1
|
Yang S, Poretska O, Poppenberger B, Sieberer T. ALTERED MERISTEM PROGRAM1 sustains cellular differentiation by limiting HD-ZIP III transcription factor gene expression. PLANT PHYSIOLOGY 2024; 196:291-308. [PMID: 38781290 PMCID: PMC11376390 DOI: 10.1093/plphys/kiae300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
Plants show remarkable developmental and regenerative plasticity through the sustained activity of stem cells in meristems. Under certain conditions, pluripotency can even be reestablished in cells that have already entered differentiation. Mutation of the putative carboxypeptidase ALTERED MERISTEM PROGRAM1 (AMP1) in Arabidopsis (Arabidopsis thaliana) causes a set of hypertrophic phenotypes, indicating a defect in the suppression of pluripotency. A role of AMP1 in the miRNA-mediated inhibition of translation has previously been reported; however, how this activity is related to its developmental functions is unclear. Here, we examined the functional interaction between AMP1 and the Class III homeodomain-leucine zipper (HD-ZIP III) transcription factors, which are miRNA-controlled determinants of shoot meristem specification. We found that the HD-ZIP III transcriptional output is enhanced in the amp1 mutant and that plant lines with increased HD-ZIP III activity not only developed amp1 mutant-like phenotypes but also showed a synergistic genetic interaction with the mutant. Conversely, the reduction of HD-ZIP III function suppressed the shoot hypertrophy defects of the amp1 mutant. We further provide evidence that the expression domains of HD-ZIP III family members are expanded in the amp1 mutant and that this misexpression occurs at the transcriptional level and does not involve the function of miRNA165/166. Finally, amp1 mutant-specific phenotypes cannot be mimicked by a general inhibition of miRNA function in the AMP1 expression domain. These findings lead us to a model in which AMP1 restricts cellular pluripotency upstream of HD-ZIP III proteins, and this control appears to be not directly mediated by the canonical miRNA pathway.
Collapse
Affiliation(s)
- Saiqi Yang
- Research Unit Plant Growth Regulation, TUM School of Life Sciences, Technical University of Munich, DE-85354 Freising, Germany
| | - Olena Poretska
- Research Unit Plant Growth Regulation, TUM School of Life Sciences, Technical University of Munich, DE-85354 Freising, Germany
| | - Brigitte Poppenberger
- Professorship Biotechnology of Horticultural Crops, TUM School of Life Sciences, Technical University of Munich, DE-85354 Freising, Germany
| | - Tobias Sieberer
- Research Unit Plant Growth Regulation, TUM School of Life Sciences, Technical University of Munich, DE-85354 Freising, Germany
| |
Collapse
|
2
|
Han E, Geng Z, Qin Y, Wang Y, Ma S. Single-cell network analysis reveals gene expression programs for Arabidopsis root development and metabolism. PLANT COMMUNICATIONS 2024; 5:100978. [PMID: 38783601 PMCID: PMC11369779 DOI: 10.1016/j.xplc.2024.100978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/24/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Single-cell RNA-sequencing datasets of Arabidopsis roots have been generated, but related comprehensive gene co-expression network analyses are lacking. We conducted a single-cell gene co-expression network analysis with publicly available scRNA-seq datasets of Arabidopsis roots using a SingleCellGGM algorithm. The analysis identified 149 gene co-expression modules, which we considered to be gene expression programs (GEPs). By examining their spatiotemporal expression, we identified GEPs specifically expressed in major root cell types along their developmental trajectories. These GEPs define gene programs regulating root cell development at different stages and are enriched with relevant developmental regulators. As examples, a GEP specific for the quiescent center (QC) contains 20 genes regulating QC and stem cell niche homeostasis, and four GEPs are expressed in sieve elements (SEs) from early to late developmental stages, with the early-stage GEP containing 17 known SE developmental regulators. We also identified GEPs for metabolic pathways with cell-type-specific expression, suggesting the existence of cell-type-specific metabolism in roots. Using the GEPs, we discovered and verified a columella-specific gene, NRL27, as a regulator of the auxin-related root gravitropism response. Our analysis thus systematically reveals GEPs that regulate Arabidopsis root development and metabolism and provides ample resources for root biology studies.
Collapse
Affiliation(s)
- Ershang Han
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei 230027, China
| | - Zhenxing Geng
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei 230027, China
| | - Yue Qin
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei 230027, China
| | - Yuewei Wang
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei 230027, China
| | - Shisong Ma
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei 230027, China; School of Data Science, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
3
|
Ye YY, Liu DD, Tang RJ, Gong Y, Zhang CY, Mei P, Ma CL, Chen JD. Bulked Segregant RNA-Seq Reveals Different Gene Expression Patterns and Mutant Genes Associated with the Zigzag Pattern of Tea Plants ( Camellia sinensis). Int J Mol Sci 2024; 25:4549. [PMID: 38674133 PMCID: PMC11049935 DOI: 10.3390/ijms25084549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The unique zigzag-patterned tea plant is a rare germplasm resource. However, the molecular mechanism behind the formation of zigzag stems remains unclear. To address this, a BC1 genetic population of tea plants with zigzag stems was studied using histological observation and bulked segregant RNA-seq. The analysis revealed 1494 differentially expressed genes (DEGs) between the upright and zigzag stem groups. These DEGs may regulate the transduction and biosynthesis of plant hormones, and the effects on the phenylpropane biosynthesis pathways may cause the accumulation of lignin. Tissue sections further supported this finding, showing differences in cell wall thickness between upright and curved stems, potentially due to lignin accumulation. Additionally, 262 single-nucleotide polymorphisms (SNPs) across 38 genes were identified as key SNPs, and 5 genes related to zigzag stems were identified through homologous gene function annotation. Mutations in these genes may impact auxin distribution and content, resulting in the asymmetric development of vascular bundles in curved stems. In summary, we identified the key genes associated with the tortuous phenotype by using BSR-seq on a BC1 population to minimize genetic background noise.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chun-Lei Ma
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (Y.-Y.Y.); (D.-D.L.); (R.-J.T.); (Y.G.); (C.-Y.Z.); (P.M.)
| | - Jie-Dan Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (Y.-Y.Y.); (D.-D.L.); (R.-J.T.); (Y.G.); (C.-Y.Z.); (P.M.)
| |
Collapse
|
4
|
Zhang L, Peng J, Zhang A, Zhang S. Morphological change and genome-wide transcript analysis of Haloxylon ammodendron leaf development reveals morphological characteristics and genes associated with the different C3 and C4 photosynthetic metabolic pathways. TREE PHYSIOLOGY 2024; 44:tpae018. [PMID: 38284810 DOI: 10.1093/treephys/tpae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/21/2024] [Indexed: 01/30/2024]
Abstract
C4 photosynthesis outperforms C3 photosynthesis in natural ecosystems by maintaining a high photosynthetic rate and affording higher water-use and nitrogen-use efficiencies. C4 plants can survive in environments with poor living conditions, such as high temperatures and arid regions, and will be crucial to ecological and agricultural security in the face of global climate change in the future. However, the genetic architecture of C4 photosynthesis remains largely unclear, especially the genetic regulation of C4 Kranz anatomy. Haloxylon ammodendron is an important afforestation tree species and a valuable C4 wood plant in the desert region. The unique characteristic of H. ammodendron is that, during the seedling stage, it utilizes C3 photosynthesis, while in mature assimilating shoots (maAS), it switches to the C4 pathway. This makes an exceptional opportunity for studying the development of the C4 Kranz anatomy and metabolic pathways within individual plants (identical genome). To provide broader insight into the regulation of Kranz anatomy and non-Kranz leaves of the C4 plant H. ammodendron, carbon isotope values, anatomical sections and transcriptome analyses were used to better understand the molecular and cellular processes related to the development of C4 Kranz anatomy. This study revealed that H. ammodendron conducts C3 in the cotyledon before it switches to C4 in AS. However, the switching requires a developmental process. Stable carbon isotope discrimination measurements on three different developmental stages showed that young AS have a C3-like δ13C even though C4 Kranz anatomy is found, which is inconsistent with the anatomical findings. A C4-like δ13C can be measured in AS until they are mature. The expression analysis of C4 key genes also showed that the maAS exhibited higher expression than the young AS. In addition, many genes that may be related to the development of Kranz anatomy were screened. Comparison of gene expression patterns with respect to anatomy during leaf ontogeny provided insight into the genetic features of Kranz anatomy. This study helps with our understanding of the development of Kranz anatomy and provides future directions for studies on key C4 regulatory genes.
Collapse
Affiliation(s)
- Lingling Zhang
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Jieying Peng
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Anna Zhang
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Sheng Zhang
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling, Shaanxi 712100, China
- College of Life Science and Technology, Xinjiang University, 666 Shengli Road, Urumchi 830046, China
| |
Collapse
|
5
|
Xu L, Liu Y, Zhang J, Wu W, Hao Z, He S, Li Y, Shi J, Chen J. Genomic survey and expression analysis of LcARFs reveal multiple functions to somatic embryogenesis in Liriodendron. BMC PLANT BIOLOGY 2024; 24:94. [PMID: 38326748 PMCID: PMC10848544 DOI: 10.1186/s12870-024-04765-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/24/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND Auxin response factors (ARFs) are critical transcription factors that mediate the auxin signaling pathway and are essential for regulating plant growth. However, there is a lack of understanding regarding the ARF gene family in Liriodendron chinense, a vital species in landscaping and economics. Thus, further research is needed to explore the roles of ARFs in L. chinense and their potential applications in plant development. RESULT In this study, we have identified 20 LcARF genes that belong to three subfamilies in the genome of L. chinense. The analysis of their conserved domains, gene structure, and phylogeny suggests that LcARFs may be evolutionarily conserved and functionally similar to other plant ARFs. The expression of LcARFs varies in different tissues. Additionally, they are also involved in different developmental stages of somatic embryogenesis. Overexpression of LcARF1, LcARF2a, and LcARF5 led to increased activity within callus. Additionally, our promoter-GFP fusion study indicated that LcARF1 may play a role in embryogenesis. Overall, this study provides insights into the functions of LcARFs in plant development and embryogenesis, which could facilitate the improvement of somatic embryogenesis in L. chinense. CONCLUSION The research findings presented in this study shed light on the regulatory roles of LcARFs in somatic embryogenesis in L. chinense and may aid in accelerating the breeding process of this tree species. By identifying the specific LcARFs involved in different stages of somatic embryogenesis, this study provides a basis for developing targeted breeding strategies aimed at optimizing somatic embryogenesis in L. chinense, which holds great potential for improving the growth and productivity of this economically important species.
Collapse
Affiliation(s)
- Lin Xu
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, China
| | - Ye Liu
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, China
| | - Jiaji Zhang
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, China
| | - Weihuang Wu
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, China
| | - Zhaodong Hao
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, China
| | - Shichan He
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, China
| | - Yiran Li
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, China
| | - Jisen Shi
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, China.
| | - Jinhui Chen
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, China.
| |
Collapse
|
6
|
Wójcikowska B, Belaidi S, Robert HS. Game of thrones among AUXIN RESPONSE FACTORs-over 30 years of MONOPTEROS research. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6904-6921. [PMID: 37450945 PMCID: PMC10690734 DOI: 10.1093/jxb/erad272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
For many years, research has been carried out with the aim of understanding the mechanism of auxin action, its biosynthesis, catabolism, perception, and transport. One central interest is the auxin-dependent gene expression regulation mechanism involving AUXIN RESPONSE FACTOR (ARF) transcription factors and their repressors, the AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) proteins. Numerous studies have been focused on MONOPTEROS (MP)/ARF5, an activator of auxin-dependent gene expression with a crucial impact on plant development. This review summarizes over 30 years of research on MP/ARF5. We indicate the available analytical tools to study MP/ARF5 and point out the known mechanism of MP/ARF5-dependent regulation of gene expression during various developmental processes, namely embryogenesis, leaf formation, vascularization, and shoot and root meristem formation. However, many questions remain about the auxin dose-dependent regulation of gene transcription by MP/ARF5 and its isoforms in plant cells, the composition of the MP/ARF5 protein complex, and, finally, all the genes under its direct control. In addition, information on post-translational modifications of MP/ARF5 protein is marginal, and knowledge about their consequences on MP/ARF5 function is limited. Moreover, the epigenetic factors and other regulators that act upstream of MP/ARF5 are poorly understood. Their identification will be a challenge in the coming years.
