1
|
Xing H, Yue S, Qin R, Du X, Wu Y, Zhangsun D, Luo S. Recent Advances in Drug Development for Alzheimer's Disease: A Comprehensive Review. Int J Mol Sci 2025; 26:3905. [PMID: 40332804 PMCID: PMC12028297 DOI: 10.3390/ijms26083905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/16/2025] [Accepted: 04/19/2025] [Indexed: 05/08/2025] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by cognitive impairments such as memory loss and executive dysfunction. The primary pathological features of AD include the deposition of amyloid-beta (Aβ) plaques, the hyperphosphorylation of tau proteins leading to neurofibrillary tangles, disruptions of neuronal and synaptic functions, and chronic inflammatory responses. These multifactorial interactions drive disease progression. To date, various therapeutic agents targeting these pathological mechanisms have been developed. This article provides a comprehensive review of the pathogenesis of AD, recent advances in drug development targeting different pathways, current challenges, and future directions, aiming to offer valuable insights for clinical treatment and research.
Collapse
Affiliation(s)
- Haonan Xing
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China; (H.X.); (S.Y.); (R.Q.); (X.D.)
| | - Song Yue
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China; (H.X.); (S.Y.); (R.Q.); (X.D.)
| | - Runtian Qin
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China; (H.X.); (S.Y.); (R.Q.); (X.D.)
| | - Xiaoxue Du
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China; (H.X.); (S.Y.); (R.Q.); (X.D.)
| | - Yili Wu
- Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Wenzhou Key Laboratory of Basic and Translational Research for Mental Disorders, Zhejiang Provincial Clinical Research Center for Mental Health, School of Mental Health, Institute of Aging, Wenzhou Medical University, Wenzhou 325000, China;
| | - Dongting Zhangsun
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China; (H.X.); (S.Y.); (R.Q.); (X.D.)
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| | - Sulan Luo
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China; (H.X.); (S.Y.); (R.Q.); (X.D.)
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| |
Collapse
|
2
|
Zedde M, Piazza F, Pascarella R. Traumatic Brain Injury and Chronic Traumatic Encephalopathy: Not Only Trigger for Neurodegeneration but Also for Cerebral Amyloid Angiopathy? Biomedicines 2025; 13:881. [PMID: 40299513 PMCID: PMC12024568 DOI: 10.3390/biomedicines13040881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 03/25/2025] [Accepted: 04/02/2025] [Indexed: 04/30/2025] Open
Abstract
Traumatic brain injury (TBI) has been linked to the development of neurodegenerative diseases, particularly Alzheimer's disease (AD) and chronic traumatic encephalopathy (CTE). This review critically assesses the relationship between TBI and cerebral amyloid angiopathy (CAA), highlighting the complexities of diagnosing CAA in the context of prior head trauma. While TBI has been shown to facilitate the accumulation of amyloid plaques and tau pathology, the interplay between neurodegenerative processes and vascular contributions remains underexplored. Epidemiological studies indicate that TBI increases the risk of various dementias, not solely AD, emphasizing the need for a comprehensive understanding of TBI-related neurodegeneration as a polypathological condition. This review further delineates the mechanisms by which TBI can lead to CAA, particularly focusing on the vascular changes that occur post-injury. It discusses the challenges associated with diagnosing CAA after TBI, particularly due to the overlapping symptoms and pathologies that complicate clinical evaluations. Notably, this review includes a clinical case that exemplifies the diagnostic challenges posed by TBI in patients with subsequent cognitive decline and vascular pathology. By synthesizing current research on TBI, CAA, and associated neurodegenerative conditions, this review aims to foster a more nuanced understanding of how these conditions interact and contribute to long-term cognitive outcomes. The findings underscore the importance of developing standardized diagnostic criteria and imaging techniques to better elucidate the relationship between TBI and vascular pathology, which could enhance clinical interventions and inform therapeutic strategies for affected individuals.
Collapse
Affiliation(s)
- Marialuisa Zedde
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy
- CAA and AD Translational Research and Biomarkers Lab, School of Medicine, University of Milano-Bicocca, 20900 Monza, Italy; (F.P.); (R.P.)
- Neuroradiology Unit, Ospedale Santa Maria della Misericordia, AULSS 5 Polesana, 45100 Rovigo, Italy
| | - Fabrizio Piazza
- CAA and AD Translational Research and Biomarkers Lab, School of Medicine, University of Milano-Bicocca, 20900 Monza, Italy; (F.P.); (R.P.)
- Neuroradiology Unit, Ospedale Santa Maria della Misericordia, AULSS 5 Polesana, 45100 Rovigo, Italy
- iCAβ International Network
| | - Rosario Pascarella
- CAA and AD Translational Research and Biomarkers Lab, School of Medicine, University of Milano-Bicocca, 20900 Monza, Italy; (F.P.); (R.P.)
- Neuroradiology Unit, Ospedale Santa Maria della Misericordia, AULSS 5 Polesana, 45100 Rovigo, Italy
- SINdem Study Group “The Inflammatory Cerebral Amyloid Angiopathy and Alzheimer’s Disease Biomarkers”
| |
Collapse
|
3
|
Aldrich G, Evans JE, Davis R, Jurin L, Oberlin S, Niedospial D, Nkiliza A, Mullan M, Kenney K, Werner JK, Edwards K, Gill JM, Lindsey HM, Dennis EL, Walker WC, Wilde E, Crawford F, Abdullah L. APOE4 and age affect the brain entorhinal cortex structure and blood arachidonic acid and docosahexaenoic acid levels after mild TBI. Sci Rep 2024; 14:29150. [PMID: 39587176 PMCID: PMC11589616 DOI: 10.1038/s41598-024-80153-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/15/2024] [Indexed: 11/27/2024] Open
Abstract
A reduction in the thickness and volume of the brain entorhinal cortex (EC), together with changes in blood arachidonic acid (AA) and docosahexaenoic acid (DHA), are associated with Alzheimer's disease (AD) among apolipoprotein E ε4 carriers. Magnetic Resonance Imaging (n = 631) and plasma lipidomics (n = 181) were performed using the LIMBIC/CENC cohort to examine the influence of ε4 on AA- and DHA-lipids and EC thickness and volume in relation to mild traumatic brain injury (mTBI). Results showed that left EC thickness was higher among ε4 carriers with mTBI. Repeated mTBI (r-mTBI) was associated with reduced right EC thickness after controlling for ε4, age and sex. Age, plus mTBI chronicity were linked to increased EC White Matter Volume (WMV). After controlling for age and sex, the advancing age of ε4 carriers with blast mTBI was associated with reduced right EC Grey Matter Volume (GMV) and thickness. Among ε4 carriers, plasma tau and Aβ40 were associated with mTBI and blast mTBI, respectively. Chronic mTBI, ε4 and AA to DHA ratios in phosphatidylcholine, ethanolamides, and phosphatidylethanolamine were associated with decreased left EC GMV and WMV. Further research is needed to explore these as biomarkers for detecting AD pathology following mTBI.
Collapse
Grants
- I01 RX002172 RRD VA
- I01 RX002174 RRD VA
- I01 CX002097, I01 CX002096, I01 HX003155, I01 RX003444, I01 RX003443, I01 RX003442, I01 CX001135, I01 CX001246, I01 RX001774, I01 RX 001135, I01 RX 002076, I01 RX 001880, I01 RX 002172, I01 RX 002173, I01 RX 002171, I01 RX 002174, and I01 RX 002170, I01 CX001820 U.S. Department of Veterans Affairs
- I01 CX001135 CSRD VA
- UL1 TR002538 NCATS NIH HHS
- I01 RX003443 RRD VA
- I01 RX001880 RRD VA
- I01 RX002171 RRD VA
- I01 HX003155 HSRD VA
- I01 RX002076 RRD VA
- I01 CX001246 CSRD VA
- I01 RX002170 RRD VA
- UL1 TR000105 NCATS NIH HHS
- I01 RX002173 RRD VA
- AZ160065 Congressionally Directed Medical Research Programs
- UL1 TR001067 NCATS NIH HHS
- W81XWH-18-PH/TBIRP-LIMBIC under Awards No. W81XWH1920067 and W81XWH-13-2-0095 U.S. Department of Defense
- I01 RX003444 RRD VA
- UL1 RR025764 NCRR NIH HHS
- I01 RX003442 RRD VA
- I01 RX001774 RRD VA
- I01 CX002097 CSRD VA
- I01 CX002096 CSRD VA
- I01 CX001820 CSRD VA
- I01 RX002767 RRD VA
- I01 RX001135 RRD VA
Collapse
Affiliation(s)
- Gregory Aldrich
- The Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
- James A. Haley Veterans' Administration Hospital, Tampa, FL, USA
| | - James E Evans
- The Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
| | - Roderick Davis
- The Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
| | - Lucia Jurin
- The Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
| | - Sarah Oberlin
- The Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
| | | | - Aurore Nkiliza
- The Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
| | - Michael Mullan
- The Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
| | - Kimbra Kenney
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - J Kent Werner
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | | | - Hannah M Lindsey
- Department of Neurology, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Emily L Dennis
- Department of Neurology, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - William C Walker
- Department of Physical Medicine & Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
| | - Elisabeth Wilde
- Department of Neurology, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Fiona Crawford
- The Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
- James A. Haley Veterans' Administration Hospital, Tampa, FL, USA
| | - Laila Abdullah
- The Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA.
- James A. Haley Veterans' Administration Hospital, Tampa, FL, USA.
| |
Collapse
|
4
|
Lipsky RH, Witkin JM, Shafique H, Smith JL, Cerne R, Marini AM. Traumatic brain injury: molecular biomarkers, genetics, secondary consequences, and medical management. Front Neurosci 2024; 18:1446076. [PMID: 39450122 PMCID: PMC11500614 DOI: 10.3389/fnins.2024.1446076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Traumatic brain injury (TBI) has reached epidemic proportions worldwide. The consequences of TBI can be severe even with repetitive mild trauma. If death and coma are avoided, the consequences of TBI in the long term typically involve dizziness, sleep disturbances, headache, seizures, cognitive impairment, focal deficits, depression, and anxiety. The severity of brain injury is a significant predictor of outcome. However, the heterogenous nature of the injury makes prognosis difficult. The present review of the literature focuses on the genetics of TBI including genome wide (GWAS) data and candidate gene associations, among them brain-derived neurotrophic factor (BDNF) with TBI and development of post-traumatic epilepsy (PTE). Molecular biomarkers of TBI are also discussed with a focus on proteins and the inflammatory protein IL1-β. The secondary medical sequela to TBI of cognitive impairment, PTE, headache and risk for neurodegenerative disorders is also discussed. This overview of TBI concludes with a review and discussion of the medical management of TBI and the medicines used for and being developed at the preclinical and clinical stages for the treatment of TBI and its host of life-debilitating symptoms.
Collapse
Affiliation(s)
- Robert H. Lipsky
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Program in Neuroscience, and Molecular and Cellular Biology Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Jeffrey M. Witkin
- Laboratory of Antiepileptic Drug Discovery Ascension St. Vincent Hospital, Indianapolis, IN, United States
- Departments of Neuroscience and Trauma Research Ascension St. Vincent Hospital, Indianapolis, IN, United States
| | - Hana Shafique
- Duke University School of Medicine, Durham, NC, United States
| | - Jodi L. Smith
- Laboratory of Antiepileptic Drug Discovery Ascension St. Vincent Hospital, Indianapolis, IN, United States
| | - Rok Cerne
- Laboratory of Antiepileptic Drug Discovery Ascension St. Vincent Hospital, Indianapolis, IN, United States
| | - Ann M. Marini
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Program in Neuroscience, and Molecular and Cellular Biology Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
5
|
Rubinstein T, Brickman AM, Cheng B, Burkett S, Park H, Annavajhala MK, Uhlemann A, Andrews H, Gutierrez J, Paster BJ, Noble JM, Papapanou PN. Periodontitis and brain magnetic resonance imaging markers of Alzheimer's disease and cognitive aging. Alzheimers Dement 2024; 20:2191-2208. [PMID: 38278517 PMCID: PMC10984451 DOI: 10.1002/alz.13683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/28/2024]
Abstract
INTRODUCTION We examined the association of clinical, microbiological, and host response features of periodontitis with MRI markers of atrophy/cerebrovascular disease in the Washington Heights Inwood Columbia Aging Project (WHICAP) Ancillary Study of Oral Health. METHODS We analyzed 468 participants with clinical periodontal data, microbial plaque and serum samples, and brain MRIs. We tested the association of periodontitis features with MRI features, after adjusting for multiple risk factors for Alzheimer's disease/Alzheimer's disease-related dementia (AD/ADRD). RESULTS In fully adjusted models, having more teeth was associated with lower odds for infarcts, lower white matter hyperintensity (WMH) volume, higher entorhinal cortex volume, and higher cortical thickness. Higher extent of periodontitis was associated with lower entorhinal cortex volume and lower cortical thickness. Differential associations emerged between colonization by specific bacteria/serum antibacterial IgG responses and MRI outcomes. DISCUSSION In an elderly cohort, clinical, microbiological, and serological features of periodontitis were associated with MRI findings related to ADRD risk. Further investigation of causal associations is warranted.
Collapse
Affiliation(s)
- Tom Rubinstein
- Division of PeriodonticsSection of OralDiagnostic and Rehabilitation SciencesCollege of Dental MedicineNew YorkNew YorkUSA
| | - Adam M. Brickman
- Department of NeurologyVagelos College of Physicians and SurgeonsNew YorkNew YorkUSA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain and Gertrude H. Sergievsky CenterNew YorkNew YorkUSA
| | - Bin Cheng
- Department of BiostatisticsMailman School of Public HealthNew YorkNew YorkUSA
| | - Sandra Burkett
- Division of PeriodonticsSection of OralDiagnostic and Rehabilitation SciencesCollege of Dental MedicineNew YorkNew YorkUSA
| | - Heekuk Park
- Division of Infectious DiseasesDepartment of MedicineVagelos College of Physicians and, Surgeons, Irving Medical CenterColumbia UniversityNew YorkNew YorkUSA
| | - Medini K. Annavajhala
- Division of Infectious DiseasesDepartment of MedicineVagelos College of Physicians and, Surgeons, Irving Medical CenterColumbia UniversityNew YorkNew YorkUSA
| | - Anne‐Catrin Uhlemann
- Division of Infectious DiseasesDepartment of MedicineVagelos College of Physicians and, Surgeons, Irving Medical CenterColumbia UniversityNew YorkNew YorkUSA
| | - Howard Andrews
- Department of BiostatisticsMailman School of Public HealthNew YorkNew YorkUSA
| | - Jose Gutierrez
- Department of NeurologyVagelos College of Physicians and SurgeonsNew YorkNew YorkUSA
| | - Bruce J. Paster
- The Forsyth InstituteCambridgeMassachusettsUSA
- Department of Oral Medicine, Infection and ImmunityHarvard School of Dental MedicineBostonMassachusettsUSA
| | - James M. Noble
- Department of NeurologyVagelos College of Physicians and SurgeonsNew YorkNew YorkUSA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain and Gertrude H. Sergievsky CenterNew YorkNew YorkUSA
| | - Panos N. Papapanou
- Division of PeriodonticsSection of OralDiagnostic and Rehabilitation SciencesCollege of Dental MedicineNew YorkNew YorkUSA
| |
Collapse
|
6
|
Ghosh S, Tamilselvi S, Williams C, Jayaweera SW, Iashchishyn IA, Šulskis D, Gilthorpe JD, Olofsson A, Smirnovas V, Svedružić ŽM, Morozova-Roche LA. ApoE Isoforms Inhibit Amyloid Aggregation of Proinflammatory Protein S100A9. Int J Mol Sci 2024; 25:2114. [PMID: 38396791 PMCID: PMC10889306 DOI: 10.3390/ijms25042114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Increasing evidence suggests that the calcium-binding and proinflammatory protein S100A9 is an important player in neuroinflammation-mediated Alzheimer's disease (AD). The amyloid co-aggregation of S100A9 with amyloid-β (Aβ) is an important hallmark of this pathology. Apolipoprotein E (ApoE) is also known to be one of the important genetic risk factors of AD. ApoE primarily exists in three isoforms, ApoE2 (Cys112/Cys158), ApoE3 (Cys112/Arg158), and ApoE4 (Arg112/Arg158). Even though the difference lies in just two amino acid residues, ApoE isoforms produce differential effects on the neuroinflammation and activation of the microglial state in AD. Here, we aim to understand the effect of the ApoE isoforms on the amyloid aggregation of S100A9. We found that both ApoE3 and ApoE4 suppress the aggregation of S100A9 in a concentration-dependent manner, even at sub-stoichiometric ratios compared to S100A9. These interactions lead to a reduction in the quantity and length of S100A9 fibrils. The inhibitory effect is more pronounced if ApoE isoforms are added in the lipid-free state versus lipidated ApoE. We found that, upon prolonged incubation, S100A9 and ApoE form low molecular weight complexes with stochiometric ratios of 1:1 and 2:1, which remain stable under SDS-gel conditions. These complexes self-assemble also under the native conditions; however, their interactions are transient, as revealed by glutaraldehyde cross-linking experiments and molecular dynamics (MD) simulation. MD simulation demonstrated that the lipid-binding C-terminal domain of ApoE and the second EF-hand calcium-binding motif of S100A9 are involved in these interactions. We found that amyloids of S100A9 are cytotoxic to neuroblastoma cells, and the presence of either ApoE isoforms does not change the level of their cytotoxicity. A significant inhibitory effect produced by both ApoE isoforms on S100A9 amyloid aggregation can modulate the amyloid-neuroinflammatory cascade in AD.
