1
|
Dehghani M, Pourmontaseri H. Aetiology, risk factors and treatment of typical and atypical pressure ulcers in patients with traumatic brain injury: A narrative review. Int Wound J 2024; 21:e14788. [PMID: 38420873 PMCID: PMC10902764 DOI: 10.1111/iwj.14788] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
Pressure ulcers are one of the leading complications in bedridden patients that result in multiple burdens on healthcare systems and patients (11 billion dollars/year). The prevalence of pressure ulcers in traumatic brain injury patients is 1.5-fold compared with the other bedridden patients. Moreover, critical traumatic brain injury patients who are admitted to the intensive care unit experience severe pressure ulcers and further complications. The motor/sensory disabilities and low supplementation and oxygenation to the pressured side were the main mechanisms of the typical pressure ulcers. Intellectual evaluation is the first essential step to prevent the development of pressure ulcers in high-risk patients. Till now, different scales, including Injury Scale Score and Braden Scale Score, have been provided to assess the pressure ulcer. Since low stages of pressure ulcers heal rapidly, traumatic brain injury patients require a periodical assessment to prevent further developments timely. Alongside different procedures provided to prevent and treat any pressure ulcer, traumatic brain injury patients required additional specific protections. For the first line, fast and efficient rehabilitation repairs motor/sensory disabilities and decreases the chance of pressure ulcer. Our review indicated that pressure ulcer in traumatic brain injury had several complex mechanisms that demand special care. Therefore, further studies are required to address these mechanisms and prevent their progression to typical and atypical pressure ulcers.
Collapse
Affiliation(s)
- Mohammadreza Dehghani
- Student Research Committee, Fasa University of Medical SciencesFasaIran
- Projects Support Division, Medical Students AssociationFasa University of Medical SciencesFasaIran
| | - Hossein Pourmontaseri
- Student Research Committee, Fasa University of Medical SciencesFasaIran
- Projects Support Division, Medical Students AssociationFasa University of Medical SciencesFasaIran
| |
Collapse
|
2
|
Xu L, Sun X, Griffiths B, Voloboueva L, Valdes A, Dobrenski M, Min JJ, Stary CM. Sexual Dimorphism in Brain Sirtuin-1 and m6A Methylated Sirtuin-1 mRNA, and in Protection with Post-Injury Anti-miR-200c treatment, after Experimental Stroke in Aged Mice. Aging Dis 2023; 14:892-903. [PMID: 37191419 PMCID: PMC10187686 DOI: 10.14336/ad.2022.1225] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/25/2022] [Indexed: 03/06/2023] Open
Abstract
We previously demonstrated that inhibition of miR-200c was protective against stroke in young adult male mice by augmenting sirtuin-1 (Sirt1). In the present study we assessed the role of miR-200c on injury, Sirt1, and bioenergetic and neuroinflammatory markers in aged male and female mice after experimental stroke. Mice were subjected to 1hr of transient middle cerebral artery occlusion (MCAO) and assessed for post-injury expression of miR-200c, Sirt1 protein and mRNA, N6-methyladenosine (m6A) methylated Sirt1 mRNA, ATP, cytochrome C oxidase activity, tumor necrosis factor alpha (TNFα), interleukin-6 (IL-6), infarct volume and motor function. MCAO induced a decrease in Sirt1 expression at 1d post-injury only in males. No differences in SIRT1 mRNA were observed between the sexes. Females had greater baseline miR-200c expression and a greater increase in miR-200c in response to stroke, while pre-MCAO levels of m6A SIRT1 was greater in females. Males had lower post-MCAO ATP levels and cytochrome C oxidase activity, and higher TNFα and IL-6. Post-injury intravenous treatment with anti-miR-200c reduced miR-200c expression in both sexes. In males, anti-miR-200c increased Sirt1 protein expression, reduced infarct volume, and improved neurological score. Conversely in females anti-miR-200c had no effect on Sirt1 levels and provided no protection against injury from MCAO. These results provide the first evidence of sexual dimorphism in the role of a microRNA in aged mice after experimental stroke and suggest sex-differences in epigenetic modulation of the transcriptome and downstream effects on miR biological activity may play a role in sexually dimorphic outcomes after stroke in aged brains.
Collapse
Affiliation(s)
- Lijun Xu
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, CA 94305, USA.
| | - Xiaoyun Sun
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, CA 94305, USA.
| | - Brian Griffiths
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, CA 94305, USA.
| | - Ludmilla Voloboueva
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, CA 94305, USA.
| | - Alex Valdes
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, CA 94305, USA.
| | - Miles Dobrenski
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, CA 94305, USA.
| | - Jeong-Jin Min
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, CA 94305, USA.
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Creed M Stary
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
3
|
Wang J, Xu J, Dong Y, Su Z, Su H, Cheng Q, Liu X. ADP-ribose transferase PARP16 mediated-unfolded protein response contributes to neuronal cell damage in cerebral ischemia/reperfusion. FASEB J 2023; 37:e22788. [PMID: 36692424 DOI: 10.1096/fj.202201426rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/25/2023]
Abstract
Ischemic stroke is known to cause the accumulation of misfolded proteins and loss of calcium homeostasis, leading to impairment of endoplasmic reticulum (ER) function and activating the unfolded protein response (UPR). PARP16 is an active (ADP-ribosyl)transferase known tail-anchored ER transmembrane protein with a cytosolic catalytic domain. Here, we find PARP16 is highly expressed in ischemic cerebral hemisphere and oxygen-glucose deprivation/reoxygenation (OGD/R)-treated immortalized hippocampal neuronal cell HT22. Using an adeno-associated virus-mediated PARP16 knockdown approach in mice, we find PARP16 knockdown decreases infarct demarcations and has a better neurological outcome after ischemic stroke. Our data indicate PARP16 knockdown decreases ER stress and neuronal death caused by OGD/R, whereas PARP16 overexpression promotes ER stress-mediated cell damage in primary cortical neurons. Furthermore, PARP16 functions mechanistically as ADP-ribosyltransferase to modulate the level of ADP-ribosylation of the corresponding PERK and IRE1α arm of the UPR, and such modifications mediate activation of PERK and IRE1α. Indeed, pharmacological stimulation of the UPR using Brefeldin A partly counteracts PARP16 knockdown-mediated neuronal protection upon OGD/R treatment. In conclusion, PARP16 plays a crucial role in post-ischemic UPR and PARP16 knockdown alleviates brain injury after ischemic stroke. This study demonstrates the potential of the PARP16-PERK/IRE1α axis as a target for neuronal survival in ischemic stroke.
Collapse
Affiliation(s)
- Jinghuan Wang
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, China
| | - Jie Xu
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, China
| | - Yejun Dong
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, China
| | - Zhenghua Su
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, China
| | - Haibi Su
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, China
| | - Qianwen Cheng
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, China
| | - Xinhua Liu
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Clemente-Moragón A, Oliver E, Calle D, Cussó L, Gómez M, Pradillo JM, Castejón R, Rallón N, Benito JM, Fernández-Ferro JC, Carneado-Ruíz J, Moro MA, Sánchez-González J, Fuster V, Cortés-Canteli M, Desco M, Ibáñez B. Neutrophil β 1 adrenoceptor blockade blunts stroke-associated neuroinflammation. Br J Pharmacol 2023; 180:459-478. [PMID: 36181002 PMCID: PMC10100149 DOI: 10.1111/bph.15963] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 04/10/2022] [Accepted: 04/28/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Reperfusion therapy is the standard of care for ischaemic stroke; however, there is a need to identify new therapeutic targets able to ameliorate cerebral damage. Neutrophil β1 adrenoceptors (β1AR) have been linked to neutrophil migration during exacerbated inflammation. Given the central role of neutrophils in cerebral damage during stroke, we hypothesize that β1AR blockade will improve stroke outcomes. EXPERIMENTAL APPROACH Rats were subjected to middle cerebral artery occlusion-reperfusion to evaluate the effect on stroke of the selective β1AR blocker metoprolol (12.5 mg·kg-1 ) when injected i.v. 10 min before reperfusion. KEY RESULTS Magnetic resonance imaging and histopathology analysis showed that pre-reperfusion i.v. metoprolol reduced infarct size. This effect was accompanied by reduced cytotoxic oedema at 24 h and vasogenic oedema at 7 days. Metoprolol-treated rats showed reduced brain neutrophil infiltration and those which infiltrated displayed a high proportion of anti-inflammatory phenotype (N2, YM1+ ). Additional inflammatory models demonstrated that metoprolol specifically blocked neutrophil migration via β1AR and excluded a significant effect on the glia compartment. Consistently, metoprolol did not protect the brain in neutrophil-depleted rats upon stroke. In patients suffering an ischaemic stroke, β1AR blockade by metoprolol reduced circulating neutrophil-platelet co-aggregates. CONCLUSIONS AND IMPLICATIONS Our findings describe that β1AR blockade ameliorates cerebral damage by targeting neutrophils, identifying a novel therapeutic target to improve outcomes in patients with stroke. This therapeutic strategy is in the earliest stages of the translational pathway and should be further explored.
Collapse
Affiliation(s)
- Agustín Clemente-Moragón
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Eduardo Oliver
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Daniel Calle
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Lorena Cussó
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Salud Mental (CIBERSAM), Madrid, Spain
| | - Mónica Gómez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Jesús M Pradillo
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Madrid, Spain
| | - Raquel Castejón
- Internal Medicine Department, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Norma Rallón
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Hospital Universitario Rey Juan Carlos, Madrid, Spain
| | - José M Benito
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Department of Neurology, Hospital Universitario Rey Juan Carlos, Madrid, Spain
| | - José C Fernández-Ferro
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Department of Neurology, Hospital Universitario Rey Juan Carlos, Madrid, Spain
| | | | - María A Moro
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Cardiovascular Risk Factors and Brain Function program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Valentín Fuster
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Marta Cortés-Canteli
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Cardiovascular Risk Factors and Brain Function program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Manuel Desco
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Salud Mental (CIBERSAM), Madrid, Spain
| | - Borja Ibáñez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Cardiology Department, IIS-Fundación Jiménez Díaz Hospital, Madrid, Spain
| |
Collapse
|
5
|
Hart S, Lannon M, Chen A, Martyniuk A, Sharma S, Engels PT. Beta blockers in traumatic brain injury: a systematic review and meta-analysis. Trauma Surg Acute Care Open 2023; 8:e001051. [PMID: 36895782 PMCID: PMC9990673 DOI: 10.1136/tsaco-2022-001051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/16/2023] [Indexed: 03/11/2023] Open
Abstract
Background Traumatic brain injury (TBI) is a major cause of death and disability worldwide. Beta blockers have shown promise in improving mortality and functional outcomes after TBI. The aim of this article is to synthesize the available clinical data on the use of beta blockers in acute TBI. Methods A systematic search was conducted through MEDLINE, Embase, and Cochrane Central Register of Controlled Trials for studies including one or more outcomes of interest associated with use of beta blockers in TBI. Independent reviewers evaluated the quality of the studies and extracted data on all patients receiving beta blockers during their hospital stay compared with placebo or non-intervention. Pooled estimates, CIs, and risk ratios (RRs) or ORs were calculated for all outcomes. Results 13 244 patients from 17 studies were eligible for analysis. Pooled analysis demonstrated a significant mortality benefit of overall use of beta blocker (RR 0.8, 95% CI 0.68 to 0.94, I 2=75%). Subgroup analysis of patients with no preinjury use of beta blocker compared with patients on preinjury beta blockers showed no mortality difference (RR 0.99, 95% CI 0.7 to 1.39, I 2=84%). There was no difference in rate of good functional outcome at hospital discharge (OR 0.94, 95% CI 0.56 to 1.58, I 2=65%); however, there was a functional benefit at longer-term follow-up (OR 1.75, 95% CI 1.09 to 2.8, I 2=0%). Cardiopulmonary and infectious complications were more likely in patients who received beta blockers (RR 1.94, 95% CI 1.69 to 2.24, I 2=0%; RR 2.36, 95% CI 1.42 to 3.91, I 2=88%). Overall quality of the evidence was very low. Conclusions Use of beta blockers is associated with decreased mortality at acute care discharge as well as improved functional outcome at long-term follow-up. Lack of high-quality evidence limits definitive recommendations for use of beta blockers in TBI; therefore, high-quality randomized trials are needed to further elucidate the utility of beta blockers in TBI. PROSPERO registration number CRD42021279700.
Collapse
Affiliation(s)
- Shannon Hart
- Division of Neurosurgery, Hamilton Health Sciences, Hamilton, Ontario, Canada.,Faculty of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Melissa Lannon
- Division of Neurosurgery, Hamilton Health Sciences, Hamilton, Ontario, Canada.,Faculty of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Andrew Chen
- Faculty of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Amanda Martyniuk
- Division of Neurosurgery, Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Sunjay Sharma
- Division of Neurosurgery, Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Paul T Engels
- Departments of Surgery and Critical Care, Hamilton Health Sciences, Hamilton, Ontario, Canada
| |
Collapse
|
6
|
Zhu L, Huang L, Le A, Wang TJ, Zhang J, Chen X, Wang J, Wang J, Jiang C. Interactions between the Autonomic Nervous System and the Immune System after Stroke. Compr Physiol 2022; 12:3665-3704. [PMID: 35766834 DOI: 10.1002/cphy.c210047] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Acute stroke is one of the leading causes of morbidity and mortality worldwide. Stroke-induced immune-inflammatory response occurs in the perilesion areas and the periphery. Although stroke-induced immunosuppression may alleviate brain injury, it hinders brain repair as the immune-inflammatory response plays a bidirectional role after acute stroke. Furthermore, suppression of the systemic immune-inflammatory response increases the risk of life-threatening systemic bacterial infections after acute stroke. Therefore, it is essential to explore the mechanisms that underlie the stroke-induced immune-inflammatory response. Autonomic nervous system (ANS) activation is critical for regulating the local and systemic immune-inflammatory responses and may influence the prognosis of acute stroke. We review the changes in the sympathetic and parasympathetic nervous systems and their influence on the immune-inflammatory response after stroke. Importantly, this article summarizes the mechanisms on how ANS regulates the immune-inflammatory response through neurotransmitters and their receptors in immunocytes and immune organs after stroke. To facilitate translational research, we also discuss the promising therapeutic approaches modulating the activation of the ANS or the immune-inflammatory response to promote neurologic recovery after stroke. © 2022 American Physiological Society. Compr Physiol 12:3665-3704, 2022.
