1
|
Niehrs C, Zapparoli E, Lee H. 'Three signals - three body axes' as patterning principle in bilaterians. Cells Dev 2024:203944. [PMID: 39121910 DOI: 10.1016/j.cdev.2024.203944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
In vertebrates, the three orthogonal body axes, anteroposterior (AP), dorsoventral (DV) and left-right (LR) are determined at gastrula and neurula stages by the Spemann-Mangold organizer and its equivalents. A common feature of AP and DV axis formation is that an evolutionary conserved interplay between growth factors (Wnt, BMP) and their extracellular antagonists (e.g. Dkk1, Chordin) creates signaling gradients for axial patterning. Recent work showed that LR patterning in Xenopus follows the same principle, with R-spondin 2 (Rspo2) as an extracellular FGF antagonist, which creates a signaling gradient that determines the LR vector. That a triad of anti-FGF, anti-BMP, and anti-Wnt governs LR, DV, and AP axis formation reveals a unifying principle in animal development. We discuss how cross-talk between these three signals confers integrated AP-DV-LR body axis patterning underlying developmental robustness, size scaling, and harmonious regulation. We propose that Urbilateria featured three orthogonal body axes that were governed by a Cartesian coordinate system of orthogonal Wnt/AP, BMP/DV, and FGF/LR signaling gradients.
Collapse
Affiliation(s)
- Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany; Institute of Molecular Biology (IMB), 55128 Mainz, Germany.
| | | | - Hyeyoon Lee
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
2
|
Srivastava A, Rikhari D, Srivastava S. RSPO2 as Wnt signaling enabler: Important roles in cancer development and therapeutic opportunities. Genes Dis 2024; 11:788-806. [PMID: 37692504 PMCID: PMC10491879 DOI: 10.1016/j.gendis.2023.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 01/16/2023] [Indexed: 09/12/2023] Open
Abstract
R-spondins are secretory proteins localized in the endoplasmic reticulum and Golgi bodies and are processed through the secretory pathway. Among the R-spondin family, RSPO2 has emanated as a novel regulator of Wnt signaling, which has now been acknowledged in numerous in vitro and in vivo studies. Cancer is an abnormal growth of cells that proliferates and spreads uncontrollably due to the accumulation of genetic and epigenetic factors that constitutively activate Wnt signaling in various types of cancer. Colorectal cancer (CRC) begins when cells in the colon and rectum follow an indefinite pattern of division due to aberrant Wnt activation as one of the key hallmarks. Decades-long progress in research on R-spondins has demonstrated their oncogenic function in distinct cancer types, particularly CRC. As a critical regulator of the Wnt pathway, it modulates several phenotypes of cells, such as cell proliferation, invasion, migration, and cancer stem cell properties. Recently, RSPO mutations, gene rearrangements, fusions, copy number alterations, and altered gene expression have also been identified in a variety of cancers, including CRC. In this review, we addressed the recent updates regarding the recurrently altered R-spondins with special emphasis on the RSPO2 gene and its involvement in potentiating Wnt signaling in CRC. In addition to the compelling physiological and biological roles in cellular fate and regulation, we propose that RSPO2 would be valuable as a potential biomarker for prognostic, diagnostic, and therapeutic use in CRC.
Collapse
Affiliation(s)
- Ankit Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Uttar Pradesh 211004, India
| | - Deeksha Rikhari
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Uttar Pradesh 211004, India
| | - Sameer Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Uttar Pradesh 211004, India
| |
Collapse
|
3
|
Zhang J, Liu G, Liu Y, Yang P, Xie J, Wei X. The biological functions and related signaling pathways of SPON2. Front Oncol 2024; 13:1323744. [PMID: 38264743 PMCID: PMC10803442 DOI: 10.3389/fonc.2023.1323744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024] Open
Abstract
Spondin-2 (SPON2), also referred to as M-spondin or DIL-1, is a member of the extracellular matrix protein family known as Mindin-F-spondin (FS). SPON2 can be used as a broad-spectrum tumor marker for more than a dozen tumors, mainly prostate cancer. Meanwhile, SPON2 is also a potential biomarker for the diagnosis of certain non-tumor diseases. Additionally, SPON2 plays a pivotal role in regulating tumor metastasis and progression. In normal tissues, SPON2 has a variety of biological functions represented by promoting growth and development and cell proliferation. This paper presents a comprehensive overview of the regulatory mechanisms, diagnostic potential as a broad-spectrum biomarker, diverse biological functions, involvement in various signaling pathways, and clinical applications of SPON2.
Collapse
Affiliation(s)
- Jingrun Zhang
- Zhongshan Clinical College, Dalian University, Dalian, China
- Laboratory of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Ge Liu
- Laboratory of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Yuchen Liu
- Zhongshan Clinical College, Dalian University, Dalian, China
| | - Pei Yang
- Department of Neurology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Junyuan Xie
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaowei Wei
- Laboratory of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| |
Collapse
|
4
|
He Z, Zhang J, Ma J, Zhao L, Jin X, Li H. R-spondin family biology and emerging linkages to cancer. Ann Med 2023; 55:428-446. [PMID: 36645115 PMCID: PMC9848353 DOI: 10.1080/07853890.2023.2166981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The R-spondin protein family comprises four members (RSPO1-4), which are agonists of the canonical Wnt/β-catenin pathway. Emerging evidence revealed that RSPOs should not only be viewed as agonists of the Wnt/β-catenin pathway but also as regulators for tumor development and progression. Aberrant expression of RSPOs is related to tumorigenesis and tumor development in multiple cancers and their expression of RSPOs has also been correlated with anticancer immune cell signatures. More importantly, the role of RSPOs as potential target therapies and their implication in cancer progressions has been studied in the preclinical and clinical settings. These findings highlight the possible therapeutic value of RSPOs in cancer medicine. However, the expression pattern, effects, and mechanisms of RSPO proteins in cancer remain elusive. Investigating the many roles of RSPOs is likely to expand and improve our understanding of the oncogenic mechanisms mediated by RSPOs. Here, we reviewed the recent advances in the functions and underlying molecular mechanisms of RSPOs in tumor development, cancer microenvironment regulation, and immunity, and discussed the therapeutic potential of targeting RSPOs for cancer treatment. In addition, we also explored the biological feature and clinical relevance of RSPOs in cancer mutagenesis, transcriptional regulation, and immune correlation by bioinformatics analysis.KEY MESSAGESAberrant expressions of RSPOs are detected in various human malignancies and are always correlated with oncogenesis.Although extensive studies of RSPOs have been conducted, their precise molecular mechanism remains poorly understood.Bioinformatic analysis revealed that RSPOs may play a part in the development of the immune composition of the tumor microenvironment.
Collapse
Affiliation(s)
- Zhimin He
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Jialin Zhang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Jianzhong Ma
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Lei Zhao
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Hongbin Li
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| |
Collapse
|
5
|
Watanabe K, Horie M, Hayatsu M, Mikami Y, Sato N. Spatiotemporal expression patterns of R-spondins and their receptors, Lgrs, in the developing mouse telencephalon. Gene Expr Patterns 2023; 49:119333. [PMID: 37651925 DOI: 10.1016/j.gep.2023.119333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/14/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023]
Abstract
Development of the mammalian telencephalon, which is the most complex region of the central nervous system, is precisely orchestrated by many signaling molecules. Wnt signaling derived from the cortical hem, a signaling center, is crucial for telencephalic development including cortical patterning and the induction of hippocampal development. Secreted protein R-spondin (Rspo) 1-4 and their receptors, leucine-rich repeat-containing G-protein-coupled receptor (Lgr) 4-6, act as activators of Wnt signaling. Although Rspo expression in the hem during the early stages of cortical development has been reported, comparative expression analysis of Rspos and Lgr4-6 has not been performed. In this study, we examined the detailed spatiotemporal expression patterns of Rspo1-4 and Lgr4-6 in the embryonic and postnatal telencephalon to elucidate their functions. In the embryonic day (E) 10.5-14.5 telencephalon, Rspo1-3 were prominently expressed in the cortical hem. Among their receptors, Lgr4 was observed in the ventral telencephalon, and Lgr6 was highly expressed throughout the telencephalon at the same stages. This suggests that Rspo1-3 and Lgr4 initially regulate telencephalic development in restricted regions, whereas Lgr6 functions broadly. From the late embryonic stage, the expression areas of Rspo1-3 and Lgr4-6 dramatically expanded; their expression was found in the neocortex and limbic system, such as the hippocampus, amygdala, and striatum. Increased Rspo and Lgr expression from the late embryonic stages suggests broad roles of Rspo signaling in telencephalic development. Furthermore, the Lgr+ regions were located far from the Rspo+ regions, especially in the E10.5-14.5 ventral telencephalon, suggesting that Lgrs act via a Rspo-independent pathway.
Collapse
Affiliation(s)
- Keisuke Watanabe
- Division of Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.
| | - Masao Horie
- Department of Nursing, Niigata College of Nursing, Jōetsu, Japan
| | - Manabu Hayatsu
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yoshikazu Mikami
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Noboru Sato
- Division of Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
6
|
Bottasso-Arias N, Burra K, Sinner D, Riede T. Disruption of BMP4 signaling is associated with laryngeal birth defects in a mouse model. Dev Biol 2023; 500:10-21. [PMID: 37230380 PMCID: PMC10330877 DOI: 10.1016/j.ydbio.2023.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023]
Abstract
Laryngeal birth defects are considered rare, but they can be life-threatening conditions. The BMP4 gene plays an important role in organ development and tissue remodeling throughout life. Here we examined its role in laryngeal development complementing similar efforts for the lung, pharynx, and cranial base. Our goal was to determine how different imaging techniques contribute to a better understanding of the embryonic anatomy of the normal and diseased larynx in small specimens. Contrast-enhanced micro CT images of embryonic larynx tissue from a mouse model with Bmp4 deletion informed by histology and whole-mount immunofluorescence were used to reconstruct the laryngeal cartilaginous framework in three dimensions. Laryngeal defects included laryngeal cleft, laryngeal asymmetry, ankylosis and atresia. Results implicate BMP4 in laryngeal development and show that the 3D reconstruction of laryngeal elements provides a powerful approach to visualize laryngeal defects and thereby overcoming shortcomings of 2D histological sectioning and whole mount immunofluorescence.
Collapse
Affiliation(s)
- N Bottasso-Arias
- Neonatology and Pulmonary Biology, Perinatal Institute Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - K Burra
- Neonatology and Pulmonary Biology, Perinatal Institute Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - D Sinner
- Neonatology and Pulmonary Biology, Perinatal Institute Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; College of Medicine, University of Cincinnati, Cincinnati, OH, USA.
| | - T Riede
- Department of Physiology, Midwestern University, Glendale, AZ, USA.
| |
Collapse
|
7
|
Doherty L, Wan M, Peterson A, Youngstrom DW, King JS, Kalajzic I, Hankenson KD, Sanjay A. Wnt-associated adult stem cell marker Lgr6 is required for osteogenesis and fracture healing. Bone 2023; 169:116681. [PMID: 36708855 PMCID: PMC10015414 DOI: 10.1016/j.bone.2023.116681] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023]
Abstract
Despite the remarkable regenerative capacity of skeletal tissues, nonunion of bone and failure of fractures to heal properly presents a significant clinical concern. Stem and progenitor cells are present in bone and become activated following injury; thus, elucidating mechanisms that promote adult stem cell-mediated healing is important. Wnt-associated adult stem marker Lgr6 is implicated in the regeneration of tissues with well-defined stem cell niches in stem cell-reliant organs. Here, we demonstrate that Lgr6 is dynamically expressed in osteoprogenitors in response to fracture injury. We used an Lgr6-null mouse model and found that Lgr6 expression is necessary for maintaining bone volume and efficient postnatal bone regeneration in adult mice. Skeletal progenitors isolated from Lgr6-null mice have reduced colony-forming potential and reduced osteogenic differentiation capacity due to attenuated cWnt signaling. Lgr6-null mice consist of a lower proportion of self-renewing stem cells. In response to fracture injury, Lgr6-null mice have a deficiency in the proliferation of periosteal progenitors and reduced ALP activity. Further, analysis of the bone regeneration phase and remodeling phase of fracture healing in Lgr6-null mice showed impaired endochondral ossification and decreased mineralization. We propose that in contrast to not being required for successful skeletal development, Lgr6-positive cells have a direct role in endochondral bone repair.