Collapse
Affiliation(s)
- Shamasree Ghosh
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden; (S.G.); (S.T.); (I.A.I.)
| | - Shanmugam Tamilselvi
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden; (S.G.); (S.T.); (I.A.I.)
| | - Chloe Williams
- Department of Medical and Translational Biology, Umeå University, SE-90187 Umeå, Sweden; (C.W.); (J.D.G.)
| | - Sanduni W. Jayaweera
- Department of Clinical Microbiology, Umeå University, SE-90187 Umeå, Sweden; (S.W.J.); (A.O.)
| | - Igor A. Iashchishyn
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden; (S.G.); (S.T.); (I.A.I.)
| | - Darius Šulskis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania; (D.Š.); (V.S.)
| | - Jonathan D. Gilthorpe
- Department of Medical and Translational Biology, Umeå University, SE-90187 Umeå, Sweden; (C.W.); (J.D.G.)
| | - Anders Olofsson
- Department of Clinical Microbiology, Umeå University, SE-90187 Umeå, Sweden; (S.W.J.); (A.O.)
| | - Vytautas Smirnovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania; (D.Š.); (V.S.)
| | | | - Ludmilla A. Morozova-Roche
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden; (S.G.); (S.T.); (I.A.I.)
| |
Collapse
|
7
|
Mueller SG. Traumatic Brain Injury and Post-Traumatic Stress Disorder and Their Influence on Development and Pattern of Alzheimer's Disease Pathology in Later Life. J Alzheimers Dis 2024; 98:1427-1441. [PMID: 38552112 DOI: 10.3233/jad-231183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Background Traumatic brain injury (TBI) and posttraumatic stress disorder (PTSD) are potential risk factors for the development of dementia including Alzheimer's disease (AD) in later life. The findings of studies investigating this question are inconsistent though. Objective To investigate if these inconsistencies are caused by the existence of subgroups with different vulnerability for AD pathology and if these subgroups are characterized by atypical tau load/atrophy pattern. Methods The MRI and PET data of 89 subjects with or without previous TBI and/or PTSD from the DoD ADNI database were used to calculate an age-corrected gray matter tau mismatch metric (ageN-T mismatch-score and matrix) for each subject. This metric provides a measure to what degree regional tau accumulation drives regional gray matter atrophy (matrix) and can be used to calculate a summary score (score) reflecting the severity of AD pathology in an individual. Results The ageN-T mismatch summary score was positively correlated with whole brain beta-amyloid load and general cognitive function but not with PTSD or TBI severity. Hierarchical cluster analysis identified five different spatial patterns of tau-gray matter interactions. These clusters reflected the different stages of the typical AD tau progression pattern. None was exclusively associated with PTSD and/or TBI. Conclusions These findings suggest that a) although subsets of patients with PTSD and/or TBI develop AD-pathology, a history of TBI or PTSD alone or both is not associated with a significantly higher risk to develop AD pathology in later life. b) remote TBI or PTSD do not modify the typical AD pathology distribution pattern.
Collapse
Affiliation(s)
- Susanne G Mueller
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| |
Collapse
|
8
|
Wang C, Li L, Li J, Zhang J, Qu ZB. Biomimetic Surface Engineering to Modulate the Coffee-Ring Effect for Amyloid-β Detection in Rat Brains. Biomimetics (Basel) 2023; 8:581. [PMID: 38132520 PMCID: PMC10742163 DOI: 10.3390/biomimetics8080581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Surface engineering of nanoparticles has been widely used in biosensing and assays, where sensitivity was mainly limited by plasmonic colour change or electrochemical responses. Here, we report a novel biomimetic sensing strategy involving protein-modified gold nanoparticles (AuNPs), where the modulation strategy was inspired by gastropods in inhibition of coffee-ring effects in their trail-followings. The so-called coffee-ring effect presents the molecular behaviour of AuNPs to a macroscopic ring through aggregation, and thus greatly improves sensitivity. The assay relies upon the different assembly patterns of AuNPs against analytes, resulting in the formation or suppression of coffee-ring effects by the different surface engineering of AuNPs by proteins and peptides. The mechanism of the coffee-ring formation process is examined through experimental characterizations and computational simulations. A practical coffee-ring effect assay is developed for a proof-of-concept target, amyloid β (1-42), which is a typical biomarker of Alzheimer's disease. A novel quasi-titrimetric protocol is constructed for quantitative determination of the target molecule. The assay shows excellent selectivity and sensitivity for the amyloid β monomer, with a low detection limit of 20 pM. Combined with a fluorescent staining technique, the assay is designed as a smart sensor for amyloid β detection and fibrillation evaluation in rat cerebrospinal fluids, which is a potential point-of-care test for Alzheimer's disease. Connections between amyloid fibrillation and different courses of brain ischaemia are also studied, with improved sensitivity, lower sample volumes that are required, convenience for rapid detection, and point-of-care testing.
Collapse
Affiliation(s)
| | | | | | | | - Zhi-Bei Qu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China; (C.W.); (L.L.)
| |
Collapse
|
9
|
Boutros SW, Zimmerman B, Nagy SC, Unni VK, Raber J. Age, sex, and apolipoprotein E isoform alter contextual fear learning, neuronal activation, and baseline DNA damage in the hippocampus. Mol Psychiatry 2023; 28:3343-3354. [PMID: 36732588 PMCID: PMC10618101 DOI: 10.1038/s41380-023-01966-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 02/04/2023]
Abstract
Age, female sex, and apolipoprotein E4 (E4) are risk factors to develop Alzheimer's disease (AD). There are three major human apoE isoforms: E2, E3, and E4. Compared to E3, E4 increases while E2 decreases AD risk. However, E2 is associated with increased risk and severity of post-traumatic stress disorder (PTSD). In cognitively healthy adults, E4 carriers have greater brain activation during learning and memory tasks in the absence of behavioral differences. Human apoE targeted replacement (TR) mice display differences in fear extinction that parallel human data: E2 mice show impaired extinction, mirroring heightened PTSD symptoms in E2 combat veterans. Recently, an adaptive role of DNA double strand breaks (DSBs) in immediate early gene expression (IEG) has been described. Age and disease synergistically increase DNA damage and decrease DNA repair. As the mechanisms underlying the relative risks of apoE, sex, and their interactions in aging are unclear, we used young (3 months) and middle-aged (12 months) male and female TR mice to investigate the influence of these factors on DSBs and IEGs at baseline and following contextual fear conditioning. We assessed brain-wide changes in neural activation following fear conditioning using whole-brain cFos imaging in young female TR mice. E4 mice froze more during fear conditioning and had lower cFos immunoreactivity across regions important for somatosensation and contextual encoding compared to E2 mice. E4 mice also showed altered co-activation compared to E3 mice, corresponding to human MRI and cognitive data, and indicating that there are differences in brain activity and connectivity at young ages independent of fear learning. There were increased DSB markers in middle-aged animals and alterations to cFos levels dependent on sex and isoform, as well. The increase in hippocampal DSB markers in middle-aged animals and female E4 mice may play a role in the risk for developing AD.
Collapse
Affiliation(s)
- Sydney Weber Boutros
- Department of Behavioral Neuroscience, OHSU, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
- Department of Psychological Sciences, Boise State University, 2133 W Cesar Chavez Ln, Boise, ID, 83725, USA
| | - Benjamin Zimmerman
- Department of Behavioral Neuroscience, OHSU, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
- Advanced Imaging Research Center, OHSU, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
- Helfgott Research Institute, NUNM, 2201 SW First Avenue, Portland, OR, 97201, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N, Matthews Avenue, Urbana, IL 61801, USA
| | - Sydney C Nagy
- Department of Behavioral Neuroscience, OHSU, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Vivek K Unni
- Department of Neurology, OHSU, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
- Jungers Center for Neurosciences Research, OHSU; and OHSU Parkinson Center, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, OHSU, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
- Department of Neurology, OHSU, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
- Departments of Psychiatry and Radiation Medicine, OHSU, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
- Division of Neuroscience, ONPRC, 505 NW 185th Ave, Beaverton, OR, 97006, USA.
| |
Collapse
|
10
|
Grasset L, Power MC, Crivello F, Tzourio C, Chêne G, Dufouil C. How Traumatic Brain Injury History Relates to Brain Health MRI Markers and Dementia Risk: Findings from the 3C Dijon Cohort. J Alzheimers Dis 2023; 92:183-193. [PMID: 36710672 PMCID: PMC10041415 DOI: 10.3233/jad-220658] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND The long-term effects of traumatic brain injury (TBI) with loss of consciousness (LOC) on magnetic resonance imaging (MRI) markers of brain health and on dementia risk are still debated. OBJECTIVE To investigate the associations of history of TBI with LOC with incident dementia and neuroimaging markers of brain structure and small vessel disease lesions. METHODS The analytical sample consisted in 4,144 participants aged 65 and older who were dementia-free at baseline from the Three City -Dijon study. History of TBI with LOC was self-reported at baseline. Clinical Dementia was assessed every two to three years, up to 12 years of follow-up. A subsample of 1,675 participants <80 years old underwent a brain MRI at baseline. We investigated the associations between history of TBI with LOC and 1) incident all cause and Alzheimer's disease (AD) dementia using illness-death models, and 2) neuroimaging markers at baseline. RESULTS At baseline, 8.3% of the participants reported a history of TBI with LOC. In fully-adjusted models, participants with a history of TBI with LOC had no statistically significant differences in dementia risk (HR = 0.90, 95% CI = 0.60-1.36) or AD risk (HR = 1.03, 95% CI = 0.69-1.52), compared to participants without TBI history. History of TBI with LOC was associated with lower white matter volume (β= -4.58, p = 0.048), but not with other brain volumes, white matter hyperintensities volume, nor covert brain infarct. CONCLUSION This study did not find evidence of an association between history of TBI with LOC and dementia or AD dementia risks over 12-year follow-up, brain atrophy, or markers of small vessel disease.
Collapse
Affiliation(s)
- Leslie Grasset
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219; CIC1401-EC, Bordeaux, France
| | - Melinda C Power
- Department of Epidemiology, Milken Institute School of Public Health, George Washington University, Washington, DC, USA
| | | | - Christophe Tzourio
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219; Bordeaux, France
| | - Geneviève Chêne
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219; CIC1401-EC, Bordeaux, France.,Pole de sante publique Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | - Carole Dufouil
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219; CIC1401-EC, Bordeaux, France.,Pole de sante publique Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| |
Collapse
|
11
|
Yarns BC, Holiday KA, Carlson DM, Cosgrove CK, Melrose RJ. Pathophysiology of Alzheimer's Disease. Psychiatr Clin North Am 2022; 45:663-676. [PMID: 36396271 DOI: 10.1016/j.psc.2022.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease leading to dementia worldwide. While neuritic plaques consisting of aggregated amyloid-beta proteins and neurofibrillary tangles of accumulated tau proteins represent the pathophysiologic hallmarks of AD, numerous processes likely interact with risk and protective factors and one's culture to produce the cognitive loss, neuropsychiatric symptoms, and functional impairments that characterize AD dementia. Recent biomarker and neuroimaging research has revealed how the pathophysiology of AD may lead to symptoms, and as the pathophysiology of AD gains clarity, more potential treatments are emerging that aim to modify the disease and relieve its burden.
Collapse
Affiliation(s)
- Brandon C Yarns
- Psychiatry/Mental Health Service, VA Greater Los Angeles Healthcare System, 11301 Wilshire Boulevard, Building 401, Mail Code 116AE, Los Angeles, CA 90073, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, 757 Westwood Plaza #4, Los Angeles, CA 90095, USA.
| | - Kelsey A Holiday
- Psychiatry/Mental Health Service, VA Greater Los Angeles Healthcare System, 11301 Wilshire Boulevard, Building 401, Mail Code 116AE, Los Angeles, CA 90073, USA
| | - David M Carlson
- Psychiatry/Mental Health Service, VA Greater Los Angeles Healthcare System, 11301 Wilshire Boulevard, Building 401, Mail Code 116AE, Los Angeles, CA 90073, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, 757 Westwood Plaza #4, Los Angeles, CA 90095, USA
| | - Coleman K Cosgrove
- Department of Psychiatry, University at Buffalo, 462 Grider Street, Buffalo, NY 14215, USA
| | - Rebecca J Melrose
- Psychiatry/Mental Health Service, VA Greater Los Angeles Healthcare System, 11301 Wilshire Boulevard, Building 401, Mail Code 116AE, Los Angeles, CA 90073, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, 757 Westwood Plaza #4, Los Angeles, CA 90095, USA
| |
Collapse
|
12
|
Ebright B, Assante I, Poblete RA, Wang S, Duro MV, Bennett DA, Arvanitakis Z, Louie SG, Yassine HN. Eicosanoid lipidome activation in post-mortem brain tissues of individuals with APOE4 and Alzheimer's dementia. Alzheimers Res Ther 2022; 14:152. [PMID: 36217192 PMCID: PMC9552454 DOI: 10.1186/s13195-022-01084-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 09/16/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND Chronic neuroinflammation is one of the hallmarks of late-onset Alzheimer's disease (AD) dementia pathogenesis. Carrying the apolipoprotein ε4 (APOE4) allele has been associated with an accentuated response to brain inflammation and increases the risk of AD dementia progression. Among inflammation signaling pathways, aberrant eicosanoid activation plays a prominent role in neurodegeneration. METHODS Using brains from the Religious Order Study (ROS), this study compared measures of brain eicosanoid lipidome in older persons with AD dementia to age-matched controls with no cognitive impairment (NCI), stratified by APOE genotype. RESULTS Lipidomic analysis of the dorsolateral prefrontal cortex demonstrated lower levels of omega-3 fatty acids eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and DHA-derived neuroprotectin D1 (NPD-1) in persons with AD dementia, all of which associated with lower measures of cognitive function. A significant interaction was observed between carrying the APOE4 allele and higher levels of both pro-inflammatory lipids and pro-resolving eicosanoid lipids on measures of cognitive performance and on neuritic plaque burden. Furthermore, analysis of lipid metabolism pathways implicated activation of calcium-dependent phospholipase A2 (cPLA2), 5-lipoxygenase (5-LOX), and soluble epoxide hydrolase (sEH) enzymes. CONCLUSION These findings implicate activation of the eicosanoid lipidome in the chronic unresolved state of inflammation in AD dementia, which is increased in carriers of the APOE4 allele, and identify potential therapeutic targets for resolving this chronic inflammatory state.
Collapse
Affiliation(s)
- Brandon Ebright
- School of Pharmacy, University of Southern California, Los Angeles, USA
| | - Isaac Assante
- School of Pharmacy, University of Southern California, Los Angeles, USA
- Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Roy A Poblete
- Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Shaowei Wang
- Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Marlon V Duro
- Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Zoe Arvanitakis
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Stan G Louie
- School of Pharmacy, University of Southern California, Los Angeles, USA.