Collapse
Affiliation(s)
- Barbara Wójcikowska
- Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Institute of Biology, Biotechnology, and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Samia Belaidi
- Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Hélène S Robert
- Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
7
|
Li R, Wang Z, Wang JW, Li L. Combining single-cell RNA sequencing with spatial transcriptome analysis reveals dynamic molecular maps of cambium differentiation in the primary and secondary growth of trees. PLANT COMMUNICATIONS 2023; 4:100665. [PMID: 37491818 PMCID: PMC10504605 DOI: 10.1016/j.xplc.2023.100665] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/04/2023] [Accepted: 07/24/2023] [Indexed: 07/27/2023]
Abstract
Primary and secondary growth of the tree stem are responsible for corresponding increases in trunk height and diameter. However, our molecular understanding of the biological processes that underlie these two types of growth is incomplete. In this study, we used single-cell RNA sequencing and spatial transcriptome sequencing to reveal the transcriptional landscapes of primary and secondary growth tissues in the Populus stem. Comparison between the cell atlas and differentiation trajectory of primary and secondary growth revealed different regulatory networks involved in cell differentiation from cambium to xylem precursors and phloem precursors. These regulatory networks may be controlled by auxin accumulation and distribution. Analysis of cell differentiation trajectories suggested that vessel and fiber development followed a sequential pattern of progressive transcriptional regulation. This research provides new insights into the processes of cell identity and differentiation that occur throughout primary and secondary growth of tree stems, increasing our understanding of the cellular differentiation dynamics that occur during stem growth in trees.
Collapse
Affiliation(s)
- Renhui Li
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhifeng Wang
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
8
|
Cheng Y, Cheng L, Hu G, Guo X, Lan Y. Auxin and CmAP1 regulate the reproductive development of axillary buds in Chinese chestnut (Castanea mollissima). PLANT CELL REPORTS 2023; 42:287-296. [PMID: 36528704 DOI: 10.1007/s00299-022-02956-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Auxin accumulation upregulates the expression of APETALA1 (CmAP1) and subsequently activates inflorescence primordium development in axillary buds of chestnut. The architecture of fruiting branches is a key determinant of chestnut yield. Normally, axillary buds at the top of mother fruiting branches develop into flowering shoots and bear fruits, and the lower axillary buds develop into vegetative shoots. Decapitation of the upper axillary buds induces the lower buds to develop into flowering shoots. How decapitation modulates the tradeoff between vegetative and reproductive development is unclear. We detected inflorescence primordia within both upper and lower axillary buds on mother fruiting branches. The level of the phytohormones 3-indoleacetic acid (IAA) and trans-zeatin (tZ) increased in the lower axillary buds in response to decapitation. Exogenous application of the synthetic analogues 1-naphthylacetic acid (NAA) or 6-benzyladenine (6-BA) blocked or promoted, respectively, the development of the inflorescence primordia in axillary buds. The transcript levels of the floral identity gene CmAP1 increased in axillary buds following decapitation. An auxin response element TGA-box is present in the CmAP1 promoter and influenced the CmAP1 promoter-driven expression of β-glucuronidase (GUS) in floral organs in Arabidopsis, suggesting that CmAP1 is induced by auxin. We propose that decapitation releases axillary bud outgrowth from inhibition caused by apical dominance. During this process, decapitation-induced accumulation of auxin induces CmAP1 expression, subsequently promoting the reproductive development of axillary buds.
Collapse
Affiliation(s)
- Yunhe Cheng
- Engineering and Technology Research Center for Chestnut of National Forestry and Grassland Administration, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Beijing Engineering Research Center for Deciduous Fruit Trees, Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Ruiwangfeng No. 12, Haidian, Beijing, 100093, China
| | - Lili Cheng
- Engineering and Technology Research Center for Chestnut of National Forestry and Grassland Administration, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Beijing Engineering Research Center for Deciduous Fruit Trees, Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Ruiwangfeng No. 12, Haidian, Beijing, 100093, China
| | - Guanglong Hu
- Engineering and Technology Research Center for Chestnut of National Forestry and Grassland Administration, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Beijing Engineering Research Center for Deciduous Fruit Trees, Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Ruiwangfeng No. 12, Haidian, Beijing, 100093, China
| | - Xiaomeng Guo
- College of Forestry, Shenyang Agriculture University, Shenyang, 110866, Liaoning, China
| | - Yanping Lan
- Engineering and Technology Research Center for Chestnut of National Forestry and Grassland Administration, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Beijing Engineering Research Center for Deciduous Fruit Trees, Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Ruiwangfeng No. 12, Haidian, Beijing, 100093, China.
| |
Collapse
|
9
|
Mei M, Ai W, Liu L, Xu X, Lu X. Genome-wide identification of the auxin response factor (ARF) gene family in Magnolia sieboldii and functional analysis of MsARF5. FRONTIERS IN PLANT SCIENCE 2022; 13:958816. [PMID: 36275560 PMCID: PMC9581218 DOI: 10.3389/fpls.2022.958816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Auxin plays an essential role in flowering, embryonic development, seed dormancy, and germination. Auxin response factors (ARFs) are plant-specific key transcriptional factors in mediating the gene expression network of auxin signaling. Although ARFs in model plants such as Arabidopsis had been well characterized, their identities and potential roles in non-model plants are less studied. Here, we performed genome-wide identification of ARFs in Magnolia sieboldii K. Koch, a primitive species with high taxonomic importance and medicinal values. We found 25 ARF genes in M. sieboldii, which were widely distributed across multiple chromosomes. Based on sequence similarity, the encoded proteins could be either transcriptional repressors or activators. Gene expression analysis showed a dynamic pattern for many ARFs including MsARF5 during seed germination. In addition, overexpressing of MsARF5 showed that it restores many developmental defects in the Arabidopsis mutant. Moreover, two phenotypically distinct transgenic Arabidopsis lines were obtained, indicating a link between gene expression levels and developmental phenotypes. Taken together, we provided a systematic investigation of the ARF gene family in M. sieboldii and revealed an important role of MsARF5 in mediating auxin signaling.
Collapse
Affiliation(s)
- Mei Mei
- Department of Forestry, Shenyang Agricultural University, Shenyang, China
- Biotechnology and Analysis Test Center, Liaoning Academy of Forest Science, Shenyang, China
| | - Wanfeng Ai
- Department of Forestry, Shenyang Agricultural University, Shenyang, China
| | - Lin Liu
- Department of Forestry, Shenyang Agricultural University, Shenyang, China
| | - Xin Xu
- Department of Forestry, Shenyang Agricultural University, Shenyang, China
| | - Xiujun Lu
- Department of Forestry, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
10
|
Wang J, Su H, Wu Z, Wang W, Zhou Y, Li M. Integrated Metabolites and Transcriptomics at Different Growth Stages Reveal Polysaccharide and Flavonoid Biosynthesis in Cynomorium songaricum. Int J Mol Sci 2022; 23:ijms231810675. [PMID: 36142587 PMCID: PMC9501575 DOI: 10.3390/ijms231810675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022] Open
Abstract
Cynomorium songaricum is a perennial parasitic herb, and its stem is widely used as a traditional Chinese medicine, which largely relies on bioactive compounds (e.g., polysaccharides, flavonoids, and triterpenes). To date, although the optimum harvest time of stems has been demonstrated at the unearthed stage (namely the early flowering stage, EFS), the accumulation mechanism of polysaccharides and flavonoids during growth stages is still limited. In this study, the physiological characteristics (stem fresh weight, contents of soluble sugar and flavonoids, and antioxidant capacity) at four different growth stages (germination stage (GS), vegetative growth stage (VGS), EFS, and flowering stage (FS)) were determined, transcriptomics were analyzed by illumina sequencing, and expression levels of key genes were validated by qRT-PCR at the GS, VGS, and EFS. The results show that the stem biomass, soluble sugar and total flavonoids contents, and antioxidant capacity peaked at EFS compared with GS, VGS, and FS. A total of 6098 and 13,023 differentially expressed genes (DEGs) were observed at VGS and EFS vs. GS, respectively, with 367 genes co-expressed. Based on their biological functions, 109 genes were directly involved in polysaccharide and flavonoid biosynthesis as well as growth and development. The expression levels of key genes involved in polysaccharides (e.g., GLCs, XTHs and PMEs), flavonoids (e.g., 4CLLs, CYPs and UGTs), growth and development (e.g., AC58, TCPs and AP1), hormones biosynthesis and signaling (e.g., YUC8, AIPT and ACO1), and transcription factors (e.g., MYBs, bHLHs and WRKYs) were in accordance with changes of physiological characteristics. The combinational analysis of metabolites with transcriptomics provides insight into the mechanism of polysaccharide and flavonoid biosynthesis in C. songaricum during growth stages.
Collapse
Affiliation(s)
- Jie Wang
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resource, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Hongyan Su
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhibo Wu
- Station of Alxa League Aviation Forest Guard, Alxa 750306, China
| | - Wenshu Wang
- Alxa Forestry and Grassland Research Institute, Alxa 750306, China
| | - Yubi Zhou
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resource, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- Correspondence: (Y.Z.); (M.L.)
| | - Mengfei Li
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Correspondence: (Y.Z.); (M.L.)
| |
Collapse
|
11
|
Zheng T, Li P, Zhuo X, Liu W, Qiu L, Li L, Yuan C, Sun L, Zhang Z, Wang J, Cheng T, Zhang Q. The chromosome-level genome provides insight into the molecular mechanism underlying the tortuous-branch phenotype of Prunus mume. THE NEW PHYTOLOGIST 2022; 235:141-156. [PMID: 34861048 PMCID: PMC9299681 DOI: 10.1111/nph.17894] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/20/2021] [Indexed: 05/22/2023]
Abstract
Plant with naturally twisted branches is referred to as a tortuous-branch plant, which have extremely high ornamental value due to their zigzag shape and the natural twisting of their branches. Prunus mume is an important woody ornamental plant. However, the molecular mechanism underlying this unique trait in Prunus genus is unknown. Here, we present a chromosome-level genome assembly of the cultivated P. mume var. tortuosa created using Oxford Nanopore combined with Hi-C scaffolding, which resulted in a 237.8 Mb genome assembly being anchored onto eight pseudochromosomes. Molecular dating indicated that P. mume is the most recently differentiated species in Prunus. Genes associated with cell division, development and plant hormones play essential roles in the formation of tortuous branch trait. A putative regulatory pathway for the tortuous branch trait was constructed based on gene expression levels. Furthermore, after transferring candidate PmCYCD genes into Arabidopsis thaliana, we found that seedlings overexpressing these genes exhibited curled rosette leaves. Our results provide insights into the evolutionary history of recently differentiated species in Prunus genus, the molecular basis of stem morphology, and the molecular mechanism underlying the tortuous branch trait and highlight the utility of multi-omics in deciphering the properties of P. mume plant architecture.