Collapse
Affiliation(s)
- Laura Doherty
- Department of Orthopaedic Surgery, UConn Musculoskeletal Institute, School of Medicine, USA; School of Dental Medicine, UConn Health, Farmington, CT 06030, USA
| | - Matthew Wan
- Department of Orthopaedic Surgery, UConn Musculoskeletal Institute, School of Medicine, USA
| | - Anna Peterson
- Department of Orthopaedic Surgery, UConn Musculoskeletal Institute, School of Medicine, USA
| | - Daniel W Youngstrom
- Department of Orthopaedic Surgery, UConn Musculoskeletal Institute, School of Medicine, USA
| | - Justin S King
- Department of Orthopaedic Surgery, UConn Musculoskeletal Institute, School of Medicine, USA
| | - Ivo Kalajzic
- School of Dental Medicine, UConn Health, Farmington, CT 06030, USA; Department of Reconstructive Sciences, School of Dental Medicine, UConn Health, Farmington, CT 06030, USA
| | - Kurt D Hankenson
- Department of Orthopaedic Surgery, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Archana Sanjay
- Department of Orthopaedic Surgery, UConn Musculoskeletal Institute, School of Medicine, USA.
| |
Collapse
|
8
|
Craig SEL, Michalski MN, Williams BO. Got WNTS? Insight into bone health from a WNT perspective. Curr Top Dev Biol 2023; 153:327-346. [PMID: 36967199 DOI: 10.1016/bs.ctdb.2023.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
WNT signaling, essential for many aspects of development, is among the most commonly altered pathways associated with human disease. While initially studied in cancer, dysregulation of WNT signaling has been determined to be essential for skeletal development and the maintenance of bone health throughout life. In this review, we discuss the role of Wnt signaling in bone development and disease with a particular focus on two areas. First, we discuss the roles of WNT signaling pathways in skeletal development, with an emphasis on congenital and idiopathic skeletal syndromes and diseases that are associated with genetic variations in WNT signaling components. Next, we cover a topic that has long been an interest of our laboratory, how high and low levels of WNT signaling affects the establishment and maintenance of healthy bone mass. We conclude with a discussion of the status of WNT-based therapeutics in the treatment of skeletal disease.
Collapse
Affiliation(s)
- Sonya E L Craig
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, United States
| | - Megan N Michalski
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, United States
| | - Bart O Williams
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, United States.
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW To provide an update on the current understanding of the role of wingless/integrase-1 (Wnt) signaling in pediatric allergic asthma and other pediatric lung diseases. RECENT FINDINGS The Wnt signaling pathway is critical for normal lung development. Genetic and epigenetic human studies indicate a link between Wnt signaling and the development and severity of asthma in children. Mechanistic studies using animal models of allergic asthma demonstrate a key role for Wnt signaling in allergic airway inflammation and remodeling. More recently, data on bronchopulmonary dysplasia (BPD) pathogenesis points to the Wnt signaling pathway as an important regulator. SUMMARY Current data indicates that the Wnt signaling pathway is an important mediator in allergic asthma and BPD pathogenesis. Further studies are needed to characterize the roles of individual Wnt signals in childhood disease, and to identify potential novel therapeutic targets to slow or prevent disease processes.
Collapse
Affiliation(s)
- Nooralam Rai
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
| | - Jeanine D’Armiento
- Department of Anesthesiology, Medicine, and Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
10
|
Yang L, Yue W, Zhang H, Gao Y, Yang L, Li L. The role of roof plate-specific spondins in liver homeostasis and disease. LIVER RESEARCH 2022. [DOI: 10.1016/j.livres.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
11
|
Identifying General Tumor and Specific Lung Cancer Biomarkers by Transcriptomic Analysis. BIOLOGY 2022; 11:biology11071082. [PMID: 36101460 PMCID: PMC9313083 DOI: 10.3390/biology11071082] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/25/2022] [Accepted: 07/03/2022] [Indexed: 11/17/2022]
Abstract
The bioinformatic pipeline previously developed in our research laboratory is used to identify potential general and specific deregulated tumor genes and transcription factors related to the establishment and progression of tumoral diseases, now comparing lung cancer with other two types of cancer. Twenty microarray datasets were selected and analyzed separately to identify hub differentiated expressed genes and compared to identify all the deregulated genes and transcription factors in common between the three types of cancer and those unique to lung cancer. The winning DEGs analysis allowed to identify an important number of TFs deregulated in the majority of microarray datasets, which can become key biomarkers of general tumors and specific to lung cancer. A coexpression network was constructed for every dataset with all deregulated genes associated with lung cancer, according to DAVID’s tool enrichment analysis, and transcription factors capable of regulating them, according to oPOSSUM´s tool. Several genes and transcription factors are coexpressed in the networks, suggesting that they could be related to the establishment or progression of the tumoral pathology in any tissue and specifically in the lung. The comparison of the coexpression networks of lung cancer and other types of cancer allowed the identification of common connectivity patterns with deregulated genes and transcription factors correlated to important tumoral processes and signaling pathways that have not been studied yet to experimentally validate their role in lung cancer. The Kaplan–Meier estimator determined the association of thirteen deregulated top winning transcription factors with the survival of lung cancer patients. The coregulatory analysis identified two top winning transcription factors networks related to the regulatory control of gene expression in lung and breast cancer. Our transcriptomic analysis suggests that cancer has an important coregulatory network of transcription factors related to the acquisition of the hallmarks of cancer. Moreover, lung cancer has a group of genes and transcription factors unique to pulmonary tissue that are coexpressed during tumorigenesis and must be studied experimentally to fully understand their role in the pathogenesis within its very complex transcriptomic scenario. Therefore, the downstream bioinformatic analysis developed was able to identify a coregulatory metafirm of cancer in general and specific to lung cancer taking into account the great heterogeneity of the tumoral process at cellular and population levels.
Collapse
|
12
|
Hein RFC, Wu JH, Holloway EM, Frum T, Conchola AS, Tsai YH, Wu A, Fine AS, Miller AJ, Szenker-Ravi E, Yan KS, Kuo CJ, Glass I, Reversade B, Spence JR. R-SPONDIN2 + mesenchymal cells form the bud tip progenitor niche during human lung development. Dev Cell 2022; 57:1598-1614.e8. [PMID: 35679862 PMCID: PMC9283295 DOI: 10.1016/j.devcel.2022.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/18/2022] [Accepted: 05/16/2022] [Indexed: 01/23/2023]
Abstract
The human respiratory epithelium is derived from a progenitor cell in the distal buds of the developing lung. These "bud tip progenitors" are regulated by reciprocal signaling with surrounding mesenchyme; however, mesenchymal heterogeneity and function in the developing human lung are poorly understood. We interrogated single-cell RNA sequencing data from multiple human lung specimens and identified a mesenchymal cell population present during development that is highly enriched for expression of the WNT agonist RSPO2, and we found that the adjacent bud tip progenitors are enriched for the RSPO2 receptor LGR5. Functional experiments using organoid models, explant cultures, and FACS-isolated RSPO2+ mesenchyme show that RSPO2 is a critical niche cue that potentiates WNT signaling in bud tip progenitors to support their maintenance and multipotency.
Collapse
Affiliation(s)
- Renee F C Hein
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Joshua H Wu
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Emily M Holloway
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Tristan Frum
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ansley S Conchola
- Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yu-Hwai Tsai
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Angeline Wu
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Alexis S Fine
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Alyssa J Miller
- Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Emmanuelle Szenker-Ravi
- Laboratory of Human Genetics & Therapeutics, Genome Institute of Singapore, A(∗)STAR, Singapore 138648, Singapore
| | - Kelley S Yan
- Columbia Center for Human Development, Columbia Stem Cell Initiative, Departments of Medicine and Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Calvin J Kuo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ian Glass
- Department of Pediatrics, Genetic Medicine, University of Washington, Seattle, WA 98195, USA
| | - Bruno Reversade
- Laboratory of Human Genetics & Therapeutics, Genome Institute of Singapore, A(∗)STAR, Singapore 138648, Singapore; Laboratory of Human Genetics & Therapeutics, Institute of Molecular and Cell Biology (IMCB), A∗STAR, Singapore; Medical Genetics Department, Koç University School of Medicine (KUSOM), Istanbul, Turkey
| | - Jason R Spence
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA.
| |
Collapse
|
13
|
Glotzer GL, Tardivo P, Tanaka EM. Canonical Wnt signaling and the regulation of divergent mesenchymal Fgf8 expression in axolotl limb development and regeneration. eLife 2022; 11:e79762. [PMID: 35587651 PMCID: PMC9154742 DOI: 10.7554/elife.79762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 11/30/2022] Open
Abstract
The expression of fibroblast growth factors (Fgf) ligands in a specialized epithelial compartment, the Apical Ectodermal Ridge (AER), is a conserved feature of limb development across vertebrate species. In vertebrates, Fgf 4, 8, 9, and 17 are all expressed in the AER. An exception to this paradigm is the salamander (axolotl) developing and regenerating limb, where key Fgf ligands are expressed in the mesenchyme. The mesenchymal expression of Amex.Fgf8 in axolotl has been suggested to be critical for regeneration. To date, there is little knowledge regarding what controls Amex.Fgf8 expression in the axolotl limb mesenchyme. A large body of mouse and chick studies have defined a set of transcription factors and canonical Wnt signaling as the main regulators of epidermal Fgf8 expression in these organisms. In this study, we address the hypothesis that alterations to one or more of these components during evolution has resulted in mesenchymal Amex.Fgf8 expression in the axolotl. To sensitively quantify gene expression with spatial precision, we combined optical clearing of whole-mount axolotl limb tissue with single molecule fluorescent in situ hybridization and a semiautomated quantification pipeline. Several candidate upstream components were found expressed in the axolotl ectoderm, indicating that they are not direct regulators of Amex.Fgf8 expression. We found that Amex.Wnt3a is expressed in axolotl limb epidermis, similar to chicken and mouse. However, unlike in amniotes, Wnt target genes are activated preferentially in limb mesenchyme rather than in epidermis. Inhibition and activation of Wnt signaling results in downregulation and upregulation of mesenchymal Amex.Fgf8 expression, respectively. These results implicate a shift in tissue responsiveness to canonical Wnt signaling from epidermis to mesenchyme as one step contributing to the unique mesenchymal Amex.Fgf8 expression seen in the axolotl.
Collapse
Affiliation(s)
- Giacomo L Glotzer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus- Vienna-Biocenter 1ViennaAustria
| | - Pietro Tardivo
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus- Vienna-Biocenter 1ViennaAustria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of ViennaViennaAustria
| | - Elly M Tanaka
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus- Vienna-Biocenter 1ViennaAustria
| |
Collapse
|
14
|
Hedgehog Signaling Pathway Orchestrates Human Lung Branching Morphogenesis. Int J Mol Sci 2022; 23:ijms23095265. [PMID: 35563656 PMCID: PMC9100880 DOI: 10.3390/ijms23095265] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 01/05/2023] Open
Abstract
The Hedgehog (HH) signaling pathway plays an essential role in mouse lung development. We hypothesize that the HH pathway is necessary for branching during human lung development and is impaired in pulmonary hypoplasia. Single-cell, bulk RNA-sequencing data, and human fetal lung tissues were analyzed to determine the spatiotemporal localization of HH pathway actors. Distal human lung segments were cultured in an air-liquid interface and treated with an SHH inhibitor (5E1) to determine the effect of HH inhibition on human lung branching, epithelial-mesenchymal markers, and associated signaling pathways in vitro. Our results showed an early and regulated expression of HH pathway components during human lung development. Inhibiting HH signaling caused a reduction in branching during development and dysregulated epithelial (SOX2, SOX9) and mesenchymal (ACTA2) progenitor markers. FGF and Wnt pathways were also disrupted upon HH inhibition. Finally, we demonstrated that HH signaling elements were downregulated in lung tissues of patients with a congenital diaphragmatic hernia (CDH). In this study, we show for the first time that HH signaling inhibition alters important genes and proteins required for proper branching of the human developing lung. Understanding the role of the HH pathway on human lung development could lead to the identification of novel therapeutic targets for childhood pulmonary diseases.
