1
|
Kane E, Mak TC, Latreille M. MicroRNA-7 regulates endocrine progenitor delamination and endocrine cell mass in developing pancreatic islets. iScience 2024; 27:110332. [PMID: 39055950 PMCID: PMC11269303 DOI: 10.1016/j.isci.2024.110332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/28/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
β-cell replenishment in patients with diabetes through cadaveric islet transplantation has been successful; however, it requires long-term immunosuppression and suitable islet donors are scarce. Stepwise in vitro differentiation of pluripotent stem cells into β-cells represents a viable alternative, but limitations in our current understanding of in vivo islet endocrine differentiation constrains its clinical use. Here, we show that microRNA-7 (miR-7) is highly expressed in embryonic pancreatic endocrine progenitors. Genetic deletion of the miR-7 gene family in endocrine progenitors leads to reduced islet endocrine cell mass, due to endocrine progenitors failing to delaminate from the epithelial plexus. This is associated with a reduction in neurogenin-3 levels and increased expression of Sry-box transcription factor 9. Further, we observe that a significant number of endocrine progenitors lacking miR-7 differentiate into ductal cells. Our study suggests that increasing miR-7 expression could improve efficiency of in vitro differentiation and augment stem cell-derived β-cell terminal maturity.
Collapse
Affiliation(s)
- Eva Kane
- MRC Laboratory of Medical Sciences, Du Cane Road, London W12 0NN, UK
| | - Tracy C.S. Mak
- MRC Laboratory of Medical Sciences, Du Cane Road, London W12 0NN, UK
| | - Mathieu Latreille
- MRC Laboratory of Medical Sciences, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
2
|
Narayan G, Ronima K R, Agrawal A, Thummer RP. An Insight into Vital Genes Responsible for β-cell Formation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1450:1-27. [PMID: 37432546 DOI: 10.1007/5584_2023_778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
The regulation of glucose homeostasis and insulin secretion by pancreatic β-cells, when disturbed, will result in diabetes mellitus. Replacement of dysfunctional or lost β-cells with fully functional ones can tackle the problem of β-cell generation in diabetes mellitus. Various pancreatic-specific genes are expressed during different stages of development, which have essential roles in pancreatogenesis and β-cell formation. These factors play a critical role in cellular-based studies like transdifferentiation or de-differentiation of somatic cells to multipotent or pluripotent stem cells and their differentiation into functional β-cells. This work gives an overview of crucial transcription factors expressed during various stages of pancreas development and their role in β-cell specification. In addition, it also provides a perspective on the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Gloria Narayan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Ronima K R
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Akriti Agrawal
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
| |
Collapse
|
3
|
Schwartz PB, Walcheck MT, Nukaya M, Pavelec DM, Matkowskyj KA, Ronnekleiv-Kelly SM. Chronic jetlag accelerates pancreatic neoplasia in conditional Kras-mutant mice. Chronobiol Int 2023; 40:417-437. [PMID: 36912021 PMCID: PMC10337099 DOI: 10.1080/07420528.2023.2186122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/14/2023] [Accepted: 02/25/2023] [Indexed: 03/14/2023]
Abstract
Misalignment of the circadian clock compared to environmental cues causes circadian desynchrony, which is pervasive in humans. Clock misalignment can lead to various pathologies including obesity and diabetes, both of which are associated with pancreatic ductal adenocarcinoma - a devastating cancer with an 80% five-year mortality rate. Although circadian desynchrony is associated with an increased risk of several solid-organ cancers, the correlation between clock misalignment and pancreas cancer is unclear. Using a chronic jetlag model, we investigated the impact of clock misalignment on pancreas cancer initiation in mice harboring a pancreas-specific activated Kras mutation. We found that chronic jetlag accelerated the development of pancreatic cancer precursor lesions, with a concomitant increase in precursor lesion grade. Cell-autonomous knock-out of the clock in pancreatic epithelial cells of Kras-mutant mice demonstrated no acceleration of precursor lesion formation, indicating non-cell-autonomous clock dysfunction was responsible for the expedited tumor development. Therefore, we applied single-cell RNA sequencing over time and identified fibroblasts as the cell population manifesting the greatest clock-dependent changes, with enrichment of specific cancer-associated fibroblast pathways due to circadian misalignment.
Collapse
Affiliation(s)
- Patrick B Schwartz
- Department of Surgery, Division of Surgical Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Morgan T Walcheck
- Department of Surgery, Division of Surgical Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Manabu Nukaya
- Department of Surgery, Division of Surgical Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | | | - Kristina A Matkowskyj
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- William S Middleton Memorial Veterans Hospital, Madison, Wisconsin
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Sean M Ronnekleiv-Kelly
- Department of Surgery, Division of Surgical Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| |
Collapse
|
4
|
Paganos P, Ronchi P, Carl J, Mizzon G, Martinez P, Benvenuto G, Arnone MI. Integrating single cell transcriptomics and volume electron microscopy confirms the presence of pancreatic acinar-like cells in sea urchins. Front Cell Dev Biol 2022; 10:991664. [PMID: 36060803 PMCID: PMC9437490 DOI: 10.3389/fcell.2022.991664] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 07/21/2022] [Indexed: 01/11/2023] Open
Abstract
The identity and function of a given cell type relies on the differential expression of gene batteries that promote diverse phenotypes and functional specificities. Therefore, the identification of the molecular and morphological fingerprints of cell types across taxa is essential for untangling their evolution. Here we use a multidisciplinary approach to identify the molecular and morphological features of an exocrine, pancreas-like cell type harbored within the sea urchin larval gut. Using single cell transcriptomics, we identify various cell populations with a pancreatic-like molecular fingerprint that are enriched within the S. purpuratus larva digestive tract. Among these, in the region where they reside, the midgut/stomach domain, we find that populations of exocrine pancreas-like cells have a unique regulatory wiring distinct from the rest the of the cell types of the same region. Furthermore, Serial Block-face scanning Electron Microscopy (SBEM) of the exocrine cells shows that this reported molecular diversity is associated to distinct morphological features that reflect the physiological and functional properties of this cell type. Therefore, we propose that these sea urchin exocrine cells are homologous to the well-known mammalian pancreatic acinar cells and thus we trace the origin of this particular cell type to the time of deuterostome diversification. Overall, our approach allows a thorough characterization of a complex cell type and shows how both the transcriptomic and morphological information contribute to disentangling the evolution of cell types and organs such as the pancreatic cells and pancreas.
Collapse
Affiliation(s)
| | - Paolo Ronchi
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Jil Carl
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Giulia Mizzon
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Pedro Martinez
- Institut Català de Recerca i Estudis Avancats (ICREA), Barcelona, Spain,Genetics Department, University of Barcelona, Barcelona, Spain
| | | | - Maria Ina Arnone
- Stazione Zoologica Anton Dohrn (SZN), Naples, Italy,*Correspondence: Maria Ina Arnone,
| |
Collapse
|
5
|
Overton DL, Mastracci TL. Exocrine-Endocrine Crosstalk: The Influence of Pancreatic Cellular Communications on Organ Growth, Function and Disease. Front Endocrinol (Lausanne) 2022; 13:904004. [PMID: 35769082 PMCID: PMC9234176 DOI: 10.3389/fendo.2022.904004] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus, a disease that affects nearly 536.6 million people worldwide, is characterized by the death or dysfunction of insulin-producing beta cells of the pancreas. The beta cells are found within the islets of Langerhans, which are composed of multiple hormone-producing endocrine cells including the alpha (glucagon), delta (somatostatin), PP (pancreatic polypeptide), and epsilon (ghrelin) cells. There is direct evidence that physical and paracrine interactions between the cells in the islet facilitate and support beta cell function. However, communication between endocrine and exocrine cells in the pancreas may also directly impact beta cell growth and function. Herein we review literature that contributes to the view that "crosstalk" between neighboring cells within the pancreas influences beta cell growth and function and the maintenance of beta cell health.
Collapse
Affiliation(s)
- Danielle L. Overton
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Teresa L. Mastracci
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
6
|
Baumel-Alterzon S, Scott DK. Regulation of Pdx1 by oxidative stress and Nrf2 in pancreatic beta-cells. Front Endocrinol (Lausanne) 2022; 13:1011187. [PMID: 36187092 PMCID: PMC9521308 DOI: 10.3389/fendo.2022.1011187] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/26/2022] [Indexed: 01/05/2023] Open
Abstract
The beta-cell identity gene, pancreatic duodenal homeobox 1 (Pdx1), plays critical roles in many aspects of the life of beta-cells including differentiation, maturation, function, survival and proliferation. High levels of reactive oxygen species (ROS) are extremely toxic to cells and especially to beta-cells due to their relatively low expression of antioxidant enzymes. One of the major mechanisms for beta-cell dysfunction in type-2 diabetes results from oxidative stress-dependent inhibition of PDX1 levels and function. ROS inhibits Pdx1 by reducing Pdx1 mRNA and protein levels, inhibiting PDX1 nuclear localization, and suppressing PDX1 coactivator complexes. The nuclear factor erythroid 2-related factor (Nrf2) antioxidant pathway controls the redox balance and allows the maintenance of high Pdx1 levels. Therefore, pharmacological activation of the Nrf2 pathway may alleviate diabetes by preserving Pdx1 levels.
