHD2. The strong correlation between methylation level and clinical severity indicates that the methylation level determined by FSHD-MPA accounts for differences in disease severity among individuals with similar genetic parameters. Thus, our findings further confirm that epigenetic parameters rather than genetic parameters represent FSHD disease status and may serve as a valuable biomarker for disease status.
Collapse
Affiliation(s)
- Hannes Erdmann
- Medical Genetics Center (MGZ), 80335 Munich, Germany
- Friedrich-Baur-Institute, Department of Neurology, Klinikum der Universität, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | | | | | - Anna Benet-Pagès
- Medical Genetics Center (MGZ), 80335 Munich, Germany
- Institute of Neurogenomics, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Sibylle Jakubiczka
- Institute of Human Genetics, Universitätsklinikum Magdeburg, Otto-von-Guericke Universität, 39120 Magdeburg, Germany
| | | | - Maria Seipelt
- Department of Neurology, Universitätsklinikum Marburg, Philipps-University Marburg, 35043 Marburg, Germany
| | - Felix Kleefeld
- Department of Neurology and Experimental Neurology, Charité Berlin, 10117 Berlin, Germany
| | | | | | - Miriam Hiebeler
- Friedrich-Baur-Institute, Department of Neurology, Klinikum der Universität, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | - Federica Montagnese
- Friedrich-Baur-Institute, Department of Neurology, Klinikum der Universität, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | | | - Matthias Vorgerd
- Department of Neurology, Berufgenossenschaftliches Universitätsklinikum Bergmannsheil, Ruhr-Universität Bochum, 44789 Bochum, Germany
| | - Tim Hagenacker
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, 45147 Essen, Germany
| | - Maggie C Walter
- Friedrich-Baur-Institute, Department of Neurology, Klinikum der Universität, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | - Peter Reilich
- Friedrich-Baur-Institute, Department of Neurology, Klinikum der Universität, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | | | - Martin Zenker
- Institute of Human Genetics, Universitätsklinikum Magdeburg, Otto-von-Guericke Universität, 39120 Magdeburg, Germany
| | - Elke Holinski-Feder
- Medical Genetics Center (MGZ), 80335 Munich, Germany
- Department of Medicine IV, Klinikum der Universität, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | - Benedikt Schoser
- Friedrich-Baur-Institute, Department of Neurology, Klinikum der Universität, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | - Angela Abicht
- Medical Genetics Center (MGZ), 80335 Munich, Germany
- Friedrich-Baur-Institute, Department of Neurology, Klinikum der Universität, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| |
Collapse
|
15
|
Butterfield RJ, Dunn DM, Duval B, Moldt S, Weiss RB. Deciphering D4Z4 CpG methylation gradients in fascioscapulohumeral muscular dystrophy using nanopore sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.17.528868. [PMID: 36824722 PMCID: PMC9949141 DOI: 10.1101/2023.02.17.528868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Fascioscapulohumeral muscular dystrophy (FSHD) is caused by a unique genetic mechanism that relies on contraction and hypomethylation of the D4Z4 macrosatellite array on the chromosome 4q telomere allowing ectopic expression of the DUX4 gene in skeletal muscle. Genetic analysis is difficult due to the large size and repetitive nature of the array, a nearly identical array on the 10q telomere, and the presence of divergent D4Z4 arrays scattered throughout the genome. Here, we combine nanopore long-read sequencing with Cas9-targeted enrichment of 4q and 10q D4Z4 arrays for comprehensive genetic analysis including determination of the length of the 4q and 10q D4Z4 arrays with base-pair resolution. In the same assay, we differentiate 4q from 10q telomeric sequences, determine A/B haplotype, identify paralogous D4Z4 sequences elsewhere in the genome, and estimate methylation for all CpGs in the array. Asymmetric, length-dependent methylation gradients were observed in the 4q and 10q D4Z4 arrays that reach a hypermethylation point at approximately 10 D4Z4 repeat units, consistent with the known threshold of pathogenic D4Z4 contractions. High resolution analysis of individual D4Z4 repeat methylation revealed areas of low methylation near the CTCF/insulator region and areas of high methylation immediately preceding the DUX4 transcriptional start site. Within the DUX4 exons, we observed a waxing/waning methylation pattern with a 180-nucleotide periodicity, consistent with phased nucleosomes. Targeted nanopore sequencing complements recently developed molecular combing and optical mapping approaches to genetic analysis for FSHD by adding precision of the length measurement, base-pair resolution sequencing, and quantitative methylation analysis.
Collapse
Affiliation(s)
- Russell J Butterfield
- Department of Pediatrics, University of Utah, Salt Lake City, UT
- Department of Neurology, University of Utah, Salt Lake City, UT
| | - Diane M Dunn
- University of Utah, Department of Human Genetics, Salt Lake City, UT
| | - Brett Duval
- University of Utah, Department of Human Genetics, Salt Lake City, UT
| | - Sarah Moldt
- Department of Pediatrics, University of Utah, Salt Lake City, UT
| | - Robert B Weiss
- University of Utah, Department of Human Genetics, Salt Lake City, UT
| |
Collapse
|
16
|
Tihaya MS, Mul K, Balog J, de Greef JC, Tapscott SJ, Tawil R, Statland JM, van der Maarel SM. Facioscapulohumeral muscular dystrophy: the road to targeted therapies. Nat Rev Neurol 2023; 19:91-108. [PMID: 36627512 PMCID: PMC11578282 DOI: 10.1038/s41582-022-00762-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2022] [Indexed: 01/11/2023]
Abstract
Advances in the molecular understanding of facioscapulohumeral muscular dystrophy (FSHD) have revealed that FSHD results from epigenetic de-repression of the DUX4 gene in skeletal muscle, which encodes a transcription factor that is active in early embryonic development but is normally silenced in almost all somatic tissues. These advances also led to the identification of targets for disease-altering therapies for FSHD, as well as an improved understanding of the molecular mechanism of the disease and factors that influence its progression. Together, these developments led the FSHD research community to shift its focus towards the development of disease-modifying treatments for FSHD. This Review presents advances in the molecular and clinical understanding of FSHD, discusses the potential targeted therapies that are currently being explored, some of which are already in clinical trials, and describes progress in the development of FSHD-specific outcome measures and assessment tools for use in future clinical trials.
Collapse
Affiliation(s)
- Mara S Tihaya
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Karlien Mul
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Judit Balog
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jessica C de Greef
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Stephen J Tapscott
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Rabi Tawil
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jeffrey M Statland
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | | |
Collapse
|
17
|
D4Z4 Methylation Levels Combined with a Machine Learning Pipeline Highlight Single CpG Sites as Discriminating Biomarkers for FSHD Patients. Cells 2022; 11:cells11244114. [PMID: 36552879 PMCID: PMC9777431 DOI: 10.3390/cells11244114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/18/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
The study describes a protocol for methylation analysis integrated with Machine Learning (ML) algorithms developed to classify Facio-Scapulo-Humeral Dystrophy (FSHD) subjects. The DNA methylation levels of two D4Z4 regions (DR1 and DUX4-PAS) were assessed by an in-house protocol based on bisulfite sequencing and capillary electrophoresis, followed by statistical and ML analyses. The study involved two independent cohorts, namely a training group of 133 patients with clinical signs of FSHD and 150 healthy controls (CTRL) and a testing set of 27 FSHD patients and 25 CTRL. As expected, FSHD patients showed significantly reduced methylation levels compared to CTRL. We utilized single CpG sites to develop a ML pipeline able to discriminate FSHD subjects. The model identified four CpGs sites as the most relevant for the discrimination of FSHD subjects and showed high metrics values (accuracy: 0.94, sensitivity: 0.93, specificity: 0.96). Two additional models were developed to differentiate patients with lower D4Z4 size and patients who might carry pathogenic variants in FSHD genes, respectively. Overall, the present model enables an accurate classification of FSHD patients, providing additional evidence for DNA methylation as a powerful disease biomarker that could be employed for prioritizing subjects to be tested for FSHD.
Collapse
|
18
|
Hiramuki Y, Kure Y, Saito Y, Ogawa M, Ishikawa K, Mori-Yoshimura M, Oya Y, Takahashi Y, Kim DS, Arai N, Mori C, Matsumura T, Hamano T, Nakamura K, Ikezoe K, Hayashi S, Goto Y, Noguchi S, Nishino I. Simultaneous measurement of the size and methylation of chromosome 4qA-D4Z4 repeats in facioscapulohumeral muscular dystrophy by long-read sequencing. J Transl Med 2022; 20:517. [DOI: 10.1186/s12967-022-03743-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/30/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant muscular disorder characterized by asymmetric muscle wasting and weakness. FSHD can be subdivided into two types: FSHD1, caused by contraction of the D4Z4 repeat on chromosome 4q35, and FSHD2, caused by mild contraction of the D4Z4 repeat plus aberrant hypomethylation mediated by genetic variants in SMCHD1, DNMT3B, or LRIF1. Genetic diagnosis of FSHD is challenging because of the complex procedures required.
Methods
We applied Nanopore CRISPR/Cas9-targeted resequencing for the diagnosis of FSHD by simultaneous detection of D4Z4 repeat length and methylation status at nucleotide level in genetically-confirmed and suspected patients.
Results
We found significant hypomethylation of contracted 4q-D4Z4 repeats in FSHD1, and both 4q- and 10q-D4Z4 repeats in FSHD2. We also found that the hypomethylation in the contracted D4Z4 in FSHD1 is moderately correlated with patient phenotypes.
Conclusions
Our method contributes to the development for the diagnosis of FSHD using Nanopore long-read sequencing. This finding might give insight into the mechanisms by which repeat contraction causes disease pathogenesis.
Collapse
|
19
|
Caputo V, Megalizzi D, Fabrizio C, Termine A, Colantoni L, Caltagirone C, Giardina E, Cascella R, Strafella C. Update on the Molecular Aspects and Methods Underlying the Complex Architecture of FSHD. Cells 2022; 11:cells11172687. [PMID: 36078093 PMCID: PMC9454908 DOI: 10.3390/cells11172687] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Despite the knowledge of the main mechanisms involved in facioscapulohumeral muscular dystrophy (FSHD), the high heterogeneity and variable penetrance of the disease complicate the diagnosis, characterization and genotype–phenotype correlation of patients and families, raising the need for further research and data. Thus, the present review provides an update of the main molecular aspects underlying the complex architecture of FSHD, including the genetic factors (related to D4Z4 repeated units and FSHD-associated genes), epigenetic elements (D4Z4 methylation status, non-coding RNAs and high-order chromatin interactions) and gene expression profiles (FSHD transcriptome signatures both at bulk tissue and single-cell level). In addition, the review will also describe the methods currently available for investigating the above-mentioned features and how the resulting data may be combined with artificial-intelligence-based pipelines, with the purpose of developing a multifunctional tool tailored to enhancing the knowledge of disease pathophysiology and progression and fostering the research for novel treatment strategies, as well as clinically useful biomarkers. In conclusion, the present review highlights how FSHD should be regarded as a disease characterized by a molecular spectrum of genetic and epigenetic factors, whose alteration plays a differential role in DUX4 repression and, subsequently, contributes to determining the FSHD phenotype.
Collapse
Affiliation(s)
- Valerio Caputo
- Genomic Medicine Laboratory-UILDM, Santa Lucia Foundation IRCCS, 00179 Rome, Italy
- Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| | - Domenica Megalizzi
- Genomic Medicine Laboratory-UILDM, Santa Lucia Foundation IRCCS, 00179 Rome, Italy
- Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| | - Carlo Fabrizio
- Data Science Unit, Santa Lucia Foundation IRCCS, 00179 Rome, Italy
| | - Andrea Termine
- Data Science Unit, Santa Lucia Foundation IRCCS, 00179 Rome, Italy
| | - Luca Colantoni
- Genomic Medicine Laboratory-UILDM, Santa Lucia Foundation IRCCS, 00179 Rome, Italy
| | - Carlo Caltagirone
- Department of Clinical and Behavorial Neurology, Santa Lucia Foundation IRCCS, 00179 Rome, Italy
| | - Emiliano Giardina
- Genomic Medicine Laboratory-UILDM, Santa Lucia Foundation IRCCS, 00179 Rome, Italy
- Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
- Correspondence: ; Tel.: +39-0651501550
| | - Raffaella Cascella
- Genomic Medicine Laboratory-UILDM, Santa Lucia Foundation IRCCS, 00179 Rome, Italy
- Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| | - Claudia Strafella
- Genomic Medicine Laboratory-UILDM, Santa Lucia Foundation IRCCS, 00179 Rome, Italy
- Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| |
Collapse
|
20
|
Jia FF, Drew AP, Nicholson GA, Corbett A, Kumar KR. Facioscapulohumeral muscular dystrophy type 2: an update on the clinical, genetic, and molecular findings. Neuromuscul Disord 2021; 31:1101-1112. [PMID: 34711481 DOI: 10.1016/j.nmd.2021.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/01/2021] [Accepted: 09/09/2021] [Indexed: 11/25/2022]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a common genetic disease of the skeletal muscle with a characteristic pattern of weakness. Facioscapulohumeral muscular dystrophy type 2 (FSHD2) accounts for approximately 5% of all cases of FSHD and describes patients without a D4Z4 repeat contraction on chromosome 4. Phenotypically FSHD2 shows virtually no difference from FSHD1 and both forms of FSHD arise via a common downstream mechanism of epigenetic derepression of the transcription factor DUX4 in skeletal muscle cells. This results in expression of DUX4 and target genes leading to skeletal muscle toxicity. Over the past decade, major progress has been made in our understanding of the genetic and epigenetic architecture that underlies FSHD2 pathogenesis, as well as the clinical manifestations and disease progression. These include the finding that FSHD2 is a digenic disease and that mutations in the genes SMCHD1, DNMT3B, and more recently LRIF1, can cause FSHD2. FSHD2 is complex and it is important that clinicians keep abreast of recent developments; this review aims to serve as an update of the clinical, genetic, and molecular research into this condition.
Collapse
Affiliation(s)
- Fangzhi Frank Jia
- Department of Neurology, Concord Repatriation General Hospital, Concord, New South Wales 2139, Australia.
| | - Alexander P Drew
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia.
| | - Garth Alexander Nicholson
- Department of Neurology, Concord Repatriation General Hospital, Concord, New South Wales 2139, Australia; Molecular Medicine Laboratory, Concord Repatriation General Hospital, Concord, New South Wales 2139, Australia; Northcott Neuroscience Laboratory, ANZAC Research Institute, Concord, New South Wales 2139, Australia; Sydney Medical School, University of Sydney, Camperdown, New South Wales 2050, Australia.
| | - Alastair Corbett
- Department of Neurology, Concord Repatriation General Hospital, Concord, New South Wales 2139, Australia; Sydney Medical School, University of Sydney, Camperdown, New South Wales 2050, Australia.
| | - Kishore Raj Kumar
- Department of Neurology, Concord Repatriation General Hospital, Concord, New South Wales 2139, Australia; Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia; Molecular Medicine Laboratory, Concord Repatriation General Hospital, Concord, New South Wales 2139, Australia; Sydney Medical School, University of Sydney, Camperdown, New South Wales 2050, Australia.
| |
Collapse
|
21
|
Precise Epigenetic Analysis Using Targeted Bisulfite Genomic Sequencing Distinguishes FSHD1, FSHD2, and Healthy Subjects. Diagnostics (Basel) 2021; 11:diagnostics11081469. [PMID: 34441403 PMCID: PMC8393475 DOI: 10.3390/diagnostics11081469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/01/2021] [Accepted: 08/11/2021] [Indexed: 12/16/2022] Open
Abstract
The true prevalence of facioscapulohumeral muscular dystrophy (FSHD) is unknown due to difficulties with accurate clinical evaluation and the complexities of current genetic diagnostics. Interestingly, all forms of FSHD are linked to epigenetic changes in the chromosome 4q35 D4Z4 macrosatellite, suggesting that epigenetic analysis could provide an avenue for sequence-based FSHD diagnostics. However, studies assessing DNA methylation at the FSHD locus have produced conflicting results; thus, the utility of this technique as an FSHD diagnostic remains controversial. Here, we critically compared two protocols for epigenetic analysis of the FSHD region using bisulfite genomic sequencing: Jones et al., that contends to be individually diagnostic for FSHD1 and FSHD2, and Gaillard et al., that can identify some changes in DNA methylation levels between groups of clinically affected FSHD and healthy subjects, but is not individually diagnostic for any form of FSHD. We performed both sets of assays on the same genetically confirmed samples and showed that this discrepancy was due strictly to differences in amplicon specificity. We propose that the epigenetic status of the FSHD-associated D4Z4 arrays, when accurately assessed, is a diagnostic for genetic FSHD and can readily distinguish between healthy, FSHD1 and FSHD2. Thus, epigenetic diagnosis of FSHD, which can be performed on saliva DNA, will greatly increase accessibility to FSHD diagnostics for populations around the world.
Collapse
|
22
|
Abstract
Neuromuscular disorders are a heterogeneous group of conditions affecting the neuromuscular system. The aim of this article is to review the major epigenetic findings in motor neuron diseases and major hereditary muscular dystrophies. DNA methylation changes are observed in both hereditary and sporadic forms, and combining DNA methylation analysis with mutational screening holds the potential for better diagnostic and prognostic accuracy. Novel, less toxic and more selective epigenetic drugs are designed and tested in animal and cell culture models of neuromuscular disorders, and non-coding RNAs are being investigated as either disease biomarkers or targets of therapeutic approaches to restore gene expression levels. Overall, neuromuscular disorder epigenetic biomarkers have a strong potential for clinical applications in the near future.
Collapse
Affiliation(s)
- Fabio Coppedè
- Department of Translational Research & of New Surgical & Medical Technologies, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| |
Collapse
|
23
|
Bosnakovski D, Gearhart MD, Ho Choi S, Kyba M. Dux facilitates post-implantation development, but is not essential for zygotic genome activation†. Biol Reprod 2020; 104:83-93. [PMID: 32997106 DOI: 10.1093/biolre/ioaa179] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/30/2020] [Accepted: 09/29/2020] [Indexed: 01/18/2023] Open
Abstract
Double homeobox genes are unique to eutherian mammals. It has been proposed that the DUXC clade of the double homeobox gene family, which is present in multicopy long tandem arrays, plays an essential role in zygotic genome activation (ZGA). We generated a deletion of the tandem array encoding the DUXC gene of mouse, Double homeobox (Dux), and found it surprisingly to be homozygous viable and fertile. We characterize the embryonic development and ZGA profile of knockout (KO) embryos, finding that zygotic genome activation still occurs, with only modest alterations in 2-cell embryo gene expression, no defect in in vivo preimplantation development, but an increased likelihood of post-implantation developmental failure, leading to correspondingly smaller litter sizes in the KO strain. While all known 2-cell specific Dux target genes are still expressed in the KO, a subset is expressed at lower levels. These include numerous genes involved in methylation, blastocyst development, and trophectoderm/placental development. We propose that rather than driving ZGA, which is a process common throughout the animal kingdom, DUXC genes facilitate a process unique to eutherian mammals, namely the post-implantation development enabled by an invasive placenta.