- Keck School of Medicine, University of Southern California, Los Angeles, USA.
| | - Hussein N Yassine
- Keck School of Medicine, University of Southern California, Los Angeles, USA.
| |
Collapse
|
13
|
Migliore L, Coppedè F. Gene-environment interactions in Alzheimer disease: the emerging role of epigenetics. Nat Rev Neurol 2022; 18:643-660. [PMID: 36180553 DOI: 10.1038/s41582-022-00714-w] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2022] [Indexed: 12/15/2022]
Abstract
With the exception of a few monogenic forms, Alzheimer disease (AD) has a complex aetiology that is likely to involve multiple susceptibility genes and environmental factors. The role of environmental factors is difficult to determine and, until a few years ago, the molecular mechanisms underlying gene-environment (G × E) interactions in AD were largely unknown. Here, we review evidence that has emerged over the past two decades to explain how environmental factors, such as diet, lifestyle, alcohol, smoking and pollutants, might interact with the human genome. In particular, we discuss how various environmental AD risk factors can induce epigenetic modifications of key AD-related genes and pathways and consider how epigenetic mechanisms could contribute to the effects of oxidative stress on AD onset. Studies on early-life exposures are helping to uncover critical time windows of sensitivity to epigenetic influences from environmental factors, thereby laying the foundations for future primary preventative approaches. We conclude that epigenetic modifications need to be considered when assessing G × E interactions in AD.
Collapse
Affiliation(s)
- Lucia Migliore
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy. .,Department of Laboratory Medicine, Pisa University Hospital, Pisa, Italy.
| | - Fabio Coppedè
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| |
Collapse
|
14
|
Bellomo G, Piscopo P, Corbo M, Pupillo E, Stipa G, Beghi E, Vanacore N, Lacorte E. A systematic review on the risk of neurodegenerative diseases and neurocognitive disorders in professional and varsity athletes. Neurol Sci 2022; 43:6667-6691. [PMID: 35976476 PMCID: PMC9663371 DOI: 10.1007/s10072-022-06319-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 08/01/2022] [Indexed: 01/01/2023]
Abstract
Abstract
Objective
The aim of this systematic review (SR) was to gather all available epidemiological evidence on former participation in any type of sport, at a professional and varsity level, as a potential risk factor for neurodegenerative diseases (NDs) and neurocognitive disorders (NCDs).
Design
Systematic searches were performed on PubMed, the Cochrane databases, and the ISI Web of Knowledge databases. Included studies were assessed using the NOS checklist.
Eligibility criteria for selecting studies
All epidemiological studies reporting data on the possible association between a clinical diagnosis of amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND), dementia or mild cognitive impairment (MCI), Parkinson’s disease (PD), chronic traumatic encephalopathy (CTE) at any stage and with any clinical pattern and the former participation in any types of sport at a varsity and professional level were included.
Results
Data from the 17 included studies showed a higher frequency of NDs and NCDs in former soccer and American football players. Updating the previous SR confirmed a higher frequency of ALS/MND in former soccer players. Data reported a significantly higher risk of dementia/AD in former soccer players, and of MCI in former American football players. Results also showed a significantly higher risk of PD in former soccer and American football players, and a significantly higher risk of CTE in former boxers and American football players.
Summary/conclusions
This SR confirmed a higher risk of NDs and NCDs in former professional/varsity athletes. However, the pathological mechanisms underlying this association remain unclear, and further high-quality studies should be performed to clarify whether the association could be sport specific.
Collapse
Affiliation(s)
- G Bellomo
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Rome, Italy.
| | - P Piscopo
- Department of Neurosciences, Italian National Institute of Health, Rome, Italy
| | - M Corbo
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico, Milan, Italy
| | - E Pupillo
- Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - G Stipa
- Clinical Neurophysiology Division, Neuroscience Department, S. Maria University Hospital, Terni, Italy
| | - E Beghi
- Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - N Vanacore
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Rome, Italy
| | - E Lacorte
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Rome, Italy
| |
Collapse
|
15
|
Relationship between Brain Metabolic Disorders and Cognitive Impairment: LDL Receptor Defect. Int J Mol Sci 2022; 23:ijms23158384. [PMID: 35955522 PMCID: PMC9369234 DOI: 10.3390/ijms23158384] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 02/07/2023] Open
Abstract
The low-density-lipoprotein receptor (LDLr) removes low-density lipoprotein (LDL), an endovascular transporter that carries cholesterol from the bloodstream to peripheral tissues. The maintenance of cholesterol content in the brain, which is important to protect brain function, is affected by LDLr. LDLr co-localizes with the insulin receptor and complements the internalization of LDL. In LDLr deficiency, LDL blood levels and insulin resistance increase, leading to abnormal cholesterol control and cognitive deficits in atherosclerosis. Defects in brain cholesterol metabolism lead to neuroinflammation and blood–brain-barrier (BBB) degradation. Moreover, interactions between endoplasmic reticulum stress (ER stress) and mitochondria are induced by ox-LDL accumulation, apolipoprotein E (ApoE) regulates the levels of amyloid beta (Aβ) in the brain, and hypoxia is induced by apoptosis induced by the LDLr defect. This review summarizes the association between neurodegenerative brain disease and typical cognitive deficits.
Collapse
|
16
|
Behl T, Kaur I, Sehgal A, Singh S, Albarrati A, Albratty M, Najmi A, Meraya AM, Bungau S. The road to precision medicine: Eliminating the "One Size Fits All" approach in Alzheimer's disease. Biomed Pharmacother 2022; 153:113337. [PMID: 35780617 DOI: 10.1016/j.biopha.2022.113337] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/18/2022] [Accepted: 06/24/2022] [Indexed: 11/29/2022] Open
Abstract
The expeditious advancement of Alzheimer's Disease (AD) is a threat to the global healthcare system, that is further supplemented by therapeutic failure. The prevalence of this disorder has been expected to quadrupole by 2050, thereby exerting a tremendous economic pressure on medical sector, worldwide. Thus, there is a dire need of a change in conventional approaches and adopt a novel methodology of disease prevention, treatment and diagnosis. Precision medicine offers a personalized approach to disease management, It is dependent upon genetic, environmental and lifestyle factors associated with the individual, aiding to develop tailored therapeutics. Precision Medicine Initiatives are launched, worldwide, to facilitate the integration of personalized models and clinical medicine. The review aims to provide a comprehensive understanding of the neuroinflammatory processes causing AD, giving a brief overview of the disease interventions. This is further followed by the role of precision medicine in AD, constituting the genetic perspectives, operation of personalized form of medicine and optimization of clinical trials with the 3 R's, showcasing an in-depth understanding of this novel approach in varying aspects of the healthcare industry, to provide an opportunity to the global AD researchers to elucidate suitable therapeutic regimens in clinically and pathologically complex diseases, like AD.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Ali Albarrati
- Rehabilitation Health Sciences College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Abdulkarim M Meraya
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania; Doctoral School of Biomedical Sciences, University of Oradea, Oradea, Romania.
| |
Collapse
|
17
|
Atherton K, Han X, Chung J, Cherry JD, Baucom Z, Saltiel N, Nair E, Abdolmohammadi B, Uretsky M, Khan MM, Shea C, Durape S, Martin BM, Palmisano JN, Farrell K, Nowinski CJ, Alvarez VE, Dwyer B, Daneshvar DH, Katz DI, Goldstein LE, Cantu RC, Kowall NW, Alosco ML, Huber BR, Tripodis Y, Crary JF, Farrer L, Stern RA, Stein TD, McKee AC, Mez J. Association of APOE Genotypes and Chronic Traumatic Encephalopathy. JAMA Neurol 2022; 79:787-796. [PMID: 35759276 PMCID: PMC9237800 DOI: 10.1001/jamaneurol.2022.1634] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Importance Repetitive head impact (RHI) exposure is the chief risk factor for chronic traumatic encephalopathy (CTE). However, the occurrence and severity of CTE varies widely among those with similar RHI exposure. Limited evidence suggests that the APOEε4 allele may confer risk for CTE, but previous studies were small with limited scope. Objective To test the association between APOE genotype and CTE neuropathology and related endophenotypes. Design, Setting, and Participants This cross-sectional genetic association study analyzed brain donors from February 2008 to August 2019 from the Veterans Affairs-Boston University-Concussion Legacy Foundation Brain Bank. All donors had exposure to RHI from contact sports or military service. All eligible donors were included. Analysis took place between June 2020 and April 2022. Exposures One or more APOEε4 or APOEε2 alleles. Main Outcomes and Measures CTE neuropathological status, CTE stage (0-IV), semiquantitative phosphorylated tau (p-tau) burden in 11 brain regions (0-3), quantitative p-tau burden in the dorsolateral frontal lobe (log-transformed AT8+ pixel count per mm2), and dementia. Results Of 364 consecutive brain donors (100% male; 53 [14.6%] self-identified as Black and 311 [85.4%] as White; median [IQR] age, 65 [47-77] years) 20 years or older, there were 294 individuals with CTE and 70 controls. Among donors older than 65 years, APOEε4 status was significantly associated with CTE stage (odds ratio [OR], 2.34 [95% CI, 1.30-4.20]; false discovery rate [FDR]-corrected P = .01) and quantitative p-tau burden in the dorsolateral frontal lobe (β, 1.39 [95% CI, 0.83-1.94]; FDR-corrected P = 2.37 × 10-5). There was a nonsignificant association between APOEε4 status and dementia (OR, 2.64 [95% CI, 1.06-6.61]; FDR-corrected P = .08). Across 11 brain regions, significant associations were observed for semiquantitative p-tau burden in the frontal and parietal cortices, amygdala, and entorhinal cortex (OR range, 2.45-3.26). Among football players, the APOEε4 association size for CTE stage was similar to playing more than 7 years of football. Associations were significantly larger in the older half of the sample. There was no significant association for CTE status. Association sizes were similar when donors with an Alzheimer disease neuropathological diagnosis were excluded and were reduced but remained significant after adjusting for neuritic and diffuse amyloid plaques. No associations were observed for APOEε2 status. Models were adjusted for age at death and race. Conclusions and Relevance APOEε4 may confer increased risk for CTE-related neuropathological and clinical outcomes among older individuals with RHI exposure. Further work is required to validate these findings in an independent sample.
Collapse
Affiliation(s)
- Kathryn Atherton
- Boston University Bioinformatics Graduate Program, Boston, Massachusetts
| | - Xudong Han
- Boston University Bioinformatics Graduate Program, Boston, Massachusetts.,Boston University Alzheimer's Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts
| | - Jaeyoon Chung
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, Massachusetts
| | - Jonathan D Cherry
- Boston University Alzheimer's Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts.,VA Boston Healthcare System, Boston, Massachusetts.,Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts.,Department of Veterans Affairs Medical Center, Bedford, Massachusetts
| | - Zachary Baucom
- Boston University Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Nicole Saltiel
- Boston University Alzheimer's Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts.,VA Boston Healthcare System, Boston, Massachusetts.,Department of Veterans Affairs Medical Center, Bedford, Massachusetts
| | - Evan Nair
- Boston University Alzheimer's Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts
| | - Bobak Abdolmohammadi
- Boston University Alzheimer's Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts
| | - Madeline Uretsky
- Boston University Alzheimer's Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts
| | | | - Conor Shea
- Boston University Bioinformatics Graduate Program, Boston, Massachusetts
| | - Shruti Durape
- Boston University Alzheimer's Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts
| | - Brett M Martin
- Boston University Alzheimer's Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts.,Biostatistics & Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, Massachusetts
| | - Joseph N Palmisano
- Boston University Alzheimer's Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts.,Biostatistics & Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, Massachusetts
| | - Kurt Farrell
- Department of Pathology, Fishberg Department of Neuroscience, Friedman Brain Institute, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Christopher J Nowinski
- Boston University Alzheimer's Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts.,Concussion Legacy Foundation, Boston, Massachusetts
| | - Victor E Alvarez
- Boston University Alzheimer's Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts.,VA Boston Healthcare System, Boston, Massachusetts.,Department of Veterans Affairs Medical Center, Bedford, Massachusetts
| | - Brigid Dwyer
- Braintree Rehabilitation Hospital, Braintree, Massachusetts.,Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Daniel H Daneshvar
- Department of Rehabilitation Medicine, Harvard Medical School, Boston, Massachusetts
| | - Douglas I Katz
- Braintree Rehabilitation Hospital, Braintree, Massachusetts.,Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Lee E Goldstein
- Boston University Alzheimer's Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts.,Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts.,Department of Neurology, Boston University School of Medicine, Boston, Massachusetts.,Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts
| | - Robert C Cantu
- Boston University Alzheimer's Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts.,Department of Neurology, Boston University School of Medicine, Boston, Massachusetts.,Department of Neurosurgery, Emerson Hospital, Concord, Massachusetts
| | - Neil W Kowall
- Boston University Alzheimer's Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts.,Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts.,Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Michael L Alosco
- Boston University Alzheimer's Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts.,Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Bertrand R Huber
- Boston University Alzheimer's Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts.,VA Boston Healthcare System, Boston, Massachusetts.,Department of Veterans Affairs Medical Center, Bedford, Massachusetts.,Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Yorghos Tripodis
- Boston University Alzheimer's Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts.,Boston University Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - John F Crary
- Department of Pathology, Fishberg Department of Neuroscience, Friedman Brain Institute, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Lindsay Farrer
- Boston University Alzheimer's Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts.,Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, Massachusetts.,Boston University Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts.,Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Robert A Stern
- Boston University Alzheimer's Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts.,Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Thor D Stein
- Boston University Alzheimer's Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts.,VA Boston Healthcare System, Boston, Massachusetts.,Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts.,Department of Veterans Affairs Medical Center, Bedford, Massachusetts
| | - Ann C McKee
- Boston University Alzheimer's Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts.,VA Boston Healthcare System, Boston, Massachusetts.,Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts.,Department of Veterans Affairs Medical Center, Bedford, Massachusetts.,Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Jesse Mez
- Boston University Alzheimer's Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts.,Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
18
|
Agrawal S, Leurgans SE, James BD, Barnes LL, Mehta RI, Dams-O’Connor K, Mez J, Bennett DA, Schneider JA. Association of Traumatic Brain Injury With and Without Loss of Consciousness With Neuropathologic Outcomes in Community-Dwelling Older Persons. JAMA Netw Open 2022; 5:e229311. [PMID: 35476062 PMCID: PMC9047640 DOI: 10.1001/jamanetworkopen.2022.9311] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 03/10/2022] [Indexed: 12/02/2022] Open
Abstract
Importance A history of traumatic brain injury (TBI) has been considered a risk factor for Alzheimer dementia. However, the specific association of TBI, even without loss of consciousness (LOC), with pathologic findings that underlie Alzheimer dementia, including Alzheimer disease (AD), non-AD neurodegenerative, and vascular pathologic findings, remains unclear. Objective To examine the association between TBI with and without LOC and neuropathologic findings in community-based cohorts. Design, Setting, and Participants This cross-sectional analysis used neuropathologic data from 1689 participants from the Religious Orders Study, the Rush Memory and Aging Project, and the Minority Aging Research Study. These studies began enrollment in 1994, 1997, and 2004, respectively. The current study's data set was frozen on April 3, 2021, when the mean (SD) length of follow-up for the participants was 8.7 (5.5) years. Exposure Traumatic brain injury exposure was assessed using a standardized, self-reported questionnaire at baseline and annual follow-up visits. Participants were categorized into those (1) without TBI exposure (n = 1024), (2) with TBI with LOC (n = 161), or (3) with TBI without LOC (n = 504). Main Outcomes and Measures Neuropathologic measures of amyloid-β, paired helical filament tangles, neocortical Lewy bodies, transactive response DNA-binding protein 43, hippocampal sclerosis, gross infarcts, and microinfarcts were assessed. Multiple linear regression and logistic regression models were used to determine whether TBI with or without LOC (compared with no TBI exposure as the reference group) was associated with neuropathologic outcomes after adjusting for age at death, sex, and educational level. Whether the apolipoprotein E (APOE) ε4 allele and sex differences modified associations was also examined. Results A total of 1689 participants (1138 [67%] women and 551 [33%] men; mean [SD] age at death, 89.2 [6.7] years; 80 [5%] Black, 46 [3%] Latino, 1639 [97%] non-Latino, and 1601 [95%] White) participated in the study. Compared with participants without TBI, participants with TBI with LOC had a greater amyloid-β load (estimate, 0.25; 95% CI, 0.06-0.43; P = .008) and higher odds of having 1 or more gross infarcts (odds ratio [OR], 1.45; 95% CI, 1.04-2.02; P = .02) and 1 or more microinfarcts (OR, 1.70; 95% CI, 1.21-2.38; P = .002), particularly subcortical microinfarcts (OR, 1.85; 95% CI, 1.23-2.79; P = .002). Those with TBI without LOC had higher odds of neocortical Lewy bodies (OR, 1.37; 95% CI, 1.01-1.87; P = .04) and 1 or more cortical microinfarcts (OR, 1.43; 95% CI, 1.09-1.87; P = .008). The association of TBI with and without LOC with vascular pathologic outcomes persisted after controlling for vascular risk factors and vascular disease burden. Traumatic brain injury with or without LOC was not associated with paired helical filament tangles, transactive response DNA-binding protein 43, or hippocampal sclerosis. No interactions occurred with APOE ε4 or sex. Conclusions and Relevance This cross-sectional analysis suggests that a history of TBI, even without LOC, is associated with age-related neuropathologic outcomes, both neurodegenerative and vascular. The variation in the neuropathologic outcomes in individuals with and without LOC may provide clues to potential mechanisms, diagnoses, and management in persons with TBI.