Collapse
|
15
|
Abstract
The trachea is a long tube that enables air passage between the larynx and the bronchi. C-shaped cartilage rings on the ventral side stabilise the structure. On its esophagus-facing dorsal side, deformable smooth muscle facilitates the passage of food in the esophagus. While the symmetry break along the dorsal-ventral axis is well understood, the molecular mechanism that results in the periodic Sox9 expression pattern that translates into the cartilage rings has remained elusive. Here, we review the molecular regulatory interactions that have been elucidated, and discuss possible patterning mechanisms. Understanding the principles of self-organisation is important, both to define biomedical interventions and to enable tissue engineering.
Collapse
Affiliation(s)
- Dagmar Iber
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
- *Correspondence: Dagmar Iber,
| | - Malte Mederacke
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| |
Collapse
|
16
|
Lovely AM, Duerr TJ, Qiu Q, Galvan S, Voss SR, Monaghan JR. Wnt Signaling Coordinates the Expression of Limb Patterning Genes During Axolotl Forelimb Development and Regeneration. Front Cell Dev Biol 2022; 10:814250. [PMID: 35531102 PMCID: PMC9068880 DOI: 10.3389/fcell.2022.814250] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
After amputation, axolotl salamanders can regenerate their limbs, but the degree to which limb regeneration recapitulates limb development remains unclear. One limitation in answering this question is our lack of knowledge about salamander limb development. Here, we address this question by studying expression patterns of genes important for limb patterning during axolotl salamander limb development and regeneration. We focus on the Wnt signaling pathway because it regulates multiple functions during tetrapod limb development, including limb bud initiation, outgrowth, patterning, and skeletal differentiation. We use fluorescence in situ hybridization to show the expression of Wnt ligands, Wnt receptors, and limb patterning genes in developing and regenerating limbs. Inhibition of Wnt ligand secretion permanently blocks limb bud outgrowth when treated early in limb development. Inhibiting Wnt signaling during limb outgrowth decreases the expression of critical signaling genes, including Fgf10, Fgf8, and Shh, leading to the reduced outgrowth of the limb. Patterns of gene expression are similar between developing and regenerating limbs. Inhibition of Wnt signaling during regeneration impacted patterning gene expression similarly. Overall, our findings suggest that limb development and regeneration utilize Wnt signaling similarly. It also provides new insights into the interaction of Wnt signaling with other signaling pathways during salamander limb development and regeneration.
Collapse
Affiliation(s)
| | - Timothy J. Duerr
- Department of Biology, Northeastern University, Boston, MA, United States
| | - Qingchao Qiu
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, and Ambystoma Genetic Stock Center, University of Kentucky, Lexington, KY, United States
| | | | - S. Randal Voss
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, and Ambystoma Genetic Stock Center, University of Kentucky, Lexington, KY, United States
| | - James R. Monaghan
- Department of Biology, Northeastern University, Boston, MA, United States
- Institute for Chemical Imaging of Living Systems, Northeastern University, Boston, MA, United States
| |
Collapse
|
17
|
Raslan AA, Oh YJ, Jin YR, Yoon JK. R-Spondin2, a Positive Canonical WNT Signaling Regulator, Controls the Expansion and Differentiation of Distal Lung Epithelial Stem/Progenitor Cells in Mice. Int J Mol Sci 2022; 23:ijms23063089. [PMID: 35328508 PMCID: PMC8954098 DOI: 10.3390/ijms23063089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023] Open
Abstract
The lungs have a remarkable ability to regenerate damaged tissues caused by acute injury. Many lung diseases, especially chronic lung diseases, are associated with a reduced or disrupted regeneration potential of the lungs. Therefore, understanding the underlying mechanisms of the regenerative capacity of the lungs offers the potential to identify novel therapeutic targets for these diseases. R-spondin2, a co-activator of WNT/β-catenin signaling, plays an important role in embryonic murine lung development. However, the role of Rspo2 in adult lung homeostasis and regeneration remains unknown. The aim of this study is to determine Rspo2 function in distal lung stem/progenitor cells and adult lung regeneration. In this study, we found that robust Rspo2 expression was detected in different epithelial cells, including airway club cells and alveolar type 2 (AT2) cells in the adult lungs. However, Rspo2 expression significantly decreased during the first week after naphthalene-induced airway injury and was restored by day 14 post-injury. In ex vivo 3D organoid culture, recombinant RSPO2 promoted the colony formation and differentiation of both club and AT2 cells through the activation of canonical WNT signaling. In contrast, Rspo2 ablation in club and AT2 cells significantly disrupted their expansion capacity in the ex vivo 3D organoid culture. Furthermore, mice lacking Rspo2 showed significant defects in airway regeneration after naphthalene-induced injury. Our results strongly suggest that RSPO2 plays a key role in the adult lung epithelial stem/progenitor cells during homeostasis and regeneration, and therefore, it may be a potential therapeutic target for chronic lung diseases with reduced regenerative capability.
Collapse
Affiliation(s)
- Ahmed A. Raslan
- Department of Integrated Biomedical Science, Graduate School, Soonchunhyang University, 25 Bongjeong-ro, Dongnam-gu, Cheonan 31151, Korea;
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, 25 Bongjeong-ro, Dongnam-gu, Cheonan 31151, Korea;
| | - Youn Jeong Oh
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, 25 Bongjeong-ro, Dongnam-gu, Cheonan 31151, Korea;
| | - Yong Ri Jin
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA;
| | - Jeong Kyo Yoon
- Department of Integrated Biomedical Science, Graduate School, Soonchunhyang University, 25 Bongjeong-ro, Dongnam-gu, Cheonan 31151, Korea;
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, 25 Bongjeong-ro, Dongnam-gu, Cheonan 31151, Korea;
- Correspondence:
| |
Collapse
|
18
|
The molecular underpinning of geminin-overexpressing triple-negative breast cancer cells homing specifically to lungs. Cancer Gene Ther 2022; 29:304-325. [PMID: 33723406 DOI: 10.1038/s41417-021-00311-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/23/2021] [Accepted: 02/12/2021] [Indexed: 01/31/2023]
Abstract
Triple-negative breast cancer (TNBCs) display lung metastasis tropism. However, the mechanisms underlying this organ-specific pattern remains to be elucidated. We sought to evaluate the utility of blocking extravasation to prevent lung metastasis. To identify potential geminin overexpression-controlled genetic drivers that promote TNBC tumor homing to lungs, we used the differential/suppression subtractive chain (D/SSC) technique. A geminin overexpression-induced lung metastasis gene signature consists of 24 genes was discovered. We validated overexpression of five of these genes (LGR5, HAS2, CDH11, NCAM2, and DSC2) in worsening lung metastasis-free survival in TNBC patients. Our data demonstrate that LGR5-induced β-catenin signaling and stemness in TNBC cells are geminin-overexpression dependent. They also demonstrate for the first-time expression of RSPO2 in mouse lung tissue only and exacerbation of its secretion in the circulation of mice that develop geminin overexpressing/LGR5+-TNBC lung metastasis. We identified a novel extravasation receptor complex, consists of CDH11, CD44v6, c-Met, and AXL on geminin overexpressing/LGR5+-TNBC lung metastatic precursors, inhibition of any of its receptors prevented geminin overexpressing/LGR5+-TNBC lung metastasis. Overall, we propose that geminin overexpression in normal mammary epithelial (HME) cells promotes the generation of TNBC metastatic precursors that home specifically to lungs by upregulating LGR5 expression and promoting stemness, intravasation, and extravasation in these precursors. Circulating levels of RSPO2 and OPN can be diagnostic biomarkers to improve risk stratification of metastatic TNBC to lungs, as well as identifying patients who may benefit from therapy targeting geminin alone or in combination with any member of the newly discovered extravasation receptor complex to minimize TNBC lung metastasis.
Collapse
|
19
|
Boecking CA, Walentek P, Zlock LT, Sun DI, Wolters PJ, Ishikawa H, Jin BJ, Haggie PM, Marshall WF, Verkman AS, Finkbeiner WE. A simple method to generate human airway epithelial organoids with externally orientated apical membranes. Am J Physiol Lung Cell Mol Physiol 2022; 322:L420-L437. [PMID: 35080188 PMCID: PMC8917940 DOI: 10.1152/ajplung.00536.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Organoids, which are self-organizing three-dimensional cultures, provide models that replicate specific cellular components of native tissues or facets of organ complexity. We describe a simple method to generate organoid cultures using isolated human tracheobronchial epithelial cells grown in mixed matrix components and supplemented at day 14 with the Wnt pathway agonist R-spondin 2 (RSPO2) and the bone morphogenic protein antagonist Noggin. In contrast to previous reports, our method produces differentiated tracheobronchospheres with externally orientated apical membranes without pretreatments, providing an epithelial model to study cilia formation and function, disease pathogenesis, and interaction of pathogens with the respiratory mucosa. Starting from 3 × 105 cells, organoid yield at day 28 was 1,720 ± 302. Immunocytochemistry confirmed the cellular localization of airway epithelial markers, including CFTR, Na+/K+ ATPase, acetylated-α-tubulin, E-cadherin, and ZO-1. Compared to native tissues, expression of genes related to bronchial differentiation and ion transport were similar in organoid and air-liquid interface (ALI) cultures. In matched primary cultures, mean organoid cilia length was 6.1 ± 0.2 µm, similar to that of 5.7 ± 0.1 µm in ALI cultures, and ciliary beating was vigorous and coordinated with frequencies of 7.7 ± 0.3 Hz in organoid cultures and 5.3 ± 0.8 Hz in ALI cultures. Functional measurement of osmotically induced volume changes in organoids showed low water permeability. The generation of numerous single testable units from minimal starting material complements prior techniques. This culture system may be useful for studying airway biology and pathophysiology, aiding diagnosis of ciliopathies, and potentially for high-throughput drug screening.
Collapse
Affiliation(s)
- Carolin A. Boecking
- 1Department of Pathology, University of California, San Francisco, California
| | - Peter Walentek
- 2Genomics and Development Division, Molecular and Cell Biology Department, University of California, Berkeley, California,3Renal Division, Department of Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Freiburg, Germany,4CIBSS – Centre for Integrative Biological Signalling Studies, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Lorna T. Zlock
- 1Department of Pathology, University of California, San Francisco, California
| | - Dingyuan I. Sun
- 1Department of Pathology, University of California, San Francisco, California
| | - Paul J. Wolters
- 5Department of Medicine, University of California, San Francisco, California
| | - Hiroaki Ishikawa
- 6Department of Biochemistry and Biophysics, University of California, San Francisco, California
| | - Byung-Ju Jin
- 5Department of Medicine, University of California, San Francisco, California
| | - Peter M. Haggie
- 5Department of Medicine, University of California, San Francisco, California
| | - Wallace F. Marshall
- 6Department of Biochemistry and Biophysics, University of California, San Francisco, California
| | - Alan S. Verkman
- 5Department of Medicine, University of California, San Francisco, California,7Department of Physiology, University of California, San Francisco, California
| | - Walter E. Finkbeiner
- 1Department of Pathology, University of California, San Francisco, California,8Innovative Genomics Institute, University of California, Berkeley, California
| |
Collapse
|
20
|
Lebensohn AM, Bazan JF, Rohatgi R. Receptor control by membrane-tethered ubiquitin ligases in development and tissue homeostasis. Curr Top Dev Biol 2022; 150:25-89. [PMID: 35817504 DOI: 10.1016/bs.ctdb.2022.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Paracrine cell-cell communication is central to all developmental processes, ranging from cell diversification to patterning and morphogenesis. Precise calibration of signaling strength is essential for the fidelity of tissue formation during embryogenesis and tissue maintenance in adults. Membrane-tethered ubiquitin ligases can control the sensitivity of target cells to secreted ligands by regulating the abundance of signaling receptors at the cell surface. We discuss two examples of this emerging concept in signaling: (1) the transmembrane ubiquitin ligases ZNRF3 and RNF43 that regulate WNT and bone morphogenetic protein receptor abundance in response to R-spondin ligands and (2) the membrane-recruited ubiquitin ligase MGRN1 that controls Hedgehog and melanocortin receptor abundance. We focus on the mechanistic logic of these systems, illustrated by structural and protein interaction models enabled by AlphaFold. We suggest that membrane-tethered ubiquitin ligases play a widespread role in remodeling the cell surface proteome to control responses to extracellular ligands in diverse biological processes.