Collapse
Affiliation(s)
- Darko Bosnakovski
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA.,Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.,Faculty of Medical Sciences, University Goce Delcev - Shtip, Shtip, R. North Macedonia
| | - Micah D Gearhart
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Si Ho Choi
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA.,Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Michael Kyba
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA.,Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
24
|
Giacomucci G, Monforte M, Diaz-Manera J, Mul K, Fernandez Torrón R, Maggi L, Marini Bettolo C, Dahlqvist JR, Haberlova J, Camaño P, Gros M, Tartaglione T, Cristiano L, Gerevini S, Calandra P, Deidda G, Giardina E, Sacconi S, Straub V, Vissing J, Van Engelen B, Ricci E, Tasca G. Deep phenotyping of facioscapulohumeral muscular dystrophy type 2 by magnetic resonance imaging. Eur J Neurol 2020; 27:2604-2615. [PMID: 32697863 DOI: 10.1111/ene.14446] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND PURPOSE The aim was to define the radiological picture of facioscapulohumeral muscular dystrophy 2 (FSHD2) in comparison with FSHD1 and to explore correlations between imaging and clinical/molecular data. METHODS Upper girdle and/or lower limb muscle magnetic resonance imaging scans of 34 molecularly confirmed FSHD2 patients from nine European neuromuscular centres were analysed. T1-weighted and short-tau inversion recovery (STIR) sequences were used to evaluate the global pattern and to assess the extent of fatty replacement and muscle oedema. RESULTS The most frequently affected muscles were obliquus and transversus abdominis, semimembranosus, soleus and gluteus minimus in the lower limbs; trapezius, serratus anterior, latissimus dorsi and pectoralis major in the upper girdle. Iliopsoas, popliteus, obturator internus and tibialis posterior in the lower limbs and subscapularis, spinati, sternocleidomastoid and levator scapulae in the upper girdle were the most spared. Asymmetry and STIR hyperintensities were consistent features. The pattern of muscle involvement was similar to that of FSHD1, and the combined involvement of trapezius, abdominal and hamstring muscles, together with complete sparing of iliopsoas and subscapularis, was detected in 91% of patients. Peculiar differences were identified in a rostro-caudal gradient, a predominant involvement of lower limb muscles compared to the upper girdle, and in the higher percentage of STIR hyperintensities in FSHD2. CONCLUSION This multicentre study defines the pattern of muscle involvement in FSHD2, providing useful information for diagnostics and clinical trial design. Both similarities and differences between FSHD1 and FSHD2 were detected, which is also relevant to better understand the pathogenic mechanisms underlying the FSHD-related disease spectrum.
Collapse
Affiliation(s)
- G Giacomucci
- Istituto di Neurologia, Università Cattolica del Sacro Cuore, Roma, Italy
| | - M Monforte
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - J Diaz-Manera
- Neuromuscular Disorders Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autónoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
| | - K Mul
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - R Fernandez Torrón
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.,Neurology Department, Biodonostia Health Research Institute, Neuromuscular Area, Hospital Donostia, Basque Health Service, Doctor Begiristain, Donostia-San Sebastian, Spain
| | - L Maggi
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - C Marini Bettolo
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - J R Dahlqvist
- Copenhagen Neuromuscular Center, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - J Haberlova
- Department of Pediatric Neurology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - P Camaño
- Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases; Biodonostia-Osakidetza Basque Health Service, Molecular Diagnostics Platform, San Sebastian, Spain
| | - M Gros
- Université Côte d'Azur (UCA), Peripheral Nervous System, Muscle and ALS Department, Pasteur 2 Hospital, Nice, France.,Université Côte d'Azur, Inserm, CNRS, Institute for Research on Cancer and Aging of Nice (IRCAN), Nice, France
| | - T Tartaglione
- Radiology Unit, Istituto Dermopatico dell'Immacolata-IRCCS-FLMM, Rome, Italy
| | - L Cristiano
- Radiology Unit, Istituto Dermopatico dell'Immacolata-IRCCS-FLMM, Rome, Italy
| | - S Gerevini
- Neuroradiology Department, IRCCS San Raffaele Hospital, Milan, Italy
| | - P Calandra
- Institute of Cell Biology and Neurobiology, National Research Council of Italy, Monterotondo, Rome, Italy
| | - G Deidda
- Institute of Cell Biology and Neurobiology, National Research Council of Italy, Monterotondo, Rome, Italy
| | - E Giardina
- Molecular Genetics Laboratory UILDM, Santa Lucia Foundation IRCSS-University of Rome 'Tor Vergata', Rome, Italy
| | - S Sacconi
- Université Côte d'Azur (UCA), Peripheral Nervous System, Muscle and ALS Department, Pasteur 2 Hospital, Nice, France.,Université Côte d'Azur, Inserm, CNRS, Institute for Research on Cancer and Aging of Nice (IRCAN), Nice, France
| | - V Straub
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - J Vissing
- Copenhagen Neuromuscular Center, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - B Van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - E Ricci
- Istituto di Neurologia, Università Cattolica del Sacro Cuore, Roma, Italy.,Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - G Tasca
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| |
Collapse
|
25
|
DNA methylation in satellite repeats disorders. Essays Biochem 2020; 63:757-771. [PMID: 31387943 DOI: 10.1042/ebc20190028] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023]
Abstract
Despite the tremendous progress made in recent years in assembling the human genome, tandemly repeated DNA elements remain poorly characterized. These sequences account for the vast majority of methylated sites in the human genome and their methylated state is necessary for this repetitive DNA to function properly and to maintain genome integrity. Furthermore, recent advances highlight the emerging role of these sequences in regulating the functions of the human genome and its variability during evolution, among individuals, or in disease susceptibility. In addition, a number of inherited rare diseases are directly linked to the alteration of some of these repetitive DNA sequences, either through changes in the organization or size of the tandem repeat arrays or through mutations in genes encoding chromatin modifiers involved in the epigenetic regulation of these elements. Although largely overlooked so far in the functional annotation of the human genome, satellite elements play key roles in its architectural and topological organization. This includes functions as boundary elements delimitating functional domains or assembly of repressive nuclear compartments, with local or distal impact on gene expression. Thus, the consideration of satellite repeats organization and their associated epigenetic landmarks, including DNA methylation (DNAme), will become unavoidable in the near future to fully decipher human phenotypes and associated diseases.
Collapse
|
26
|
Greco A, Goossens R, van Engelen B, van der Maarel SM. Consequences of epigenetic derepression in facioscapulohumeral muscular dystrophy. Clin Genet 2020; 97:799-814. [PMID: 32086799 PMCID: PMC7318180 DOI: 10.1111/cge.13726] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/08/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD), a common hereditary myopathy, is caused either by the contraction of the D4Z4 macrosatellite repeat at the distal end of chromosome 4q to a size of 1 to 10 repeat units (FSHD1) or by mutations in D4Z4 chromatin modifiers such as Structural Maintenance of Chromosomes Hinge Domain Containing 1 (FSHD2). These two genotypes share a phenotype characterized by progressive and often asymmetric muscle weakening and atrophy, and common epigenetic alterations of the D4Z4 repeat. All together, these epigenetic changes converge the two genetic forms into one disease and explain the derepression of the DUX4 gene, which is otherwise kept epigenetically silent in skeletal muscle. DUX4 is consistently transcriptionally upregulated in FSHD1 and FSHD2 skeletal muscle cells where it is believed to exercise a toxic effect. Here we provide a review of the recent literature describing the progress in understanding the complex genetic and epigenetic architecture of FSHD, with a focus on one of the consequences that these epigenetic changes inflict, the DUX4-induced immune deregulation cascade. Moreover, we review the latest therapeutic strategies, with particular attention to the potential of epigenetic correction of the FSHD locus.
Collapse
Affiliation(s)
- Anna Greco
- Department of Neurology, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
- Department of Experimental Internal MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - Remko Goossens
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Baziel van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | | |
Collapse
|
27
|
Nikolic A, Jones TI, Govi M, Mele F, Maranda L, Sera F, Ricci G, Ruggiero L, Vercelli L, Portaro S, Villa L, Fiorillo C, Maggi L, Santoro L, Antonini G, Filosto M, Moggio M, Angelini C, Pegoraro E, Berardinelli A, Maioli MA, D’Angelo G, Di Muzio A, Siciliano G, Tomelleri G, D’Esposito M, Della Ragione F, Brancaccio A, Piras R, Rodolico C, Mongini T, Magdinier F, Salsi V, Jones PL, Tupler R. Interpretation of the Epigenetic Signature of Facioscapulohumeral Muscular Dystrophy in Light of Genotype-Phenotype Studies. Int J Mol Sci 2020; 21:ijms21072635. [PMID: 32290091 PMCID: PMC7178248 DOI: 10.3390/ijms21072635] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/31/2020] [Accepted: 04/07/2020] [Indexed: 01/03/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is characterized by incomplete penetrance and intra-familial clinical variability. The disease has been associated with the genetic and epigenetic features of the D4Z4 repetitive elements at 4q35. Recently, D4Z4 hypomethylation has been proposed as a reliable marker in the FSHD diagnosis. We exploited the Italian Registry for FSHD, in which FSHD families are classified using the Clinical Comprehensive Evaluation Form (CCEF). A total of 122 index cases showing a classical FSHD phenotype (CCEF, category A) and 110 relatives were selected to test with the receiver operating characteristic (ROC) curve, the diagnostic and predictive value of D4Z4 methylation. Moreover, we performed DNA methylation analysis in selected large families with reduced penetrance characterized by the co-presence of subjects carriers of one D4Z4 reduced allele with no signs of disease or presenting the classic FSHD clinical phenotype. We observed a wide variability in the D4Z4 methylation levels among index cases revealing no association with clinical manifestation or disease severity. By extending the analysis to family members, we revealed the low predictive value of D4Z4 methylation in detecting the affected condition. In view of the variability in D4Z4 methylation profiles observed in our large cohort, we conclude that D4Z4 methylation does not mirror the clinical expression of FSHD. We recommend that measurement of this epigenetic mark must be interpreted with caution in clinical practice.
Collapse
Affiliation(s)
- Ana Nikolic
- Department of Science of Life, Institute of Biology, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.N.); (M.G.); (V.S.)
| | - Takako I Jones
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV 89557, USA; (T.I.J.); (P.L.J.)
| | - Monica Govi
- Department of Science of Life, Institute of Biology, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.N.); (M.G.); (V.S.)
| | - Fabiano Mele
- Center for Genome Research, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Louise Maranda
- Department of Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, MA 01605, USA;
| | - Francesco Sera
- Department of Public Health, Environments and Society, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK;
| | - Giulia Ricci
- Department of Clinical and Experimental Medicine, Neurological Clinic, 56126 Pisa, Italy; (G.R.); (G.S.)
| | - Lucia Ruggiero
- Department of Neurosciences and Reproductive and Odontostomatologic Sciences, University Federico II, 80137 Naples, Italy; (L.R.); (L.S.)
| | - Liliana Vercelli
- Department of Neurosciences “Rita Levi Montalcini”, University of Turin, 10124 Turin, Italy; (L.V.); (T.M.)
| | - Simona Portaro
- Department of Neuroscience, Mental Health and Sensory Organs, S. Andrea Hospital, University of Rome “Sapienza”, 00185 Rome, Italy; (S.P.); (G.A.)
| | - Luisa Villa
- Department of Neuroscience, Foundation IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (L.V.); (M.M.)
| | - Chiara Fiorillo
- Pediatric Neurology and Neuromuscular Disorders Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16126 Genoa, Italy;
| | - Lorenzo Maggi
- IRCCS Foundation, C. Besta Neurological Institute, 20133 Milan, Italy;
| | - Lucio Santoro
- Department of Neurosciences and Reproductive and Odontostomatologic Sciences, University Federico II, 80137 Naples, Italy; (L.R.); (L.S.)
| | - Giovanni Antonini
- Department of Neuroscience, Mental Health and Sensory Organs, S. Andrea Hospital, University of Rome “Sapienza”, 00185 Rome, Italy; (S.P.); (G.A.)
| | | | - Maurizio Moggio
- Department of Neuroscience, Foundation IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (L.V.); (M.M.)
| | - Corrado Angelini
- Ospedale S.Camillo IRCCS, Lido di Venezia, 20126 Venezia, Italy;
| | - Elena Pegoraro
- Department of Neurosciences, University of Padua, 35128 Padua, Italy;
| | - Angela Berardinelli
- Neurology and Psychiatry, IRCCS Institute ‘C.Mondino’ Foundation, 27100 Pavia, Italy;
| | | | - Grazia D’Angelo
- Department of Neurorehabilitation, IRCCS Institute Eugenio Medea, 23842 Bosisio Parini, Italy;
| | - Antonino Di Muzio
- Center for Neuromuscular Disease, CeSI, University ‘‘G. D’Annunzio’’, 66100 Chieti, Italy;
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, Neurological Clinic, 56126 Pisa, Italy; (G.R.); (G.S.)
| | - Giuliano Tomelleri
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Maurizio D’Esposito
- Institute of Genetics and Biophysics, A. Buzzati Traverso, IGB, Consiglio Nazionale delle Ricerche, 80131 Naples, Italy; (M.D.); (F.D.R.); (A.B.)
| | - Floriana Della Ragione
- Institute of Genetics and Biophysics, A. Buzzati Traverso, IGB, Consiglio Nazionale delle Ricerche, 80131 Naples, Italy; (M.D.); (F.D.R.); (A.B.)
| | - Arianna Brancaccio
- Institute of Genetics and Biophysics, A. Buzzati Traverso, IGB, Consiglio Nazionale delle Ricerche, 80131 Naples, Italy; (M.D.); (F.D.R.); (A.B.)
| | - Rachele Piras
- ASL8, Centro Sclerosi Multipla, 09126 Cagliari, Italy; (M.A.M.); (R.P.)
| | - Carmelo Rodolico
- Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy;
| | - Tiziana Mongini
- Department of Neurosciences “Rita Levi Montalcini”, University of Turin, 10124 Turin, Italy; (L.V.); (T.M.)
| | | | - Valentina Salsi
- Department of Science of Life, Institute of Biology, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.N.); (M.G.); (V.S.)
| | - Peter L. Jones
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV 89557, USA; (T.I.J.); (P.L.J.)
| | - Rossella Tupler
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Department of Molecular Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research at the University of Massachusetts Medical School, Worcester, MA 01605, USA
- Correspondence: ; Tel.: +39-059-2055414
| |
Collapse
|
28
|
Salort-Campana E, Fatehi F, Beloribi-Djefaflia S, Roche S, Nguyen K, Bernard R, Cintas P, Solé G, Bouhour F, Ollagnon E, Sacconi S, Echaniz-Laguna A, Kuntzer T, Levy N, Magdinier F, Attarian S. Type 1 FSHD with 6-10 Repeated Units: Factors Underlying Severity in Index Cases and Disease Penetrance in Their Relatives Attention. Int J Mol Sci 2020; 21:E2221. [PMID: 32210100 PMCID: PMC7139460 DOI: 10.3390/ijms21062221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/20/2020] [Accepted: 03/21/2020] [Indexed: 12/15/2022] Open
Abstract
Molecular defects in type 1 facioscapulohumeral muscular dystrophy (FSHD) are caused by a heterozygous contraction of the D4Z4 repeat array from 1 to 10 repeat units (RUs) on 4q35. This study compared (1) the phenotype and severity of FSHD1 between patients carrying 6-8 vs. 9-10 RUs, (2) the amount of methylation in different D4Z4 regions between patients with FSHD1 with different clinical severity scores (CSS). This cross-sectional multicenter study was conducted to measure functional scales and for genetic analysis. Patients were classified into two categories according to RUs: Group 1, 6-8; Group 2, 9-10. Methylation analysis was performed in 27 patients. A total of 99 carriers of a contracted D4Z4 array were examined. No significant correlations between RUs and CSS (r = 0.04, p = 0.73) and any of the clinical outcome scales were observed between the two groups. Hypomethylation was significantly more pronounced in patients with high CSS (>3.5) than those with low CSS (<1.5) (in DR1 and 5P), indicating that the extent of hypomethylation might modulate disease severity. In Group 1, the disease severity is not strongly correlated with the allele size and is mostly correlated with the methylation of D4Z4 regions.
Collapse
Affiliation(s)
- Emmanuelle Salort-Campana
- Reference Center of Neuromuscular disorders and ALS, Timone University Hospital, AP-HM, 264 rue Saint-Pierre, Cedex 05 13385 Marseille, France; (E.S.-C.); (F.F.); (S.B.-D.)
- Medical Genetics, Aix Marseille Université—Inserm UMR_1251, 13005 Marseille, France; (S.R.); (K.N.); (R.B.); (N.L.); (F.M.)
| | - Farzad Fatehi
- Reference Center of Neuromuscular disorders and ALS, Timone University Hospital, AP-HM, 264 rue Saint-Pierre, Cedex 05 13385 Marseille, France; (E.S.-C.); (F.F.); (S.B.-D.)
| | - Sadia Beloribi-Djefaflia
- Reference Center of Neuromuscular disorders and ALS, Timone University Hospital, AP-HM, 264 rue Saint-Pierre, Cedex 05 13385 Marseille, France; (E.S.-C.); (F.F.); (S.B.-D.)
| | - Stéphane Roche
- Medical Genetics, Aix Marseille Université—Inserm UMR_1251, 13005 Marseille, France; (S.R.); (K.N.); (R.B.); (N.L.); (F.M.)
| | - Karine Nguyen
- Medical Genetics, Aix Marseille Université—Inserm UMR_1251, 13005 Marseille, France; (S.R.); (K.N.); (R.B.); (N.L.); (F.M.)
| | - Rafaelle Bernard
- Medical Genetics, Aix Marseille Université—Inserm UMR_1251, 13005 Marseille, France; (S.R.); (K.N.); (R.B.); (N.L.); (F.M.)
| | - Pascal Cintas
- Service de Neurologie et d’explorations fonctionnelles, Centre Hospitalier Universitaire de Toulouse, 31000 Toulouse, France;
| | - Guilhem Solé
- Reference Center of Neuromuscular Disorders AOC, Bordeaux University Hospitals, 33000 Bordeaux, France;
| | - Françoise Bouhour
- Electroneuromyography and Neuromuscular Department, GHE Neurologic Hospital, Cedex 69677 Lyon-Bron, France;
| | | | - Sabrina Sacconi
- Neuromuscular Disease Specialized Center, Nice University Hospital, 06000 Nice, France;
| | - Andoni Echaniz-Laguna
- Neurology Department, APHP, CHU de Bicêtre, 78 rue du Général Leclerc, Cedex 94276 Le Kremlin-Bicêtre, France;
| | - Thierry Kuntzer
- Nerve-Muscle Unit, Department of Clinical Neurosciences, Lausanne University, Hospital (CHUV), Lausanne 1002, Switzerland;
| | - Nicolas Levy
- Medical Genetics, Aix Marseille Université—Inserm UMR_1251, 13005 Marseille, France; (S.R.); (K.N.); (R.B.); (N.L.); (F.M.)
| | - Frédérique Magdinier
- Medical Genetics, Aix Marseille Université—Inserm UMR_1251, 13005 Marseille, France; (S.R.); (K.N.); (R.B.); (N.L.); (F.M.)
| | - Shahram Attarian
- Reference Center of Neuromuscular disorders and ALS, Timone University Hospital, AP-HM, 264 rue Saint-Pierre, Cedex 05 13385 Marseille, France; (E.S.-C.); (F.F.); (S.B.-D.)