Collapse
Affiliation(s)
- Li Zhu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Leo Huang
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Anh Le
- Washington University in St. Louis, Saint Louis, Missouri, USA
| | - Tom J Wang
- Winston Churchill High School, Potomac, Maryland, USA
| | - Jiewen Zhang
- Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Xuemei Chen
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Junmin Wang
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Jian Wang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China.,Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Chao Jiang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| |
Collapse
|
7
|
Yang Z, Li X, Cao Z, Wang P, Warner DS, Sheng H. Post-ischemia common carotid artery occlusion worsens memory loss, but not sensorimotor deficits, in long-term survived stroke mice. Brain Res Bull 2022; 183:153-161. [PMID: 35304288 DOI: 10.1016/j.brainresbull.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 11/02/2022]
Abstract
Ischemic stroke in rodents is usually induced by intraluminal occlusion of the middle cerebral artery (MCA) via the external carotid artery (ECA) or the common carotid artery (CCA). The latter route requires permanent CCA occlusion after ischemia, and here, we assess its effects on long-term outcomes. Transient occlusion of MCA and CCA was performed at normal body temperature. After 90minutes of ischemia, mice were randomized to permanent CCA occlusion or no occlusion (control group). Body weight, and motor and sensory functions, ie, pole test, adhesive tape removal, and elevated plus maze, were evaluated at 24hours, and at 7 and 28 days after stroke. Infarct volume, apoptosis, and activation of astrocytes and microglia were assessed at 4 weeks by an investigator blinded to groups. The Morris water maze test was performed at 3 weeks in the second experiment. One mouse died at 4 days, and the other mice survived with persistent neurologic deficits. CCA-occluded mice exhibited delayed turn on the pole at 24hours and decreased responses to the von Frey filament, and spent more time on the pole at 7 and 28 days than the control group. Infarction, hemispheric atrophy, glial activation, and apoptotic neuronal death were present in all mice, and no intra-group difference was found. However, CCA-occluded mice had a significantly poorer performance in the Morris water maze compared to the control group, which showed an adverse effect of post-ischemia CCA occlusion on cognition. Thus, the model selection should be well considered in preclinical efficacy studies on stroke-induced vascular dementia and stroke with Alzheimer's disease.
Collapse
Affiliation(s)
- Zhong Yang
- Multidisciplinary Neuroprotection Laboratories, Center of Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Orthopedics, The Fifth Central Hospital of Tianjin, Tanggu District, Tianjin, 300450, China
| | - Xuan Li
- Multidisciplinary Neuroprotection Laboratories, Center of Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Zhipeng Cao
- Multidisciplinary Neuroprotection Laboratories, Center of Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA; School of Forensic Medicine, China Medical University, Shenyang Liaoning, 110122, China
| | - Peng Wang
- Multidisciplinary Neuroprotection Laboratories, Center of Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Anesthesiology, The Fifth Central Hospital of Tianjin, Tanggu District, Tianjin, 300450, China
| | - David S Warner
- Multidisciplinary Neuroprotection Laboratories, Center of Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA; Surgery, Duke University Medical Center, Durham, NC 27710, USA; Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Huaxin Sheng
- Multidisciplinary Neuroprotection Laboratories, Center of Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
8
|
Xu Y, Ge Y, Zhou M, Zhang Z. Clenbuterol, a Selective β2-Adrenergic Receptor Agonist, Inhibits or Limits Post-Stroke Pneumonia, but Increases Infarct Volume in MCAO Mice. J Inflamm Res 2022; 15:295-309. [PMID: 35058704 PMCID: PMC8765548 DOI: 10.2147/jir.s344521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/24/2021] [Indexed: 11/23/2022] Open
Affiliation(s)
- Younian Xu
- Anesthesiology Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yangyang Ge
- Anesthesiology Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Miaomiao Zhou
- Anesthesiology Department, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Correspondence: Miaomiao Zhou Anesthesiology Department, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, Hubei Province, People’s Republic of ChinaTel/Fax +86 027-67812903 Email
| | - Zongze Zhang
- Anesthesiology Department, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
| |
Collapse
|
9
|
Wang J, Zhong W, Su H, Xu J, Yang D, Liu X, Zhu YZ. Histone Methyltransferase Dot1L Contributes to RIPK1 Kinase-Dependent Apoptosis in Cerebral Ischemia/Reperfusion. J Am Heart Assoc 2021; 10:e022791. [PMID: 34796721 PMCID: PMC9075366 DOI: 10.1161/jaha.121.022791] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background Neuron apoptosis is a pivotal process for brain damage in cerebral ischemia. Dot1L (disruptor of telomeric silencing 1‐like) is only known histone H3K79 methyltransferase. It is not clear whether the role and mechanism of Dot1L on cerebral ischemia is related to regulate neuron apoptosis. Methods and Results We use a combination of mice middle cerebral artery occlusion stroke and neurons exposed to oxygen‐glucose deprivation followed by reoxygenation to investigate the role and mechanism of Dot1L on cerebral ischemia. We find knockdown or inhibition of Dot1L reversed ischemia‐induced neuronal apoptosis and attenuated the neurons injury treated by oxygen‐glucose deprivation followed by reoxygenation. Further, blockade of Dot1L prevents RIPK1 (receptor‐interacting protein kinase 1)‐dependent apoptosis through increased RIPK1 K63‐ubiquitylation and decreased formation of RIPK1/Caspase 8 complexes. In line with this, H3K79me3 enrichment in the promoter region of deubiquitin‐modifying enzyme A20 and deubiquitinase cylindromatosis gene promotes the increasing expression in oxygen‐glucose deprivation followed by reoxygenation ‐induced neuronal cells, on the contrary, oxygen‐glucose deprivation followed by reoxygenation decreases H3K79me3 level in the promoter region of ubiquitin‐modifying enzyme cIAP1 (cellular inhibitors of apoptosis proteins), and both these factors ultimately cause K63‐deubiquitination of RIPK1. Importantly, knockdown or inhibition of Dot1L in vivo attenuates apoptosis in middle cerebral artery occlusion mice and reduces the extent of middle cerebral artery occlusion ‐induced brain injury. Conclusions These data support for the first time, to our knowledge, that Dot1L regulating RIPK1 to the apoptotic death trigger contributes to cerebral ischemia injury. Therefore, targeting Dot1L serves as a new therapeutic strategy for ischemia stroke.
Collapse
Affiliation(s)
- Jinghuan Wang
- Department of Pharmacology School of PharmacyHuman Phenome InstituteFudan University Shanghai China
| | - Wen Zhong
- Department of Pharmacology School of PharmacyHuman Phenome InstituteFudan University Shanghai China
| | - Haibi Su
- Department of Pharmacology School of PharmacyHuman Phenome InstituteFudan University Shanghai China
| | - Jie Xu
- Department of Pharmacology School of PharmacyHuman Phenome InstituteFudan University Shanghai China
| | - Di Yang
- Department of Pharmacology School of PharmacyHuman Phenome InstituteFudan University Shanghai China
| | - Xinhua Liu
- Department of Pharmacology School of PharmacyHuman Phenome InstituteFudan University Shanghai China
| | - Yi Zhun Zhu
- Department of Pharmacology School of PharmacyHuman Phenome InstituteFudan University Shanghai China.,State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy Macau University of Science and Technology Macau China
| |
Collapse
|
10
|
Li L, Voloboueva L, Griffiths BB, Xu L, Giffard RG, Stary CM. MicroRNA-338 inhibition protects against focal cerebral ischemia and preserves mitochondrial function in vitro in astrocytes and neurons via COX4I1. Mitochondrion 2021; 59:105-112. [PMID: 33933660 PMCID: PMC8292173 DOI: 10.1016/j.mito.2021.04.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/19/2021] [Accepted: 04/26/2021] [Indexed: 01/23/2023]
Abstract
Brain-enriched microRNA-338 (miR-338) is known to play a central role in brain mitochondrial function, however the role of miR-338 in stroke injury remains unknown. This study investigated the role of miR-338 in injury from transient focal cerebral ischemia in mice, and in cell survival and mitochondrial function after in vitro ischemia in astrocyte and neuronal cultures. Pre-treatment of mice with intracerebroventricular injection of miR-338 antagomir 24 h prior to 1 h of middle cerebral artery occlusion (MCAO) significantly reduced infarct size and improved neurological score at both 24 h and 7d after injury. Levels of the miR-338 target cytochrome-c oxidase subunit 4I1 (COX4I1), which plays an essential role in maintaining brain mitochondrial ATP production, were increased in miR-338 antagomir-treated mice. Mouse primary astrocyte cell cultures subjected to glucose deprivation exhibited increased cell survival when pre-treated with miR-338 inhibitor, and greater cell death with miR-338 mimic. Decreased miR-338 levels were associated with increased ATP production, augmented cytochrome c oxidative (CcO) activity and preservation of COX4I1. In vitro protection with miR-338 inhibitor was blocked by concurrent knockdown of COX4I1 with small interfering RNA. Parallel studies in mouse neuronal N2a cultures resulted in preserved ATP content and CcO activity with miR-338 inhibition, indicating a shared miR-338-dependent response to ischemic stress between brain cell types. These results suggest that miR-338 inhibition and/or COX4I1-targeted therapies may be novel clinical strategies to protect against stroke injury via preservation of mitochondrial function in multiple cell types.
Collapse
Affiliation(s)
- Le Li
- Dept of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA; Dept of Anesthesiology, Southern Medical University, Guangzhou, China
| | - Ludmila Voloboueva
- Dept of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Brian B Griffiths
- Dept of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Lijun Xu
- Dept of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Rona G Giffard
- Dept of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Creed M Stary
- Dept of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
11
|
Neves G, Stickles J, Bueso T, DeToledo JC, Xu KT. Antihypertensive use for stroke in United States emergency departments. J Am Coll Emerg Physicians Open 2020; 1:1467-1471. [PMID: 33392551 PMCID: PMC7771811 DOI: 10.1002/emp2.12312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVE Timely emergency department (ED) control of hypertension in the acute phase of stroke is associated with improved outcomes. It is unclear how emergency physicians use antihypertensive medications to treat severe hypertension associated with stroke. We sought to determine national patterns of antihypertensive use associated with ED visits for stroke in the United States. METHODS We analyzed data from the National Hospital Ambulatory Medical Care Survey (NHAMCS) 2008-2017. We included ED visits associated with ischemic stroke (ICD9 433-434, ICD10 I630-I639) or hemorrhagic stroke (ICD9 430-432, ICD10 I600-I629). We estimated the number and proportions of stroke ED visits with triage blood pressure meeting treatment thresholds (triage systolic blood pressure [SBP] ≥180 mm Hg). We identified the frequency of antihypertensive use, as well as the most commonly used agents. RESULTS Between 2008-2017, of a total 135,012,819 ED visits, 619,791 were associated with stroke (78.3% ischemic strokes and 21.7% hemorrhage strokes). Of all stroke visits, 21.8% received antihypertensive medications. Of the identified visits, 9.0% (95% confidence interval [CI] = 6.0%, 13.1%) ischemic stroke visits and 58.2% (95% CI = 49.0%, 66.9%) hemorrhagic stroke visits met criteria for BP reduction. A total of 47.6% (95% CI = 29.1%, 66.7%) of eligible ischemic stroke visits and 41.5% (95% CI = 30.5%, 53.3%) of eligible hemorrhagic strokes visits received antihypertensives. The most common agents used in ischemic stroke were beta-blockers, calcium-channel blockers, and ACE inhibitors. The most common agents used in hemorrhagic stroke included calcium-channel blockers, beta-blockers, and vasodilators. CONCLUSION In this national sample, less than half of strokes presenting to the ED with hypertension received antihypertensive therapy.
Collapse
Affiliation(s)
- Gabriel Neves
- Department of NeurologyTexas Tech University Health Sciences CenterLubbockTexasUSA
| | - Jimmy Stickles
- Division of Emergency MedicineDepartment of SurgeryTexas Tech University Health Sciences CenterLubbockTexasUSA
| | - Tulio Bueso
- Department of NeurologyTexas Tech University Health Sciences CenterLubbockTexasUSA
| | - John C. DeToledo
- Department of NeurologyTexas Tech University Health Sciences CenterLubbockTexasUSA
| | - Ke Tom Xu
- Division of Emergency MedicineDepartment of SurgeryTexas Tech University Health Sciences CenterLubbockTexasUSA
- Department of Family and Community MedicineTexas Tech University Health Sciences CenterLubbockTexasUSA
| |
Collapse
|
12
|
Du J, Yin G, Hu Y, Shi S, Jiang J, Song X, Zhang Z, Wei Z, Tang C, Lyu H. Coicis semen protects against focal cerebral ischemia-reperfusion injury by inhibiting oxidative stress and promoting angiogenesis via the TGFβ/ALK1/Smad1/5 signaling pathway. Aging (Albany NY) 2020; 13:877-893. [PMID: 33290255 PMCID: PMC7835068 DOI: 10.18632/aging.202194] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022]
Abstract
Background: Ischemic stroke is a devastating disease that causes long-term disability. However, its pathogenesis is unclear, and treatments for ischemic stroke are limited. Recent studies indicate that oxidative stress is involved in the pathological progression of ischemic stroke and that angiogenesis participates in recovery from ischemic stroke. Furthermore, previous studies have shown that Coicis Semen has antioxidative and anti-inflammatory effects in a variety of diseases. In the present study, we investigated whether Coicis Semen has a protective effect against ischemic stroke and the mechanism of this protective effect. Results: Coicis Semen administration significantly decreased the infarct volume and mortality and alleviated neurological deficits at 3, 7 and 14 days after MCAO. In addition, cerebral edema at 3 days poststroke was ameliorated by Coicis Semen treatment. DHE staining showed that ROS levels in the vehicle group were increased at 3 days after reperfusion and then gradually declined, but Coicis Semen treatment reduced ROS levels. The levels of GSH and SOD in the brain were increased by Coicis Semen treatment, while MDA levels were reduced. Furthermore, Coicis Semen treatment decreased the extravasation of EB dye in MCAO mouse brains and elevated expression of the tight junction proteins ZO-1 and Occludin. Double immunofluorescence staining and western blot analysis showed that the expression of angiogenesis markers and TGFβ pathway-related proteins was increased by Coicis Semen administration. Consistent with the in vivo results, cytotoxicity assays showed that Coicis Semen substantially promoted HUVEC survival following OGD/RX in vitro. Additionally, though LY2109761 inhibited the activation of TGFβ signaling in OGD/RX model animals, Coicis Semen cotreatment markedly reversed the downregulation of TGFβ pathway-related proteins and increased VEGF levels. Methods: Adult male wild-type C57BL/6J mice were used to develop a middle cerebral artery occlusion (MCAO) stroke model. Infarct size, neurological deficits and behavior were evaluated on days 3, 7 and 14 after staining. In addition, changes in superoxide dismutase (SOD), GSH and malondialdehyde (MDA) levels were detected with a commercial kit. Blood-brain barrier (BBB) permeability was assessed with Evans blue (EB) dye. Western blotting was also performed to measure the levels of tight junction proteins of the BBB. Additionally, ELISA was performed to measure the level of VEGF in the brain. The colocalization of CD31, angiogenesis markers, and Smad1/5 was assessed by double immunofluorescent staining. TGFβ pathway-related proteins were measured by western blotting. Furthermore, the cell viability of human umbilical vein endothelial cells (HUVECs) following oxygen-glucose deprivation/reoxygenation (OGD/RX) was measured by Cell Counting Kit (CCK)-8 assay. Conclusions: Coicis Semen treatment alleviates brain damage induced by ischemic stroke through inhibiting oxidative stress and promoting angiogenesis by activating the TGFβ/ALK1 signaling pathway.
