1
|
Gupta S, Heinrichs E, Novitch BG, Butler SJ. Investigating the basis of lineage decisions and developmental trajectories in the dorsal spinal cord through pseudotime analyses. Development 2024; 151:dev202209. [PMID: 38804879 PMCID: PMC11166460 DOI: 10.1242/dev.202209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 04/18/2024] [Indexed: 05/29/2024]
Abstract
Dorsal interneurons (dIs) in the spinal cord encode the perception of touch, pain, heat, itchiness and proprioception. Previous studies using genetic strategies in animal models have revealed important insights into dI development, but the molecular details of how dIs arise as distinct populations of neurons remain incomplete. We have developed a resource to investigate dI fate specification by combining a single-cell RNA-Seq atlas of mouse embryonic stem cell-derived dIs with pseudotime analyses. To validate this in silico resource as a useful tool, we used it to first identify genes that are candidates for directing the transition states that lead to distinct dI lineage trajectories, and then validated them using in situ hybridization analyses in the developing mouse spinal cord in vivo. We have also identified an endpoint of the dI5 lineage trajectory and found that dIs become more transcriptionally homogeneous during terminal differentiation. This study introduces a valuable tool for further discovery about the timing of gene expression during dI differentiation and demonstrates its utility in clarifying dI lineage relationships.
Collapse
Affiliation(s)
- Sandeep Gupta
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Eric Heinrichs
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Genetics and Genomics Graduate Program, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Bennett G. Novitch
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Samantha J. Butler
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
2
|
Gupta S, Heinrichs E, Novitch BG, Butler SJ. Investigating the basis of lineage decisions and developmental trajectories in the dorsal spinal cord through pseudotime analyses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.24.550380. [PMID: 37546781 PMCID: PMC10402035 DOI: 10.1101/2023.07.24.550380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Dorsal interneurons (dIs) in the spinal cord encode the perception of touch, pain, heat, itch, and proprioception. While previous studies using genetic strategies in animal models have revealed important insights into dI development, the molecular details by which dIs arise as distinct populations of neurons remain incomplete. We have developed a resource to investigate dI fate specification by combining a single-cell RNA-Seq atlas of mouse ESC-derived dIs with pseudotime analyses. To validate this in silico resource as a useful tool, we used it to first identify novel genes that are candidates for directing the transition states that lead to distinct dI lineage trajectories, and then validated them using in situ hybridization analyses in the developing mouse spinal cord in vivo . We have also identified a novel endpoint of the dI5 lineage trajectory and found that dIs become more transcriptionally homogenous during terminal differentiation. Together, this study introduces a valuable tool for further discovery about the timing of gene expression during dI differentiation and demonstrates its utility clarifying dI lineage relationships. Summary statement Pseudotime analyses of embryonic stem cell-derived dorsal spinal interneurons reveals both novel regulators and lineage relationships between different interneuron populations.
Collapse
|
3
|
Alvarez S, Gupta S, Honeychurch K, Mercado-Ayon Y, Kawaguchi R, Butler SJ. Netrin1 patterns the dorsal spinal cord through modulation of Bmp signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.02.565384. [PMID: 37961605 PMCID: PMC10635094 DOI: 10.1101/2023.11.02.565384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
We have identified an unexpected role for netrin1 as a suppressor of bone morphogenetic protein (Bmp) signaling in the developing dorsal spinal cord. Using a combination of gain- and loss-of-function approaches in chicken, embryonic stem cell (ESC), and mouse models, we have observed that manipulating the level of netrin1 specifically alters the patterning of the Bmp-dependent dorsal interneurons (dIs), dI1-dI3. Altered netrin1 levels also change Bmp signaling activity, as measured by bioinformatics, and monitoring phosophoSmad1/5/8 activation, the canonical intermediate of Bmp signaling, and Id levels, a known Bmp target. Together, these studies support the hypothesis that netrin1 acts from the intermediate spinal cord to regionally confine Bmp signaling to the dorsal spinal cord. Thus, netrin1 has reiterative activities shaping dorsal spinal circuits, first by regulating cell fate decisions and then acting as a guidance cue to direct axon extension.
Collapse
|
4
|
Ma K, Chen N, Wang H, Li Q, Shi H, Su M, Zhang Y, Ma Y, Li T. The regulatory role of BMP4 in testicular Sertoli cells of Tibetan sheep. J Anim Sci 2023; 101:skac393. [PMID: 36440761 PMCID: PMC9838805 DOI: 10.1093/jas/skac393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
This study aimed to determine the regulatory mechanism of bone morphogenetic protein 4 (BMP4) gene in the testes of Tibetan sheep and its role in the blood-testis barrier (BTB). First, we cloned BMP4 gene for bioinformatics analysis, and detected the mRNA and protein expression levels of BMP4 in the testes of Tibetan sheep pre-puberty (3-mo-old), during sexual maturity (1-yr-old), and in adulthood (3-yr-old) by qRT-PCR and Western blot. In addition, the subcellular localization of BMP4 was analyzed by immunohistochemical staining. Next, BMP4 overexpression and silencing vectors were constructed and transfected into primary Sertoli cells (SCs) to promote and inhibit the proliferation of BMP4, respectively. Then, CCK-8 was used to detect the proliferation effect of SCs. The expression of BMP4 and downstream genes, pathway receptors, tight junction-related proteins, and cell proliferation and apoptosis-related genes in SCs were studied using qRT-PCR and Western blot. The results revealed that the relative expression of BMP4 mRNA and protein in testicular tissues of 1Y group and 3Y group was dramatically higher than that of 3M group (P < 0.01), and BMP4 protein is mainly located in SCs and Leydig cells at different development stages. The CDS region of the Tibetan sheep BMP4 gene was 1,229 bp. CCK-8 results demonstrated that the proliferation rate of BMP4 was significantly increased in the overexpression group (pc-DNA-3.1(+)-BMP4; P < 0.05). In addition, the mRNA and protein expressions of SMAD5, BMPR1A, and BMPR1B and tight junction-related proteins Claudin11, Occludin, and ZO1 were significantly increased (P < 0.05). The mRNA expression of cell proliferation-related gene Bcl2 was significantly enhanced (P < 0.05), and the expression of GDNF was enhanced (P > 0.05). The mRNA expression of apoptosis-related genes Caspase3 and Bax decreased significantly (P < 0.05), while the mRNA expression of cell cycle-related genes CyclinA2 and CDK2 increased significantly (P < 0.05). It is worth noting that the opposite results were observed after transfection with si-BMP4. In summary, what should be clear from the results reported here is that BMP4 affects testicular development by regulating the Sertoli cells and BTB, thereby modulating the spermatogenesis of Tibetan sheep.
Collapse
Affiliation(s)
- Keyan Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Nana Chen
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Huihui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Qiao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Huibin Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Manchun Su
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Taotao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| |
Collapse
|
5
|
Klumpe HE, Langley MA, Linton JM, Su CJ, Antebi YE, Elowitz MB. The context-dependent, combinatorial logic of BMP signaling. Cell Syst 2022; 13:388-407.e10. [PMID: 35421361 PMCID: PMC9127470 DOI: 10.1016/j.cels.2022.03.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/23/2021] [Accepted: 03/18/2022] [Indexed: 12/12/2022]
Abstract
Cell-cell communication systems typically comprise families of ligand and receptor variants that function together in combinations. Pathway activation depends on the complex way in which ligands are presented extracellularly and receptors are expressed by the signal-receiving cell. To understand the combinatorial logic of such a system, we systematically measured pairwise bone morphogenetic protein (BMP) ligand interactions in cells with varying receptor expression. Ligands could be classified into equivalence groups based on their profile of positive and negative synergies with other ligands. These groups varied with receptor expression, explaining how ligands can functionally replace each other in one context but not another. Context-dependent combinatorial interactions could be explained by a biochemical model based on the competitive formation of alternative signaling complexes with distinct activities. Together, these results provide insights into the roles of BMP combinations in developmental and therapeutic contexts and establish a framework for analyzing other combinatorial, context-dependent signaling systems.
Collapse
Affiliation(s)
- Heidi E Klumpe
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA; Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Matthew A Langley
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - James M Linton
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Christina J Su
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yaron E Antebi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Michael B Elowitz
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
6
|
Gupta S, Butler SJ. Getting in touch with your senses: Mechanisms specifying sensory interneurons in the dorsal spinal cord. WIREs Mech Dis 2021; 13:e1520. [PMID: 34730293 PMCID: PMC8459260 DOI: 10.1002/wsbm.1520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 11/18/2022]
Abstract
The spinal cord is functionally and anatomically divided into ventrally derived motor circuits and dorsally derived somatosensory circuits. Sensory stimuli originating either at the periphery of the body, or internally, are relayed to the dorsal spinal cord where they are processed by distinct classes of sensory dorsal interneurons (dIs). dIs convey sensory information, such as pain, heat or itch, either to the brain, and/or to the motor circuits to initiate the appropriate response. They also regulate the intensity of sensory information and are the major target for the opioid analgesics. While the developmental mechanisms directing ventral and dorsal cell fates have been hypothesized to be similar, more recent research has suggested that dI fates are specified by novel mechanisms. In this review, we will discuss the molecular events that specify dorsal neuronal patterning in the spinal cord, thereby generating diverse dI identities. We will then discuss how this molecular understanding has led to the development of robust stem cell methods to derive multiple spinal cell types, including the dIs, and the implication of these studies for treating spinal cord injuries and neurodegenerative diseases. This article is categorized under: Neurological Diseases > Stem Cells and Development.
Collapse
Affiliation(s)
- Sandeep Gupta
- Department of NeurobiologyUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Samantha J. Butler
- Department of NeurobiologyUniversity of California, Los AngelesLos AngelesCaliforniaUSA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell ResearchUniversity of California, Los AngelesLos AngelesCaliforniaUSA
- Intellectual and Developmental Disabilities Research CenterUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
7
|
Liu S, Zhang W, Yang L, Zhou F, Liu P, Wang Y. Overexpression of bone morphogenetic protein 7 reduces oligodendrocytes loss and promotes functional recovery after spinal cord injury. J Cell Mol Med 2021; 25:8764-8774. [PMID: 34390115 PMCID: PMC8435414 DOI: 10.1111/jcmm.16832] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/03/2021] [Accepted: 07/22/2021] [Indexed: 12/04/2022] Open
Abstract
Spinal cord injury (SCI), as a severe disease with no effective therapeutic measures, has always been a hot topic for scientists. Bone morphogenetic protein 7 (BMP7), as a multifunctional cytokine, has been reported to exert protective effects on the nervous system. The present study aimed to investigate the neuroprotective effect and the potential mechanisms of BMP7 on rats that suffered SCI. Rat models of SCI were established by the modified Allen's method. Adeno‐associated virus (AAV) was injected at T9 immediately before SCI to overexpress BMP7. Results showed that the expression of BMP7 decreased in the injured spinal cords that were at the same time demyelinated. AAV‐BMP7 partly reversed oligodendrocyte (OL) loss, and it was beneficial to maintain the normal structure of myelin. The intervention group showed an increase in the number of axons and Basso‐Beattie‐Bresnahan scores. Moreover, double‐labelled immunofluorescence images indicated p‐Smad1/5/9 and p‐STAT3 in OLs induced by BMP7 might be involved in the protective effects of BMP7. These findings suggest that BMP7 may be a feasible therapy for SCI to reduce demyelination and promote functional recovery.