- Medical Genetics, Aix Marseille Université—Inserm UMR_1251, 13005 Marseille, France; (S.R.); (K.N.); (R.B.); (N.L.); (F.M.)
| |
Collapse
|
29
|
Salsi V, Magdinier F, Tupler R. Does DNA Methylation Matter in FSHD? Genes (Basel) 2020; 11:E258. [PMID: 32121044 PMCID: PMC7140823 DOI: 10.3390/genes11030258] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/17/2020] [Accepted: 02/25/2020] [Indexed: 12/13/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) has been associated with the genetic and epigenetic molecular features of the CpG-rich D4Z4 repeat tandem array at 4q35. Reduced DNA methylation of D4Z4 repeats is considered part of the FSHD mechanism and has been proposed as a reliable marker in the FSHD diagnostic procedure. We considered the assessment of D4Z4 DNA methylation status conducted on distinct cohorts using different methodologies. On the basis of the reported results we conclude that the percentage of DNA methylation detected at D4Z4 does not correlate with the disease status. Overall, data suggest that in the case of FSHD1, D4Z4 hypomethylation is a consequence of the chromatin structure present in the contracted allele, rather than a proxy of its function. Besides, CpG methylation at D4Z4 DNA is reduced in patients presenting diseases unrelated to muscle progressive wasting, like Bosma Arhinia and Microphthalmia syndrome, a developmental disorder, as well as ICF syndrome. Consistent with these observations, the analysis of epigenetic reprogramming at the D4Z4 locus in human embryonic and induced pluripotent stem cells indicate that other mechanisms, independent from the repeat number, are involved in the control of the epigenetic structure at D4Z4.
Collapse
Affiliation(s)
- Valentina Salsi
- Department of Life Sciences, University of Modena and Reggio Emilia, 4, 41121 Modena, Italy;
| | | | - Rossella Tupler
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 4, 41121 Modena, Italy
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 4, 41121 Modena, Italy
- Department of Molecular Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01003, USA
- Li Weibo Institute for Rare Diseases Research at the University of Massachusetts Medical School, Worcester, MA 01003, USA
| |
Collapse
|
30
|
Goossens R, van den Boogaard ML, Lemmers RJLF, Balog J, van der Vliet PJ, Willemsen IM, Schouten J, Maggio I, van der Stoep N, Hoeben RC, Tapscott SJ, Geijsen N, Gonçalves MAFV, Sacconi S, Tawil R, van der Maarel SM. Intronic SMCHD1 variants in FSHD: testing the potential for CRISPR-Cas9 genome editing. J Med Genet 2019; 56:828-837. [PMID: 31676591 PMCID: PMC11578682 DOI: 10.1136/jmedgenet-2019-106402] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/04/2019] [Accepted: 09/21/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND Facioscapulohumeral dystrophy (FSHD) is associated with partial chromatin relaxation of the DUX4 retrogene containing D4Z4 macrosatellite repeats on chromosome 4, and transcriptional de-repression of DUX4 in skeletal muscle. The common form of FSHD, FSHD1, is caused by a D4Z4 repeat array contraction. The less common form, FSHD2, is generally caused by heterozygous variants in SMCHD1. METHODS We employed whole exome sequencing combined with Sanger sequencing to screen uncharacterised FSHD2 patients for extra-exonic SMCHD1 mutations. We also used CRISPR-Cas9 genome editing to repair a pathogenic intronic SMCHD1 variant from patient myoblasts. RESULTS We identified intronic SMCHD1 variants in two FSHD families. In the first family, an intronic variant resulted in partial intron retention and inclusion of the distal 14 nucleotides of intron 13 into the transcript. In the second family, a deep intronic variant in intron 34 resulted in exonisation of 53 nucleotides of intron 34. In both families, the aberrant transcripts are predicted to be non-functional. Deleting the pseudo-exon by CRISPR-Cas9 mediated genome editing in primary and immortalised myoblasts from the index case of the second family restored wild-type SMCHD1 expression to a level that resulted in efficient suppression of DUX4. CONCLUSIONS The estimated intronic mutation frequency of almost 2% in FSHD2, as exemplified by the two novel intronic SMCHD1 variants identified here, emphasises the importance of screening for intronic variants in SMCHD1. Furthermore, the efficient suppression of DUX4 after restoring SMCHD1 levels by genome editing of the mutant allele provides further guidance for therapeutic strategies.
Collapse
Affiliation(s)
- Remko Goossens
- Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Judit Balog
- Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Iris M Willemsen
- Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Julie Schouten
- Hubrecht Institute-KNAW and University Medical Center, Utrecht, The Netherlands
- Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht, The Netherlands
| | - Ignazio Maggio
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Nienke van der Stoep
- Center for Human and Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Rob C Hoeben
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Stephen J Tapscott
- Division of Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Niels Geijsen
- Hubrecht Institute-KNAW and University Medical Center, Utrecht, The Netherlands
- Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht, The Netherlands
| | - Manuel A F V Gonçalves
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sabrina Sacconi
- Peripheral Nervous System, Muscle and ALS Department, Université Côte d'Azur, Nice, France
- Institute for Research on Cancer and Aging of Nice, Faculty of Medicine, Université Côte d'Azur, Nice, France
| | - Rabi Tawil
- Department of Neurology, University of Rochester Medical Center, Rochester, New York, USA
| | | |
Collapse
|
31
|
Roche S, Dion C, Broucqsault N, Laberthonnière C, Gaillard MC, Robin JD, Lagarde A, Puppo F, Vovan C, Chaix C, Campana ES, Attarian S, Bartoli M, Bernard R, Nguyen K, Magdinier F. Methylation hotspots evidenced by deep sequencing in patients with facioscapulohumeral dystrophy and mosaicism. NEUROLOGY-GENETICS 2019; 5:e372. [PMID: 31872053 PMCID: PMC6878839 DOI: 10.1212/nxg.0000000000000372] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 10/04/2019] [Indexed: 11/15/2022]
Abstract
Objective To investigate the distribution of cytosine-guanine dinucleotide (CpG) sites with a variable level of DNA methylation of the D4Z4 macrosatellite element in patients with facioscapulohumeral dystrophy (FSHD). Methods By adapting bisulfite modification to deep sequencing, we performed a comprehensive analysis of D4Z4 methylation across D4Z4 repeats and adjacent 4qA sequence in DNA from patients with FSHD1, FSHD2, or mosaicism and controls. Results Using hierarchical clustering, we identified clusters with different levels of methylation and separated, thereby the different groups of samples (controls, FSHD1, and FSHD2) based on their respective level of methylation. We further show that deep sequencing-based methylation analysis discriminates mosaic cases for which methylation changes have never been evaluated previously. Conclusions Altogether, our approach offers a new high throughput tool for estimation of the D4Z4 methylation level in the different subcategories of patients having FSHD. This methodology allows for a comprehensive and discriminative analysis of different regions along the macrosatellite repeat and identification of focal regions or CpG sites differentially methylated in patients with FSHD1 and FSHD2 but also complex cases such as those presenting mosaicism.
Collapse
Affiliation(s)
- Stéphane Roche
- Aix Marseille University, INSERM, MMG (S.R., C.D., N.B., C.L., M.-C.G., J.D.R., A.L., F.P., E.S.C., S.A., M.B., R.B., K.N., F.M.); Département de Génétique Médicale (A.L., C.V., C.C., R.B., K.N.), AP-HM, Hôpital de la Timone enfants, Marseille; and Centre de référence pour les maladies neuromusculaires et la SLA (E.S.C., S.A.), AP-HM, Hôpital de la Timone, Marseille, France
| | - Camille Dion
- Aix Marseille University, INSERM, MMG (S.R., C.D., N.B., C.L., M.-C.G., J.D.R., A.L., F.P., E.S.C., S.A., M.B., R.B., K.N., F.M.); Département de Génétique Médicale (A.L., C.V., C.C., R.B., K.N.), AP-HM, Hôpital de la Timone enfants, Marseille; and Centre de référence pour les maladies neuromusculaires et la SLA (E.S.C., S.A.), AP-HM, Hôpital de la Timone, Marseille, France
| | - Natacha Broucqsault
- Aix Marseille University, INSERM, MMG (S.R., C.D., N.B., C.L., M.-C.G., J.D.R., A.L., F.P., E.S.C., S.A., M.B., R.B., K.N., F.M.); Département de Génétique Médicale (A.L., C.V., C.C., R.B., K.N.), AP-HM, Hôpital de la Timone enfants, Marseille; and Centre de référence pour les maladies neuromusculaires et la SLA (E.S.C., S.A.), AP-HM, Hôpital de la Timone, Marseille, France
| | - Camille Laberthonnière
- Aix Marseille University, INSERM, MMG (S.R., C.D., N.B., C.L., M.-C.G., J.D.R., A.L., F.P., E.S.C., S.A., M.B., R.B., K.N., F.M.); Département de Génétique Médicale (A.L., C.V., C.C., R.B., K.N.), AP-HM, Hôpital de la Timone enfants, Marseille; and Centre de référence pour les maladies neuromusculaires et la SLA (E.S.C., S.A.), AP-HM, Hôpital de la Timone, Marseille, France
| | - Marie-Cécile Gaillard
- Aix Marseille University, INSERM, MMG (S.R., C.D., N.B., C.L., M.-C.G., J.D.R., A.L., F.P., E.S.C., S.A., M.B., R.B., K.N., F.M.); Département de Génétique Médicale (A.L., C.V., C.C., R.B., K.N.), AP-HM, Hôpital de la Timone enfants, Marseille; and Centre de référence pour les maladies neuromusculaires et la SLA (E.S.C., S.A.), AP-HM, Hôpital de la Timone, Marseille, France
| | - Jérôme D Robin
- Aix Marseille University, INSERM, MMG (S.R., C.D., N.B., C.L., M.-C.G., J.D.R., A.L., F.P., E.S.C., S.A., M.B., R.B., K.N., F.M.); Département de Génétique Médicale (A.L., C.V., C.C., R.B., K.N.), AP-HM, Hôpital de la Timone enfants, Marseille; and Centre de référence pour les maladies neuromusculaires et la SLA (E.S.C., S.A.), AP-HM, Hôpital de la Timone, Marseille, France
| | - Arnaud Lagarde
- Aix Marseille University, INSERM, MMG (S.R., C.D., N.B., C.L., M.-C.G., J.D.R., A.L., F.P., E.S.C., S.A., M.B., R.B., K.N., F.M.); Département de Génétique Médicale (A.L., C.V., C.C., R.B., K.N.), AP-HM, Hôpital de la Timone enfants, Marseille; and Centre de référence pour les maladies neuromusculaires et la SLA (E.S.C., S.A.), AP-HM, Hôpital de la Timone, Marseille, France
| | - Francesca Puppo
- Aix Marseille University, INSERM, MMG (S.R., C.D., N.B., C.L., M.-C.G., J.D.R., A.L., F.P., E.S.C., S.A., M.B., R.B., K.N., F.M.); Département de Génétique Médicale (A.L., C.V., C.C., R.B., K.N.), AP-HM, Hôpital de la Timone enfants, Marseille; and Centre de référence pour les maladies neuromusculaires et la SLA (E.S.C., S.A.), AP-HM, Hôpital de la Timone, Marseille, France
| | - Catherine Vovan
- Aix Marseille University, INSERM, MMG (S.R., C.D., N.B., C.L., M.-C.G., J.D.R., A.L., F.P., E.S.C., S.A., M.B., R.B., K.N., F.M.); Département de Génétique Médicale (A.L., C.V., C.C., R.B., K.N.), AP-HM, Hôpital de la Timone enfants, Marseille; and Centre de référence pour les maladies neuromusculaires et la SLA (E.S.C., S.A.), AP-HM, Hôpital de la Timone, Marseille, France
| | - Charlene Chaix
- Aix Marseille University, INSERM, MMG (S.R., C.D., N.B., C.L., M.-C.G., J.D.R., A.L., F.P., E.S.C., S.A., M.B., R.B., K.N., F.M.); Département de Génétique Médicale (A.L., C.V., C.C., R.B., K.N.), AP-HM, Hôpital de la Timone enfants, Marseille; and Centre de référence pour les maladies neuromusculaires et la SLA (E.S.C., S.A.), AP-HM, Hôpital de la Timone, Marseille, France
| | - Emmanuelle Salort Campana
- Aix Marseille University, INSERM, MMG (S.R., C.D., N.B., C.L., M.-C.G., J.D.R., A.L., F.P., E.S.C., S.A., M.B., R.B., K.N., F.M.); Département de Génétique Médicale (A.L., C.V., C.C., R.B., K.N.), AP-HM, Hôpital de la Timone enfants, Marseille; and Centre de référence pour les maladies neuromusculaires et la SLA (E.S.C., S.A.), AP-HM, Hôpital de la Timone, Marseille, France
| | - Shahram Attarian
- Aix Marseille University, INSERM, MMG (S.R., C.D., N.B., C.L., M.-C.G., J.D.R., A.L., F.P., E.S.C., S.A., M.B., R.B., K.N., F.M.); Département de Génétique Médicale (A.L., C.V., C.C., R.B., K.N.), AP-HM, Hôpital de la Timone enfants, Marseille; and Centre de référence pour les maladies neuromusculaires et la SLA (E.S.C., S.A.), AP-HM, Hôpital de la Timone, Marseille, France
| | - Marc Bartoli
- Aix Marseille University, INSERM, MMG (S.R., C.D., N.B., C.L., M.-C.G., J.D.R., A.L., F.P., E.S.C., S.A., M.B., R.B., K.N., F.M.); Département de Génétique Médicale (A.L., C.V., C.C., R.B., K.N.), AP-HM, Hôpital de la Timone enfants, Marseille; and Centre de référence pour les maladies neuromusculaires et la SLA (E.S.C., S.A.), AP-HM, Hôpital de la Timone, Marseille, France
| | - Rafaelle Bernard
- Aix Marseille University, INSERM, MMG (S.R., C.D., N.B., C.L., M.-C.G., J.D.R., A.L., F.P., E.S.C., S.A., M.B., R.B., K.N., F.M.); Département de Génétique Médicale (A.L., C.V., C.C., R.B., K.N.), AP-HM, Hôpital de la Timone enfants, Marseille; and Centre de référence pour les maladies neuromusculaires et la SLA (E.S.C., S.A.), AP-HM, Hôpital de la Timone, Marseille, France
| | - Karine Nguyen
- Aix Marseille University, INSERM, MMG (S.R., C.D., N.B., C.L., M.-C.G., J.D.R., A.L., F.P., E.S.C., S.A., M.B., R.B., K.N., F.M.); Département de Génétique Médicale (A.L., C.V., C.C., R.B., K.N.), AP-HM, Hôpital de la Timone enfants, Marseille; and Centre de référence pour les maladies neuromusculaires et la SLA (E.S.C., S.A.), AP-HM, Hôpital de la Timone, Marseille, France
| | - Frédérique Magdinier
- Aix Marseille University, INSERM, MMG (S.R., C.D., N.B., C.L., M.-C.G., J.D.R., A.L., F.P., E.S.C., S.A., M.B., R.B., K.N., F.M.); Département de Génétique Médicale (A.L., C.V., C.C., R.B., K.N.), AP-HM, Hôpital de la Timone enfants, Marseille; and Centre de référence pour les maladies neuromusculaires et la SLA (E.S.C., S.A.), AP-HM, Hôpital de la Timone, Marseille, France
| |
Collapse
|
32
|
Dion C, Roche S, Laberthonnière C, Broucqsault N, Mariot V, Xue S, Gurzau AD, Nowak A, Gordon CT, Gaillard MC, El-Yazidi C, Thomas M, Schlupp-Robaglia A, Missirian C, Malan V, Ratbi L, Sefiani A, Wollnik B, Binetruy B, Salort Campana E, Attarian S, Bernard R, Nguyen K, Amiel J, Dumonceaux J, Murphy JM, Déjardin J, Blewitt ME, Reversade B, Robin JD, Magdinier F. SMCHD1 is involved in de novo methylation of the DUX4-encoding D4Z4 macrosatellite. Nucleic Acids Res 2019; 47:2822-2839. [PMID: 30698748 PMCID: PMC6451109 DOI: 10.1093/nar/gkz005] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/26/2018] [Accepted: 01/03/2019] [Indexed: 12/11/2022] Open
Abstract
The DNA methylation epigenetic signature is a key determinant during development. Rules governing its establishment and maintenance remain elusive especially at repetitive sequences, which account for the majority of methylated CGs. DNA methylation is altered in a number of diseases including those linked to mutations in factors that modify chromatin. Among them, SMCHD1 (Structural Maintenance of Chromosomes Hinge Domain Containing 1) has been of major interest following identification of germline mutations in Facio-Scapulo-Humeral Dystrophy (FSHD) and in an unrelated developmental disorder, Bosma Arhinia Microphthalmia Syndrome (BAMS). By investigating why germline SMCHD1 mutations lead to these two different diseases, we uncovered a role for this factor in de novo methylation at the pluripotent stage. SMCHD1 is required for the dynamic methylation of the D4Z4 macrosatellite upon reprogramming but seems dispensable for methylation maintenance. We find that FSHD and BAMS patient's cells carrying SMCHD1 mutations are both permissive for DUX4 expression, a transcription factor whose regulation has been proposed as the main trigger for FSHD. These findings open new questions as to what is the true aetiology for FSHD, the epigenetic events associated with the disease thus calling the current model into question and opening new perspectives for understanding repetitive DNA sequences regulation.