Collapse
Affiliation(s)
- Jin Du
- Department of Neurosurgery, The People’s Hospital of Chizhou, Chizhou 247000, Anhui, China
| | - Guobing Yin
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China
| | - Yida Hu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Si Shi
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Jiazhen Jiang
- Department of Emergency, Huashan Hospital North, Fudan University, Shanghai 201907, China
| | - Xiaoyan Song
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Zhetao Zhang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, Anhui, China
| | - Zeyuan Wei
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, Anhui, China
| | - Chaoliang Tang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China
| | - Haiyan Lyu
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| |
Collapse
|
13
|
Ye Y, Jin T, Zhang X, Zeng Z, Ye B, Wang J, Zhong Y, Xiong X, Gu L. Meisoindigo Protects Against Focal Cerebral Ischemia-Reperfusion Injury by Inhibiting NLRP3 Inflammasome Activation and Regulating Microglia/Macrophage Polarization via TLR4/NF-κB Signaling Pathway. Front Cell Neurosci 2019; 13:553. [PMID: 31920554 PMCID: PMC6930809 DOI: 10.3389/fncel.2019.00553] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 11/29/2019] [Indexed: 12/18/2022] Open
Abstract
Ischemic stroke is a devastating disease with long-term disability. However, the pathogenesis is unclear and treatments are limited. Meisoindigo, a second-generation derivative of indirubin, has general water solubility and is well-tolerated. Previous studies have shown that meisoindigo reduces inflammation by inhibiting leukocyte chemotaxis and migration. In the present study, we investigated the hypothesis that meisoindigo was also protective against ischemic stroke, then evaluated its underlying mechanisms. In vivo, adult male C57BL/6J wild-type mice were used to produce a middle cerebral artery occlusion (MCAO) stroke model. On day three after reperfusion, obvious improvement in neurological scores, infarct volume reduction and cerebral edema amelioration were observed in meisoindigo treatment. Moreover, immunofluorescence staining and western-blot showed that the expression of NLRP3 inflammasome and its associated proteins in neurons and microglia was inhibited by meisoindigo. The effects of Meisoindigo on NLRP3 inflammasome inactivation and increased the M2 phenotype of microglia/macrophage through shifting from a M1 phenotype, which was possibly mediated by inhibition of TLR4/NF-κB. Furthermore, we verified the inhibitory effect of meisoindigo on TLR4/NF-κB signaling pathway, and found that meisoindigo treatment could significantly suppressed the expression of TLR4/NF-κB pathway-associated proteins in a dose-dependent manner, meanwhile, which resulted in downregulation of HMGB1 and IL-1β. Next, we established an in vitro oxygen glucose deprivation/Reperfusion (OGD/R) model in HT-22 and BV2 cells to simulate ischemic conditions. Cytotoxicity assay showed that meisoindigo substantially improved relative cell vitality and in HT-22 and BV2 cells following OGD/R in vitro. After suffering OGD/R, the TLR4/NF-κB pathway was activated, the expression of NLRP3 inflammasome-associated proteins and M1 microglia/macrophage were increased, but meisoindigo could inhibit above changes in both HT-22 and BV2 cells. Additionally, though lipopolysaccharide stimulated the activation of TLR4 signaling in OGD/R models, meisoindigo co-treatment markedly reversed the upregulation of TLR4 and following activation of NLRP3 inflammasome and polarization of M1 microglia/macrophages mediated by TLR4. Overall, we demonstrate for the first time that meisoindigo post-treatment alleviates brain damage induced by ischemic stroke in vivo and in vitro experiments through blocking activation of the NLRP3 inflammasome and regulating the polarization of microglia/macrophages via inhibition of the TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yingze Ye
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tong Jin
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xu Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhi Zeng
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Baixin Ye
- Department of Hematopathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jinchen Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi Zhong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoxing Xiong
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
14
|
Sun X, Jung JH, Arvola O, Santoso MR, Giffard RG, Yang PC, Stary CM. Stem Cell-Derived Exosomes Protect Astrocyte Cultures From in vitro Ischemia and Decrease Injury as Post-stroke Intravenous Therapy. Front Cell Neurosci 2019; 13:394. [PMID: 31551712 PMCID: PMC6733914 DOI: 10.3389/fncel.2019.00394] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/13/2019] [Indexed: 01/13/2023] Open
Abstract
In the present study, we assessed efficacy of exosomes harvested from human and mouse stem cell cultures in protection of mouse primary astrocyte and neuronal cell cultures following in vitro ischemia, and against ischemic stroke in vivo. Cell media was collected from primary mouse neural stem cell (NSC) cultures or from human induced pluripotent stem cell-derived cardiomyocyte (iCM) cultures. Exosomes were extracted and purified by polyethylene glycol complexing and centrifugation, and exosome size and concentration were determined with a NanoSiteTM particle analyzer. Exosomes were applied to primary mouse cortical astrocyte or neuronal cultures prior to, and/or during, combined oxygen-glucose deprivation (OGD) injury. Cell death was assessed via lactate dehydrogenase (LHD) and propidium iodide staining 24 h after injury. NSC-derived exosomes afforded marked protection to astrocytes following OGD. A more modest (but significant) level of protection was observed with human iCM-derived exosomes applied to astrocytes, and with NSC-derived exosomes applied to primary neuronal cultures. In subsequent experiments, NSC-derived exosomes were injected intravenously into adult male mice 2 h after transient (1 h) middle cerebral artery occlusion (MCAO). Gross motor function was assessed 1 day after reperfusion and infarct volume was assessed 4 days after reperfusion. Mice treated post-stroke with intravenous NSC-derived exosomes exhibited significantly reduced infarct volumes. Together, these results suggest that exosomes isolated from mouse NSCs provide neuroprotection against experimental stroke possibly via preservation of astrocyte function. Intravenous NSC-derived exosome treatment may therefore provide a novel clinical adjuvant for stroke in the immediate post-injury period.
Collapse
Affiliation(s)
- Xiaoyun Sun
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Ji-Hye Jung
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States.,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
| | - Oiva Arvola
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Michelle R Santoso
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Rona G Giffard
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Phillip C Yang
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States.,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
| | - Creed M Stary
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
15
|
Liu H, Zhao M, Wang Z, Han Q, Wu H, Mao X, Wang Y. Involvement of d-amino acid oxidase in cerebral ischaemia induced by transient occlusion of the middle cerebral artery in mice. Br J Pharmacol 2019; 176:3336-3349. [PMID: 31309542 PMCID: PMC6692583 DOI: 10.1111/bph.14764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 05/03/2019] [Accepted: 05/16/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE d-Amino acid oxidase (DAAO) is a flavine adenine dinucleotide-containing flavoenzyme and specifically catalyses oxidative deamination of d-amino acids. This study aimed to explore the association between increased cerebral DAAO expression or enzymic activity and the development of cerebral ischaemia. EXPERIMENTAL APPROACH A mouse model of transient (90 min) middle cerebral artery occlusion (MCAO) was established, and western blotting, enzymic activity assay, and fluorescent immunostaining techniques were used. KEY RESULTS The expression and enzymic activity of DAAO increased over time in the cortical peri-infarct area of the mice subjected to transient MCAO. The DAAO was specifically expressed in astrocytes, and its double immunostaining with the astrocytic intracellular marker, glial fibrillary acidic protein, in the cortical peri-infarct area was up-regulated following ischaemic insult, with peak increase on Day 5 after MCAO. Single intravenous injection of the specific and potent DAAO inhibitor Compound SUN reduced the cerebral DAAO enzymic activity and attenuated neuronal infarction and neurobehavioural deficits with optimal improvement apparent immediately after the MCAO procedure. The neuroprotective effect was dose dependent, with ED50 values of 3.9-4.5 mg·kg-1 . Intracerebroventricular injection of the DAAO gene silencer siRNA/DAAO significantly reduced cerebral DAAO expression and attenuated MCAO-induced neuronal infarction and behavioural deficits. CONCLUSIONS AND IMPLICATIONS Our results, for the first time, demonstrated that increased cerebral astrocytic DAAO expression and enzymic activity were causally associated with the development of neuronal destruction following ischaemic insults, suggesting that targeting cerebral DAAO could be a potential approach for treatment of neurological conditions following cerebral ischaemia.
Collapse
Affiliation(s)
- Hao Liu
- King's LabShanghai Jiao Tong University School of PharmacyShanghaiChina
| | - Meng‐Jing Zhao
- King's LabShanghai Jiao Tong University School of PharmacyShanghaiChina
| | - Zi‐Ying Wang
- King's LabShanghai Jiao Tong University School of PharmacyShanghaiChina
| | - Qiao‐Qiao Han
- King's LabShanghai Jiao Tong University School of PharmacyShanghaiChina
| | - Hai‐Yun Wu
- King's LabShanghai Jiao Tong University School of PharmacyShanghaiChina
| | - Xiao‐fang Mao
- King's LabShanghai Jiao Tong University School of PharmacyShanghaiChina
| | - Yong‐Xiang Wang
- King's LabShanghai Jiao Tong University School of PharmacyShanghaiChina
| |
Collapse
|
16
|
Zheng Y, Wang L, Chen M, Liu L, Pei A, Zhang R, Gan S, Zhu S. Inhibition of T cell immunoglobulin and mucin-1 (TIM-1) protects against cerebral ischemia-reperfusion injury. Cell Commun Signal 2019; 17:103. [PMID: 31438964 PMCID: PMC6704646 DOI: 10.1186/s12964-019-0417-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023] Open
Abstract
Background The T cell Ig domain and mucin domain (TIM)-1 protein expressed on the surface of Th2 cells regulates the immune response by modulating cytokine production. The present study aimed to investigate the role and possible mechanism of TIM-1 in cerebral ischemia-reperfusion injury. Methods Western blot was used to detect TIM-1 and apoptosis-related protein expression, whereas TIM-1 mRNA was examined using quantitative real-time reverse transcription PCR. Flow cytometry and a TdT-mediated biotin-16-dUTP nick-end labeling (TUNEL) assay were used to detect the percentage of apoptotic cells and a pathological examination was performed. The migration of neutrophils and macrophages was analyzed by immunohistochemistry. Results Our results suggest that TIM-1 expression was transiently increased 24 h or 48 h following middle cerebral artery occlusion (MCAO)/reperfusion. The infarct size was markedly increased in MCAO, whereas treatment with a TIM-1-blocking mAb could reduce the infarct size. TIM-1 blocking mAb effectively reduced the number of neutrophils, macrophage functionality, cytokine (i.e., IL-6, IL-1β, and TNF-α) and chemokine (i.e., CXCL-1 and CXCL-2) production in the brain tissue. The effect of in vitro T cell damage on neurons was significantly reduced following treatment with a TIM-1 blocking mAb or the knockdown of TIM-1 in co-cultured T cells and neurons. Conclusion Take together, these results indicated that TIM-1 blockade ameliorated cerebral ischemia-reperfusion injury. Thus, TIM-1 disruption may serve as a novel target for therapy following MCAO.