Collapse
|
21
|
Kiyokawa H, Morimoto M. Molecular crosstalk in tracheal development and its recurrence in adult tissue regeneration. Dev Dyn 2021; 250:1552-1567. [PMID: 33840142 PMCID: PMC8596979 DOI: 10.1002/dvdy.345] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 12/17/2022] Open
Abstract
The trachea is a rigid air duct with some mobility, which comprises the upper region of the respiratory tract and delivers inhaled air to alveoli for gas exchange. During development, the tracheal primordium is first established at the ventral anterior foregut by interactions between the epithelium and mesenchyme through various signaling pathways, such as Wnt, Bmp, retinoic acid, Shh, and Fgf, and then segregates from digestive organs. Abnormalities in this crosstalk result in lethal congenital diseases, such as tracheal agenesis. Interestingly, these molecular mechanisms also play roles in tissue regeneration in adulthood, although it remains less understood compared with their roles in embryonic development. In this review, we discuss cellular and molecular mechanisms of trachea development that regulate the morphogenesis of this simple tubular structure and identities of individual differentiated cells. We also discuss how the facultative regeneration capacity of the epithelium is established during development and maintained in adulthood.
Collapse
Affiliation(s)
- Hirofumi Kiyokawa
- Laboratory for Lung Development and RegenerationRIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Mitsuru Morimoto
- Laboratory for Lung Development and RegenerationRIKEN Center for Biosystems Dynamics ResearchKobeJapan
| |
Collapse
|
22
|
Ter Steege EJ, Bakker ERM. The role of R-spondin proteins in cancer biology. Oncogene 2021; 40:6469-6478. [PMID: 34663878 PMCID: PMC8616751 DOI: 10.1038/s41388-021-02059-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 02/07/2023]
Abstract
R-spondin (RSPO) proteins constitute a family of four secreted glycoproteins (RSPO1-4) that have appeared as multipotent signaling ligands. The best-known molecular function of RSPOs lie within their capacity to agonize the Wnt/β-catenin signaling pathway. As RSPOs act upon cognate receptors LGR4/5/6 that are typically expressed by stem cells and progenitor cells, RSPO proteins importantly potentiate Wnt/β-catenin signaling especially within these proliferative stem cell compartments. Since multiple organs express LGR4/5/6 receptors and RSPO ligands within their stem cell niches, RSPOs can exert an influential role in stem cell regulation throughout the body. Inherently, over the last decade a multitude of reports implicated the deregulation of RSPOs in cancer development. First, RSPO2 and RSPO3 gene fusions with concomitant enhanced expression have been identified in colon cancer patients, and proposed as an alternative driver of Wnt/β-catenin hyperactivation that earmarks cancer in the colorectal tract. Moreover, the causal oncogenic capacity of RSPO3 overactivation has been demonstrated in the mouse intestine. As a paradigm organ in this field, most of current knowledge about RSPOs in cancer is derived from studies in the intestinal tract. However, RSPO gene fusions as well as enhanced RSPO expression have been reported in multiple additional cancer types, affecting different organs that involve divergent stem cell hierarchies. Importantly, the emerging oncogenic role of RSPO and its potential clinical utility as a therapeutic target have been recognized and investigated in preclinical and clinical settings. This review provides a survey of current knowledge on the role of RSPOs in cancer biology, addressing the different organs implicated, and of efforts made to explore intervention opportunities in cancer cases with RSPO overrepresentation, including the potential utilization of RSPO as novel therapeutic target itself.
Collapse
Affiliation(s)
- Eline J Ter Steege
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Elvira R M Bakker
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
23
|
Interleukin-4 Promotes Tuft Cell Differentiation and Acetylcholine Production in Intestinal Organoids of Non-Human Primate. Int J Mol Sci 2021; 22:ijms22157921. [PMID: 34360687 PMCID: PMC8348364 DOI: 10.3390/ijms22157921] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/23/2022] Open
Abstract
In the intestine, the innate immune system excludes harmful substances and invading microorganisms. Tuft cells are taste-like chemosensory cells found in the intestinal epithelium involved in the activation of group 2 innate lymphoid cells (ILC2). Although tuft cells in other tissues secrete the neurotransmitter acetylcholine (ACh), their function in the gut remains poorly understood. In this study, we investigated changes in the expression of genes and cell differentiation of the intestinal epithelium by stimulation with interleukin-4 (IL-4) or IL-13 in macaque intestinal organoids. Transcriptome analysis showed that tuft cell marker genes were highly expressed in the IL-4- and IL-13-treated groups compared with the control, and the gene expression of choline acetyltransferase (ChAT), a synthesis enzyme of ACh, was upregulated in IL-4- and IL-13-treated groups. ACh accumulation was observed in IL-4-induced organoids using high-performance liquid chromatography-mass spectrometry (HPLC/MS), and ACh strongly released granules from Paneth cells. This study is the first to demonstrate ACh upregulation by IL-4 induction in primates, suggesting that IL-4 plays a role in Paneth cell granule secretion via paracrine stimulation.
Collapse
|
24
|
Johnson de Sousa Brito FM, Butcher A, Pisconti A, Poulet B, Prior A, Charlesworth G, Sperinck C, Scotto di Mase M, Liu K, Bou-Gharios G, Jurgen van 't Hof R, Daroszewska A. Syndecan-3 enhances anabolic bone formation through WNT signaling. FASEB J 2021; 35:e21246. [PMID: 33769615 PMCID: PMC8251628 DOI: 10.1096/fj.202002024r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 12/25/2022]
Abstract
Osteoporosis is the most common age‐related metabolic bone disorder, which is characterized by low bone mass and deterioration in bone architecture, with a propensity to fragility fractures. The best treatment for osteoporosis relies on stimulation of osteoblasts to form new bone and restore bone structure, however, anabolic therapeutics are few and their use is time restricted. Here, we report that Syndecan‐3 increases new bone formation through enhancement of WNT signaling in osteoblasts. Young adult Sdc3−/− mice have low bone volume, reduced bone formation, increased bone marrow adipose tissue, increased bone fragility, and a blunted anabolic bone formation response to mechanical loading. This premature osteoporosis‐like phenotype of Sdc3−/− mice is due to delayed osteoblast maturation and impaired osteoblast function, with contributing increased osteoclast‐mediated bone resorption. Indeed, overexpressing Sdc3 in osteoblasts using the Col1a1 promoter rescues the low bone volume phenotype of the Sdc3−/− mice, and also increases bone volume in WT mice. Mechanistically, SDC3 enhances canonical WNT signaling in osteoblasts through stabilization of Frizzled 1, making SDC3 an attractive target for novel bone anabolic drug development.
Collapse
Affiliation(s)
- Francesca Manuela Johnson de Sousa Brito
- Department of Musculoskeletal and Ageing Science (formerly Department of Musculoskeletal Biology), Institute of Life Course and Medical Sciences (formerly Institute of Ageing and Chronic Disease), University of Liverpool, Liverpool, UK
| | - Andrew Butcher
- Department of Musculoskeletal and Ageing Science (formerly Department of Musculoskeletal Biology), Institute of Life Course and Medical Sciences (formerly Institute of Ageing and Chronic Disease), University of Liverpool, Liverpool, UK
| | - Addolorata Pisconti
- Department of Biochemistry, IIB, University of Liverpool, Liverpool, UK.,Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Blandine Poulet
- Department of Musculoskeletal and Ageing Science (formerly Department of Musculoskeletal Biology), Institute of Life Course and Medical Sciences (formerly Institute of Ageing and Chronic Disease), University of Liverpool, Liverpool, UK
| | - Amanda Prior
- Department of Musculoskeletal and Ageing Science (formerly Department of Musculoskeletal Biology), Institute of Life Course and Medical Sciences (formerly Institute of Ageing and Chronic Disease), University of Liverpool, Liverpool, UK
| | - Gemma Charlesworth
- Department of Musculoskeletal and Ageing Science (formerly Department of Musculoskeletal Biology), Institute of Life Course and Medical Sciences (formerly Institute of Ageing and Chronic Disease), University of Liverpool, Liverpool, UK
| | - Catherine Sperinck
- Department of Musculoskeletal and Ageing Science (formerly Department of Musculoskeletal Biology), Institute of Life Course and Medical Sciences (formerly Institute of Ageing and Chronic Disease), University of Liverpool, Liverpool, UK
| | - Michele Scotto di Mase
- Department of Musculoskeletal and Ageing Science (formerly Department of Musculoskeletal Biology), Institute of Life Course and Medical Sciences (formerly Institute of Ageing and Chronic Disease), University of Liverpool, Liverpool, UK
| | - Ke Liu
- Department of Musculoskeletal and Ageing Science (formerly Department of Musculoskeletal Biology), Institute of Life Course and Medical Sciences (formerly Institute of Ageing and Chronic Disease), University of Liverpool, Liverpool, UK
| | - George Bou-Gharios
- Department of Musculoskeletal and Ageing Science (formerly Department of Musculoskeletal Biology), Institute of Life Course and Medical Sciences (formerly Institute of Ageing and Chronic Disease), University of Liverpool, Liverpool, UK
| | - Robert Jurgen van 't Hof
- Department of Musculoskeletal and Ageing Science (formerly Department of Musculoskeletal Biology), Institute of Life Course and Medical Sciences (formerly Institute of Ageing and Chronic Disease), University of Liverpool, Liverpool, UK
| | - Anna Daroszewska
- Department of Musculoskeletal and Ageing Science (formerly Department of Musculoskeletal Biology), Institute of Life Course and Medical Sciences (formerly Institute of Ageing and Chronic Disease), University of Liverpool, Liverpool, UK.,Department of Clinical Biochemistry and Metabolic Medicine, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK.,Department of Rheumatology, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| |
Collapse
|
25
|
Wang Z, Wang Y, Ma X, Dang C. RSPO2 silence inhibits tumorigenesis of nasopharyngeal carcinoma by ZNRF3/Hedgehog-Gli1 signal pathway. Life Sci 2021; 282:119817. [PMID: 34273374 DOI: 10.1016/j.lfs.2021.119817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/27/2021] [Accepted: 07/06/2021] [Indexed: 12/24/2022]
Abstract
R-spondins 2 (RSPO2) protein is a member of RSPO family which plays an essential role in stem cell survival, development and tumorigenicity. There has several evidence suggested that RSPO2 involved in breast, gastric, liver and colorectal cancer. However, the specific function and mechanism of RSPO2 in nasopharyngeal carcinoma (NPC) remain unknown. In the present study, we first observed that RSPO2 expression was elevated in NPC cell lines SUNE-6-10B, SUNE-5-8F, and CNE-1 compared with the normal laryngeal epithelia cell line NP69. Knockdown of RSPO2 significantly inhibits SUNE-6-10B and CNE-1 cell survival and proliferation by using CCK-8 assay and Edu assay, respectively. Further studies verified that RSPO2 silence suppressed migration and invasion of SUNE-6-10B and CNE-1 cells. Further studies suggested that RSPO2 silence suppressed epithelial-to-mesenchymal transition (EMT) related protein E-cadherin expression and promoted Vimentin and N-cadherin expression both in SUNE-6-10B and CNE-1 cells. Molecular mechanism explorations showed that RSPO2 deletion increased ZNRF3 expression and inhibited Gli1 expression. Additionally, knockdown ZNRF3 expression or overexpression Gli1 both reversed the effects of RSPO2 silence on NPC growth and metastasis. Finally, RSPO2 depletion was impaired NPC tumor growth in vivo animal experiments. In conclusion, the present study confirmed that RSPO2 silence inhibits the tumorigenesis of NPC via ZNRF3/Hedgehog-Gli1 signal pathway.