Collapse
Affiliation(s)
- Camille Dion
- Aix Marseille Univ, INSERM MMG, Nerve and Muscle Department, Marseille, France
| | - Stéphane Roche
- Aix Marseille Univ, INSERM MMG, Nerve and Muscle Department, Marseille, France
| | | | - Natacha Broucqsault
- Aix Marseille Univ, INSERM MMG, Nerve and Muscle Department, Marseille, France
| | - Virginie Mariot
- NIHR Biomedical Research Centre, University College London, Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust, 30 Guilford Street, London WC1N 1EH, UK
| | - Shifeng Xue
- Institute of Molecular and Cell Biology, A*STAR, Singapore. Institute of Medical Biology, A*STAR, Singapore
| | - Alexandra D Gurzau
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; The Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Agnieszka Nowak
- Institut de Génétique Humaine UMR9002 CNRS-Université de Montpellier. France
| | - Christopher T Gordon
- Laboratory of Embryology and Genetics of Human Malformation, INSERM UMR 1163, Institut Imagine, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France
| | | | - Claire El-Yazidi
- Aix Marseille Univ, INSERM MMG, Nerve and Muscle Department, Marseille, France
| | - Morgane Thomas
- Aix Marseille Univ, INSERM MMG, Nerve and Muscle Department, Marseille, France
| | - Andrée Schlupp-Robaglia
- Aix Marseille Univ, INSERM MMG, Nerve and Muscle Department, Marseille, France.,Département de Génétique Médicale et Biologie Cellulaire, AP-HM, Hôpital de la Timone enfants, Marseille, France.,Centre de ressources biologiques, AP-HM, Hôpital de la Timone enfants, Marseille, France
| | - Chantal Missirian
- Aix Marseille Univ, INSERM MMG, Nerve and Muscle Department, Marseille, France.,Département de Génétique Médicale et Biologie Cellulaire, AP-HM, Hôpital de la Timone enfants, Marseille, France
| | - Valérie Malan
- Laboratory of Embryology and Genetics of Human Malformation, INSERM UMR 1163, Institut Imagine, Paris, France.,Département de Génétique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Liham Ratbi
- Centre de Génomique Humaine et Genopath, Faculté de Médecine et de Pharmacie, Université Mohammed V, 10100 Rabat, Morocco
| | - Abdelaziz Sefiani
- Centre de Génomique Humaine et Genopath, Faculté de Médecine et de Pharmacie, Université Mohammed V, 10100 Rabat, Morocco
| | - Bernd Wollnik
- Institute of Human Genetics, University Medical Campus Göttingen, 37073 Göttingen, Germany
| | - Bernard Binetruy
- Aix Marseille Univ, INSERM MMG, Nerve and Muscle Department, Marseille, France
| | - Emmanuelle Salort Campana
- Aix Marseille Univ, INSERM MMG, Nerve and Muscle Department, Marseille, France.,Centre de références pour les maladies neuromusculaires et la SLA, AP-HM, Hôpital de la Timone, Marseille, France
| | - Shahram Attarian
- Aix Marseille Univ, INSERM MMG, Nerve and Muscle Department, Marseille, France.,Centre de références pour les maladies neuromusculaires et la SLA, AP-HM, Hôpital de la Timone, Marseille, France
| | - Rafaelle Bernard
- Aix Marseille Univ, INSERM MMG, Nerve and Muscle Department, Marseille, France.,Département de Génétique Médicale et Biologie Cellulaire, AP-HM, Hôpital de la Timone enfants, Marseille, France
| | - Karine Nguyen
- Aix Marseille Univ, INSERM MMG, Nerve and Muscle Department, Marseille, France.,Département de Génétique Médicale et Biologie Cellulaire, AP-HM, Hôpital de la Timone enfants, Marseille, France
| | - Jeanne Amiel
- Laboratory of Embryology and Genetics of Human Malformation, INSERM UMR 1163, Institut Imagine, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France.,Département de Génétique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Julie Dumonceaux
- NIHR Biomedical Research Centre, University College London, Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust, 30 Guilford Street, London WC1N 1EH, UK
| | - James M Murphy
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; The Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Jérôme Déjardin
- Institut de Génétique Humaine UMR9002 CNRS-Université de Montpellier. France
| | - Marnie E Blewitt
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; The Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Bruno Reversade
- Institute of Molecular and Cell Biology, A*STAR, Singapore. Institute of Medical Biology, A*STAR, Singapore.,Department of Paediatrics, National University of Singapore, Singapore, Singapore.,Medical Genetics Department, Koç University School of Medicine (KUSOM), Istanbul, Turkey.,Reproductive Biology Laboratory, Academic Medical Center (AMC), Amsterdam-Zuidoost, The Netherlands
| | - Jérôme D Robin
- Aix Marseille Univ, INSERM MMG, Nerve and Muscle Department, Marseille, France
| | | |
Collapse
|
33
|
Lemmers RJLF, van der Stoep N, Vliet PJVD, Moore SA, San Leon Granado D, Johnson K, Topf A, Straub V, Evangelista T, Mozaffar T, Kimonis V, Shaw ND, Selvatici R, Ferlini A, Voermans N, van Engelen B, Sacconi S, Tawil R, Lamers M, van der Maarel SM. SMCHD1 mutation spectrum for facioscapulohumeral muscular dystrophy type 2 (FSHD2) and Bosma arhinia microphthalmia syndrome (BAMS) reveals disease-specific localisation of variants in the ATPase domain. J Med Genet 2019; 56:693-700. [PMID: 31243061 DOI: 10.1136/jmedgenet-2019-106168] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/11/2019] [Accepted: 05/15/2019] [Indexed: 01/15/2023]
Abstract
BACKGROUND Variants in the Structural Maintenance of Chromosomes flexible Hinge Domain-containing protein 1 (SMCHD1) can cause facioscapulohumeral muscular dystrophy type 2 (FSHD2) and the unrelated Bosma arhinia microphthalmia syndrome (BAMS). In FSHD2, pathogenic variants are found anywhere in SMCHD1 while in BAMS, pathogenic variants are restricted to the extended ATPase domain. Irrespective of the phenotypic outcome, both FSHD2-associated and BAMS-associated SMCHD1 variants result in quantifiable local DNA hypomethylation. We compared FSHD2, BAMS and non-pathogenic SMCHD1 variants to derive genotype-phenotype relationships. METHODS Examination of SMCHD1 variants and methylation of the SMCHD1-sensitive FSHD locus DUX4 in 187 FSHD2 families, 41 patients with BAMS and in control individuals. Analysis of variants in a three-dimensional model of the ATPase domain of SMCHD1. RESULTS DUX4 methylation analysis is essential to establish pathogenicity of SMCHD1 variants. Although the FSHD2 mutation spectrum includes all types of variants covering the entire SMCHD1 locus, missense variants are significantly enriched in the extended ATPase domain. Identification of recurrent variants suggests disease-specific residues for FSHD2 and in BAMS, consistent with a largely disease-specific localisation of variants in SMCHD1. CONCLUSIONS The localisation of missense variants within the ATPase domain of SMCHD1 may contribute to the differences in phenotypic outcome.
Collapse
Affiliation(s)
| | - Nienke van der Stoep
- Department of Clinical Genetics, Laboratory for Diagnostic Genome Analysis, Leids Universitair Medisch Centrum, Leiden, The Netherlands
| | | | - Steven A Moore
- Department of Pathology, University of Iowa, Iowa City, Iowa, USA
| | | | - Katherine Johnson
- John Walton Muscular Dystrophy Research Centre, Newcastle University, Newcastle upon Tyne, UK
| | - Ana Topf
- John Walton Muscular Dystrophy Research Centre, Newcastle University, Newcastle upon Tyne, UK
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Newcastle University, Newcastle upon Tyne, UK
| | | | - Tahseen Mozaffar
- Department of Neurology, University of California Irvine, Irvine, California, USA
| | - Virginia Kimonis
- Department of Pediatrics, University of California, Irvine, Irvine, California, USA
| | | | - Rita Selvatici
- Department of Medical Sciences; Medical Genetics Unit, University of Ferrara, Ferrara, Italy
| | - Alessandra Ferlini
- Dipartimento di Medicina Sperimentale e Diagnostica, Università di Ferrara, Ferrara, Italy
| | - Nicol Voermans
- Department of Neurology, Radboudumc, Nijmegen, Gelderland, The Netherlands
| | - Baziel van Engelen
- Department of Neurology, Radboudumc, Nijmegen, Gelderland, The Netherlands
| | - Sabrina Sacconi
- Centre de Référence Maladies Neuromusculaires, Hôpital Archet, Nice, France
| | - Rabi Tawil
- Department of Neurology, University of Rochester Medical Center, Rochester, New York, USA
| | - Meindert Lamers
- Department of Cell and Chemical Biology, Leiden Universitair Medisch Centrum, Leiden, The Netherlands
| | | |
Collapse
|
34
|
Sacconi S, Briand-Suleau A, Gros M, Baudoin C, Lemmers RJLF, Rondeau S, Lagha N, Nigumann P, Cambieri C, Puma A, Chapon F, Stojkovic T, Vial C, Bouhour F, Cao M, Pegoraro E, Petiot P, Behin A, Marc B, Eymard B, Echaniz-Laguna A, Laforet P, Salviati L, Jeanpierre M, Cristofari G, van der Maarel SM. FSHD1 and FSHD2 form a disease continuum. Neurology 2019; 92:e2273-e2285. [PMID: 30979860 DOI: 10.1212/wnl.0000000000007456] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/11/2019] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To compare the clinical features of patients showing a classical phenotype of facioscapulohumeral muscular dystrophy (FSHD) with genetic and epigenetic characteristics of the FSHD1 and FSHD2 loci D4Z4 and SMCHD1. METHODS This is a national multicenter cohort study. We measured motor strength, motor function, and disease severity by manual muscle testing sumscore, Brooke and Vignos scores, clinical severity score (CSS), and age-corrected CSS, respectively. We correlated these scores with genetic (D4Z4 repeat size and haplotype; SMCHD1 variant status) and epigenetic (D4Z4 methylation) parameters. RESULTS We included 103 patients: 54 men and 49 women. Among them, we identified 64 patients with FSHD1 and 20 patients with FSHD2. Seven patients had genetic and epigenetic characteristics of FSHD1 and FSHD2, all carrying repeats of 9-10 D4Z4 repeat units (RU) and a pathogenic SMCHD1 variant. In the remaining patients, FSHD was genetically excluded or remained unconfirmed. All clinically affected SMCHD1 mutation carriers had a D4Z4 repeat of 9-16 RU on a disease permissive 4qA haplotype. These patients are significantly more severely affected by all clinical scales when compared to patients with FSHD1 with upper-sized FSHD1 alleles (8-10 RU). CONCLUSION The overlap between FSHD1 and FSHD2 patients in the 9-10 D4Z4 RU range suggests that FSHD1 and FSHD2 form a disease continuum. The previously established repeat size threshold for FSHD1 (1-10 RU) and FSHD2 (11-20 RU) needs to be reconsidered. CLINICALTRIALSGOV IDENTIFIER NCT01970735.
Collapse
Affiliation(s)
- Sabrina Sacconi
- From the Peripheral Nervous System (S.S., M.G., C.C., A.P.), Muscle & ALS Department, Pasteur 2 Hospital, Centre Hospitalier Universitaire de Nice, and Institute for Research on Cancer and Aging of Nice (S.S., C.B., N.L., P.N., G.C.), CNRS, INSERM, Université Côte d'Azur; Department of Genetics and Molecular Biology (A.B.-S., S.R., M.J.), Cochin Hospital, Paris, France; Department of Human Genetics (R.J.L.F.L., S.M.v.d.M.), Leiden University Medical Center, the Netherlands; Rare Neuromuscular Diseases Centre (C.C.), Department of Human Neuroscience, Sapienza University of Rome, Italy; Pathology Department (F.C.), CHRU of Caen, INSERM U1075, University of Caen, Normandy; Myology Institute (T.S., A.B., B.E.), Center of Research in Myology, APHP, Sorbonne Université, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Paris; Electromyography and Neuromuscular Department (C.V., F.B., P.P.), Neurologic Hospital, Lyon East Hospital Group, Lyon-Bron, France; Neuromuscular Center, Department of Neuroscience (M.C., E.P.), and Clinical Genetics Unit, Department of Women's and Children's Health (L.S.), University of Padova, Italy; Institut Imagine, Imagine Bioinfomatics Platform (M.B.), Paris Descartes University; Département de Neurologie (A.E.-L.), Hôpitaux Universitaires, Strasbourg; Nord/Est/Ile de France Neuromuscular Center (P.L.), Neurology Department, Raymond Poincaré Teaching Hospital, Garches; INSERM U1179 (P.L.), END-ICAP, Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux, France; and IRP Città della Speranza (L.S.), Padova, Italy.
| | - Audrey Briand-Suleau
- From the Peripheral Nervous System (S.S., M.G., C.C., A.P.), Muscle & ALS Department, Pasteur 2 Hospital, Centre Hospitalier Universitaire de Nice, and Institute for Research on Cancer and Aging of Nice (S.S., C.B., N.L., P.N., G.C.), CNRS, INSERM, Université Côte d'Azur; Department of Genetics and Molecular Biology (A.B.-S., S.R., M.J.), Cochin Hospital, Paris, France; Department of Human Genetics (R.J.L.F.L., S.M.v.d.M.), Leiden University Medical Center, the Netherlands; Rare Neuromuscular Diseases Centre (C.C.), Department of Human Neuroscience, Sapienza University of Rome, Italy; Pathology Department (F.C.), CHRU of Caen, INSERM U1075, University of Caen, Normandy; Myology Institute (T.S., A.B., B.E.), Center of Research in Myology, APHP, Sorbonne Université, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Paris; Electromyography and Neuromuscular Department (C.V., F.B., P.P.), Neurologic Hospital, Lyon East Hospital Group, Lyon-Bron, France; Neuromuscular Center, Department of Neuroscience (M.C., E.P.), and Clinical Genetics Unit, Department of Women's and Children's Health (L.S.), University of Padova, Italy; Institut Imagine, Imagine Bioinfomatics Platform (M.B.), Paris Descartes University; Département de Neurologie (A.E.-L.), Hôpitaux Universitaires, Strasbourg; Nord/Est/Ile de France Neuromuscular Center (P.L.), Neurology Department, Raymond Poincaré Teaching Hospital, Garches; INSERM U1179 (P.L.), END-ICAP, Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux, France; and IRP Città della Speranza (L.S.), Padova, Italy
| | - Marilyn Gros
- From the Peripheral Nervous System (S.S., M.G., C.C., A.P.), Muscle & ALS Department, Pasteur 2 Hospital, Centre Hospitalier Universitaire de Nice, and Institute for Research on Cancer and Aging of Nice (S.S., C.B., N.L., P.N., G.C.), CNRS, INSERM, Université Côte d'Azur; Department of Genetics and Molecular Biology (A.B.-S., S.R., M.J.), Cochin Hospital, Paris, France; Department of Human Genetics (R.J.L.F.L., S.M.v.d.M.), Leiden University Medical Center, the Netherlands; Rare Neuromuscular Diseases Centre (C.C.), Department of Human Neuroscience, Sapienza University of Rome, Italy; Pathology Department (F.C.), CHRU of Caen, INSERM U1075, University of Caen, Normandy; Myology Institute (T.S., A.B., B.E.), Center of Research in Myology, APHP, Sorbonne Université, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Paris; Electromyography and Neuromuscular Department (C.V., F.B., P.P.), Neurologic Hospital, Lyon East Hospital Group, Lyon-Bron, France; Neuromuscular Center, Department of Neuroscience (M.C., E.P.), and Clinical Genetics Unit, Department of Women's and Children's Health (L.S.), University of Padova, Italy; Institut Imagine, Imagine Bioinfomatics Platform (M.B.), Paris Descartes University; Département de Neurologie (A.E.-L.), Hôpitaux Universitaires, Strasbourg; Nord/Est/Ile de France Neuromuscular Center (P.L.), Neurology Department, Raymond Poincaré Teaching Hospital, Garches; INSERM U1179 (P.L.), END-ICAP, Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux, France; and IRP Città della Speranza (L.S.), Padova, Italy
| | - Christian Baudoin
- From the Peripheral Nervous System (S.S., M.G., C.C., A.P.), Muscle & ALS Department, Pasteur 2 Hospital, Centre Hospitalier Universitaire de Nice, and Institute for Research on Cancer and Aging of Nice (S.S., C.B., N.L., P.N., G.C.), CNRS, INSERM, Université Côte d'Azur; Department of Genetics and Molecular Biology (A.B.-S., S.R., M.J.), Cochin Hospital, Paris, France; Department of Human Genetics (R.J.L.F.L., S.M.v.d.M.), Leiden University Medical Center, the Netherlands; Rare Neuromuscular Diseases Centre (C.C.), Department of Human Neuroscience, Sapienza University of Rome, Italy; Pathology Department (F.C.), CHRU of Caen, INSERM U1075, University of Caen, Normandy; Myology Institute (T.S., A.B., B.E.), Center of Research in Myology, APHP, Sorbonne Université, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Paris; Electromyography and Neuromuscular Department (C.V., F.B., P.P.), Neurologic Hospital, Lyon East Hospital Group, Lyon-Bron, France; Neuromuscular Center, Department of Neuroscience (M.C., E.P.), and Clinical Genetics Unit, Department of Women's and Children's Health (L.S.), University of Padova, Italy; Institut Imagine, Imagine Bioinfomatics Platform (M.B.), Paris Descartes University; Département de Neurologie (A.E.-L.), Hôpitaux Universitaires, Strasbourg; Nord/Est/Ile de France Neuromuscular Center (P.L.), Neurology Department, Raymond Poincaré Teaching Hospital, Garches; INSERM U1179 (P.L.), END-ICAP, Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux, France; and IRP Città della Speranza (L.S.), Padova, Italy
| | - Richard J L F Lemmers
- From the Peripheral Nervous System (S.S., M.G., C.C., A.P.), Muscle & ALS Department, Pasteur 2 Hospital, Centre Hospitalier Universitaire de Nice, and Institute for Research on Cancer and Aging of Nice (S.S., C.B., N.L., P.N., G.C.), CNRS, INSERM, Université Côte d'Azur; Department of Genetics and Molecular Biology (A.B.-S., S.R., M.J.), Cochin Hospital, Paris, France; Department of Human Genetics (R.J.L.F.L., S.M.v.d.M.), Leiden University Medical Center, the Netherlands; Rare Neuromuscular Diseases Centre (C.C.), Department of Human Neuroscience, Sapienza University of Rome, Italy; Pathology Department (F.C.), CHRU of Caen, INSERM U1075, University of Caen, Normandy; Myology Institute (T.S., A.B., B.E.), Center of Research in Myology, APHP, Sorbonne Université, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Paris; Electromyography and Neuromuscular Department (C.V., F.B., P.P.), Neurologic Hospital, Lyon East Hospital Group, Lyon-Bron, France; Neuromuscular Center, Department of Neuroscience (M.C., E.P.), and Clinical Genetics Unit, Department of Women's and Children's Health (L.S.), University of Padova, Italy; Institut Imagine, Imagine Bioinfomatics Platform (M.B.), Paris Descartes University; Département de Neurologie (A.E.-L.), Hôpitaux Universitaires, Strasbourg; Nord/Est/Ile de France Neuromuscular Center (P.L.), Neurology Department, Raymond Poincaré Teaching Hospital, Garches; INSERM U1179 (P.L.), END-ICAP, Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux, France; and IRP Città della Speranza (L.S.), Padova, Italy
| | - Sophie Rondeau