Collapse
Affiliation(s)
- Tangchun Zheng
- Beijing Key Laboratory of Ornamental Plants, Germplasm Innovation & Molecular BreedingNational Engineering Research Centre for FloricultureBeijing Laboratory of Urban and Rural Ecological EnvironmentEngineering Research Center of the Landscape Environment of the Ministry of EducationKey Laboratory of Genetics and Breeding of Forest Trees and Ornamental Plants of the Ministry of EducationSchool of Landscape ArchitectureBeijing Forestry UniversityBeijing100083China
| | - Ping Li
- Beijing Key Laboratory of Ornamental Plants, Germplasm Innovation & Molecular BreedingNational Engineering Research Centre for FloricultureBeijing Laboratory of Urban and Rural Ecological EnvironmentEngineering Research Center of the Landscape Environment of the Ministry of EducationKey Laboratory of Genetics and Breeding of Forest Trees and Ornamental Plants of the Ministry of EducationSchool of Landscape ArchitectureBeijing Forestry UniversityBeijing100083China
| | - Xiaokang Zhuo
- Beijing Key Laboratory of Ornamental Plants, Germplasm Innovation & Molecular BreedingNational Engineering Research Centre for FloricultureBeijing Laboratory of Urban and Rural Ecological EnvironmentEngineering Research Center of the Landscape Environment of the Ministry of EducationKey Laboratory of Genetics and Breeding of Forest Trees and Ornamental Plants of the Ministry of EducationSchool of Landscape ArchitectureBeijing Forestry UniversityBeijing100083China
| | - Weichao Liu
- Beijing Key Laboratory of Ornamental Plants, Germplasm Innovation & Molecular BreedingNational Engineering Research Centre for FloricultureBeijing Laboratory of Urban and Rural Ecological EnvironmentEngineering Research Center of the Landscape Environment of the Ministry of EducationKey Laboratory of Genetics and Breeding of Forest Trees and Ornamental Plants of the Ministry of EducationSchool of Landscape ArchitectureBeijing Forestry UniversityBeijing100083China
| | - Like Qiu
- Beijing Key Laboratory of Ornamental Plants, Germplasm Innovation & Molecular BreedingNational Engineering Research Centre for FloricultureBeijing Laboratory of Urban and Rural Ecological EnvironmentEngineering Research Center of the Landscape Environment of the Ministry of EducationKey Laboratory of Genetics and Breeding of Forest Trees and Ornamental Plants of the Ministry of EducationSchool of Landscape ArchitectureBeijing Forestry UniversityBeijing100083China
| | - Lulu Li
- Beijing Key Laboratory of Ornamental Plants, Germplasm Innovation & Molecular BreedingNational Engineering Research Centre for FloricultureBeijing Laboratory of Urban and Rural Ecological EnvironmentEngineering Research Center of the Landscape Environment of the Ministry of EducationKey Laboratory of Genetics and Breeding of Forest Trees and Ornamental Plants of the Ministry of EducationSchool of Landscape ArchitectureBeijing Forestry UniversityBeijing100083China
| | - Cunquan Yuan
- Beijing Key Laboratory of Ornamental Plants, Germplasm Innovation & Molecular BreedingNational Engineering Research Centre for FloricultureBeijing Laboratory of Urban and Rural Ecological EnvironmentEngineering Research Center of the Landscape Environment of the Ministry of EducationKey Laboratory of Genetics and Breeding of Forest Trees and Ornamental Plants of the Ministry of EducationSchool of Landscape ArchitectureBeijing Forestry UniversityBeijing100083China
| | - Lidan Sun
- Beijing Key Laboratory of Ornamental Plants, Germplasm Innovation & Molecular BreedingNational Engineering Research Centre for FloricultureBeijing Laboratory of Urban and Rural Ecological EnvironmentEngineering Research Center of the Landscape Environment of the Ministry of EducationKey Laboratory of Genetics and Breeding of Forest Trees and Ornamental Plants of the Ministry of EducationSchool of Landscape ArchitectureBeijing Forestry UniversityBeijing100083China
| | - Zhiyong Zhang
- Beijing Key Laboratory of Ornamental Plants, Germplasm Innovation & Molecular BreedingNational Engineering Research Centre for FloricultureBeijing Laboratory of Urban and Rural Ecological EnvironmentEngineering Research Center of the Landscape Environment of the Ministry of EducationKey Laboratory of Genetics and Breeding of Forest Trees and Ornamental Plants of the Ministry of EducationSchool of Landscape ArchitectureBeijing Forestry UniversityBeijing100083China
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants, Germplasm Innovation & Molecular BreedingNational Engineering Research Centre for FloricultureBeijing Laboratory of Urban and Rural Ecological EnvironmentEngineering Research Center of the Landscape Environment of the Ministry of EducationKey Laboratory of Genetics and Breeding of Forest Trees and Ornamental Plants of the Ministry of EducationSchool of Landscape ArchitectureBeijing Forestry UniversityBeijing100083China
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants, Germplasm Innovation & Molecular BreedingNational Engineering Research Centre for FloricultureBeijing Laboratory of Urban and Rural Ecological EnvironmentEngineering Research Center of the Landscape Environment of the Ministry of EducationKey Laboratory of Genetics and Breeding of Forest Trees and Ornamental Plants of the Ministry of EducationSchool of Landscape ArchitectureBeijing Forestry UniversityBeijing100083China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants, Germplasm Innovation & Molecular BreedingNational Engineering Research Centre for FloricultureBeijing Laboratory of Urban and Rural Ecological EnvironmentEngineering Research Center of the Landscape Environment of the Ministry of EducationKey Laboratory of Genetics and Breeding of Forest Trees and Ornamental Plants of the Ministry of EducationSchool of Landscape ArchitectureBeijing Forestry UniversityBeijing100083China
| |
Collapse
|
12
|
Lu H, Wu H, Zhu G, Yin C, Zhao L, Wen J, Yi B, Ma C, Tu J, Fu T, Shen J. Identification and Fine Mapping of the Candidate Gene Controlling Multi-Inflorescence in Brassica napus. Int J Mol Sci 2022; 23:ijms23137244. [PMID: 35806247 PMCID: PMC9266383 DOI: 10.3390/ijms23137244] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022] Open
Abstract
As a desirable agricultural trait, multi-inflorescence (MI) fulfills the requirement of mechanized harvesting and yield increase in rapeseed (Brassica napus L.). However, the genetic mechanism underlying the multi-inflorescence trait remain poorly understood. We previously identified a difference of one pair of dominant genes between the two mapping parental materials. In this study, phenotype and expression analysis indicated that the imbalance of the CLAVATA (CLV)-WUSCHEL (WUS) feedback loop may contribute to the abnormal development of the shoot apical meristem (SAM). BnaMI was fine-mapped to a 55 kb genomic region combining with genotype and phenotype of 5768 BCF1 individuals using a traditional mapping approach. Through comparative and expression analyses, combined with the annotation in Arabidopsis, five genes in this interval were identified as candidate genes. The present findings may provide assistance in functional analysis of the mechanism associated with multi-inflorescence and yield increase in rapeseed.
Collapse
|
13
|
Zhao BG, Li G, Wang YF, Yan Z, Dong FQ, Mei YC, Zeng W, Lu MZ, Li HB, Chao Q, Wang BC. PdeHCA2 affects biomass in Populus by regulating plant architecture, the transition from primary to secondary growth, and photosynthesis. PLANTA 2022; 255:101. [PMID: 35397691 DOI: 10.1007/s00425-022-03883-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
PdeHCA2 regulates the transition from primary to secondary growth, plant architecture, and affects photosynthesis by targeting PdeBRC1 and controlling the anatomy of the mesophyll, and intercellular space, respectively. Branching, secondary growth, and photosynthesis are vital developmental processes of woody plants that determine plant architecture and timber yield. However, the mechanisms underlying these processes are unknown. Here, we report that the Populus transcription factor High Cambium Activity 2 (PdeHCA2) plays a role in the transition from primary to secondary growth, vascular development, and branching. In Populus, PdeHCA2 is expressed in undifferentiated provascular cells during primary growth, in phloem cells during secondary growth, and in leaf veins, which is different from the expression pattern of its homolog in Arabidopsis. Overexpression of PdeHCA2 has pleiotropic effects on shoot and leaf development; overexpression lines showed delayed growth of shoots and leaves, reduced photosynthesis, and abnormal shoot branching. In addition, auxin-, cytokinin-, and photosynthesis-related genes were differentially regulated in these lines. Electrophoretic mobility shift assays and transcriptome analysis indicated that PdeHCA2 directly up-regulates the expression of BRANCHED1 and the MADS-box gene PdeAGL9, which regulate plant architecture, by binding to cis-elements in the promoters of these genes. Taken together, our findings suggest that HCA2 regulates several processes in woody plants including vascular development, photosynthesis, and branching by affecting the proliferation and differentiation of parenchyma cells.
Collapse
Affiliation(s)
- Biligen-Gaowa Zhao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guo Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue-Feng Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen Yan
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng-Qin Dong
- The Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Ying-Chang Mei
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Zeng
- Sino-Australia Plant Cell Wall Research Centre, State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A and F University, Hangzhou, 311300, China
| | - Meng-Zhu Lu
- Sino-Australia Plant Cell Wall Research Centre, State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A and F University, Hangzhou, 311300, China
| | - Hong-Bin Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Qing Chao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Bai-Chen Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
14
|
Knockdown NRPC2, 3, 8, NRPABC1 and NRPABC2 Affects RNAPIII Activity and Disrupts Seed Development in Arabidopsis. Int J Mol Sci 2021; 22:ijms222111314. [PMID: 34768744 PMCID: PMC8583208 DOI: 10.3390/ijms222111314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
RNA polymerase III (RNAPIII) contains 17 subunits forming 4 functional domains that control the different stages of RNAPIII transcription and are dedicated to the synthesis of small RNAs such as 5S rRNA and tRNAs. Here, we identified 23 genes encoding these subunits in Arabidopsis (Arabidopsis thaliana) and further analyzed 5 subunits (NRPC2, NRPC3, NRPC8, NRPABC1, and NRPABC2) encoded by 6 genes with different expression patterns and belonging to different sub-complexes. The knockdown of these genes repressed the expression of 5S rRNA and tRNAs, causing seed developmental arrest at different stages. Among these knockdown mutants, RNA-seq analysis revealed 821 common differentially expressed genes (DEGs), significantly enriched in response to stress, abscisic acid, cytokinins, and the jasmonic acid signaling pathway. Weighted gene co-expression network analysis (WGCNA) revealed several hub genes involved in embryo development, carbohydrate metabolic and lipid metabolic processes. We identified numerous unique DEGs between the mutants belonging to pathways, including cell proliferation, ribosome biogenesis, cell death, and tRNA metabolic processes. Thus, NRPC2, NRPC3, NRPC8, NRPABC1, and NRPABC2 control seed development in Arabidopsis by influencing RNAPIII activity and, thus, hormone signaling. Reduced expression of these subunit genes causes an insufficient accumulation of the total RNAPIII, leading to the phenotypes observed following the genetic knockdown of these subunits.
Collapse
|
15
|
Yamoune A, Cuyacot AR, Zdarska M, Hejatko J. Hormonal orchestration of root apical meristem formation and maintenance in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6768-6788. [PMID: 34343283 DOI: 10.1093/jxb/erab360] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Plant hormones are key regulators of a number of developmental and adaptive responses in plants, integrating the control of intrinsic developmental regulatory circuits with environmental inputs. Here we provide an overview of the molecular mechanisms underlying hormonal regulation of root development. We focus on key events during both embryonic and post-embryonic development, including specification of the hypophysis as a future organizer of the root apical meristem (RAM), hypophysis asymmetric division, specification of the quiescent centre (QC) and the stem cell niche (SCN), RAM maturation and maintenance of QC/SCN activity, and RAM size. We address both well-established and newly proposed concepts, highlight potential ambiguities in recent terminology and classification criteria of longitudinal root zonation, and point to contrasting results and alternative scenarios for recent models. In the concluding remarks, we summarize the common principles of hormonal control during root development and the mechanisms potentially explaining often antagonistic outputs of hormone action, and propose possible future research directions on hormones in the root.
Collapse
Affiliation(s)
- Amel Yamoune
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - Abigail Rubiato Cuyacot
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - Marketa Zdarska
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - Jan Hejatko
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| |
Collapse
|
16
|
Hidvégi N, Gulyás A, Teixeira da Silva JA, Wicaksono A, Kiss E. Promoter analysis of the SPATULA (FvSPT) and SPIRAL (FvSPR) genes in the woodland diploid strawberry (Fragaria vesca L.). Biol Futur 2021; 72:373-384. [PMID: 34554560 DOI: 10.1007/s42977-021-00089-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 05/07/2021] [Indexed: 11/28/2022]
Abstract
The aim of this study was to identify transcription factor (TF) binding sites and cis-regulatory elements (CREs) on the promoters of FvSPR1-like2 (SPIRAL) and FvSPT (SPATULA) genes in the woodland diploid strawberry (Fragaria vesca L.). We identified: (1) MYB59, WRKY25 and WRKY8 TFs which play a role in ethylene signaling; (2) ARF family of TFs which play a role in ARF-mediated auxin signaling on the promoter of FvSPR1-like2 gene; (3) ARR family of TFs which play a role in cytokinin signaling; (4) ERF family of TFs which play a role in ethylene signaling on the promoter of FvSPT. This bioinformatic analysis of TFs and CREs may provide a better understanding of the function of genes involved in, and the mechanism underlying, non-climateric ripening during strawberry fruit maturation.
Collapse
Affiliation(s)
- Norbert Hidvégi
- Centre for Agricultural Genomics and Biotechnology, Faculty of Agricultural and Food Science and Environmental Management, University of Debrecen, P.O. Box 12, Nyíregyháza, 4400, Hungary.
| | - Andrea Gulyás
- Centre for Agricultural Genomics and Biotechnology, Faculty of Agricultural and Food Science and Environmental Management, University of Debrecen, P.O. Box 12, Nyíregyháza, 4400, Hungary
| | - Jaime A Teixeira da Silva
- Centre for Agricultural Genomics and Biotechnology, Faculty of Agricultural and Food Science and Environmental Management, University of Debrecen, P.O. Box 12, Nyíregyháza, 4400, Hungary.,Independent Researcher, Miki-cho post office, Ikenobe 3011-2, P. O. Box 7, Kagawa-ken, 761-0799, Japan
| | - Adhityo Wicaksono
- Division of Biotechnology, Generasi Biologi Indonesia Foundation, Jl. Swadaya Barat no. 4, Gresik Regency, 61171, Indonesia
| | - Erzsébet Kiss
- Institute of Genetics, Microbiology and Biotechnology, Faculty of Agricultural and Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, 2100, Gödöllő, Hungary.
| |
Collapse
|
17
|
Nobusawa T, Kamei M, Ueda H, Matsushima N, Yamatani H, Kusaba M. Highly pleiotropic functions of CYP78As and AMP1 are regulated in non-cell-autonomous/organ-specific manners. PLANT PHYSIOLOGY 2021; 186:767-781. [PMID: 33620479 PMCID: PMC8154090 DOI: 10.1093/plphys/kiab067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/26/2021] [Indexed: 05/07/2023]
Abstract
The cytochrome P450 CYP78A5/KLUH in Arabidopsis thaliana is predicted to be involved in the synthesis of a mobile signal molecule that has a pleiotropic function that is distinct from classical phytohormones. CYP78A5 has five close relatives in Arabidopsis. We first investigated their functions, focusing on the plastochron, leaf size, and leaf senescence. Our analyses revealed that CYP78A5 and CYP78A7 are involved in the plastochron and leaf size, and CYP78A6 and CYP78A9 are involved in leaf senescence. Complementation analyses using heterologous promoters and expression analyses suggested that CYP78A isoforms have a common biochemical function and are functionally differentiated via organ-specific expression. The altered meristem program1 (amp1) carboxypeptidase mutant shows a phenotype very similar to that of the cyp78a5 mutant. Complementation analyses using boundary and organizing center-specific promoters suggested that both CYP78A5 and AMP1 act in a non-cell-autonomous manner. Analyses of multiple cyp78a mutants and crosses between cyp78a and amp1 mutants revealed that AMP1/LIKE AMP1 (LAMP1) and CYP78A isoforms regulate plastochron length and leaf senescence in the same genetic pathway, whereas leaf size is independently regulated. Furthermore, we detected feedback regulation between CYP78A6/CYP78A9 and AMP1 at the gene expression level. These observations raise the possibility that AMP1 and CYP78A isoforms are involved in the synthesis of the same mobile signal molecule, and suggest that AMP1 and CYP78A signaling pathways have a very close, albeit complex, functional relationship.