Collapse
Affiliation(s)
- Shuxin Liu
- Department of Pain Management and Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Zhang
- Department of Pain Management and Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lin Yang
- Department of Pain Management and Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fan Zhou
- Department of Pain Management and Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Peng Liu
- Department of Disease Prevention and Control, People's Liberation Army Joint Logistic Support Force 921th Hospital, Changsha, China
| | - Yaping Wang
- Department of Pain Management and Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
8
|
Alvarez S, Varadarajan SG, Butler SJ. Dorsal commissural axon guidance in the developing spinal cord. Curr Top Dev Biol 2020; 142:197-231. [PMID: 33706918 DOI: 10.1016/bs.ctdb.2020.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Commissural axons have been a key model system for identifying axon guidance signals in vertebrates. This review summarizes the current thinking about the molecular and cellular mechanisms that establish a specific commissural neural circuit: the dI1 neurons in the developing spinal cord. We assess the contribution of long- and short-range signaling while sequentially following the developmental timeline from the birth of dI1 neurons, to the extension of commissural axons first circumferentially and then contralaterally into the ventral funiculus.
Collapse
Affiliation(s)
- Sandy Alvarez
- Department of Neurobiology, University of California, Los Angeles, CA, United States; Molecular Biology Interdepartmental Doctoral Program, University of California, Los Angeles, CA, United States
| | | | - Samantha J Butler
- Department of Neurobiology, University of California, Los Angeles, CA, United States; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, United States.
| |
Collapse
|
9
|
Yang Z, Li X, Jia H, Bai Y, Wang W. BMP7 is Downregulated in Lumbosacral Spinal Cord of Rat Embryos With Anorectal Malformation. J Surg Res 2020; 251:202-210. [PMID: 32169723 DOI: 10.1016/j.jss.2019.11.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 09/30/2019] [Accepted: 11/03/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Bone morphogenetic proteins (BMPs) comprise a highly conserved signaling protein family, which are involved in spinal cord formation, development and differentiation. Malformations of the lumbosacral spinal cord are associated with postoperation complications of anorectal malformation (ARM). However, the mechanism underlying the development of these malformations remains elusive. MATERIALS AND METHODS Embryonic rat ARM model induced by ethylenethiourea (ETU) was introduced to investigate BMP7 expression in lumbosacral spinal cord. BMP7 expression was analyzed by immunohistochemical staining, qRT-PCR, and Western blot analysis on embryonic (E) days 16, 17, 19, and 21. The expression of the neuronal marker neurofilament (NF) and pSmad1/5 was determined by immunofluorescence double staining and Western blot analysis during peak BMP7 expression. RESULTS BMP7 mRNA (E16, 1.041 ± 0.169 versus 0.758 ± 0.0423, P < 0.05; E17, 1.889 ± 0.444 versus 1.601 ± 0.263, P < 0.05; E19, 2.898 ± 0.434 versus 1.981 ± 0.068, P < 0.01; and E21, 2.652 ± 0.637 versus 1.957 ± 0.09, P < 0.05;) and protein (E16, 1.068 ± 0.065 versus 0.828 ± 0.066, P < 0.01; E17, 1.728 ± 0.153 versus1.4 ± 0.148, P < 0.05; E19, 2.313 ± 0.141 versus 1.696 ± 0.21, P < 0.01; and E21, 2.021 ± 0.13 versus 1.43 ± 0.128, P < 0.01) were downregulated, and their expressions were specifically low in interneurons (IN) located in the dorsal horn of the lumbosacral spinal cord in embryos with ARM. On E19, Western blot analysis revealed reduced P-Smad1/5(1.13 ± 0.08 versus 0.525 ± 0.06, P < 0.01). CONCLUSIONS An implication of this study is the possibility that BMP7 downregulation contributes to maldevelopment of the lumbosacral spinal cord during embryogenesis in fetal rats with ARM, indicating that BMP7 may play an important role in ARM pathogenesis and the complications thereof.
Collapse
Affiliation(s)
- Zhonghua Yang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiang Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Huimin Jia
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuzuo Bai
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Weilin Wang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
10
|
Abstract
The spinal cord receives, relays and processes sensory information from the periphery and integrates this information with descending inputs from supraspinal centres to elicit precise and appropriate behavioural responses and orchestrate body movements. Understanding how the spinal cord circuits that achieve this integration are wired during development is the focus of much research interest. Several families of proteins have well-established roles in guiding developing spinal cord axons, and recent findings have identified new axon guidance molecules. Nevertheless, an integrated view of spinal cord network development is lacking, and many current models have neglected the cellular and functional diversity of spinal cord circuits. Recent advances challenge the existing spinal cord axon guidance dogmas and have provided a more complex, but more faithful, picture of the ontogenesis of vertebrate spinal cord circuits.
Collapse
|
11
|
Tulloch AJ, Teo S, Carvajal BV, Tessier-Lavigne M, Jaworski A. Diverse spinal commissural neuron populations revealed by fate mapping and molecular profiling using a novel Robo3 Cre mouse. J Comp Neurol 2019; 527:2948-2972. [PMID: 31152445 DOI: 10.1002/cne.24720] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/22/2019] [Accepted: 05/21/2019] [Indexed: 12/19/2022]
Abstract
The two sides of the nervous system coordinate and integrate information via commissural neurons, which project axons across the midline. Commissural neurons in the spinal cord are a highly heterogeneous population of cells with respect to their birthplace, final cell body position, axonal trajectory, and neurotransmitter phenotype. Although commissural axon guidance during development has been studied in great detail, neither the developmental origins nor the mature phenotypes of commissural neurons have been characterized comprehensively, largely due to lack of selective genetic access to these neurons. Here, we generated mice expressing Cre recombinase from the Robo3 locus specifically in commissural neurons. We used Robo3 Cre mice to characterize the transcriptome and various origins of developing commissural neurons, revealing new details about their extensive heterogeneity in molecular makeup and developmental lineage. Further, we followed the fate of commissural neurons into adulthood, thereby elucidating their settling positions and molecular diversity and providing evidence for possible functions in various spinal cord circuits. Our studies establish an important genetic entry point for further analyses of commissural neuron development, connectivity, and function.
Collapse
Affiliation(s)
- Alastair J Tulloch
- Department of Neuroscience, Brown University, Providence, Rhode Island.,Robert J. and Nancy D. Carney Institute for Brain Science, Providence, Rhode Island
| | - Shaun Teo
- Laboratory of Brain Development and Repair, The Rockefeller University, New York, New York
| | | | - Marc Tessier-Lavigne
- Laboratory of Brain Development and Repair, The Rockefeller University, New York, New York.,Department of Biology, Stanford University, Stanford, California
| | - Alexander Jaworski
- Department of Neuroscience, Brown University, Providence, Rhode Island.,Robert J. and Nancy D. Carney Institute for Brain Science, Providence, Rhode Island
| |
Collapse
|
12
|
Zhuang M, Li X, Zhu J, Zhang J, Niu F, Liang F, Chen M, Li D, Han P, Ji SJ. The m6A reader YTHDF1 regulates axon guidance through translational control of Robo3.1 expression. Nucleic Acids Res 2019; 47:4765-4777. [PMID: 30843071 PMCID: PMC6511866 DOI: 10.1093/nar/gkz157] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 12/02/2022] Open
Abstract
N 6-Methyladenosine (m6A) is a dynamic mRNA modification which regulates protein expression in various posttranscriptional levels. Functional studies of m6A in nervous system have focused on its writers and erasers so far, whether and how m6A readers mediate m6A functions through recognizing and binding their target mRNA remains poorly understood. Here, we find that the expression of axon guidance receptor Robo3.1 which plays important roles in midline crossing of spinal commissural axons is regulated precisely at translational level. The m6A reader YTHDF1 binds to and positively regulates translation of m6A-modified Robo3.1 mRNA. Either mutation of m6A sites in Robo3.1 mRNA or YTHDF1 knockdown or knockout leads to dramatic reduction of Robo3.1 protein without affecting Robo3.1 mRNA level. Specific ablation of Ythdf1 in spinal commissural neurons results in pre-crossing axon guidance defects. Our findings identify a mechanism that YTHDF1-mediated translation of m6A-modified Robo3.1 mRNA controls pre-crossing axon guidance in spinal cord.
Collapse
Affiliation(s)
- Mengru Zhuang
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- SUSTech-HKUST Joint PhD Program, Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xinbei Li
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Junda Zhu
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jian Zhang
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Fugui Niu
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- SUSTech-HIT Joint Graduate Program, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Fanghao Liang
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- SUSTech-HIT Joint Graduate Program, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Mengxian Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Duo Li
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Peng Han
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Sheng-Jian Ji
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Institute of Neuroscience, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
13
|
Ye X, Qiu Y, Gao Y, Wan D, Zhu H. A Subtle Network Mediating Axon Guidance: Intrinsic Dynamic Structure of Growth Cone, Attractive and Repulsive Molecular Cues, and the Intermediate Role of Signaling Pathways. Neural Plast 2019; 2019:1719829. [PMID: 31097955 PMCID: PMC6487106 DOI: 10.1155/2019/1719829] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/25/2019] [Accepted: 03/06/2019] [Indexed: 01/01/2023] Open
Abstract
A fundamental feature of both early nervous system development and axon regeneration is the guidance of axonal projections to their targets in order to assemble neural circuits that control behavior. In the navigation process where the nerves grow toward their targets, the growth cones, which locate at the tips of axons, sense the environment surrounding them, including varies of attractive or repulsive molecular cues, then make directional decisions to adjust their navigation journey. The turning ability of a growth cone largely depends on its highly dynamic skeleton, where actin filaments and microtubules play a very important role in its motility. In this review, we summarize some possible mechanisms underlying growth cone motility, relevant molecular cues, and signaling pathways in axon guidance of previous studies and discuss some questions regarding directions for further studies.