Collapse
Affiliation(s)
- Yueying Zheng
- Department of Anesthesiology, The 1st Affiliated Hospital, School of Medicine, Zhejiang University, 79# Qingchun Road, 310003, Hangzhou, Zhejiang Province, People's Republic of China
| | - Liqing Wang
- Department of Anesthesiology, The 1st Affiliated Hospital, School of Medicine, Zhejiang University, 79# Qingchun Road, 310003, Hangzhou, Zhejiang Province, People's Republic of China
| | - Manli Chen
- Department of Anesthesiology, The 1st Affiliated Hospital, School of Medicine, Zhejiang University, 79# Qingchun Road, 310003, Hangzhou, Zhejiang Province, People's Republic of China
| | - Lu Liu
- Department of Anesthesiology, The 1st Affiliated Hospital, School of Medicine, Zhejiang University, 79# Qingchun Road, 310003, Hangzhou, Zhejiang Province, People's Republic of China
| | - Aijie Pei
- Department of Anesthesiology, The 1st Affiliated Hospital, School of Medicine, Zhejiang University, 79# Qingchun Road, 310003, Hangzhou, Zhejiang Province, People's Republic of China
| | - Rong Zhang
- Department of Anesthesiology, The 1st Affiliated Hospital, School of Medicine, Zhejiang University, 79# Qingchun Road, 310003, Hangzhou, Zhejiang Province, People's Republic of China
| | - Shuyuan Gan
- Department of Anesthesiology, The 1st Affiliated Hospital, School of Medicine, Zhejiang University, 79# Qingchun Road, 310003, Hangzhou, Zhejiang Province, People's Republic of China.
| | - Shengmei Zhu
- Department of Anesthesiology, The 1st Affiliated Hospital, School of Medicine, Zhejiang University, 79# Qingchun Road, 310003, Hangzhou, Zhejiang Province, People's Republic of China.
| |
Collapse
|
17
|
Hippocampal sub-regional differences in the microRNA response to forebrain ischemia. Mol Cell Neurosci 2019; 98:164-178. [DOI: 10.1016/j.mcn.2019.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 12/17/2022] Open
|
18
|
Lechtenberg KJ, Meyer ST, Doyle JB, Peterson TC, Buckwalter MS. Augmented β2-adrenergic signaling dampens the neuroinflammatory response following ischemic stroke and increases stroke size. J Neuroinflammation 2019; 16:112. [PMID: 31138227 PMCID: PMC6540436 DOI: 10.1186/s12974-019-1506-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/09/2019] [Indexed: 12/20/2022] Open
Abstract
Background Ischemic stroke provokes a neuroinflammatory response and simultaneously promotes release of epinephrine and norepinephrine by the sympathetic nervous system. This increased sympathetic outflow can act on β2-adrenergic receptors expressed by immune cells such as brain-resident microglia and monocyte-derived macrophages (MDMs), but the effect on post-stroke neuroinflammation is unknown. Thus, we investigated how changes in β2-adrenergic signaling after stroke onset influence the microglia/MDM stroke response, and the specific importance of microglia/MDM β2-adrenergic receptors to post-stroke neuroinflammation. Methods To investigate the effects of β2-adrenergic receptor manipulation on post-stroke neuroinflammation, we administered the β2-adrenergic receptor agonist clenbuterol to mice 3 h after the onset of photothrombotic stroke. We immunostained to quantify microglia/MDM numbers and proliferation and to assess morphology and activation 3 days later. We assessed stroke outcomes by measuring infarct volume and functional motor recovery and analyzed gene expression levels of neuroinflammatory molecules. Finally, we evaluated changes in cytokine expression and microglia/MDM response in brains of mice with selective knockout of the β2-adrenergic receptor from microglia and monocyte-lineage cells. Results We report that clenbuterol treatment after stroke onset causes enlarged microglia/MDMs and impairs their proliferation, resulting in reduced numbers of these cells in the peri-infarct cortex by 1.7-fold at 3 days after stroke. These changes in microglia/MDMs were associated with increased infarct volume in clenbuterol-treated animals. In mice that had the β2-adrenergic receptor specifically knocked out of microglia/MDMs, there was no change in morphology or numbers of these cells after stroke. However, knockdown of β2-adrenergic receptors in microglia and MDMs resulted in increased expression of TNFα and IL-10 in peri-infarct tissue, while stimulation of β2-adrenergic receptors with clenbuterol had the opposite effect, suppressing TNFα and IL-10 expression. Conclusions We identified β2-adrenergic receptor signaling as an important regulator of the neuroimmune response after ischemic stroke. Increased β2-adrenergic signaling after stroke onset generally suppressed the microglia/MDM response, reducing upregulation of both pro- and anti-inflammatory cytokines, and increasing stroke size. In contrast, diminished β2-adrenergic signaling in microglia/MDMs augmented both pro- and anti-inflammatory cytokine expression after stroke. The β2-adrenergic receptor may therefore present a therapeutic target for improving the post-stroke neuroinflammatory and repair process.
Collapse
Affiliation(s)
- Kendra J Lechtenberg
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Palo Alto, Stanford, CA, 94305, USA
| | - Scott T Meyer
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Palo Alto, Stanford, CA, 94305, USA
| | - Janelle B Doyle
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Palo Alto, Stanford, CA, 94305, USA
| | - Todd C Peterson
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Palo Alto, Stanford, CA, 94305, USA
| | - Marion S Buckwalter
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Palo Alto, Stanford, CA, 94305, USA. .,Department of Neurosurgery, Stanford School of Medicine, Palo Alto, Stanford, CA, 94305, USA.
| |
Collapse
|
19
|
Beta blockers in critically ill patients with traumatic brain injury: Results from a multicenter, prospective, observational American Association for the Surgery of Trauma study. J Trauma Acute Care Surg 2019; 84:234-244. [PMID: 29251711 DOI: 10.1097/ta.0000000000001747] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Beta blockers, a class of medications that inhibit endogenous catecholamines interaction with beta adrenergic receptors, are often administered to patients hospitalized after traumatic brain injury (TBI). We tested the hypothesis that beta blocker use after TBI is associated with lower mortality, and secondarily compared propranolol to other beta blockers. METHODS The American Association for the Surgery of Trauma Clinical Trial Group conducted a multi-institutional, prospective, observational trial in which adult TBI patients who required intensive care unit admission were compared based on beta blocker administration. RESULTS From January 2015 to January 2017, 2,252 patients were analyzed from 15 trauma centers in the United States and Canada with 49.7% receiving beta blockers. Most patients (56.3%) received the first beta blocker dose by hospital day 1. Those patients who received beta blockers were older (56.7 years vs. 48.6 years, p < 0.001) and had higher head Abbreviated Injury Scale scores (3.6 vs. 3.4, p < 0.001). Similarities were noted when comparing sex, admission hypotension, mean Injury Severity Score, and mean Glasgow Coma Scale. Unadjusted mortality was lower for patients receiving beta blockers (13.8% vs. 17.7%, p = 0.013). Multivariable regression determined that beta blockers were associated with lower mortality (adjusted odds ratio, 0.35; p < 0.001), and propranolol was superior to other beta blockers (adjusted odds ratio, 0.51, p = 0.010). A Cox-regression model using a time-dependent variable demonstrated a survival benefit for patients receiving beta blockers (adjusted hazard ratio, 0.42, p < 0.001) and propranolol was superior to other beta blockers (adjusted hazard ratio, 0.50, p = 0.003). CONCLUSION Administration of beta blockers after TBI was associated with improved survival, before and after adjusting for the more severe injuries observed in the treatment cohort. This study provides a robust evaluation of the effects of beta blockers on TBI outcomes that supports the initiation of a multi-institutional randomized control trial. LEVEL OF EVIDENCE Therapeutic/care management, level III.
Collapse
|
20
|
Qureshi AI, Qureshi MH. Acute hypertensive response in patients with intracerebral hemorrhage pathophysiology and treatment. J Cereb Blood Flow Metab 2018; 38:1551-1563. [PMID: 28812942 PMCID: PMC6125978 DOI: 10.1177/0271678x17725431] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Acute hypertensive response is a common systemic response to occurrence of intracerebral hemorrhage which has gained unique prominence due to high prevalence and association with hematoma expansion and increased mortality. Presumably, the higher systemic blood pressure predisposes to continued intraparenchymal hemorrhage by transmission of higher pressure to the damaged small arteries and may interact with hemostatic and inflammatory pathways. Therefore, intensive reduction of systolic blood pressure has been evaluated in several clinical trials as a strategy to reduce hematoma expansion and subsequent death and disability. These trials have demonstrated either a small magnitude benefit (second intensive blood pressure reduction in acute cerebral hemorrhage trial and efficacy of nitric oxide in stroke trial) or no benefit (antihypertensive treatment of acute cerebral hemorrhage 2 trial) with intensive systolic blood pressure reduction compared with modest or standard blood pressure reduction. The differences may be explained by the variation in intensity of systolic blood pressure reduction between trials. A treatment threshold of systolic blood pressure of ≥180 mm with the target goal of systolic blood pressure reduction to values between 130 and 150 mm Hg within 6 h of symptom onset may be best supported by current evidence.
Collapse
|
21
|
Distinct Effects of miR-210 Reduction on Neurogenesis: Increased Neuronal Survival of Inflammation But Reduced Proliferation Associated with Mitochondrial Enhancement. J Neurosci 2017; 37:3072-3084. [PMID: 28188219 DOI: 10.1523/jneurosci.1777-16.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 01/19/2017] [Accepted: 01/24/2017] [Indexed: 01/19/2023] Open
Abstract
Neurogenesis is essential to brain development and plays a central role in the response to brain injury. Stroke and head trauma stimulate proliferation of endogenous neural stem cells (NSCs); however, the survival of young neurons is sharply reduced by postinjury inflammation. Cellular mitochondria are critical to successful neurogenesis and are a major target of inflammatory injury. Mitochondrial protection was shown to improve survival of young neurons. This study tested whether reducing cellular microRNA-210 (miR-210) would enhance mitochondrial function and improve survival of young murine neurons under inflammatory conditions. Several studies have demonstrated the potential of miR-210 inhibition to enhance and protect mitochondrial function through upregulation of mitochondrial proteins. Here, miR-210 inhibition significantly increased neuronal survival and protected the activity of mitochondrial enzymes cytochrome c oxidase and aconitase in differentiating NSC cultures exposed to inflammatory mediators. Unexpectedly, we found that reducing miR-210 significantly attenuated NSC proliferation upon induction of differentiation. Further investigation revealed that increased mitochondrial function suppressed the shift to primarily glycolytic metabolism and reduced mitochondrial length characteristic of dividing cells. Activation of AMP-regulated protein kinase-retinoblastoma signaling is important in NSC proliferation and the reduction of this activation observed by miR-210 inhibition is one mechanism contributing to the reduced proliferation. Postinjury neurogenesis occurs as a burst of proliferation that peaks in days, followed by migration and differentiation over weeks. Our studies suggest that mitochondrial protective miR-210 inhibition should be delayed until after the initial burst of proliferation, but could be beneficial during the prolonged differentiation stage.SIGNIFICANCE STATEMENT Increasing the success of endogenous neurogenesis after brain injury holds therapeutic promise. Postinjury inflammation markedly reduces newborn neuron survival. This study found that enhancement of mitochondrial function by reducing microRNA-210 (miR-210) levels could improve survival of young neurons under inflammatory conditions. miR-210 inhibition protected the activity of mitochondrial enzymes cytochrome c oxidase and aconitase. Conversely, we observed decreased precursor cell proliferation likely due to suppression of the AMP-regulated protein kinase-retinoblastoma axis with miR-210 inhibition. Therefore, mitochondrial protection is a double-edged sword: early inhibition reduces proliferation, but inhibition later significantly increases neuroblast survival. This explains in part the contradictory published reports of the effects of miR-210 on neurogenesis.
Collapse
|
22
|
Fan Y, Xiong X, Zhang Y, Yan D, Jian Z, Xu B, Zhao H. MKEY, a Peptide Inhibitor of CXCL4-CCL5 Heterodimer Formation, Protects Against Stroke in Mice. J Am Heart Assoc 2016; 5:JAHA.116.003615. [PMID: 27633389 PMCID: PMC5079025 DOI: 10.1161/jaha.116.003615] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Background MKEY, a synthetic cyclic peptide inhibitor of CXCL4–CCL5 heterodimer formation, has been shown to protect against atherosclerosis and aortic aneurysm formation by mediating inflammation, but whether it modulates neuroinflammation and brain injury has not been studied. We therefore studied the role of MKEY in stroke‐induced brain injury in mice. Methods and Results MKEY was injected into mice after stroke with 60 minutes of middle cerebral artery occlusion. Infarct volume and neurological deficit scores were measured. Protein levels of CCL5 and its receptor CCR5 were detected by Western blot and fluorescence‐activated cell sorting (FACS), respectively. Numbers of microglia‐derived macrophages (MiMΦs) and monocyte‐derived MΦs (MoMΦs) in the brain, and their subsets, based on the surface markers CD45, CD11b, CCR2, CX3CR1, and Ly6C, were analyzed by FACS. MΦs and neutrophil infiltration in the ischemic brain were stained with CD68 and myeloperoxidase (MPO), respectively, and assessed by immunofluorescent confocal microscopy. The results showed that expressions of CCL5 and its receptor CCR5, were increased in the ischemic brain after stroke. MKEY injection significantly reduced infarct sizes and improved neurological deficit scores measured 72 hours after stroke. In addition, MKEY injection inhibited the number of MoMΦs, but not MiMΦs, in the ischemic brain. Furthermore, MKEY inhibited protein expression levels of Ly6C,CCR2, and CX3CR1 on MoMΦs. Lastly, the confocal study also suggests that the number of CD68‐positive MΦs and MPO‐positive neutrophils was inhibited by MKEY injection. Conclusions MKEY injection protects against stroke‐induced brain injury, probably by inhibiting MoMΦ‐mediated neuroinflammation.