Collapse
Affiliation(s)
- Takashi Nobusawa
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-3, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Misaki Kamei
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-3, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Hiroaki Ueda
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-3, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
- Present address: Fruit Tree Research Center, Ehime Research Institute of Agriculture, Forestry and Fisheries, Shimoidai 1618, Matsuyama 791-0112, Japan
| | - Naoya Matsushima
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-3, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Hiroshi Yamatani
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-3, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
- Institute of Crop Science NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Makoto Kusaba
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-3, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
- Author for communication:
| |
Collapse
|
18
|
Muñoz A, Pillot JP, Cubas P, Rameau C. Methods for Phenotyping Shoot Branching and Testing Strigolactone Bioactivity for Shoot Branching in Arabidopsis and Pea. Methods Mol Biol 2021; 2309:115-127. [PMID: 34028683 DOI: 10.1007/978-1-0716-1429-7_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Shoot branching is a highly variable trait that evolves during plant development and is influenced by environmental and endogenous cues such as hormones. In particular, strigolactones (SLs) are hormones that play a key role in the control of shoot branching. Branch primordia, axillary buds formed in the leaf axils, display differential growth depending on their position in the plant and also respond to hormone signaling. In this chapter, we will describe how to quantify the degree of shoot branching in two plant model species, Arabidopsis and pea, commonly used to decipher the control of this complex trait. We will also propose several methods to perform treatments of SL or SL analogs, to investigate their bioactivity and effect on the shoot branching patterns of plants of different genotypes.
Collapse
Affiliation(s)
- Aitor Muñoz
- Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | - Jean-Paul Pillot
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin, Versailles, France
| | - Pilar Cubas
- Centro Nacional de Biotecnología-CSIC, Madrid, Spain.
| | - Catherine Rameau
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin, Versailles, France
| |
Collapse
|
19
|
Steiner E, Israeli A, Gupta R, Shwartz I, Nir I, Leibman-Markus M, Tal L, Farber M, Amsalem Z, Ori N, Müller B, Bar M. Characterization of the cytokinin sensor TCSv2 in arabidopsis and tomato. PLANT METHODS 2020; 16:152. [PMID: 33292327 PMCID: PMC7670716 DOI: 10.1186/s13007-020-00694-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/04/2020] [Indexed: 05/09/2023]
Abstract
BACKGROUND Hormones are crucial to plant life and development. Being able to follow the plants hormonal response to various stimuli and throughout developmental processes is an important and increasingly widespread tool. The phytohormone cytokinin (CK) has crucial roles in the regulation of plant growth and development. RESULTS Here we describe a version of the CK sensor Two Component signaling Sensor (TCS), referred to as TCSv2. TCSv2 has a different arrangement of binding motifs when compared to previous TCS versions, resulting in increased sensitivity in some examined tissues. Here, we examine the CK responsiveness and distribution pattern of TCSv2 in arabidopsis and tomato. CONCLUSIONS The increased sensitivity and reported expression pattern of TCSv2 make it an ideal TCS version to study CK response in particular hosts, such as tomato, and particular tissues, such as leaves and flowers.
Collapse
Affiliation(s)
- Evyatar Steiner
- Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, 7610001, Rehovot, Israel
| | - Alon Israeli
- Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, 7610001, Rehovot, Israel
| | - Rupali Gupta
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, The Volcani Center, 7505101, Rishon LeZion, Israel
| | - Ido Shwartz
- Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, 7610001, Rehovot, Israel
| | - Ido Nir
- Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, 7610001, Rehovot, Israel
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Meirav Leibman-Markus
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, The Volcani Center, 7505101, Rishon LeZion, Israel
| | - Lior Tal
- Department of Plant and Environmental Science, Weizmann Institute of Science, 7610001, Rehovot, Israel
- Department of Plant Biology, University of California - Davis, Davis, CA, 95616, USA
| | - Mika Farber
- Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, 7610001, Rehovot, Israel
| | - Ziva Amsalem
- Department of Plant and Environmental Science, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Naomi Ori
- Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, 7610001, Rehovot, Israel
| | - Bruno Müller
- Leibniz-Institut Für Pflanzengenetik Und Kulturpflanzenforschung (IPK), Corrensstraße 3, 06466, Seeland, Germany
- Microsynth AG, Schützenstrasse 15, 9436, Balgach, Switzerland
| | - Maya Bar
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, The Volcani Center, 7505101, Rishon LeZion, Israel.
| |
Collapse
|
20
|
Poretska O, Yang S, Pitorre D, Poppenberger B, Sieberer T. AMP1 and CYP78A5/7 act through a common pathway to govern cell fate maintenance in Arabidopsis thaliana. PLoS Genet 2020; 16:e1009043. [PMID: 32960882 PMCID: PMC7531801 DOI: 10.1371/journal.pgen.1009043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 10/02/2020] [Accepted: 08/11/2020] [Indexed: 12/17/2022] Open
Abstract
Higher plants can continuously form new organs by the sustained activity of pluripotent stem cells. These stem cells are embedded in meristems, where they produce descendants, which undergo cell proliferation and differentiation programs in a spatiotemporally-controlled manner. Under certain conditions, pluripotency can be reestablished in descending cells and this reversion in cell fate appears to be actively suppressed by the existing stem cell pool. Mutation of the putative carboxypeptidase ALTERED MERISTEM PROGRAM1 (AMP1) in Arabidopsis causes defects in the suppression of pluripotency in cells normally programmed for differentiation, giving rise to unique hypertrophic phenotypes during embryogenesis as well as in the shoot apical meristem. A role of AMP1 in the miRNA-dependent control of translation has recently been established, however, how this activity is connected to its developmental functions is not resolved. Here we identify members of the cytochrome P450 clade CYP78A to act in parallel with AMP1 to control cell fate in Arabidopsis. Mutation of CYP78A5 and its close homolog CYP78A7 in a cyp78a5,7 double mutant caused suspensor-to-embryo conversion and ectopic stem cell pool formation in the shoot meristem, phenotypes characteristic for amp1. The tissues affected in the mutants showed pronounced expression levels of AMP1 and CYP78A5 in wild type. A comparison of mutant transcriptomic responses revealed an intriguing degree of overlap and highlighted alterations in protein lipidation processes. Moreover, we also found elevated protein levels of selected miRNA targets in cyp78a5,7. Based on comprehensive genetic interaction studies we propose a model in which both enzyme classes act on a common downstream process to sustain cell fate decisions in the early embryo and the shoot apical meristem.
Collapse
Affiliation(s)
- Olena Poretska
- Research Unit Plant Growth Regulation, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
- Department for Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Saiqi Yang
- Research Unit Plant Growth Regulation, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Delphine Pitorre
- Department for Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Brigitte Poppenberger
- Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Tobias Sieberer
- Research Unit Plant Growth Regulation, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
- Department for Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| |
Collapse
|
21
|
Li H, Huang X, Li W, Lu Y, Dai X, Zhou Z, Li Q. MicroRNA comparison between poplar and larch provides insight into the different mechanism of wood formation. PLANT CELL REPORTS 2020; 39:1199-1217. [PMID: 32577818 DOI: 10.1007/s00299-020-02559-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 06/12/2020] [Indexed: 05/22/2023]
Abstract
MiRNA transcriptome analysis of different tissues in poplar and larch suggests variant roles of miRNAs in regulating wood formation between two kinds of phyla. Poplar and larch belong to two different phyla. Both are ecological woody species and major resources for wood-related industrial applications. However, wood properties are different between these two species and the molecular basis is largely unknown. In this study, we performed high-throughput sequencing of microRNAs (miRNAs) in the three tissues, xylem, phloem and leaf of Populus alba × Populus glandulosa and Larix kaempferi. Differentially expressed miRNA (DEmiRNA) analysis identified 85 xylem-specific miRNAs in P. alba × P. glandulosa and 158 xylem-specific miRNAs in L. kaempferi. Among 36 common miRNAs, 12 were conserved between the two species. GO and KEGG analyses of the miRNA target genes showed similar metabolism in two species. Through KEGG and BLASTN, we predicted target genes of xylem differentially expressed (DEmiRNA) in the wood formation-related pathways and located DEmiRNAs in these pathways. A network was built for wood formation-related DEmiRNAs, their target genes and orthologous genes in Arabidopsis thaliana. Comparison of DEmiRNA and target gene annotation between P. alba × P. glandulosa and L. kaempferi suggested the different functions of DEmiRNAs and divergent mechanism in wood formation between two species, providing knowledge to understand wood formation mechanism in gymnosperm and angiosperm woody plants.
Collapse
Affiliation(s)
- Hui Li
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
| | - Xiong Huang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Wanfeng Li
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yan Lu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Xinren Dai
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China.
| | - Zaizhi Zhou
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China.
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| |
Collapse
|
22
|
Ali S, Khan N, Xie L. Molecular and Hormonal Regulation of Leaf Morphogenesis in Arabidopsis. Int J Mol Sci 2020; 21:ijms21145132. [PMID: 32698541 PMCID: PMC7404056 DOI: 10.3390/ijms21145132] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/28/2022] Open
Abstract
Shoot apical meristems (SAM) are tissues that function as a site of continuous organogenesis, which indicates that a small pool of pluripotent stem cells replenishes into lateral organs. The coordination of intercellular and intracellular networks is essential for maintaining SAM structure and size and also leads to patterning and formation of lateral organs. Leaves initiate from the flanks of SAM and then develop into a flattened structure with variable sizes and forms. This process is mainly regulated by the transcriptional regulators and mechanical properties that modulate leaf development. Leaf initiation along with proper orientation is necessary for photosynthesis and thus vital for plant survival. Leaf development is controlled by different components such as hormones, transcription factors, miRNAs, small peptides, and epigenetic marks. Moreover, the adaxial/abaxial cell fate, lamina growth, and shape of margins are determined by certain regulatory mechanisms. The over-expression and repression of various factors responsible for leaf initiation, development, and shape have been previously studied in several mutants. However, in this review, we collectively discuss how these factors modulate leaf development in the context of leaf initiation, polarity establishment, leaf flattening and shape.
Collapse
Affiliation(s)
- Shahid Ali
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
- Correspondence: (S.A.); (L.X.)
| | - Naeem Khan
- Department of Agronomy, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA;
| | - Linan Xie
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Saline-Alkali Vegetative Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
- Correspondence: (S.A.); (L.X.)
| |
Collapse
|
23
|
Fouracre JP, Chen VJ, Poethig RS. ALTERED MERISTEM PROGRAM1 regulates leaf identity independently of miR156-mediated translational repression. Development 2020; 147:dev186874. [PMID: 32198155 PMCID: PMC7197719 DOI: 10.1242/dev.186874] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/05/2020] [Indexed: 12/24/2022]
Abstract
In Arabidopsis, loss of the carboxypeptidase ALTERED MERISTEM PROGRAM1 (AMP1) produces an increase in the rate of leaf initiation, an enlarged shoot apical meristem and an increase in the number of juvenile leaves. This phenotype is also observed in plants with reduced levels of miR156-targeted SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factors, suggesting that AMP1 might promote SPL activity. However, we found that the amp1 mutant phenotype is only partially corrected by elevated SPL gene expression, and that amp1 has no significant effect on SPL transcript levels, or on the level or the activity of miR156. Although AMP1 has been reported to promote miRNA-mediated translational repression, amp1 did not prevent the translational repression of the miR156 target SPL9 or the miR159 target MYB33. These results suggest that AMP1 regulates vegetative phase change downstream of, or in parallel to, the miR156/SPL pathway, and that it is not universally required for miRNA-mediated translational repression.
Collapse
Affiliation(s)
- Jim P Fouracre
- Biology Department, University of Pennsylvania, 433 S. University Ave, Philadelphia, PA 19104, USA
| | - Victoria J Chen
- Biology Department, University of Pennsylvania, 433 S. University Ave, Philadelphia, PA 19104, USA
| | - R Scott Poethig
- Biology Department, University of Pennsylvania, 433 S. University Ave, Philadelphia, PA 19104, USA
| |
Collapse
|
24
|
López-García CM, Ruíz-Herrera LF, López-Bucio JS, Huerta-Venegas PI, Peña-Uribe CA, de la Cruz HR, López-Bucio J. ALTERED MERISTEM PROGRAM 1 promotes growth and biomass accumulation influencing guard cell aperture and photosynthetic efficiency in Arabidopsis. PROTOPLASMA 2020; 257:573-582. [PMID: 31823020 DOI: 10.1007/s00709-019-01458-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
ALTERED MERISTEM PROGRAM 1 (AMP1) encodes a putative glutamate-carboxypeptidase important for plant growth and development. In this study, by comparing the growth of Arabidopsis wild-type, amp1-10 and amp1-13 mutants, and AMP1-GFP/OX2- and AMP1-GFP/OX7-overexpressing seedlings in vitro and in soil, we uncover the role of AMP1 in biomass accumulation in Arabidopsis. AMP1-overexpressing plants had longer primary roots and increased lateral root number and density than the WT, which correlated with improved root, shoot, and total biomass accumulation. AMP1-overexpressing seedlings had an enhanced rate of growth of primary roots, and accordingly, sucrose supplementation restored primary root growth and promoted lateral root formation in amp1 mutants, while reproductive development, fruit size, and seed content were also modified according to disruption or overexpression of AMP1. We further found that AMP1 plays an important role for stomatal development, guard cell functioning, and carbon assimilation. These data help explain the pleiotropic functions of AMP1 in both root and shoot system development, possibly acting in a sugar-dependent manner for regulation of root architecture, biomass accumulation, and seed production.