Collapse
Affiliation(s)
- Xiyue Ye
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China
- Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| | - Yan Qiu
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China
- Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| | - Yuqing Gao
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China
- Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| | - Dong Wan
- Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Huifeng Zhu
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China
- Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| |
Collapse
|
14
|
Andrews MG, Kong J, Novitch BG, Butler SJ. New perspectives on the mechanisms establishing the dorsal-ventral axis of the spinal cord. Curr Top Dev Biol 2018; 132:417-450. [PMID: 30797516 DOI: 10.1016/bs.ctdb.2018.12.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Distinct classes of neurons arise at different positions along the dorsal-ventral axis of the spinal cord leading to spinal neurons being segregated along this axis according to their physiological properties and functions. Thus, the neurons associated with motor control are generally located in, or adjacent to, the ventral horn whereas the interneurons (INs) that mediate sensory activities are present within the dorsal horn. Here, we review classic and recent studies examining the developmental mechanisms that establish the dorsal-ventral axis in the embryonic spinal cord. Intriguingly, while the cellular organization of the dorsal and ventral halves of the spinal cord looks superficially similar during early development, the underlying molecular mechanisms that establish dorsal vs ventral patterning are markedly distinct. For example, the ventral spinal cord is patterned by the actions of a single growth factor, sonic hedgehog (Shh) acting as a morphogen, i.e., concentration-dependent signal. Recent studies have shed light on the mechanisms by which the spatial and temporal gradient of Shh is transduced by cells to elicit the generation of different classes of ventral INs, and motor neurons (MNs). In contrast, the dorsal spinal cord is patterned by the action of multiple factors, most notably by members of the bone morphogenetic protein (BMP) and Wnt families. While less is known about dorsal patterning, recent studies have suggested that the BMPs do not act as morphogens to specify dorsal IN identities as previously proposed, rather each BMP has signal-specific activities. Finally, we consider the promise that elucidation of these mechanisms holds for neural repair.
Collapse
Affiliation(s)
- Madeline G Andrews
- Department of Neurobiology, University of California, Los Angeles, CA, United States; Neuroscience Graduate Program, University of California, Los Angeles, CA, United States
| | - Jennifer Kong
- Department of Neurobiology, University of California, Los Angeles, CA, United States; Neuroscience Graduate Program, University of California, Los Angeles, CA, United States
| | - Bennett G Novitch
- Department of Neurobiology, University of California, Los Angeles, CA, United States; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, United States
| | - Samantha J Butler
- Department of Neurobiology, University of California, Los Angeles, CA, United States; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, United States.
| |
Collapse
|
15
|
Deriving Dorsal Spinal Sensory Interneurons from Human Pluripotent Stem Cells. Stem Cell Reports 2018; 10:390-405. [PMID: 29337120 PMCID: PMC5832443 DOI: 10.1016/j.stemcr.2017.12.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 12/28/2022] Open
Abstract
Cellular replacement therapies for neurological conditions use human embryonic stem cell (hESC)- or induced pluripotent stem cell (hiPSC)-derived neurons to replace damaged or diseased populations of neurons. For the spinal cord, significant progress has been made generating the in-vitro-derived motor neurons required to restore coordinated movement. However, there is as yet no protocol to generate in-vitro-derived sensory interneurons (INs), which permit perception of the environment. Here, we report on the development of a directed differentiation protocol to derive sensory INs for both hESCs and hiPSCs. Two developmentally relevant factors, retinoic acid in combination with bone morphogenetic protein 4, can be used to generate three classes of sensory INs: the proprioceptive dI1s, the dI2s, and mechanosensory dI3s. Critical to this protocol is the competence state of the neural progenitors, which changes over time. This protocol will facilitate developing cellular replacement therapies to reestablish sensory connections in injured patients. Robust protocol to generate spinal sensory neurons from human pluripotent cells RA ± BMP4 direct hPSCs toward the dI1, dI2, and dI3 classes of dorsal interneurons Only neural progenitors in the correct competence state respond to RA/BMP4 signals
Collapse
|
16
|
BMP/SMAD Pathway Promotes Neurogenesis of Midbrain Dopaminergic Neurons In Vivo and in Human Induced Pluripotent and Neural Stem Cells. J Neurosci 2018; 38:1662-1676. [PMID: 29321139 DOI: 10.1523/jneurosci.1540-17.2018] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 12/28/2017] [Accepted: 01/02/2018] [Indexed: 01/08/2023] Open
Abstract
The embryonic formation of midbrain dopaminergic (mDA) neurons in vivo provides critical guidelines for the in vitro differentiation of mDA neurons from stem cells, which are currently being developed for Parkinson's disease cell replacement therapy. Bone morphogenetic protein (BMP)/SMAD inhibition is routinely used during early steps of stem cell differentiation protocols, including for the generation of mDA neurons. However, the function of the BMP/SMAD pathway for in vivo specification of mammalian mDA neurons is virtually unknown. Here, we report that BMP5/7-deficient mice (Bmp5-/-; Bmp7-/-) lack mDA neurons due to reduced neurogenesis in the mDA progenitor domain. As molecular mechanisms accounting for these alterations in Bmp5-/-; Bmp7-/- mutants, we have identified expression changes of the BMP/SMAD target genes MSX1/2 (msh homeobox 1/2) and SHH (sonic hedgehog). Conditionally inactivating SMAD1 in neural stem cells of mice in vivo (Smad1Nes) hampered the differentiation of progenitor cells into mDA neurons by preventing cell cycle exit, especially of TH+SOX6+ (tyrosine hydroxylase, SRY-box 6) and TH+GIRK2+ (potassium voltage-gated channel subfamily-J member-6) substantia nigra neurons. BMP5/7 robustly increased the in vitro differentiation of human induced pluripotent stem cells and induced neural stem cells to mDA neurons by up to threefold. In conclusion, we have identified BMP/SMAD signaling as a novel critical pathway orchestrating essential steps of mammalian mDA neurogenesis in vivo that balances progenitor proliferation and differentiation. Moreover, we demonstrate the potential of BMPs to improve the generation of stem-cell-derived mDA neurons in vitro, highlighting the importance of sequential BMP/SMAD inhibition and activation in this process.SIGNIFICANCE STATEMENT We identify bone morphogenetic protein (BMP)/SMAD signaling as a novel essential pathway regulating the development of mammalian midbrain dopaminergic (mDA) neurons in vivo and provide insights into the molecular mechanisms of this process. BMP5/7 regulate MSX1/2 (msh homeobox 1/2) and SHH (sonic hedgehog) expression to direct mDA neurogenesis. Moreover, the BMP signaling component SMAD1 controls the differentiation of mDA progenitors, particularly to substantia nigra neurons, by directing their cell cycle exit. Importantly, BMP5/7 increase robustly the differentiation of human induced pluripotent and induced neural stem cells to mDA neurons. BMP/SMAD are routinely inhibited in initial stages of stem cell differentiation protocols currently being developed for Parkinson's disease cell replacement therapies. Therefore, our findings on opposing roles of the BMP/SMAD pathway during in vitro mDA neurogenesis might improve these procedures significantly.
Collapse
|
17
|
Andrews MG, Del Castillo LM, Ochoa-Bolton E, Yamauchi K, Smogorzewski J, Butler SJ. BMPs direct sensory interneuron identity in the developing spinal cord using signal-specific not morphogenic activities. eLife 2017; 6. [PMID: 28925352 PMCID: PMC5605194 DOI: 10.7554/elife.30647] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 08/24/2017] [Indexed: 02/06/2023] Open
Abstract
The Bone Morphogenetic Protein (BMP) family reiteratively signals to direct disparate cellular fates throughout embryogenesis. In the developing dorsal spinal cord, multiple BMPs are required to specify sensory interneurons (INs). Previous studies suggested that the BMPs act as concentration-dependent morphogens to direct IN identity, analogous to the manner in which sonic hedgehog patterns the ventral spinal cord. However, it remains unresolved how multiple BMPs would cooperate to establish a unified morphogen gradient. Our studies support an alternative model: BMPs have signal-specific activities directing particular IN fates. Using chicken and mouse models, we show that the identity, not concentration, of the BMP ligand directs distinct dorsal identities. Individual BMPs promote progenitor patterning or neuronal differentiation by their activation of different type I BMP receptors and distinct modulations of the cell cycle. Together, this study shows that a 'mix and match' code of BMP signaling results in distinct classes of sensory INs.
Collapse
Affiliation(s)
- Madeline G Andrews
- Department of Neurobiology, University of California, Los Angeles, United States.,Neuroscience Graduate Program, University of California, Los Angeles, United States.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, United States
| | - Lorenzo M Del Castillo
- Department of Neurobiology, University of California, Los Angeles, United States.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, United States.,CIRM Bridges to Research Program, California State University, Northridge, United States
| | - Eliana Ochoa-Bolton
- Department of Neurobiology, University of California, Los Angeles, United States.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, United States.,CIRM Bridges to Research Program, California State University, Northridge, United States
| | - Ken Yamauchi
- Department of Neurobiology, University of California, Los Angeles, United States.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, United States
| | - Jan Smogorzewski
- Department of Dermatology, University of Southern California, California, United States
| | - Samantha J Butler
- Department of Neurobiology, University of California, Los Angeles, United States.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, United States
| |
Collapse
|
18
|
Kabayiza KU, Masgutova G, Harris A, Rucchin V, Jacob B, Clotman F. The Onecut Transcription Factors Regulate Differentiation and Distribution of Dorsal Interneurons during Spinal Cord Development. Front Mol Neurosci 2017; 10:157. [PMID: 28603487 PMCID: PMC5445119 DOI: 10.3389/fnmol.2017.00157] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 05/08/2017] [Indexed: 01/09/2023] Open
Abstract
During embryonic development, the dorsal spinal cord generates numerous interneuron populations eventually involved in motor circuits or in sensory networks that integrate and transmit sensory inputs from the periphery. The molecular mechanisms that regulate the specification of these multiple dorsal neuronal populations have been extensively characterized. In contrast, the factors that contribute to their diversification into smaller specialized subsets and those that control the specific distribution of each population in the developing spinal cord remain unknown. Here, we demonstrate that the Onecut transcription factors, namely Hepatocyte Nuclear Factor-6 (HNF-6) (or OC-1), OC-2 and OC-3, regulate the diversification and the distribution of spinal dorsal interneuron (dINs). Onecut proteins are dynamically and differentially distributed in spinal dINs during differentiation and migration. Analyzes of mutant embryos devoid of Onecut factors in the developing spinal cord evidenced a requirement in Onecut proteins for proper production of a specific subset of dI5 interneurons. In addition, the distribution of dI3, dI5 and dI6 interneuron populations was altered. Hence, Onecut transcription factors control genetic programs that contribute to the regulation of spinal dIN diversification and distribution during embryonic development.