Collapse
Affiliation(s)
- Sonal Agrawal
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois
- Department of Pathology, Rush University Medical Center, Chicago, Illinois
| | - Sue E. Leurgans
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois
| | - Bryan D. James
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois
| | - Lisa L. Barnes
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois
- Department of Behavioral Sciences, Rush University Medical Center, Chicago, Illinois
| | - Rupal I. Mehta
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois
- Department of Pathology, Rush University Medical Center, Chicago, Illinois
| | - Kristen Dams-O’Connor
- Department of Rehabilitation and Human Performance, Mt Sinai School of Medicine, New York, New York
- Department of Neurology, Mt Sinai School of Medicine, New York, New York
| | - Jesse Mez
- Boston University Alzheimer’s Disease Center, Boston University School of Medicine, Boston, Massachusetts
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois
| | - Julie A. Schneider
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois
- Department of Pathology, Rush University Medical Center, Chicago, Illinois
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
19
|
Lewandowski CT, Laham MS, Thatcher GR. Remembering your A, B, C's: Alzheimer's disease and ABCA1. Acta Pharm Sin B 2022; 12:995-1018. [PMID: 35530134 PMCID: PMC9072248 DOI: 10.1016/j.apsb.2022.01.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/27/2021] [Accepted: 01/07/2022] [Indexed: 12/24/2022] Open
Abstract
The function of ATP binding cassette protein A1 (ABCA1) is central to cholesterol mobilization. Reduced ABCA1 expression or activity is implicated in Alzheimer's disease (AD) and other disorders. Therapeutic approaches to boost ABCA1 activity have yet to be translated successfully to the clinic. The risk factors for AD development and progression, including comorbid disorders such as type 2 diabetes and cardiovascular disease, highlight the intersection of cholesterol transport and inflammation. Upregulation of ABCA1 can positively impact APOE lipidation, insulin sensitivity, peripheral vascular and blood–brain barrier integrity, and anti-inflammatory signaling. Various strategies towards ABCA1-boosting compounds have been described, with a bias toward nuclear hormone receptor (NHR) agonists. These agonists display beneficial preclinical effects; however, important side effects have limited development. In particular, ligands that bind liver X receptor (LXR), the primary NHR that controls ABCA1 expression, have shown positive effects in AD mouse models; however, lipogenesis and unwanted increases in triglyceride production are often observed. The longstanding approach, focusing on LXRβ vs. LXRα selectivity, is over-simplistic and has failed. Novel approaches such as phenotypic screening may lead to small molecule NHR modulators that elevate ABCA1 function without inducing lipogenesis and are clinically translatable.
Collapse
|
20
|
Angevaare MJ, Vonk JMJ, Bertola L, Zahodne L, Watson CWM, Boehme A, Schupf N, Mayeux R, Geerlings MI, Manly JJ. Predictors of Incident Mild Cognitive Impairment and Its Course in a Diverse Community-Based Population. Neurology 2022; 98:e15-e26. [PMID: 34853178 PMCID: PMC8726570 DOI: 10.1212/wnl.0000000000013017] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 09/29/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND AND OBJECTIVES To investigate sociodemographic and medical predictors of incident mild cognitive impairment (MCI) and subsequent course of MCI at follow-up, including sustained MCI diagnosis, classification as cognitively normal, and progression to dementia. METHODS Within a community-based cohort, diagnoses of MCI were made with a published algorithm. Diagnosis of dementia was based on clinical consensus. Cox regressions estimated hazard ratios of incident MCI associated with several predictors. Modified Poisson regressions estimated relative risks associated with predictors of diagnostic status at follow-up after incidence. RESULTS Among 2,903 cognitively normal participants at baseline, 752 developed MCI over an average of 6.3 (SD 4.5) years (incidence rate 56 per 1,000 person-years). Presence of APOE ε4 and higher medical burden increased risk of incident MCI, while more years of education, more leisure activities, and higher income decreased this risk. Of the incident MCI cases, after an average of 2.4 years of follow-up, 12.9% progressed to dementia, 9.6% declined in functioning and did not meet the algorithmic criteria for MCI but did not meet the clinical criteria for dementia, 29.6% continued to meet MCI criteria, and 47.9% no longer met MCI criteria. Multidomain MCI, presence of APOE ε4, depressive symptoms, and antidepressant use increased the risk of progression to dementia. DISCUSSION This community-based study showed that almost half of the individuals with incident MCI diagnoses were classified as cognitively normal at follow-up. Predictors of incident MCI demonstrably differed from those of subsequent MCI course; these findings can refine expectations for cognitive and functional course of those presenting with MCI.
Collapse
Affiliation(s)
- Milou J Angevaare
- From the Department of Neurology and Taub Institute for Research on Alzheimer's Disease and the Aging Brain (M.J.A., J.M.J.V., L.B., L.Z., C.W.-M.W., A.B., N.S., R.M., J.J.M.), College of Physicians and Surgeons, Columbia University, New York, NY; Julius Center for Health Sciences and Primary Care (M.J.A., J.M.J.V., M.I.G.), University Medical Center Utrecht; Amsterdam UMC (M.J.A.), Vrije Universiteit Amsterdam, Department of Medicine for Older People, Amsterdam Public Health Research Institute, Van der Boechorststraat 7, the Netherlands; and National Institute of Science and Technology in Molecular Medicine (L.B.), Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Jet M J Vonk
- From the Department of Neurology and Taub Institute for Research on Alzheimer's Disease and the Aging Brain (M.J.A., J.M.J.V., L.B., L.Z., C.W.-M.W., A.B., N.S., R.M., J.J.M.), College of Physicians and Surgeons, Columbia University, New York, NY; Julius Center for Health Sciences and Primary Care (M.J.A., J.M.J.V., M.I.G.), University Medical Center Utrecht; Amsterdam UMC (M.J.A.), Vrije Universiteit Amsterdam, Department of Medicine for Older People, Amsterdam Public Health Research Institute, Van der Boechorststraat 7, the Netherlands; and National Institute of Science and Technology in Molecular Medicine (L.B.), Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Laiss Bertola
- From the Department of Neurology and Taub Institute for Research on Alzheimer's Disease and the Aging Brain (M.J.A., J.M.J.V., L.B., L.Z., C.W.-M.W., A.B., N.S., R.M., J.J.M.), College of Physicians and Surgeons, Columbia University, New York, NY; Julius Center for Health Sciences and Primary Care (M.J.A., J.M.J.V., M.I.G.), University Medical Center Utrecht; Amsterdam UMC (M.J.A.), Vrije Universiteit Amsterdam, Department of Medicine for Older People, Amsterdam Public Health Research Institute, Van der Boechorststraat 7, the Netherlands; and National Institute of Science and Technology in Molecular Medicine (L.B.), Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Laura Zahodne
- From the Department of Neurology and Taub Institute for Research on Alzheimer's Disease and the Aging Brain (M.J.A., J.M.J.V., L.B., L.Z., C.W.-M.W., A.B., N.S., R.M., J.J.M.), College of Physicians and Surgeons, Columbia University, New York, NY; Julius Center for Health Sciences and Primary Care (M.J.A., J.M.J.V., M.I.G.), University Medical Center Utrecht; Amsterdam UMC (M.J.A.), Vrije Universiteit Amsterdam, Department of Medicine for Older People, Amsterdam Public Health Research Institute, Van der Boechorststraat 7, the Netherlands; and National Institute of Science and Technology in Molecular Medicine (L.B.), Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Caitlin Wei-Ming Watson
- From the Department of Neurology and Taub Institute for Research on Alzheimer's Disease and the Aging Brain (M.J.A., J.M.J.V., L.B., L.Z., C.W.-M.W., A.B., N.S., R.M., J.J.M.), College of Physicians and Surgeons, Columbia University, New York, NY; Julius Center for Health Sciences and Primary Care (M.J.A., J.M.J.V., M.I.G.), University Medical Center Utrecht; Amsterdam UMC (M.J.A.), Vrije Universiteit Amsterdam, Department of Medicine for Older People, Amsterdam Public Health Research Institute, Van der Boechorststraat 7, the Netherlands; and National Institute of Science and Technology in Molecular Medicine (L.B.), Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Amelia Boehme
- From the Department of Neurology and Taub Institute for Research on Alzheimer's Disease and the Aging Brain (M.J.A., J.M.J.V., L.B., L.Z., C.W.-M.W., A.B., N.S., R.M., J.J.M.), College of Physicians and Surgeons, Columbia University, New York, NY; Julius Center for Health Sciences and Primary Care (M.J.A., J.M.J.V., M.I.G.), University Medical Center Utrecht; Amsterdam UMC (M.J.A.), Vrije Universiteit Amsterdam, Department of Medicine for Older People, Amsterdam Public Health Research Institute, Van der Boechorststraat 7, the Netherlands; and National Institute of Science and Technology in Molecular Medicine (L.B.), Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Nicole Schupf
- From the Department of Neurology and Taub Institute for Research on Alzheimer's Disease and the Aging Brain (M.J.A., J.M.J.V., L.B., L.Z., C.W.-M.W., A.B., N.S., R.M., J.J.M.), College of Physicians and Surgeons, Columbia University, New York, NY; Julius Center for Health Sciences and Primary Care (M.J.A., J.M.J.V., M.I.G.), University Medical Center Utrecht; Amsterdam UMC (M.J.A.), Vrije Universiteit Amsterdam, Department of Medicine for Older People, Amsterdam Public Health Research Institute, Van der Boechorststraat 7, the Netherlands; and National Institute of Science and Technology in Molecular Medicine (L.B.), Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Richard Mayeux
- From the Department of Neurology and Taub Institute for Research on Alzheimer's Disease and the Aging Brain (M.J.A., J.M.J.V., L.B., L.Z., C.W.-M.W., A.B., N.S., R.M., J.J.M.), College of Physicians and Surgeons, Columbia University, New York, NY; Julius Center for Health Sciences and Primary Care (M.J.A., J.M.J.V., M.I.G.), University Medical Center Utrecht; Amsterdam UMC (M.J.A.), Vrije Universiteit Amsterdam, Department of Medicine for Older People, Amsterdam Public Health Research Institute, Van der Boechorststraat 7, the Netherlands; and National Institute of Science and Technology in Molecular Medicine (L.B.), Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Mirjam I Geerlings
- From the Department of Neurology and Taub Institute for Research on Alzheimer's Disease and the Aging Brain (M.J.A., J.M.J.V., L.B., L.Z., C.W.-M.W., A.B., N.S., R.M., J.J.M.), College of Physicians and Surgeons, Columbia University, New York, NY; Julius Center for Health Sciences and Primary Care (M.J.A., J.M.J.V., M.I.G.), University Medical Center Utrecht; Amsterdam UMC (M.J.A.), Vrije Universiteit Amsterdam, Department of Medicine for Older People, Amsterdam Public Health Research Institute, Van der Boechorststraat 7, the Netherlands; and National Institute of Science and Technology in Molecular Medicine (L.B.), Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Jennifer J Manly
- From the Department of Neurology and Taub Institute for Research on Alzheimer's Disease and the Aging Brain (M.J.A., J.M.J.V., L.B., L.Z., C.W.-M.W., A.B., N.S., R.M., J.J.M.), College of Physicians and Surgeons, Columbia University, New York, NY; Julius Center for Health Sciences and Primary Care (M.J.A., J.M.J.V., M.I.G.), University Medical Center Utrecht; Amsterdam UMC (M.J.A.), Vrije Universiteit Amsterdam, Department of Medicine for Older People, Amsterdam Public Health Research Institute, Van der Boechorststraat 7, the Netherlands; and National Institute of Science and Technology in Molecular Medicine (L.B.), Federal University of Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
21
|
Tsapanou A, Mourtzi N, Charisis S, Hatzimanolis A, Ntanasi E, Kosmidis MH, Yannakoulia M, Hadjigeorgiou G, Dardiotis E, Sakka P, Stern Y, Scarmeas N. Sleep Polygenic Risk Score Is Associated with Cognitive Changes over Time. Genes (Basel) 2021; 13:63. [PMID: 35052403 PMCID: PMC8774850 DOI: 10.3390/genes13010063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022] Open
Abstract
Sleep problems have been associated with cognition, both cross-sectionally and longitudinally. Specific genes have been also associated with both sleep regulation and cognition. In a large group of older non-demented adults, we aimed to (a) validate the association between Sleep Polygenic Risk Score (Sleep PRS) and self-reported sleep duration, and (b) examine the association between Sleep PRS and cognitive changes in a three-year follow-up. Participants were drawn from the Hellenic Longitudinal Investigation of Aging and Diet (HELIAD). A structured, in-person interview, consisting of a medical history report and physical examination, was conducted for each participant during each of the visits (baseline and first follow-up). In total, 1376 participants were included, having all demographic, genetic, and cognitive data, out of which, 688 had at least one follow-up visit. In addition, an extensive neuropsychological assessment examining five cognitive domains (memory, visuo-spatial ability, attention/speed of processing, executive function, and language) was administered. A PRS for sleep duration was created based on previously published, genome-wide association study meta-analysis results. In order to assess the relationship between the Sleep PRS and the rate of cognitive change, we used generalized estimating equations analyses. Age, sex, education, ApolipoproteinE-ε4 genotype status, and specific principal components were used as covariates. On a further analysis, sleep medication was used as a further covariate. Results validated the association between Sleep PRS and self-reported sleep duration (B = 1.173, E-6, p = 0.001). Further, in the longitudinal analyses, significant associations were indicated between increased Sleep PRS and decreased visuo-spatial ability trajectories, in both the unadjusted (B = -1305.220, p = 0.018) and the adjusted for the covariates model (B = -1273.59, p = 0.031). Similarly, after adding sleep medication as a covariate (B = -1372.46, p = 0.019), none of the associations between Sleep PRS and the remaining cognitive domains were significant. PRS indicating longer sleep duration was associated with differential rates of cognitive decline over time in a group of non-demented older adults. Common genetic variants may influence the association between sleep duration and healthy aging/cognitive health.
Collapse
Affiliation(s)
- Angeliki Tsapanou
- Columbia University Irving Medical Center, Cognitive Neuroscience Division, New York, NY 10032, USA;
| | - Niki Mourtzi
- 1st Neurology Clinic, Department of Social Medicine, Psychiatry and Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (N.M.); (S.C.); (A.H.); (E.N.)
| | - Sokratis Charisis
- 1st Neurology Clinic, Department of Social Medicine, Psychiatry and Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (N.M.); (S.C.); (A.H.); (E.N.)
| | - Alex Hatzimanolis
- 1st Neurology Clinic, Department of Social Medicine, Psychiatry and Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (N.M.); (S.C.); (A.H.); (E.N.)
| | - Eva Ntanasi
- 1st Neurology Clinic, Department of Social Medicine, Psychiatry and Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (N.M.); (S.C.); (A.H.); (E.N.)
| | - Mary H. Kosmidis
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.H.K.); (N.S.)
| | - Mary Yannakoulia
- Department of Nutrition and Dietetics, Harokopio University, 17671 Athens, Greece;
| | | | - Efthimios Dardiotis
- School of Medicine, University of Thessaly, 41334 Larissa, Greece; (G.H.); (E.D.)
| | | | - Yaakov Stern
- Columbia University Irving Medical Center, Cognitive Neuroscience Division, New York, NY 10032, USA;
| | - Nikolaos Scarmeas
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.H.K.); (N.S.)
| |
Collapse
|
22
|
Gladun KV. Higuchi Fractal Dimension as a Method for Assessing Response to Sound Stimuli in Patients with Diffuse Axonal Brain Injury. Sovrem Tekhnologii Med 2021; 12:63-70. [PMID: 34795994 PMCID: PMC8596272 DOI: 10.17691/stm2020.12.4.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Indexed: 11/14/2022] Open
Abstract
The aim of the research was to study the fractal dimension of the EEG signal by the Higuchi's method in patients with diffuse axonal injury (DAI) of the brain. Materials and Methods The study was performed in 28 patients with DAI of different severity and 13 sex- and age-matched controls. The Higuchi's method of fractal dimension was used to investigate brain response to sound stimuli of different emotional coloring as well as the features of the EEG signal in the resting state. Results The EEG data demonstrated the highest values of fractal dimension in patients with DAI in the resting state. The values of fractal dimension in different emotional states considerably differ both in healthy subjects and in those with DAI. An increase in fractal dimension in response to stimuli occurs predominantly at the frequency of the theta rhythm in the control group and the frequency of the alpha rhythm in the patients with severe DAI. Conclusion Higuchi fractal dimension can be used as a complementary diagnostic tool that allows differentiating perception of emotionally significant audio information in patients with brain injury.