Collapse
Affiliation(s)
- Sharon Baumel-Alterzon
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- *Correspondence: Sharon Baumel-Alterzon,
| | - Donald K. Scott
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
7
|
van Roey R, Brabletz T, Stemmler MP, Armstark I. Deregulation of Transcription Factor Networks Driving Cell Plasticity and Metastasis in Pancreatic Cancer. Front Cell Dev Biol 2021; 9:753456. [PMID: 34888306 PMCID: PMC8650502 DOI: 10.3389/fcell.2021.753456] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer is a very aggressive disease with 5-year survival rates of less than 10%. The constantly increasing incidence and stagnant patient outcomes despite changes in treatment regimens emphasize the requirement of a better understanding of the disease mechanisms. Challenges in treating pancreatic cancer include diagnosis at already progressed disease states due to the lack of early detection methods, rapid acquisition of therapy resistance, and high metastatic competence. Pancreatic ductal adenocarcinoma, the most prevalent type of pancreatic cancer, frequently shows dominant-active mutations in KRAS and TP53 as well as inactivation of genes involved in differentiation and cell-cycle regulation (e.g. SMAD4 and CDKN2A). Besides somatic mutations, deregulated transcription factor activities strongly contribute to disease progression. Specifically, transcriptional regulatory networks essential for proper lineage specification and differentiation during pancreas development are reactivated or become deregulated in the context of cancer and exacerbate progression towards an aggressive phenotype. This review summarizes the recent literature on transcription factor networks and epigenetic gene regulation that play a crucial role during tumorigenesis.
Collapse
Affiliation(s)
- Ruthger van Roey
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Marc P Stemmler
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Isabell Armstark
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
8
|
Malinova A, Veghini L, Real FX, Corbo V. Cell Lineage Infidelity in PDAC Progression and Therapy Resistance. Front Cell Dev Biol 2021; 9:795251. [PMID: 34926472 PMCID: PMC8675127 DOI: 10.3389/fcell.2021.795251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/15/2021] [Indexed: 12/23/2022] Open
Abstract
Infidelity to cell fate occurs when differentiated cells lose their original identity and either revert to a more multipotent state or transdifferentiate into a different cell type, either within the same embryonic lineage or in an entirely different one. Whilst in certain circumstances, such as in wound repair, this process is beneficial, it can be hijacked by cancer cells to drive disease initiation and progression. Cell phenotype switching has been shown to also serve as a mechanism of drug resistance in some epithelial cancers. In pancreatic ductal adenocarcinoma (PDAC), the role of lineage infidelity and phenotype switching is still unclear. Two consensus molecular subtypes of PDAC have been proposed that mainly reflect the existence of cell lineages with different degrees of fidelity to pancreatic endodermal precursors. Indeed, the classical subtype of PDAC is characterised by the expression of endodermal lineage specifying transcription factors, while the more aggressive basal-like/squamous subtype is defined by epigenetic downregulation of endodermal genes and alterations in chromatin modifiers. Here, we summarise the current knowledge of mechanisms (genetic and epigenetic) of cell fate switching in PDAC and discuss how pancreatic organoids might help increase our understanding of both cell-intrinsic and cell-extrinsic factors governing lineage infidelity during the distinct phases of PDAC evolution.
Collapse
Affiliation(s)
- Antonia Malinova
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Lisa Veghini
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Francisco X. Real
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre, Madrid, Spain
- CIBERONC, Madrid, Spain
- Department de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Vincenzo Corbo
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
- ARC-Net Research Centre, University of Verona, Verona, Italy
| |
Collapse
|
9
|
Loss of TBX3 enhances pancreatic progenitor generation from human pluripotent stem cells. Stem Cell Reports 2021; 16:2617-2627. [PMID: 34653400 PMCID: PMC8580886 DOI: 10.1016/j.stemcr.2021.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/11/2022] Open
Abstract
Tbx3 has been identified as a regulator of liver development in the mouse, but its function in human liver development remains unknown. TBX3 mutant human pluripotent stem cell (PSC) lines were generated using CRISPR/Cas9 genome editing. TBX3 loss led to impaired liver differentiation and an upregulation of pancreatic gene expression, including PDX1, during a hepatocyte differentiation protocol. Other pancreatic genes, including NEUROG3 and NKX2.2, displayed more open chromatin in the TBX3 mutant hepatoblasts. Using a pancreatic differentiation protocol, cells lacking TBX3 generated more pancreatic progenitors and had an enhanced pancreatic gene expression signature at the expense of hepatic gene expression. These data highlight a potential role of TBX3 in regulating hepatic and pancreatic domains during foregut patterning, with implications for enhancing the generation of pancreatic progenitors from PSCs. TBX3 null PSCs have impaired hepatocyte differentiation capacity TBX3 null hepatocytes have aberrant expression of pancreatic genes, including PDX1 TBX3 null PSCs have enhanced differentiation capacity into pancreatic progenitors Loss of TBX3 leads to increased chromatin accessibility of many pancreatic genes
Collapse
|
10
|
Wang N, Tong R, Xu J, Tian Y, Pan J, Cui J, Chen H, Peng Y, Fei S, Yang S, Wang L, Yao J, Cui W. PDX1 and MC4R genetic polymorphisms are associated with type 2 diabetes mellitus risk in the Chinese Han population. BMC Med Genomics 2021; 14:249. [PMID: 34696776 PMCID: PMC8543917 DOI: 10.1186/s12920-021-01037-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/01/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is a complex metabolic disease that is caused by a complex interplay between genetic and environmental factors. This research aimed to investigate the association of genetic polymorphisms in PDX1 and MC4R with T2DM risk. METHODS The genotypes of 10 selected SNPs in PDX1 and MC4R were identified using the Agena MassARRAY platform. We utilized odds ratio (OR) and 95% confidence intervals (CIs) to assess the correlation between genetic polymorphisms and T2DM risk. RESULTS We found that PDX1-rs9581943 decreased susceptibility to T2DM among in a Chinese Han population (OR = 0.76, p = 0.045). We also found that selected genetic polymorphisms in PDX1 and MC4R could modify the risk of T2DM, which might also be influenced by age, sex, BMI, smoking status, and drinking status (p < 0.05). CONCLUSIONS We concluded that PDX1 and MC4R genetic variants were significantly associated with T2DM risk in a Chinese Han population. These single polymorphic markers may be considered to be new targets in the assessment and prevention of T2DM among Chinese Han people.
Collapse
Affiliation(s)
- Ning Wang
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Rui Tong
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Jing Xu
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Yanni Tian
- Department of Oncology, East Branch of the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710089, Shaanxi, China
| | - Juan Pan
- Department of Endocrinology, Xianyang Central Hospital, Xianyang, 712000, Shaanxi, China
| | - Jiaqi Cui
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Huan Chen
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Yanqi Peng
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Sijia Fei
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Shujun Yang
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Lu Wang
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Juanchuan Yao
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Wei Cui
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
11
|
Yang D, Patel S, Szlachcic WJ, Chmielowiec J, Scaduto D, Putluri N, Sreekumar A, Suliburk J, Metzker M, Balasubramanyam A, Borowiak M. Pancreatic Differentiation of Stem Cells Reveals Pathogenesis of a Syndrome of Ketosis-Prone Diabetes. Diabetes 2021; 70:2419-2429. [PMID: 34344789 PMCID: PMC8576504 DOI: 10.2337/db20-1293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 07/28/2021] [Indexed: 11/29/2022]
Abstract
Genetic analysis of an adult patient with an unusual course of ketosis-prone diabetes (KPD) and lacking islet autoantibodies demonstrated a nucleotide variant in the 5'-untranslated region (UTR) of PDX1, a β-cell development gene. When differentiated to the pancreatic lineage, his induced pluripotent stem cells stalled at the definitive endoderm (DE) stage. Metabolomics analysis of the cells revealed that this was associated with leucine hypersensitivity during transition from the DE to the pancreatic progenitor (PP) stage, and RNA sequencing showed that defects in leucine-sensitive mTOR pathways contribute to the differentiation deficiency. CRISPR/Cas9 manipulation of the PDX1 variant demonstrated that it is necessary and sufficient to confer leucine sensitivity and the differentiation block, likely due to disruption of binding of the transcriptional regulator NFY to the PDX1 5'-UTR, leading to decreased PDX1 expression at the early PP stage. Thus, the combination of an underlying defect in leucine catabolism characteristic of KPD with a functionally relevant heterozygous variant in a critical β-cell gene that confers increased leucine sensitivity and inhibits endocrine cell differentiation resulted in the phenotype of late-onset β-cell failure in this patient. We define the molecular pathogenesis of a diabetes syndrome and demonstrate the power of multiomics analysis of patient-specific stem cells for clinical discovery.