Collapse
Affiliation(s)
- ZhongWei Wang
- Department of Oncology and Radiotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - YaLi Wang
- Department of Oncology and Radiotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - XiuLong Ma
- Department of Oncology and Radiotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - ChengXue Dang
- Tumor Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
26
|
Kishimoto K, Morimoto M. Mammalian tracheal development and reconstruction: insights from in vivo and in vitro studies. Development 2021; 148:dev198192. [PMID: 34228796 PMCID: PMC8276987 DOI: 10.1242/dev.198192] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The trachea delivers inhaled air into the lungs for gas exchange. Anomalies in tracheal development can result in life-threatening malformations, such as tracheoesophageal fistula and tracheomalacia. Given the limitations of current therapeutic approaches, development of technologies for the reconstitution of a three-dimensional trachea from stem cells is urgently required. Recently, single-cell sequencing technologies and quantitative analyses from cell to tissue scale have been employed to decipher the cellular basis of tracheal morphogenesis. In this Review, recent advances in mammalian tracheal development and the generation of tracheal tissues from pluripotent stem cells are summarized.
Collapse
Affiliation(s)
- Keishi Kishimoto
- Laboratory for Lung Development and Regeneration, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe 650-0047, Japan
- RIKEN BDR–CuSTOM Joint Laboratory, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Center for Stem Cell & Organoid Medicine (CuSTOM), Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Mitsuru Morimoto
- Laboratory for Lung Development and Regeneration, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe 650-0047, Japan
- RIKEN BDR–CuSTOM Joint Laboratory, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
27
|
Reis AH, Sokol SY. Rspo2 inhibits TCF3 phosphorylation to antagonize Wnt signaling during vertebrate anteroposterior axis specification. Sci Rep 2021; 11:13433. [PMID: 34183732 PMCID: PMC8239024 DOI: 10.1038/s41598-021-92824-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/10/2021] [Indexed: 01/20/2023] Open
Abstract
The Wnt pathway activates target genes by controlling the β-catenin-T-cell factor (TCF) transcriptional complex during embryonic development and cancer. This pathway can be potentiated by R-spondins, a family of proteins that bind RNF43/ZNRF3 E3 ubiquitin ligases and LGR4/5 receptors to prevent Frizzled degradation. Here we demonstrate that, during Xenopus anteroposterior axis specification, Rspo2 functions as a Wnt antagonist, both morphologically and at the level of gene targets and pathway mediators. Unexpectedly, the binding to RNF43/ZNRF3 and LGR4/5 was not required for the Wnt inhibitory activity. Moreover, Rspo2 did not influence Dishevelled phosphorylation in response to Wnt ligands, suggesting that Frizzled activity is not affected. Further analysis indicated that the Wnt antagonism is due to the inhibitory effect of Rspo2 on TCF3/TCF7L1 phosphorylation that normally leads to target gene activation. Consistent with this mechanism, Rspo2 anteriorizing activity has been rescued in TCF3-depleted embryos. These observations suggest that Rspo2 is a context-specific regulator of TCF3 phosphorylation and Wnt signaling.
Collapse
Affiliation(s)
- Alice H Reis
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA.
| | - Sergei Y Sokol
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
28
|
Aros CJ, Pantoja CJ, Gomperts BN. Wnt signaling in lung development, regeneration, and disease progression. Commun Biol 2021; 4:601. [PMID: 34017045 PMCID: PMC8138018 DOI: 10.1038/s42003-021-02118-w] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
The respiratory tract is a vital, intricate system for several important biological processes including mucociliary clearance, airway conductance, and gas exchange. The Wnt signaling pathway plays several crucial and indispensable roles across lung biology in multiple contexts. This review highlights the progress made in characterizing the role of Wnt signaling across several disciplines in lung biology, including development, homeostasis, regeneration following injury, in vitro directed differentiation efforts, and disease progression. We further note uncharted directions in the field that may illuminate important biology. The discoveries made collectively advance our understanding of Wnt signaling in lung biology and have the potential to inform therapeutic advancements for lung diseases. Cody Aros, Carla Pantoja, and Brigitte Gomperts review the key role of Wnt signaling in all aspects of lung development, repair, and disease progression. They provide an overview of recent research findings and highlight where research is needed to further elucidate mechanisms of action, with the aim of improving disease treatments.
Collapse
Affiliation(s)
- Cody J Aros
- UCLA Department of Molecular Biology Interdepartmental Program, UCLA, Los Angeles, CA, USA.,UCLA Medical Scientist Training Program, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.,UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Carla J Pantoja
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Brigitte N Gomperts
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA. .,Division of Pulmonary and Critical Care MedicineDavid Geffen School of Medicine, UCLA, Los Angeles, CA, USA. .,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA. .,Eli and Edythe Broad Stem Cell Research Center, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
29
|
Dani N, Herbst RH, McCabe C, Green GS, Kaiser K, Head JP, Cui J, Shipley FB, Jang A, Dionne D, Nguyen L, Rodman C, Riesenfeld SJ, Prochazka J, Prochazkova M, Sedlacek R, Zhang F, Bryja V, Rozenblatt-Rosen O, Habib N, Regev A, Lehtinen MK. A cellular and spatial map of the choroid plexus across brain ventricles and ages. Cell 2021; 184:3056-3074.e21. [PMID: 33932339 DOI: 10.1016/j.cell.2021.04.003] [Citation(s) in RCA: 150] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 12/15/2020] [Accepted: 04/02/2021] [Indexed: 02/06/2023]
Abstract
The choroid plexus (ChP) in each brain ventricle produces cerebrospinal fluid (CSF) and forms the blood-CSF barrier. Here, we construct a single-cell and spatial atlas of each ChP in the developing, adult, and aged mouse brain. We delineate diverse cell types, subtypes, cell states, and expression programs in epithelial and mesenchymal cells across ages and ventricles. In the developing ChP, we predict a common progenitor pool for epithelial and neuronal cells, validated by lineage tracing. Epithelial and fibroblast cells show regionalized expression by ventricle, starting at embryonic stages and persisting with age, with a dramatic transcriptional shift with maturation, and a smaller shift in each aged cell type. With aging, epithelial cells upregulate host-defense programs, and resident macrophages upregulate interleukin-1β (IL-1β) signaling genes. Our atlas reveals cellular diversity, architecture and signaling across ventricles during development, maturation, and aging of the ChP-brain barrier.
Collapse
Affiliation(s)
- Neil Dani
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Rebecca H Herbst
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Cristin McCabe
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Gilad S Green
- Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Karol Kaiser
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 611 37, Czech Republic
| | - Joshua P Head
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jin Cui
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Frederick B Shipley
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA; Graduate Program in Biophysics, Harvard University, Cambridge, MA 02115, USA
| | - Ahram Jang
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Danielle Dionne
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Lan Nguyen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Christopher Rodman
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Samantha J Riesenfeld
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jan Prochazka
- Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the CAS, Prague 142 20, Czech Republic
| | - Michaela Prochazkova
- Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the CAS, Prague 142 20, Czech Republic
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the CAS, Prague 142 20, Czech Republic
| | - Feng Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Vitezslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 611 37, Czech Republic
| | - Orit Rozenblatt-Rosen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Naomi Habib
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Koch Institute of Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA; Graduate Program in Biophysics, Harvard University, Cambridge, MA 02115, USA.
| |
Collapse
|
30
|
Xu Q, Xu Z. miR-196b-5p Promotes Proliferation, Migration and Invasion of Lung Adenocarcinoma Cells via Targeting RSPO2. Cancer Manag Res 2021; 12:13393-13402. [PMID: 33402849 PMCID: PMC7778444 DOI: 10.2147/cmar.s274171] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022] Open
Abstract
Objective To explore the biological role of miR-196b-5p/RSPO2 in the occurrence and development of lung adenocarcinoma (LUAD) and to provide a basis for finding new therapeutic targets for LUAD. Methods Differentially expressed genes were analyzed based on LUAD microarray, and the target gene of the target miRNA was predicted. qRT-PCR was used to detect the expression levels of miR-196b-5p and RSPO2 mRNA in normal human bronchial epithelial cell line BEAS-2B and LUAD cell lines A549, NCI-H1792 and NCI-H226. Western blot was used to evaluate protein expression. Cell proliferative, migratory and invasive abilities were detected by CCK-8 and transwell assays. Dual-luciferase assay was conducted to verify the targeting relationship between miR-196b-5p and RSPO2. Results The results of qRT-PCR showed that miR-196b-5p was significantly highly expressed in LUAD cells, and the expression level of its downstream target gene RSPO2 was significantly decreased. The results of CCK-8 and transwell assays exhibited that miR-196b-5p promoted proliferation, migration and invasion of LUAD cells, while RSPO2 inhibited the malignant progression of LUAD cells. Dual-luciferase assay confirmed the targeted binding relationship between miR-196b-5p and RSPO2. Overexpression of RSPO2 partially reversed the promotion of miR-196b-5p on proliferation, migration and invasion of LUAD cells. Conclusion miR-196b-5p promoted proliferation, migration and invasion of LUAD cells by targeting and down-regulating RSPO2, which provided ideas for searching new targets for the diagnosis and treatment of LUAD.
Collapse
Affiliation(s)
- Qian Xu
- Department of Oncology Medicine, Fujian Medical University Union Hospital, Fuzhou, 350001, People's Republic of China
| | - Zhenwu Xu
- Department of Thoracic Medical Oncology, Fujian Provincial Cancer Hospital, The Affiliated Hospital of Fujian Medical University, Fuzhou, 350014, People's Republic of China
| |
Collapse
|
31
|
R-spondin substitutes for neuronal input for taste cell regeneration in adult mice. Proc Natl Acad Sci U S A 2020; 118:2001833118. [PMID: 33443181 DOI: 10.1073/pnas.2001833118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Taste bud cells regenerate throughout life. Taste bud maintenance depends on continuous replacement of senescent taste cells with new ones generated by adult taste stem cells. More than a century ago it was shown that taste buds degenerate after their innervating nerves are transected and that they are not restored until after reinnervation by distant gustatory ganglion neurons. Thus, neuronal input, likely via neuron-supplied factors, is required for generation of differentiated taste cells and taste bud maintenance. However, the identity of such a neuron-supplied niche factor(s) remains unclear. Here, by mining a published RNA-sequencing dataset of geniculate ganglion neurons and by in situ hybridization, we demonstrate that R-spondin-2, the ligand of Lgr5 and its homologs Lgr4/6 and stem-cell-expressed E3 ligases Rnf43/Znrf3, is expressed in nodose-petrosal and geniculate ganglion neurons. Using the glossopharyngeal nerve transection model, we show that systemic delivery of R-spondin via adenovirus can promote generation of differentiated taste cells despite denervation. Thus, exogenous R-spondin can substitute for neuronal input for taste bud cell replenishment and taste bud maintenance. Using taste organoid cultures, we show that R-spondin is required for generation of differentiated taste cells and that, in the absence of R-spondin in culture medium, taste bud cells are not generated ex vivo. Thus, we propose that R-spondin-2 may be the long-sought neuronal factor that acts on taste stem cells for maintaining taste tissue homeostasis.
Collapse
|
32
|
Nasr T, Holderbaum AM, Chaturvedi P, Agarwal K, Kinney JL, Daniels K, Trisno SL, Ustiyan V, Shannon JM, Wells JM, Sinner D, Kalinichenko VV, Zorn AM. Disruption of a hedgehog-foxf1-rspo2 signaling axis leads to tracheomalacia and a loss of sox9+ tracheal chondrocytes. Dis Model Mech 2020; 14:dmm.046573. [PMID: 33328171 PMCID: PMC7875488 DOI: 10.1242/dmm.046573] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
Congenital tracheomalacia, resulting from incomplete tracheal cartilage development, is a relatively common birth defect that severely impairs breathing in neonates. Mutations in the Hedgehog (HH) pathway and downstream Gli transcription factors are associated with tracheomalacia in patients and mouse models; however, the underlying molecular mechanisms are unclear. Using multiple HH/Gli mouse mutants including one that mimics Pallister-Hall Syndrome, we show that excessive Gli repressor activity prevents specification of tracheal chondrocytes. Lineage tracing experiments show that Sox9+ chondrocytes arise from HH-responsive splanchnic mesoderm in the fetal foregut that expresses the transcription factor Foxf1. Disrupted HH/Gli signaling results in 1) loss of Foxf1 which in turn is required to support Sox9+ chondrocyte progenitors and 2) a dramatic reduction in Rspo2, a secreted ligand that potentiates Wnt signaling known to be required for chondrogenesis. These results reveal a HH-Foxf1-Rspo2 signaling axis that governs tracheal cartilage development and informs the etiology of tracheomalacia.