Collapse
Affiliation(s)
- Karolina U Kabayiza
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural DifferentiationBrussels, Belgium.,Biology Department, School of Science, College of Science and Technology, University of RwandaButare, Rwanda
| | - Gauhar Masgutova
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural DifferentiationBrussels, Belgium
| | - Audrey Harris
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural DifferentiationBrussels, Belgium
| | - Vincent Rucchin
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural DifferentiationBrussels, Belgium
| | - Benvenuto Jacob
- Université catholique de Louvain, Institute of Neuroscience, System and Cognition DivisionBrussels, Belgium
| | - Frédéric Clotman
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural DifferentiationBrussels, Belgium
| |
Collapse
|
19
|
Brorin is required for neurogenesis, gliogenesis, and commissural axon guidance in the zebrafish forebrain. PLoS One 2017; 12:e0176036. [PMID: 28448525 PMCID: PMC5407822 DOI: 10.1371/journal.pone.0176036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 04/04/2017] [Indexed: 12/28/2022] Open
Abstract
Bmps regulate numerous neural functions with their regulators. We previously identified Brorin, a neural-specific secreted antagonist of Bmp signaling, in humans, mice, and zebrafish. Mouse Brorin has two cysteine-rich domains containing 10 cysteine residues in its core region, and these are located in similar positions to those in the cysteine-rich domains of Chordin family members, which are secreted Bmp antagonists. Zebrafish Brorin had two cysteine-rich domains with high similarity to those of mouse Brorin. We herein examined zebrafish brorin in order to elucidate its in vivo actions. Zebrafish brorin was predominantly expressed in developing neural tissues. The overexpression of brorin led to the inactivation of Bmp signaling. On the other hand, the knockdown of brorin resulted in the activation of Bmp signaling and brorin morphants exhibited defective development of the ventral domain in the forebrain. Furthermore, the knockdown of brorin inhibited the generation of γ–aminobutyric acid (GABA)ergic interneurons and oligodendrocytes and promoted the generation of astrocytes in the forebrain. In addition, brorin was required for axon guidance in the forebrain. The present results suggest that Brorin is a secreted Bmp antagonist predominantly expressed in developing neural tissues and that it plays multiple roles in the development of the zebrafish forebrain.
Collapse
|
20
|
Sonic -'Jack-of-All-Trades' in Neural Circuit Formation. J Dev Biol 2017; 5:jdb5010002. [PMID: 29615560 PMCID: PMC5831768 DOI: 10.3390/jdb5010002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/22/2017] [Accepted: 02/01/2017] [Indexed: 12/23/2022] Open
Abstract
As reflected by the term morphogen, molecules such as Shh and Wnts were identified based on their role in early development when they instruct precursor cells to adopt a specific cell fate. Only much later were they implicated in neural circuit formation. Both in vitro and in vivo studies indicated that morphogens direct axons during their navigation through the developing nervous system. Today, the best understood role of Shh and Wnt in axon guidance is their effect on commissural axons in the spinal cord. Shh was shown to affect commissural axons both directly and indirectly via its effect on Wnt signaling. In fact, throughout neural circuit formation there is cross-talk and collaboration of Shh and Wnt signaling. Thus, although the focus of this review is on the role of Shh in neural circuit formation, a separation from Wnt signaling is not possible.
Collapse
|
21
|
de Ramon Francàs G, Zuñiga NR, Stoeckli ET. The spinal cord shows the way - How axons navigate intermediate targets. Dev Biol 2016; 432:43-52. [PMID: 27965053 DOI: 10.1016/j.ydbio.2016.12.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/26/2016] [Accepted: 12/01/2016] [Indexed: 12/13/2022]
Abstract
Functional neural circuits depend on the establishment of specific connections between neurons and their target cells. To this end, many axons have to travel long distances to reach their target cells during development. Studies addressing the molecular mechanisms of axon guidance have to overcome the complexity of subpopulation-specific requirements with respect to pathways, guidance cues, and target recognition. Compared to the brain, the relatively simple structure of the spinal cord provides an advantage for experimental studies of axon guidance mechanisms. Therefore, the so far best understood model for axon guidance is the dI1 population of dorsal interneurons of the spinal cord. They extend their axons ventrally towards the floor plate. After midline crossing, they turn rostrally along the contralateral floor-plate border. Despite the fact that the trajectory of dI1 axons seems to be rather simple, the number of axon guidance molecules involved in the decisions taken by these axons is bewildering. Because guidance molecules and mechanisms are conserved throughout the developing nervous system, we can generalize what we have learned about the navigation of the floor plate as an intermediate target for commissural axons to the brain.
Collapse
Affiliation(s)
- Gemma de Ramon Francàs
- University of Zurich, Department of Molecular Life Sciences and Neuroscience Center Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Nikole R Zuñiga
- University of Zurich, Department of Molecular Life Sciences and Neuroscience Center Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Esther T Stoeckli
- University of Zurich, Department of Molecular Life Sciences and Neuroscience Center Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
22
|
Nitzan E, Avraham O, Kahane N, Ofek S, Kumar D, Kalcheim C. Dynamics of BMP and Hes1/Hairy1 signaling in the dorsal neural tube underlies the transition from neural crest to definitive roof plate. BMC Biol 2016; 14:23. [PMID: 27012662 PMCID: PMC4806459 DOI: 10.1186/s12915-016-0245-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/10/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The dorsal midline region of the neural tube that results from closure of the neural folds is generally termed the roof plate (RP). However, this domain is highly dynamic and complex, and is first transiently inhabited by prospective neural crest (NC) cells that sequentially emigrate from the neuroepithelium. It only later becomes the definitive RP, the dorsal midline cells of the spinal cord. We previously showed that at the trunk level of the axis, prospective RP progenitors originate ventral to the premigratory NC and progressively reach the dorsal midline following NC emigration. However, the molecular mechanisms underlying the end of NC production and formation of the definitive RP remain virtually unknown. RESULTS Based on distinctive cellular and molecular traits, we have defined an initial NC and a subsequent RP stage, allowing us to investigate the mechanisms responsible for the transition between the two phases. We demonstrate that in spite of the constant production of BMP4 in the dorsal tube at both stages, RP progenitors only transiently respond to the ligand and lose competence shortly before they arrive at their final location. In addition, exposure of dorsal tube cells at the NC stage to high levels of BMP signaling induces premature RP traits, such as Hes1/Hairy1, while concomitantly inhibiting NC production. Reciprocally, early inhibition of BMP signaling prevents Hairy1 mRNA expression at the RP stage altogether, suggesting that BMP is both necessary and sufficient for the development of this RP-specific trait. Furthermore, when Hes1/Hairy1 is misexpressed at the NC stage, it inhibits BMP signaling and downregulates BMPR1A/Alk3 mRNA expression, transcription of BMP targets such as Foxd3, cell-cycle progression, and NC emigration. Reciprocally, Foxd3 inhibits Hairy1, suggesting that repressive cross-interactions at the level of, and downstream from, BMP ensure the temporal separation between both lineages. CONCLUSIONS Together, our data suggest that BMP signaling is important both for NC and RP formation. Given that these two structures develop sequentially, we speculate that the longer exposure of RP progenitors to BMP compared with that of premigratory NC cells may be translated into a higher signaling level in the former. This induces changes in responsiveness to BMP, most likely by downregulating the expression of Alk3 receptors and, consequently, of BMP-dependent downstream transcription factors, which exhibit spatial complementary expression patterns and mutually repress each other to generate alternative fates. This molecular dynamic is likely to account for the transition between the NC and definitive RP stages and thus be responsible for the segregation between central and peripheral lineages during neural development.
Collapse
Affiliation(s)
- Erez Nitzan
- Department of Medical Neurobiology, IMRIC and ELSC, Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, 9112102,, PO Box 12272,, Israel.,Present Address: Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Oshri Avraham
- Department of Medical Neurobiology, IMRIC and ELSC, Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, 9112102,, PO Box 12272,, Israel.,Present address: Department of Genetics, Washington University, St. Louis, MO, USA
| | - Nitza Kahane
- Department of Medical Neurobiology, IMRIC and ELSC, Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, 9112102,, PO Box 12272,, Israel
| | - Shai Ofek
- Department of Medical Neurobiology, IMRIC and ELSC, Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, 9112102,, PO Box 12272,, Israel
| | - Deepak Kumar
- Department of Medical Neurobiology, IMRIC and ELSC, Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, 9112102,, PO Box 12272,, Israel
| | - Chaya Kalcheim
- Department of Medical Neurobiology, IMRIC and ELSC, Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, 9112102,, PO Box 12272,, Israel.
| |
Collapse
|
23
|
Poliak S, Morales D, Croteau LP, Krawchuk D, Palmesino E, Morton S, Cloutier JF, Charron F, Dalva MB, Ackerman SL, Kao TJ, Kania A. Synergistic integration of Netrin and ephrin axon guidance signals by spinal motor neurons. eLife 2015; 4. [PMID: 26633881 PMCID: PMC4764565 DOI: 10.7554/elife.10841] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/02/2015] [Indexed: 01/09/2023] Open
Abstract
During neural circuit assembly, axonal growth cones are exposed to multiple guidance signals at trajectory choice points. While axonal responses to individual guidance cues have been extensively studied, less is known about responses to combination of signals and underlying molecular mechanisms. Here, we studied the convergence of signals directing trajectory selection of spinal motor axons entering the limb. We first demonstrate that Netrin-1 attracts and repels distinct motor axon populations, according to their expression of Netrin receptors. Quantitative in vitro assays demonstrate that motor axons synergistically integrate both attractive or repulsive Netrin-1 signals together with repulsive ephrin signals. Our investigations of the mechanism of ephrin-B2 and Netrin-1 integration demonstrate that the Netrin receptor Unc5c and the ephrin receptor EphB2 can form a complex in a ligand-dependent manner and that Netrin–ephrin synergistic growth cones responses involve the potentiation of Src family kinase signaling, a common effector of both pathways. DOI:http://dx.doi.org/10.7554/eLife.10841.001 The ability of animals to walk and perform skilled movements depends on particular groups of muscles contracting in a coordinated manner. Muscles are activated by nerve cells called motor neurons found in the spinal cord. The connections between the motor neurons and muscles are established in the developing embryo. Each motor neuron produces a long projection called an axon whose growth is guided towards the target muscle by signal proteins. The motor neurons are exposed to many such signal proteins at the same time and it is not clear how they integrate all this information so that their axons target the correct muscles. Poliak, Morales et al. used a variety of genetic and biochemical approaches to study the formation of motor neuron and muscle connections in the limbs of mice and chicks. The experiments show that a signal protein called Netrin-1 is produced in the limbs of developing embryos and attracts the axons of some types of motor neurons and repels others. This is due to the motor neurons producing different types of receptor proteins to detect Netrin-1. Further experiments show that individual axons can combine information from attractive or repulsive Netrin-1 signals together with repulsive signals from another family of proteins called ephrins in a 'synergistic' manner. That is, the combined effect of both cues is stronger than their individual effects added together. This synergy involves ligand-dependent interactions between the Netrin-1 and ephrin receptor proteins, and the activation of a common enzyme. Poliak, Morales et al.’s findings reveal a new role for Netrin-1 in guiding the development of motor neurons in the limb. Future work will focus on further understanding the mechanism of synergy between Netrin-1 and ephrins. Netrin-1 and ephrins are also involved in the formation of blood vessels and many other developmental processes, so understanding how they work together would have a wide-reaching impact on research into human health and disease. DOI:http://dx.doi.org/10.7554/eLife.10841.002
Collapse
Affiliation(s)
- Sebastian Poliak
- Department of Neuroscience, Columbia University, New York, United States.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States
| | - Daniel Morales
- Institut de recherches cliniques de Montréal, Montréal, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, Canada
| | | | - Dayana Krawchuk
- Institut de recherches cliniques de Montréal, Montréal, Canada.,The Jackson Laboratory, Bar Harbor, United States
| | - Elena Palmesino
- Institut de recherches cliniques de Montréal, Montréal, Canada
| | - Susan Morton
- Department of Neuroscience, Columbia University, New York, United States.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States.,Howard Hughes Medical Institute, Columbia University, New York, United States
| | - Jean-François Cloutier
- Integrated Program in Neuroscience, McGill University, Montréal, Canada.,Montréal Neurological Institute, Montréal, Canada
| | - Frederic Charron
- Institut de recherches cliniques de Montréal, Montréal, Canada.,Faculté de Médecine, Université de Montréal, Montréal, Canada.,Department of Biology, McGill University, Montréal, Canada.,Department of Anatomy and Cell Biology, McGill University, Montréal, Canada.,Division of Experimental Medicine, McGill University, Montréal, Canada
| | - Matthew B Dalva
- Department of Neuroscience, The Farber Institute for Neurosciences, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, United States
| | - Susan L Ackerman
- The Jackson Laboratory, Bar Harbor, United States.,Howard Hughes Medical Institute, The Jackson Laboratory, Bar Harbor, United States
| | - Tzu-Jen Kao
- Institut de recherches cliniques de Montréal, Montréal, Canada.,Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan
| | - Artur Kania
- Institut de recherches cliniques de Montréal, Montréal, Canada.,Faculté de Médecine, Université de Montréal, Montréal, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, Canada.,Department of Biology, McGill University, Montréal, Canada.,Department of Anatomy and Cell Biology, McGill University, Montréal, Canada.,Division of Experimental Medicine, McGill University, Montréal, Canada
| |
Collapse
|
24
|
Neuhaus-Follini A, Bashaw GJ. Crossing the embryonic midline: molecular mechanisms regulating axon responsiveness at an intermediate target. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:377-89. [PMID: 25779002 DOI: 10.1002/wdev.185] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 01/23/2015] [Accepted: 02/05/2015] [Indexed: 11/07/2022]
Abstract
In bilaterally symmetric animals, the precise assembly of neural circuitry at the midline is essential for coordination of the left and right sides of the body. Commissural axons must first be directed across the midline and then be prevented from re-crossing in order to ensure proper midline connectivity. Here, we review the attractants and repellents that direct axonal navigation at the ventral midline and the receptors on commissural neurons through which they signal. In addition, we discuss the mechanisms that commissural axons use to switch their responsiveness to midline-derived cues, so that they are initially responsive to midline attractants and subsequently responsive to midline repellents.