Collapse
Affiliation(s)
- Diane Yang
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- McNair Medical Institute, Baylor College of Medicine, Houston, TX
| | - Sanjeet Patel
- Division of Cardiothoracic Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | | | - Jolanta Chmielowiec
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | | | - Nagireddy Putluri
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Arun Sreekumar
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - James Suliburk
- Department of Surgery, Baylor College of Medicine, Houston, TX
| | | | - Ashok Balasubramanyam
- Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, TX
| | - Malgorzata Borowiak
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- McNair Medical Institute, Baylor College of Medicine, Houston, TX
- Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
12
|
Yan H, Chen Z, Zhang H, Yang W, Liu X, Meng Y, Xiang R, Wu Z, Ye J, Chi Y, Yang J. Intracellular ATP Signaling Contributes to FAM3A-Induced PDX1 Upregulation in Pancreatic Beta Cells. Exp Clin Endocrinol Diabetes 2021; 130:498-508. [PMID: 34592773 PMCID: PMC9377833 DOI: 10.1055/a-1608-0607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
FAM3A is a recently identified mitochondrial protein that stimulates
pancreatic-duodenal homeobox 1 (PDX1) and insulin expressions by promoting ATP
release in islet β cells. In this study, the role of intracellular ATP
in FAM3A-induced PDX1 expression in pancreatic β cells was further
examined. Acute FAM3A inhibition using siRNA transfection in mouse pancreatic
islets significantly reduced PDX1 expression, impaired insulin secretion, and
caused glucose intolerance in normal mice.
In vitro
, FAM3A overexpression
elevated both intracellular and extracellular ATP contents and promoted PDX1
expression and insulin secretion. FAM3A-induced increase in cellular calcium
(Ca
2+
) levels, PDX1 expression, and insulin secretion,
while these were significantly repressed by inhibitors of P2 receptors or the
L-type Ca
2+
channels. FAM3A-induced PDX1 expression was
abolished by a calmodulin inhibitor. Likewise, FAM3A-induced β-cell
proliferation was also inhibited by a P2 receptor inhibitor and an L-type
Ca
2+
channels inhibitor. Both intracellular and
extracellular ATP contributed to FAM3A-induced PDX1 expression, insulin
secretion, and proliferation of pancreatic β cells.
Collapse
Affiliation(s)
- Han Yan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Zhenzhen Chen
- Hypertension Center, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Beijing 100037, China
| | - Haizeng Zhang
- Hypertension Center, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Beijing 100037, China
| | - Weili Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China.,Beijing Key Laboratory of Diabetes Research and Care, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Xiangyang Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Yuhong Meng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Rui Xiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Zhe Wu
- Department of Gastroenterology, Peking University People's Hospital, Beijing 100044, China
| | - Jingjing Ye
- Department of Gastroenterology, Peking University People's Hospital, Beijing 100044, China
| | - Yujing Chi
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
13
|
Abstract
Although pancreatic cancer remains to be a leading cause of cancer-related deaths in many industrialized countries, there have been major advances in research over the past two decades that provided a detailed insight into the molecular and developmental processes that govern the genesis of this highly malignant tumor type. There is a continuous need for the development and analysis of preclinical and genetically engineered pancreatic cancer models to study the biological significance of new molecular targets that are identified using various genome-wide approaches and to better understand the mechanisms by which they contribute to pancreatic cancer onset and progression. Following an introduction into the etiology of pancreatic cancer, the molecular subtypes, and key signaling pathways, this review provides an overview of the broad spectrum of models for pancreatic cancer research. In addition to conventional and patient-derived xenografting, this review highlights major milestones in the development of chemical carcinogen-induced and genetically engineered animal models to study pancreatic cancer. Particular emphasis was placed on selected research findings of ligand-controlled tumor models and current efforts to develop genetically engineered strains to gain insight into the biological functions of genes at defined developmental stages during cancer initiation and metastatic progression.
Collapse
|
14
|
Burgos JI, Vallier L, Rodríguez-Seguí SA. Monogenic Diabetes Modeling: In Vitro Pancreatic Differentiation From Human Pluripotent Stem Cells Gains Momentum. Front Endocrinol (Lausanne) 2021; 12:692596. [PMID: 34295307 PMCID: PMC8290520 DOI: 10.3389/fendo.2021.692596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/15/2021] [Indexed: 12/14/2022] Open
Abstract
The occurrence of diabetes mellitus is characterized by pancreatic β cell loss and chronic hyperglycemia. While Type 1 and Type 2 diabetes are the most common types, rarer forms involve mutations affecting a single gene. This characteristic has made monogenic diabetes an interesting disease group to model in vitro using human pluripotent stem cells (hPSCs). By altering the genotype of the original hPSCs or by deriving human induced pluripotent stem cells (hiPSCs) from patients with monogenic diabetes, changes in the outcome of the in vitro differentiation protocol can be analyzed in detail to infer the regulatory mechanisms affected by the disease-associated genes. This approach has been so far applied to a diversity of genes/diseases and uncovered new mechanisms. The focus of the present review is to discuss the latest findings obtained by modeling monogenic diabetes using hPSC-derived pancreatic cells generated in vitro. We will specifically focus on the interpretation of these studies, the advantages and limitations of the models used, and the future perspectives for improvement.
Collapse
Affiliation(s)
- Juan Ignacio Burgos
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Ludovic Vallier
- Wellcome-Medical Research Council Cambridge Stem Cell Institute and Department of Surgery, University of Cambridge, Cambridge, United Kingdom
| | - Santiago A. Rodríguez-Seguí
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| |
Collapse
|
15
|
Sanchez Caballero L, Gorgogietas V, Arroyo MN, Igoillo-Esteve M. Molecular mechanisms of β-cell dysfunction and death in monogenic forms of diabetes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 359:139-256. [PMID: 33832649 DOI: 10.1016/bs.ircmb.2021.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Monogenetic forms of diabetes represent 1%-5% of all diabetes cases and are caused by mutations in a single gene. These mutations, that affect genes involved in pancreatic β-cell development, function and survival, or insulin regulation, may be dominant or recessive, inherited or de novo. Most patients with monogenic diabetes are very commonly misdiagnosed as having type 1 or type 2 diabetes. The severity of their symptoms depends on the nature of the mutation, the function of the affected gene and, in some cases, the influence of additional genetic or environmental factors that modulate severity and penetrance. In some patients, diabetes is accompanied by other syndromic features such as deafness, blindness, microcephaly, liver and intestinal defects, among others. The age of diabetes onset may also vary from neonatal until early adulthood manifestations. Since the different mutations result in diverse clinical presentations, patients usually need different treatments that range from just diet and exercise, to the requirement of exogenous insulin or other hypoglycemic drugs, e.g., sulfonylureas or glucagon-like peptide 1 analogs to control their glycemia. As a consequence, awareness and correct diagnosis are crucial for the proper management and treatment of monogenic diabetes patients. In this chapter, we describe mutations causing different monogenic forms of diabetes associated with inadequate pancreas development or impaired β-cell function and survival, and discuss the molecular mechanisms involved in β-cell demise.
Collapse
Affiliation(s)
- Laura Sanchez Caballero
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Vyron Gorgogietas
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Maria Nicol Arroyo
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Mariana Igoillo-Esteve
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/.
| |
Collapse
|
16
|
Trott J, Alpagu Y, Tan EK, Shboul M, Dawood Y, Elsy M, Wollmann H, Tano V, Bonnard C, Eng S, Narayanan G, Junnarkar S, Wearne S, Strutt J, Kumar A, Tomaz LB, Goy PA, Mzoughi S, Jennings R, Hagoort J, Eskin A, Lee H, Nelson SF, Al-Kazaleh F, El-Khateeb M, Fathallah R, Shah H, Goeke J, Langley SR, Guccione E, Hanley N, De Bakker BS, Reversade B, Dunn NR. Mitchell-Riley syndrome iPSCs exhibit reduced pancreatic endoderm differentiation due to a mutation in RFX6. Development 2020; 147:dev194878. [PMID: 33033118 DOI: 10.1242/dev.194878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022]
Abstract
Mitchell-Riley syndrome (MRS) is caused by recessive mutations in the regulatory factor X6 gene (RFX6) and is characterised by pancreatic hypoplasia and neonatal diabetes. To determine why individuals with MRS specifically lack pancreatic endocrine cells, we micro-CT imaged a 12-week-old foetus homozygous for the nonsense mutation RFX6 c.1129C>T, which revealed loss of the pancreas body and tail. From this foetus, we derived iPSCs and show that differentiation of these cells in vitro proceeds normally until generation of pancreatic endoderm, which is significantly reduced. We additionally generated an RFX6HA reporter allele by gene targeting in wild-type H9 cells to precisely define RFX6 expression and in parallel performed in situ hybridisation for RFX6 in the dorsal pancreatic bud of a Carnegie stage 14 human embryo. Both in vitro and in vivo, we find that RFX6 specifically labels a subset of PDX1-expressing pancreatic endoderm. In summary, RFX6 is essential for efficient differentiation of pancreatic endoderm, and its absence in individuals with MRS specifically impairs formation of endocrine cells of the pancreas head and tail.