Collapse
Affiliation(s)
- Talia Nasr
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267
| | - Andrea M Holderbaum
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267
| | - Praneet Chaturvedi
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
| | - Kunal Agarwal
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
| | - Jessica L Kinney
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
| | - Keziah Daniels
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
| | - Stephen L Trisno
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267
| | - Vladimir Ustiyan
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
| | - John M Shannon
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
| | - James M Wells
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267
| | - Debora Sinner
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
| | - Vladimir V Kalinichenko
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
| | - Aaron M Zorn
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267
| |
Collapse
|
33
|
Becker D, Weikard R, Schulze C, Wohlsein P, Kühn C. A 50-kb deletion disrupting the RSPO2 gene is associated with tetradysmelia in Holstein Friesian cattle. Genet Sel Evol 2020; 52:68. [PMID: 33176673 PMCID: PMC7661195 DOI: 10.1186/s12711-020-00586-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 10/27/2020] [Indexed: 11/16/2022] Open
Abstract
Background Tetradysmelia is a rare genetic disorder that is characterized by an extremely severe reduction of all limb parts distal of the scapula and pelvic girdle. We studied a Holstein Friesian backcross family with 24 offspring, among which six calves displayed autosomal recessive tetradysmelia. In order to identify the genetic basis of the disorder, we genotyped three affected calves, five dams and nine unaffected siblings using a Bovine Illumina 50 k BeadChip and sequenced the whole genome of the sire. Results Pathological examination of four tetradysmelia cases revealed a uniform and severe dysmelia of all limbs. Applying a homozygosity mapping approach, we identified a homozygous region of 10.54 Mb on chromosome 14 (Bos taurus BTA14). Only calves that were diagnosed with tetradysmelia shared a distinct homozygous haplotype for this region. We sequenced the whole genome of the cases’ sire and searched for heterozygous single nucleotide polymorphisms (SNPs) and small variants on BTA14 that were uniquely present in the sire and absent from 3102 control whole-genome sequences of the 1000 Bull Genomes Project, but none were identified in the 10.54-Mb candidate region on BTA14. Therefore, we subsequently performed a more comprehensive analysis by also considering structural variants and detected a 50-kb deletion in the targeted chromosomal region that was in the heterozygous state in the cases’ sire. Using PCR, we confirmed that this detected deletion segregated perfectly within the family with tetradysmelia. The deletion spanned three exons of the bovine R-spondin 2 (RSPO2) gene, which encode three domains of the respective protein. R-spondin 2 is a secreted ligand of leucine-rich repeats containing G protein-coupled receptors that enhance Wnt signalling and is involved in a broad range of developmental processes during embryogenesis. Conclusions We identified a 50-kb deletion on BTA14 that disrupts the coding sequence of the RSPO2 gene and is associated with bovine tetradysmelia. To our knowledge, this is the first reported candidate causal mutation for tetradysmelia in a large animal model. Since signalling pathways involved in limb development are conserved across species, the observed inherited defect may serve as a model to further elucidate fundamental pathways of limb development.
Collapse
Affiliation(s)
- Doreen Becker
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Rosemarie Weikard
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Christoph Schulze
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany.,Landeslabor Berlin-Brandenburg, Frankfurt (Oder), Germany
| | - Peter Wohlsein
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| | - Christa Kühn
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany. .,Rostock, Faculty of Agricultural and Environmental Sciences, Rostock, Germany.
| |
Collapse
|
34
|
Lee H, Seidl C, Sun R, Glinka A, Niehrs C. R-spondins are BMP receptor antagonists in Xenopus early embryonic development. Nat Commun 2020; 11:5570. [PMID: 33149137 PMCID: PMC7642414 DOI: 10.1038/s41467-020-19373-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022] Open
Abstract
BMP signaling plays key roles in development, stem cells, adult tissue homeostasis, and disease. How BMP receptors are extracellularly modulated and in which physiological context, is therefore of prime importance. R-spondins (RSPOs) are a small family of secreted proteins that co-activate WNT signaling and function as potent stem cell effectors and oncogenes. Evidence is mounting that RSPOs act WNT-independently but how and in which physiological processes remains enigmatic. Here we show that RSPO2 and RSPO3 also act as BMP antagonists. RSPO2 is a high affinity ligand for the type I BMP receptor BMPR1A/ALK3, and it engages ZNRF3 to trigger internalization and degradation of BMPR1A. In early Xenopus embryos, Rspo2 is a negative feedback inhibitor in the BMP4 synexpression group and regulates dorsoventral axis formation. We conclude that R-spondins are bifunctional ligands, which activate WNT- and inhibit BMP signaling via ZNRF3, with implications for development and cancer.
Collapse
Affiliation(s)
- Hyeyoon Lee
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120, Heidelberg, Germany
| | - Carina Seidl
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120, Heidelberg, Germany
| | - Rui Sun
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120, Heidelberg, Germany
| | - Andrey Glinka
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120, Heidelberg, Germany
| | - Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120, Heidelberg, Germany.
- Institute of Molecular Biology (IMB), 55128, Mainz, Germany.
| |
Collapse
|
35
|
Lungova V, Thibeault SL. Mechanisms of larynx and vocal fold development and pathogenesis. Cell Mol Life Sci 2020; 77:3781-3795. [PMID: 32253462 PMCID: PMC7511430 DOI: 10.1007/s00018-020-03506-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 12/12/2022]
Abstract
The larynx and vocal folds sit at the crossroad between digestive and respiratory tracts and fulfill multiple functions related to breathing, protection and phonation. They develop at the head and trunk interface through a sequence of morphogenetic events that require precise temporo-spatial coordination. We are beginning to understand some of the molecular and cellular mechanisms that underlie critical processes such as specification of the laryngeal field, epithelial lamina formation and recanalization as well as the development and differentiation of mesenchymal cell populations. Nevertheless, many gaps remain in our knowledge, the filling of which is essential for understanding congenital laryngeal disorders and the evaluation and treatment approaches in human patients. This review highlights recent advances in our understanding of the laryngeal embryogenesis. Proposed genes and signaling pathways that are critical for the laryngeal development have a potential to be harnessed in the field of regenerative medicine.
Collapse
Affiliation(s)
- Vlasta Lungova
- Department of Surgery, University of Wisconsin Madison, 5103 WIMR, 1111 Highland Ave, Madison, WI, 53705, USA
| | - Susan L Thibeault
- Department of Surgery, University of Wisconsin Madison, 5103 WIMR, 1111 Highland Ave, Madison, WI, 53705, USA.
| |
Collapse
|
36
|
Doherty L, Sanjay A. LGRs in Skeletal Tissues: An Emerging Role for Wnt-Associated Adult Stem Cell Markers in Bone. JBMR Plus 2020; 4:e10380. [PMID: 32666024 PMCID: PMC7340442 DOI: 10.1002/jbm4.10380] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/18/2020] [Accepted: 05/31/2020] [Indexed: 02/06/2023] Open
Abstract
Leucine-rich repeat-containing G protein-coupled receptors (LGRs) are adult stem cell markers that have been described across various stem cell niches, and expression of LGRs and their corresponding ligands (R-spondins) has now been reported in multiple bone-specific cell types. The skeleton harbors elusive somatic stem cell populations that are exceedingly compartment-specific and under tight regulation from various signaling pathways. Skeletal progenitors give rise to multiple tissues during development and during regenerative processes of bone, requiring postnatal endochondral and intramembranous ossification. The relevance of LGRs and the LGR/R-spondin ligand interaction in bone and tooth biology is becoming increasingly appreciated. LGRs may define specific stem cell and progenitor populations and their behavior during both development and regeneration, and their role as Wnt-associated receptors with specific ligands poses these proteins as unique therapeutic targets via potential R-spondin agonism. This review seeks to outline the current literature on LGRs in the context of bone and its associated tissues, and points to key future directions for studying the functional role of LGRs and ligands in skeletal biology. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Laura Doherty
- Department of Orthopaedic SurgeryUConn HealthFarmingtonCTUSA
| | - Archana Sanjay
- Department of Orthopaedic SurgeryUConn HealthFarmingtonCTUSA
| |
Collapse
|
37
|
Zheng C, Zhou F, Shi LL, Xu GF, Zhang B, Wang L, Zhuge Y, Zou XP, Wang Y. R-spondin2 Suppresses the Progression of Hepatocellular Carcinoma via MAPK Signaling Pathway. Mol Cancer Res 2020; 18:1491-1499. [PMID: 32581137 DOI: 10.1158/1541-7786.mcr-19-0599] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 02/19/2020] [Accepted: 06/19/2020] [Indexed: 11/16/2022]
Affiliation(s)
- Chang Zheng
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Fan Zhou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Liang Liang Shi
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Gui Fang Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Bin Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Lei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yuzheng Zhuge
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiao Ping Zou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yi Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
38
|
Generation and use of gastric organoids for the study of Helicobacter pylori pathogenesis. Methods Cell Biol 2020; 159:23-46. [PMID: 32586445 DOI: 10.1016/bs.mcb.2020.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
While the incidence of gastric cancer in the United States is relatively low due to the diagnosis and treatment of the major risk factor Helicobacter pylori (H. pylori), 5-year patient survival is only approximately 29%. Even after H. pylori infection has been eradicated there is still a risk of developing gastric cancer. Gastric cancer is the final clinical outcome that is often initiated by a sustained inflammatory response and altered epithelial cell differentiation and metaplasia in response to H. pylori infection. Identifying the early epithelial responses to H. pylori infection is important in advancing our understanding of the events that shape a conducive environment for the progression of gastric cancer. Thus, we developed a human gastric tissue-derived organoid-based approach to identify the initiating molecular events that trigger gastric cancer development in response to bacterial infection.
Collapse
|
39
|
Gao L, Meng J, Zhang M, Fan S, Gao S, Wang X, Liang C. Expression and Prognostic Values of the Roof Plate-Specific Spondin Family in Bladder Cancer. DNA Cell Biol 2020; 39:1072-1089. [PMID: 32352838 DOI: 10.1089/dna.2019.5224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Lei Gao
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Jialin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, P.R. China
| | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, P.R. China
| | - Song Fan
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, P.R. China
| | - Shenglin Gao
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, P.R. China
| | - Xiaolu Wang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, P.R. China
| |
Collapse
|
40
|
Conway RF, Frum T, Conchola AS, Spence JR. Understanding Human Lung Development through In Vitro Model Systems. Bioessays 2020; 42:e2000006. [PMID: 32310312 PMCID: PMC7433239 DOI: 10.1002/bies.202000006] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/28/2020] [Indexed: 12/19/2022]
Abstract
An abundance of information about lung development in animal models exists; however, comparatively little is known about lung development in humans. Recent advances using primary human lung tissue combined with the use of human in vitro model systems, such as human pluripotent stem cell-derived tissue, have led to a growing understanding of the mechanisms governing human lung development. They have illuminated key differences between animal models and humans, underscoring the need for continued advancements in modeling human lung development and utilizing human tissue. This review discusses the use of human tissue and the use of human in vitro model systems that have been leveraged to better understand key regulators of human lung development and that have identified uniquely human features of development. This review also examines the implementation and challenges of human model systems and discusses how they can be applied to address knowledge gaps.
Collapse
Affiliation(s)
- Renee F Conway
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48104, USA
| | - Tristan Frum
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, 48104, USA
| | - Ansley S Conchola
- Cell and Molecular Biology (CMB) Training Program, University of Michigan Medical School, Ann Arbor, MI, 48104, USA
| | - Jason R Spence
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48104, USA
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, 48104, USA
- Cell and Molecular Biology (CMB) Training Program, University of Michigan Medical School, Ann Arbor, MI, 48104, USA
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI, 48104, USA
| |
Collapse
|
41
|
Reis AH, Sokol SY. Rspo2 antagonizes FGF signaling during vertebrate mesoderm formation and patterning. Development 2020; 147:dev189324. [PMID: 32366679 PMCID: PMC7272350 DOI: 10.1242/dev.189324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/15/2020] [Indexed: 12/25/2022]
Abstract
R-spondins are a family of secreted proteins that play important roles in embryonic development and cancer. R-spondins have been shown to modulate the Wnt pathway; however, their involvement in other developmental signaling processes have remained largely unstudied. Here, we describe a novel function of Rspo2 in FGF pathway regulation in vivo Overexpressed Rspo2 inhibited elongation of Xenopus ectoderm explants and Erk1 activation in response to FGF. By contrast, the constitutively active form of Mek1 stimulated Erk1 even in the presence of Rspo2, suggesting that Rspo2 functions upstream of Mek1. The observed inhibition of FGF signaling was accompanied by the downregulation of the FGF target genes tbxt/brachyury and cdx4, which mediate anterioposterior axis specification. Importantly, these target genes were upregulated in Rspo2-depleted explants. The FGF inhibitory activity was mapped to the thrombospondin type 1 region, contrasting the known function of the Furin-like domains in Wnt signaling. Further domain analysis revealed an unexpected intramolecular interaction that might control Rspo2 signaling output. We conclude that, in addition to its role in Wnt signaling, Rspo2 acts as an FGF antagonist during mesoderm formation and patterning.