Collapse
Affiliation(s)
- Claudia Marina López-García
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio A1´, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, Mexico
| | - León Francisco Ruíz-Herrera
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio A1´, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, Mexico
| | - Jesús Salvador López-Bucio
- CONACYT, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio B3, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, Mexico
| | - Pedro Iván Huerta-Venegas
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio A1´, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, Mexico
| | - César Arturo Peña-Uribe
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio A1´, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, Mexico
| | - Homero Reyes de la Cruz
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio A1´, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, Mexico
| | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio A1´, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, Mexico.
| |
Collapse
|
25
|
van Rooijen R, Schulze S, Petzsch P, Westhoff P. Targeted misexpression of NAC052, acting in H3K4 demethylation, alters leaf morphological and anatomical traits in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1434-1448. [PMID: 31740936 PMCID: PMC7031063 DOI: 10.1093/jxb/erz509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/18/2019] [Indexed: 05/31/2023]
Abstract
In an effort to identify genetic regulators for the cell ontogeny around the veins in Arabidopsis thaliana leaves, an activation-tagged mutant line with altered leaf morphology and altered bundle sheath anatomy was characterized. This mutant had a small rosette area with wrinkled leaves and chlorotic leaf edges, as well as enhanced chloroplast numbers in the (pre-)bundle sheath tissue. It had a bundle-specific promoter from the gene GLYCINE DECARBOXYLASE SUBUNIT-T from the C4 species Flaveria trinervia (GLDTFt promoter) inserted in the coding region of the transcriptional repressor NAC052, functioning in H3K4 demethylation, in front of an alternative start codon in-frame with the natural start codon. Reconstruction of the mutation event of our activation-tagged line by creating a line expressing an N-terminally truncated sequence of NAC052 under control of the GLDTFt promoter confirmed the involvement of NAC052 in leaf development. Our study not only reveals leaf anatomic and transcriptomic effects of an N-terminally truncated NAC052 under control of the GLDTFt promoter, but also identifies NAC052 as a novel genetic regulator of leaf development.
Collapse
Affiliation(s)
- Roxanne van Rooijen
- Institute of Plant Molecular and Developmental Biology, Heinrich-Heine-University, Duesseldorf, Germany
- Cluster of Excellence on Plant Sciences ‘From Complex Traits towards Synthetic Modules’, Duesseldorf, Germany
| | - Stefanie Schulze
- Institute of Plant Molecular and Developmental Biology, Heinrich-Heine-University, Duesseldorf, Germany
| | - Patrick Petzsch
- Biologisch-Medizinisches Forschungszentrum (BMFZ), Genomics & Transcriptomics Labor (GTL), Heinrich-Heine-University, Duesseldorf, Germany
| | - Peter Westhoff
- Institute of Plant Molecular and Developmental Biology, Heinrich-Heine-University, Duesseldorf, Germany
- Cluster of Excellence on Plant Sciences ‘From Complex Traits towards Synthetic Modules’, Duesseldorf, Germany
| |
Collapse
|
26
|
A comprehensive analysis of the B3 superfamily identifies tissue-specific and stress-responsive genes in chickpea ( Cicer arietinum L.). 3 Biotech 2019; 9:346. [PMID: 31497464 DOI: 10.1007/s13205-019-1875-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/14/2019] [Indexed: 12/31/2022] Open
Abstract
The aim of this study was to provide a comprehensive analysis of the plant-specific B3 domain-containing transcription factors (TFs) in chickpea. Scanning of the chickpea genome resulted in the identification of 51 B3 domain-containing TFs that were located on seven out of eight chickpea chromosomes. Based on the presence of additional domains other than the B3 domain, the candidates were classified into four subfamilies, i.e., ARF (24), REM (19), LAV (6) and RAV (2). Phylogenetic analysis classified them into four groups in which members of the same group had similar intron-exon organization and motif composition. Genome duplication analysis of the candidate B3 genes revealed an event of segmental duplication that was instrumental in the expansion of the B3 gene family. Ka/Ks analysis showed that the B3 gene family was under purifying selection. Further, chickpea B3 genes showed maximum orthology with Medicago followed by soybean and Arabidopsis. Promoter analyses of the B3 genes led to the identification of several tissue-specific and stress-responsive cis-regulatory elements. Expression profiling of the candidate B3 genes using publicly available RNA-seq data of several chickpea tissues indicated their putative role in plant development and abiotic stress response. These findings were further validated by real-time expression analysis. Overall, this study provides a comprehensive analysis of the B3 domain-containing proteins in chickpea that would aid in devising strategies for crop manipulation in chickpea.
Collapse
|
27
|
Lee ZH, Hirakawa T, Yamaguchi N, Ito T. The Roles of Plant Hormones and Their Interactions with Regulatory Genes in Determining Meristem Activity. Int J Mol Sci 2019; 20:ijms20164065. [PMID: 31434317 PMCID: PMC6720427 DOI: 10.3390/ijms20164065] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/08/2019] [Accepted: 08/16/2019] [Indexed: 12/11/2022] Open
Abstract
Plants, unlike animals, have developed a unique system in which they continue to form organs throughout their entire life cycle, even after embryonic development. This is possible because plants possess a small group of pluripotent stem cells in their meristems. The shoot apical meristem (SAM) plays a key role in forming all of the aerial structures of plants, including floral meristems (FMs). The FMs subsequently give rise to the floral organs containing reproductive structures. Studies in the past few decades have revealed the importance of transcription factors and secreted peptides in meristem activity using the model plant Arabidopsis thaliana. Recent advances in genomic, transcriptomic, imaging, and modeling technologies have allowed us to explore the interplay between transcription factors, secreted peptides, and plant hormones. Two different classes of plant hormones, cytokinins and auxins, and their interaction are particularly important for controlling SAM and FM development. This review focuses on the current issues surrounding the crosstalk between the hormonal and genetic regulatory network during meristem self-renewal and organogenesis.
Collapse
Affiliation(s)
- Ze Hong Lee
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0192, Japan
| | - Takeshi Hirakawa
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0192, Japan
| | - Nobutoshi Yamaguchi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0192, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Toshiro Ito
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0192, Japan.
| |
Collapse
|
28
|
High levels of auxin signalling define the stem-cell organizer of the vascular cambium. Nature 2019; 565:485-489. [PMID: 30626967 DOI: 10.1038/s41586-018-0837-0] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 12/04/2018] [Indexed: 11/08/2022]
Abstract
Wood, a type of xylem tissue, originates from cell proliferation of the vascular cambium. Xylem is produced inside, and phloem outside, of the cambium1. Morphogenesis in plants is typically coordinated by organizer cells that direct the adjacent stem cells to undergo programmed cell division and differentiation. The location of the vascular cambium stem cells and whether the organizer concept applies to the cambium are currently unknown2. Here, using lineage-tracing and molecular genetic studies in the roots of Arabidopsis thaliana, we show that cells with a xylem identity direct adjacent vascular cambial cells to divide and function as stem cells. Thus, these xylem-identity cells constitute an organizer. A local maximum of the phytohormone auxin, and consequent expression of CLASS III HOMEODOMAIN-LEUCINE ZIPPER (HD-ZIP III) transcription factors, promotes xylem identity and cellular quiescence of the organizer cells. Additionally, the organizer maintains phloem identity in a non-cell-autonomous fashion. Consistent with this dual function of the organizer cells, xylem and phloem originate from a single, bifacial stem cell in each radial cell file, which confirms the classical theory of a uniseriate vascular cambium3. Clones that display high levels of ectopically activated auxin signalling differentiate as xylem vessels; these clones induce cell divisions and the expression of cambial and phloem markers in the adjacent cells, which suggests that a local auxin-signalling maximum is sufficient to specify a stem-cell organizer. Although vascular cambium has a unique function among plant meristems, the stem-cell organizer of this tissue shares features with the organizers of root and shoot meristems.
Collapse
|
29
|
Li Y, Feng J, Cheng L, Dai C, Gao Q, Liu Z, Kang C. Gene Expression Profiling of the Shoot Meristematic Tissues in Woodland Strawberry Fragaria vesca. FRONTIERS IN PLANT SCIENCE 2019; 10:1624. [PMID: 31921266 PMCID: PMC6923813 DOI: 10.3389/fpls.2019.01624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/19/2019] [Indexed: 05/07/2023]
Abstract
Fragaria vesca, a wild diploid strawberry, has recently emerged as a model for the cultivated strawberry and other members of the Rosaceae. Differentiation and maintenance of meristems largely determines plant architecture, flower development and ultimately fruit yield. However, in strawberry, our knowledge of molecular regulation of meristems in different developmental context is limited. In this study, we hand dissected three types of tissues than contain meristematic tissues corresponding to shoot apical meristem (SAM), flower meristem (FM), and receptacle meristem (REM), in F. vesca for RNA-seq analyses. A total of 3,009 differentially expressed genes (DEGs) were identified through pairwise comparisons. These DEGs were grouped into nine clusters with dynamic and distinct expression patterns. In these nine clusters, 336 transcription factor genes belong to 46 families were identified; some of which were significantly enriched in FM and REM such as the MADS-box family or in REM such as the B3 family. We found conserved and distinctive expression patterns of totally 149 genes whose homologs regulate flowering time or SAM, leaf, and flower development in other plant species. In addition to the ABCE genes in flower development, new MADS box genes were identified to exhibit differential expression in these different tissues. Additionally, the cytokinin and auxin pathway genes also exhibited distinct expression patterns. The Arabidopsis homeobox gene WUSCHEL (WUS), essential for stem cell maintenance, is expressed in organizing center of meristems. The F. vesca homolog FvWUS1 exhibited a broader expression domain in young strawberry flowers than its Arabidopsis counterpart. Altogether, this work provides a valuable data resource for dissecting gene regulatory networks operating in different meristematic tissues in strawberry.
Collapse
Affiliation(s)
- Yongping Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Jia Feng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Laichao Cheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qi Gao
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, College Park, MD, United States
| | - Chunying Kang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Chunying Kang,
| |
Collapse
|
30
|
Liu M, Ma Z, Zheng T, Sun W, Zhang Y, Jin W, Zhan J, Cai Y, Tang Y, Wu Q, Tang Z, Bu T, Li C, Chen H. Insights into the correlation between Physiological changes in and seed development of tartary buckwheat (Fagopyrum tataricum Gaertn.). BMC Genomics 2018; 19:648. [PMID: 30170551 PMCID: PMC6119279 DOI: 10.1186/s12864-018-5036-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 08/24/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tartary buckwheat (Fagopyrum tataricum Gaertn.) is a widely cultivated medicinal and edible crop with excellent economic and nutritional value. The development of tartary buckwheat seeds is a very complex process involving many expression-dependent physiological changes and regulation of a large number of genes and phytohormones. In recent years, the gene regulatory network governing the physiological changes occurring during seed development have received little attention. RESULTS Here, we characterized the seed development of tartary buckwheat using light and electron microscopy and measured phytohormone and nutrient accumulation by using high performance liquid chromatography (HPLC) and by profiling the expression of key genes using RNA sequencing with the support of the tartary buckwheat genome. We first divided the development of tartary buckwheat seed into five stages that include complex changes in development, morphology, physiology and phytohormone levels. At the same time, the contents of phytohormones (gibberellin, indole-3-acetic acid, abscisic acid, and zeatin) and nutrients (rutin, starch, total proteins and soluble sugars) at five stages were determined, and their accumulation patterns in the development of tartary buckwheat seeds were analyzed. Second, gene expression patterns of tartary buckwheat samples were compared during three seed developmental stages (13, 19, and 25 days postanthesis, DPA), and 9 765 differentially expressed genes (DEGs) were identified. We analyzed the overlapping DEGs in different sample combinations and measured 665 DEGs in the three samples. Furthermore, expression patterns of DEGs related to phytohormones, flavonoids, starch, and storage proteins were analyzed. Third, we noted the correlation between the trait (physiological changes, nutrient changes) and metabolites during seed development, and discussed the key genes that might be involved in the synthesis and degradation of each of them. CONCLUSION We provided abundant genomic resources for tartary buckwheat and Polygonaceae communities and revealed novel molecular insights into the correlations between the physiological changes and seed development of tartary buckwheat.