Collapse
Affiliation(s)
- Jamie Trott
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
| | - Yunus Alpagu
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Ee Kim Tan
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, 308232, Singapore
| | - Mohammad Shboul
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid 2210, Jordan
| | - Yousif Dawood
- Department of Medical Biology, Section Clinical Anatomy and Embryology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Obstetrics and Gynaecology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Michael Elsy
- Faculty of Biology, Medicine & Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Heike Wollmann
- Institute of Molecular and Cellular Biology, Agency for Science Technology and Research (A*STAR), 61 Biopolis Drive, 138673, Singapore
| | - Vincent Tano
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, 308232, Singapore
| | - Carine Bonnard
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
| | - Shermaine Eng
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
| | - Gunaseelan Narayanan
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
| | - Seetanshu Junnarkar
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
| | - Stephen Wearne
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
| | - James Strutt
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
| | - Aakash Kumar
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, 308232, Singapore
| | - Lucian B Tomaz
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, 308232, Singapore
| | - Pierre-Alexis Goy
- Institute of Molecular and Cellular Biology, Agency for Science Technology and Research (A*STAR), 61 Biopolis Drive, 138673, Singapore
| | - Slim Mzoughi
- Institute of Molecular and Cellular Biology, Agency for Science Technology and Research (A*STAR), 61 Biopolis Drive, 138673, Singapore
| | - Rachel Jennings
- Faculty of Biology, Medicine & Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
- Endocrinology Department, Manchester University NHS Foundation Trust, Grafton Street, Manchester M13 9WU, UK
| | - Jaco Hagoort
- Department of Medical Biology, Section Clinical Anatomy and Embryology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Ascia Eskin
- Department of Human Genetics, David Geffen School of Medicine at UCLA, 695 Charles E. Young Drive South, Box 708822, Los Angeles, CA 90095-7088, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Hane Lee
- Department of Human Genetics, David Geffen School of Medicine at UCLA, 695 Charles E. Young Drive South, Box 708822, Los Angeles, CA 90095-7088, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Stanley F Nelson
- Department of Human Genetics, David Geffen School of Medicine at UCLA, 695 Charles E. Young Drive South, Box 708822, Los Angeles, CA 90095-7088, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Department of Pediatrics, UCLA Mattel Children's Hospital, Los Angeles, CA 90095, USA
| | - Fawaz Al-Kazaleh
- Department of Obstetrics and Gynecology, University of Jordan, Amman 19241, Jordan
| | - Mohammad El-Khateeb
- National Center for Diabetes, Endocrinology and Genetics, Amman 19241, Jordan
| | - Rajaa Fathallah
- National Center for Diabetes, Endocrinology and Genetics, Amman 19241, Jordan
| | - Harsha Shah
- Department of Obstetrics and Gynaecology, Queen Charlotte's & Chelsea Hospital, Imperial College London, Du Cane Road, London W12 0HS, UK
| | - Jonathan Goeke
- Genome Institute of Singapore, Agency for Science Technology and Research (A*STAR), 60 Biopolis Street, 138672, Singapore
| | - Sarah R Langley
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, 308232, Singapore
| | - Ernesto Guccione
- Institute of Molecular and Cellular Biology, Agency for Science Technology and Research (A*STAR), 61 Biopolis Drive, 138673, Singapore
| | - Neil Hanley
- Faculty of Biology, Medicine & Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
- Endocrinology Department, Manchester University NHS Foundation Trust, Grafton Street, Manchester M13 9WU, UK
| | - Bernadette S De Bakker
- Department of Medical Biology, Section Clinical Anatomy and Embryology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Bruno Reversade
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
- Institute of Molecular and Cellular Biology, Agency for Science Technology and Research (A*STAR), 61 Biopolis Drive, 138673, Singapore
- Department of Paediatrics, National University of Singapore, Yong Loo Lin School of Medicine, 1E Kent Ridge Road, NUHS Tower Block, Level 12, 119228, Singapore
- Koç University School of Medicine, Medical Genetics Department, Istanbul 34450, Turkey
| | - N Ray Dunn
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, 308232, Singapore
| |
Collapse
|
17
|
Jennings RE, Scharfmann R, Staels W. Transcription factors that shape the mammalian pancreas. Diabetologia 2020; 63:1974-1980. [PMID: 32894307 PMCID: PMC7476910 DOI: 10.1007/s00125-020-05161-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/03/2020] [Indexed: 12/19/2022]
Abstract
Improving our understanding of mammalian pancreas development is crucial for the development of more effective cellular therapies for diabetes. Most of what we know about mammalian pancreas development stems from mouse genetics. We have learnt that a unique set of transcription factors controls endocrine and exocrine cell differentiation. Transgenic mouse models have been instrumental in studying the function of these transcription factors. Mouse and human pancreas development are very similar in many respects, but the devil is in the detail. To unravel human pancreas development in greater detail, in vitro cellular models (including directed differentiation of stem cells, human beta cell lines and human pancreatic organoids) are used; however, in vivo validation of these results is still needed. The current best 'model' for studying human pancreas development are individuals with monogenic forms of diabetes. In this review, we discuss mammalian pancreas development, highlight some discrepancies between mouse and human, and discuss selected transcription factors that, when mutated, cause permanent neonatal diabetes. Graphical abstract.
Collapse
Affiliation(s)
- Rachel E Jennings
- Division of Diabetes, Endocrinology & Gastroenterology, Faculty of Biology, Medicine & Health, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, UK.
- Endocrinology Department, Manchester University NHS Foundation Trust, Manchester, UK.
| | - Raphael Scharfmann
- Institut Cochin, INSERM, U1016, CNRS, UMR8104, Université de Paris, 75014, Paris, France.
| | - Willem Staels
- Institut Cochin, INSERM, U1016, CNRS, UMR8104, Université de Paris, 75014, Paris, France.
- Beta Cell Neogenesis (BENE), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
- Department of Pediatrics, Division of Pediatric Endocrinology, University Hospital of Brussels, Jette, Belgium.
| |
Collapse
|
18
|
Liu S, Yang R, Yin N, Faiola F. Effects of per- and poly-fluorinated alkyl substances on pancreatic and endocrine differentiation of human pluripotent stem cells. CHEMOSPHERE 2020; 254:126709. [PMID: 32348926 DOI: 10.1016/j.chemosphere.2020.126709] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 05/27/2023]
Abstract
Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) are typical per- and poly-fluorinated alkyl substances (PFASs) that epidemiological studies have already associated with diabetes. However, insufficient data on their toxicity have been reported to explain any mechanism of action, which could justify such an association. Meanwhile, short-chain PFASs designed to substitute PFOA and PFOS, have already raised increasing concerns for their biosafety. Here, we evaluated whether common PFASs affected pancreatic and endocrine cell development using a human pluripotent stem cell pancreatic induction model and human pancreatic progenitor cell (hPP) endocrine induction model. The short-chain PFASs, pentafluorobenzoic acid, perfluorohexanoic acid, perfluorobutanesulfonic acid, and perfluorohexanesulfonic acid, homologous to PFOA or PFOS, did not significantly disrupt hPP generation, unlike PFOA and PFOS, based on pancreatic and duodenal homeobox 1 (PDX1) expression. However, SRY box 9 (SOX9) expression was suppressed in PDX1+ hPPs. All six PFASs did not disrupt SOX9 expression or hPP proliferation. However, endocrine differentiation of hPPs was affected, as indicated by neurogenin-3 (NGN3) downregulation, owing to abnormal increases in SOX9 and hairy and enhancer of split-1 (HES1) expressions. Thus, hyperactivation of NOTCH signaling was repressed after hPPs committed to the endocrine lineage. In conclusion, our study demonstrates how powerful human pluripotent stem cell-based pancreatic differentiation models can be in developmental toxicity evaluations, compared to traditional toxicity assays, mostly based on live animals. Moreover, our findings suggest that PFASs may alter pancreatic development after the pancreatic domain emerges from the gut tube, and provide insights into their toxicity mechanisms.
Collapse
Affiliation(s)
- Shuyu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; Wellcome Trust/CRUK Gurdon Institute, Department of Pathology, University of Cambridge, Cambridge CB2 1QN, UK
| | - Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
19
|
Alhaidan Y, Christesen HT, Højlund K, Al Balwi MA, Brusgaard K. A novel gene in early childhood diabetes: EDEM2 silencing decreases SLC2A2 and PXD1 expression, leading to impaired insulin secretion. Mol Genet Genomics 2020; 295:1253-1262. [PMID: 32556999 DOI: 10.1007/s00438-020-01695-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 06/08/2020] [Indexed: 11/29/2022]
Abstract
Monogenic diabetes is a rare type of diabetes resulting from mutations in a single gene. To date, most cases remain genetically unexplained, posing a challenge for accurate diabetes treatment, which leads to on a molecular diagnosis. Therefore, a trio exome scan was performed in a lean, nonsyndromic Caucasian girl with diabetes onset at 2½ years who was negative for autoantibodies. The lean father had diabetes from age 11 years. A novel heterozygous mutation in EDEM2, c.1271G > A; p.Arg424His, was found in the proband and father. Downregulation of Edem2 in rat RIN-m β-cells resulted in a decrease in insulin genes Ins1 to 67.9% (p = 0.006) and Ins2 to 16.8% (p < 0.001) and reduced insulin secretion by 60.4% (p = 0.0003). Real-time PCR revealed a major disruption of endocrine pancreas-specific genes, including Glut2 and Pxd1, with mRNA suppression to 54% (p < 0.001) and 85.7% (p = 0.01), respectively. No other expression changes related to stress or apoptotic genes were observed. Extended clinical follow-up involving ten family members showed that two healthy individuals carried the same mutation with no sign of diabetes in the clinical screen except for a slight increase in IA-2 antibody in one of them, suggesting incomplete penetrance. In conclusion, we describe EDEM2 as a likely/potential novel diabetes gene, in which inhibition in vitro reduces the expression of β-cell genes involved in the glucose-stimulated insulin secretion (GSIS) pathway, leading to an overall suppression of insulin secretion but not apoptosis.