Collapse
Affiliation(s)
- Yifang Fan
- Department of Neurosurgery, Stanford University, Stanford, CA Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Stanford University, Stanford, CA Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yongming Zhang
- Department of Neurosurgery, Stanford University, Stanford, CA
| | - Dongmei Yan
- Department of Neurosurgery, Stanford University, Stanford, CA
| | - Zhihong Jian
- Department of Neurosurgery, Stanford University, Stanford, CA Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Baohui Xu
- Department of Surgery, Stanford University, Stanford, CA
| | - Heng Zhao
- Department of Neurosurgery, Stanford University, Stanford, CA
| |
Collapse
|
23
|
Wang P, Liang X, Lu Y, Zhao X, Liang J. MicroRNA-93 Downregulation Ameliorates Cerebral Ischemic Injury Through the Nrf2/HO-1 Defense Pathway. Neurochem Res 2016; 41:2627-2635. [DOI: 10.1007/s11064-016-1975-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 06/02/2016] [Accepted: 06/03/2016] [Indexed: 02/07/2023]
|
24
|
Osier ND, Dixon CE. Catecholaminergic based therapies for functional recovery after TBI. Brain Res 2015; 1640:15-35. [PMID: 26711850 DOI: 10.1016/j.brainres.2015.12.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/11/2015] [Accepted: 12/14/2015] [Indexed: 11/15/2022]
Abstract
Among the many pathophysiologic consequences of traumatic brain injury are changes in catecholamines, including dopamine, epinephrine, and norepinephrine. In the context of TBI, dopamine is the one most extensively studied, though some research exploring epinephrine and norepinephrine have also been published. The purpose of this review is to summarize the evidence surrounding use of drugs that target the catecholaminergic system on pathophysiological and functional outcomes of TBI using published evidence from pre-clinical and clinical brain injury studies. Evidence of the effects of specific drugs that target catecholamines as agonists or antagonists will be discussed. Taken together, available evidence suggests that therapies targeting the catecholaminergic system may attenuate functional deficits after TBI. Notably, it is fairly common for TBI patients to be treated with catecholamine agonists for either physiological symptoms of TBI (e.g. altered cerebral perfusion pressures) or a co-occuring condition (e.g. shock), or cognitive symptoms (e.g. attentional and arousal deficits). Previous clinical trials are limited by methodological limitations, failure to replicate findings, challenges translating therapies to clinical practice, the complexity or lack of specificity of catecholamine receptors, as well as potentially counfounding effects of personal and genetic factors. Overall, there is a need for additional research evidence, along with a need for systematic dissemination of important study details and results as outlined in the common data elements published by the National Institute of Neurological Diseases and Stroke. Ultimately, a better understanding of catecholamines in the context of TBI may lead to therapeutic advancements. This article is part of a Special Issue entitled SI:Brain injury and recovery.
Collapse
Affiliation(s)
- Nicole D Osier
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, USA; School of Nursing, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - C Edward Dixon
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15260, USA; V.A. Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA.
| |
Collapse
|
25
|
Microarray Profiling and Co-Expression Network Analysis of LncRNAs and mRNAs in Neonatal Rats Following Hypoxic-ischemic Brain Damage. Sci Rep 2015; 5:13850. [PMID: 26349411 PMCID: PMC4563552 DOI: 10.1038/srep13850] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 08/07/2015] [Indexed: 12/13/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) play critical roles in cellular homeostasis. However, little is known about their effect in developing rat brains with hypoxic-ischemic brain damage (HIBD). To explore the expression and function of lncRNA in HIBD, we analyzed the expression profiles of lncRNAs in hypoxic-ischemic (HI) brains and sham control using microarray analysis. The results showed a remarkable difference in lncRNA between HI and sham brains. A total of 322 lncRNAs were found to be differentially expressed in HI brains, compared to sham control. Among these, BC088414 was one of the most significantly urpregulated lncRNAs. In addition, 375 coding genes were differentially expressed between HI brains and sham control. Pathway and gene ontology analysis indicated that the upregulated coding genes mostly involved in wounding, inflammation and defense, whereas the downregulated transcripts were largely associated with neurogenesis and repair. Moreover, coding non-coding co-expression network analysis showed that the BC088414 lncRNA expression was correlated with apoptosis-related genes, including Casp6 and Adrb2. Silencing of lncRNA BC088414 in PC12 cells caused reduced mRNA level of Casp6 and Adrb2, decreased cell apoptosis and increased cell proliferation. These results suggested lncRNA might participate in the pathogenesis of HIBD via regulating coding genes.
Collapse
|
26
|
Blocking stroke-induced immunodeficiency increases CNS antigen-specific autoreactivity but does not worsen functional outcome after experimental stroke. J Neurosci 2015; 35:7777-94. [PMID: 25995466 DOI: 10.1523/jneurosci.1532-14.2015] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Stroke-induced immunodepression (SIDS) is an essential cause of poststroke infections. Pharmacological inhibition of SIDS appears promising in preventing life-threatening infections in stroke patients. However, SIDS might represent an adaptive mechanism preventing autoreactive immune responses after stroke. To address this, we used myelin oligodendrocyte glycoprotein (MOG) T-cell receptor transgenic (2D2) mice where >80% of peripheral CD4(+) T cells express a functional receptor for MOG. We investigated in a murine model of middle cerebral artery occlusion the effect of blocking SIDS by inhibiting body's main stress axes, the sympathetic nervous system (SNS) with propranolol and the hypothalamic-pituitary-adrenal axis (HPA) with mifepristone. Blockade of both stress axes robustly reduced infarct volumes, decreased infection rate, and increased long-term survival of 2D2 and C57BL/6J wild-type mice. Despite these protective effects, blockade of SIDS increased CNS antigen-specific Type1 T helper cell (Th1) responses in the brains of 2D2 mice 14 d after middle cerebral artery occlusion. One month after experimental stroke, 2D2 mice developed signs of polyradiculitis, which were diminished by SIDS blockade. Adoptive transfer of CD4(+) T cells, isolated from 2D2 mice, into lymphocyte-deficient Rag-1KO mice did not reveal differences between SIDS blockade and vehicle treatment in functional long-term outcome after stroke. In conclusion, inhibiting SIDS by pharmacological blockade of body's stress axes increases autoreactive CNS antigen-specific T-cell responses in the brain but does not worsen functional long-term outcome after experimental stroke, even in a mouse model where CNS antigen-specific autoreactive T-cell responses are boosted.
Collapse
|
27
|
Phelan C, Alaigh V, Fortunato G, Staff I, Sansing L. Effect of β-Adrenergic Antagonists on In-Hospital Mortality after Ischemic Stroke. J Stroke Cerebrovasc Dis 2015; 24:1998-2004. [PMID: 26163891 DOI: 10.1016/j.jstrokecerebrovasdis.2015.04.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 03/25/2015] [Accepted: 04/08/2015] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Ischemic stroke accounts for 85%-90% of all strokes and currently has very limited therapeutic options. Recent studies of β-adrenergic antagonists suggest they may have neuroprotective effects that lead to improved functional outcomes in rodent models of ischemic stroke; however, there are limited data in patients. We aimed to determine whether there was an improvement in mortality rates among patients who were taking β-blockers during the acute phase of their ischemic stroke. METHODS A retrospective analysis of a prospectively collected database of ischemic stroke patients was performed. Patients who were on β-adrenergic antagonists both at home and during the first 3 days of hospitalization were compared with patients who were not on β-adrenergic antagonists to determine the association with patient mortality rates. RESULTS The study included a patient population of 2804 patients. In univariate analysis, use of β-adrenergic antagonists was associated with older age, atrial fibrillation, hypertension, and more-severe initial stroke presentation. Despite this, multivariable analysis revealed a reduction in in-hospital mortality among patients who were treated with β-adrenergic antagonists (odds ratio, .657; 95% confidence interval, .655-.658). CONCLUSIONS The continuation of home β-adrenergic antagonist medication during the first 3 days of hospitalization after an ischemic stroke is associated with a decrease in patient mortality. This supports the work done in rodent models suggesting neuroprotective effects of β-blockers after ischemic stroke.
Collapse
Affiliation(s)
| | - Vivek Alaigh
- University of Connecticut School of Medicine, Farmington
| | | | - Ilene Staff
- Research Program, Hartford Hospital, Hartford
| | - Lauren Sansing
- University of Connecticut School of Medicine, Farmington; Department of Neurology, Hartford Hospital, University of Connecticut Health Center, Farmington, CT.
| |
Collapse
|
28
|
Wang H, Li J, Chi H, Zhang F, Zhu X, Cai J, Yang X. MicroRNA-181c targets Bcl-2 and regulates mitochondrial morphology in myocardial cells. J Cell Mol Med 2015; 19:2084-97. [PMID: 25898913 PMCID: PMC4568913 DOI: 10.1111/jcmm.12563] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 01/20/2015] [Indexed: 12/21/2022] Open
Abstract
Apoptosis is an important mechanism for the development of heart failure. Mitochondria are central to the execution of apoptosis in the intrinsic pathway. The main regulator of mitochondrial pathway of apoptosis is Bcl-2 family which includes pro- and anti-apoptotic proteins. MicroRNAs are small noncoding RNA molecules that regulate gene expression by inhibiting mRNA translation and/or inducing mRNA degradation. It has been proposed that microRNAs play critical roles in the cardiovascular physiology and pathogenesis of cardiovascular diseases. Our previous study has found that microRNA-181c, a miRNA expressed in the myocardial cells, plays an important role in the development of heart failure. With bioinformatics analysis, we predicted that miR-181c could target the 3' untranslated region of Bcl-2, one of the anti-apoptotic members of the Bcl-2 family. Thus, we have suggested that miR-181c was involved in regulation of Bcl-2. In this study, we investigated this hypothesis using the Dual-Luciferase Reporter Assay System. Cultured myocardial cells were transfected with the mimic or inhibitor of miR-181c. We found that the level of miR-181c was inversely correlated with the Bcl-2 protein level and that transfection of myocardial cells with the mimic or inhibitor of miR-181c resulted in significant changes in the levels of caspases, Bcl-2 and cytochrome C in these cells. The increased level of Bcl-2 caused by the decrease in miR-181c protected mitochondrial morphology from the tumour necrosis factor alpha-induced apoptosis.
Collapse
Affiliation(s)
- Hongjiang Wang
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jing Li
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Hongjie Chi
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Fan Zhang
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xiaoming Zhu
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jun Cai
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xinchun Yang
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
29
|
Courties G, Herisson F, Sager HB, Heidt T, Ye Y, Wei Y, Sun Y, Severe N, Dutta P, Scharff J, Scadden DT, Weissleder R, Swirski FK, Moskowitz MA, Nahrendorf M. Ischemic stroke activates hematopoietic bone marrow stem cells. Circ Res 2015; 116:407-17. [PMID: 25362208 PMCID: PMC4312511 DOI: 10.1161/circresaha.116.305207] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 10/30/2014] [Indexed: 01/07/2023]
Abstract
RATIONALE The mechanisms leading to an expanded neutrophil and monocyte supply after stroke are incompletely understood. OBJECTIVE To test the hypothesis that transient middle cerebral artery occlusion (tMCAO) in mice leads to activation of hematopoietic bone marrow stem cells. METHODS AND RESULTS Serial in vivo bioluminescence reporter gene imaging in mice with tMCAO revealed that bone marrow cell cycling peaked 4 days after stroke (P<0.05 versus pre tMCAO). Flow cytometry and cell cycle analysis showed activation of the entire hematopoietic tree, including myeloid progenitors. The cycling fraction of the most upstream hematopoietic stem cells increased from 3.34%±0.19% to 7.32%±0.52% after tMCAO (P<0.05). In vivo microscopy corroborated proliferation of adoptively transferred hematopoietic progenitors in the bone marrow of mice with stroke. The hematopoietic system's myeloid bias was reflected by increased expression of myeloid transcription factors, including PU.1 (P<0.05), and by a decline in lymphocyte precursors. In mice after tMCAO, tyrosine hydroxylase levels in sympathetic fibers and bone marrow noradrenaline levels rose (P<0.05, respectively), associated with a decrease of hematopoietic niche factors that promote stem cell quiescence. In mice with genetic deficiency of the β3 adrenergic receptor, hematopoietic stem cells did not enter the cell cycle in increased numbers after tMCAO (naive control, 3.23±0.22; tMCAO, 3.74±0.33, P=0.51). CONCLUSIONS Ischemic stroke activates hematopoietic stem cells via increased sympathetic tone, leading to a myeloid bias of hematopoiesis and higher bone marrow output of inflammatory Ly6C(high) monocytes and neutrophils.
Collapse
Affiliation(s)
- Gabriel Courties
- From the Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston (G.C., H.B.S., T.H., Y.Y., Y.S., P.D., J.S., R.W., F.K.S., M.N.); Stroke and Neurovascular Regulation Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown (F.H., Y.W., M.A.M.); Center for Regenerative Medicine, Massachusetts General Hospital, Boston (N.S., D.T.S.); and Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.)
| | - Fanny Herisson
- From the Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston (G.C., H.B.S., T.H., Y.Y., Y.S., P.D., J.S., R.W., F.K.S., M.N.); Stroke and Neurovascular Regulation Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown (F.H., Y.W., M.A.M.); Center for Regenerative Medicine, Massachusetts General Hospital, Boston (N.S., D.T.S.); and Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.)
| | - Hendrik B Sager
- From the Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston (G.C., H.B.S., T.H., Y.Y., Y.S., P.D., J.S., R.W., F.K.S., M.N.); Stroke and Neurovascular Regulation Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown (F.H., Y.W., M.A.M.); Center for Regenerative Medicine, Massachusetts General Hospital, Boston (N.S., D.T.S.); and Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.)
| | - Timo Heidt
- From the Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston (G.C., H.B.S., T.H., Y.Y., Y.S., P.D., J.S., R.W., F.K.S., M.N.); Stroke and Neurovascular Regulation Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown (F.H., Y.W., M.A.M.); Center for Regenerative Medicine, Massachusetts General Hospital, Boston (N.S., D.T.S.); and Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.)
| | - Yuxiang Ye
- From the Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston (G.C., H.B.S., T.H., Y.Y., Y.S., P.D., J.S., R.W., F.K.S., M.N.); Stroke and Neurovascular Regulation Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown (F.H., Y.W., M.A.M.); Center for Regenerative Medicine, Massachusetts General Hospital, Boston (N.S., D.T.S.); and Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.)
| | - Ying Wei
- From the Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston (G.C., H.B.S., T.H., Y.Y., Y.S., P.D., J.S., R.W., F.K.S., M.N.); Stroke and Neurovascular Regulation Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown (F.H., Y.W., M.A.M.); Center for Regenerative Medicine, Massachusetts General Hospital, Boston (N.S., D.T.S.); and Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.)
| | - Yuan Sun
- From the Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston (G.C., H.B.S., T.H., Y.Y., Y.S., P.D., J.S., R.W., F.K.S., M.N.); Stroke and Neurovascular Regulation Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown (F.H., Y.W., M.A.M.); Center for Regenerative Medicine, Massachusetts General Hospital, Boston (N.S., D.T.S.); and Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.)