Collapse
Affiliation(s)
- K V Gladun
- Junior Researcher, Human Higher Nervous Activity Laboratory Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerova St., Moscow, 117485, Russia
| |
Collapse
|
23
|
Angelopoulou E, Paudel YN, Papageorgiou SG, Piperi C. APOE Genotype and Alzheimer's Disease: The Influence of Lifestyle and Environmental Factors. ACS Chem Neurosci 2021; 12:2749-2764. [PMID: 34275270 DOI: 10.1021/acschemneuro.1c00295] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder with obscure pathogenesis and no disease-modifying therapy to date. AD is multifactorial disease that develops from the complex interplay of genetic factors and environmental exposures. The E4 allele of the gene encoding apolipoprotein E (APOE) is the most common genetic risk factor for AD, whereas the E2 allele acts in a protective manner. A growing amount of epidemiological evidence suggests that several lifestyle habits and environmental factors may interact with APOE alleles to synergistically affect the risk of AD development. Among them, physical exercise, dietary habits including fat intake and ketogenic diet, higher education, traumatic brain injury, cigarette smoking, coffee consumption, alcohol intake, and exposure to pesticides and sunlight have gained increasing attention. Although the current evidence is inconsistent, it seems that younger APOE4 carriers in preclinical stages may benefit mostly from preventive lifestyle interventions, whereas older APOE4 noncarriers with dementia may show the most pronounced effects. The large discrepancies between the epidemiological studies may be attributed to differences in the sample sizes, the demographic characteristics of the participants, including age and sex, the methodological design, and potential related exposures and comorbidities as possible cofounding factors. In this Review, we aim to discuss available evidence of the prominent APOE genotype-environment interactions in regard to cognitive decline with a focus on AD, providing an overview of the current landscape in this field and suggesting future directions.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Neurology, Eginition University Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Yam Nath Paudel
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, 47500 Selangor, Malaysia
| | - Sokratis G. Papageorgiou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
24
|
Mirzahosseini G, Ismael S, Ahmed HA, Ishrat T. Manifestation of renin angiotensin system modulation in traumatic brain injury. Metab Brain Dis 2021; 36:1079-1086. [PMID: 33835385 PMCID: PMC8273091 DOI: 10.1007/s11011-021-00728-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/31/2021] [Indexed: 01/20/2023]
Abstract
Traumatic brain injury (TBI) alters brain function and is a crucial public health concern worldwide. TBI triggers the release of inflammatory mediators (cytokines) that aggravate cerebral damage, thereby affecting clinical prognosis. The renin angiotensin system (RAS) plays a critical role in TBI pathophysiology. RAS is widely expressed in many organs including the brain. Modulation of the RAS in the brain via angiotensin type 1 (AT1) and type 2 (AT2) receptor signaling affects many pathophysiological processes, including TBI. AT1R is highly expressed in neurons and astrocytes. The upregulation of AT1R mediates the effects of angiotensin II (ANG II) including release of proinflammatory cytokines, cell death, oxidative stress, and vasoconstriction. The AT2R, mainly expressed in the fetal brain during development, is also related to cognitive function. Activation of this receptor pathway decreases neuroinflammation and oxidative stress and improves overall cell survival. Numerous studies have illustrated the therapeutic potential of inhibiting AT1R and activating AT2R for treatment of TBI with variable outcomes. In this review, we summarize studies that describe the role of brain RAS signaling, through AT1R and AT2R in TBI, and its modulation with pharmacological approaches.
Collapse
Affiliation(s)
- Golnoush Mirzahosseini
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, College of Medicine, 855 Monroe Avenue, Wittenborg Building, Room-231, Memphis, TN, 38163, USA
- Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Saifudeen Ismael
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, College of Medicine, 855 Monroe Avenue, Wittenborg Building, Room-231, Memphis, TN, 38163, USA
| | - Heba A Ahmed
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, College of Medicine, 855 Monroe Avenue, Wittenborg Building, Room-231, Memphis, TN, 38163, USA
| | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, College of Medicine, 855 Monroe Avenue, Wittenborg Building, Room-231, Memphis, TN, 38163, USA.
- Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
25
|
Gozt AK, Hellewell SC, Thorne J, Thomas E, Buhagiar F, Markovic S, Van Houselt A, Ring A, Arendts G, Smedley B, Van Schalkwyk S, Brooks P, Iliff J, Celenza A, Mukherjee A, Xu D, Robinson S, Honeybul S, Cowen G, Licari M, Bynevelt M, Pestell CF, Fatovich D, Fitzgerald M. Predicting outcome following mild traumatic brain injury: protocol for the longitudinal, prospective, observational Concussion Recovery ( CREST) cohort study. BMJ Open 2021; 11:e046460. [PMID: 33986061 PMCID: PMC8126315 DOI: 10.1136/bmjopen-2020-046460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
INTRODUCTION Mild traumatic brain injury (mTBI) is a complex injury with heterogeneous physical, cognitive, emotional and functional outcomes. Many who sustain mTBI recover within 2 weeks of injury; however, approximately 10%-20% of individuals experience mTBI symptoms beyond this 'typical' recovery timeframe, known as persistent post-concussion symptoms (PPCS). Despite increasing interest in PPCS, uncertainty remains regarding its prevalence in community-based populations and the extent to which poor recovery may be identified using early predictive markers. OBJECTIVE (1) Establish a research dataset of people who have experienced mTBI and document their recovery trajectories; (2) Evaluate a broad range of novel and established prognostic factors for inclusion in a predictive model for PPCS. METHODS AND ANALYSIS The Concussion Recovery Study (CREST) is a prospective, longitudinal observational cohort study conducted in Perth, Western Australia. CREST is recruiting adults aged 18-65 from medical and community-based settings with acute diagnosis of mTBI. CREST will create a state-wide research dataset of mTBI cases, with data being collected in two phases. Phase I collates data on demographics, medical background, lifestyle habits, nature of injury and acute mTBI symptomatology. In Phase II, participants undergo neuropsychological evaluation, exercise tolerance and vestibular/ocular motor screening, MRI, quantitative electroencephalography and blood-based biomarker assessment. Follow-up is conducted via telephone interview at 1, 3, 6 and 12 months after injury. Primary outcome measures are presence of PPCS and quality of life, as measured by the Post-Concussion Symptom Scale and the Quality of Life after Brain Injury questionnaires, respectively. Multivariate modelling will examine the prognostic value of promising factors. ETHICS AND DISSEMINATION Human Research Ethics Committees of Royal Perth Hospital (#RGS0000003024), Curtin University (HRE2019-0209), Ramsay Health Care (#2009) and St John of God Health Care (#1628) have approved this study protocol. Findings will be published in peer-reviewed journals and presented at scientific conferences. TRIAL REGISTRATION NUMBER ACTRN12619001226190.
Collapse
Affiliation(s)
- Aleksandra Karolina Gozt
- Curtin Health Innovation Research Institute, Curtin University Faculty of Health Sciences, Bentley, Western Australia, Australia
- Perron Institute of Neurological and Translational Science, Nedlands, Western Australia, Australia
| | - Sarah Claire Hellewell
- Curtin Health Innovation Research Institute, Curtin University Faculty of Health Sciences, Bentley, Western Australia, Australia
| | - Jacinta Thorne
- Curtin Health Innovation Research Institute, Curtin University Faculty of Health Sciences, Bentley, Western Australia, Australia
| | - Elizabeth Thomas
- Centre for Clinical Research Excellence, School of Population Health, Curtin University, Bentley, Western Australia, Australia
- Division of Surgery, Faculty of Health & Medical Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Francesca Buhagiar
- School of Psychological Science, The University of Western Australia, Crawley, Western Australia, Australia
| | - Shaun Markovic
- Australian Alzheimer's Research Foundation, Nedlands, Western Australia, Australia
- The Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Anoek Van Houselt
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Alexander Ring
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
- School of Physiotherapy and Exercise Science, Curtin University Faculty of Health Sciences, Bentley, Western Australia, Australia
| | - Glenn Arendts
- Emergency Department, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia
| | - Ben Smedley
- Emergency Department, Rockingham General Hospital, Cooloongup, Western Australia, Australia
| | - Sjinene Van Schalkwyk
- Emergency Department, Joondalup Health Campus, Joondalup, Western Australia, Australia
| | - Philip Brooks
- Emergency Department, Saint John of God Midland Public Hospital, Midland, Western Australia, Australia
- School of Medicine, The University of Notre Dame and Curtin Medical School, Curtin University, Perth, Western Australia, Australia
- Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
| | - John Iliff
- Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
- Emergency Department, Saint John of God Hospital Murdoch, Murdoch, Western Australia, Australia
- Emergency Department, Royal Perth Hospital, Perth, Western Australia, Australia
- Royal Flying Doctor Service- Western Operations, Jandakot, Western Australia, Australia
| | - Antonio Celenza
- Emergency Department, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Division of Emergency Medicine, School of Medicine, The University of Western Australia, Crawley, Western Australia, Australia
| | - Ashes Mukherjee
- Emergency Department, Armadale Health Service, Mount Nasura, Western Australia, Australia
| | - Dan Xu
- Centre for Clinical Research Excellence, School of Population Health, Curtin University, Bentley, Western Australia, Australia
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Suzanne Robinson
- Centre for Clinical Research Excellence, School of Population Health, Curtin University, Bentley, Western Australia, Australia
| | - Stephen Honeybul
- Statewide Director of Neurosurgery, Department of Health Government of Western Australia, Perth, Western Australia, Australia
- Head of Department, Sir Charles Gairdner Hospital, Royal Perth Hospital and Fiona Stanley Hospital, Perth, Western Australia, Australia
| | - Gill Cowen
- Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
| | - Melissa Licari
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
- Telethon Kids Institute, West Perth, Western Australia, Australia
| | - Michael Bynevelt
- Division of Surgery, School of Medicine, The University of Western Australia, Crawley, Western Australia, Australia
- The Neurological Intervention & Imaging Service of Western Australia at Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Carmela F Pestell
- Curtin Health Innovation Research Institute, Curtin University Faculty of Health Sciences, Bentley, Western Australia, Australia
- School of Psychological Science, The University of Western Australia, Crawley, Western Australia, Australia
| | - Daniel Fatovich
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia
- Emergency Medicine, Royal Perth Hospital, The University of Western Australia, Perth, Western Australia, Australia
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Curtin University Faculty of Health Sciences, Bentley, Western Australia, Australia
- Perron Institute of Neurological and Translational Science, Nedlands, Western Australia, Australia
| |
Collapse
|
26
|
Li D, Liu C. Hierarchical chemical determination of amyloid polymorphs in neurodegenerative disease. Nat Chem Biol 2021; 17:237-245. [PMID: 33432239 DOI: 10.1038/s41589-020-00708-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 11/10/2020] [Indexed: 01/28/2023]
Abstract
Amyloid aggregation, which disrupts protein homeostasis, is a common pathological event occurring in human neurodegenerative diseases (NDs). Numerous evidences have shown that the structural diversity, so-called polymorphism, is decisive to the amyloid pathology and is closely associated with the onset, progression, and phenotype of ND. But how could one protein form so many stable structures? Recently, atomic structural evidence has been rapidly mounting to depict the involvement of chemical modifications in the amyloid fibril formation. In this Perspective, we aim to present a hierarchical regulation of chemical modifications including covalent post-translational modifications (PTMs) and noncovalent cofactor binding in governing the polymorphic amyloid formation, based mainly on the latest α-synuclein and Tau fibril structures. We hope to emphasize the determinant role of chemical modifications in amyloid assembly and pathology and to evoke chemical biological approaches to lead the fundamental and therapeutic research on protein amyloid state and the associated NDs.
Collapse
Affiliation(s)
- Dan Li
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China. .,Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
27
|
Krivanek TJ, Gale SA, McFeeley BM, Nicastri CM, Daffner KR. Promoting Successful Cognitive Aging: A Ten-Year Update. J Alzheimers Dis 2021; 81:871-920. [PMID: 33935078 PMCID: PMC8293659 DOI: 10.3233/jad-201462] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2021] [Indexed: 02/07/2023]
Abstract
A decade has passed since we published a comprehensive review in this journal addressing the topic of promoting successful cognitive aging, making this a good time to take stock of the field. Because there have been limited large-scale, randomized controlled trials, especially following individuals from middle age to late life, some experts have questioned whether recommendations can be legitimately offered about reducing the risk of cognitive decline and dementia. Despite uncertainties, clinicians often need to at least make provisional recommendations to patients based on the highest quality data available. Converging lines of evidence from epidemiological/cohort studies, animal/basic science studies, human proof-of-concept studies, and human intervention studies can provide guidance, highlighting strategies for enhancing cognitive reserve and preventing loss of cognitive capacity. Many of the suggestions made in 2010 have been supported by additional research. Importantly, there is a growing consensus among major health organizations about recommendations to mitigate cognitive decline and promote healthy cognitive aging. Regular physical activity and treatment of cardiovascular risk factors have been supported by all of these organizations. Most organizations have also embraced cognitively stimulating activities, a heart-healthy diet, smoking cessation, and countering metabolic syndrome. Other behaviors like regular social engagement, limiting alcohol use, stress management, getting adequate sleep, avoiding anticholinergic medications, addressing sensory deficits, and protecting the brain against physical and toxic damage also have been endorsed, although less consistently. In this update, we review the evidence for each of these recommendations and offer practical advice about behavior-change techniques to help patients adopt brain-healthy behaviors.
Collapse
Affiliation(s)
- Taylor J. Krivanek
- Center for Brain/Mind Medicine, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Hale Building for Transformative Medicine, Boston, MA, USA
| | - Seth A. Gale
- Center for Brain/Mind Medicine, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Hale Building for Transformative Medicine, Boston, MA, USA
| | - Brittany M. McFeeley
- Center for Brain/Mind Medicine, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Hale Building for Transformative Medicine, Boston, MA, USA
| | - Casey M. Nicastri
- Center for Brain/Mind Medicine, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Hale Building for Transformative Medicine, Boston, MA, USA
| | - Kirk R. Daffner
- Center for Brain/Mind Medicine, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Hale Building for Transformative Medicine, Boston, MA, USA
| |
Collapse
|
28
|
P7C3-A20 treatment one year after TBI in mice repairs the blood-brain barrier, arrests chronic neurodegeneration, and restores cognition. Proc Natl Acad Sci U S A 2020; 117:27667-27675. [PMID: 33087571 PMCID: PMC7959512 DOI: 10.1073/pnas.2010430117] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chronic neurodegeneration, a major cause of the long-term disabilities that afflict survivors of traumatic brain injury (TBI), is linked to an increased risk for late-life neurodegenerative disorders, including Alzheimer’s disease, Parkinson’s disease, vascular dementia, and chronic traumatic encephalopathy. Here, we report on the restoration of blood–brain barrier (BBB) structure and function by P7C3-A20 when administered 12 mo after TBI. This pharmacotherapy was associated with cessation of chronic neurodegeneration and recovery of normal cognitive function, benefits that persisted long after treatment cessation. Pharmacologic renewal of BBB integrity may thus provide a new treatment option for patients who have suffered a remote TBI, or other neurological conditions associated with BBB deterioration. Chronic neurodegeneration in survivors of traumatic brain injury (TBI) is a major cause of morbidity, with no effective therapies to mitigate this progressive and debilitating form of nerve cell death. Here, we report that pharmacologic restoration of the blood–brain barrier (BBB), 12 mo after murine TBI, is associated with arrested axonal neurodegeneration and cognitive recovery, benefits that persisted for months after treatment cessation. Recovery was achieved by 30 d of once-daily administration of P7C3-A20, a compound that stabilizes cellular energy levels. Four months after P7C3-A20, electron microscopy revealed full repair of TBI-induced breaks in cortical and hippocampal BBB endothelium. Immunohistochemical staining identified additional benefits of P7C3-A20, including restoration of normal BBB endothelium length, increased brain capillary pericyte density, increased expression of BBB tight junction proteins, reduced brain infiltration of immunoglobulin, and attenuated neuroinflammation. These changes were accompanied by cessation of TBI-induced chronic axonal degeneration. Specificity for P7C3-A20 action on the endothelium was confirmed by protection of cultured human brain microvascular endothelial cells from hydrogen peroxide-induced cell death, as well as preservation of BBB integrity in mice after exposure to toxic levels of lipopolysaccharide. P7C3-A20 also protected mice from BBB degradation after acute TBI. Collectively, our results provide insights into the pathophysiologic mechanisms behind chronic neurodegeneration after TBI, along with a putative treatment strategy. Because TBI increases the risks of other forms of neurodegeneration involving BBB deterioration (e.g., Alzheimer’s disease, Parkinson’s disease, vascular dementia, chronic traumatic encephalopathy), P7C3-A20 may have widespread clinical utility in the setting of neurodegenerative conditions.