Collapse
Affiliation(s)
- Yazeid Alhaidan
- Department of Clinical Genetics, Odense University Hospital, J.B. Windsløws Vej 4, 5000, Odense, Denmark. .,Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, 5000, Odense C, Denmark. .,Department of Medical Genomics Research, King Abdullah International Medical Research Center, Riyadh, 11426, Saudi Arabia. .,King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.
| | - Henrik Thybo Christesen
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, 5000, Odense C, Denmark.,Hans Christian Andersen Children's Hospital, Odense University Hospital, 5000, Odense C, Denmark.,Odense Pancreases Center, Odense C, Denmark
| | - Kurt Højlund
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, 5000, Odense C, Denmark.,Steno Diabetes Center Odense, Odense University Hospital, 5000, Odense, Denmark
| | - Mohammed A Al Balwi
- Department of Medical Genomics Research, King Abdullah International Medical Research Center, Riyadh, 11426, Saudi Arabia.,King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Klaus Brusgaard
- Department of Clinical Genetics, Odense University Hospital, J.B. Windsløws Vej 4, 5000, Odense, Denmark.,Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, 5000, Odense C, Denmark.,Near East University, Nicosia, Cyprus
| |
Collapse
|
20
|
Jara MA, Werneck-De-Castro JP, Lubaczeuski C, Johnson JD, Bernal-Mizrachi E. Pancreatic and duodenal homeobox-1 (PDX1) contributes to β-cell mass expansion and proliferation induced by Akt/PKB pathway. Islets 2020; 12:32-40. [PMID: 32876522 PMCID: PMC7527019 DOI: 10.1080/19382014.2020.1762471] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Maintenance of pancreatic β-cell mass and function is fundamental to glucose homeostasis and to prevent diabetes. The PI3 K-Akt-mTORC1 pathway is critical for β-cells mass and function, while PDX1 has been implicated in β-cell development, maturation, and function. Here we tested whether Akt signaling requires PDX1 expression to regulate β-cell mass, proliferation, and glucose homeostasis. In order to address that, we crossed a mouse model overexpressing constitutively active Akt mutant in β-cells (β-caAkt) with mice lacking one allele of PDX1gene (β-caAkt/pdx1+/-). While the β-caAkt mice exhibit higher plasma insulin levels, greater β-cell mass and improved glucose tolerance compared to control mice, the β-caAkt/pdx1+/- mice are hyperglycemic and intolerant to glucose. The changes in glucose homeostasis in β-caAkt/pdx1+/- were associated with a 60% reduction in β-cell mass compared to β-caAkt mice. The impaired β-cell mass in the β-caAkt/pdx1+/- mice can be explained by a lesser β-cell proliferation measured by the number of Ki67 positive β-cells. We did not observe any differences in apoptosis between β-caAkt/pdx1+/- and β-caAkt mice. In conclusion, PDX1 contributes to β-cell mass expansion and glucose metabolism induced by activation of Akt signaling.
Collapse
Affiliation(s)
- Mark Anthony Jara
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Joao Pedro Werneck-De-Castro
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL, USA
- Miami VA Health Care System, Miami, FL, USA
| | - Camila Lubaczeuski
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - James D. Johnson
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Ernesto Bernal-Mizrachi
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL, USA
- Miami VA Health Care System, Miami, FL, USA
- CONTACT Ernesto Bernal-Mizrachi Department Of Internal Medicine, Division Of Endocrinology, Diabetes and Metabolism, University of Miami Miller School of Medicine, Miami, FL33136, USA
| |
Collapse
|
21
|
Zhang T, Wang H, Wang T, Wei C, Jiang H, Jiang S, Yang J, Shao J, Ma L. Pax4 synergistically acts with Pdx1, Ngn3 and MafA to induce HuMSCs to differentiate into functional pancreatic β-cells. Exp Ther Med 2019; 18:2592-2598. [PMID: 31572507 PMCID: PMC6755441 DOI: 10.3892/etm.2019.7854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 07/05/2019] [Indexed: 02/05/2023] Open
Abstract
It has been indicated that the combination of pancreatic and duodenal homeobox 1 (Pdx1), MAF bZIP transcription factor A (MafA) and neurogenin 3 (Ngn3) was able to reprogram various cell types towards pancreatic β-like cells (pβLCs). Paired box 4 (Pax4), a transcription factor, has a key role in regulating the maturation of pancreatic β-cells (pβCs). In the present study, it was investigated whether Pax4 is able to synergistically act with Pdx1, Ngn3 and MafA to induce human umbilical cord mesenchymal stem cells (HuMSCs) to differentiate into functional pβCs in vitro. HuMSCs were isolated, cultured and separately transfected with adenovirus (Ad) expressing enhanced green fluorescence protein, Pax4 (Ad-Pax4), Pdx1+MafA+Ngn3 (Ad-3F) or Ad-Pxa4 + Ad-3F. The expression of C-peptide, insulin and glucagon was detected by immunofluorescence. The transcription of a panel of genes was determined by reverse transcription-quantitative PCR, including glucagon (GCG), insulin (INS), NK6 homeobox 1 (NKX6-1), solute carrier family 2 member 2 (SLC2A2), glucokinase (GCK), proprotein convertase subtilisin/kexin type 1 (PCSK1), neuronal differentiation 1 (NEUROD1), ISL LIM homeobox 1 (ISL 1), Pax6 and PCSK type 2 (PCSK2). Insulin secretion stimulated by glucose was determined using ELISA. The results suggested that, compared with Ad-3F alone, cells co-transfected with Ad-Pax4 and Ad-3F expressed higher levels of INS and C-peptide, as well as genes expressed in pancreatic β precursor cells, and secreted more insulin in response to high glucose. Furthermore, the expression of GCG in cells transfected with Ad-3F was depressed by Ad-Pax4. The present study demonstrated that Pax4 was able to synergistically act with the transcription factors Pdx1, Ngn3 and MafA to convert HuMSCs to functional pβLCs. HuMSCs may be potential seed cells for generating functional pβLCs in the therapy of diabetes.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Hematology and Oncology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, P.R. China
| | - Hongwu Wang
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Tianyou Wang
- Hematological Tumor Center, Beijing Children's Hospital Affiliated to Capital Medical University, Beijing 100045, P.R. China
| | - Chiju Wei
- Multidisciplinary Research Center, Shantou University, Shantou, Guangdong 515063, P.R. China
| | - Hui Jiang
- Department of Hematology and Oncology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, P.R. China
| | - Shayi Jiang
- Department of Hematology and Oncology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, P.R. China
| | - Jingwei Yang
- Department of Hematology and Oncology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, P.R. China
| | - Jingbo Shao
- Department of Hematology and Oncology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, P.R. China
- Correspondence to: Dr Jingbo Shao, Department of Hematology and Oncology, Shanghai Children's Hospital, Shanghai Jiao Tong University, 355 Luding Road, Shanghai 200062, P.R. China, E-mail:
| | - Lian Ma
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, P.R. China
- Shenzhen Public Service Platform of Molecular Medicine in Pediatric Hematology and Oncology, Shenzhen, Guangdong 518038, P.R. China
- Dr Lian Ma, Department of Hematology and Oncology, Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen, Guangdong 518038, P.R. China, E-mail:
| |
Collapse
|
22
|
Dai Y, Holland PWH. The Interaction of Natural Selection and GC Skew May Drive the Fast Evolution of a Sand Rat Homeobox Gene. Mol Biol Evol 2019; 36:1473-1480. [PMID: 30968125 PMCID: PMC6573468 DOI: 10.1093/molbev/msz080] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Several processes can lead to strong GC skew in localized genomic regions. In most cases, GC skew should not affect conserved amino acids because natural selection will purge deleterious alleles. However, in the gerbil subfamily of rodents, several conserved genes have undergone radical alteration in association with strong GC skew. An extreme example concerns the highly conserved homeobox gene Pdx1, which is uniquely divergent and GC rich in the sand rat Psammomys obesus and close relatives. Here, we investigate the antagonistic interplay between very rare amino acid changes driven by GC skew and the force of natural selection. Using ectopic protein expression in cell culture, pulse-chase labeling, in vitro mutagenesis, and drug treatment, we compare properties of mouse and sand rat Pdx1 proteins. We find that amino acid change driven by GC skew resulted in altered protein stability, with a significantly longer protein half-life for sand rat Pdx1. Using a reversible inhibitor of the 26S proteasome, MG132, we find that sand rat and mouse Pdx1 are both degraded through the ubiquitin proteasome pathway. However, in vitro mutagenesis reveals this pathway operates through different amino acid residues. We propose that GC skew caused loss of a key ubiquitination site, conserved through vertebrate evolution, and that sand rat Pdx1 evolved or fixed a new ubiquitination site to compensate. Our results give molecular insight into the power of natural selection in the face of maladaptive changes driven by strong GC skew.