| | - Nicolas Severe
- From the Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston (G.C., H.B.S., T.H., Y.Y., Y.S., P.D., J.S., R.W., F.K.S., M.N.); Stroke and Neurovascular Regulation Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown (F.H., Y.W., M.A.M.); Center for Regenerative Medicine, Massachusetts General Hospital, Boston (N.S., D.T.S.); and Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.)
| | - Partha Dutta
- From the Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston (G.C., H.B.S., T.H., Y.Y., Y.S., P.D., J.S., R.W., F.K.S., M.N.); Stroke and Neurovascular Regulation Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown (F.H., Y.W., M.A.M.); Center for Regenerative Medicine, Massachusetts General Hospital, Boston (N.S., D.T.S.); and Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.)
| | - Jennifer Scharff
- From the Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston (G.C., H.B.S., T.H., Y.Y., Y.S., P.D., J.S., R.W., F.K.S., M.N.); Stroke and Neurovascular Regulation Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown (F.H., Y.W., M.A.M.); Center for Regenerative Medicine, Massachusetts General Hospital, Boston (N.S., D.T.S.); and Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.)
| | - David T Scadden
- From the Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston (G.C., H.B.S., T.H., Y.Y., Y.S., P.D., J.S., R.W., F.K.S., M.N.); Stroke and Neurovascular Regulation Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown (F.H., Y.W., M.A.M.); Center for Regenerative Medicine, Massachusetts General Hospital, Boston (N.S., D.T.S.); and Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.)
| | - Ralph Weissleder
- From the Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston (G.C., H.B.S., T.H., Y.Y., Y.S., P.D., J.S., R.W., F.K.S., M.N.); Stroke and Neurovascular Regulation Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown (F.H., Y.W., M.A.M.); Center for Regenerative Medicine, Massachusetts General Hospital, Boston (N.S., D.T.S.); and Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.)
| | - Filip K Swirski
- From the Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston (G.C., H.B.S., T.H., Y.Y., Y.S., P.D., J.S., R.W., F.K.S., M.N.); Stroke and Neurovascular Regulation Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown (F.H., Y.W., M.A.M.); Center for Regenerative Medicine, Massachusetts General Hospital, Boston (N.S., D.T.S.); and Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.)
| | - Michael A Moskowitz
- From the Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston (G.C., H.B.S., T.H., Y.Y., Y.S., P.D., J.S., R.W., F.K.S., M.N.); Stroke and Neurovascular Regulation Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown (F.H., Y.W., M.A.M.); Center for Regenerative Medicine, Massachusetts General Hospital, Boston (N.S., D.T.S.); and Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.)
| | - Matthias Nahrendorf
- From the Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston (G.C., H.B.S., T.H., Y.Y., Y.S., P.D., J.S., R.W., F.K.S., M.N.); Stroke and Neurovascular Regulation Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown (F.H., Y.W., M.A.M.); Center for Regenerative Medicine, Massachusetts General Hospital, Boston (N.S., D.T.S.); and Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.).
| |
Collapse
|
30
|
Stary CM, Xu L, Sun X, Ouyang YB, White RE, Leong J, Li J, Xiong X, Giffard RG. MicroRNA-200c contributes to injury from transient focal cerebral ischemia by targeting Reelin. Stroke 2015; 46:551-6. [PMID: 25604249 DOI: 10.1161/strokeaha.114.007041] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE MicroRNA (miR)-200c increases rapidly in the brain after transient cerebral ischemia but its role in poststroke brain injury is unclear. Reelin, a regulator of neuronal migration and synaptogenesis, is a predicted target of miR-200c. We hypothesized that miR-200c contributes to injury from transient cerebral ischemia by targeting reelin. METHODS Brain infarct volume, neurological score and levels of miR-200c, reelin mRNA, and reelin protein were assessed in mice subjected to 1 hour of middle cerebral artery occlusion with or without intracerebroventricular infusion of miR-200c antagomir, mimic, or mismatch control. Direct targeting of reelin by miR-200c was assessed in vitro by dual luciferase assay and immunoblot. RESULTS Pretreatment with miR-200c antagomir decreased post-middle cerebral artery occlusion brain levels of miR-200c, resulting in a significant reduction in infarct volume and neurological deficit. Changes in brain levels of miR-200c inversely correlated with reelin protein expression. Direct targeting of the Reln 3' untranslated region by miR-200c was verified with dual luciferase assay. Inhibition of miR-200c resulted in an increase in cell survival subsequent to in vitro oxidative injury. This effect was blocked by knockdown of reelin mRNA, whereas application of reelin protein afforded protection. CONCLUSIONS These findings suggest that the poststroke increase in miR-200c contributes to brain cell death by inhibiting reelin expression, and that reducing poststroke miR-200c is a potential target to mitigate stroke-induced brain injury.
Collapse
Affiliation(s)
- Creed M Stary
- From the Department of Anesthesia, Stanford University School of Medicine, CA (C.M.S, L.X., X.S., Y.-B.O., J. Leong, J. Li, X.X., R.G.G.); and Department of Biology, Westfield State University, MA (R.E.W.)
| | - Lijun Xu
- From the Department of Anesthesia, Stanford University School of Medicine, CA (C.M.S, L.X., X.S., Y.-B.O., J. Leong, J. Li, X.X., R.G.G.); and Department of Biology, Westfield State University, MA (R.E.W.)
| | - Xiaoyun Sun
- From the Department of Anesthesia, Stanford University School of Medicine, CA (C.M.S, L.X., X.S., Y.-B.O., J. Leong, J. Li, X.X., R.G.G.); and Department of Biology, Westfield State University, MA (R.E.W.)
| | - Yi-Bing Ouyang
- From the Department of Anesthesia, Stanford University School of Medicine, CA (C.M.S, L.X., X.S., Y.-B.O., J. Leong, J. Li, X.X., R.G.G.); and Department of Biology, Westfield State University, MA (R.E.W.)
| | - Robin E White
- From the Department of Anesthesia, Stanford University School of Medicine, CA (C.M.S, L.X., X.S., Y.-B.O., J. Leong, J. Li, X.X., R.G.G.); and Department of Biology, Westfield State University, MA (R.E.W.)
| | - Jason Leong
- From the Department of Anesthesia, Stanford University School of Medicine, CA (C.M.S, L.X., X.S., Y.-B.O., J. Leong, J. Li, X.X., R.G.G.); and Department of Biology, Westfield State University, MA (R.E.W.)
| | - John Li
- From the Department of Anesthesia, Stanford University School of Medicine, CA (C.M.S, L.X., X.S., Y.-B.O., J. Leong, J. Li, X.X., R.G.G.); and Department of Biology, Westfield State University, MA (R.E.W.)
| | - Xiaoxing Xiong
- From the Department of Anesthesia, Stanford University School of Medicine, CA (C.M.S, L.X., X.S., Y.-B.O., J. Leong, J. Li, X.X., R.G.G.); and Department of Biology, Westfield State University, MA (R.E.W.)
| | - Rona G Giffard
- From the Department of Anesthesia, Stanford University School of Medicine, CA (C.M.S, L.X., X.S., Y.-B.O., J. Leong, J. Li, X.X., R.G.G.); and Department of Biology, Westfield State University, MA (R.E.W.).
| |
Collapse
|
31
|
De Raedt S, De Vos A, De Keyser J. Autonomic dysfunction in acute ischemic stroke: an underexplored therapeutic area? J Neurol Sci 2014; 348:24-34. [PMID: 25541326 DOI: 10.1016/j.jns.2014.12.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 11/30/2014] [Accepted: 12/02/2014] [Indexed: 01/04/2023]
Abstract
Impaired autonomic function, characterized by a predominance of sympathetic activity, is common in patients with acute ischemic stroke. This review describes methods to measure autonomic dysfunction in stroke patients. It summarizes a potential relationship between ischemic stroke-associated autonomic dysfunction and factors that have been associated with worse outcome, including cardiac complications, blood pressure variability changes, hyperglycemia, immune depression, sleep disordered breathing, thrombotic effects, and malignant edema. Involvement of the insular cortex has been suspected to play an important role in causing sympathovagal imbalance, but its exact role and that of other brain regions remain unclear. Although sympathetic overactivity in patients with ischemic stroke appears to be a negative prognostic factor, it remains to be seen whether therapeutic strategies that reduce sympathetic activity or increase parasympathetic activity might improve outcome.
Collapse
Affiliation(s)
- Sylvie De Raedt
- Department of Neurology, Universitair Ziekenhuis Brussel, Center for Neurosciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium.
| | - Aurelie De Vos
- Department of Neurology, Universitair Ziekenhuis Brussel, Center for Neurosciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium.
| | - Jacques De Keyser
- Department of Neurology, Universitair Ziekenhuis Brussel, Center for Neurosciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Department of Neurology, Universitair Medisch Centrum Groningen, Groningen, The Netherlands.
| |
Collapse
|
32
|
Xu LJ, Ouyang YB, Xiong X, Stary CM, Giffard RG. Post-stroke treatment with miR-181 antagomir reduces injury and improves long-term behavioral recovery in mice after focal cerebral ischemia. Exp Neurol 2014; 264:1-7. [PMID: 25433215 DOI: 10.1016/j.expneurol.2014.11.007] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 11/07/2014] [Accepted: 11/15/2014] [Indexed: 12/18/2022]
Abstract
miR-181 has deleterious effects on stroke outcome, and reducing miR-181a levels prior to middle cerebral artery occlusion (MCAO) was shown previously to be protective. Here we tested the effect of post-ischemic treatment with miR-181a antagomir by intracerebroventricular and intravenous routes of administration on infarct size, neurological outcome, inflammatory response and long term behavioral outcome. Post-treatment with miR-181a antagomir significantly reduced infarction size, improved neurological deficits and reduced NF-κB activation, numbers of infiltrating leukocytes and levels of Iba1. Targets affected by miR-181a antagomir administered after stroke onset include BCL2 and X-linked inhibitor of apoptosis protein (XIAP). Post-treatment with miR-181a antagomir significantly improved behavioral outcome assessed by rotarod at one month. These findings indicate that post-treatment with miR-181a antagomir has neuroprotective effects against ischemic neuronal damage and neurological impairment in mice, and the protection is long lasting including recovery of motor function and coordination over one month. The ability to protect the brain with post-treatment with miR-181a antagomir with long lasting effect makes this a promising therapeutic target and may be an innovative and effective new approach for stroke therapy.
Collapse
Affiliation(s)
- Li-Jun Xu
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Yi-Bing Ouyang
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA 94305, United States.
| | - Xiaoxing Xiong
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Creed M Stary
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Rona G Giffard
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA 94305, United States.
| |
Collapse
|
33
|
Lipocalin-2 deficiency attenuates neuroinflammation and brain injury after transient middle cerebral artery occlusion in mice. J Cereb Blood Flow Metab 2014; 34:1306-14. [PMID: 24780901 PMCID: PMC4126090 DOI: 10.1038/jcbfm.2014.83] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 04/10/2014] [Accepted: 04/13/2014] [Indexed: 01/20/2023]
Abstract
Lipocalin-2 (LCN2) is a secreted protein of the lipocalin family, but little is known about the expression or the role of LCN2 in the central nervous system. Here, we investigated the role of LCN2 in ischemic stroke using a rodent model of transient cerebral ischemia. Lipocalin-2 expression was highly induced in the ischemic brain and peaked at 24 hours after reperfusion. After transient middle cerebral artery occlusion, LCN2 was predominantly expressed in astrocytes and endothelial cells, whereas its receptor (24p3R) was mainly detected in neurons, astrocytes, and endothelial cells. Brain infarct volumes, neurologic scores, blood-brain barrier (BBB) permeabilities, glial activation, and inflammatory mediator expression were significantly lower in LCN2-deficient mice than in wild-type animals. Lipocalin-2 deficiency also attenuated glial neurotoxicity in astrocyte/neuron cocultures after oxygen-glucose deprivation. Our results indicate LCN2 has a critical role in brain injury after ischemia/reperfusion, and that LCN2 may contribute to neuronal cell death in the ischemic brain by promoting neurotoxic glial activation, neuroinflammation, and BBB disruption.
Collapse
|
34
|
Dose-effects of aorta-infused clenbuterol on spinal cord ischemia-reperfusion injury in rabbits. PLoS One 2013; 8:e84095. [PMID: 24391890 PMCID: PMC3877193 DOI: 10.1371/journal.pone.0084095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 11/11/2013] [Indexed: 01/17/2023] Open
Abstract
Background The β2 adrenergic receptor (β2AR) plays an important role in ischemia-reperfusion (I/R) injury in various organs. Recently, a selective β2AR agonist clenbuterol was suggested to protect against cerebral I/R injury. This study was designed to investigate changes of β2ARs after spinal cord I/R injury and dose-effects of aorta-infused clenbuterol on spinal cord I/R injury in rabbits. Methods Spinal cord ischemia was induced in New Zealand white rabbits by infrarenal abdominal aortic occlusion with a balloon catheter for 30 minutes except the sham group. During occlusion, nothing (I/R group), normal saline (NS group) or clenbuterol at different doses of 0.005, 0.01, 0.05, 0.1, 0.5, or 1 mg/kg (C0.005, C0.01, C0.05, C0.1, C0.5, and C1 groups) was infused into the occluded aortic segments. The hemodynamic data, blood glucose and serum electrolytes were measured during experimental period. Neurological function was assessed according to the modified Tarlov scales until 48 hours after reperfusion. After that, the lumbar spinal cord was harvested for β2AR immunohistochemistry and histopathologic evaluation in the anterior horns. Results The β2AR expression in the anterior horns of the spinal cord was significantly higher in the I/R group than in the sham group. Tarlov scores and the number of viable α-motor neurons were higher in C0.01-C0.5 groups than in the NS group, C0.005 and C1 groups and were highest in the C0.1 group. Hypotension and hyperglycemia were found in the C1 group. Conclusion β2ARs in the anterior horn were upregulated after spinal cord I/R injury. Aortic-infused clenbuterol (0.01–0.5 mg/kg) can attenuate spinal cord I/R injury dose-dependently during the ischemic period. The Optimal dosage was 0.1 mg/kg. Activation of β2AR could be a new therapeutic strategy for the treatment of spinal cord I/R injury.