Collapse
Affiliation(s)
- Alice H Reis
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sergei Y Sokol
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
42
|
Dubey R, van Kerkhof P, Jordens I, Malinauskas T, Pusapati GV, McKenna JK, Li D, Carette JE, Ho M, Siebold C, Maurice M, Lebensohn AM, Rohatgi R. R-spondins engage heparan sulfate proteoglycans to potentiate WNT signaling. eLife 2020; 9:e54469. [PMID: 32432544 PMCID: PMC7239654 DOI: 10.7554/elife.54469] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/25/2020] [Indexed: 12/17/2022] Open
Abstract
R-spondins (RSPOs) amplify WNT signaling during development and regenerative responses. We previously demonstrated that RSPOs 2 and 3 potentiate WNT/β-catenin signaling in cells lacking leucine-rich repeat-containing G-protein coupled receptors (LGRs) 4, 5 and 6 (Lebensohn and Rohatgi, 2018). We now show that heparan sulfate proteoglycans (HSPGs) act as alternative co-receptors for RSPO3 using a combination of ligand mutagenesis and ligand engineering. Mutations in RSPO3 residues predicted to contact HSPGs impair its signaling capacity. Conversely, the HSPG-binding domains of RSPO3 can be entirely replaced with an antibody that recognizes heparan sulfate (HS) chains attached to multiple HSPGs without diminishing WNT-potentiating activity in cultured cells and intestinal organoids. A genome-wide screen for mediators of RSPO3 signaling in cells lacking LGRs 4, 5 and 6 failed to reveal other receptors. We conclude that HSPGs are RSPO co-receptors that potentiate WNT signaling in the presence and absence of LGRs.
Collapse
Affiliation(s)
- Ramin Dubey
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, United States
| | - Peter van Kerkhof
- Department of Cell Biology and Oncode Institute, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Ingrid Jordens
- Department of Cell Biology and Oncode Institute, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Tomas Malinauskas
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Ganesh V Pusapati
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, United States
| | - Joseph K McKenna
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Dan Li
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, United States
| | - Mitchell Ho
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Christian Siebold
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Madelon Maurice
- Department of Cell Biology and Oncode Institute, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Andres M Lebensohn
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Rajat Rohatgi
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
43
|
De Cian MC, Gregoire EP, Le Rolle M, Lachambre S, Mondin M, Bell S, Guigon CJ, Chassot AA, Chaboissier MC. R-spondin2 signaling is required for oocyte-driven intercellular communication and follicular growth. Cell Death Differ 2020; 27:2856-2871. [PMID: 32341451 PMCID: PMC7493947 DOI: 10.1038/s41418-020-0547-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 04/04/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
R-spondin2 (RSPO2) is a member of the R-spondin family, which are secreted activators of the WNT/β-catenin (CTNNB1) signaling pathway. In the mouse postnatal ovary, WNT/CTNNB1 signaling is active in the oocyte and in the neighboring supporting cells, the granulosa cells. Although the role of Rspo2 has been previously studied using in vitro experiments, the results are conflicting and the in vivo ovarian function of Rspo2 remains unclear. In the present study, we found that RSPO2/Rspo2 expression is restricted to the oocyte of developing follicles in both human and mouse ovaries from the beginning of the follicular growth. In mice, genetic deletion of Rspo2 does not impair oocyte growth, but instead prevents cell cycle progression of neighboring granulosa cells, thus resulting in an arrest of follicular growth. We further show this cell cycle arrest to be independent of growth promoting GDF9 signaling, but rather associated with a downregulation of WNT/CTNNB1 signaling in granulosa cells. To confirm the contribution of WNT/CTNNB1 signaling in granulosa cell proliferation, we induced cell type specific deletion of Ctnnb1 postnatally. Strikingly, follicles lacking Ctnnb1 failed to develop beyond the primary stage. These results show that RSPO2 acts in a paracrine manner to sustain granulosa cell proliferation in early developing follicles. Taken together, our data demonstrate that the activation of WNT/CTNNB1 signaling by RSPO2 is essential for oocyte-granulosa cell interactions that drive maturation of the ovarian follicles and eventually female fertility.
Collapse
Affiliation(s)
- Marie-Cécile De Cian
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France.,Université de Corte, Corte, France
| | | | | | | | - Magali Mondin
- Université de Bordeaux, UMS 3420 CNRS-US4 Inserm, Pôle d'imagerie photonique, Bordeaux, France
| | - Sheila Bell
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Céline J Guigon
- Université de Paris, BFA, UMR 8251, CNRS, ERL U1133, Inserm, Paris, France
| | | | | |
Collapse
|
44
|
Berger MD, Ning Y, Stintzing S, Heinemann V, Cao S, Zhang W, Yang D, Miyamoto Y, Suenaga M, Schirripa M, Hanna DL, Soni S, Puccini A, Tokunaga R, Naseem M, Battaglin F, Cremolini C, Falcone A, Loupakis F, Lenz HJ. A polymorphism within the R-spondin 2 gene predicts outcome in metastatic colorectal cancer patients treated with FOLFIRI/bevacizumab: data from FIRE-3 and TRIBE trials. Eur J Cancer 2020; 131:89-97. [PMID: 32305727 DOI: 10.1016/j.ejca.2020.02.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Through enhancement of the Wnt signalling pathway, R-spondins are oncogenic drivers in colorectal cancer. Experimental data suggest that the R-spondin/Wnt axis stimulates vascular endothelial growth factor (VEGF)-dependent angiogenesis. We therefore hypothesise that variations within R-spondin genes predict outcome in patients with metastatic colorectal cancer (mCRC) treated with upfront FOLFIRI and bevacizumab. PATIENTS AND METHODS 773 patients with mCRC enrolled in the randomised phase III FIRE-3 and TRIBE trials and receiving either FOLFIRI/bevacizumab (training and validation cohorts) or FOLFIRI/cetuximab (control group) were involved in this study. The impact of six functional single-nucleotide polymorphisms (SNPs) within the R-spondin 1-3 genes on outcome was evaluated. RESULTS RAS and KRAS wild-type patients harbouring any G allele of the RSPO2 rs555008 SNP had a longer overall survival compared with those having a TT genotype in both the training (FIRE-3) and validation (TRIBE) cohorts (29.0 vs 23.6 months, P = 0.009 and 37.8 vs 19.4 months, P = 0.021 for RAS wild-type patients and 28.4 vs 22.3 months, P = 0.011 and 36.0 vs 23.3 months, P = 0.046 for KRAS wild-type patients). Conversely, any G allele carriers with KRAS and RAS mutant tumours exhibited a shorter progression-free survival compared with TT genotype carriers, whereas the results were clinically more evident for KRAS mutant patients in both the training and validation cohorts (8.1 vs 11.2 months, P = 0.023 and 8.7 vs 10.3 months, P = 0.009). CONCLUSION Genotyping of the RSPO2 rs555008 polymorphism may help to select patients who will derive the most benefit from FOLFIRI/bevacizumab dependent on (K)RAS mutational status.
Collapse
Affiliation(s)
- Martin D Berger
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| | - Yan Ning
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sebastian Stintzing
- Medical Department, Division of Hematology, Oncology, and Tumor Immunology (Campus Charité Mitte), Charité Universitaetsmedizin Berlin, Germany
| | - Volker Heinemann
- Department of Medical Oncology and Comprehensive Cancer Center, University of Munich (LMU), Munich, Germany
| | - Shu Cao
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Wu Zhang
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Dongyun Yang
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yuji Miyamoto
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mitsukuni Suenaga
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Marta Schirripa
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Oncologia Medica 1, Istituto Oncologico Veneto, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Padova, Italy
| | - Diana L Hanna
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shivani Soni
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alberto Puccini
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ryuma Tokunaga
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Madiha Naseem
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Francesca Battaglin
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Oncologia Medica 1, Istituto Oncologico Veneto, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Padova, Italy
| | - Chiara Cremolini
- U.O. Oncologia Medica, Azienda Ospedaliero-Universitaria Pisana, Istituto Toscano Tumori, Pisa, Italy
| | - Alfredo Falcone
- Department of Translational Medicine, University of Pisa, Pisa, Italy
| | - Fotios Loupakis
- Oncologia Medica 1, Istituto Oncologico Veneto, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Padova, Italy
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
45
|
Koth ML, Garcia-Moreno SA, Novak A, Holthusen KA, Kothandapani A, Jiang K, Taketo MM, Nicol B, Yao HHC, Futtner CR, Maatouk DM, Jorgensen JS. Canonical Wnt/β-catenin activity and differential epigenetic marks direct sexually dimorphic regulation of Irx3 and Irx5 in developing mouse gonads. Development 2020; 147:dev183814. [PMID: 32108023 PMCID: PMC7132837 DOI: 10.1242/dev.183814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 02/14/2020] [Indexed: 11/20/2022]
Abstract
Members of the Iroquois B (IrxB) homeodomain cluster genes, specifically Irx3 and Irx5, are crucial for heart, limb and bone development. Recently, we reported their importance for oocyte and follicle survival within the developing ovary. Irx3 and Irx5 expression begins after sex determination in the ovary but remains absent in the fetal testis. Mutually antagonistic molecular signals ensure ovary versus testis differentiation with canonical Wnt/β-catenin signals paramount for promoting the ovary pathway. Notably, few direct downstream targets have been identified. We report that Wnt/β-catenin signaling directly stimulates Irx3 and Irx5 transcription in the developing ovary. Using in silico analysis of ATAC- and ChIP-Seq databases in conjunction with mouse gonad explant transfection assays, we identified TCF/LEF-binding sequences within two distal enhancers of the IrxB locus that promote β-catenin-responsive ovary expression. Meanwhile, Irx3 and Irx5 transcription is suppressed within the developing testis by the presence of H3K27me3 on these same sites. Thus, we resolved sexually dimorphic regulation of Irx3 and Irx5 via epigenetic and β-catenin transcriptional control where their ovarian presence promotes oocyte and follicle survival vital for future ovarian health.
Collapse
Affiliation(s)
- Megan L Koth
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin - Madison, Madison, WI 53706, USA
| | | | - Annie Novak
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Kirsten A Holthusen
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802, USA
| | - Anbarasi Kothandapani
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Keer Jiang
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Makoto Mark Taketo
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Barbara Nicol
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Humphrey H-C Yao
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Christopher R Futtner
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL 60611, USA
| | - Danielle M Maatouk
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL 60611, USA
| | - Joan S Jorgensen
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin - Madison, Madison, WI 53706, USA
| |
Collapse
|
46
|
Jackson SR, Costa MFDM, Pastore CF, Zhao G, Weiner AI, Adams S, Palashikar G, Quansah K, Hankenson K, Herbert DR, Vaughan AE. R-spondin 2 mediates neutrophil egress into the alveolar space through increased lung permeability. BMC Res Notes 2020; 13:54. [PMID: 32019591 PMCID: PMC7001225 DOI: 10.1186/s13104-020-4930-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/28/2020] [Indexed: 12/19/2022] Open
Abstract
Objective R-spondin 2 (RSPO2) is required for lung morphogenesis, activates Wnt signaling, and is upregulated in idiopathic lung fibrosis. Our objective was to investigate whether RSPO2 is similarly important in homeostasis of the adult lung. While investigating the characteristics of bronchoalveolar lavage in RSPO2-deficient (RSPO2−/−) mice, we observed unexpected changes in neutrophil homeostasis and vascular permeability when compared to control (RSPO2+/+) mice at baseline. Here we quantify these observations to explore how tonic RSPO2 expression impacts lung homeostasis. Results Quantitative PCR (qPCR) analysis demonstrated significantly elevated myeloperoxidase (MPO) expression in bronchoalveolar lavage fluid (BALF) cells from RSPO2−/− mice. Likewise, immunocytochemical (ICC) analysis demonstrated significantly more MPO+ cells in BALF from RSPO2−/− mice compared to controls, confirming the increase of infiltrated neutrophils. We then assessed lung permeability/barrier disruption via Fluorescein Isothiocyanate (FITC)-dextran instillation and found a significantly higher dextran concentration in the plasma of RSPO2−/− mice compared to identically treated RSPO2+/+ mice. These data demonstrate that RSPO2 may be crucial for blood-gas barrier integrity and can limit neutrophil migration from circulation into alveolar spaces associated with increased lung permeability and/or barrier disruption. This study indicates that additional research is needed to evaluate RSPO2 in scenarios characterized by pulmonary edema or neutrophilia.