Collapse
Affiliation(s)
- Alexandra Neuhaus-Follini
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Greg J Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
25
|
Butler SJ, Bronner ME. From classical to current: analyzing peripheral nervous system and spinal cord lineage and fate. Dev Biol 2015; 398:135-46. [PMID: 25446276 PMCID: PMC4845735 DOI: 10.1016/j.ydbio.2014.09.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 09/22/2014] [Accepted: 09/25/2014] [Indexed: 01/13/2023]
Abstract
During vertebrate development, the central (CNS) and peripheral nervous systems (PNS) arise from the neural plate. Cells at the margin of the neural plate give rise to neural crest cells, which migrate extensively throughout the embryo, contributing to the majority of neurons and all of the glia of the PNS. The rest of the neural plate invaginates to form the neural tube, which expands to form the brain and spinal cord. The emergence of molecular cloning techniques and identification of fluorophores like Green Fluorescent Protein (GFP), together with transgenic and electroporation technologies, have made it possible to easily visualize the cellular and molecular events in play during nervous system formation. These lineage-tracing techniques have precisely demonstrated the migratory pathways followed by neural crest cells and increased knowledge about their differentiation into PNS derivatives. Similarly, in the spinal cord, lineage-tracing techniques have led to a greater understanding of the regional organization of multiple classes of neural progenitor and post-mitotic neurons along the different axes of the spinal cord and how these distinct classes of neurons assemble into the specific neural circuits required to realize their various functions. Here, we review how both classical and modern lineage and marker analyses have expanded our knowledge of early peripheral nervous system and spinal cord development.
Collapse
Affiliation(s)
- Samantha J Butler
- Department of Neurobiology, TLSB 3129, 610 Charles E Young Drive East, University of California, Los Angeles, Los Angeles, CA 90095-7239, USA; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Marianne E Bronner
- Department of Neurobiology, TLSB 3129, 610 Charles E Young Drive East, University of California, Los Angeles, Los Angeles, CA 90095-7239, USA; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
26
|
Hegarty SV, Collins LM, Gavin AM, Roche SL, Wyatt SL, Sullivan AM, O'Keeffe GW. Canonical BMP-Smad signalling promotes neurite growth in rat midbrain dopaminergic neurons. Neuromolecular Med 2014; 16:473-89. [PMID: 24682653 DOI: 10.1007/s12017-014-8299-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 03/07/2014] [Indexed: 01/01/2023]
Abstract
Ventral midbrain (VM) dopaminergic (DA) neurons project to the dorsal striatum via the nigrostriatal pathway to regulate voluntary movements, and their loss leads to the motor dysfunction seen in Parkinson's disease (PD). Despite recent progress in the understanding of VM DA neurogenesis, the factors regulating nigrostriatal pathway development remain largely unknown. The bone morphogenetic protein (BMP) family regulates neurite growth in the developing nervous system and may contribute to nigrostriatal pathway development. Two related members of this family, BMP2 and growth differentiation factor (GDF)5, have neurotrophic effects, including promotion of neurite growth, on cultured VM DA neurons. However, the molecular mechanisms regulating their effects on DA neurons are unknown. By characterising the temporal expression profiles of endogenous BMP receptors (BMPRs) in the developing and adult rat VM and striatum, this study identified BMP2 and GDF5 as potential regulators of nigrostriatal pathway development. Furthermore, through the use of noggin, dorsomorphin and BMPR/Smad plasmids, this study demonstrated that GDF5- and BMP2-induced neurite outgrowth from cultured VM DA neurons is dependent on BMP type I receptor activation of the Smad 1/5/8 signalling pathway.
Collapse
Affiliation(s)
- Shane V Hegarty
- Department of Anatomy and Neuroscience, Biosciences Institute, University College Cork, Cork, Ireland
| | | | | | | | | | | | | |
Collapse
|
27
|
Yam PT, Charron F. Signaling mechanisms of non-conventional axon guidance cues: the Shh, BMP and Wnt morphogens. Curr Opin Neurobiol 2013; 23:965-73. [DOI: 10.1016/j.conb.2013.09.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 09/03/2013] [Indexed: 11/29/2022]
|
28
|
Le Dréau G, Martí E. The multiple activities of BMPs during spinal cord development. Cell Mol Life Sci 2013; 70:4293-305. [PMID: 23673983 PMCID: PMC11113619 DOI: 10.1007/s00018-013-1354-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 04/25/2013] [Accepted: 04/29/2013] [Indexed: 12/19/2022]
Abstract
Bone morphogenetic proteins (BMPs) are one of the main classes of multi-faceted secreted factors that drive vertebrate development. A growing body of evidence indicates that BMPs contribute to the formation of the central nervous system throughout its development, from the initial shaping of the neural primordium to the generation and maturation of the different cell types that form the functional adult nervous tissue. In this review, we focus on the multiple activities of BMPs during spinal cord development, paying particular attention to recent results that highlight the complexity of BMP signaling during this process. These findings emphasize the unique capacity of these signals to mediate various functions in the same tissue throughout development, recruiting diverse effectors and strategies to instruct their target cells.
Collapse
Affiliation(s)
- Gwenvael Le Dréau
- Instituto de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, C/Baldiri i Reixac 10-15, 08028 Barcelona, Spain
| | - Elisa Martí
- Instituto de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, C/Baldiri i Reixac 10-15, 08028 Barcelona, Spain
| |
Collapse
|
29
|
Hegarty SV, O'Keeffe GW, Sullivan AM. BMP-Smad 1/5/8 signalling in the development of the nervous system. Prog Neurobiol 2013; 109:28-41. [PMID: 23891815 DOI: 10.1016/j.pneurobio.2013.07.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 02/07/2023]
Abstract
The transcription factors, Smad1, Smad5 and Smad8, are the pivotal intracellular effectors of the bone morphogenetic protein (BMP) family of proteins. BMPs and their receptors are expressed in the nervous system (NS) throughout its development. This review focuses on the actions of Smad 1/5/8 in the developing NS. The mechanisms by which these Smad proteins regulate the induction of the neuroectoderm, the central nervous system (CNS) primordium, and finally the neural crest, which gives rise to the peripheral nervous system (PNS), are reviewed herein. We describe how, following neural tube closure, the most dorsal aspect of the tube becomes a signalling centre for BMPs, which directs the pattern of the development of the dorsal spinal cord (SC), through the action of Smad1, Smad5 and Smad8. The direct effects of Smad 1/5/8 signalling on the development of neuronal and non-neuronal cells from various neural progenitor cell populations are then described. Finally, this review discusses the neurodevelopmental abnormalities associated with the knockdown of Smad 1/5/8.
Collapse
Affiliation(s)
- Shane V Hegarty
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
| | | | | |
Collapse
|
30
|
Gámez B, Rodriguez-Carballo E, Ventura F. BMP signaling in telencephalic neural cell specification and maturation. Front Cell Neurosci 2013; 7:87. [PMID: 23761735 PMCID: PMC3671186 DOI: 10.3389/fncel.2013.00087] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 05/21/2013] [Indexed: 12/13/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) make up a family of morphogens that are critical for patterning, development, and function of the central and peripheral nervous system. Their effects on neural cells are pleiotropic and highly dynamic depending on the stage of development and the local niche. Neural cells display a broad expression profile of BMP ligands, receptors, and transducer molecules. Moreover, interactions of BMP signaling with other incoming morphogens and signaling pathways are crucial for most of these processes. The key role of BMP signaling suggests that it includes many regulatory mechanisms that restrict BMP activity both temporally and spatially. BMPs affect neural cell fate specification in a dynamic fashion. Initially they inhibit proliferation of neural precursors and promote the first steps in neuronal differentiation. Later on, BMP signaling effects switch from neuronal induction to promotion of astroglial identity and inhibition of neuronal or oligodendroglial lineage commitment. Furthermore, in postmitotic cells, BMPs regulate cell survival and death, to modulate neuronal subtype specification, promote dendritic and axonal growth and induce synapse formation and stabilization. In this review, we examine the canonical and non-canonical mechanisms of BMP signal transduction. Moreover, we focus on the specific role of BMPs in the nervous system including their ability to regulate neural stem cell proliferation, self-renewal, lineage specification, and neuronal function.