Collapse
|
29
|
Ennerfelt HE, Lukens JR. The role of innate immunity in Alzheimer's disease. Immunol Rev 2020; 297:225-246. [PMID: 32588460 PMCID: PMC7783860 DOI: 10.1111/imr.12896] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/23/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022]
Abstract
The amyloid hypothesis has dominated Alzheimer's disease (AD) research for almost 30 years. This hypothesis hinges on the predominant clinical role of the amyloid beta (Aβ) peptide in propagating neurofibrillary tangles (NFTs) and eventual cognitive impairment in AD. Recent research in the AD field has identified the brain-resident macrophages, known as microglia, and their receptors as integral regulators of both the initiation and propagation of inflammation, Aβ accumulation, neuronal loss, and memory decline in AD. Emerging studies have also begun to reveal critical roles for distinct innate immune pathways in AD pathogenesis, which has led to great interest in harnessing the innate immune response as a therapeutic strategy to treat AD. In this review, we will highlight recent advancements in our understanding of innate immunity and inflammation in AD onset and progression. Additionally, there has been mounting evidence suggesting pivotal contributions of environmental factors and lifestyle choices in AD pathogenesis. Therefore, we will also discuss recent findings, suggesting that many of these AD risk factors influence AD progression via modulation of microglia and immune responses.
Collapse
Affiliation(s)
- Hannah E. Ennerfelt
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22908, USA
- Cell and Molecular Biology Training Program, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - John R. Lukens
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22908, USA
- Cell and Molecular Biology Training Program, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
30
|
Hascup ER, Hascup KN. Toward refining Alzheimer's disease into overlapping subgroups. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2020; 6:e12070. [PMID: 32885025 PMCID: PMC7453148 DOI: 10.1002/trc2.12070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/18/2020] [Accepted: 07/09/2020] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by progressive anterograde amnesia, cerebral atrophy, and eventual death. Current treatment has limited efficacy and cannot decelerate the disease progression. Clinical trials targeting the removal of the neuropathological hallmarks of AD, including accumulation of amyloid plaques or neurofibrillary tangles, have failed to modify disease progression. Without new or innovative hypotheses, AD is poised to become a public health crisis within this decade. We present an alternative hypothesis-that AD is the result of multiple interrelated causalities. The intention of this manuscript is to initiate a discussion regarding these multiple causalities and their overlapping similarities. The idea of creating subgroups allows for better identification of biomarkers across a narrower patient population for improved pharmacotherapeutic opportunities. The interrelatedness of many of these proposed subgroups indicates the complexity of this disorder. However, it also supports that no one single factor may initiate the cascade of events.
Collapse
Affiliation(s)
- Erin R. Hascup
- Department of NeurologyCenter for Alzheimer's Disease and Related DisordersNeurosciences InstituteDepartment of PharmacologySpringfieldIllinoisUSA
| | - Kevin N. Hascup
- Department of NeurologyCenter for Alzheimer's Disease and Related DisordersNeurosciences InstituteDepartment of PharmacologySpringfieldIllinoisUSA
- Department of Medical MicrobiologyImmunologyand Cell BiologySouthern Illinois University School of MedicineSpringfieldIllinoisUSA
| |
Collapse
|
31
|
Abdolmohammadi B, Dupre A, Evers L, Mez J. Genetics of Chronic Traumatic Encephalopathy. Semin Neurol 2020; 40:420-429. [DOI: 10.1055/s-0040-1713631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AbstractAlthough chronic traumatic encephalopathy (CTE) garners substantial attention in the media and there have been marked scientific advances in the last few years, much remains unclear about the role of genetic risk in CTE. Two athletes with comparable contact-sport exposure may have varying amounts of CTE neuropathology, suggesting that other factors, including genetics, may contribute to CTE risk and severity. In this review, we explore reasons why genetics may be important for CTE, concepts in genetic study design for CTE (including choosing controls, endophenotypes, gene by environment interaction, and epigenetics), implicated genes in CTE (including APOE, MAPT, and TMEM106B), and whether predictive genetic testing for CTE should be considered.
Collapse
Affiliation(s)
- Bobak Abdolmohammadi
- Boston University Alzheimer’s Disease Center, Boston University School of Medicine, Boston, MA
- Boston University Chronic Traumatic Encephalopathy Center, Boston University School of Medicine, Boston, MA
- Department of Neurology, Boston University School of Medicine, Boston, MA
| | - Alicia Dupre
- Boston University Alzheimer’s Disease Center, Boston University School of Medicine, Boston, MA
- Boston University Chronic Traumatic Encephalopathy Center, Boston University School of Medicine, Boston, MA
- Department of Neurology, Boston University School of Medicine, Boston, MA
| | - Laney Evers
- Boston University Alzheimer’s Disease Center, Boston University School of Medicine, Boston, MA
- Boston University Chronic Traumatic Encephalopathy Center, Boston University School of Medicine, Boston, MA
- Department of Neurology, Boston University School of Medicine, Boston, MA
| | - Jesse Mez
- Boston University Alzheimer’s Disease Center, Boston University School of Medicine, Boston, MA
- Boston University Chronic Traumatic Encephalopathy Center, Boston University School of Medicine, Boston, MA
- Department of Neurology, Boston University School of Medicine, Boston, MA
| |
Collapse
|
32
|
Cash A, Theus MH. Mechanisms of Blood-Brain Barrier Dysfunction in Traumatic Brain Injury. Int J Mol Sci 2020; 21:ijms21093344. [PMID: 32397302 PMCID: PMC7246537 DOI: 10.3390/ijms21093344] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 12/16/2022] Open
Abstract
Traumatic brain injuries (TBIs) account for the majority of injury-related deaths in the United States with roughly two million TBIs occurring annually. Due to the spectrum of severity and heterogeneity in TBIs, investigation into the secondary injury is necessary in order to formulate an effective treatment. A mechanical consequence of trauma involves dysregulation of the blood–brain barrier (BBB) which contributes to secondary injury and exposure of peripheral components to the brain parenchyma. Recent studies have shed light on the mechanisms of BBB breakdown in TBI including novel intracellular signaling and cell–cell interactions within the BBB niche. The current review provides an overview of the BBB, novel detection methods for disruption, and the cellular and molecular mechanisms implicated in regulating its stability following TBI.
Collapse
Affiliation(s)
- Alison Cash
- The Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA;
| | - Michelle H. Theus
- The Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA;
- The Center for Regenerative Medicine, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA
- Correspondence: ; Tel.: 1-540-231-0909; Fax: 1-540-231-7425
| |
Collapse
|
33
|
Huang M, Lewine JD, Lee RR. Magnetoencephalography for Mild Traumatic Brain Injury and Posttraumatic Stress Disorder. Neuroimaging Clin N Am 2020; 30:175-192. [DOI: 10.1016/j.nic.2020.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
34
|
Kulick ER, Elkind MSV, Boehme AK, Joyce NR, Schupf N, Kaufman JD, Mayeux R, Manly JJ, Wellenius GA. Long-term exposure to ambient air pollution, APOE-ε4 status, and cognitive decline in a cohort of older adults in northern Manhattan. ENVIRONMENT INTERNATIONAL 2020; 136:105440. [PMID: 31926436 PMCID: PMC7024003 DOI: 10.1016/j.envint.2019.105440] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND There is mounting evidence that long-term exposure to air pollution is related to accelerated cognitive decline in aging populations. Factors that influence individual susceptibility remain largely unknown, but may involve the apolipoprotein E genotype E4 (APOE-ε4) allele. OBJECTIVES We assessed whether the association between long-term exposure to ambient air pollution and cognitive decline differed by APOE-ε4 status and cognitive risk factors. METHODS The Washington Heights Inwood Community Aging Project (WHICAP) is a prospective study of aging and dementia. Neuropsychological testing and medical examinations occur every 18-24 months. We used mixed-effects models to evaluate whether the association between markers of ambient air pollution (nitrogen dioxide [NO2]), fine [PM2.5], and coarse [PM10] particulate matter) and the rate of decline in global and domain-specific cognition differed across strata defined by APOE-ε4 genotypes and cognitive risk factors, adjusting for sociodemographic factors and temporal trends. RESULTS Among 4821 participants with an average of 6 years follow-up, higher concentrations of ambient air pollution were associated with more rapid cognitive decline. This association was more pronounced among APOE-ε4 carriers (p < 0.001). A one interquartile range increase in NO2 was associated with an additional decline of 0.09 standard deviations (SD) (95%CI -0.1, -0.06) in global cognition across biennial visits among APOE-ε4 positive individuals and a 0.07 SD (95%CI -0.09, -0.05) decline among APOE-ε4 negative individuals. Results for PM2.5, PM10 and cognitive domains were similar. The association between air pollutants and rate of cognitive decline also varied across strata of race-ethnicity with the association strongest among White non-Hispanic participants. CONCLUSIONS These results add to the body of evidence on the adverse impact of ambient air pollution on cognitive aging and brain health and provide new insights into the genetic and behavioral factors that may impact individual susceptibility.
Collapse
Affiliation(s)
- Erin R Kulick
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA; Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA.
| | - Mitchell S V Elkind
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA; Gertrude H Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Amelia K Boehme
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA; Gertrude H Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Nina R Joyce
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| | - Nicole Schupf
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA; Taub Institute for Research on Alzheimer Disease and the Aging Brain, Columbia University, New York, NY, USA; Gertrude H Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Joel D Kaufman
- Departments of Environmental and Occupational Health Sciences, and Epidemiology, University of Washington School of Public Health, Seattle, WA, USA
| | - Richard Mayeux
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA; Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA; Taub Institute for Research on Alzheimer Disease and the Aging Brain, Columbia University, New York, NY, USA; Gertrude H Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Jennifer J Manly
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA; Taub Institute for Research on Alzheimer Disease and the Aging Brain, Columbia University, New York, NY, USA; Gertrude H Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Gregory A Wellenius
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| |
Collapse
|
35
|
Abstract
Although Alzheimer's disease (AD) was described over a century ago, there are no effective approaches to its prevention and treatment. Such a slow progress is explained, at least in part, by our incomplete understanding of the mechanisms underlying the pathogenesis of AD. Here, I champion a hypothesis whereby AD is initiated on a disruption of the blood-brain barrier (BBB) caused by either genetic or non-genetic risk factors. The BBB disruption leads to an autoimmune response against pyramidal neurons located in the allo- and neocortical structures involved in memory formation and storage. The response caused by the adaptive immune system is not strong enough to directly kill neurons but may be sufficient to make them selectively vulnerable to neurofibrillary pathology. This hypothesis is based on the recent data showing that memory formation is associated with epigenetic chromatin modifications and, therefore, may be accompanied by expression of memory-specific proteins recognized by the immune system as "non-self" antigens. The autoimmune hypothesis is testable, and I discuss potential ways for its experimental and clinical verification. If confirmed, this hypothesis can radically change therapeutic approaches to AD prevention and treatment.
Collapse
Affiliation(s)
- Yuri I Arshavsky
- BioCircuits Institute, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
36
|
Gozt A, Licari M, Halstrom A, Milbourn H, Lydiard S, Black A, Arendts G, Macdonald S, Song S, MacDonald E, Vlaskovsky P, Burrows S, Bynevelt M, Pestell C, Fatovich D, Fitzgerald M. Towards the Development of an Integrative, Evidence-Based Suite of Indicators for the Prediction of Outcome Following Mild Traumatic Brain Injury: Results from a Pilot Study. Brain Sci 2020; 10:brainsci10010023. [PMID: 31906443 PMCID: PMC7017246 DOI: 10.3390/brainsci10010023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/16/2019] [Accepted: 12/30/2019] [Indexed: 12/14/2022] Open
Abstract
Background: Persisting post-concussion symptoms (PPCS) is a complex, multifaceted condition in which individuals continue to experience the symptoms of mild traumatic brain injury (mTBI; concussion) beyond the timeframe that it typically takes to recover. Currently, there is no way of knowing which individuals may develop this condition. Method: Patients presenting to a hospital emergency department (ED) within 48 h of sustaining a mTBI underwent neuropsychological assessment and demographic, injury-related information and blood samples were collected. Concentrations of blood-based biomarkers neuron specific enolase, neurofilament protein-light, and glial fibrillary acidic protein were assessed, and a subset of patients also underwent diffusion tensor–magnetic resonance imaging; both relative to healthy controls. Individuals were classified as having PPCS if they reported a score of 25 or higher on the Rivermead Postconcussion Symptoms Questionnaire at ~28 days post-injury. Univariate exact logistic regression was performed to identify measures that may be predictive of PPCS. Neuroimaging data were examined for differences in fractional anisotropy (FA) and mean diffusivity in regions of interest. Results: Of n = 36 individuals, three (8.33%) were classified as having PPCS. Increased performance on the Repeatable Battery for the Assessment of Neuropsychological Status Update Total Score (OR = 0.81, 95% CI: 0.61–0.95, p = 0.004), Immediate Memory (OR = 0.79, 95% CI: 0.56–0.94, p = 0.001), and Attention (OR = 0.86, 95% CI: 0.71–0.97, p = 0.007) indices, as well as faster completion of the Trails Making Test B (OR = 1.06, 95% CI: 1.00–1.12, p = 0.032) at ED presentation were associated with a statistically significant decreased odds of an individual being classified as having PPCS. There was no significant association between blood-based biomarkers and PPCS in this small sample, although glial fibrillary acidic protein (GFAP) was significantly increased in individuals with mTBI relative to healthy controls. Furthermore, relative to healthy age and sex-matched controls (n = 8), individuals with mTBI (n = 14) had higher levels of FA within the left inferior frontal occipital fasciculus (t (18.06) = −3.01, p = 0.008). Conclusion: Performance on neuropsychological measures may be useful for predicting PPCS, but further investigation is required to elucidate the utility of this and other potential predictors.
Collapse
Affiliation(s)
- Aleksandra Gozt
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia; (A.G.); (A.B.); (C.P.)
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Melissa Licari
- Telethon Kids Institute, West Perth, WA 6005, Australia;
| | - Alison Halstrom
- School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (A.H.); (H.M.); (S.L.)
| | - Hannah Milbourn
- School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (A.H.); (H.M.); (S.L.)
| | - Stephen Lydiard
- School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (A.H.); (H.M.); (S.L.)
| | - Anna Black
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia; (A.G.); (A.B.); (C.P.)
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Glenn Arendts
- Emergency Medicine, The University of Western Australia, Crawley, WA 6009, Australia; (G.A.); (S.M.); (D.F.)
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research, Nedlands, WA 6000, Australia;
| | - Stephen Macdonald
- Emergency Medicine, The University of Western Australia, Crawley, WA 6009, Australia; (G.A.); (S.M.); (D.F.)
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research, Nedlands, WA 6000, Australia;
- Emergency Department, Royal Perth Hospital, Perth, WA 6000, Australia
| | - Swithin Song
- Radiology Department, Royal Perth Hospital, Perth, WA 6000, Australia;
| | - Ellen MacDonald
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research, Nedlands, WA 6000, Australia;
- Emergency Department, Royal Perth Hospital, Perth, WA 6000, Australia
| | - Philip Vlaskovsky
- School of Medicine, The University of Western Australia, Crawley, WA 6009, Australia; (P.V.); (S.B.)
| | - Sally Burrows
- School of Medicine, The University of Western Australia, Crawley, WA 6009, Australia; (P.V.); (S.B.)
| | - Michael Bynevelt
- School of Surgery, The University of Western Australia, Crawley, WA 6009, Australia;
- Neurological Intervention and Imaging Service of Western Australia, Sir Charles Gardener Hospital, Nedlands, WA 6009, Australia
| | - Carmela Pestell
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia; (A.G.); (A.B.); (C.P.)