Collapse
Affiliation(s)
- Yichen Dai
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
23
|
Oleic acid increases the transcriptional activity of FoxO1 by promoting its nuclear translocation and β-catenin binding in pancreatic β-cells. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2753-2764. [PMID: 31255704 DOI: 10.1016/j.bbadis.2019.06.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/31/2019] [Accepted: 06/25/2019] [Indexed: 01/08/2023]
Abstract
In the setting of metabolic overload, chronic elevations of free fatty acids in blood and tissues are associated with pancreatic β-cell lipotoxicity and failure. Ultimately, obesity combined with insulin resistance increases the dysfunctional demand of β-cells and contributes to the development of type 2 diabetes. Forkhead box O1 (FoxO1) is a potent transcriptional regulator of pancreatic β-cell function and tolerance to lipid stress. The present study examined the effects of stearoyl-CoA desaturase 1 (SCD1)-metabolized precursors and products, notably oleic acid, on the compensatory capacity of β-cells and their relationship with regulation of the FoxO1 and Wnt pathways. The trioleate-induced compromise of insulin sensitivity blunted the compensatory response of pancreatic β-cells in primary rat islets. These events were associated with increases in the nuclear accumulation and transcriptional activity of FoxO1. Such effects were also observed in INS-1E cells that were subjected to oleate treatment. The overexpression of human SCD1 that was accompanied by endogenously generated oleic acid also led to an increase in the nuclear abundance of FoxO1. The mechanism of the oleate-mediated subcellular localization of FoxO1 was independent of the fatty acid receptor GPR40. Instead, the mechanism involved diversion of the active β-catenin pool from an interaction with transcription factor 7-like 2 toward FoxO1-mediated transcription in β-cells. Our findings identify a unique role for oleic acid in the compensatory response of pancreatic β-cells and emphasize the importance of FoxO1 in β-cell failure in obesity-induced insulin resistance.
Collapse
|
24
|
Wang X, Sterr M, Ansarullah, Burtscher I, Böttcher A, Beckenbauer J, Siehler J, Meitinger T, Häring HU, Staiger H, Cernilogar FM, Schotta G, Irmler M, Beckers J, Wright CVE, Bakhti M, Lickert H. Point mutations in the PDX1 transactivation domain impair human β-cell development and function. Mol Metab 2019; 24:80-97. [PMID: 30930126 PMCID: PMC6531841 DOI: 10.1016/j.molmet.2019.03.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/04/2019] [Accepted: 03/13/2019] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE Hundreds of missense mutations in the coding region of PDX1 exist; however, if these mutations predispose to diabetes mellitus is unknown. METHODS In this study, we screened a large cohort of subjects with increased risk for diabetes and identified two subjects with impaired glucose tolerance carrying common, heterozygous, missense mutations in the PDX1 coding region leading to single amino acid exchanges (P33T, C18R) in its transactivation domain. We generated iPSCs from patients with heterozygous PDX1P33T/+, PDX1C18R/+ mutations and engineered isogenic cell lines carrying homozygous PDX1P33T/P33T, PDX1C18R/C18R mutations and a heterozygous PDX1 loss-of-function mutation (PDX1+/-). RESULTS Using an in vitro β-cell differentiation protocol, we demonstrated that both, heterozygous PDX1P33T/+, PDX1C18R/+ and homozygous PDX1P33T/P33T, PDX1C18R/C18R mutations impair β-cell differentiation and function. Furthermore, PDX1+/- and PDX1P33T/P33T mutations reduced differentiation efficiency of pancreatic progenitors (PPs), due to downregulation of PDX1-bound genes, including transcription factors MNX1 and PDX1 as well as insulin resistance gene CES1. Additionally, both PDX1P33T/+ and PDX1P33T/P33T mutations in PPs reduced the expression of PDX1-bound genes including the long-noncoding RNA, MEG3 and the imprinted gene NNAT, both involved in insulin synthesis and secretion. CONCLUSIONS Our results reveal mechanistic details of how common coding mutations in PDX1 impair human pancreatic endocrine lineage formation and β-cell function and contribute to the predisposition for diabetes.
Collapse
Affiliation(s)
- Xianming Wang
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Technische Universität München, Ismaningerstraße 22, 81675 München, Germany
| | - Michael Sterr
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Technische Universität München, Ismaningerstraße 22, 81675 München, Germany
| | - Ansarullah
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Ingo Burtscher
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Anika Böttcher
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Julia Beckenbauer
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Johanna Siehler
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Technische Universität München, Ismaningerstraße 22, 81675 München, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, 72076 Tübingen, Germany; Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Medicine, Nephrology and Clinical Chemistry, University of Tübingen, 72076 Tübingen, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Harald Staiger
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, 72076 Tübingen, Germany; Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Filippo M Cernilogar
- Biomedical Center and Center for Integrated Protein Science Munich, Ludwig-Maximilians-University, 82152 Planegg-Martinsried, Germany
| | - Gunnar Schotta
- Biomedical Center and Center for Integrated Protein Science Munich, Ludwig-Maximilians-University, 82152 Planegg-Martinsried, Germany
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Johannes Beckers
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Chair of Experimental Genetics, School of Life Sciences Weihenstephan, Technische Universität München, 85354 Freising, Germany
| | - Christopher V E Wright
- Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Technische Universität München, Ismaningerstraße 22, 81675 München, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.
| |
Collapse
|
25
|
Balaji S, Napolitano T, Silvano S, Friano ME, Garrido-Utrilla A, Atlija J, Collombat P. Epigenetic Control of Pancreatic Regeneration in Diabetes. Genes (Basel) 2018; 9:genes9090448. [PMID: 30205460 PMCID: PMC6162679 DOI: 10.3390/genes9090448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 12/17/2022] Open
Abstract
Both type 1 and type 2 diabetes are conditions that are associated with the loss of insulin-producing β-cells within the pancreas. An active research therefore aims at regenerating these β-cells with the hope that they could restore euglycemia. The approaches classically used consist in mimicking embryonic development, making use of diverse cell sources or converting pre-existing pancreatic cells. Despite impressive progresses and promising successes, it appears that we still need to gain further insight into the molecular mechanisms underlying β-cell development. This becomes even more obvious with the emergence of a relatively new field of research, epigenetics. The current review therefore focuses on the latest advances in this field in the context of β-cell (neo-)genesis research.
Collapse
Affiliation(s)
- Shruti Balaji
- Université Nice Sophia Antipolis, Inserm, CNRS, iBV, FR-06100 Nice, France.
| | - Tiziana Napolitano
- Université Nice Sophia Antipolis, Inserm, CNRS, iBV, FR-06100 Nice, France.
| | - Serena Silvano
- Université Nice Sophia Antipolis, Inserm, CNRS, iBV, FR-06100 Nice, France.
| | - Marika Elsa Friano
- Université Nice Sophia Antipolis, Inserm, CNRS, iBV, FR-06100 Nice, France.
| | | | - Josipa Atlija
- Université Nice Sophia Antipolis, Inserm, CNRS, iBV, FR-06100 Nice, France.
| | - Patrick Collombat
- Université Nice Sophia Antipolis, Inserm, CNRS, iBV, FR-06100 Nice, France.
| |
Collapse
|
26
|
Napolitano T, Silvano S, Vieira A, Balaji S, Garrido-Utrilla A, Friano ME, Atlija J, Collombat P. Role of ghrelin in pancreatic development and function. Diabetes Obes Metab 2018; 20 Suppl 2:3-10. [PMID: 30230184 DOI: 10.1111/dom.13385] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/23/2018] [Accepted: 05/25/2018] [Indexed: 11/28/2022]
Abstract
Ghrelin is a gastric peptide with anabolic functions. It acutely stimulates growth hormone (GH) secretion from the anterior pituitary glands and modulates hypothalamic circuits that control food intake and energy expenditure. Besides its central activity, ghrelin is also involved in the regulation of pancreatic development and physiology. Particularly, several studies highlighted the ability of ghrelin to sustain β-cell viability and proliferation. Furthermore, ghrelin seems to exert inhibitory effects on pancreatic acinar and endocrine secretory functions. Due to its pleiotropic activity on energy metabolism, ghrelin has become a topic of great interest for experimental research focused on type II diabetes and obesity. The aim of this review is to illustrate the complex and not fully understood interplay between ghrelin, pancreas and glucose homeostasis.