Collapse
Affiliation(s)
- Beatriz Gámez
- Departament de Ciències Fisiològiques II, Institut d'Investigació Biomèdica de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat Spain
| | | | | |
Collapse
|
31
|
Bilaterally symmetric populations of chicken dI1 (commissural) axons cross the floor plate independently of each other. PLoS One 2013; 8:e62977. [PMID: 23646165 PMCID: PMC3639936 DOI: 10.1371/journal.pone.0062977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 03/28/2013] [Indexed: 12/19/2022] Open
Abstract
Axons use temporal and directional guidance cues at intermediate targets to set the rate and direction of growth towards their synaptic targets. Our recent studies have shown that disrupting the temporal guidance process, by unilaterally accelerating the rate at which spinal dI1 (commissural) axons grow, resulted in turning errors both in the ventral spinal cord and after crossing the floor plate. Here we investigate a mechanistic explanation for these defects: the accelerated dI1 axons arrive in the ventral spinal cord before necessary fasciculation cues from incoming dI1 axons from the opposite side of the spinal cord. The identification of such an interaction would support a model of selective fasciculation whereby the pioneering dI1 axons serve as guides for the processes of the bilaterally symmetrical population of dI1 neurons. To test this model, we first developed the ability to “double” in ovo electroporate the embryonic chicken spinal cord to independently manipulate the rate of growth of the two bilateral populations of dI1 axons. Second, we examined the requirement for a putative bilateral interaction by unilaterally ablating the dI1 population in cultured explants of chicken embryonic spinal cord. Surprisingly, we find no evidence for a bilateral dI1 axon interaction, rather dI1 axons appear to project independently of each other.
Collapse
|
32
|
Abstract
Hypothalamic neural circuits are known to regulate energy homeostasis and feeding behavior, but how these circuits are established during development is not well understood. Here we report that embryonic neural progenitors that express the transcription factor OLIG1 contribute neurons to the ventral hypothalamus including the arcuate nucleus (ARH), a center that regulates feeding behavior. Ablation of bone morphogenetic protein receptor 1a (BMPR1A) in the OLIG1 lineage resulted in hypophagia, hypoglycemia, and weight loss after the second postnatal week with death by week 4. Differentiation and specification of inhibitory hypothalamic neurons contributing to melanocortin and dopaminergic systems were abnormal in the BMPR1A-deficient ARH. Although the hypophagia promoted expression of the orexigenic neuropeptide agouti related protein (AgRP) in the BMPR1A-deficient ARH, there was a profound decrease of AgRP(+) axonal terminals in the mutant ARH targets including dorsomedial and paraventricular hypothalamic nuclei. Projection of AgRP(+) neurons to these nuclei is known to be regulated by leptin. Leptin injection in neonatal mice increased bone morphogenic protein (BMP) signaling in the ventral hypothalamus, and blocking BMP signaling prevented leptin-induced neurite outgrowth in ARH explant cultures. These findings suggest that BMPR1A signaling is critical for postnatal establishment of leptin-responsive orexigenic fibers from ARH to multiple hypothalamic nuclei. More generally these observations indicate that BMPR1A signaling regulates postnatal establishment of OLIG1 lineage-derived ARH neuronal circuits that are critical for leptin-mediated feeding behavior.
Collapse
|
33
|
Yamauchi K, Varadarajan SG, Li JE, Butler SJ. Type Ib BMP receptors mediate the rate of commissural axon extension through inhibition of cofilin activity. Development 2013; 140:333-42. [PMID: 23250207 PMCID: PMC3597210 DOI: 10.1242/dev.089524] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2012] [Indexed: 11/20/2022]
Abstract
Bone morphogenetic proteins (BMPs) have unexpectedly diverse activities establishing different aspects of dorsal neural circuitry in the developing spinal cord. Our recent studies have shown that, in addition to spatially orienting dorsal commissural (dI1) axons, BMPs supply 'temporal' information to commissural axons to specify their rate of growth. This information ensures that commissural axons reach subsequent signals at particular times during development. However, it remains unresolved how commissural neurons specifically decode this activity of BMPs to result in their extending axons at a specific speed through the dorsal spinal cord. We have addressed this question by examining whether either of the type I BMP receptors (Bmpr), BmprIa and BmprIb, have a role controlling the rate of commissural axon growth. BmprIa and BmprIb exhibit a common function specifying the identity of dorsal cell fate in the spinal cord, whereas BmprIb alone mediates the ability of BMPs to orient axons. Here, we show that BmprIb, and not BmprIa, is additionally required to control the rate of commissural axon extension. We have also determined the intracellular effector by which BmprIb regulates commissural axon growth. We show that BmprIb has a novel role modulating the activity of the actin-severing protein cofilin. These studies reveal the mechanistic differences used by distinct components of the canonical Bmpr complex to mediate the diverse activities of the BMPs.
Collapse
Affiliation(s)
- Ken Yamauchi
- Neuroscience Graduate Program, HNB 201, 3641 Watt Way, University of Southern California, Los Angeles, CA 90089, USA
- Department of Biological Sciences, HNB 201, 3641 Watt Way, University of Southern California, Los Angeles, CA 90089, USA
| | - Supraja G. Varadarajan
- Graduate Studies in the Biological Sciences – Neurobiology, HNB 201, 3641 Watt Way, University of Southern California, Los Angeles, CA 90089, USA
- Department of Biological Sciences, HNB 201, 3641 Watt Way, University of Southern California, Los Angeles, CA 90089, USA
| | - Joseph E. Li
- Department of Biological Sciences, HNB 201, 3641 Watt Way, University of Southern California, Los Angeles, CA 90089, USA
| | - Samantha J. Butler
- Neuroscience Graduate Program, HNB 201, 3641 Watt Way, University of Southern California, Los Angeles, CA 90089, USA
- Department of Biological Sciences, HNB 201, 3641 Watt Way, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
34
|
Bond AM, Bhalala OG, Kessler JA. The dynamic role of bone morphogenetic proteins in neural stem cell fate and maturation. Dev Neurobiol 2012; 72:1068-84. [PMID: 22489086 DOI: 10.1002/dneu.22022] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The bone morphogenetic proteins (BMPs) are a group of powerful morphogens that are critical for development of the nervous system. The effects of BMP signaling on neural stem cells are myriad and dynamic, changing with each stage of development. During early development inhibition of BMP signaling differentiates neuroectoderm from ectoderm, and BMP signaling helps to specify neural crest. Thus modulation of BMP signaling underlies formation of both the central and peripheral nervous systems. BMPs secreted from dorsal structures then form a gradient which helps pattern the dorsal-ventral axis of the developing spinal cord and brain. During forebrain development BMPs sequentially induce neurogenesis and then astrogliogenesis and participate in neurite outgrowth from immature neurons. BMP signaling also plays a critical role in maintaining adult neural stem cell niches in the subventricular zone (SVZ) and subgranular zone (SGZ). BMPs are able to exert such diverse effects through closely regulated temporospatial expression and interaction with other signaling pathways.
Collapse
Affiliation(s)
- Allison M Bond
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | | |
Collapse
|
35
|
Rousso DL, Pearson CA, Gaber ZB, Miquelajauregui A, Li S, Portera-Cailliau C, Morrisey EE, Novitch BG. Foxp-mediated suppression of N-cadherin regulates neuroepithelial character and progenitor maintenance in the CNS. Neuron 2012; 74:314-30. [PMID: 22542185 DOI: 10.1016/j.neuron.2012.02.024] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2012] [Indexed: 10/28/2022]
Abstract
Neuroepithelial attachments at adherens junctions are essential for the self-renewal of neural stem and progenitor cells and the polarized organization of the developing central nervous system. The balance between stem cell maintenance and differentiation depends on the precise assembly and disassembly of these adhesive contacts, but the gene regulatory mechanisms orchestrating this process are not known. Here, we demonstrate that two Forkhead transcription factors, Foxp2 and Foxp4, are progressively expressed upon neural differentiation in the spinal cord. Elevated expression of either Foxp represses the expression of a key component of adherens junctions, N-cadherin, and promotes the detachment of differentiating neurons from the neuroepithelium. Conversely, inactivation of Foxp2 and Foxp4 function in both chick and mouse results in a spectrum of neural tube defects associated with neuroepithelial disorganization and enhanced progenitor maintenance. Together, these data reveal a Foxp-based transcriptional mechanism that regulates the integrity and cytoarchitecture of neuroepithelial progenitors.
Collapse
Affiliation(s)
- David L Rousso
- Department of Neurobiology, David Geffen School of Medicine at UCLA, 610 Charles Young Drive East, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Hazen VM, Andrews MG, Umans L, Crenshaw EB, Zwijsen A, Butler SJ. BMP receptor-activated Smads confer diverse functions during the development of the dorsal spinal cord. Dev Biol 2012; 367:216-27. [PMID: 22609550 DOI: 10.1016/j.ydbio.2012.05.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 04/21/2012] [Accepted: 05/09/2012] [Indexed: 01/19/2023]
Abstract
Bone Morphogenetic Proteins (BMPs) have multiple activities in the developing spinal cord: they specify the identity of the dorsal-most neuronal populations and then direct the trajectories of dorsal interneuron (dI) 1 commissural axons. How are these activities decoded by dorsal neurons to result in different cellular outcomes? Our previous studies have shown that the diverse functions of the BMPs are mediated by the canonical family of BMP receptors and then regulated by specific inhibitory (I) Smads, which block the activity of a complex of Smad second messengers. However, the extent to which this complex translates the different activities of the BMPs in the spinal cord has remained unresolved. Here, we demonstrate that the receptor-activated (R) Smads, Smad1 and Smad5 play distinct roles mediating the abilities of the BMPs to direct cell fate specification and axon outgrowth. Smad1 and Smad5 occupy spatially distinct compartments within the spinal cord, with Smad5 primarily associated with neural progenitors and Smad1 with differentiated neurons. Consistent with this expression profile, loss of function experiments in mouse embryos reveal that Smad5 is required for the acquisition of dorsal spinal neuron identities whereas Smad1 is critical for the regulation of dI1 axon outgrowth. Thus the R-Smads, like the I-Smads, have discrete roles mediating BMP-dependent cellular processes during spinal interneuron development.