- From the Peripheral Nervous System (S.S., M.G., C.C., A.P.), Muscle & ALS Department, Pasteur 2 Hospital, Centre Hospitalier Universitaire de Nice, and Institute for Research on Cancer and Aging of Nice (S.S., C.B., N.L., P.N., G.C.), CNRS, INSERM, Université Côte d'Azur; Department of Genetics and Molecular Biology (A.B.-S., S.R., M.J.), Cochin Hospital, Paris, France; Department of Human Genetics (R.J.L.F.L., S.M.v.d.M.), Leiden University Medical Center, the Netherlands; Rare Neuromuscular Diseases Centre (C.C.), Department of Human Neuroscience, Sapienza University of Rome, Italy; Pathology Department (F.C.), CHRU of Caen, INSERM U1075, University of Caen, Normandy; Myology Institute (T.S., A.B., B.E.), Center of Research in Myology, APHP, Sorbonne Université, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Paris; Electromyography and Neuromuscular Department (C.V., F.B., P.P.), Neurologic Hospital, Lyon East Hospital Group, Lyon-Bron, France; Neuromuscular Center, Department of Neuroscience (M.C., E.P.), and Clinical Genetics Unit, Department of Women's and Children's Health (L.S.), University of Padova, Italy; Institut Imagine, Imagine Bioinfomatics Platform (M.B.), Paris Descartes University; Département de Neurologie (A.E.-L.), Hôpitaux Universitaires, Strasbourg; Nord/Est/Ile de France Neuromuscular Center (P.L.), Neurology Department, Raymond Poincaré Teaching Hospital, Garches; INSERM U1179 (P.L.), END-ICAP, Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux, France; and IRP Città della Speranza (L.S.), Padova, Italy
| | - Nadira Lagha
- From the Peripheral Nervous System (S.S., M.G., C.C., A.P.), Muscle & ALS Department, Pasteur 2 Hospital, Centre Hospitalier Universitaire de Nice, and Institute for Research on Cancer and Aging of Nice (S.S., C.B., N.L., P.N., G.C.), CNRS, INSERM, Université Côte d'Azur; Department of Genetics and Molecular Biology (A.B.-S., S.R., M.J.), Cochin Hospital, Paris, France; Department of Human Genetics (R.J.L.F.L., S.M.v.d.M.), Leiden University Medical Center, the Netherlands; Rare Neuromuscular Diseases Centre (C.C.), Department of Human Neuroscience, Sapienza University of Rome, Italy; Pathology Department (F.C.), CHRU of Caen, INSERM U1075, University of Caen, Normandy; Myology Institute (T.S., A.B., B.E.), Center of Research in Myology, APHP, Sorbonne Université, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Paris; Electromyography and Neuromuscular Department (C.V., F.B., P.P.), Neurologic Hospital, Lyon East Hospital Group, Lyon-Bron, France; Neuromuscular Center, Department of Neuroscience (M.C., E.P.), and Clinical Genetics Unit, Department of Women's and Children's Health (L.S.), University of Padova, Italy; Institut Imagine, Imagine Bioinfomatics Platform (M.B.), Paris Descartes University; Département de Neurologie (A.E.-L.), Hôpitaux Universitaires, Strasbourg; Nord/Est/Ile de France Neuromuscular Center (P.L.), Neurology Department, Raymond Poincaré Teaching Hospital, Garches; INSERM U1179 (P.L.), END-ICAP, Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux, France; and IRP Città della Speranza (L.S.), Padova, Italy
| | - Pilvi Nigumann
- From the Peripheral Nervous System (S.S., M.G., C.C., A.P.), Muscle & ALS Department, Pasteur 2 Hospital, Centre Hospitalier Universitaire de Nice, and Institute for Research on Cancer and Aging of Nice (S.S., C.B., N.L., P.N., G.C.), CNRS, INSERM, Université Côte d'Azur; Department of Genetics and Molecular Biology (A.B.-S., S.R., M.J.), Cochin Hospital, Paris, France; Department of Human Genetics (R.J.L.F.L., S.M.v.d.M.), Leiden University Medical Center, the Netherlands; Rare Neuromuscular Diseases Centre (C.C.), Department of Human Neuroscience, Sapienza University of Rome, Italy; Pathology Department (F.C.), CHRU of Caen, INSERM U1075, University of Caen, Normandy; Myology Institute (T.S., A.B., B.E.), Center of Research in Myology, APHP, Sorbonne Université, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Paris; Electromyography and Neuromuscular Department (C.V., F.B., P.P.), Neurologic Hospital, Lyon East Hospital Group, Lyon-Bron, France; Neuromuscular Center, Department of Neuroscience (M.C., E.P.), and Clinical Genetics Unit, Department of Women's and Children's Health (L.S.), University of Padova, Italy; Institut Imagine, Imagine Bioinfomatics Platform (M.B.), Paris Descartes University; Département de Neurologie (A.E.-L.), Hôpitaux Universitaires, Strasbourg; Nord/Est/Ile de France Neuromuscular Center (P.L.), Neurology Department, Raymond Poincaré Teaching Hospital, Garches; INSERM U1179 (P.L.), END-ICAP, Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux, France; and IRP Città della Speranza (L.S.), Padova, Italy
| | - Chiara Cambieri
- From the Peripheral Nervous System (S.S., M.G., C.C., A.P.), Muscle & ALS Department, Pasteur 2 Hospital, Centre Hospitalier Universitaire de Nice, and Institute for Research on Cancer and Aging of Nice (S.S., C.B., N.L., P.N., G.C.), CNRS, INSERM, Université Côte d'Azur; Department of Genetics and Molecular Biology (A.B.-S., S.R., M.J.), Cochin Hospital, Paris, France; Department of Human Genetics (R.J.L.F.L., S.M.v.d.M.), Leiden University Medical Center, the Netherlands; Rare Neuromuscular Diseases Centre (C.C.), Department of Human Neuroscience, Sapienza University of Rome, Italy; Pathology Department (F.C.), CHRU of Caen, INSERM U1075, University of Caen, Normandy; Myology Institute (T.S., A.B., B.E.), Center of Research in Myology, APHP, Sorbonne Université, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Paris; Electromyography and Neuromuscular Department (C.V., F.B., P.P.), Neurologic Hospital, Lyon East Hospital Group, Lyon-Bron, France; Neuromuscular Center, Department of Neuroscience (M.C., E.P.), and Clinical Genetics Unit, Department of Women's and Children's Health (L.S.), University of Padova, Italy; Institut Imagine, Imagine Bioinfomatics Platform (M.B.), Paris Descartes University; Département de Neurologie (A.E.-L.), Hôpitaux Universitaires, Strasbourg; Nord/Est/Ile de France Neuromuscular Center (P.L.), Neurology Department, Raymond Poincaré Teaching Hospital, Garches; INSERM U1179 (P.L.), END-ICAP, Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux, France; and IRP Città della Speranza (L.S.), Padova, Italy
| | - Angela Puma
- From the Peripheral Nervous System (S.S., M.G., C.C., A.P.), Muscle & ALS Department, Pasteur 2 Hospital, Centre Hospitalier Universitaire de Nice, and Institute for Research on Cancer and Aging of Nice (S.S., C.B., N.L., P.N., G.C.), CNRS, INSERM, Université Côte d'Azur; Department of Genetics and Molecular Biology (A.B.-S., S.R., M.J.), Cochin Hospital, Paris, France; Department of Human Genetics (R.J.L.F.L., S.M.v.d.M.), Leiden University Medical Center, the Netherlands; Rare Neuromuscular Diseases Centre (C.C.), Department of Human Neuroscience, Sapienza University of Rome, Italy; Pathology Department (F.C.), CHRU of Caen, INSERM U1075, University of Caen, Normandy; Myology Institute (T.S., A.B., B.E.), Center of Research in Myology, APHP, Sorbonne Université, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Paris; Electromyography and Neuromuscular Department (C.V., F.B., P.P.), Neurologic Hospital, Lyon East Hospital Group, Lyon-Bron, France; Neuromuscular Center, Department of Neuroscience (M.C., E.P.), and Clinical Genetics Unit, Department of Women's and Children's Health (L.S.), University of Padova, Italy; Institut Imagine, Imagine Bioinfomatics Platform (M.B.), Paris Descartes University; Département de Neurologie (A.E.-L.), Hôpitaux Universitaires, Strasbourg; Nord/Est/Ile de France Neuromuscular Center (P.L.), Neurology Department, Raymond Poincaré Teaching Hospital, Garches; INSERM U1179 (P.L.), END-ICAP, Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux, France; and IRP Città della Speranza (L.S.), Padova, Italy
| | - Françoise Chapon
- From the Peripheral Nervous System (S.S., M.G., C.C., A.P.), Muscle & ALS Department, Pasteur 2 Hospital, Centre Hospitalier Universitaire de Nice, and Institute for Research on Cancer and Aging of Nice (S.S., C.B., N.L., P.N., G.C.), CNRS, INSERM, Université Côte d'Azur; Department of Genetics and Molecular Biology (A.B.-S., S.R., M.J.), Cochin Hospital, Paris, France; Department of Human Genetics (R.J.L.F.L., S.M.v.d.M.), Leiden University Medical Center, the Netherlands; Rare Neuromuscular Diseases Centre (C.C.), Department of Human Neuroscience, Sapienza University of Rome, Italy; Pathology Department (F.C.), CHRU of Caen, INSERM U1075, University of Caen, Normandy; Myology Institute (T.S., A.B., B.E.), Center of Research in Myology, APHP, Sorbonne Université, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Paris; Electromyography and Neuromuscular Department (C.V., F.B., P.P.), Neurologic Hospital, Lyon East Hospital Group, Lyon-Bron, France; Neuromuscular Center, Department of Neuroscience (M.C., E.P.), and Clinical Genetics Unit, Department of Women's and Children's Health (L.S.), University of Padova, Italy; Institut Imagine, Imagine Bioinfomatics Platform (M.B.), Paris Descartes University; Département de Neurologie (A.E.-L.), Hôpitaux Universitaires, Strasbourg; Nord/Est/Ile de France Neuromuscular Center (P.L.), Neurology Department, Raymond Poincaré Teaching Hospital, Garches; INSERM U1179 (P.L.), END-ICAP, Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux, France; and IRP Città della Speranza (L.S.), Padova, Italy
| | - Tanya Stojkovic
- From the Peripheral Nervous System (S.S., M.G., C.C., A.P.), Muscle & ALS Department, Pasteur 2 Hospital, Centre Hospitalier Universitaire de Nice, and Institute for Research on Cancer and Aging of Nice (S.S., C.B., N.L., P.N., G.C.), CNRS, INSERM, Université Côte d'Azur; Department of Genetics and Molecular Biology (A.B.-S., S.R., M.J.), Cochin Hospital, Paris, France; Department of Human Genetics (R.J.L.F.L., S.M.v.d.M.), Leiden University Medical Center, the Netherlands; Rare Neuromuscular Diseases Centre (C.C.), Department of Human Neuroscience, Sapienza University of Rome, Italy; Pathology Department (F.C.), CHRU of Caen, INSERM U1075, University of Caen, Normandy; Myology Institute (T.S., A.B., B.E.), Center of Research in Myology, APHP, Sorbonne Université, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Paris; Electromyography and Neuromuscular Department (C.V., F.B., P.P.), Neurologic Hospital, Lyon East Hospital Group, Lyon-Bron, France; Neuromuscular Center, Department of Neuroscience (M.C., E.P.), and Clinical Genetics Unit, Department of Women's and Children's Health (L.S.), University of Padova, Italy; Institut Imagine, Imagine Bioinfomatics Platform (M.B.), Paris Descartes University; Département de Neurologie (A.E.-L.), Hôpitaux Universitaires, Strasbourg; Nord/Est/Ile de France Neuromuscular Center (P.L.), Neurology Department, Raymond Poincaré Teaching Hospital, Garches; INSERM U1179 (P.L.), END-ICAP, Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux, France; and IRP Città della Speranza (L.S.), Padova, Italy
| | - Christophe Vial
- From the Peripheral Nervous System (S.S., M.G., C.C., A.P.), Muscle & ALS Department, Pasteur 2 Hospital, Centre Hospitalier Universitaire de Nice, and Institute for Research on Cancer and Aging of Nice (S.S., C.B., N.L., P.N., G.C.), CNRS, INSERM, Université Côte d'Azur; Department of Genetics and Molecular Biology (A.B.-S., S.R., M.J.), Cochin Hospital, Paris, France; Department of Human Genetics (R.J.L.F.L., S.M.v.d.M.), Leiden University Medical Center, the Netherlands; Rare Neuromuscular Diseases Centre (C.C.), Department of Human Neuroscience, Sapienza University of Rome, Italy; Pathology Department (F.C.), CHRU of Caen, INSERM U1075, University of Caen, Normandy; Myology Institute (T.S., A.B., B.E.), Center of Research in Myology, APHP, Sorbonne Université, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Paris; Electromyography and Neuromuscular Department (C.V., F.B., P.P.), Neurologic Hospital, Lyon East Hospital Group, Lyon-Bron, France; Neuromuscular Center, Department of Neuroscience (M.C., E.P.), and Clinical Genetics Unit, Department of Women's and Children's Health (L.S.), University of Padova, Italy; Institut Imagine, Imagine Bioinfomatics Platform (M.B.), Paris Descartes University; Département de Neurologie (A.E.-L.), Hôpitaux Universitaires, Strasbourg; Nord/Est/Ile de France Neuromuscular Center (P.L.), Neurology Department, Raymond Poincaré Teaching Hospital, Garches; INSERM U1179 (P.L.), END-ICAP, Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux, France; and IRP Città della Speranza (L.S.), Padova, Italy
| | - Françoise Bouhour
- From the Peripheral Nervous System (S.S., M.G., C.C., A.P.), Muscle & ALS Department, Pasteur 2 Hospital, Centre Hospitalier Universitaire de Nice, and Institute for Research on Cancer and Aging of Nice (S.S., C.B., N.L., P.N., G.C.), CNRS, INSERM, Université Côte d'Azur; Department of Genetics and Molecular Biology (A.B.-S., S.R., M.J.), Cochin Hospital, Paris, France; Department of Human Genetics (R.J.L.F.L., S.M.v.d.M.), Leiden University Medical Center, the Netherlands; Rare Neuromuscular Diseases Centre (C.C.), Department of Human Neuroscience, Sapienza University of Rome, Italy; Pathology Department (F.C.), CHRU of Caen, INSERM U1075, University of Caen, Normandy; Myology Institute (T.S., A.B., B.E.), Center of Research in Myology, APHP, Sorbonne Université, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Paris; Electromyography and Neuromuscular Department (C.V., F.B., P.P.), Neurologic Hospital, Lyon East Hospital Group, Lyon-Bron, France; Neuromuscular Center, Department of Neuroscience (M.C., E.P.), and Clinical Genetics Unit, Department of Women's and Children's Health (L.S.), University of Padova, Italy; Institut Imagine, Imagine Bioinfomatics Platform (M.B.), Paris Descartes University; Département de Neurologie (A.E.-L.), Hôpitaux Universitaires, Strasbourg; Nord/Est/Ile de France Neuromuscular Center (P.L.), Neurology Department, Raymond Poincaré Teaching Hospital, Garches; INSERM U1179 (P.L.), END-ICAP, Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux, France; and IRP Città della Speranza (L.S.), Padova, Italy
| | - Michelangelo Cao
- From the Peripheral Nervous System (S.S., M.G., C.C., A.P.), Muscle & ALS Department, Pasteur 2 Hospital, Centre Hospitalier Universitaire de Nice, and Institute for Research on Cancer and Aging of Nice (S.S., C.B., N.L., P.N., G.C.), CNRS, INSERM, Université Côte d'Azur; Department of Genetics and Molecular Biology (A.B.-S., S.R., M.J.), Cochin Hospital, Paris, France; Department of Human Genetics (R.J.L.F.L., S.M.v.d.M.), Leiden University Medical Center, the Netherlands; Rare Neuromuscular Diseases Centre (C.C.), Department of Human Neuroscience, Sapienza University of Rome, Italy; Pathology Department (F.C.), CHRU of Caen, INSERM U1075, University of Caen, Normandy; Myology Institute (T.S., A.B., B.E.), Center of Research in Myology, APHP, Sorbonne Université, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Paris; Electromyography and Neuromuscular Department (C.V., F.B., P.P.), Neurologic Hospital, Lyon East Hospital Group, Lyon-Bron, France; Neuromuscular Center, Department of Neuroscience (M.C., E.P.), and Clinical Genetics Unit, Department of Women's and Children's Health (L.S.), University of Padova, Italy; Institut Imagine, Imagine Bioinfomatics Platform (M.B.), Paris Descartes University; Département de Neurologie (A.E.-L.), Hôpitaux Universitaires, Strasbourg; Nord/Est/Ile de France Neuromuscular Center (P.L.), Neurology Department, Raymond Poincaré Teaching Hospital, Garches; INSERM U1179 (P.L.), END-ICAP, Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux, France; and IRP Città della Speranza (L.S.), Padova, Italy
| | - Elena Pegoraro
- From the Peripheral Nervous System (S.S., M.G., C.C., A.P.), Muscle & ALS Department, Pasteur 2 Hospital, Centre Hospitalier Universitaire de Nice, and Institute for Research on Cancer and Aging of Nice (S.S., C.B., N.L., P.N., G.C.), CNRS, INSERM, Université Côte d'Azur; Department of Genetics and Molecular Biology (A.B.-S., S.R., M.J.), Cochin Hospital, Paris, France; Department of Human Genetics (R.J.L.F.L., S.M.v.d.M.), Leiden University Medical Center, the Netherlands; Rare Neuromuscular Diseases Centre (C.C.), Department of Human Neuroscience, Sapienza University of Rome, Italy; Pathology Department (F.C.), CHRU of Caen, INSERM U1075, University of Caen, Normandy; Myology Institute (T.S., A.B., B.E.), Center of Research in Myology, APHP, Sorbonne Université, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Paris; Electromyography and Neuromuscular Department (C.V., F.B., P.P.), Neurologic Hospital, Lyon East Hospital Group, Lyon-Bron, France; Neuromuscular Center, Department of Neuroscience (M.C., E.P.), and Clinical Genetics Unit, Department of Women's and Children's Health (L.S.), University of Padova, Italy; Institut Imagine, Imagine Bioinfomatics Platform (M.B.), Paris Descartes University; Département de Neurologie (A.E.-L.), Hôpitaux Universitaires, Strasbourg; Nord/Est/Ile de France Neuromuscular Center (P.L.), Neurology Department, Raymond Poincaré Teaching Hospital, Garches; INSERM U1179 (P.L.), END-ICAP, Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux, France; and IRP Città della Speranza (L.S.), Padova, Italy
| | - Philippe Petiot
- From the Peripheral Nervous System (S.S., M.G., C.C., A.P.), Muscle & ALS Department, Pasteur 2 Hospital, Centre Hospitalier Universitaire de Nice, and Institute for Research on Cancer and Aging of Nice (S.S., C.B., N.L., P.N., G.C.), CNRS, INSERM, Université Côte d'Azur; Department of Genetics and Molecular Biology (A.B.-S., S.R., M.J.), Cochin Hospital, Paris, France; Department of Human Genetics (R.J.L.F.L., S.M.v.d.M.), Leiden University Medical Center, the Netherlands; Rare Neuromuscular Diseases Centre (C.C.), Department of Human Neuroscience, Sapienza University of Rome, Italy; Pathology Department (F.C.), CHRU of Caen, INSERM U1075, University of Caen, Normandy; Myology Institute (T.S., A.B., B.E.), Center of Research in Myology, APHP, Sorbonne Université, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Paris; Electromyography and Neuromuscular Department (C.V., F.B., P.P.), Neurologic Hospital, Lyon East Hospital Group, Lyon-Bron, France; Neuromuscular Center, Department of Neuroscience (M.C., E.P.), and Clinical Genetics Unit, Department of Women's and Children's Health (L.S.), University of Padova, Italy; Institut Imagine, Imagine Bioinfomatics Platform (M.B.), Paris Descartes University; Département de Neurologie (A.E.-L.), Hôpitaux Universitaires, Strasbourg; Nord/Est/Ile de France Neuromuscular Center (P.L.), Neurology Department, Raymond Poincaré Teaching Hospital, Garches; INSERM U1179 (P.L.), END-ICAP, Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux, France; and IRP Città della Speranza (L.S.), Padova, Italy
| | - Anthony Behin