Collapse
Affiliation(s)
- Tiziana Napolitano
- Inserm, CNRS, iBV, University of Nice Sophia Antipolis, Nice, France
- iBV, Institut de Biologie Valrose, Centre de Biochimie, University of Nice Sophia Antipolis, Nice Cedex 2, France
| | - Serena Silvano
- Inserm, CNRS, iBV, University of Nice Sophia Antipolis, Nice, France
- iBV, Institut de Biologie Valrose, Centre de Biochimie, University of Nice Sophia Antipolis, Nice Cedex 2, France
| | - Andhira Vieira
- Inserm, CNRS, iBV, University of Nice Sophia Antipolis, Nice, France
- iBV, Institut de Biologie Valrose, Centre de Biochimie, University of Nice Sophia Antipolis, Nice Cedex 2, France
| | - Shruti Balaji
- Inserm, CNRS, iBV, University of Nice Sophia Antipolis, Nice, France
- iBV, Institut de Biologie Valrose, Centre de Biochimie, University of Nice Sophia Antipolis, Nice Cedex 2, France
| | - Anna Garrido-Utrilla
- Inserm, CNRS, iBV, University of Nice Sophia Antipolis, Nice, France
- iBV, Institut de Biologie Valrose, Centre de Biochimie, University of Nice Sophia Antipolis, Nice Cedex 2, France
| | - Marika E Friano
- Inserm, CNRS, iBV, University of Nice Sophia Antipolis, Nice, France
- iBV, Institut de Biologie Valrose, Centre de Biochimie, University of Nice Sophia Antipolis, Nice Cedex 2, France
| | - Josipa Atlija
- Inserm, CNRS, iBV, University of Nice Sophia Antipolis, Nice, France
- iBV, Institut de Biologie Valrose, Centre de Biochimie, University of Nice Sophia Antipolis, Nice Cedex 2, France
| | - Patrick Collombat
- Inserm, CNRS, iBV, University of Nice Sophia Antipolis, Nice, France
- iBV, Institut de Biologie Valrose, Centre de Biochimie, University of Nice Sophia Antipolis, Nice Cedex 2, France
| |
Collapse
|
27
|
Singh A, Gibert Y, Dwyer KM. The adenosine, adrenergic and opioid pathways in the regulation of insulin secretion, beta cell proliferation and regeneration. Pancreatology 2018; 18:615-623. [PMID: 29937364 DOI: 10.1016/j.pan.2018.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/25/2018] [Accepted: 06/19/2018] [Indexed: 02/07/2023]
Abstract
Insulin, a key hormone produced by pancreatic beta cells precisely regulates glucose metabolism in vertebrates. In type 1 diabetes, the beta cell mass is destroyed, a process triggered by a combination of environmental and genetic factors. This ultimately results in absolute insulin deficiency and dysregulated glucose metabolism resulting in a number of detrimental pathophysiological effects. The traditional focus of treating type 1 diabetes has been to control blood sugar levels through the administration of exogenous insulin. Newer approaches aim to replace the beta cell mass through pancreatic or islet transplantation. Type 2 diabetes results from a relative insulin deficiency for the prevailing insulin resistance. Treatments are generally aimed at reducing insulin resistance and/or augmenting insulin secretion and the use of insulin itself is often required. It is increasingly being recognized that the beta cell mass is dynamic and increases insulin secretion in response to beta cell mitogens and stress signals to maintain glycemia within a very narrow physiological range. This review critically discusses the role of adrenergic, adenosine and opioid pathways and their interrelationship in insulin secretion, beta cell proliferation and regeneration.
Collapse
Affiliation(s)
- Amitoj Singh
- Deakin University, School of Medicine, Faculty of Health, 75 Pigdons Rd, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Yann Gibert
- Deakin University, School of Medicine, Faculty of Health, 75 Pigdons Rd, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Karen M Dwyer
- Deakin University, School of Medicine, Faculty of Health, 75 Pigdons Rd, Waurn Ponds, Geelong, VIC, 3216, Australia.
| |
Collapse
|
28
|
Abstract
INTRODUCTION The etiology of diabetes is mainly attributed to insulin deficiency due to the lack of β cells (type 1), or to insulin resistance that eventually results in β cell dysfunction (type 2). Therefore, an ultimate cure for diabetes requires the ability to replace the lost insulin-secreting β cells. Strategies for regenerating β cells are under extensive investigation. AREAS COVERED Herein, the authors first summarize the mechanisms underlying embryonic β cell development and spontaneous adult β cell regeneration, which forms the basis for developing β cell regeneration strategies. Then the rationale and progress of each β cell regeneration strategy is reviewed. Current β cell regeneration strategies can be classified into two main categories: in vitro β cell regeneration using pluripotent stem cells and in vivo reprogramming of non-β cells into β cells. Each has its own advantages and disadvantages. EXPERT OPINION Regenerating β cells has shown its potential as a cure for the treatment of insulin-deficient diabetes. Much progress has been made, and β cell regeneration therapy is getting closer to a clinical reality. Nevertheless, more hurdles need to be overcome before any of the strategies suggested can be fully translated from bench to bedside.
Collapse
Affiliation(s)
- Shengli Dong
- Department of Biochemistry & Molecular Biology, Louisiana State University Health Science Center, New Orleans, Louisiana
| | - Hongju Wu
- Department of Medicine, Tulane University Health Science Center, New Orleans, Louisiana
| |
Collapse
|
29
|
Wang X, Sterr M, Burtscher I, Chen S, Hieronimus A, Machicao F, Staiger H, Häring HU, Lederer G, Meitinger T, Cernilogar FM, Schotta G, Irmler M, Beckers J, Hrabě de Angelis M, Ray M, Wright CVE, Bakhti M, Lickert H. Genome-wide analysis of PDX1 target genes in human pancreatic progenitors. Mol Metab 2018; 9:57-68. [PMID: 29396371 PMCID: PMC5870105 DOI: 10.1016/j.molmet.2018.01.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/05/2018] [Accepted: 01/16/2018] [Indexed: 12/14/2022] Open
Abstract
Objective Homozygous loss-of-function mutations in the gene coding for the homeobox transcription factor (TF) PDX1 leads to pancreatic agenesis, whereas heterozygous mutations can cause Maturity-Onset Diabetes of the Young 4 (MODY4). Although the function of Pdx1 is well studied in pre-clinical models during insulin-producing β-cell development and homeostasis, it remains elusive how this TF controls human pancreas development by regulating a downstream transcriptional program. Also, comparative studies of PDX1 binding patterns in pancreatic progenitors and adult β-cells have not been conducted so far. Furthermore, many studies reported the association between single nucleotide polymorphisms (SNPs) and T2DM, and it has been shown that islet enhancers are enriched in T2DM-associated SNPs. Whether regions, harboring T2DM-associated SNPs are PDX1 bound and active at the pancreatic progenitor stage has not been reported so far. Methods In this study, we have generated a novel induced pluripotent stem cell (iPSC) line that efficiently differentiates into human pancreatic progenitors (PPs). Furthermore, PDX1 and H3K27ac chromatin immunoprecipitation sequencing (ChIP-seq) was used to identify PDX1 transcriptional targets and active enhancer and promoter regions. To address potential differences in the function of PDX1 during development and adulthood, we compared PDX1 binding profiles from PPs and adult islets. Moreover, combining ChIP-seq and GWAS meta-analysis data we identified T2DM-associated SNPs in PDX1 binding sites and active chromatin regions. Results ChIP-seq for PDX1 revealed a total of 8088 PDX1-bound regions that map to 5664 genes in iPSC-derived PPs. The PDX1 target regions include important pancreatic TFs, such as PDX1 itself, RFX6, HNF1B, and MEIS1, which were activated during the differentiation process as revealed by the active chromatin mark H3K27ac and mRNA expression profiling, suggesting that auto-regulatory feedback regulation maintains PDX1 expression and initiates a pancreatic TF program. Remarkably, we identified several PDX1 target genes that have not been reported in the literature in human so far, including RFX3, required for ciliogenesis and endocrine differentiation in mouse, and the ligand of the Notch receptor DLL1, which is important for endocrine induction and tip-trunk patterning. The comparison of PDX1 profiles from PPs and adult human islets identified sets of stage-specific target genes, associated with early pancreas development and adult β-cell function, respectively. Furthermore, we found an enrichment of T2DM-associated SNPs in active chromatin regions from iPSC-derived PPs. Two of these SNPs fall into PDX1 occupied sites that are located in the intronic regions of TCF7L2 and HNF1B. Both of these genes are key transcriptional regulators of endocrine induction and mutations in cis-regulatory regions predispose to diabetes. Conclusions Our data provide stage-specific target genes of PDX1 during in vitro differentiation of stem cells into pancreatic progenitors that could be useful to identify pathways and molecular targets that predispose for diabetes. In addition, we show that T2DM-associated SNPs are enriched in active chromatin regions at the pancreatic progenitor stage, suggesting that the susceptibility to T2DM might originate from imperfect execution of a β-cell developmental program. PDX1 ChIP-seq analysis revealed 5664 target genes in human pancreatic progenitors, including unreported target genes. Comparison of PDX1 profiles from PPs and adult human islets identified stage-specific PDX1 target gene sets. T2DM-associated SNPs are enriched in active chromatin regions from iPSC-derived PPs. Three SNPs fall into PDX1 occupied sites, located in intronic regions of the developmental regulatory TFs TCF7L2 and HNF1B.