Collapse
Affiliation(s)
- V M Hazen
- Department of Biological Sciences, Neuroscience Graduate Program, University of Southern California, Los Angeles, CA90089, USA
| | | | | | | | | | | |
Collapse
|
37
|
Perron JC, Dodd J. Structural distinctions in BMPs underlie divergent signaling in spinal neurons. Neural Dev 2012; 7:16. [PMID: 22559862 PMCID: PMC3403000 DOI: 10.1186/1749-8104-7-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 04/04/2012] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND In dorsal spinal neurons and monocytes, bone morphogenetic protein (BMP)7 activates distinct transduction pathways, one leading to inductive specification and the other to axon orientation and chemotaxis. BMP7-evoked induction, also stimulated by the closely related BMP6, acts through a Smad cascade, leading to nuclear signaling, and is not BMPR subunit selective. Orientation is evoked by BMP7, but not by BMP6, through PI3K-dependent cytoskeletal activation mediated by the type II BMPRs, ActRIIA and BMPRII and is independent of the Smad cascade. The responses can be stimulated concurrently and suggest that BMP7, but not BMP6, can selectively activate BMPR subunits that engage the divergent paths. Although structural and biochemical analyses of selected BMP/BMPR interfaces have identified key regions of interaction, how these translate into function by related BMPs is poorly understood. To determine the mechanisms underlying the distinct activities of BMP7 and the disparate properties of BMP7 and BMP6 in spinal cord development, we have performed a family-wide structure/function analysis of BMPs and used the information to predict and test sites within BMPs that may control agonist properties, in particular the ability of a BMP to orient axons, through interactions with BMPRs. RESULTS We demonstrate that whereas all BMPs can induce dorsal neurons, there is selectivity in the ability also to orient axons or evoke growth cone collapse. The degree to which a BMP orients is not predictable by overall protein similarity with other BMPs but comparison of sequences of potent and weakly orienting BMPs with that of the non-orienting BMP6 revealed three candidate positions within the BMPs at which the amino acid residues may confer or obstruct orienting ability. Residue swapping analysis has identified one residue, Gln48 in BMP6, that blocks axon orienting ability. Replacing Gln48 with any of the amino acids present at the equivalent residue position in the orienting subset of BMPs confers orienting activity on BMP6. Conversely, swapping Gln48 into BMP7 reduces orienting ability. The inductive capacity of the BMPs was unchanged by these residue swaps. CONCLUSIONS The results suggest that the presence of the Gln48 residue in BMP6 is structurally inhibitory for BMP/BMPR interactions that result in the activation of intracellular signaling, leading to axon orientation. Moreover, since residue 48 in BMP7 and the corresponding residue in BMP2 are important for type II BMPR binding, our results provide a basis for a mechanistic understanding of the diverse activities of BMPs in spinal cord development.
Collapse
Affiliation(s)
- Jeanette C Perron
- Department of Physiology and Cellular Biophysics, Columbia University, 630 West 168th Street, BB1103, New York, NY 10032, USA
| | | |
Collapse
|
38
|
Perron JC, Dodd J. Inductive specification and axonal orientation of spinal neurons mediated by divergent bone morphogenetic protein signaling pathways. Neural Dev 2011; 6:36. [PMID: 22085733 PMCID: PMC3227570 DOI: 10.1186/1749-8104-6-36] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 11/15/2011] [Indexed: 12/25/2022] Open
Abstract
Background Bone morphogenetic protein (BMP)7 evokes both inductive and axon orienting responses in dorsal interneurons (dI neurons) in the developing spinal cord. These events occur sequentially during the development of spinal neurons but in these and other cell types such inductive and acute chemotactic responses occur concurrently, highlighting the requirement for divergent intracellular signaling. Both type I and type II BMP receptor subtypes have been implicated selectively in orienting responses but it remains unclear how, in a given cell, divergence occurs. We have examined the mechanisms by which disparate BMP7 activities are generated in dorsal spinal neurons. Results We show that widely different threshold concentrations of BMP7 are required to elicit the divergent inductive and axon orienting responses. Type I BMP receptor kinase activity is required for activation of pSmad signaling and induction of dI character by BMP7, a high threshold response. In contrast, neither type I BMP receptor kinase activity nor Smad1/5/8 phosphorylation is involved in the low threshold orienting responses of dI axons to BMP7. Instead, BMP7-evoked axonal repulsion and growth cone collapse are dependent on phosphoinositide-3-kinase (PI3K) activation, plausibly through type II receptor signaling. BMP7 stimulates PI3K-dependent signaling in dI neurons. BMP6, which evokes neural induction but does not have orienting activity, activates Smad signaling but does not stimulate PI3K. Conclusions Divergent signaling through pSmad-dependent and PI3K-dependent (Smad-independent) mechanisms mediates the inductive and orienting responses of dI neurons to BMP7. A model is proposed whereby selective engagement of BMP receptor subunits underlies choice of signaling pathway.
Collapse
Affiliation(s)
- Jeanette C Perron
- Department of Physiology and Cellular Biophysics, Columbia University, 630 West 168th Street (BB1103), New York, NY 10032, USA
| | | |
Collapse
|
39
|
Abstract
In bilaterally symmetric animals, many axons cross the midline to interconnect the left and right sides of the central nervous system (CNS). This process is critical for the establishment of neural circuits that control the proper integration of information perceived by the organism and the resulting response. While neurons at different levels of the CNS project axons across the midline, the molecules that regulate this process are common to many if not all midline-crossing regions. This article reviews the molecules that function as guidance cues at the midline in the developing vertebrate spinal cord, cortico-spinal tract and corpus callosum. As well, we describe the mutations that have been identified in humans that are linked to axon guidance and midline-crossing defects.
Collapse
Affiliation(s)
- L Izzi
- Molecular Biology of Neural Development, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, Canada
| | | |
Collapse
|
40
|
Phan KD, Croteau LP, Kam JWK, Kania A, Cloutier JF, Butler SJ. Neogenin may functionally substitute for Dcc in chicken. PLoS One 2011; 6:e22072. [PMID: 21779375 PMCID: PMC3133656 DOI: 10.1371/journal.pone.0022072] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 06/14/2011] [Indexed: 11/22/2022] Open
Abstract
Dcc is the key receptor that mediates attractive responses of axonal growth cones to netrins, a family of axon guidance cues used throughout evolution. However, a Dcc homolog has not yet been identified in the chicken genome, raising the possibility that Dcc is not present in avians. Here we show that the closely related family member neogenin may functionally substitute for Dcc in the developing chicken spinal cord. The expression pattern of chicken neogenin in the developing spinal cord is a composite of the distribution patterns of both rodent Dcc and neogenin. Moreover, whereas the loss of mouse neogenin has no effect on the trajectory of commissural axons, removing chicken neogenin by RNA interference results in a phenotype similar to the functional inactivation of Dcc in mouse. Taken together, these data suggest that the chick neogenin is functionally equivalent to rodent Dcc.
Collapse
Affiliation(s)
- Keith Dai Phan
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | | | - Joseph Wai Keung Kam
- Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Artur Kania
- Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada
- Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
- Departments of Anatomy and Cell Biology and Biology, McGill University, Montréal, Québec, Canada
| | - Jean-François Cloutier
- Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Samantha Joanna Butler
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
41
|
Hazen VM, Phan KD, Hudiburgh S, Butler SJ. Inhibitory Smads differentially regulate cell fate specification and axon dynamics in the dorsal spinal cord. Dev Biol 2011; 356:566-75. [PMID: 21718693 DOI: 10.1016/j.ydbio.2011.06.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 06/13/2011] [Accepted: 06/14/2011] [Indexed: 01/17/2023]
Abstract
The roof plate resident BMPs have sequential functions in the developing spinal cord, establishing cell fate and orienting axonal trajectories. These activities are, however, restricted to the dI1-dI3 neurons in the most dorsal region of the spinal cord. What limits the extent of the action of the BMPs to these neurons? To address this question, we have examined both the distribution of the inhibitory Smads (I-Smads), Smad6 and Smad7 in the spinal cord and the consequence of ectopically expressing the I-Smads in chicken embryos. Our studies suggest that the I-Smads function in vivo to restrict the action of BMP signaling in the dorsal spinal cord. Moreover, the I-Smads have distinct roles in regulating the diverse activities of the BMPs. Thus, the ectopic expression of Smad7 suppresses the dI1 and dI3 neural fates and concomitantly increases the number of dI4-dI6 spinal neurons. In contrast, Smad6 most potently functions to block dI1 axon outgrowth. Taken together, these experiments suggest that the I-Smads have distinct roles in spatially limiting the response of cells to BMP signaling.
Collapse
Affiliation(s)
- V M Hazen
- Neuroscience Graduate Program, University of Southern California, 3641 Watt Way, Los Angeles, CA 90089, USA
| | | | | | | |
Collapse
|
42
|
Kolodkin AL, Tessier-Lavigne M. Mechanisms and molecules of neuronal wiring: a primer. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a001727. [PMID: 21123392 DOI: 10.1101/cshperspect.a001727] [Citation(s) in RCA: 433] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The complex patterns of neuronal wiring in the adult nervous system depend on a series of guidance events during neural development that establish a framework on which functional circuits can be built. In this subject collection, the cellular and molecular mechanisms that underlie neuronal guidance are considered from several perspectives, ranging from how cytoskeletal dynamics within extending neuronal growth cones steer axons, to how guidance cues influence synaptogenesis. We introduce here some basic topics to frame the more detailed reviews in following articles, including the cellular strategies that define basic themes governing neuronal wiring throughout life, an enumeration of the molecular cues and receptors known to play key guidance roles during neural development, and an overview of the signaling mechanisms that transduce guidance information into growth-cone steering.
Collapse
Affiliation(s)
- Alex L Kolodkin
- Solomon H. Snyder Department of Neuroscience at the Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
43
|
Murali D, Kawaguchi-Niida M, Deng CX, Furuta Y. Smad4 is required predominantly in the developmental processes dependent on the BMP branch of the TGF-β signaling system in the embryonic mouse retina. Invest Ophthalmol Vis Sci 2011; 52:2930-7. [PMID: 21273545 DOI: 10.1167/iovs.10-5940] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The present study was aimed at defining developmental roles of Smad4, a key mediator of the TGF-β superfamily signaling system, in the embryonic mouse retina. METHODS Using a Cre/loxP-mediated conditional gene targeting approach, Smad4 gene function was deleted from the embryonic mouse retina. Mutant phenotypes were morphologically and molecularly examined. RESULTS Loss of Smad4 in the developing retina led to varying degrees of microphthalmia at birth, presumably because of elevated apoptosis observed transiently at embryonic day 12.5 in the developing retina. This was also associated with an apparent delay in accumulation of retinal ganglion cells. Smad4 conditional mutants also exhibited alterations of retinal spatial patterning along the dorsal-ventral axis, consistent with a known function of BMP signaling in the embryonic retina. However, despite a known role for BMP signaling in retinal cell survival, proliferation, and differentiation, Smad4 mutant retinal progenitor cells were capable of maintaining growth and neurogenesis throughout embryonic development. We also found that the loss of Smad4 led to abnormal targeting of retinal ganglion cell axons to the optic nerve head, a phenotype consistent with reduced BMP signaling in the developing retina. CONCLUSIONS These results suggest that Smad4 is essential for a subset of, but not all, TGF-β/BMP-dependent developmental processes in the embryonic retina. In addition, genetic requirements for Smad4 in the embryonic retina are evident predominantly in the developmental events regulated by the BMP branch of the TGF-β signaling pathway.