Collapse
|
35
|
Gu LJ, Xiong XX, Ito T, Lee J, Xu BH, Krams S, Steinberg GK, Zhao H. Moderate hypothermia inhibits brain inflammation and attenuates stroke-induced immunodepression in rats. CNS Neurosci Ther 2013; 20:67-75. [PMID: 23981596 DOI: 10.1111/cns.12160] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 07/14/2013] [Accepted: 07/15/2013] [Indexed: 01/07/2023] Open
Abstract
AIMS Stroke causes both brain inflammation and immunodepression. Mild-to-moderate hypothermia is known to attenuate brain inflammation, but its role in stroke-induced immunodepression (SIID) of the peripheral immune system remains unknown. This study investigated the effects in rats of moderate intra-ischemic hypothermia on SIID and brain inflammation. METHODS Stroke was induced in rats by permanent distal middle cerebral artery occlusion combined with transient bilateral common carotid artery occlusion, while body temperature was reduced to 30°C. Real-time PCR, flow cytometry, in vitro T-cell proliferation assays, in vivo delayed-type hypersensitivity (DTH) reaction and confocal microscopy were used to study SIID and brain inflammation. RESULTS Brief intra-ischemic hypothermia helped maintain certain leukocytes in the peripheral blood and spleen and enhanced T-cell proliferation in vitro and delayed-type hypersensitivity in vivo, suggesting that hypothermia reduces SIID. In contrast, in the brain, brief intra-Ischemic hypothermia inhibited mRNA expression of anti-inflammatory cytokine IL-10 and proinflammatory mediators INF-γ, TNF-α, IL-2, IL-1β and MIP-2. Brief intra-Ischemic hypothermia also attenuated the infiltration of lymphocytes, neutrophils (MPO(+) cells) and macrophages (CD68(+) cells) into the ischemic brain, suggesting that hypothermia inhibited brain inflammation. CONCLUSIONS Brief intra-ischemic hypothermia attenuated SIID and protected against acute brain inflammation.
Collapse
Affiliation(s)
- Li-Juan Gu
- Department of Neurosurgery, Stanford Stroke Center and Stanford Institute for Neuro-Innovation and Translational Neurosciences, Stanford University, Stanford, CA, USA; Department of Basic Medicine, Hangzhou Normal University, Hangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Joassard OR, Durieux AC, Freyssenet DG. β2-Adrenergic agonists and the treatment of skeletal muscle wasting disorders. Int J Biochem Cell Biol 2013; 45:2309-21. [PMID: 23845739 DOI: 10.1016/j.biocel.2013.06.025] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 06/14/2013] [Accepted: 06/26/2013] [Indexed: 02/04/2023]
Abstract
β2-Agonists are traditionally used for the treatment of bronchospasm associated with asthma and the treatment of symptomatic patients with COPD. However, β2-agonists are also powerful anabolic agents that trigger skeletal muscle hypertrophy. Investigating the effects of β2-agonists in skeletal muscle over the past 30 years in different animal models has led to the identification of potential therapeutic applications in several muscle wasting disorders, including neuromuscular diseases, cancer cachexia, sepsis or thermal injury. In these conditions, numerous studies indicate that β2-agonists can attenuate and/or reverse the decrease in skeletal muscle mass and associated weakness in animal models of muscle wasting but also in human patients. The purpose of this review is to present the biological and clinical significance of β2-agonists for the treatment of skeletal muscle wasting. After the description of the molecular mechanisms involved in the hypertrophy and anti-atrophy effect of β2-agonists, we will review the anti-atrophy effects of β2-agonist administration in several animal models and human pathologies associated with or leading to skeletal muscle wasting. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting.
Collapse
Affiliation(s)
- Olivier R Joassard
- Laboratoire de Physiologie de l'Exercice, Université de Lyon, F-42023 Saint-Etienne, France
| | | | | |
Collapse
|
37
|
Luong KVQ, Nguyen LTH. The role of β-adrenergic blockers in Parkinson's disease: possible genetic and cell-signaling mechanisms. Am J Alzheimers Dis Other Demen 2013; 28:306-17. [PMID: 23695225 PMCID: PMC10852762 DOI: 10.1177/1533317513488919] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Genetic studies have identified numerous factors linking β-adrenergic blockade to Parkinson's disease (PD), including human leukocyte antigen genes, the renin-angiotensin system, poly(adenosine diphosphate-ribose) polymerase 1, nerve growth factor, vascular endothelial growth factor, and the reduced form of nicotinamide adenine dinucleotide phosphate. β-Adrenergic blockade has also been implicated in PD via its effects on matrix metalloproteinases, mitogen-activated protein kinase pathways, prostaglandins, cyclooxygenase 2, and nitric oxide synthase. β-Adrenergic blockade may have a significant role in PD; therefore, the characterization of β-adrenergic blockade in patients with PD is needed.
Collapse
|
38
|
Abstract
MicroRNAs are important in the development, functioning, and pathophysiology of the central nervous system. Here, we show that increasing the levels of microRNA-320 (miR-320) for 3 days markedly increases neurite length, and at 4 days, reduces the total cell number in Neuro-2A cells. In-silico analysis of possible miR-320 targets identified cAMP-regulated phosphoprotein-19 kDa (ARPP-19) and semaphorin 3a as potential targets that could be involved. ARPP-19 was validated by showing reduced mRNA and protein levels when miR-320 was overexpressed, whereas miR-320 had no effect on semaphorin 3a expression. ARPP-19 is known to inhibit protein phosphatase-2A activity, which inhibits mitosis and induces neurite outgrowth, making this the likely mechanism. Thus, increased levels of miR-320 lead to decreased levels of ARPP-19, increased neurite length, and fewer total cells. These data suggest that miR-320 could play a role in neuronal development and might be a target to enhance neuronal regeneration following injury.
Collapse
|
39
|
Sun X, Budas GR, Xu L, Barreto GE, Mochly-Rosen D, Giffard RG. Selective activation of protein kinase C∊ in mitochondria is neuroprotective in vitro and reduces focal ischemic brain injury in mice. J Neurosci Res 2013; 91:799-807. [PMID: 23426889 DOI: 10.1002/jnr.23186] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 11/13/2012] [Accepted: 11/13/2012] [Indexed: 01/08/2023]
Abstract
Activation of protein kinase C∊ (PKC∊) confers protection against neuronal ischemia/reperfusion. Activation of PKC∊ leads to its translocation to multiple intracellular sites, so a mitochondria-selective PKC∊ activator was used to test the importance of mitochondrial activation to the neuroprotective effect of PKC∊. PKC∊ can regulate key cytoprotective mitochondrial functions, including electron transport chain activity, reactive oxygen species (ROS) generation, mitochondrial permeability transition, and detoxification of reactive aldehydes. We tested the ability of mitochondria-selective activation of PKC∊ to protect primary brain cell cultures or mice subjected to ischemic stroke. Pretreatment with either general PKC∊ activator peptide, TAT-Ψ∊RACK, or mitochondrial-selective PKC∊ activator, TAT-Ψ∊HSP90, reduced cell death induced by simulated ischemia/reperfusion in neurons, astrocytes, and mixed neuronal cultures. The protective effects of both TAT-Ψ∊RACK and TAT-Ψ∊HSP90 were blocked by the PKC∊ antagonist ∊V1-2 , indicating that protection requires PKC∊ interaction with its anchoring protein, TAT-∊RACK. Further supporting a mitochondrial mechanism for PKC∊, neuroprotection by TAT-Ψ∊HSP90 was associated with a marked delay in mitochondrial membrane depolarization and significantly attenuated ROS generation during ischemia. Importantly, TAT-Ψ∊HSP90 reduced infarct size and reduced neurological deficit in C57/BL6 mice subjected to middle cerebral artery occlusion and 24 hr of reperfusion. Thus selective activation of mitochondrial PKC∊ preserves mitochondrial function in vitro and improves outcome in vivo, suggesting potential therapeutic value clinically when brain ischemia is anticipated, including neurosurgery and cardiac surgery.
Collapse
Affiliation(s)
- Xiaoyun Sun
- Department of Anesthesia, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | |
Collapse
|
40
|
Xiong X, White RE, Xu L, Yang L, Sun X, Zou B, Pascual C, Sakurai T, Giffard RG, Xie XS. Mitigation of murine focal cerebral ischemia by the hypocretin/orexin system is associated with reduced inflammation. Stroke 2013; 44:764-70. [PMID: 23349191 DOI: 10.1161/strokeaha.112.681700] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND AND PURPOSE Brain ischemia causes immediate and delayed cell death that is exacerbated by inflammation. Recent studies show that hypocretin-1/orexin-A (Hcrt-1) reduces ischemic brain injury, and Hcrt-positive neurons modulate infection-induced inflammation. Here, we tested the hypothesis that Hcrt plays a protective role against ischemia by modulating inflammation. METHODS Orexin/ataxin-3 (AT) mice, a transgenic strain in which Hcrt-producing neurons degenerate in early adulthood, and wild-type mice were subjected to transient middle cerebral artery occlusion (MCAO). Infarct volume, neurological score, and spontaneous home cage activity were assessed. Inflammation was measured using immunohistochemistry, ELISA, and assessment of cytokine mRNA levels. RESULTS Infarct volumes 24 and 48 hours after MCAO were significantly larger, neurological score was worse, and spontaneous activity decreased in AT compared with wild-type mice. Macrophage/microglial infiltration and myeloperoxidase-positive cells were higher in AT compared with wild-type mice. Pre-MCAO intracerebroventricular injection of Hcrt-1 significantly reduced infarct volume and macrophage/microglial infiltration in both genotypes and improved neurological score in AT mice. Post-MCAO treatment decreased infarct size in both wild-type and AT mice, but had no effect on neurological score in either genotype. Microglia express the Hcrt-1 receptor after MCAO. Tumor necrosis factor-α production by lipopolysaccharide-stimulated microglial BV2 cells was significantly reduced by Hcrt-1 pretreatment. Sham AT mice exhibit increased brain tumor necrosis factor-α and interleukin-6 mRNA, suggesting chronic inflammation. CONCLUSIONS Loss of Hcrt neurons in AT mice resulted in worsened stroke outcomes, which were reversed by administration of exogenous Hcrt-1. The mechanism underlying Hcrt-mediated neuroprotection includes attenuation of inflammatory responses after ischemic insult.
Collapse
Affiliation(s)
- Xiaoxing Xiong
- AfaSci Research Laboratories, Redwood City, CA 94063, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Hara MR, Sachs BD, Caron MG, Lefkowitz RJ. Pharmacological blockade of a β(2)AR-β-arrestin-1 signaling cascade prevents the accumulation of DNA damage in a behavioral stress model. Cell Cycle 2013; 12:219-24. [PMID: 23287463 PMCID: PMC3575451 DOI: 10.4161/cc.23368] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Chronic stress is known to have a profound negative impact on human health and has been suggested to influence a number of disease states. However, the mechanisms underlying the deleterious effects of stress remain largely unknown. Stress is known to promote the release of epinephrine, a catecholamine stress hormone that binds to β(2)-adrenergic receptors (β(2)ARs) with high affinity. Our previous work has demonstrated that chronic stimulation of a β(2)AR-β-arrestin-1-mediated signaling pathway by infusion of isoproterenol suppresses p53 levels and impairs genomic integrity. In this pathway, β-arrestin-1, which is activated via β(2)ARs, facilitates the AKT-mediated activation of Mdm2 and functions as a molecular scaffold to promote the binding and degradation of p53 by the E3-ubiquitin ligase, Mdm2. Here, we show that chronic restraint stress in mice recapitulates the effects of isoproterenol infusion to reduce p53 levels and results in the accumulation of DNA damage in the frontal cortex of the brain, two effects that are abrogated by the β-blocker, propranolol and by genetic deletion of β-arrestin-1. These data suggest that the β(2)AR-β-arrestin-1 signaling pathway may represent an attractive therapeutic target to prevent some of the negative consequences of stress in the treatment of stress-related disorders.
Collapse
Affiliation(s)
- Makoto R. Hara
- Department of Medicine; Duke University Medical Center; Durham, NC USA
| | - Benjamin D. Sachs
- Department of Cell Biology; Duke University Medical Center; Durham, NC USA
| | - Marc G. Caron
- Department of Cell Biology; Duke University Medical Center; Durham, NC USA
| | - Robert J. Lefkowitz
- Department of Medicine; Duke University Medical Center; Durham, NC USA
- Howard Hughes Medical Institute; Duke University Medical Center; Durham, NC USA
| |
Collapse
|
42
|
Rousselet E, Kriz J, Seidah NG. Mouse model of intraluminal MCAO: cerebral infarct evaluation by cresyl violet staining. J Vis Exp 2012:4038. [PMID: 23168377 DOI: 10.3791/4038] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Stroke is the third cause of mortality and the leading cause of disability in the World. Ischemic stroke accounts for approximately 80% of all strokes. However, the thrombolytic tissue plasminogen activator (tPA) is the only treatment of acute ischemic stroke that exists. This led researchers to develop several ischemic stroke models in a variety of species. Two major types of rodent models have been developed: models of global cerebral ischemia or focal cerebral ischemia. To mimic ischemic stroke in patients, in whom approximately 80% thrombotic or embolic strokes occur in the territory of the middle cerebral artery (MCA), the intraluminal middle cerebral artery occlusion (MCAO) model is quite relevant for stroke studies. This model was first developed in rats by Koizumi et al. in 1986 (1). Because of the ease of genetic manipulation in mice, these models have also been developed in this species (2-3). Herein, we present the transient MCA occlusion procedure in C57/Bl6 mice. Previous studies have reported that physical properties of the occluder such as tip diameter, length, shape, and flexibility are critical for the reproducibility of the infarct volume (4). Herein, a commercial silicon coated monofilaments (Doccol Corporation) have been used. Another great advantage is that this monofilament reduces the risk to induce subarachnoid hemorrhages. Using the Zeiss stereo-microscope Stemi 2000, the silicon coated monofilament was introduced into the internal carotid artery (ICA) via a cut in the external carotid artery (ECA) until the monofilament occludes the base of the MCA. Blood flow was restored 1 hour later by removal of the monofilament to mimic the restoration of blood flow after lysis of a thromboembolic clot in humans. The extent of cerebral infarct may be evaluated first by a neurologic score and by the measurement of the infarct volume. Ischemic mice were thus analyzed for their neurologic score at different post-reperfusion times. To evaluate the infarct volume, staining with 2,3,5-triphenyltetrazolium chloride (TTC) was usually performed. Herein, we used cresyl violet staining since it offers the opportunity to test many critical markers by immunohistochemistry. In this video, we report the MCAO procedure; neurological scores and the evaluation of the infarct volume by cresyl violet staining.