Collapse
Affiliation(s)
- Moyang Liu
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Zhaotang Ma
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Tianrun Zheng
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Wenjun Sun
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Yanjun Zhang
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Weiqiong Jin
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Junyi Zhan
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Yuntao Cai
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Yujia Tang
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Qi Wu
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Zizhong Tang
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Tongliang Bu
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Chenglei Li
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Hui Chen
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| |
Collapse
|
31
|
Mimura M, Kudo T, Wu S, McCarty DR, Suzuki M. Autonomous and non-autonomous functions of the maize Shohai1 gene, encoding a RWP-RK putative transcription factor, in regulation of embryo and endosperm development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:892-908. [PMID: 29901832 DOI: 10.1111/tpj.13996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 05/30/2018] [Accepted: 06/04/2018] [Indexed: 05/26/2023]
Abstract
In plants, establishment of the basic body plan during embryogenesis involves complex processes of axis formation, cell fate specification and organ differentiation. While molecular mechanisms of embryogenesis have been well studied in the eudicot Arabidopsis, only a small number of genes regulating embryogenesis has been identified in grass species. Here, we show that a RKD-type RWP-RK transcription factor encoded by Shohai1 (Shai1) is indispensable for embryo and endosperm development in maize. Loss of Shai1 function causes variable morphological defects in the embryo including small scutellum, shoot axis bifurcation and arrest during early organogenesis. Analysis of molecular markers in mutant embryos reveals disturbed patterning of gene expression and altered polar auxin transport. In contrast with typical embryo-defective (emb) mutants that expose a vacant embryo pocket in the endosperm, the endosperm of shai1 kernels conforms to the varied size and shape of the embryo. Furthermore, genetic analysis confirms that Shai1 is required for autonomous formation of the embryo pocket in endosperm of emb mutants. Analyses of genetic mosaic kernels generated by B-A translocation revealed that expression of Shai1 in the endosperm could partially rescue a shai1 mutant embryo and suggested that Shai1 is involved in non-cell autonomous signaling from endosperm that supports normal embryo growth. Taken together, we propose that the Shai1 gene functions in regulating embryonic patterning during grass embryogenesis partly by endosperm-to-embryo interaction.
Collapse
Affiliation(s)
- Manaki Mimura
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Toru Kudo
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Shan Wu
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Donald R McCarty
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Masaharu Suzuki
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
32
|
Krogan NT, Marcos D, Weiner AI, Berleth T. The auxin response factor MONOPTEROS controls meristem function and organogenesis in both the shoot and root through the direct regulation of PIN genes. THE NEW PHYTOLOGIST 2016; 212:42-50. [PMID: 27441727 PMCID: PMC5596637 DOI: 10.1111/nph.14107] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/19/2016] [Indexed: 05/18/2023]
Abstract
The regulatory effect auxin has on its own transport is critical in numerous self-organizing plant patterning processes. However, our understanding of the molecular mechanisms linking auxin signal transduction and auxin transport is still fragmentary, and important regulatory genes remain to be identified. To track a key link between auxin signaling and auxin transport in development, we established an Arabidopsis thaliana genetic background in which fundamental patterning processes in both shoot and root were essentially abolished and the expression of PIN FORMED (PIN) auxin efflux facilitators was dramatically reduced. In this background, we demonstrate that activating a steroid-inducible variant of the auxin response factor (ARF) MONOPTEROS (MP) is sufficient to restore patterning and PIN gene expression. Further, we show that MP binds to distinct promoter elements of multiple genetically defined PIN genes. Our work identifies a direct regulatory link between central, well-characterized genes involved in auxin signal transduction and auxin transport. The steroid-inducible MP system directly demonstrates the importance of this molecular link in multiple patterning events in embryos, shoots and roots, and provides novel options for interrogating the properties of self-regulated auxin-based patterning in planta.
Collapse
Affiliation(s)
- Naden T. Krogan
- American University, Department of Biology, 4400 Massachusetts
Avenue NW, Washington D.C. 20016, United States
- To whom correspondence should be addressed:
Tel: (202) 885-2203,
Tel: (416) 946-3734
| | - Danielle Marcos
- University of Toronto, Department of Cell and Systems Biology, 25
Willcocks Street, Toronto, Ontario M5S 3B2, Canada
| | - Aaron I. Weiner
- American University, Department of Biology, 4400 Massachusetts
Avenue NW, Washington D.C. 20016, United States
| | - Thomas Berleth
- University of Toronto, Department of Cell and Systems Biology, 25
Willcocks Street, Toronto, Ontario M5S 3B2, Canada
- To whom correspondence should be addressed:
Tel: (202) 885-2203,
Tel: (416) 946-3734
| |
Collapse
|
33
|
Shwartz I, Levy M, Ori N, Bar M. Hormones in tomato leaf development. Dev Biol 2016; 419:132-142. [PMID: 27339291 DOI: 10.1016/j.ydbio.2016.06.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/16/2016] [Accepted: 06/17/2016] [Indexed: 11/19/2022]
Abstract
Leaf development serves as a model for plant developmental flexibility. Flexible balancing of morphogenesis and differentiation during leaf development results in a large diversity of leaf forms, both between different species and within the same species. This diversity is particularly evident in compound leaves. Hormones are prominent regulators of leaf development. Here we discuss some of the roles of plant hormones and the cross-talk between different hormones in tomato compound-leaf development.
Collapse
Affiliation(s)
- Ido Shwartz
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture and The Otto Warburg Minerva Center for Agricultural Biotechnology, Hebrew University, P.O. Box 12, Rehovot 76100, Israel
| | - Matan Levy
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture and The Otto Warburg Minerva Center for Agricultural Biotechnology, Hebrew University, P.O. Box 12, Rehovot 76100, Israel
| | - Naomi Ori
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture and The Otto Warburg Minerva Center for Agricultural Biotechnology, Hebrew University, P.O. Box 12, Rehovot 76100, Israel.
| | - Maya Bar
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture and The Otto Warburg Minerva Center for Agricultural Biotechnology, Hebrew University, P.O. Box 12, Rehovot 76100, Israel.
| |
Collapse
|
34
|
Fiesselmann BS, Luichtl M, Yang X, Matthes M, Peis O, Torres-Ruiz RA. Ectopic shoot meristem generation in monocotyledonous rpk1 mutants is linked to SAM loss and altered seedling morphology. BMC PLANT BIOLOGY 2015; 15:171. [PMID: 26150008 PMCID: PMC4492102 DOI: 10.1186/s12870-015-0556-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/16/2015] [Indexed: 06/01/2023]
Abstract
BACKGROUND In dicot Arabidopsis thaliana embryos two cotyledons develop largely autonomously from the shoot apical meristem (SAM). Recessive mutations in the Arabidopsis receptor-like kinase RPK1 lead to monocotyledonous seedlings, with low (10 %) penetrance due to complex functional redundancy. In strong rpk1 alleles, about 10 % of these (i. e. 1 % of all homozygotes) did not develop a SAM. We wondered whether RPK1 might also control SAM gene expression and SAM generation in addition to its known stochastic impact on cell division and PINFORMED1 (PIN1) polarity in the epidermis. RESULTS SAM-less seedlings developed a simple morphology with a straight and continuous hypocotyl-cotyledon structure lacking a recognizable epicotyl. According to rpk1's auxin-related PIN1 defect, the seedlings displayed defects in the vascular tissue. Surprisingly, SAM-less seedlings variably expressed essential SAM specific genes along the hypocotyl-cotyledon structure up into the cotyledon lamina. Few were even capable of developing an ectopic shoot meristem (eSM) on top of the cotyledon. CONCLUSIONS The results highlight the developmental autonomy of the SAM vs. cotyledons and suggest that the primary rpk1 defect does not lie in the seedling's ability to express SAM genes or to develop a shoot meristem. Rather, rpk1's known defects in cell division and auxin homeostasis, by disturbed PIN1 polarity, impact on SAM and organ generation. In early embryo stages this failure generates a simplified monocotyledonous morphology. Once generated, this likely entails a loss of positional information that in turn affects the spatiotemporal development of the SAM. SAM-bearing and SAM-less monocotyledonous phenotypes show morphological similarities either to real monocots or to dicot species, which only develop one cotyledon. The specific cotyledon defect in rpk1 mutants thus sheds light upon the developmental implications of the transition from two cotyledons to one.
Collapse
Affiliation(s)
- Birgit S Fiesselmann
- Lehrstuhl für Genetik, Technische Universität München, Wissenschaftszentrum Weihenstephan, Emil-Ramann-Str. 8, D-85354, Freising, Germany.
| | - Miriam Luichtl
- Lehrstuhl für Genetik, Technische Universität München, Wissenschaftszentrum Weihenstephan, Emil-Ramann-Str. 8, D-85354, Freising, Germany.
| | - Xiaomeng Yang
- Lehrstuhl für Genetik, Technische Universität München, Wissenschaftszentrum Weihenstephan, Emil-Ramann-Str. 8, D-85354, Freising, Germany.
| | - Michaela Matthes
- Lehrstuhl für Genetik, Technische Universität München, Wissenschaftszentrum Weihenstephan, Emil-Ramann-Str. 8, D-85354, Freising, Germany.
- Lehrstuhl für Pflanzenzüchtung, Technische Universität München, Wissenschaftszentrum Weihenstephan, Liesel-Beckmann-Str. 2, D-85354, Freising, Germany.
| | - Ottilie Peis
- Lehrstuhl für Genetik, Technische Universität München, Wissenschaftszentrum Weihenstephan, Emil-Ramann-Str. 8, D-85354, Freising, Germany.
| | - Ramon A Torres-Ruiz
- Lehrstuhl für Genetik, Technische Universität München, Wissenschaftszentrum Weihenstephan, Emil-Ramann-Str. 8, D-85354, Freising, Germany.
| |
Collapse
|
35
|
Huang W, Pitorre D, Poretska O, Marizzi C, Winter N, Poppenberger B, Sieberer T. ALTERED MERISTEM PROGRAM1 suppresses ectopic stem cell niche formation in the shoot apical meristem in a largely cytokinin-independent manner. PLANT PHYSIOLOGY 2015; 167:1471-86. [PMID: 25673776 PMCID: PMC4378165 DOI: 10.1104/pp.114.254623] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 02/09/2015] [Indexed: 05/03/2023]
Abstract
Plants are able to reiteratively form new organs in an environmentally adaptive manner during postembryonic development. Organ formation in plants is dependent on stem cell niches (SCNs), which are located in the so-called meristems. Meristems show a functional zonation along the apical-basal axis and the radial axis. Shoot apical meristems of higher plants are dome-like structures, which contain a central SCN that consists of an apical stem cell pool and an underlying organizing center. Organ primordia are formed in the circular peripheral zone (PZ) from stem cell descendants in which differentiation programs are activated. One mechanism to keep this radial symmetry integrated is that the existing SCN actively suppresses stem cell identity in the PZ. However, how this lateral inhibition system works at the molecular level is far from understood. Here, we show that a defect in the putative carboxypeptidase ALTERED MERISTEM PROGRAM1 (AMP1) causes the formation of extra SCNs in the presence of an intact primary shoot apical meristem, which at least partially contributes to the enhanced shoot meristem size and leaf initiation rate found in the mutant. This defect appears to be neither a specific consequence of the altered cytokinin levels in amp1 nor directly mediated by the WUSCHEL/CLAVATA feedback loop. De novo formation of supernumerary stem cell pools was further enhanced in plants mutated in both AMP1 and its paralog LIKE AMP1, indicating that they exhibit partially overlapping roles to suppress SCN respecification in the PZ.
Collapse
Affiliation(s)
- Wenwen Huang
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria (W.H., D.P., O.P., C.M., N.W., B.P., T.S.); andResearch Unit Plant Growth Regulation (O.P., T.S.) and Biotechnology of Horticultural Crops (B.P.), TUM School of Life Sciences Weihenstephan, Technische Universität München, D-85354 Freising, Germany
| | - Delphine Pitorre
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria (W.H., D.P., O.P., C.M., N.W., B.P., T.S.); andResearch Unit Plant Growth Regulation (O.P., T.S.) and Biotechnology of Horticultural Crops (B.P.), TUM School of Life Sciences Weihenstephan, Technische Universität München, D-85354 Freising, Germany
| | - Olena Poretska
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria (W.H., D.P., O.P., C.M., N.W., B.P., T.S.); andResearch Unit Plant Growth Regulation (O.P., T.S.) and Biotechnology of Horticultural Crops (B.P.), TUM School of Life Sciences Weihenstephan, Technische Universität München, D-85354 Freising, Germany
| | - Christine Marizzi
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria (W.H., D.P., O.P., C.M., N.W., B.P., T.S.); andResearch Unit Plant Growth Regulation (O.P., T.S.) and Biotechnology of Horticultural Crops (B.P.), TUM School of Life Sciences Weihenstephan, Technische Universität München, D-85354 Freising, Germany
| | - Nikola Winter
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria (W.H., D.P., O.P., C.M., N.W., B.P., T.S.); andResearch Unit Plant Growth Regulation (O.P., T.S.) and Biotechnology of Horticultural Crops (B.P.), TUM School of Life Sciences Weihenstephan, Technische Universität München, D-85354 Freising, Germany
| | - Brigitte Poppenberger
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria (W.H., D.P., O.P., C.M., N.W., B.P., T.S.); andResearch Unit Plant Growth Regulation (O.P., T.S.) and Biotechnology of Horticultural Crops (B.P.), TUM School of Life Sciences Weihenstephan, Technische Universität München, D-85354 Freising, Germany
| | - Tobias Sieberer
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria (W.H., D.P., O.P., C.M., N.W., B.P., T.S.); andResearch Unit Plant Growth Regulation (O.P., T.S.) and Biotechnology of Horticultural Crops (B.P.), TUM School of Life Sciences Weihenstephan, Technische Universität München, D-85354 Freising, Germany
| |
Collapse
|
36
|
Abstract
The development of plant leaves follows a common basic program that is flexible and is adjusted according to species, developmental stage and environmental circumstances. Leaves initiate from the flanks of the shoot apical meristem and develop into flat structures of variable sizes and forms. This process is regulated by plant hormones, transcriptional regulators and mechanical properties of the tissue. Here, we review recent advances in the understanding of how these factors modulate leaf development to yield a substantial diversity of leaf forms. We discuss these issues in the context of leaf initiation, the balance between morphogenesis and differentiation, and patterning of the leaf margin.