Collapse
Affiliation(s)
- Deepa Murali
- Department of Biochemistry and Molecular Biology, MD Anderson Cancer Center, University of Texas, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
44
|
Stottmann RW, Klingensmith J. Bone morphogenetic protein signaling is required in the dorsal neural folds before neurulation for the induction of spinal neural crest cells and dorsal neurons. Dev Dyn 2011; 240:755-65. [PMID: 21394823 DOI: 10.1002/dvdy.22579] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2011] [Indexed: 11/06/2022] Open
Abstract
Bone Morphogenetic Protein (BMP) activity has been implicated as a key regulator of multiple aspects of dorsal neural tube development. BMP signaling in the dorsal-most neuroepithelial cells presumably plays a critical role. We use tissue-specific gene ablation to probe the roles of BMPR1A, the type 1 BMP receptor that is seemingly the best candidate to mediate the activities of BMPs on early dorsal neural development. We use two different Cre lines expressed in the dorsal neural folds, one prior to spinal neurulation and one shortly afterward, together with a Bmpr1a conditional null mutation. Our findings indicate that BMPR1A signaling in the dorsal neural folds is important for hindbrain neural tube closure, but suggest it is dispensable for spinal neurulation. Our results also demonstrate a requirement for BMP signaling in patterning of dorsal neural tube cell fate and in neural crest cell formation, and imply a critical period shortly before neural tube closure.
Collapse
Affiliation(s)
- Rolf W Stottmann
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| | | |
Collapse
|
45
|
Kalinovsky A, Boukhtouche F, Blazeski R, Bornmann C, Suzuki N, Mason CA, Scheiffele P. Development of axon-target specificity of ponto-cerebellar afferents. PLoS Biol 2011; 9:e1001013. [PMID: 21346800 PMCID: PMC3035609 DOI: 10.1371/journal.pbio.1001013] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 12/14/2010] [Indexed: 01/19/2023] Open
Abstract
The function of neuronal networks relies on selective assembly of synaptic connections during development. We examined how synaptic specificity emerges in the pontocerebellar projection. Analysis of axon-target interactions with correlated light-electron microscopy revealed that developing pontine mossy fibers elaborate extensive cell-cell contacts and synaptic connections with Purkinje cells, an inappropriate target. Subsequently, mossy fiber-Purkinje cell connections are eliminated resulting in granule cell-specific mossy fiber connectivity as observed in mature cerebellar circuits. Formation of mossy fiber-Purkinje cell contacts is negatively regulated by Purkinje cell-derived BMP4. BMP4 limits mossy fiber growth in vitro and Purkinje cell-specific ablation of BMP4 in mice results in exuberant mossy fiber-Purkinje cell interactions. These findings demonstrate that synaptic specificity in the pontocerebellar projection is achieved through a stepwise mechanism that entails transient innervation of Purkinje cells, followed by synapse elimination. Moreover, this work establishes BMP4 as a retrograde signal that regulates the axon-target interactions during development.
Collapse
Affiliation(s)
- Anna Kalinovsky
- Department of Physiology & Cellular Biophysics and Department of Neuroscience, Columbia University, New York, New York, United States of America
| | | | - Richard Blazeski
- Department of Pathology & Cell Biology and Department of Neuroscience and Ophthalmology, Columbia University, New York, New York, United States of America
| | | | - Noboru Suzuki
- Mie University Life Science Research Center of Animal Genomics, Functional Genomics Institute, Japan
| | - Carol A. Mason
- Department of Pathology & Cell Biology and Department of Neuroscience and Ophthalmology, Columbia University, New York, New York, United States of America
| | - Peter Scheiffele
- Department of Physiology & Cellular Biophysics and Department of Neuroscience, Columbia University, New York, New York, United States of America
- Biozentrum, University of Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
46
|
Gamell C, Susperregui AG, Bernard O, Rosa JL, Ventura F. The p38/MK2/Hsp25 pathway is required for BMP-2-induced cell migration. PLoS One 2011; 6:e16477. [PMID: 21297993 PMCID: PMC3030584 DOI: 10.1371/journal.pone.0016477] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 12/18/2010] [Indexed: 11/21/2022] Open
Abstract
Background Bone morphogenetic proteins (BMPs) have been shown to participate in the patterning and specification of several tissues and organs during development and to regulate cell growth, differentiation and migration in different cell types. BMP-mediated cell migration requires activation of the small GTPase Cdc42 and LIMK1 activities. In our earlier report we showed that activation of LIMK1 also requires the activation of PAKs through Cdc42 and PI3K. However, the requirement of additional signaling is not clearly known. Methodology/Principal Findings Activation of p38 MAPK has been shown to be relevant for a number of BMP-2′s physiological effects. We report here that BMP-2 regulation of cell migration and actin cytoskeleton remodelling are dependent on p38 activity. BMP-2 treatment of mesenchymal cells results in activation of the p38/MK2/Hsp25 signaling pathway downstream from the BMP receptors. Moreover, chemical inhibition of p38 signaling or genetic ablation of either p38α or MK2 blocks the ability to activate the downstream effectors of the pathway and abolishes BMP-2-induction of cell migration. These signaling effects on p38/MK2/Hsp25 do not require the activity of either Cdc42 or PAK, whereas p38/MK2 activities do not significantly modify the BMP-2-dependent activation of LIMK1, measured by either kinase activity or with an antibody raised against phospho-threonine 508 at its activation loop. Finally, phosphorylated Hsp25 colocalizes with the BMP receptor complexes in lamellipodia and overexpression of a phosphorylation mutant form of Hsp25 is able to abolish the migration of cells in response to BMP-2. Conclusions These results indicate that Cdc42/PAK/LIMK1 and p38/MK2/Hsp25 pathways, acting in parallel and modulating specific actin regulatory proteins, play a critical role in integrating responses during BMP-induced actin reorganization and cell migration.
Collapse
Affiliation(s)
- Cristina Gamell
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | | | | | | | | |
Collapse
|
47
|
The bone morphogenetic protein roof plate chemorepellent regulates the rate of commissural axonal growth. J Neurosci 2010; 30:15430-40. [PMID: 21084599 DOI: 10.1523/jneurosci.4117-10.2010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Commissural spinal axons extend away from the roof plate (RP) in response to a chemorepellent mediated by the bone morphogenetic proteins (BMPs). Previous studies have focused on the ability of commissural axons to translate a spatial gradient of BMPs into directional information in vitro. However, a notable feature of this system in vivo is that the gradient of BMPs is thought to act from behind the commissural cell bodies, making it possible for the BMPs to have a continued effect on commissural axons as they grow away from the RP. Here, we demonstrate that BMPs activate the cofilin regulator Lim domain kinase 1 (Limk1) to control the rate of commissural axon extension in the dorsal spinal cord. By modulating Limk1 activity in both rodent and chicken commissural neurons, the rate of axon growth can either be stalled or accelerated. Altering the activation state of Limk1 also influences subsequent guidance decisions: accelerated axons make rostrocaudal projection errors while navigating their intermediate target, the floor plate. These results suggest that guidance cues can specify information about the rate of growth, to ensure that axons reach subsequent signals either at particular times or speeds during development.
Collapse
|
48
|
Dickson BJ, Zou Y. Navigating intermediate targets: the nervous system midline. Cold Spring Harb Perspect Biol 2010; 2:a002055. [PMID: 20534708 DOI: 10.1101/cshperspect.a002055] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In a bilaterally symmetric animal, the midline plays a key role in directing axon growth during wiring of the nervous system. Midline cells provide a variety of guidance cues for growing axons, to which different types of axons respond in different ways and at different times. For some axons, the midline is an intermediate target. They first seek it out, but then move on towards their final targets on the opposite side. For others, the midline is a repulsive barrier that keeps them on their own side of the midline. And for many of these axons the midline provides signals that guide them along specific lateral pathways or up and down the longitudinal axis.
Collapse
Affiliation(s)
- Barry J Dickson
- Research Institute of Molecular Pathology, Dr. Bohrgasse 7, A-1030 Vienna, Austria.
| | | |
Collapse
|
49
|
Hazen VM, Phan K, Yamauchi K, Butler SJ. Assaying the ability of diffusible signaling molecules to reorient embryonic spinal commissural axons. J Vis Exp 2010:1853. [PMID: 20212425 DOI: 10.3791/1853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Dorsal commissural axons in the vertebrate spinal cord(1) have been an invaluable model system in which to identify axon guidance signals. Here, we describe an in vitro assay, "the reorientation assay", that has been used extensively to study the effect of extrinsic and intrinsic signals on the orientation of commissural axons(2). This assay was developed by numerous people in the laboratories of Jane Dodd, Thomas Jessell and Andrew Lumsden (see acknowledgements for more details) and versions of this assay were used to demonstrate the reorientation activities of key axon guidance molecules, including the BMP chemorepellent in the roof plate(3,4) and the chemoattractive activities of Netrin1(5) and Sonic Hedgehog (Shh)(6) in the floor plate in the spinal cord. Explants comprising 2-3 segments of the dorsal two-thirds of spinal cord are dissected from embryonic day (E) 11 rats and cultured in three dimensional collagen gels(7). E11 dorsal spinal explants contain newly born commissural neurons, which can be identified by their axonal expression of the glycoprotein, Tag1(8). Over the course of 30-40 hours in culture, the commissural axon trajectory is recapitulated in these dorsal explants with a time course similar to that seen in vivo. This axonal trajectory can be challenged by placing either test tissues or a COS cell aggregate expressing a candidate signaling molecule in contact with one of the lateral edges of the dorsal explant. Commissural axons extending in the vicinity of the appended tissue will grow under the influence of both the endogenous roof plate and signals from the ectopic lateral tissue. The degree to which commissural axons are reoriented under these circumstances can be quantified. Using this assay, it is possible both to examine the sufficiency of a particular signal to reorient commissural axons(3,4) as well the necessity for this signal to direct the commissural trajectory(9).
Collapse
Affiliation(s)
- Virginia M Hazen
- Department of Biological Sciences, University of Southern California, CA, USA
| | | | | | | |
Collapse
|
50
|
Abstract
Astrogliosis following spinal cord injury (SCI) involves an early hypertrophic response that is beneficial and a subsequent formation of a dense scar. We investigated the role of bone morphogenetic protein (BMP) signaling in gliosis after SCI and find that BMPR1a and BMPR1b signaling exerts opposing effects on hypertrophy. Conditional ablation of BMPR1a from glial fibrillary acidic protein (GFAP)-expressing cells leads to defective astrocytic hypertrophy, increased infiltration by inflammatory cells, and reduced axon density. BMPR1b-null mice conversely develop "hyperactive" reactive astrocytes and consequently have smaller lesion volumes. The effects of ablation of either receptor are reversed in the double knock-out animals. These findings indicate that BMPR1a and BMPR1b exert directly opposing effects on the initial reactive astrocytic hypertrophy. Also, BMPR1b knock-out mice have an attenuated glial scar in the chronic stages following injury, suggesting that it has a greater role in glial scar progression. To elucidate the differing roles of the two receptors in astrocytes, we examined the effects of ablation of either receptor in serum-derived astrocytes in vitro. We find that the two receptors exert opposing effects on the posttranscriptional regulation of astrocytic microRNA-21. Further, overexpression of microRNA-21 in wild-type serum-derived astrocytes causes a dramatic reduction in cell size accompanied by reduction in GFAP levels. Hence, regulation of microRNA-21 by BMP signaling provides a novel mechanism for regulation of astrocytic size. Targeting specific BMPR subunits for therapeutic purposes may thus provide an approach for manipulating gliosis and enhancing functional outcomes after SCI.
Collapse
|