- From the Peripheral Nervous System (S.S., M.G., C.C., A.P.), Muscle & ALS Department, Pasteur 2 Hospital, Centre Hospitalier Universitaire de Nice, and Institute for Research on Cancer and Aging of Nice (S.S., C.B., N.L., P.N., G.C.), CNRS, INSERM, Université Côte d'Azur; Department of Genetics and Molecular Biology (A.B.-S., S.R., M.J.), Cochin Hospital, Paris, France; Department of Human Genetics (R.J.L.F.L., S.M.v.d.M.), Leiden University Medical Center, the Netherlands; Rare Neuromuscular Diseases Centre (C.C.), Department of Human Neuroscience, Sapienza University of Rome, Italy; Pathology Department (F.C.), CHRU of Caen, INSERM U1075, University of Caen, Normandy; Myology Institute (T.S., A.B., B.E.), Center of Research in Myology, APHP, Sorbonne Université, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Paris; Electromyography and Neuromuscular Department (C.V., F.B., P.P.), Neurologic Hospital, Lyon East Hospital Group, Lyon-Bron, France; Neuromuscular Center, Department of Neuroscience (M.C., E.P.), and Clinical Genetics Unit, Department of Women's and Children's Health (L.S.), University of Padova, Italy; Institut Imagine, Imagine Bioinfomatics Platform (M.B.), Paris Descartes University; Département de Neurologie (A.E.-L.), Hôpitaux Universitaires, Strasbourg; Nord/Est/Ile de France Neuromuscular Center (P.L.), Neurology Department, Raymond Poincaré Teaching Hospital, Garches; INSERM U1179 (P.L.), END-ICAP, Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux, France; and IRP Città della Speranza (L.S.), Padova, Italy
| | - Bras Marc
- From the Peripheral Nervous System (S.S., M.G., C.C., A.P.), Muscle & ALS Department, Pasteur 2 Hospital, Centre Hospitalier Universitaire de Nice, and Institute for Research on Cancer and Aging of Nice (S.S., C.B., N.L., P.N., G.C.), CNRS, INSERM, Université Côte d'Azur; Department of Genetics and Molecular Biology (A.B.-S., S.R., M.J.), Cochin Hospital, Paris, France; Department of Human Genetics (R.J.L.F.L., S.M.v.d.M.), Leiden University Medical Center, the Netherlands; Rare Neuromuscular Diseases Centre (C.C.), Department of Human Neuroscience, Sapienza University of Rome, Italy; Pathology Department (F.C.), CHRU of Caen, INSERM U1075, University of Caen, Normandy; Myology Institute (T.S., A.B., B.E.), Center of Research in Myology, APHP, Sorbonne Université, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Paris; Electromyography and Neuromuscular Department (C.V., F.B., P.P.), Neurologic Hospital, Lyon East Hospital Group, Lyon-Bron, France; Neuromuscular Center, Department of Neuroscience (M.C., E.P.), and Clinical Genetics Unit, Department of Women's and Children's Health (L.S.), University of Padova, Italy; Institut Imagine, Imagine Bioinfomatics Platform (M.B.), Paris Descartes University; Département de Neurologie (A.E.-L.), Hôpitaux Universitaires, Strasbourg; Nord/Est/Ile de France Neuromuscular Center (P.L.), Neurology Department, Raymond Poincaré Teaching Hospital, Garches; INSERM U1179 (P.L.), END-ICAP, Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux, France; and IRP Città della Speranza (L.S.), Padova, Italy
| | - Bruno Eymard
- From the Peripheral Nervous System (S.S., M.G., C.C., A.P.), Muscle & ALS Department, Pasteur 2 Hospital, Centre Hospitalier Universitaire de Nice, and Institute for Research on Cancer and Aging of Nice (S.S., C.B., N.L., P.N., G.C.), CNRS, INSERM, Université Côte d'Azur; Department of Genetics and Molecular Biology (A.B.-S., S.R., M.J.), Cochin Hospital, Paris, France; Department of Human Genetics (R.J.L.F.L., S.M.v.d.M.), Leiden University Medical Center, the Netherlands; Rare Neuromuscular Diseases Centre (C.C.), Department of Human Neuroscience, Sapienza University of Rome, Italy; Pathology Department (F.C.), CHRU of Caen, INSERM U1075, University of Caen, Normandy; Myology Institute (T.S., A.B., B.E.), Center of Research in Myology, APHP, Sorbonne Université, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Paris; Electromyography and Neuromuscular Department (C.V., F.B., P.P.), Neurologic Hospital, Lyon East Hospital Group, Lyon-Bron, France; Neuromuscular Center, Department of Neuroscience (M.C., E.P.), and Clinical Genetics Unit, Department of Women's and Children's Health (L.S.), University of Padova, Italy; Institut Imagine, Imagine Bioinfomatics Platform (M.B.), Paris Descartes University; Département de Neurologie (A.E.-L.), Hôpitaux Universitaires, Strasbourg; Nord/Est/Ile de France Neuromuscular Center (P.L.), Neurology Department, Raymond Poincaré Teaching Hospital, Garches; INSERM U1179 (P.L.), END-ICAP, Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux, France; and IRP Città della Speranza (L.S.), Padova, Italy
| | - Andoni Echaniz-Laguna
- From the Peripheral Nervous System (S.S., M.G., C.C., A.P.), Muscle & ALS Department, Pasteur 2 Hospital, Centre Hospitalier Universitaire de Nice, and Institute for Research on Cancer and Aging of Nice (S.S., C.B., N.L., P.N., G.C.), CNRS, INSERM, Université Côte d'Azur; Department of Genetics and Molecular Biology (A.B.-S., S.R., M.J.), Cochin Hospital, Paris, France; Department of Human Genetics (R.J.L.F.L., S.M.v.d.M.), Leiden University Medical Center, the Netherlands; Rare Neuromuscular Diseases Centre (C.C.), Department of Human Neuroscience, Sapienza University of Rome, Italy; Pathology Department (F.C.), CHRU of Caen, INSERM U1075, University of Caen, Normandy; Myology Institute (T.S., A.B., B.E.), Center of Research in Myology, APHP, Sorbonne Université, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Paris; Electromyography and Neuromuscular Department (C.V., F.B., P.P.), Neurologic Hospital, Lyon East Hospital Group, Lyon-Bron, France; Neuromuscular Center, Department of Neuroscience (M.C., E.P.), and Clinical Genetics Unit, Department of Women's and Children's Health (L.S.), University of Padova, Italy; Institut Imagine, Imagine Bioinfomatics Platform (M.B.), Paris Descartes University; Département de Neurologie (A.E.-L.), Hôpitaux Universitaires, Strasbourg; Nord/Est/Ile de France Neuromuscular Center (P.L.), Neurology Department, Raymond Poincaré Teaching Hospital, Garches; INSERM U1179 (P.L.), END-ICAP, Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux, France; and IRP Città della Speranza (L.S.), Padova, Italy
| | - Pascal Laforet
- From the Peripheral Nervous System (S.S., M.G., C.C., A.P.), Muscle & ALS Department, Pasteur 2 Hospital, Centre Hospitalier Universitaire de Nice, and Institute for Research on Cancer and Aging of Nice (S.S., C.B., N.L., P.N., G.C.), CNRS, INSERM, Université Côte d'Azur; Department of Genetics and Molecular Biology (A.B.-S., S.R., M.J.), Cochin Hospital, Paris, France; Department of Human Genetics (R.J.L.F.L., S.M.v.d.M.), Leiden University Medical Center, the Netherlands; Rare Neuromuscular Diseases Centre (C.C.), Department of Human Neuroscience, Sapienza University of Rome, Italy; Pathology Department (F.C.), CHRU of Caen, INSERM U1075, University of Caen, Normandy; Myology Institute (T.S., A.B., B.E.), Center of Research in Myology, APHP, Sorbonne Université, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Paris; Electromyography and Neuromuscular Department (C.V., F.B., P.P.), Neurologic Hospital, Lyon East Hospital Group, Lyon-Bron, France; Neuromuscular Center, Department of Neuroscience (M.C., E.P.), and Clinical Genetics Unit, Department of Women's and Children's Health (L.S.), University of Padova, Italy; Institut Imagine, Imagine Bioinfomatics Platform (M.B.), Paris Descartes University; Département de Neurologie (A.E.-L.), Hôpitaux Universitaires, Strasbourg; Nord/Est/Ile de France Neuromuscular Center (P.L.), Neurology Department, Raymond Poincaré Teaching Hospital, Garches; INSERM U1179 (P.L.), END-ICAP, Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux, France; and IRP Città della Speranza (L.S.), Padova, Italy
| | - Leonardo Salviati
- From the Peripheral Nervous System (S.S., M.G., C.C., A.P.), Muscle & ALS Department, Pasteur 2 Hospital, Centre Hospitalier Universitaire de Nice, and Institute for Research on Cancer and Aging of Nice (S.S., C.B., N.L., P.N., G.C.), CNRS, INSERM, Université Côte d'Azur; Department of Genetics and Molecular Biology (A.B.-S., S.R., M.J.), Cochin Hospital, Paris, France; Department of Human Genetics (R.J.L.F.L., S.M.v.d.M.), Leiden University Medical Center, the Netherlands; Rare Neuromuscular Diseases Centre (C.C.), Department of Human Neuroscience, Sapienza University of Rome, Italy; Pathology Department (F.C.), CHRU of Caen, INSERM U1075, University of Caen, Normandy; Myology Institute (T.S., A.B., B.E.), Center of Research in Myology, APHP, Sorbonne Université, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Paris; Electromyography and Neuromuscular Department (C.V., F.B., P.P.), Neurologic Hospital, Lyon East Hospital Group, Lyon-Bron, France; Neuromuscular Center, Department of Neuroscience (M.C., E.P.), and Clinical Genetics Unit, Department of Women's and Children's Health (L.S.), University of Padova, Italy; Institut Imagine, Imagine Bioinfomatics Platform (M.B.), Paris Descartes University; Département de Neurologie (A.E.-L.), Hôpitaux Universitaires, Strasbourg; Nord/Est/Ile de France Neuromuscular Center (P.L.), Neurology Department, Raymond Poincaré Teaching Hospital, Garches; INSERM U1179 (P.L.), END-ICAP, Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux, France; and IRP Città della Speranza (L.S.), Padova, Italy
| | - Marc Jeanpierre
- From the Peripheral Nervous System (S.S., M.G., C.C., A.P.), Muscle & ALS Department, Pasteur 2 Hospital, Centre Hospitalier Universitaire de Nice, and Institute for Research on Cancer and Aging of Nice (S.S., C.B., N.L., P.N., G.C.), CNRS, INSERM, Université Côte d'Azur; Department of Genetics and Molecular Biology (A.B.-S., S.R., M.J.), Cochin Hospital, Paris, France; Department of Human Genetics (R.J.L.F.L., S.M.v.d.M.), Leiden University Medical Center, the Netherlands; Rare Neuromuscular Diseases Centre (C.C.), Department of Human Neuroscience, Sapienza University of Rome, Italy; Pathology Department (F.C.), CHRU of Caen, INSERM U1075, University of Caen, Normandy; Myology Institute (T.S., A.B., B.E.), Center of Research in Myology, APHP, Sorbonne Université, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Paris; Electromyography and Neuromuscular Department (C.V., F.B., P.P.), Neurologic Hospital, Lyon East Hospital Group, Lyon-Bron, France; Neuromuscular Center, Department of Neuroscience (M.C., E.P.), and Clinical Genetics Unit, Department of Women's and Children's Health (L.S.), University of Padova, Italy; Institut Imagine, Imagine Bioinfomatics Platform (M.B.), Paris Descartes University; Département de Neurologie (A.E.-L.), Hôpitaux Universitaires, Strasbourg; Nord/Est/Ile de France Neuromuscular Center (P.L.), Neurology Department, Raymond Poincaré Teaching Hospital, Garches; INSERM U1179 (P.L.), END-ICAP, Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux, France; and IRP Città della Speranza (L.S.), Padova, Italy
| | - Gaël Cristofari
- From the Peripheral Nervous System (S.S., M.G., C.C., A.P.), Muscle & ALS Department, Pasteur 2 Hospital, Centre Hospitalier Universitaire de Nice, and Institute for Research on Cancer and Aging of Nice (S.S., C.B., N.L., P.N., G.C.), CNRS, INSERM, Université Côte d'Azur; Department of Genetics and Molecular Biology (A.B.-S., S.R., M.J.), Cochin Hospital, Paris, France; Department of Human Genetics (R.J.L.F.L., S.M.v.d.M.), Leiden University Medical Center, the Netherlands; Rare Neuromuscular Diseases Centre (C.C.), Department of Human Neuroscience, Sapienza University of Rome, Italy; Pathology Department (F.C.), CHRU of Caen, INSERM U1075, University of Caen, Normandy; Myology Institute (T.S., A.B., B.E.), Center of Research in Myology, APHP, Sorbonne Université, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Paris; Electromyography and Neuromuscular Department (C.V., F.B., P.P.), Neurologic Hospital, Lyon East Hospital Group, Lyon-Bron, France; Neuromuscular Center, Department of Neuroscience (M.C., E.P.), and Clinical Genetics Unit, Department of Women's and Children's Health (L.S.), University of Padova, Italy; Institut Imagine, Imagine Bioinfomatics Platform (M.B.), Paris Descartes University; Département de Neurologie (A.E.-L.), Hôpitaux Universitaires, Strasbourg; Nord/Est/Ile de France Neuromuscular Center (P.L.), Neurology Department, Raymond Poincaré Teaching Hospital, Garches; INSERM U1179 (P.L.), END-ICAP, Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux, France; and IRP Città della Speranza (L.S.), Padova, Italy
| | - Silvère M van der Maarel
- From the Peripheral Nervous System (S.S., M.G., C.C., A.P.), Muscle & ALS Department, Pasteur 2 Hospital, Centre Hospitalier Universitaire de Nice, and Institute for Research on Cancer and Aging of Nice (S.S., C.B., N.L., P.N., G.C.), CNRS, INSERM, Université Côte d'Azur; Department of Genetics and Molecular Biology (A.B.-S., S.R., M.J.), Cochin Hospital, Paris, France; Department of Human Genetics (R.J.L.F.L., S.M.v.d.M.), Leiden University Medical Center, the Netherlands; Rare Neuromuscular Diseases Centre (C.C.), Department of Human Neuroscience, Sapienza University of Rome, Italy; Pathology Department (F.C.), CHRU of Caen, INSERM U1075, University of Caen, Normandy; Myology Institute (T.S., A.B., B.E.), Center of Research in Myology, APHP, Sorbonne Université, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Paris; Electromyography and Neuromuscular Department (C.V., F.B., P.P.), Neurologic Hospital, Lyon East Hospital Group, Lyon-Bron, France; Neuromuscular Center, Department of Neuroscience (M.C., E.P.), and Clinical Genetics Unit, Department of Women's and Children's Health (L.S.), University of Padova, Italy; Institut Imagine, Imagine Bioinfomatics Platform (M.B.), Paris Descartes University; Département de Neurologie (A.E.-L.), Hôpitaux Universitaires, Strasbourg; Nord/Est/Ile de France Neuromuscular Center (P.L.), Neurology Department, Raymond Poincaré Teaching Hospital, Garches; INSERM U1179 (P.L.), END-ICAP, Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux, France; and IRP Città della Speranza (L.S.), Padova, Italy
| |
Collapse
|
35
|
Cascella R, Strafella C, Caputo V, Galota RM, Errichiello V, Scutifero M, Petillo R, Marella GL, Arcangeli M, Colantoni L, Zampatti S, Ricci E, Deidda G, Politano L, Giardina E. Digenic Inheritance of Shortened Repeat Units of the D4Z4 Region and a Loss-of-Function Variant in SMCHD1 in a Family With FSHD. Front Neurol 2018; 9:1027. [PMID: 30546343 PMCID: PMC6279899 DOI: 10.3389/fneur.2018.01027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/14/2018] [Indexed: 11/24/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a neuromuscular disorder which is typically transmitted by an autosomal dominant pattern, although reduced penetrance and sporadic cases caused by de novo mutations, are often observed. FSHD may be caused by a contraction of a repetitive element, located on chromosome 4 (4q35). This locus is named D4Z4 and consists of 11 to more than 100 repeated units (RU). The D4Z4 is normally hypermethylated and the genes located on this locus are silenced. In case of FSHD, the D4Z4 region is characterized by 1–10 repeats and results in the region being hypomethylated. However, 5% of FSHD cases do not carry the short allele of D4Z4 region. To date, two forms of FSHD (FSHD1 and FSHD2) are known. FSHD2 is usually observed in patients without the D4Z4 fragment contraction and carrying variants in SMCHD1 (18p11.32) gene. We report the case of a young adult patient who shows severe symptoms of FSHD. Preliminary genetic analysis did not clarify the phenotype, therefore we decided to study the family members by genetic and epigenetic approaches. The analysis of D4Z4 fragment resulted to be 8 RU in the affected proband and in his father; 26 RU in the mother and 25 RU in the maternal uncle. SMCHD1 analysis revealed a heterozygous variation within the exon 41. The variant was detected in the proband, her mother and the uncle. Furthermore, epigenetic analysis of CpG6 methylation regions showed significant hypomethylation in the affected patient (54%) and in the mother (56%), in contrast to the father (88%) and the uncle (81%) carrying higher methylation levels. The analysis of DR1 methylation levels reported hypomethylation for the proband (19%), the mother (11%), and the uncle (16%). The father showed normal DR1 methylation levels (>30%). Given these results, the combined inheritance of SMCHD1 variant and the short fragment might explain the severe FSHD phenotype displayed by the proband. On this subject, SMCHD1 analysis should be promoted in a larger number of patients, even in presence of D4Z4 contractions, to facilitate the genotype-phenotype correlation as well as, to enable a more precise diagnosis and prognosis of the disease.
Collapse
Affiliation(s)
- Raffaella Cascella
- Molecular Genetics Laboratory UILDM, Santa Lucia Foundation, Rome, Italy.,Department of Chemical-Toxicological and Pharmacological Evaluation of Drugs, Catholic University Our Lady of Good Counsel, Tirana, Albania
| | - Claudia Strafella
- Department of Biomedicine and Prevention Tor Vergata University, Rome, Italy.,Emotest Laboratory, Pozzuoli, Italy
| | - Valerio Caputo
- Department of Biomedicine and Prevention Tor Vergata University, Rome, Italy
| | | | - Valeria Errichiello
- Department of Biomedicine and Prevention Tor Vergata University, Rome, Italy
| | - Marianna Scutifero
- Department of Experimental Medicine, Cardiomyology and Medical Genetics, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Roberta Petillo
- Department of Experimental Medicine, Cardiomyology and Medical Genetics, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Gian Luca Marella
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - Mauro Arcangeli
- Department of Biomedicine and Prevention Tor Vergata University, Rome, Italy
| | - Luca Colantoni
- Molecular Genetics Laboratory UILDM, Santa Lucia Foundation, Rome, Italy
| | - Stefania Zampatti
- Molecular Genetics Laboratory UILDM, Santa Lucia Foundation, Rome, Italy
| | - Enzo Ricci
- Institute of Neurology, Catholic University of the Sacred Heart, Rome, Italy
| | - Giancarlo Deidda
- Institute of Cell Biology and Neurobiology, National Research Council of Italy, Monterotondo, Rome, Italy
| | - Luisa Politano
- Department of Experimental Medicine, Cardiomyology and Medical Genetics, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Emiliano Giardina
- Molecular Genetics Laboratory UILDM, Santa Lucia Foundation, Rome, Italy.,Department of Biomedicine and Prevention Tor Vergata University, Rome, Italy
| |
Collapse
|
36
|
Renard D, Taieb G, Garibaldi M, Maues De Paula A, Bernard R, Lagha N, Cristofari G, Vovan C, Chaix C, Lévy N, Khau Van Kien P, Sacconi S. Inflammatory facioscapulohumeral muscular dystrophy type 2 in 18p deletion syndrome. Am J Med Genet A 2018; 176:1760-1763. [PMID: 30055030 DOI: 10.1002/ajmg.a.38843] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 03/30/2018] [Accepted: 04/23/2018] [Indexed: 02/06/2023]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) has been shown to be related to genetic and epigenetic derepression of DUX4 (mapping to chromosome 4), a gene located within a repeat array of D4Z4 sequences of polymorphic length. FSHD type 1 (FSHD1) is associated with pathogenic D4Z4 repeat array contraction, while FSHD type 2 (FSHD2) is associated with SMCHD1 variants (a chromatin modifier gene that maps to the short arm of chromosome 18). Both FSHD types require permissive polyadenylation signal (4qA) downstream of the D4Z4 array.