Collapse
Affiliation(s)
- Maya Bar
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture and The Otto Warburg Minerva Center for Agricultural Biotechnology, Hebrew University, P.O. Box 12, Rehovot 76100, Israel
| | - Naomi Ori
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture and The Otto Warburg Minerva Center for Agricultural Biotechnology, Hebrew University, P.O. Box 12, Rehovot 76100, Israel
| |
Collapse
|
37
|
Ckurshumova W, Berleth T. Overcoming recalcitrance - Auxin response factor functions in plant regeneration. PLANT SIGNALING & BEHAVIOR 2015; 10:e993293. [PMID: 26098229 PMCID: PMC4622876 DOI: 10.4161/15592324.2014.993293] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 10/31/2014] [Accepted: 11/20/2014] [Indexed: 05/29/2023]
Abstract
De novo meristem formation in tissue culture critically depends on the correct organization of hormonal domains, which is followed by expression shoot meristem pattern genes. The genetic basis of plant regeneration is fragmentary, but mutant studies demonstrate that signaling through MONOPTEROS (MP)/AUXIN RESPONSE FACTOR 5 is necessary for the formation of shoots from Arabidopsis calli. Most strikingly, variants of MP, uncoupling MP activity from negative regulation by Aux/IAA proteins, showed that MP is also sufficient for promoting de novo shoot formation even from normally recalcitrant tissues. In this function MP acts through pathways involving the homeobox transcription factor SHOOT MERISTEMLESS (STM) and AP2 domain transcription factor CYTOKININ RESPONSE FACTOR2 (CRF2). Our findings provide an entry point to better address the molecular genetics underlying divergent regeneration properties and demonstrate the potential of ARF-derived constructs as novel genetic tools to develop high frequency regeneration systems in recalcitrant explants and species.
Collapse
Affiliation(s)
| | - Thomas Berleth
- University of Toronto; Department of Cell and Systems Biology; Toronto, Ontario, Canada
| |
Collapse
|
38
|
Brenner WG, Schmülling T. Summarizing and exploring data of a decade of cytokinin-related transcriptomics. FRONTIERS IN PLANT SCIENCE 2015; 6:29. [PMID: 25741346 PMCID: PMC4330702 DOI: 10.3389/fpls.2015.00029] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/13/2015] [Indexed: 05/17/2023]
Abstract
The genome-wide transcriptional response of the model organism Arabidopsis thaliana to cytokinin has been investigated by different research groups as soon as large-scale transcriptomic techniques became affordable. Over the last 10 years many transcriptomic datasets related to cytokinin have been generated using different technological platforms, some of which are published only in databases, culminating in an RNA sequencing experiment. Two approaches have been made to establish a core set of cytokinin-regulated transcripts by meta-analysis of these datasets using different preferences regarding their selection. Here we add another meta-analysis derived from an independent microarray platform (CATMA), combine all the meta-analyses available with RNAseq data in order to establish an advanced core set of cytokinin-regulated transcripts, and compare the results with the regulation of orthologous rice genes by cytokinin. We discuss the functions of some of the less known cytokinin-regulated genes indicating areas deserving further research to explore cytokinin function. Finally, we investigate the promoters of the core set of cytokinin-induced genes for the abundance and distribution of known cytokinin-responsive cis elements and identify a set of novel candidate motifs.
Collapse
Affiliation(s)
- Wolfram G. Brenner
- *Correspondence: Wolfram G. Brenner and Thomas Schmülling, Dahlem Centre of Plant Sciences, Institute of Biology/Applied Genetics, Freie Universität Berlin, Albrecht-Thaer-Weg 6, D-14195 Berlin, Germany e-mail: ;
| | - Thomas Schmülling
- *Correspondence: Wolfram G. Brenner and Thomas Schmülling, Dahlem Centre of Plant Sciences, Institute of Biology/Applied Genetics, Freie Universität Berlin, Albrecht-Thaer-Weg 6, D-14195 Berlin, Germany e-mail: ;
| |
Collapse
|
39
|
Twin plants from supernumerary egg cells in Arabidopsis. Curr Biol 2014; 25:225-230. [PMID: 25544612 DOI: 10.1016/j.cub.2014.11.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/20/2014] [Accepted: 11/07/2014] [Indexed: 01/19/2023]
Abstract
Sexual reproduction of flowering plants is distinguished by double fertilization—the two sperm cells delivered by a pollen tube fuse with the two gametic cells of the female gametophyte, the egg and the central cell—inside the ovule to give rise to the embryo and the nutritive endosperm, respectively. The pollen tube is attracted by nongametic synergid cells, and how these two cells of the female gametophyte are specified is currently unclear. Here, we show that ALTERED MERISTEM PROGRAM 1 (AMP1), encoding a protein associated with the endoplasmic reticulum, is required for synergid cell fate during Arabidopsis female gametophyte development. Loss of AMP1 function leads to supernumerary egg cells at the expense of synergids, enabling the generation of dizygotic twins. However, if twin embryos are formed, endosperm formation is prevented, eventually resulting in ovule abortion. The latter can be overcome by the delivery of supernumerary sperm cells in tetraspore (tes) pollen, enabling the formation of twin plants. Thus, both primary and supernumerary egg cells are fully functional in amp1 mutant plants. Sporophytic AMP1 expression is sufficient to prevent cell-fate change of synergids, indicating that one or more AMP1-dependent mobile signals from outside the female gametophyte can contribute to its patterning, in addition to the previously reported lateral inhibition between gametophytic cells. Our results provide insight into the mechanism of synergid fate specification and emphasize the importance of specifying only one egg cell within the female gametophyte to ensure central-cell fertilization by the second sperm cell.
Collapse
|
40
|
Krogan NT, Yin X, Ckurshumova W, Berleth T. Distinct subclades of Aux/IAA genes are direct targets of ARF5/MP transcriptional regulation. THE NEW PHYTOLOGIST 2014; 204:474-483. [PMID: 25145395 DOI: 10.1111/nph.12994] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/23/2014] [Indexed: 05/07/2023]
Abstract
The regulatory interactions between AUXIN RESPONSE FACTORS (ARFs) and Aux/IAA repressors play a central role in auxin signal transduction. Yet, the systems properties of this regulatory network are not well established. We generated a steroid-inducible ARF5/MONOPTEROS (MP) transgenic background to survey the involvement of this factor in the transcriptional regulation of the entire Aux/IAA family in Arabidopsis thaliana. Target genes of ARF5/MP identified by this approach were confirmed by chromatin immunoprecipitation, in vitro gel retardation assays and gene expression analyses. Our study shows that ARF5/MP is indispensable for the correct regulation of nearly one-half of all Aux/IAA genes, and that these targets coincide with distinct subclades. Further, genetic analyses demonstrate that the protein products of multiple Aux/IAA targets negatively feed back onto ARF5/MP activity. This work indicates that ARF5/MP broadly influences the expression of the Aux/IAA gene family, and suggests that such regulation involves the activation of specific subsets of redundantly functioning factors. These groups of factors may then act together to control various processes within the plant through negative feedback on ARF5. Similar detailed analyses of other Aux/IAA-ARF regulatory modules will be required to fully understand how auxin signal transduction influences virtually every aspect of plant growth and development.
Collapse
Affiliation(s)
- Naden T Krogan
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
- Department of Biology, American University, 4400 Massachusetts Avenue NW, Washington, DC, 20016, USA
| | - Xiaojun Yin
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Wenzislava Ckurshumova
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Thomas Berleth
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
41
|
Ckurshumova W, Smirnova T, Marcos D, Zayed Y, Berleth T. Irrepressible MONOPTEROS/ARF5 promotes de novo shoot formation. THE NEW PHYTOLOGIST 2014; 204:556-566. [PMID: 25274430 DOI: 10.1111/nph.13014] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 07/09/2014] [Indexed: 05/29/2023]
Abstract
In vitro regeneration of complete organisms from diverse cell types is a spectacular property of plant cells. Despite the great importance of plant regeneration for plant breeding and biotechnology, its molecular basis is still largely unclear and many important crop plants have remained recalcitrant to regeneration. Hormone-exposure protocols to trigger the de novo formation of either roots or shoots from callus tissue demonstrate the importance of auxin and cytokinin signaling pathways, and genetic differences in these pathways may contribute to the highly divergent responsiveness of plant species to regeneration protocols. In this study, we show that signaling through MONOPTEROS (MP)/AUXIN RESPONSE FACTOR 5 is necessary for the formation of shoots from Arabidopsis calli. Most strikingly, an irrepressible variant of MP, MPΔ, is sufficient for promoting de novo shoot formation through pathways involving the genetically downstream functions of SHOOT MERISTEMLESS (STM) and CYTOKININ RESPONSE FACTOR2 (CRF2). We conclude that the MPΔ genotype can promote de novo shoot formation and can be used to probe corresponding signaling pathways.
Collapse
Affiliation(s)
- Wenzislava Ckurshumova
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Tatiana Smirnova
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Danielle Marcos
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Yara Zayed
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Thomas Berleth
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
42
|
Kim YJ, Maizel A, Chen X. Traffic into silence: endomembranes and post-transcriptional RNA silencing. EMBO J 2014; 33:968-80. [PMID: 24668229 PMCID: PMC4193931 DOI: 10.1002/embj.201387262] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
microRNAs (miRNAs) and small interfering RNAs (siRNAs) are small RNAs that repress gene expression at the post-transcriptional level in plants and animals. Small RNAs guide Argonaute-containing RNA-induced silencing complexes to target RNAs in a sequence-specific manner, resulting in mRNA deadenylation followed by exonucleolytic decay, mRNA endonucleolytic cleavage, or translational inhibition. Although our knowledge of small RNA biogenesis, turnover, and mechanisms of action has dramatically expanded in the past decade, the subcellular location of small RNA-mediated RNA silencing still needs to be defined. In contrast to the prevalent presumption that RNA silencing occurs in the cytosol, emerging evidence reveals connections between the endomembrane system and small RNA activities in plants and animals. Here, we summarize the work that uncovered this link between small RNAs and endomembrane compartments and present an overview of the involvement of the endomembrane system in various aspects of RNA silencing. We propose that the endomembrane system is an integral component of RNA silencing that has been long overlooked and predict that a marriage between cell biology and RNA biology holds the key to a full understanding of post-transcriptional gene regulation by small RNAs.
Collapse
Affiliation(s)
- Yun Ju Kim
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology University of California, Riverside, CA, USA
| | | | | |
Collapse
|
43
|
Mandel T, Moreau F, Kutsher Y, Fletcher JC, Carles CC, Williams LE. The ERECTA receptor kinase regulates Arabidopsis shoot apical meristem size, phyllotaxy and floral meristem identity. Development 2014; 141:830-41. [PMID: 24496620 PMCID: PMC3930468 DOI: 10.1242/dev.104687] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 12/08/2013] [Indexed: 11/20/2022]
Abstract
In plants, the shoot apical meristem (SAM) serves as a reservoir of pluripotent stem cells from which all above ground organs originate. To sustain proper growth, the SAM must maintain homeostasis between the self-renewal of pluripotent stem cells and cell recruitment for lateral organ formation. At the core of the network that regulates this homeostasis in Arabidopsis are the WUSCHEL (WUS) transcription factor specifying stem cell fate and the CLAVATA (CLV) ligand-receptor system limiting WUS expression. In this study, we identified the ERECTA (ER) pathway as a second receptor kinase signaling pathway that regulates WUS expression, and therefore shoot apical and floral meristem size, independently of the CLV pathway. We demonstrate that reduction in class III HD-ZIP and ER function together leads to a significant increase in WUS expression, resulting in extremely enlarged shoot meristems and a switch from spiral to whorled vegetative phyllotaxy. We further show that strong upregulation of WUS in the inflorescence meristem leads to ectopic expression of the AGAMOUS homeotic gene to a level that switches cell fate from floral meristem founder cell to carpel founder cell, suggesting an indirect role for ER in regulating floral meristem identity. This work illustrates the delicate balance between stem cell specification and differentiation in the meristem and shows that a shift in this balance leads to abnormal phyllotaxy and to altered reproductive cell fate.