- School of Psychological Science, The University of Western Australia, Crawley, WA 6009, Australia
| | - Daniel Fatovich
- Emergency Medicine, The University of Western Australia, Crawley, WA 6009, Australia; (G.A.); (S.M.); (D.F.)
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research, Nedlands, WA 6000, Australia;
- Emergency Department, Royal Perth Hospital, Perth, WA 6000, Australia
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia; (A.G.); (A.B.); (C.P.)
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
- School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (A.H.); (H.M.); (S.L.)
- Correspondence: ; Tel.: +61-467-729-300
| |
Collapse
|
37
|
Melgarejo JD, Aguirre-Acevedo DC, Gaona C, Chavez CA, Calmón GE, Silva ER, de Erausquin GA, Gil M, Mena LJ, Terwilliger JD, Arboleda H, Scarmeas N, Lee JH, Maestre GE. Nighttime Blood Pressure Interacts with APOE Genotype to Increase the Risk of Incident Dementia of the Alzheimer's Type in Hispanics. J Alzheimers Dis 2020; 77:569-579. [PMID: 32675415 PMCID: PMC7577347 DOI: 10.3233/jad-200430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Dementia of the Alzheimer's type (DAT) impacts Hispanics disproportionately, with almost a twofold elevated risk of developing DAT, as well as earlier onset of the disease, than in non-Hispanic Whites. However, the role of main risk factors for DAT, such as APOE-ɛ4 and blood pressure (BP) levels, remains uncertain among Hispanics. OBJECTIVE To investigate the association of APOE-ɛ4 and BP levels, measures with 24-h ambulatory BP monitoring, with incidence of DAT in an elderly cohort of Hispanics. METHODS 1,320 participants from the Maracaibo Aging Study, free of dementia at the baseline, and with ambulatory BP measurements and APOE genotype available were included. Adjusted Cox proportional models were performed to examine 1) the incidence of DAT and 2) the relationship between BP levels and DAT according to APOE genotypes. Models were adjusted by competing risk of death before the onset of DAT. Model performance was assessed by likelihood test. RESULTS The average follow-up time was 5.3 years. DAT incidence was 5.8 per 1000 person-year. APOE-ɛ4 carriers had a higher risk of DAT. In unadjusted analyses, conventional, 24-h, and nighttime systolic BP levels were significantly higher in participants who developed DAT and of APOE-ɛ4 carriers (p < 0.05). After adjustment for competing risks, only higher nighttime systolic BP was associated with DAT incidence, but only among subjects carrying APOE-ɛ4. CONCLUSION In this Hispanic population, both APOE-ɛ4 genotype and assessment of nocturnal systolic BP (rather than diurnal or office BP) were necessary to estimate DAT risk.
Collapse
Affiliation(s)
- Jesus D. Melgarejo
- Laboratory of Neuroscience, University of Zulia, Maracaibo, Venezuela
- Research Unit Hypertension and Cardiovascular Epidemiology, Department of Cardiovascular Sciences, KU University of Leuven, Leuven, Belgium
| | | | - Ciro Gaona
- Laboratory of Neuroscience, University of Zulia, Maracaibo, Venezuela
| | - Carlos A. Chavez
- Laboratory of Neuroscience, University of Zulia, Maracaibo, Venezuela
| | - Gustavo E. Calmón
- Instituto de Investigación de Enfermedades Cardiovasculares de la Universidad del Zulia, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Eglé R. Silva
- Instituto de Investigación de Enfermedades Cardiovasculares de la Universidad del Zulia, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Gabriel A. de Erausquin
- Department of Neurology, and Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Sciences Center at San Antonio, San Antonio, TX, USA
- Alzheimer’s Disease Resource Center for Minority Aging Research, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Mario Gil
- Alzheimer’s Disease Resource Center for Minority Aging Research, University of Texas Rio Grande Valley, Brownsville, TX, USA
- Department of Psychological Science and Department of Neurosciences, University of Texas Rio Grande Valley, School of Medicine, Edinburg, TX, USA
| | - Luis J. Mena
- Department of Informatics, Universidad Politécnica de Sinaloa, Mazatlán, México
| | - Joseph D. Terwilliger
- Departments of Psychiatry and Genetics & Development, Columbia University Medical Center, New York, NY, USA
- Sergievsky Center & Department of Epidemiology, Columbia University Medical Center, New York, NY, USA
- Division of Medical Genetics, New York State Psychiatric Institute, New York, NY, USA
- Division of Public Health Genomics, National Institute for Health and Welfare, Helsinki, Finland
| | - Humberto Arboleda
- Neurosciences Research Group, School of Medicine, Nacional University of Colombia, Bogotá, Colombia
- Genetic Institute, National University of Colombia, Bogotá, Colombia
| | - Nikolaos Scarmeas
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain and Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Joseph H. Lee
- Sergievsky Center & Department of Epidemiology, Columbia University Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain and Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Epidemiology, School of Public Health, Columbia University, New York, NY, USA
| | - Gladys E. Maestre
- Laboratory of Neuroscience, University of Zulia, Maracaibo, Venezuela
- Alzheimer’s Disease Resource Center for Minority Aging Research, University of Texas Rio Grande Valley, Brownsville, TX, USA
- Department of Neurosciences, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
- Department of Human Genetics University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| |
Collapse
|
38
|
Nguyen TP, Schaffert J, LoBue C, Womack KB, Hart J, Cullum CM. Traumatic Brain Injury and Age of Onset of Dementia with Lewy Bodies. J Alzheimers Dis 2019; 66:717-723. [PMID: 30320582 DOI: 10.3233/jad-180586] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Traumatic brain injury (TBI) with loss of consciousness (LOC) has been associated with earlier onset of mild cognitive impairment, frontotemporal dementia, Parkinson's disease, and Alzheimer's disease (AD), but has not been examined as a risk factor for earlier onset of dementia with Lewy bodies (DLB). OBJECTIVE The purpose of this study was to assess the association between a history of TBI and the age of onset of DLB. METHOD Data from 576 subjects with a clinical diagnosis of DLB were obtained from the National Alzheimer's Coordinating Center (NACC). Analyses of Covariance examined whether self-reported history of remote TBI with LOC (i.e., >1 year prior to the first Alzheimer's Disease Center visit) was associated with earlier DLB symptom onset. RESULTS Controlling for sex, those with a history of remote TBI had an approximately 1.5-year earlier clinician-estimated age of onset (F = 0.87, p = 0.35) and 0.75-years earlier age of diagnosis (F = 0.14, p = 0.71) of DLB compared to those without a history of TBI, though the differences did not reach statistical significance. Analysis of subjects with autopsy-confirmed diagnoses was underpowered due to the low number of TBI+ subjects. CONCLUSIONS Remote TBI with LOC was not significantly associated with DLB onset, despite being a significant risk factor for cognitive decline and earlier age of onset in other neurodegenerative conditions. Replication of these results using a larger cohort of DLB subjects with and without a TBI history who have undergone autopsy is indicated, as our TBI+ subjects did show a slightly earlier onset of about 1.5 years. Further investigations into other potential DLB risk factors are also warranted.
Collapse
Affiliation(s)
- Trung P Nguyen
- Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeff Schaffert
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christian LoBue
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kyle B Womack
- Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John Hart
- Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA.,School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - C Munro Cullum
- Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Neurological Surgery, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
39
|
Abstract
OBJECTIVES Low educational attainment is a risk factor for more rapid cognitive aging, but there is substantial variability in cognitive trajectories within educational groups. The aim of this study was to determine the factors that confer resilience to memory decline within educational strata. METHODS We selected 2573 initially nondemented White, African American, and Hispanic participants from the longitudinal community-based Washington Heights/Inwood Columbia Aging Project who had at least two visits. We estimated initial memory (intercept) and the rate of memory decline (slope) using up to five occasions of measurement. We classified groups according to the educational attainment groups as low (≤5 years), medium (6-11 years), and high (≥12 years). We used a multiple-group latent growth model to identify the baseline predictors of initial memory performance and rate of memory decline across groups. The model specification considered the influence of demographic, socioeconomic, biomedical, and cognitive variables on the intercept and the slope of memory trajectory. RESULTS Our results indicated that the three educational groups do not benefit from the same factors. When allowed to differ across groups, the predictors were related to cognitive outcomes in the highly educated group, but we found no unique predictor of cognition for the low educated older adults. CONCLUSIONS These findings highlight that memory-protective factors may differ across older adults with distinct educational backgrounds, and the need to evaluate a broader range of potential resilience factors for older adults with few years of school.
Collapse
|
40
|
Barnes DE, Byers AL, Gardner RC, Seal KH, Boscardin WJ, Yaffe K. Association of Mild Traumatic Brain Injury With and Without Loss of Consciousness With Dementia in US Military Veterans. JAMA Neurol 2019; 75:1055-1061. [PMID: 29801145 DOI: 10.1001/jamaneurol.2018.0815] [Citation(s) in RCA: 267] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Importance Traumatic brain injury (TBI) is common in both veteran and civilian populations. Prior studies have linked moderate and severe TBI with increased dementia risk, but the association between dementia and mild TBI, particularly mild TBI without loss of consciousness (LOC), remains unclear. Objective To examine the association between TBI severity, LOC, and dementia diagnosis in veterans. Design, Setting, and Participants This cohort study of all patients diagnosed with a TBI in the Veterans Health Administration health care system from October 1, 2001, to September 30, 2014, and a propensity-matched comparison group. Patients with dementia at baseline were excluded. Researchers identified TBIs through the Comprehensive TBI Evaluation database, which is restricted to Iraq and Afghanistan veterans, and the National Patient Care Database, which includes veterans of all eras. The severity of each TBI was based on the most severe injury recorded and classified as mild without LOC, mild with LOC, mild with LOC status unknown, or moderate or severe using Department of Defense or Defense and Veterans Brain Injury Center criteria. International Classification of Diseases, Ninth Revision codes were used to identify dementia diagnoses during follow-up and medical and psychiatric comorbidities in the 2 years prior to the index date. Main Outcomes and Measures Dementia diagnosis in veterans who had experienced TBI with or without LOC and control participants without TBI exposure. Results The study included 178 779 patients diagnosed with a TBI in the Veterans Health Administration health care system and 178 779 patients in a propensity-matched comparison group. Veterans had a mean (SD) age of nearly 49.5 (18.2) years at baseline; 33 250 (9.3%) were women, and 259 136 (72.5%) were non-Hispanic white individuals. Differences between veterans with and without TBI were small. A total of 4698 veterans (2.6%) without TBI developed dementia compared with 10 835 (6.1%) of those with TBI. After adjustment for demographics and medical and psychiatric comobidities, adjusted hazard ratios for dementia were 2.36 (95% CI, 2.10-2.66) for mild TBI without LOC, 2.51 (95% CI, 2.29-2.76) for mild TBI with LOC, 3.19 (95% CI, 3.05-3.33) for mild TBI with LOC status unknown, and 3.77 (95% CI, 3.63-3.91) for moderate to severe TBI. Conclusions and Relevance In this cohort study of more than 350 000 veterans, even mild TBI without LOC was associated with more than a 2-fold increase in the risk of dementia diagnosis. Studies of strategies to determine mechanisms, prevention, and treatment of TBI-related dementia in veterans are urgently needed.
Collapse
Affiliation(s)
- Deborah E Barnes
- San Francisco Veterans Affairs Health Care System, San Francisco, California.,Department of Psychiatry, University of California, San Francisco.,Department of Epidemiology and Biostatistics, University of California, San Francisco
| | - Amy L Byers
- San Francisco Veterans Affairs Health Care System, San Francisco, California.,Department of Psychiatry, University of California, San Francisco.,Department of Epidemiology and Biostatistics, University of California, San Francisco
| | - Raquel C Gardner
- San Francisco Veterans Affairs Health Care System, San Francisco, California.,Department of Neurology, University of California, San Francisco
| | - Karen H Seal
- San Francisco Veterans Affairs Health Care System, San Francisco, California.,Department of Psychiatry, University of California, San Francisco.,Department of Medicine, University of California, San Francisco
| | - W John Boscardin
- San Francisco Veterans Affairs Health Care System, San Francisco, California.,Department of Medicine, University of California, San Francisco
| | - Kristine Yaffe
- San Francisco Veterans Affairs Health Care System, San Francisco, California.,Department of Psychiatry, University of California, San Francisco.,Department of Epidemiology and Biostatistics, University of California, San Francisco.,Department of Neurology, University of California, San Francisco
| |
Collapse
|
41
|
Chapleau RR, Martin CA, Hughes SR, Baldwin JC, Sladky J, Sherman PM, Grinkemeyer M. Apolipoprotein E promoter genotypes are not associated with white matter hyperintensity development in high-altitude careers. BMC Res Notes 2019; 12:630. [PMID: 31551090 PMCID: PMC6760100 DOI: 10.1186/s13104-019-4654-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 09/17/2019] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE This study sought to determine if there is an association between variants in the apolipoprotein E (ApoE) promoter regions and development of white matter hyperintensities (WMH) in military subjects who have been exposed to high altitude. In an earlier study, we found that ApoE status did not correlate with WMH development, and here we hypothesized that regulation of APOE protein expression may be protective. RESULTS Our cohort of 92 subjects encountered altitude exposures above 25,000 feet mean sea level through their occupations as pilots or altitude chamber technicians. Using Taqman-style polymerase chain reaction genotyping and t-tests and two-way analyses of variance we found no significant association between ApoE promoter genotypes and the presence, volume, or quantity of WMHs after high altitude exposure. Taken together, the observations that neither ApoE genotype status nor promoter status are associated with WMH properties, we believe that the mechanism of action for developing WMH does not derive from ApoE, nor would therapies for ApoE-mediated neurodegeneration likely benefit high altitude operators.
Collapse
Affiliation(s)
- Richard R Chapleau
- Aeromedical Research Department, Applied Technology and Genomics Division, Wright-Patterson AFB, U.S. Air Force School of Aerospace Medicine, Dayton, OH, USA.
| | - CharLee A Martin
- Aeromedical Research Department, Applied Technology and Genomics Division, Wright-Patterson AFB, U.S. Air Force School of Aerospace Medicine, Dayton, OH, USA
| | - Summer R Hughes
- Aeromedical Research Department, Applied Technology and Genomics Division, Wright-Patterson AFB, U.S. Air Force School of Aerospace Medicine, Dayton, OH, USA
| | - James C Baldwin
- Aeromedical Research Department, Applied Technology and Genomics Division, Wright-Patterson AFB, U.S. Air Force School of Aerospace Medicine, Dayton, OH, USA
| | - John Sladky
- Aeromedical Research Department, Operational Health and Performance Research Division, Wright-Patterson AFB, U.S. Air Force School of Aerospace Medicine, Dayton, OH, USA.,59th Medical Wing, Department of Neurology, Joint Base San Antonio-Lackland, San Antonio, TX, USA
| | - Paul M Sherman
- Aeromedical Research Department, Operational Health and Performance Research Division, Wright-Patterson AFB, U.S. Air Force School of Aerospace Medicine, Dayton, OH, USA.,59th Medical Wing, Department of Neuroradiology, Joint Base San Antonio-Lackland, San Antonio, TX, USA
| | - Michael Grinkemeyer
- Aeromedical Research Department, Applied Technology and Genomics Division, Wright-Patterson AFB, U.S. Air Force School of Aerospace Medicine, Dayton, OH, USA
| |
Collapse
|
42
|
Finan JD, Udani SV, Patel V, Bailes JE. The Influence of the Val66Met Polymorphism of Brain-Derived Neurotrophic Factor on Neurological Function after Traumatic Brain Injury. J Alzheimers Dis 2019; 65:1055-1064. [PMID: 30149456 DOI: 10.3233/jad-180585] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Functional outcomes after traumatic brain injury (TBI) vary widely across patients with apparently similar injuries. This variability hinders prognosis, therapy, and clinical innovation. Recently, single nucleotide polymorphism (SNPs) that influence outcome after TBI have been identified. These discoveries create opportunities to personalize therapy and stratify clinical trials. Both of these changes would propel clinical innovation in the field. This review focuses on one of most well-characterized of these SNPs, the Val66Met SNP in the brain-derived neurotrophic factor (BDNF) gene. This SNP influences neurological function in healthy subjects as well as TBI patients and patients with similar acute insults to the central nervous system. A host of other patient-specific factors including ethnicity, age, gender, injury severity, and post-injury time point modulate this influence. These interactions confound efforts to define a simple relationship between this SNP and TBI outcomes. The opportunities and challenges associated with personalizing TBI therapy around this SNP and other similar SNPs are discussed in light of these results.