Collapse
Affiliation(s)
- Dimitri Renard
- Department of Neurology, CHU Nîmes, Hôpital Caremeau, Nîmes, France
| | - Guillaume Taieb
- Department of Neurology, CHU Nîmes, Hôpital Caremeau, Nîmes, France
| | - Matteo Garibaldi
- Peripheral Nervous System, Muscle and ALS Department, Nice University Hospital, Université Côte d'Azur, Nice, France.,Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Andre Maues De Paula
- Neuropathology Laboratory, Faculty of Medicine of Marseille, Assistance Publique-Hôpitaux de Marseille, La Timone Hospital, Marseille, France
| | - Rafaelle Bernard
- Medical Genetic Department, Assistance Publique-Hôpitaux de Marseille, La Timone Hospital; Aix-Marseille University, Marseille, France.,INSERM GMGF UMR_S910, Marseille, France
| | - Nadira Lagha
- Faculty of Medicine, Institute for Research on Cancer and Aging of Nice (IRCAN), INSERM U1081, CNRS UMR 7284, Université Côte d'Azur (UCA), Nice, France
| | - Gael Cristofari
- Faculty of Medicine, Institute for Research on Cancer and Aging of Nice (IRCAN), INSERM U1081, CNRS UMR 7284, Université Côte d'Azur (UCA), Nice, France.,University Hospital Federation (FHU) OncoAge, CHU-Nice, University of Nice Sophia Antipolis, Nice, France
| | - Catherine Vovan
- Medical Genetic Department, Assistance Publique-Hôpitaux de Marseille, La Timone Hospital; Aix-Marseille University, Marseille, France
| | - Charlène Chaix
- Medical Genetic Department, Assistance Publique-Hôpitaux de Marseille, La Timone Hospital; Aix-Marseille University, Marseille, France
| | - Nicolas Lévy
- Medical Genetic Department, Assistance Publique-Hôpitaux de Marseille, La Timone Hospital; Aix-Marseille University, Marseille, France.,INSERM GMGF UMR_S910, Marseille, France
| | | | - Sabrina Sacconi
- Peripheral Nervous System, Muscle and ALS Department, Nice University Hospital, Université Côte d'Azur, Nice, France.,Faculty of Medicine, Institute for Research on Cancer and Aging of Nice (IRCAN), INSERM U1081, CNRS UMR 7284, Université Côte d'Azur (UCA), Nice, France
| |
Collapse
|
37
|
He JJ, Lin XD, Lin F, Xu GR, Xu LQ, Hu W, Wang DN, Lin HX, Lin MT, Wang N, Wang ZQ. Clinical and genetic features of patients with facial-sparing facioscapulohumeral muscular dystrophy. Eur J Neurol 2017; 25:356-364. [PMID: 29112784 DOI: 10.1111/ene.13509] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 11/02/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND PURPOSE Facial-sparing scapular myopathy (SHD) is the most common atypical form of facioscapulohumeral muscular dystrophy (FSHD), clinically defined as without apparent facial muscle weakness on neurological examination. The clinical profiles and genetic features of SHD are limited. METHODS A cohort of 21 Chinese patients with SHD were confirmed by molecular genetic analysis based on pulsed-field gel electrophoresis. The clinical assessments and methylation analysis were noted. RESULTS The patients had FSHD-related EcoRI fragments with 4qA haplotype ranging from 18 kb to 33 kb (mean 26.3 ± 4.6 kb). The mean onset age was 25.52 ± 8.3 years. Over half of the patients had scapular winging and asymmetry weakness consistent with FSHD, without facial symptoms during their visit. Their facial electromyogram results were almost normal or mild myogenic damage, as well as the myopathology and serum creatine kinase. A conflict was unexpectedly found in intergenerational DR1 methylation analysis. CONCLUSION Facial-sparing scapular myopathy is characterized as mild myopathic symptoms and chronic progression of weakness. The diagnosis should be accurately confirmed through FSHD-sized fragment detection and 4qA/B variant determination. Although the next generations of SHD had more severe muscular symptoms, local hypomethylation within D4Z4 was not found as a modifier for clinical heterogeneity.
Collapse
Affiliation(s)
- J-J He
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - X-D Lin
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - F Lin
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - G-R Xu
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - L-Q Xu
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - W Hu
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - D-N Wang
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - H-X Lin
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - M-T Lin
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - N Wang
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Molecular Neurology, Fuzhou, China
| | - Z-Q Wang
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Molecular Neurology, Fuzhou, China
| |
Collapse
|
38
|
DeSimone AM, Pakula A, Lek A, Emerson CP. Facioscapulohumeral Muscular Dystrophy. Compr Physiol 2017; 7:1229-1279. [PMID: 28915324 DOI: 10.1002/cphy.c160039] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Facioscapulohumeral Muscular Dystrophy is a common form of muscular dystrophy that presents clinically with progressive weakness of the facial, scapular, and humeral muscles, with later involvement of the trunk and lower extremities. While typically inherited as autosomal dominant, facioscapulohumeral muscular dystrophy (FSHD) has a complex genetic and epigenetic etiology that has only recently been well described. The most prevalent form of the disease, FSHD1, is associated with the contraction of the D4Z4 microsatellite repeat array located on a permissive 4qA chromosome. D4Z4 contraction allows epigenetic derepression of the array, and possibly the surrounding 4q35 region, allowing misexpression of the toxic DUX4 transcription factor encoded within the terminal D4Z4 repeat in skeletal muscles. The less common form of the disease, FSHD2, results from haploinsufficiency of the SMCHD1 gene in individuals carrying a permissive 4qA allele, also leading to the derepression of DUX4, further supporting a central role for DUX4. How DUX4 misexpression contributes to FSHD muscle pathology is a major focus of current investigation. Misexpression of other genes at the 4q35 locus, including FRG1 and FAT1, and unlinked genes, such as SMCHD1, has also been implicated as disease modifiers, leading to several competing disease models. In this review, we describe recent advances in understanding the pathophysiology of FSHD, including the application of MRI as a research and diagnostic tool, the genetic and epigenetic disruptions associated with the disease, and the molecular basis of FSHD. We discuss how these advances are leading to the emergence of new approaches to enable development of FSHD therapeutics. © 2017 American Physiological Society. Compr Physiol 7:1229-1279, 2017.
Collapse
Affiliation(s)
- Alec M DeSimone
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Anna Pakula
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics and Genetics at Harvard Medical School, Boston, Massachusetts, USA
| | - Angela Lek
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics and Genetics at Harvard Medical School, Boston, Massachusetts, USA.,Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Charles P Emerson
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
39
|
Campbell AE, Oliva J, Yates MP, Zhong JW, Shadle SC, Snider L, Singh N, Tai S, Hiramuki Y, Tawil R, van der Maarel SM, Tapscott SJ, Sverdrup FM. BET bromodomain inhibitors and agonists of the beta-2 adrenergic receptor identified in screens for compounds that inhibit DUX4 expression in FSHD muscle cells. Skelet Muscle 2017; 7:16. [PMID: 28870238 PMCID: PMC5584331 DOI: 10.1186/s13395-017-0134-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/14/2017] [Indexed: 11/24/2022] Open
Abstract
Background Facioscapulohumeral dystrophy (FSHD) is a progressive muscle disease caused by mutations that lead to epigenetic derepression and inappropriate transcription of the double homeobox 4 (DUX4) gene in skeletal muscle. Drugs that enhance the repression of DUX4 and prevent its expression in skeletal muscle cells therefore represent candidate therapies for FSHD. Methods We screened an aggregated chemical library enriched for compounds with epigenetic activities and the Pharmakon 1600 library composed of compounds that have reached clinical testing to identify molecules that decrease DUX4 expression as monitored by the levels of DUX4 target genes in FSHD patient-derived skeletal muscle cell cultures. Results Our screens identified several classes of molecules that include inhibitors of the bromodomain and extra-terminal (BET) family of proteins and agonists of the beta-2 adrenergic receptor. Further studies showed that compounds from these two classes suppress the expression of DUX4 messenger RNA (mRNA) by blocking the activity of bromodomain-containing protein 4 (BRD4) or by increasing cyclic adenosine monophosphate (cAMP) levels, respectively. Conclusions These data uncover pathways involved in the regulation of DUX4 expression in somatic cells, provide potential candidate classes of compounds for FSHD therapeutic development, and create an important opportunity for mechanistic studies that may uncover additional therapeutic targets. Electronic supplementary material The online version of this article (doi:10.1186/s13395-017-0134-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amy E Campbell
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Jonathan Oliva
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University, Saint Louis, MO, 63104, USA
| | - Matthew P Yates
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University, Saint Louis, MO, 63104, USA
| | - Jun Wen Zhong
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Sean C Shadle
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.,Molecular and Cellular Biology Program, University of Washington, Seattle, WA, 98105, USA
| | - Lauren Snider
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Nikita Singh
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University, Saint Louis, MO, 63104, USA
| | - Shannon Tai
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University, Saint Louis, MO, 63104, USA
| | - Yosuke Hiramuki
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Rabi Tawil
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Silvère M van der Maarel
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Stephen J Tapscott
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA. .,Department of Neurology, University of Washington, Seattle, WA, 98105, USA.
| | - Francis M Sverdrup
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University, Saint Louis, MO, 63104, USA.
| |
Collapse
|
40
|
Nguyen K, Puppo F, Roche S, Gaillard MC, Chaix C, Lagarde A, Pierret M, Vovan C, Olschwang S, Salort-Campana E, Attarian S, Bartoli M, Bernard R, Magdinier F, Levy N. Molecular combing reveals complex 4q35 rearrangements in Facioscapulohumeral dystrophy. Hum Mutat 2017; 38:1432-1441. [DOI: 10.1002/humu.23304] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 07/19/2017] [Accepted: 07/22/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Karine Nguyen
- Aix Marseille Université; INSERM GMGF UMR S_910; Marseille 13385 France
- APHM; Département de Génétique Médicale; Hôpital d'enfants de la Timone; Marseille 13385 France
| | - Francesca Puppo
- Aix Marseille Université; INSERM GMGF UMR S_910; Marseille 13385 France
| | - Stéphane Roche
- Aix Marseille Université; INSERM GMGF UMR S_910; Marseille 13385 France
| | | | - Charlène Chaix
- APHM; Département de Génétique Médicale; Hôpital d'enfants de la Timone; Marseille 13385 France
| | - Arnaud Lagarde
- Aix Marseille Université; INSERM GMGF UMR S_910; Marseille 13385 France
| | | | - Catherine Vovan
- APHM; Département de Génétique Médicale; Hôpital d'enfants de la Timone; Marseille 13385 France
| | - Sylviane Olschwang
- Aix Marseille Université; INSERM GMGF UMR S_910; Marseille 13385 France
- APHM; Département de Génétique Médicale; Hôpital d'enfants de la Timone; Marseille 13385 France
- Groupe Ramsay Générale de Santé; Hôpital Clairval; Marseille France
| | - Emmanuelle Salort-Campana
- Aix Marseille Université; INSERM GMGF UMR S_910; Marseille 13385 France
- APHM; Centre de Référence des Maladies Neuromusculaires et de la SLA; Hôpital de la Timone; Marseille 13385 France
| | - Shahram Attarian
- Aix Marseille Université; INSERM GMGF UMR S_910; Marseille 13385 France
- APHM; Centre de Référence des Maladies Neuromusculaires et de la SLA; Hôpital de la Timone; Marseille 13385 France
| | - Marc Bartoli
- Aix Marseille Université; INSERM GMGF UMR S_910; Marseille 13385 France
| | - Rafaëlle Bernard
- Aix Marseille Université; INSERM GMGF UMR S_910; Marseille 13385 France
- APHM; Département de Génétique Médicale; Hôpital d'enfants de la Timone; Marseille 13385 France
| | | | - Nicolas Levy
- Aix Marseille Université; INSERM GMGF UMR S_910; Marseille 13385 France
- APHM; Département de Génétique Médicale; Hôpital d'enfants de la Timone; Marseille 13385 France
- APHM; Centre de Ressources Biologiques; Hôpital de la Timone; Marseille 13385 France
| |
Collapse
|
41
|
Bosnakovski D, Gearhart MD, Toso EA, Recht OO, Cucak A, Jain AK, Barton MC, Kyba M. p53-independent DUX4 pathology in cell and animal models of facioscapulohumeral muscular dystrophy. Dis Model Mech 2017; 10:1211-1216. [PMID: 28754837 PMCID: PMC5665455 DOI: 10.1242/dmm.030064] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 07/26/2017] [Indexed: 12/25/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a genetically dominant myopathy caused by mutations that disrupt repression of the normally silent DUX4 gene, which encodes a transcription factor that has been shown to interfere with myogenesis when misexpressed at very low levels in myoblasts and to cause cell death when overexpressed at high levels. A previous report using adeno-associated virus to deliver high levels of DUX4 to mouse skeletal muscle demonstrated severe pathology that was suppressed on a p53-knockout background, implying that DUX4 acted through the p53 pathway. Here, we investigate the p53 dependence of DUX4 using various in vitro and in vivo models. We find that inhibiting p53 has no effect on the cytoxicity of DUX4 on C2C12 myoblasts, and that expression of DUX4 does not lead to activation of the p53 pathway. DUX4 does lead to expression of the classic p53 target gene Cdkn1a (p21) but in a p53-independent manner. Meta-analysis of 5 publicly available data sets of DUX4 transcriptional profiles in both human and mouse cells shows no evidence of p53 activation, and further reveals that Cdkn1a is a mouse-specific target of DUX4. When the inducible DUX4 mouse model is crossed onto the p53-null background, we find no suppression of the male-specific lethality or skin phenotypes that are characteristic of the DUX4 transgene, and find that primary myoblasts from this mouse are still killed by DUX4 expression. These data challenge the notion that the p53 pathway is central to the pathogenicity of DUX4. Summary: DUX4 is thought to mediate cytopathology through p53. Here, DUX4 is shown to kill primary myoblasts and promote pathological phenotypes in the iDUX4[2.7] mouse model on the p53-null background, calling into question this notion.
Collapse
Affiliation(s)
- Darko Bosnakovski
- Lillehei Heart Institute, University of Minnesota, 312 Church St. SE, Minneapolis, MN 55455, USA.,Department of Pediatrics, University of Minnesota, 312 Church St. SE, Minneapolis, MN 55455, USA.,University Goce Delcev - Stip, Faculty of Medical Sciences, Krste Misirkov b.b., 2000 Stip, Republic of Macedonia
| | - Micah D Gearhart
- Department of Genetics, Cell Biology and Development, University of Minnesota, 312 Church St. SE, Minneapolis, MN 55455, USA
| | - Erik A Toso
- Lillehei Heart Institute, University of Minnesota, 312 Church St. SE, Minneapolis, MN 55455, USA.,Department of Pediatrics, University of Minnesota, 312 Church St. SE, Minneapolis, MN 55455, USA
| | - Olivia O Recht
- Lillehei Heart Institute, University of Minnesota, 312 Church St. SE, Minneapolis, MN 55455, USA.,Department of Pediatrics, University of Minnesota, 312 Church St. SE, Minneapolis, MN 55455, USA
| | - Anja Cucak
- Lillehei Heart Institute, University of Minnesota, 312 Church St. SE, Minneapolis, MN 55455, USA.,Department of Pediatrics, University of Minnesota, 312 Church St. SE, Minneapolis, MN 55455, USA
| | - Abhinav K Jain
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michelle C Barton
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael Kyba
- Lillehei Heart Institute, University of Minnesota, 312 Church St. SE, Minneapolis, MN 55455, USA .,Department of Pediatrics, University of Minnesota, 312 Church St. SE, Minneapolis, MN 55455, USA
| |
Collapse
|
42
|
Mason AG, Slieker RC, Balog J, Lemmers RJLF, Wong CJ, Yao Z, Lim JW, Filippova GN, Ne E, Tawil R, Heijmans BT, Tapscott SJ, van der Maarel SM. SMCHD1 regulates a limited set of gene clusters on autosomal chromosomes. Skelet Muscle 2017; 7:12. [PMID: 28587678 PMCID: PMC5461771 DOI: 10.1186/s13395-017-0129-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 05/24/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Facioscapulohumeral muscular dystrophy (FSHD) is in most cases caused by a contraction of the D4Z4 macrosatellite repeat on chromosome 4 (FSHD1) or by mutations in the SMCHD1 or DNMT3B gene (FSHD2). Both situations result in the incomplete epigenetic repression of the D4Z4-encoded retrogene DUX4 in somatic cells, leading to the aberrant expression of DUX4 in the skeletal muscle. In mice, Smchd1 regulates chromatin repression at different loci, having a role in CpG methylation establishment and/or maintenance. METHODS To investigate the global effects of harboring heterozygous SMCHD1 mutations on DNA methylation in humans, we combined 450k methylation analysis on mononuclear monocytes from female heterozygous SMCHD1 mutation carriers and unaffected controls with reduced representation bisulfite sequencing (RRBS) on FSHD2 and control myoblast cell lines. Candidate loci were then evaluated for SMCHD1 binding using ChIP-qPCR and expression was evaluated using RT-qPCR. RESULTS We identified a limited number of clustered autosomal loci with CpG hypomethylation in SMCHD1 mutation carriers: the protocadherin (PCDH) cluster on chromosome 5, the transfer RNA (tRNA) and 5S rRNA clusters on chromosome 1, the HOXB and HOXD clusters on chromosomes 17 and 2, respectively, and the D4Z4 repeats on chromosomes 4 and 10. Furthermore, minor increases in RNA expression were seen in FSHD2 myoblasts for some of the PCDHβ cluster isoforms, tRNA isoforms, and a HOXB isoform in comparison to controls, in addition to the previously reported effects on DUX4 expression. SMCHD1 was bound at DNAseI hypersensitivity sites known to regulate the PCDHβ cluster and at the chromosome 1 tRNA cluster, with decreased binding in SMCHD1 mutation carriers at the PCDHβ cluster sites. CONCLUSIONS Our study is the first to investigate the global methylation effects in humans resulting from heterozygous mutations in SMCHD1. Our results suggest that SMCHD1 acts as a repressor on a limited set of autosomal gene clusters, as an observed reduction in methylation associates with a loss of SMCHD1 binding and increased expression for some of the loci.