Collapse
Affiliation(s)
- S R Jackson
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce St., Old Vet 372E, Philadelphia, PA, 19104, USA
| | - M F D M Costa
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce St., Old Vet 372E, Philadelphia, PA, 19104, USA
| | - C F Pastore
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce St., Old Vet 372E, Philadelphia, PA, 19104, USA
| | - G Zhao
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce St., Old Vet 372E, Philadelphia, PA, 19104, USA
| | - A I Weiner
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce St., Old Vet 372E, Philadelphia, PA, 19104, USA
| | - S Adams
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce St., Old Vet 372E, Philadelphia, PA, 19104, USA
| | - G Palashikar
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce St., Old Vet 372E, Philadelphia, PA, 19104, USA
| | - K Quansah
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce St., Old Vet 372E, Philadelphia, PA, 19104, USA
| | - K Hankenson
- Department of Orthopaedic Surgery, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA
| | - D R Herbert
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce St., Old Vet 372E, Philadelphia, PA, 19104, USA
| | - A E Vaughan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce St., Old Vet 372E, Philadelphia, PA, 19104, USA. .,Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
47
|
Levin G, Koga BAA, Belchior GG, Carreira ACO, Sogayar MC. Production, purification and characterization of recombinant human R-spondin1 (RSPO1) protein stably expressed in human HEK293 cells. BMC Biotechnol 2020; 20:5. [PMID: 31959207 PMCID: PMC6971977 DOI: 10.1186/s12896-020-0600-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 01/13/2020] [Indexed: 02/07/2023] Open
Abstract
Background The R-Spondin proteins comprise a family of secreted proteins, known for their important roles in cell proliferation, differentiation and death, by inducing the Wnt pathway. Several studies have demonstrated the importance of RSPOs in regulation of a number of tissue-specific processes, namely: bone formation, skeletal muscle tissue development, proliferation of pancreatic β-cells and intestinal stem cells and even cancer. RSPO1 stands out among RSPOs molecules with respect to its potential therapeutic use, especially in the Regenerative Medicine field, due to its mitogenic activity in stem cells. Here, we generated a recombinant human RSPO1 (rhRSPO1) using the HEK293 cell line, obtaining a purified, characterized and biologically active protein product to be used in Cell Therapy. The hRSPO1 coding sequence was synthesized and subcloned into a mammalian cell expression vector. HEK293 cells were stably co-transfected with the recombinant expression vector containing the hRSPO1 coding sequence and a hygromycin resistance plasmid, selected for hygror and subjected to cell clones isolation. Results rhRSPO1 was obtained, in the absence of serum, from culture supernatants of transfected HEK293 cells and purified using a novel purification strategy, involving two sequential chromatographic steps, namely: heparin affinity chromatography, followed by a molecular exclusion chromatography, designed to yield a high purity product. The purified protein was characterized by Western blotting, mass spectrometry and in vitro (C2C12 cells) and in vivo (BALB/c mice) biological activity assays, confirming the structural integrity and biological efficacy of this human cell expression system. Furthermore, rhRSPO1 glycosylation analysis allowed us to describe, for the first time, the glycan composition of this oligosaccharide chain, confirming the presence of an N-glycosylation in residue Asn137 of the polypeptide chain, as previously described. In addition, this analysis revealing the presence of glycan structures such as terminal sialic acid, N-acetylglucosamine and/or galactose. Conclusion Therefore, a stable platform for the production and purification of recombinant hRSPO1 from HEK293 cells was generated, leading to the production of a purified, fully characterized and biologically active protein product to be applied in Tissue Engineering.
Collapse
Affiliation(s)
- Gabriel Levin
- Cell and Molecular Therapy Center (NUCEL), Medical School, University of São Paulo, Edifício NUCEL, Rua Pangaré, 100 (Cidade Universitária), São Paulo, SP, 05360-130, Brazil
| | - Bruna Andrade Aguiar Koga
- Cell and Molecular Therapy Center (NUCEL), Medical School, University of São Paulo, Edifício NUCEL, Rua Pangaré, 100 (Cidade Universitária), São Paulo, SP, 05360-130, Brazil.,Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, SP, 13635-900, Brazil
| | - Gustavo Gross Belchior
- Cell and Molecular Therapy Center (NUCEL), Medical School, University of São Paulo, Edifício NUCEL, Rua Pangaré, 100 (Cidade Universitária), São Paulo, SP, 05360-130, Brazil
| | - Ana Claudia Oliveira Carreira
- Cell and Molecular Therapy Center (NUCEL), Medical School, University of São Paulo, Edifício NUCEL, Rua Pangaré, 100 (Cidade Universitária), São Paulo, SP, 05360-130, Brazil. .,Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, SP, 13635-900, Brazil.
| | - Mari Cleide Sogayar
- Cell and Molecular Therapy Center (NUCEL), Medical School, University of São Paulo, Edifício NUCEL, Rua Pangaré, 100 (Cidade Universitária), São Paulo, SP, 05360-130, Brazil. .,Biochemistry Department, Chemistry Institute, University of São Paulo, Sao Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
48
|
Skuplik I, Cobb J. Animal Models for Understanding Human Skeletal Defects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1236:157-188. [DOI: 10.1007/978-981-15-2389-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
49
|
Burgueño JF, Fritsch J, Santander AM, Brito N, Fernández I, Pignac-Kobinger J, Conner GE, Abreu MT. Intestinal Epithelial Cells Respond to Chronic Inflammation and Dysbiosis by Synthesizing H 2O 2. Front Physiol 2019; 10:1484. [PMID: 31871440 PMCID: PMC6921703 DOI: 10.3389/fphys.2019.01484] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/20/2019] [Indexed: 12/25/2022] Open
Abstract
The microbes in the gastrointestinal tract are separated from the host by a single layer of intestinal epithelial cells (IECs) that plays pivotal roles in maintaining homeostasis by absorbing nutrients and providing a physical and immunological barrier to potential pathogens. Preservation of homeostasis requires the crosstalk between the epithelium and the microbial environment. One epithelial-driven innate immune mechanism that participates in host-microbe communication involves the release of reactive oxygen species (ROS), such as hydrogen peroxide (H2O2), toward the lumen. Phagocytes produce high amounts of ROS which is critical for microbicidal functions; the functional contribution of epithelial ROS, however, has been hindered by the lack of methodologies to reliably quantify extracellular release of ROS. Here, we used a modified Amplex Red assay to investigate the inflammatory and microbial regulation of IEC-generated H2O2 and the potential role of Duox2, a NADPH oxidase that is an important source of H2O2. We found that colonoids respond to interferon-γ and flagellin by enhancing production of H2O2 in a Duox2-mediated fashion. To extend these findings, we analyzed ex vivo production of H2O2 by IECs after acute and chronic inflammation, as well as after exposure to dysbiotic microbiota. While acute inflammation did not induce a significant increase in epithelial-driven H2O2, chronic inflammation caused IECs to release higher levels of H2O2. Furthermore, colonization of germ-free mice with dysbiotic microbiota from mice or patients with IBD resulted in increased H2O2 production compared with healthy controls. Collectively, these data suggest that IECs are capable of H2O2 production during chronic inflammation and dysbiotic states. Our results provide insight into luminal production of H2O2 by IECs as a read-out of innate defense by the mucosa.
Collapse
Affiliation(s)
- Juan F Burgueño
- Division of Gastroenterology, Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Julia Fritsch
- Division of Gastroenterology, Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States.,Department of Microbiology and Immunology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Ana M Santander
- Division of Gastroenterology, Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Nivis Brito
- Division of Gastroenterology, Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Irina Fernández
- Division of Gastroenterology, Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Judith Pignac-Kobinger
- Division of Gastroenterology, Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Gregory E Conner
- Department of Cell Biology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Maria T Abreu
- Division of Gastroenterology, Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States.,Department of Microbiology and Immunology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
50
|
Sinner DI, Carey B, Zgherea D, Kaufman KM, Leesman L, Wood RE, Rutter MJ, de Alarcon A, Elluru RG, Harley JB, Whitsett JA, Trapnell BC. Complete Tracheal Ring Deformity. A Translational Genomics Approach to Pathogenesis. Am J Respir Crit Care Med 2019; 200:1267-1281. [PMID: 31215789 PMCID: PMC6857493 DOI: 10.1164/rccm.201809-1626oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 06/17/2019] [Indexed: 12/12/2022] Open
Abstract
Rationale: Complete tracheal ring deformity (CTRD) is a rare congenital abnormality of unknown etiology characterized by circumferentially continuous or nearly continuous cartilaginous tracheal rings, variable degrees of tracheal stenosis and/or shortening, and/or pulmonary arterial sling anomaly.Objectives: To test the hypothesis that CTRD is caused by inherited or de novo mutations in genes required for normal tracheal development.Methods: CTRD and normal tracheal tissues were examined microscopically to define the tracheal abnormalities present in CTRD. Whole-exome sequencing was performed in children with CTRD and their biological parents ("trio analysis") to identify gene variants in patients with CTRD. Mutations were confirmed by Sanger sequencing, and their potential impact on structure and/or function of encoded proteins was examined using human gene mutation databases. Relevance was further examined by comparison with the effects of targeted deletion of murine homologs important to tracheal development in mice.Measurements and Main Results: The trachealis muscle was absent in all of five patients with CTRD. Exome analysis identified six de novo, three recessive, and multiple compound-heterozygous or rare hemizygous variants in children with CTRD. De novo variants were identified in SHH (Sonic Hedgehog), and inherited variants were identified in HSPG2 (perlecan), ROR2 (receptor tyrosine kinase-like orphan receptor 2), and WLS (Wntless), genes involved in morphogenetic pathways known to mediate tracheoesophageal development in mice.Conclusions: The results of the present study demonstrate that absence of the trachealis muscle is associated with CTRD. Variants predicted to cause disease were identified in genes encoding Hedgehog and Wnt signaling pathway molecules, which are critical to cartilage formation and normal upper airway development in mice.
Collapse
Affiliation(s)
- Debora I. Sinner
- Division of Neonatology
- Division of Pulmonary Biology
- Department of Pediatrics and
| | | | | | - K. M. Kaufman
- Center for Autoimmune Genomics and Etiology, and
- Department of Pediatrics and
- U.S. Department of Veterans Affairs Medical Center, Cincinnati, Ohio
| | - Lauren Leesman
- Division of Neonatology
- Division of Pulmonary Biology
- Department of Pediatrics and
| | | | - Michael J. Rutter
- Division of Ear Nose and Throat Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Alessandro de Alarcon
- Division of Ear Nose and Throat Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Ravindhra G. Elluru
- Division of Ear Nose and Throat Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - John B. Harley
- Center for Autoimmune Genomics and Etiology, and
- Department of Pediatrics and
- U.S. Department of Veterans Affairs Medical Center, Cincinnati, Ohio
| | - Jeffrey A. Whitsett
- Division of Neonatology
- Division of Pulmonary Biology
- Department of Pediatrics and
| | - Bruce C. Trapnell
- Division of Neonatology
- Division of Pulmonary Biology
- Translational Pulmonary Science Center
- Department of Pediatrics and
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio; and
| |
Collapse
|