Collapse
Affiliation(s)
- Estelle Rousselet
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Canada
| | | | | |
Collapse
|
43
|
β-adrenergic receptor inhibition affects cerebral glucose metabolism, motor performance, and inflammatory response after traumatic brain injury. J Trauma Acute Care Surg 2012; 73:33-40. [PMID: 22743370 DOI: 10.1097/ta.0b013e31825a769b] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND The purpose of this study was to evaluate how β-adrenergic receptor inhibition after traumatic brain injury (TBI) alters changes in early cerebral glucose metabolism and motor performance, as well as cerebral cytokine and heat shock protein (HSP) expression. METHODS Mouse cerebral glucose metabolism was measured by microPET fluorodeoxyglucose uptake and converted into standardized uptake values (SUV). Four groups of C57/Bl6 mice (wild type [WT]) were initially evaluated: sham or TBI, followed by tail vein injection of either saline or a nonselective β-adrenergic receptor inhibitor (propranolol, 4 mg/kg). Then motor performance, cerebral cytokine, and HSP70 expression were studied at 12 hours and 24 hours after sham injury or TBI in WT mice treated with saline or propranolol and in β1-adrenergic/β2-adrenergic receptor knockout (BARKO) mice treated with saline. RESULTS Cerebral glucose metabolism was significantly reduced after TBI (mean SUV TBI, 1.63 vs. sham 1.97, p < 0.01) and propranolol attenuated this reduction (mean SUV propranolol, 1.89 vs. saline 1.63, p < 0.01). Both propranolol and BARKO reduced motor deficits at 24 hours after injury, but only BARKO had an effect at 12 hours after injury. TBI WT mice treated with saline performed worse than propranolol mice at 24 hours after injury on rotarod (23 vs. 44 seconds, p < 0.01) and rearing (130 vs. 338 events, p = 0.01) results. At 24 hours after injury, sham BARKO and TBI BARKO mice were similar on rotarod (21 vs. 19 seconds, p = 0.53), ambulatory testing (2,891 vs. 2,274 events, p = 0.14), and rearing (129 vs. 64 events, p = 0.09) results. Interleukin 1β expression was affected by BARKO and propranolol after TBI; attenuation of interleukin 6 and increased HSP70 expression were noted only with BARKO. CONCLUSION β-adrenergic receptor inhibition affects cerebral glucose metabolism, motor performance, as well as cerebral cytokine and HSP expression after TBI.
Collapse
|
44
|
Mice lacking the β2 adrenergic receptor have a unique genetic profile before and after focal brain ischaemia. ASN Neuro 2012; 4:AN20110020. [PMID: 22867428 PMCID: PMC3436074 DOI: 10.1042/an20110020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The role of the β2AR (β2 adrenergic receptor) after stroke is unclear as pharmacological manipulations of the β2AR have produced contradictory results. We previously showed that mice deficient in the β2AR (β2KO) had smaller infarcts compared with WT (wild-type) mice (FVB) after MCAO (middle cerebral artery occlusion), a model of stroke. To elucidate mechanisms of this neuroprotection, we evaluated changes in gene expression using microarrays comparing differences before and after MCAO, and differences between genotypes. Genes associated with inflammation and cell deaths were enriched after MCAO in both genotypes, and we identified several genes not previously shown to increase following ischaemia (Ccl9, Gem and Prg4). In addition to networks that were similar between genotypes, one network with a central core of GPCR (G-protein-coupled receptor) and including biological functions such as carbohydrate metabolism, small molecule biochemistry and inflammation was identified in FVB mice but not in β2KO mice. Analysis of differences between genotypes revealed 11 genes differentially expressed by genotype both before and after ischaemia. We demonstrate greater Glo1 protein levels and lower Pmaip/Noxa mRNA levels in β2KO mice in both sham and MCAO conditions. As both genes are implicated in NF-κB (nuclear factor κB) signalling, we measured p65 activity and TNFα (tumour necrosis factor α) levels 24 h after MCAO. MCAO-induced p65 activation and post-ischaemic TNFα production were both greater in FVB compared with β2KO mice. These results suggest that loss of β2AR signalling results in a neuroprotective phenotype in part due to decreased NF-κB signalling, decreased inflammation and decreased apoptotic signalling in the brain.
Collapse
|
45
|
Barreto GE, White RE, Xu L, Palm CJ, Giffard RG. Effects of heat shock protein 72 (Hsp72) on evolution of astrocyte activation following stroke in the mouse. Exp Neurol 2012; 238:284-96. [PMID: 22940431 DOI: 10.1016/j.expneurol.2012.08.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 08/01/2012] [Accepted: 08/11/2012] [Indexed: 01/08/2023]
Abstract
Astrocyte activation is a hallmark of the response to brain ischemia consisting of changes in gene expression and morphology. Heat shock protein 72 (Hsp72) protects from cerebral ischemia, and although several protective mechanisms have been investigated, effects on astrocyte activation have not been studied. To identify potential mechanisms of protection, microarray analysis was used to assess gene expression in the ischemic hemispheres of wild-type (WT) and Hsp72-overexpressing (Hsp72Tg) mice 24 h after middle cerebral artery occlusion or sham surgery. After stroke both genotypes exhibited changes in genes related to apoptosis, inflammation, and stress, with more downregulated genes in Hsp72Tg and more inflammation-related genes increased in WT mice. Genes indicative of astrocyte activation were also upregulated in both genotypes. To measure the extent and time course of astrocyte activation after stroke, detailed histological and morphological analyses were performed in the cortical penumbra. We observed a marked and persistent increase in glial fibrillary acidic protein (GFAP) and a transient increase in vimentin. No change in overall astrocyte number was observed based on glutamine synthetase immunoreactivity. Hsp72Tg and WT mice were compared for density of astrocytes expressing activation markers and astrocytic morphology. In animals with comparable infarct size, overexpression of Hsp72 reduced the density of GFAP- and vimentin-expressing cells, and decreased astrocyte morphological complexity 72 h following stroke. However, by 30 days astrocyte activation was similar between genotypes. These data indicate that early modulation of astrocyte activation provides an additional novel mechanism associated with Hsp72 overexpression in the setting of ischemia.
Collapse
Affiliation(s)
- George E Barreto
- Department of Anesthesia, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
46
|
|
47
|
Abstract
Reactive astrogliosis is characterized by a profound change in astrocyte phenotype in response to all CNS injuries and diseases. To better understand the reactive astrocyte state, we used Affymetrix GeneChip arrays to profile gene expression in populations of reactive astrocytes isolated at various time points after induction using two mouse injury models, ischemic stroke and neuroinflammation. We find reactive gliosis consists of a rapid, but quickly attenuated, induction of gene expression after insult and identify induced Lcn2 and Serpina3n as strong markers of reactive astrocytes. Strikingly, reactive astrocyte phenotype strongly depended on the type of inducing injury. Although there is a core set of genes that is upregulated in reactive astrocytes from both injury models, at least 50% of the altered gene expression is specific to a given injury type. Reactive astrocytes in ischemia exhibited a molecular phenotype that suggests that they may be beneficial or protective, whereas reactive astrocytes induced by LPS exhibited a phenotype that suggests that they may be detrimental. These findings demonstrate that, despite well established commonalities, astrocyte reactive gliosis is a highly heterogeneous state in which astrocyte activities are altered to respond to the specific injury. This raises the question of how many subtypes of reactive astrocytes exist. Our findings provide transcriptome databases for two subtypes of reactive astrocytes that will be highly useful in generating new and testable hypotheses of their function, as well as for providing new markers to detect different types of reactive astrocytes in human neurological diseases.
Collapse
|
48
|
Gu L, Xiong X, Zhang H, Xu B, Steinberg GK, Zhao H. Distinctive effects of T cell subsets in neuronal injury induced by cocultured splenocytes in vitro and by in vivo stroke in mice. Stroke 2012; 43:1941-6. [PMID: 22678086 DOI: 10.1161/strokeaha.112.656611] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND PURPOSE T cells and their subsets modulate ischemic brain injury. We studied the effects of the absence of T cell subsets on brain infarction after in vivo stroke and then used an in vitro coculture system of splenocytes and neurons to further identify the roles of T cell subsets in neuronal death. METHODS Stroke was induced by middle cerebral artery suture occlusion in mice and infarct sizes were measured 2 days poststroke. Splenocytes were cocultured with neurons, and neuronal survival was measured 3 days later. RESULTS A deficiency of both T and B cells (severe combined immunodeficiency) and the paucity of CD4 or CD8 T cells equally resulted in smaller infarct sizes as measured 2 days poststroke. Although a functional deficiency of regulatory T cells had no effect, impaired Th1 immunity reduced infarction and impaired Th2 immunity aggravated brain injury, which may be due to an inhibited and enhanced inflammatory response in mice deficient in Th1 and Th2 immunity, respectively. In the in vitro coculture system, wild-type splenocytes resulted in dose-dependent neuronal death. The neurotoxicity of splenocytes from these immunodeficient mice was consistent with their effects on stroke in vivo, except for the mice with the paucity of CD4 or CD8 T cells, which did not alter the ratio of neuronal death. CONCLUSIONS T cell subsets play critical roles in brain injury induced by stroke. The detrimental versus beneficial effects of Th1 cells and Th2 cells both in vivo and in vitro reveal differential therapeutic target strategies for stroke treatment.
Collapse
Affiliation(s)
- Lijuan Gu
- Department of Neurosurgery, Stanford University School of Medicine, MSLS Building, P306, 1201 Welch Road, Room P306, Stanford, CA 94305-5327, USA
| | | | | | | | | | | |
Collapse
|
49
|
Lafargue M, Xu L, Carlès M, Serve E, Anjum N, Iles KE, Xiong X, Giffard R, Pittet JF. Stroke-induced activation of the α7 nicotinic receptor increases Pseudomonas aeruginosa lung injury. FASEB J 2012; 26:2919-29. [PMID: 22490926 DOI: 10.1096/fj.11-197384] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Infectious complications, predominantly pneumonia, are the most common cause of death in the postacute phase of stroke, although the mechanisms underlying the corresponding immunosuppression are not fully understood. We tested the hypothesis that activation of the α7 nicotinic acetylcholine receptor (α7nAChR) pathway is important in the stroke-induced increase in lung injury caused by Pseudomonas aeruginosa pneumonia in mice. Prior stroke increased lung vascular permeability caused by P. aeruginosa pneumonia and was associated with decreased lung neutrophil recruitment and bacterial clearance in mice. Pharmacologic inhibition (methyllycaconitine IC(50): 0.2-0.6 nM) or genetic deletion of the α7nAChR significantly (P<0.05) attenuates the effect of prior stroke on lung injury and mortality caused by P. aeruginosa pneumonia in mice. Finally, pretreatment with PNU-282987, a pharmacologic activator of the α7nAChR (EC(50): 0.2 μM), significantly (P<0.05) increased lung injury caused by P. aeruginosa pneumonia, significantly (P<0.05) decreased the release of KC, a major neutrophil chemokine, and significantly (P<0.05) decreased intracellular bacterial killing by a mouse alveolar macrophage cell line and primary mouse neutrophils. In summary, the α7 nicotinic cholinergic pathway plays an important role in mediating the systemic immunosuppression observed after stroke and directly contributes to more severe lung damage induced by P. aeruginosa.
Collapse
Affiliation(s)
- Mathieu Lafargue
- Department of Anesthesia, University of California, San Francisco, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Bukur M, Mohseni S, Mosheni S, Ley E, Salim A, Margulies D, Talving P, Demetriades D, Inaba K. Efficacy of beta-blockade after isolated blunt head injury: does race matter? J Trauma Acute Care Surg 2012; 72:1013-8. [PMID: 22491619 DOI: 10.1097/ta.0b013e318241bc5b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Several retrospective clinical studies and recent prospective animal models demonstrate improved outcomes with beta-blocker administration after isolated blunt head injury. However, no investigations to date have examined the influence of race on the potential therapeutic effectiveness of these medications. Our hypothesis was that mortality benefits associated with beta-blocker exposure after isolated blunt head injury varies based on ethnicity. METHODS The trauma registry and the surgical intensive care unit (ICU) databases of an academic Level I trauma center were used to identify all patients sustaining blunt head injury requiring ICU admission from July 1998 to December 2009. Patients sustaining major associated extracranial injuries (Abbreviated Injury Scale [AIS] score ≥ 3 in any body region) were excluded. Patient demographics, injury profile, Injury Severity Score, and beta-blocker exposure were abstracted. The primary outcome evaluated was in-hospital mortality stratified by ethnicity. RESULTS During the 11-year study period, 3,750 patients were admitted to the Los Angeles County + University of Southern California Medical Center trauma ICU because of blunt trauma. Of these, 65% (n = 2,446) had an "isolated" head injury. When stratified by race, most patients were Hispanics (60%), followed by Whites (21%), Asians (11%), and African Americans (8%). After adjusting for confounding variables with multivariate regression, only those of Asian and Hispanic descent demonstrated significantly improved outcomes associated with beta-blocker administration. CONCLUSIONS Our results indicate that beta-blockade after traumatic brain injury may not benefit all races equally. Further prospective research is necessary to assess this discrepancy in treatment benefit and explore other possible therapeutic interventions.
Collapse
Affiliation(s)
- Marko Bukur
- Department of Surgery, Cedars Sinai Medical Center, 8635 West Third Street, Suite 650, Los Angeles, CA 90048, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|