Collapse
Affiliation(s)
- Amanda G Mason
- Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Roderick C Slieker
- Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Judit Balog
- Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Chao-Jen Wong
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Zizhen Yao
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jong-Won Lim
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Galina N Filippova
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Enrico Ne
- Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Rabi Tawil
- Neuromuscular Disease Unit, Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Bas T Heijmans
- Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Netherlands Consortium for Healthy Aging, Leiden, The Netherlands
| | - Stephen J Tapscott
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | |
Collapse
|
43
|
Lemmers RJLF. Analyzing Copy Number Variation Using Pulsed-Field Gel Electrophoresis: Providing a Genetic Diagnosis for FSHD1. Methods Mol Biol 2017; 1492:107-125. [PMID: 27822859 DOI: 10.1007/978-1-4939-6442-0_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The myopathy facioscapulohumeral muscular dystrophy type 1 (FSHD1) is caused by copy number variation of the D4Z4 macrosatellite repeat on chromosome 4. In unaffected individuals the number of 3.3 kb D4Z4 units varies between 8 and 100, whereas 1-10 units are seen in FSHD1 cases. A homologous and heterogenous D4Z4 array can be found on chromosome 10q, but contractions of this array are typically not associated with FSHD. Discriminating between the chromosome 4 and chromosome 10 D4Z4 arrays, as well as determining the array size, requires the use of pulsed-field gel electrophoresis, Southern blotting, and the isolation of high-quality DNA.
Collapse
Affiliation(s)
- Richard J L F Lemmers
- Department of Human Genetics, Leiden University Medical Center, 2333, ZA, Leiden, The Netherlands.
| |
Collapse
|
44
|
Balog J, Thijssen PE, Shadle S, Straasheijm KR, van der Vliet PJ, Krom YD, van den Boogaard ML, de Jong A, F Lemmers RJL, Tawil R, Tapscott SJ, van der Maarel SM. Increased DUX4 expression during muscle differentiation correlates with decreased SMCHD1 protein levels at D4Z4. Epigenetics 2016; 10:1133-42. [PMID: 26575099 PMCID: PMC4844215 DOI: 10.1080/15592294.2015.1113798] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy is caused by incomplete epigenetic repression of the transcription factor DUX4 in skeletal muscle. A copy of DUX4 is located within each unit of the D4Z4 macrosatellite repeat array and its derepression in somatic cells is caused by either repeat array contraction (FSHD1) or by mutations in the chromatin repressor SMCHD1 (FSHD2). While DUX4 expression has thus far only been detected in FSHD muscle and muscle cell cultures, and increases with in vitro myogenic differentiation, the D4Z4 chromatin structure has only been studied in proliferating myoblasts or non-myogenic cells. We here show that SMCHD1 protein levels at D4Z4 decline during muscle cell differentiation and correlate with DUX4 derepression. In FSHD2, but not FSHD1, the loss of SMCHD1 repressor activity is partially compensated by increased Polycomb Repressive Complex 2 (PRC2)–mediated H3K27 trimethylation at D4Z4, a situation that can be mimicked by SMCHD1 knockdown in control myotubes. In contrast, moderate overexpression of SMCHD1 results in DUX4 silencing in FSHD1 and FSHD2 myotubes demonstrating that DUX4 derepression in FSHD is reversible. Together, we show that in FSHD1 and FSHD2 the decline in SMCHD1 protein levels during muscle cell differentiation renders skeletal muscle sensitive to DUX4.
Collapse
Affiliation(s)
- Judit Balog
- a Department of Human Genetics; Leiden University Medical Center; 2333ZA Leiden , The Netherlands
| | - Peter E Thijssen
- a Department of Human Genetics; Leiden University Medical Center; 2333ZA Leiden , The Netherlands
| | - Sean Shadle
- b Division of Human Biology; Fred Hutchinson Cancer Research Center; Seattle 98109 , Washington , United States of America
| | - Kirsten R Straasheijm
- a Department of Human Genetics; Leiden University Medical Center; 2333ZA Leiden , The Netherlands
| | - Patrick J van der Vliet
- a Department of Human Genetics; Leiden University Medical Center; 2333ZA Leiden , The Netherlands
| | - Yvonne D Krom
- a Department of Human Genetics; Leiden University Medical Center; 2333ZA Leiden , The Netherlands
| | | | - Annika de Jong
- a Department of Human Genetics; Leiden University Medical Center; 2333ZA Leiden , The Netherlands
| | - Richard J L F Lemmers
- a Department of Human Genetics; Leiden University Medical Center; 2333ZA Leiden , The Netherlands
| | - Rabi Tawil
- c Neuromuscular Disease Unit; Department of Neurology; University of Rochester Medical Center; Rochester 14642 , New York , United States of America
| | - Stephen J Tapscott
- b Division of Human Biology; Fred Hutchinson Cancer Research Center; Seattle 98109 , Washington , United States of America
| | - Silvère M van der Maarel
- a Department of Human Genetics; Leiden University Medical Center; 2333ZA Leiden , The Netherlands
| |
Collapse
|
45
|
Gaillard MC, Puppo F, Roche S, Dion C, Campana ES, Mariot V, Chaix C, Vovan C, Mazaleyrat K, Tasmadjian A, Bernard R, Dumonceaux J, Attarian S, Lévy N, Nguyen K, Magdinier F, Bartoli M. Segregation between SMCHD1 mutation, D4Z4 hypomethylation and Facio-Scapulo-Humeral Dystrophy: a case report. BMC MEDICAL GENETICS 2016; 17:66. [PMID: 27634379 PMCID: PMC5025538 DOI: 10.1186/s12881-016-0328-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 09/09/2016] [Indexed: 12/22/2022]
Abstract
Background The main form of Facio-Scapulo-Humeral muscular Dystrophy is linked to copy number reduction of the 4q D4Z4 macrosatellite (FSHD1). In 5 % of cases, FSHD phenotype appears in the absence of D4Z4 reduction (FSHD2). In 70-80 % of these patients, variants of the SMCHD1 gene segregate with 4qA haplotypes and D4Z4 hypomethylation. Case presentation We report a family presenting with neuromuscular symptoms reminiscent of FSHD but without D4Z4 copy reduction. We characterized the 4q35 region using molecular combing, searched for mutation in the SMCHD1 gene and determined D4Z4 methylation level by sodium bisulfite sequencing. We further investigated the impact of the SMCHD1 mutation at the protein level and on the NMD-dependent degradation of transcript. In muscle, we observe moderate but significant reduction in D4Z4 methylation, not correlated with DUX4-fl expression. Exome sequencing revealed a heterozygous insertion of 7 bp in exon 37 of the SMCHD1 gene producing a loss of frame with premature stop codon 4 amino acids after the insertion (c.4614-4615insTATAATA). Both wild-type and mutated transcripts are detected. Conclusion The truncated protein is absent and the full-length protein level is similar in patients and controls indicating that in this family, FSHD is not associated with SMCHD1 haploinsufficiency. Electronic supplementary material The online version of this article (doi:10.1186/s12881-016-0328-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Camille Dion
- Aix Marseille Univ, INSERM, GMGF, Marseille, France
| | - Emmanuelle Salort Campana
- Aix Marseille Univ, INSERM, GMGF, Marseille, France.,APHM, Centre de Référence des Maladies Neuromusculaires et de la SLA, Hôpital de la Timone, Marseille, 13385, France
| | - Virginie Mariot
- Center of Research in Myology/ Institut de Myologie UMR974 - UPMC Université Paris 6/ Inserm /FRE3617- CNRS, Groupement Hospitalier de la Pitié Salpétrière, Paris, Cedex 13, France
| | - Charlene Chaix
- APHM, Laboratoire de Génétique Médicale, Hôpital de la Timone, Marseille, 13385, France
| | - Catherine Vovan
- APHM, Laboratoire de Génétique Médicale, Hôpital de la Timone, Marseille, 13385, France
| | | | | | - Rafaelle Bernard
- Aix Marseille Univ, INSERM, GMGF, Marseille, France.,APHM, Laboratoire de Génétique Médicale, Hôpital de la Timone, Marseille, 13385, France
| | - Julie Dumonceaux
- Center of Research in Myology/ Institut de Myologie UMR974 - UPMC Université Paris 6/ Inserm /FRE3617- CNRS, Groupement Hospitalier de la Pitié Salpétrière, Paris, Cedex 13, France
| | - Shahram Attarian
- Aix Marseille Univ, INSERM, GMGF, Marseille, France.,APHM, Centre de Référence des Maladies Neuromusculaires et de la SLA, Hôpital de la Timone, Marseille, 13385, France
| | - Nicolas Lévy
- Aix Marseille Univ, INSERM, GMGF, Marseille, France.,APHM, Laboratoire de Génétique Médicale, Hôpital de la Timone, Marseille, 13385, France
| | - Karine Nguyen
- Aix Marseille Univ, INSERM, GMGF, Marseille, France.,APHM, Laboratoire de Génétique Médicale, Hôpital de la Timone, Marseille, 13385, France
| | | | - Marc Bartoli
- Aix Marseille Univ, INSERM, GMGF, Marseille, France.,APHM, Laboratoire de Génétique Médicale, Hôpital de la Timone, Marseille, 13385, France
| |
Collapse
|
46
|
Choi SH, Bosnakovski D, Strasser JM, Toso EA, Walters MA, Kyba M. Transcriptional Inhibitors Identified in a 160,000-Compound Small-Molecule DUX4 Viability Screen. ACTA ACUST UNITED AC 2016; 21:680-8. [PMID: 27245141 DOI: 10.1177/1087057116651868] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/06/2016] [Indexed: 12/22/2022]
Abstract
Facioscapulohumeral muscular dystrophy is a genetically dominant, currently untreatable muscular dystrophy. It is caused by mutations that enable expression of the normally silent DUX4 gene, which encodes a pathogenic transcription factor. A screen based on Tet-on DUX4-induced mouse myoblast death previously uncovered compounds from a 44,000-compound library that protect against DUX4 toxicity. Many of those compounds acted downstream of DUX4 in an oxidative stress pathway. Here, we extend this screen to an additional 160,000 compounds and, using greater stringency, identify a new set of DUX4-protective compounds. From 640 hits, we performed secondary screens, repurchased 46 of the most desirable, confirmed activity, and tested each for activity against other cell death-inducing insults. The majority of these compounds also protected against oxidative stress. Of the 100 repurchased compounds identified through both screens, only SHC40, 75, and 98 inhibited DUX4 target genes, but they also inhibited dox-mediated DUX4 expression. Using a target gene readout on the 640-compound hit set, we discovered three overlooked compounds, SHC351, 540, and 572, that inhibit DUX4 target gene upregulation without nonspecific effects on the Tet-on system. These novel inhibitors of DUX4 transcriptional activity may thus act on pathways or cofactors needed by DUX4 for transcriptional activation in these cells.
Collapse
Affiliation(s)
- Si Ho Choi
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, South Korea
| | - Darko Bosnakovski
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA University Goce Delcˇ ev-Štip, Faculty of Medical Sciences, Krste Misirkov b.b., 2000 Štip, Republic of Macedonia
| | - Jessica M Strasser
- Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN, USA
| | - Erik A Toso
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Michael A Walters
- Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN, USA
| | - Michael Kyba
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
47
|
van den Boogaard ML, Lemmers RJLF, Balog J, Wohlgemuth M, Auranen M, Mitsuhashi S, van der Vliet PJ, Straasheijm KR, van den Akker RFP, Kriek M, Laurense-Bik MEY, Raz V, van Ostaijen-Ten Dam MM, Hansson KBM, van der Kooi EL, Kiuru-Enari S, Udd B, van Tol MJD, Nishino I, Tawil R, Tapscott SJ, van Engelen BGM, van der Maarel SM. Mutations in DNMT3B Modify Epigenetic Repression of the D4Z4 Repeat and the Penetrance of Facioscapulohumeral Dystrophy. Am J Hum Genet 2016; 98:1020-1029. [PMID: 27153398 PMCID: PMC4863565 DOI: 10.1016/j.ajhg.2016.03.013] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/15/2016] [Indexed: 01/08/2023] Open
Abstract
Facioscapulohumeral dystrophy (FSHD) is associated with somatic chromatin relaxation of the D4Z4 repeat array and derepression of the D4Z4-encoded DUX4 retrogene coding for a germline transcription factor. Somatic DUX4 derepression is caused either by a 1-10 unit repeat-array contraction (FSHD1) or by mutations in SMCHD1, which encodes a chromatin repressor that binds to D4Z4 (FSHD2). Here, we show that heterozygous mutations in DNA methyltransferase 3B (DNMT3B) are a likely cause of D4Z4 derepression associated with low levels of DUX4 expression from the D4Z4 repeat and increased penetrance of FSHD. Recessive mutations in DNMT3B were previously shown to cause immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome. This study suggests that transcription of DUX4 in somatic cells is modified by variations in its epigenetic state and provides a basis for understanding the reduced penetrance of FSHD within families.
Collapse
Affiliation(s)
| | - Richard J L F Lemmers
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Judit Balog
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Mariëlle Wohlgemuth
- Department of Neurology, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Mari Auranen
- Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland
| | - Satomi Mitsuhashi
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan
| | - Patrick J van der Vliet
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Kirsten R Straasheijm
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Rob F P van den Akker
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Marjolein Kriek
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; Department of Clinical Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Marlies E Y Laurense-Bik
- Department of Clinical Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Vered Raz
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | | | - Kerstin B M Hansson
- Department of Clinical Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | | | - Sari Kiuru-Enari
- Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland
| | - Bjarne Udd
- Neuromuscular Research Center, Department of Neurology, Tampere University Hospital and University of Tampere, 33520 Tampere, Finland
| | - Maarten J D van Tol
- Department of Pediatrics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan
| | - Rabi Tawil
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Stephen J Tapscott
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Baziel G M van Engelen
- Department of Neurology, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Silvère M van der Maarel
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands.
| |
Collapse
|
48
|
Clinical, muscle pathological, and genetic features of Japanese facioscapulohumeral muscular dystrophy 2 (FSHD2) patients with SMCHD1 mutations. Neuromuscul Disord 2016; 26:300-8. [DOI: 10.1016/j.nmd.2016.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 02/28/2016] [Accepted: 03/07/2016] [Indexed: 11/21/2022]
|
49
|
Himeda CL, Jones TI, Jones PL. CRISPR/dCas9-mediated Transcriptional Inhibition Ameliorates the Epigenetic Dysregulation at D4Z4 and Represses DUX4-fl in FSH Muscular Dystrophy. Mol Ther 2016; 24:527-35. [PMID: 26527377 PMCID: PMC4786914 DOI: 10.1038/mt.2015.200] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/21/2015] [Indexed: 12/16/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is one of the most prevalent myopathies, affecting males and females of all ages. Both forms of the disease are linked by epigenetic derepression of the D4Z4 macrosatellite repeat array at chromosome 4q35, leading to aberrant expression of D4Z4-encoded RNAs in skeletal muscle. Production of full-length DUX4 (DUX4-fl) mRNA from the derepressed D4Z4 array results in misexpression of DUX4-FL protein and its transcriptional targets, and apoptosis, ultimately leading to accumulated muscle pathology. Returning the chromatin at the FSHD locus to its nonpathogenic, epigenetically repressed state would simultaneously affect all D4Z4 RNAs, inhibiting downstream pathogenic pathways, and is thus an attractive therapeutic strategy. Advances in CRISPR/Cas9-based genome editing make it possible to target epigenetic modifiers to an endogenous disease locus, although reports to date have focused on more typical genomic regions. Here, we demonstrate that a CRISPR/dCas9 transcriptional inhibitor can be specifically targeted to the highly repetitive FSHD macrosatellite array and alter the chromatin to repress expression of DUX4-fl in primary FSHD myocytes. These results implicate the promoter and exon 1 of DUX4 as potential therapeutic targets and demonstrate the utility of CRISPR technology for correction of the epigenetic dysregulation in FSHD.
Collapse
Affiliation(s)
- Charis L Himeda
- The Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Takako I Jones
- The Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Peter L Jones
- The Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- The Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
50
|
Calandra P, Cascino I, Lemmers RJLF, Galluzzi G, Teveroni E, Monforte M, Tasca G, Ricci E, Moretti F, van der Maarel SM, Deidda G. Allele-specific DNA hypomethylation characterises FSHD1 and FSHD2. J Med Genet 2016; 53:348-55. [PMID: 26831754 DOI: 10.1136/jmedgenet-2015-103436] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 12/28/2015] [Indexed: 01/07/2023]
Abstract
BACKGROUND Facioscapulohumeral muscular dystrophy (FSHD) is associated with an epigenetic defect on 4qter. Two clinically indistinguishable forms of FSHD are known, FSHD1 and FSHD2. FSHD1 is caused by contraction of the highly polymorphic D4Z4 macrosatellite repeat array on chromosome 4q35. FSHD2 is caused by pathogenic mutations of the SMCHD1 gene.Both genetic defects lead to D4Z4 DNA hypomethylation. In the presence of a polymorphic polyadenylation signal (PAS), DNA hypomethylation leads to inappropriate expression of the D4Z4-encoded DUX4 transcription factor in skeletal muscle. Currently, hypomethylation is not diagnostic per se because of the interference of non-pathogenic arrays and the lack of information about the presence of DUX4-PAS. METHODS We investigated, by bisulfite sequencing, the DNA methylation levels of the region distal to the D4Z4 array selectively in PAS-positive alleles. RESULTS Comparison of FSHD1, FSHD2 and Control subjects showed a highly significant difference of methylation levels in all CpGs tested. Importantly, using a cohort of 112 samples, one of these CpGs (CpG6) is able to discriminate the affected individuals with a sensitivity of 0.95 supporting this assay potential for FSHD diagnosis. Moreover, our study showed a relationship between PAS-specific methylation and severity of the disease. CONCLUSIONS These data point to the CpGs distal to the D4Z4 array as a critical region reflecting multiple factors affecting the epigenetics of FSHD. Additionally, methylation analysis of this region allows the establishment of a rapid and sensitive tool for FSHD diagnosis.
Collapse
Affiliation(s)
- Patrizia Calandra
- Institute of Cell Biology and Neurobiology, National Research Council of Italy, Monterotondo (Rome), Italy
| | - Isabella Cascino
- Institute of Cell Biology and Neurobiology, National Research Council of Italy, Monterotondo (Rome), Italy
| | - Richard J L F Lemmers
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Giuliana Galluzzi
- Institute of Cell Biology and Neurobiology, National Research Council of Italy, Monterotondo (Rome), Italy
| | - Emanuela Teveroni
- Institute of Cell Biology and Neurobiology, National Research Council of Italy, Monterotondo (Rome), Italy Institute of Pathology, Catholic University School of Medicine, Rome, Italy
| | - Mauro Monforte
- Institute of Neurology, Catholic University School of Medicine, Rome, Italy
| | | | - Enzo Ricci
- Institute of Neurology, Catholic University School of Medicine, Rome, Italy
| | - Fabiola Moretti
- Institute of Cell Biology and Neurobiology, National Research Council of Italy, Monterotondo (Rome), Italy
| | | | - Giancarlo Deidda
- Institute of Cell Biology and Neurobiology, National Research Council of Italy, Monterotondo (Rome), Italy
| |
Collapse
|