Collapse
Affiliation(s)
- Tali Mandel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12 Rehovot 76100, Israel
| | | | - Yaarit Kutsher
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12 Rehovot 76100, Israel
| | - Jennifer C. Fletcher
- Plant Gene Expression Center, USDA-ARS/University of California, Berkeley, 800 Buchanan Street, Albany, CA 94710, USA
| | | | - Leor Eshed Williams
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12 Rehovot 76100, Israel
| |
Collapse
|
44
|
Cano LM, Raffaele S, Haugen RH, Saunders DGO, Leonelli L, MacLean D, Hogenhout SA, Kamoun S. Major transcriptome reprogramming underlies floral mimicry induced by the rust fungus Puccinia monoica in Boechera stricta. PLoS One 2013; 8:e75293. [PMID: 24069397 PMCID: PMC3775748 DOI: 10.1371/journal.pone.0075293] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 08/12/2013] [Indexed: 01/08/2023] Open
Abstract
Pucciniamonoica is a spectacular plant parasitic rust fungus that triggers the formation of flower-like structures (pseudoflowers) in its Brassicaceae host plant Boecherastricta. Pseudoflowers mimic in shape, color, nectar and scent co-occurring and unrelated flowers such as buttercups. They act to attract insects thereby aiding spore dispersal and sexual reproduction of the rust fungus. Although much ecological research has been performed on P. monoica-induced pseudoflowers, this system has yet to be investigated at the molecular or genomic level. To date, the molecular alterations underlying the development of pseudoflowers and the genes involved have not been described. To address this, we performed gene expression profiling to reveal 256 plant biological processes that are significantly altered in pseudoflowers. Among these biological processes, plant genes involved in cell fate specification, regulation of transcription, reproduction, floral organ development, anthocyanin (major floral pigments) and terpenoid biosynthesis (major floral volatile compounds) were down-regulated in pseudoflowers. In contrast, plant genes involved in shoot, cotyledon and leaf development, carbohydrate transport, wax biosynthesis, cutin transport and L-phenylalanine metabolism (pathway that results in phenylethanol and phenylacetaldehyde volatile production) were up-regulated. These findings point to an extensive reprogramming of host genes by the rust pathogen to induce floral mimicry. We also highlight 31 differentially regulated plant genes that are enriched in the biological processes mentioned above, and are potentially involved in the formation of pseudoflowers. This work illustrates the complex perturbations induced by rust pathogens in their host plants, and provides a starting point for understanding the molecular mechanisms of pathogen-induced floral mimicry.
Collapse
Affiliation(s)
| | - Sylvain Raffaele
- The Sainsbury Laboratory, Norwich, United Kingdom
- Laboratoire des Interactions Plantes Micro-organismes, UMR441 INRA - UMR2594 CNRS, Castanet Tolosan, France
| | - Riston H. Haugen
- Black Hills State University, Integrative Genomics Program, Spearfish, South Dakota, United States of America
| | | | - Lauriebeth Leonelli
- The Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
| | - Dan MacLean
- The Sainsbury Laboratory, Norwich, United Kingdom
| | - Saskia A. Hogenhout
- Cell and Developmental Biology, The John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Sophien Kamoun
- The Sainsbury Laboratory, Norwich, United Kingdom
- * E-mail:
| |
Collapse
|
45
|
Luichtl M, Fiesselmann BS, Matthes M, Yang X, Peis O, Brunner A, Torres-Ruiz RA. Mutations in the Arabidopsis RPK1 gene uncouple cotyledon anlagen and primordia by modulating epidermal cell shape and polarity. Biol Open 2013; 2:1093-102. [PMID: 24244845 PMCID: PMC3828755 DOI: 10.1242/bio.20135991] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 07/23/2013] [Indexed: 11/29/2022] Open
Abstract
Plant seedlings have either one or two cotyledons. The mechanisms that regulate this organ number are poorly understood. Mutations in the RECEPTOR-LIKE PROTEIN KINASE1 (RPK1) gene of the dicot Arabidopsis have only one cotyledon, with low penetrance due to complex genetic redundancy. An analysis of patterning genes required for cotyledon initiation showed that these have normal expression patterns, defining the cotyledon anlagen, in rpk1. This was also true for key genes, which organize the shoot apical meristem (SAM). By contrast, epidermal cell shape and polarity were compromised in rpk1 embryos, as evidenced by disturbed polarity of the auxin efflux carrier PIN1. PIN1 is required for the establishment of auxin maxima, which induce and maintain organ primordia. The effects in rpk1 mutants manifest in a spatially and timely stochastic fashion probably due to redundancy of RPK1-like functions. Consistently, auxin maxima showed a stochastic distribution in rpk1 embryos, being at times entirely absent and at other times supernumerary. This variability may explain how monocotyledonous seedlings and cotyledon shape variants can developmentally arise in Arabidopsis and possibly in other plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ramon A. Torres-Ruiz
- Lehrstuhl für Genetik, Technische Universität München, Wissenschaftszentrum Weihenstephan, Emil-Ramann-Strasse 8, D-85354 Freising, Germany
| |
Collapse
|
46
|
Shi Y, Wang Z, Meng P, Tian S, Zhang X, Yang S. The glutamate carboxypeptidase AMP1 mediates abscisic acid and abiotic stress responses in Arabidopsis. THE NEW PHYTOLOGIST 2013; 199:135-150. [PMID: 23621575 DOI: 10.1111/nph.12275] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 02/15/2013] [Indexed: 05/03/2023]
Abstract
ALTERED MERISTEM PROGRAM1 (AMP1) encodes a glutamate carboxypeptidase that plays an important role in shoot apical meristem development and phytohormone homeostasis. We isolated a new mutant allele of AMP1, amp1-20, from a screen for abscisic acid (ABA) hypersensitive mutants and characterized the function of AMP1 in plant stress responses. amp1 mutants displayed ABA hypersensitivity, while overexpression of AMP1 caused ABA insensitivity. Moreover, endogenous ABA concentration was increased in amp1-20- and decreased in AMP1-overexpressing plants under stress conditions. Application of ABA reduced the AMP1 protein level in plants. Interestingly, amp1 mutants accumulated excess superoxide and displayed hypersensitivity to oxidative stress. The hypersensitivity of amp1 to ABA and oxidative stress was partially rescued by reactive oxygen species (ROS) scavenging agent. Furthermore, amp1 was tolerant to freezing and drought stress. The ABA hypersensitivity and freezing tolerance of amp1 was dependent on ABA signaling. Moreover, amp1 had elevated soluble sugar content and showed hypersensitivity to high concentrations of sugar. By contrast, the contents of amino acids were changed in amp1 mutant compared to the wild-type. This study suggests that AMP1 modulates ABA, oxidative and abotic stress responses, and is involved in carbon and amino acid metabolism in Arabidopsis.
Collapse
Affiliation(s)
- Yiting Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zheng Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Pei Meng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Siqi Tian
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaoyan Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Coordinated Research Center for Crop Biology, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Center, Beijing, 100193, China
| |
Collapse
|
47
|
Brachi B, Faure N, Bergelson J, Cuguen J, Roux F. Genome-wide association mapping of flowering time in Arabidopsis thaliana in nature: genetics for underlying components and reaction norms across two successive years. ACTA BOTANICA GALLICA : BULLETIN DE LA SOCIETE BOTANIQUE DE FRANCE 2013; 160:205-219. [PMID: 24470785 PMCID: PMC3901435 DOI: 10.1080/12538078.2013.807302] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Often used as a proxy for the transition to reproduction, flowering time (FT) is an integrative trait of two successive biological processes, i.e. bolting time (BT) and the interval between bolting and flowering time (INT). In this study, we aimed to identify candidate genes associated with these composite traits in Arabidopsis thaliana using a field experiment. Genome-wide association (GWA) mapping was performed on BT, INT and FT based on a sample of 179 worldwide natural accessions genotyped for 216,509 SNPs. The high resolution conferred by GWA mapping indicates that FT is an integrative trait at the genetic level, with distinct genetics for BT and INT. BT is shaped largely by genes involved in the circadian clock whereas INT is shaped by genes involved in both the hormone pathways and cold acclimation. Finally, the florigen TSF appears to be the main integrator of environmental and internal signals in ecologically realistic conditions. Based on FT scored in a previous field experiment, we also studied the genetics underlying reaction norms across two years. Only four genes were common to both years, emphasizing the need to repeat field experiments. The gene regulation model appeared as the main genetic model for genotype × year interactions.
Collapse
Affiliation(s)
- Benjamin Brachi
- Laboratoire Génétique et Evolution des Populations Végétales, UMR CNRS 8198, Université des Sciences et Technologies de Lille – Lille 1, F-59655 Villeneuve d'Ascq cedex France
| | - Nathalie Faure
- Laboratoire Génétique et Evolution des Populations Végétales, UMR CNRS 8198, Université des Sciences et Technologies de Lille – Lille 1, F-59655 Villeneuve d'Ascq cedex France
| | - Joy Bergelson
- Department of Ecology and Evolution, University of Chicago, 1101 E. 57 Street, Chicago, IL 60637, USA
| | - Joël Cuguen
- Laboratoire Génétique et Evolution des Populations Végétales, UMR CNRS 8198, Université des Sciences et Technologies de Lille – Lille 1, F-59655 Villeneuve d'Ascq cedex France
| | - Fabrice Roux
- Laboratoire Génétique et Evolution des Populations Végétales, UMR CNRS 8198, Université des Sciences et Technologies de Lille – Lille 1, F-59655 Villeneuve d'Ascq cedex France
| |
Collapse
|
48
|
Li S, Liu L, Zhuang X, Yu Y, Liu X, Cui X, Ji L, Pan Z, Cao X, Mo B, Zhang F, Raikhel N, Jiang L, Chen X. MicroRNAs inhibit the translation of target mRNAs on the endoplasmic reticulum in Arabidopsis. Cell 2013; 153:562-74. [PMID: 23622241 DOI: 10.1016/j.cell.2013.04.005] [Citation(s) in RCA: 353] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 01/13/2013] [Accepted: 03/22/2013] [Indexed: 01/23/2023]
Abstract
Translation inhibition is a major but poorly understood mode of action of microRNAs (miRNAs) in plants and animals. In particular, the subcellular location where this process takes place is unknown. Here, we show that the translation inhibition, but not the mRNA cleavage activity, of Arabidopsis miRNAs requires ALTERED MERISTEM PROGRAM1 (AMP1). AMP1 encodes an integral membrane protein associated with endoplasmic reticulum (ER) and ARGONAUTE1, the miRNA effector and a peripheral ER membrane protein. Large differences in polysome association of miRNA target RNAs are found between wild-type and the amp1 mutant for membrane-bound, but not total, polysomes. This, together with AMP1-independent recruitment of miRNA target transcripts to membrane fractions, shows that miRNAs inhibit the translation of target RNAs on the ER. This study demonstrates that translation inhibition is an important activity of plant miRNAs, reveals the subcellular location of this activity, and uncovers a previously unknown function of the ER.
Collapse
Affiliation(s)
- Shengben Li
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Shi H, Ye T, Wang Y, Chan Z. Arabidopsis ALTERED MERISTEM PROGRAM 1 negatively modulates plant responses to abscisic acid and dehydration stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 67:209-16. [PMID: 23603279 DOI: 10.1016/j.plaphy.2013.03.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 03/25/2013] [Indexed: 05/10/2023]
Abstract
Abscisic acid (ABA) is an important signaling molecule with multiple biological functions in seed germination, plant development and stress responses. ALTERED MERISTEM PROGRAM 1 (AMP1), encoding a putative glutamate carboxypeptidase, is involved in plant growth, morphogenesis and seed dormancy. In this study, we assigned new role for AtAMP1 in ABA signaling and dehydration stress. AtAMP1 was transcriptionally down-regulated by ABA. Loss-of-function mutant of AtAMP1 (amp1-1, encoding a premature stop codon in AtAMP1) resulted in hypersensitive phenotypes toward ABA-mediated seed germination and primary root elongation. The amp1-1 mutant also exhibited enhanced dehydration resistance, as evidenced by the changes of electrolyte leakage (EL), water loss rate and survival rate. Notably, the amp1-1 lines exhibited higher expression levels of ABA-responsive genes (RAB18, RD29A and RD29B), higher concentration of proline and lower reactive oxygen species (ROS) levels (H2O2 and O2(-)) after ABA and dehydration treatments than those of wild type. Taken together, these observations indicated a negative role for AtAMP1 in ABA-mediated seed germination, seedling development and dehydration stress response.
Collapse
Affiliation(s)
- Haitao Shi
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Tiantian Ye
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yanping Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Zhulong Chan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
50
|
Fujita H, Kawaguchi M. Pattern formation by two-layer Turing system with complementarysynthesis. J Theor Biol 2013; 322:33-45. [DOI: 10.1016/j.jtbi.2013.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 12/06/2012] [Accepted: 01/11/2013] [Indexed: 10/27/2022]
|