Collapse
Affiliation(s)
- John D Finan
- Department of Neurosurgery, NorthShore University Health System, Evanston, IL, USA
| | - Shreya V Udani
- Department of Neurosurgery, NorthShore University Health System, Evanston, IL, USA
| | - Vimal Patel
- Department of Neurosurgery, NorthShore University Health System, Evanston, IL, USA
| | - Julian E Bailes
- Department of Neurosurgery, NorthShore University Health System, Evanston, IL, USA
| |
Collapse
|
43
|
Zahodne LB, Mayeda ER, Hohman TJ, Fletcher E, Racine AM, Gavett B, Manly JJ, Schupf N, Mayeux R, Brickman AM, Mungas D. The role of education in a vascular pathway to episodic memory: brain maintenance or cognitive reserve? Neurobiol Aging 2019; 84:109-118. [PMID: 31539647 DOI: 10.1016/j.neurobiolaging.2019.08.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 08/02/2019] [Accepted: 08/09/2019] [Indexed: 01/05/2023]
Abstract
Educational attainment is associated with cognition among older adults, but this association is complex and not well understood. While associated with better cognition among healthy adults, more education predicts faster decline in older adults with cognitive impairment. Education may influence cognitive functioning through mechanisms involving brain maintenance (BM: reduced age-related pathology) or cognitive reserve (CR: altered pathology-cognition association). We examined evidence for each mechanism by quantifying main and interaction effects of education within a well-studied pathway involving systolic blood pressure, white matter hyperintensities (WMH), and episodic memory in 2 samples without dementia at the baseline (total N = 1136). There were no effects of education on systolic blood pressure or WMH, suggesting a lack of evidence for BM. In the sample less likely to progress to dementia, education attenuated the effect of WMH on memory at the baseline. In the sample more likely to progress to dementia, education exacerbated this effect at the baseline. These moderations provide evidence for a CR mechanism and are consistent with previous findings of faster decline once CR is depleted.
Collapse
Affiliation(s)
- Laura B Zahodne
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA.
| | - Elizabeth Rose Mayeda
- Department of Epidemiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Timothy J Hohman
- Department of Neurology, Vanderbilt University, Nashville, TN, USA
| | - Evan Fletcher
- Department of Neurology, University of California, Davis, Sacramento, CA, USA
| | | | - Brandon Gavett
- School of Psychological Science, The University of Western Australia, Perth, Australia
| | - Jennifer J Manly
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Gertrude H. Sergievsky Center, Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Nicole Schupf
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Gertrude H. Sergievsky Center, Department of Neurology, Columbia University Medical Center, New York, NY, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Gertrude H. Sergievsky Center, Departments of Epidemiology and Psychiatry, New York, NY, USA
| | - Richard Mayeux
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Gertrude H. Sergievsky Center, Departments of Neurology, Epidemiology, and Psychiatry, New York, NY, USA
| | - Adam M Brickman
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Gertrude H. Sergievsky Center, Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Dan Mungas
- Department of Neurology, University of California, Davis, Sacramento, CA, USA
| |
Collapse
|
44
|
Hicks AJ, James AC, Spitz G, Ponsford JL. Traumatic Brain Injury as a Risk Factor for Dementia and Alzheimer Disease: Critical Review of Study Methodologies. J Neurotrauma 2019; 36:3191-3219. [PMID: 31111768 DOI: 10.1089/neu.2018.6346] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Despite much previous research stating that traumatic brain injury (TBI) has been confirmed as a risk factor for dementia and Alzheimer disease (AD), findings from observational studies are mixed and are of low methodological quality. This review aimed to critically evaluate the methodologies used in previous studies. Relevant literature was identified by examining reference lists for previous reviews and primary studies, and searches in MEDLINE, PubMed, Google Scholar, and Research Gate. Sixty-eight identified reports, published between 1982 and August 2018, met inclusion criteria. Common methodological weaknesses included self-reported TBI (62%); poor TBI case definition (55%); low prevalence of TBI in samples (range 0.07-28.7%); reverse causality (86% moderate to high risk of reverse causality); not controlling for important confounding factors. There were also key areas of methodological rigor including use of individual matching for cases and controls (57%); gold standard dementia and AD criteria (53%); symmetrical data collection (65%); large sample sizes (max, 2,794,752); long follow-up periods and controlling of analyses for age (82%). The quality assessment revealed methodological problems with most studies. Overall, only one study was identified as having strong methodological rigor. This critical review identified several key areas of methodological weakness and rigor and should be used as a guideline for improving future research. This can be achieved by using longitudinal prospective cohort designs, with medically confirmed and well characterized TBI sustained sufficient time before the onset of dementia, including appropriate controls and informants, and considering the impacts of known protective and risk factors.
Collapse
Affiliation(s)
- Amelia J Hicks
- Monash-Epworth Rehabilitation Research Centre, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Amelia C James
- Monash-Epworth Rehabilitation Research Centre, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Gershon Spitz
- Monash-Epworth Rehabilitation Research Centre, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Jennie L Ponsford
- Monash-Epworth Rehabilitation Research Centre, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
45
|
Sullivan DR, Logue MW, Wolf EJ, Hayes JP, Salat DH, Fortier CB, Fonda JR, McGlinchey RE, Milberg WP, Miller MW. Close-Range Blast Exposure Is Associated with Altered White Matter Integrity in Apolipoprotein ɛ4 Carriers. J Neurotrauma 2019; 36:3264-3273. [PMID: 31232163 DOI: 10.1089/neu.2019.6489] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Evidence suggests that blast exposure has profound negative consequences for the health of the human brain, and that it may confer risk for the development of neurodegenerative diseases such as chronic traumatic encephalopathy and Alzheimer's disease (AD). Although the molecular mechanisms linking blast exposure to subsequent neurodegeneration is an active focus of research, recent studies suggest that genetic risk for AD may elevate the risk of neurodegeneration following traumatic brain injury (TBI). However, it is currently unknown if blast exposure also interacts with AD risk to promote neurodegeneration. In this study we examined whether apolipoprotein (APOE) ɛ4, a well-known genetic risk factor for AD, influenced the relationship between blast exposure and white matter integrity in a cohort of 200 Iraq and Afghanistan war veterans. Analyses revealed a significant interaction between close-range blast exposure (CBE) (close range being within 10 m) and APOE ɛ4 carrier status in predicting white matter abnormalities, measured by a voxelwise cluster-based method that captures spatial heterogeneity in white matter disruptions. This interaction remained significant after controlling for TBI, pointing to the specificity of CBE and APOE in white matter disruptions. Further, among veteran ɛ4 carriers exposed to close-range blast, we observed a positive association between the number of CBEs and the number of white matter abnormalities. These results raise the possibility that CBE interacts with AD genetic influences on neuropathological processes such as the degradation of white matter integrity.
Collapse
Affiliation(s)
- Danielle R Sullivan
- National Center for PTSD, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, Massachusetts.,Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts
| | - Mark W Logue
- National Center for PTSD, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, Massachusetts.,Biomedical Genetics, Boston University School of Medicine, Boston, Massachusetts.,Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Erika J Wolf
- National Center for PTSD, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, Massachusetts.,Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts
| | - Jasmeet P Hayes
- National Center for PTSD, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, Massachusetts.,Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts.,Neuroimaging Research for Veterans Center, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, Massachusetts.,Department of Psychology, The Ohio State University, Columbus, Ohio
| | - David H Salat
- Neuroimaging Research for Veterans Center, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, Massachusetts.,Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, Massachusetts.,Anthinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts
| | - Catherine B Fortier
- Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, Massachusetts.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Jennifer R Fonda
- Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts.,Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, Massachusetts.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Regina E McGlinchey
- Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, Massachusetts.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - William P Milberg
- Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, Massachusetts.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Mark W Miller
- National Center for PTSD, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, Massachusetts.,Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
46
|
Feldmann LK, Le Prieult F, Felzen V, Thal SC, Engelhard K, Behl C, Mittmann T. Proteasome and Autophagy-Mediated Impairment of Late Long-Term Potentiation (l-LTP) after Traumatic Brain Injury in the Somatosensory Cortex of Mice. Int J Mol Sci 2019; 20:ijms20123048. [PMID: 31234472 PMCID: PMC6627835 DOI: 10.3390/ijms20123048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 12/21/2022] Open
Abstract
Traumatic brain injury (TBI) can lead to impaired cognition and memory consolidation. The acute phase (24–48 h) after TBI is often characterized by neural dysfunction in the vicinity of the lesion, but also in remote areas like the contralateral hemisphere. Protein homeostasis is crucial for synaptic long-term plasticity including the protein degradation systems, proteasome and autophagy. Still, little is known about the acute effects of TBI on synaptic long-term plasticity and protein degradation. Thus, we investigated TBI in a controlled cortical impact (CCI) model in the motor and somatosensory cortex of mice ex vivo-in vitro. Late long-term potentiation (l-LTP) was induced by theta-burst stimulation in acute brain slices after survival times of 1–2 days. Protein levels for the plasticity related protein calcium/calmodulin-dependent protein kinase II (CaMKII) was quantified by Western blots, and the protein degradation activity by enzymatical assays. We observed missing maintenance of l-LTP in the ipsilateral hemisphere, however not in the contralateral hemisphere after TBI. Protein levels of CaMKII were not changed but, interestingly, the protein degradation revealed bidirectional changes with a reduced proteasome activity and an increased autophagic flux in the ipsilateral hemisphere. Finally, LTP recordings in the presence of pharmacologically modified protein degradation systems also led to an impaired synaptic plasticity: bath-applied MG132, a proteasome inhibitor, or rapamycin, an activator of autophagy, both administered during theta burst stimulation, blocked the induction of LTP. These data indicate that alterations in protein degradation pathways likely contribute to cognitive deficits in the acute phase after TBI, which could be interesting for future approaches towards neuroprotective treatments early after traumatic brain injury.
Collapse
Affiliation(s)
- Lucia K Feldmann
- Institute for Physiology, UMC of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| | - Florie Le Prieult
- Institute for Physiology, UMC of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| | - Vanessa Felzen
- Institute for Pathobiochemistry, UMC of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| | - Serge C Thal
- Clinics for Anaesthesiology, UMC of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.
| | - Kristin Engelhard
- Clinics for Anaesthesiology, UMC of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.
| | - Christian Behl
- Institute for Pathobiochemistry, UMC of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| | - Thomas Mittmann
- Institute for Physiology, UMC of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| |
Collapse
|
47
|
Hagos FT, Adams SM, Poloyac SM, Kochanek PM, Horvat CM, Clark RSB, Empey PE. Membrane transporters in traumatic brain injury: Pathological, pharmacotherapeutic, and developmental implications. Exp Neurol 2019; 317:10-21. [PMID: 30797827 DOI: 10.1016/j.expneurol.2019.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/12/2019] [Accepted: 02/20/2019] [Indexed: 12/12/2022]
Abstract
Membrane transporters regulate the trafficking of endogenous and exogenous molecules across biological barriers and within the neurovascular unit. In traumatic brain injury (TBI), they moderate the dynamic movement of therapeutic drugs and injury mediators among neurons, endothelial cells and glial cells, thereby becoming important determinants of pathogenesis and effective pharmacotherapy after TBI. There are three ways transporters may impact outcomes in TBI. First, transporters likely play a key role in the clearance of injury mediators. Second, genetic association studies suggest transporters may be important in the transition of TBI from acute brain injury to a chronic neurological disease. Third, transporters dynamically control the brain penetration and efflux of many drugs and their distribution within and elimination from the brain, contributing to pharmacoresistance and possibly in some cases pharmacosensitivity. Understanding the nature of drugs or candidate drugs in development with respect to whether they are a transporter substrate or inhibitor is relevant to understand whether they distribute to their target in sufficient concentrations. Emerging data provide evidence of altered expression and function of transporters in humans after TBI. Genetic variability in expression and/or function of key transporters adds an additional dynamic, as shown in recent clinical studies. In this review, evidence supporting the role of individual membrane transporters in TBI are discussed as well as novel strategies for their modulation as possible therapeutic targets. Since data specifically targeting pediatric TBI are sparse, this review relies mainly on experimental studies using adult animals and clinical studies in adult patients.
Collapse
Affiliation(s)
- Fanuel T Hagos
- Center for Clinical Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, PA, United States of America
| | - Solomon M Adams
- Center for Clinical Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, PA, United States of America
| | - Samuel M Poloyac
- Center for Clinical Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, PA, United States of America; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Patrick M Kochanek
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America; UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States of America
| | - Christopher M Horvat
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America; UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States of America
| | - Robert S B Clark
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America; UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States of America.
| | - Philip E Empey
- Center for Clinical Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, PA, United States of America; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America.
| |
Collapse
|
48
|
Abstract
Although concussions are common, they are complex, variable, and not entirely understood in terms of pathophysiology and treatment. The incidence of concussion is expected to continue to rise with the increased participation of youth in sports and improved awareness. The role of orthopedic surgeons in concussion management is murky. However, the existing literature does provide a foundation from which orthopedic surgeons who are exposed to concussed patients can function. [Orthopedics. 2019; 42(1):12-21.].
Collapse
|
49
|
Alosco ML, Stern RA. The long-term consequences of repetitive head impacts: Chronic traumatic encephalopathy. HANDBOOK OF CLINICAL NEUROLOGY 2019; 167:337-355. [PMID: 31753141 DOI: 10.1016/b978-0-12-804766-8.00018-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease associated with exposure to repetitive head impacts (RHI). Although described in boxers for almost a century, scientific and public interest in CTE grew tremendously following a report of postmortem evidence of CTE in the first former professional American football player in 2005. Neuropathologic diagnostic criteria for CTE have been defined, with abnormal perivascular deposition of hyperphosphorylated tau at the sulcal depths as the pathognomonic feature. CTE can currently only be diagnosed postmortem, but clinical research criteria for the in vivo diagnosis of CTE have been proposed. The clinical phenotype of CTE is still ill-defined and there are currently no validated biomarkers to support an in-life diagnosis of "Probable CTE." Many knowledge gaps remain regarding the neuropathologic and clinical make-up of CTE. An increased understanding of CTE is critical given the millions that could potentially be impacted by this disease. This chapter describes the state of the literature on CTE. The historical origins of CTE are first presented, followed by a comprehensive description of the neuropathologic and clinical features. The chapter concludes with discussion on future research directions, emphasizing the importance of diagnosing CTE during life to facilitate development of preventative and intervention strategies.
Collapse
Affiliation(s)
- Michael L Alosco
- Boston University Alzheimer's Disease and CTE Centers, Department of Neurology, Boston University School of Medicine, Boston, MA, United States
| | - Robert A Stern
- Boston University Alzheimer's Disease and CTE Centers, Department of Neurology, Boston University School of Medicine, Boston, MA, United States; Departments of Neurosurgery, and Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States.
| |
Collapse
|
50
|
Esopenko C, Simonds AH, Anderson EZ. The synergistic effect of concussions and aging in women? Disparities and perspectives on moving forward. Concussion 2018; 3:CNC55. [PMID: 30364380 PMCID: PMC6195093 DOI: 10.2217/cnc-2018-0004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 06/11/2018] [Indexed: 12/14/2022] Open
Affiliation(s)
- Carrie Esopenko
- Department of Rehabilitation & Movement Sciences, School of Health Professions, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.,Department of Health Informatics, School of Health Professions, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.,Department of Rehabilitation & Movement Sciences, School of Health Professions, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.,Department of Health Informatics, School of Health Professions, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Adrienne H Simonds
- Department of Rehabilitation & Movement Sciences, School of Health Professions, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.,Department of Rehabilitation & Movement Sciences, School of Health Professions, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Ellen Z Anderson
- Department of Rehabilitation & Movement Sciences, School of Health Professions, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.,Department of Health Informatics, School of Health Professions, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.,Department of Rehabilitation & Movement Sciences, School of Health Professions, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.,Department of Health Informatics, School of Health Professions, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| |
Collapse
|