Collapse
Affiliation(s)
- Xianming Wang
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Parkring 11, 85748, Garching, Germany; Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Chair of ß-Cell Biology, Technische Universität München, Ismaningerstraße 22, 81675 München, Germany
| | - Michael Sterr
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Parkring 11, 85748, Garching, Germany; Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Chair of ß-Cell Biology, Technische Universität München, Ismaningerstraße 22, 81675 München, Germany
| | - Ingo Burtscher
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Parkring 11, 85748, Garching, Germany; Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Shen Chen
- iPS and Cancer Research Unit, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Anja Hieronimus
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, 72076 Tübingen, Germany; Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, University of Tübingen, 72076 Tübingen, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Fausto Machicao
- Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Harald Staiger
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, 72076 Tübingen, Germany; Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, 72076 Tübingen, Germany; Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, University of Tübingen, 72076 Tübingen, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Gabriele Lederer
- Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Filippo M Cernilogar
- Biomedical Center and Center for Integrated Protein Science Munich, Ludwig-Maximilians-University, 82152 Planegg-Martinsried, Germany
| | - Gunnar Schotta
- Biomedical Center and Center for Integrated Protein Science Munich, Ludwig-Maximilians-University, 82152 Planegg-Martinsried, Germany
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Chair of Experimental Genetics, School of Life Sciences Weihenstephan, Technische Universität München, 85354 Freising, Germany
| | - Martin Hrabě de Angelis
- Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Chair of Experimental Genetics, School of Life Sciences Weihenstephan, Technische Universität München, 85354 Freising, Germany
| | - Michael Ray
- Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Christopher V E Wright
- Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Parkring 11, 85748, Garching, Germany; Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Parkring 11, 85748, Garching, Germany; Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Chair of ß-Cell Biology, Technische Universität München, Ismaningerstraße 22, 81675 München, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.
| |
Collapse
|
30
|
Salguero-Aranda C, Tapia-Limonchi R, Cahuana GM, Hitos AB, Diaz I, Hmadcha A, Fraga M, Martín F, Soria B, Tejedo JR, Bedoya FJ. Differentiation of Mouse Embryonic Stem Cells toward Functional Pancreatic β-Cell Surrogates through Epigenetic Regulation of Pdx1 by Nitric Oxide. Cell Transplant 2018; 25:1879-1892. [PMID: 26980118 DOI: 10.3727/096368916x691178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Pancreatic and duodenal homeobox 1 (Pdx1) is a transcription factor that regulates the embryonic development of the pancreas and the differentiation toward β cells. Previously, we have shown that exposure of mouse embryonic stem cells (mESCs) to high concentrations of diethylenetriamine nitric oxide adduct (DETA-NO) triggers differentiation events and promotes the expression of Pdx1. Here we report evidence that Pdx1 expression is associated with release of polycomb repressive complex 2 (PRC2) and P300 from its promoter region. These events are accompanied by epigenetic changes in bivalent markers of histones trimethylated histone H3 lysine 27 (H3K27me3) and H3K4me3, site-specific changes in DNA methylation, and no change in H3 acetylation. On the basis of these findings, we developed a protocol to differentiate mESCs toward insulin-producing cells consisting of sequential exposure to DETA-NO, valproic acid, and P300 inhibitor (C646) to enhance Pdx1 expression and a final maturation step of culture in suspension to form cell aggregates. This small molecule-based protocol succeeds in obtaining cells that express pancreatic β-cell markers such as PDX1, INS1, GCK, and GLUT2 and respond in vitro to high glucose and KCl.
Collapse
Affiliation(s)
- Carmen Salguero-Aranda
- Andalusian Center for Molecular Biology and Regenerative Medicine, Seville, Spain.,Center for Network Research in Diabetes and Metabolic Diseases (CIBERDEM) Instituto de Salud Carlos III, Madrid, Spain.,Cell Therapy Network, Madrid (RED-TERCEL), Instituto de Salud Carlos III, Madrid, Spain.,Fundación Progreso y Salud, Seville, Spain
| | - Rafael Tapia-Limonchi
- Andalusian Center for Molecular Biology and Regenerative Medicine, Seville, Spain.,Pablo de Olavide University, Seville, Spain
| | - Gladys Margot Cahuana
- Andalusian Center for Molecular Biology and Regenerative Medicine, Seville, Spain.,Pablo de Olavide University, Seville, Spain
| | - Ana Belen Hitos
- Andalusian Center for Molecular Biology and Regenerative Medicine, Seville, Spain.,Center for Network Research in Diabetes and Metabolic Diseases (CIBERDEM) Instituto de Salud Carlos III, Madrid, Spain
| | - Irene Diaz
- Andalusian Center for Molecular Biology and Regenerative Medicine, Seville, Spain.,Center for Network Research in Diabetes and Metabolic Diseases (CIBERDEM) Instituto de Salud Carlos III, Madrid, Spain
| | - Abdelkrim Hmadcha
- Andalusian Center for Molecular Biology and Regenerative Medicine, Seville, Spain.,Cell Therapy Network, Madrid (RED-TERCEL), Instituto de Salud Carlos III, Madrid, Spain.,Fundación Progreso y Salud, Seville, Spain
| | - Mario Fraga
- Department of Epigenetics, Oncologic Institute of Principado of Asturias, Oviedo, Spain
| | - Franz Martín
- Andalusian Center for Molecular Biology and Regenerative Medicine, Seville, Spain.,Center for Network Research in Diabetes and Metabolic Diseases (CIBERDEM) Instituto de Salud Carlos III, Madrid, Spain.,Pablo de Olavide University, Seville, Spain
| | - Bernat Soria
- Andalusian Center for Molecular Biology and Regenerative Medicine, Seville, Spain.,Center for Network Research in Diabetes and Metabolic Diseases (CIBERDEM) Instituto de Salud Carlos III, Madrid, Spain.,Cell Therapy Network, Madrid (RED-TERCEL), Instituto de Salud Carlos III, Madrid, Spain.,Fundación Progreso y Salud, Seville, Spain
| | - Juan Rigoberto Tejedo
- Andalusian Center for Molecular Biology and Regenerative Medicine, Seville, Spain.,Center for Network Research in Diabetes and Metabolic Diseases (CIBERDEM) Instituto de Salud Carlos III, Madrid, Spain.,Cell Therapy Network, Madrid (RED-TERCEL), Instituto de Salud Carlos III, Madrid, Spain.,Pablo de Olavide University, Seville, Spain
| | - Francisco Javier Bedoya
- Andalusian Center for Molecular Biology and Regenerative Medicine, Seville, Spain.,Center for Network Research in Diabetes and Metabolic Diseases (CIBERDEM) Instituto de Salud Carlos III, Madrid, Spain.,Cell Therapy Network, Madrid (RED-TERCEL), Instituto de Salud Carlos III, Madrid, Spain.,Pablo de Olavide University, Seville, Spain
| |
Collapse
|
31
|
Angelo JR, Tremblay KD. Identification and fate mapping of the pancreatic mesenchyme. Dev Biol 2018; 435:15-25. [PMID: 29329912 DOI: 10.1016/j.ydbio.2018.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 01/06/2018] [Accepted: 01/06/2018] [Indexed: 12/25/2022]
Abstract
The murine pancreas buds from the ventral embryonic endoderm at approximately 8.75 dpc and a second pancreas bud emerges from the dorsal endoderm by 9.0 dpc. Although it is clear that secreted signals from adjacent mesoderm-derived sources are required for both the appropriate emergence and further refinement of the pancreatic endoderm, neither the exact signals nor the requisite tissue sources have been defined in mammalian systems. Herein we use DiI fate mapping of cultured murine embryos to identify the embryonic sources of both the early inductive and later condensed pancreatic mesenchyme. Despite being capable of supporting pancreas induction from dorsal endoderm in co-culture experiments, we find that in the context of the developing embryo, the dorsal aortae as well as the paraxial, intermediate, and lateral mesoderm derivatives only transiently associate with the dorsal pancreas bud, producing descendants that are decidedly anterior to the pancreas bud. Unlike these other mesoderm derivatives, the axial (notochord) descendants maintain association with the dorsal pre-pancreatic endoderm and early pancreas bud. This fate mapping data points to the notochord as the likely inductive source in vivo while also revealing dynamic morphogenetic movements displayed by individual mesodermal subtypes. Because none of the mesoderm examined above produced the pancreatic mesenchyme that condenses around the induced bud to support exocrine and endocrine differentiation, we also sought to identify the mesodermal origins of this mesenchyme. We identify a portion of the coelomic mesoderm that contributes to the condensed pancreatic mesenchyme. In conclusion, we identify a portion of the notochord as a likely source of the signals required to induce and maintain the early dorsal pancreas bud, demonstrate that the coelomic mesothelium contributes to the dorsal and ventral pancreatic mesenchyme, and provide insight into the dynamic morphological rearrangements of mesoderm-derived tissues during early organogenesis stages of mammalian development.
Collapse
Affiliation(s)
- Jesse R Angelo
- Department of Veterinary&Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Kimberly D Tremblay
- Department of Veterinary&Animal Sciences, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
32
|
Bastidas-Ponce A, Scheibner K, Lickert H, Bakhti M. Cellular and molecular mechanisms coordinating pancreas development. Development 2017; 144:2873-2888. [PMID: 28811309 DOI: 10.1242/dev.140756] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The pancreas is an endoderm-derived glandular organ that participates in the regulation of systemic glucose metabolism and food digestion through the function of its endocrine and exocrine compartments, respectively. While intensive research has explored the signaling pathways and transcriptional programs that govern pancreas development, much remains to be discovered regarding the cellular processes that orchestrate pancreas morphogenesis. Here, we discuss the developmental mechanisms and principles that are known to underlie pancreas development, from induction and lineage formation to morphogenesis and organogenesis. Elucidating such principles will help to identify novel candidate disease genes and unravel the pathogenesis of pancreas-related diseases, such as diabetes, pancreatitis and cancer.
Collapse
Affiliation(s)
- Aimée Bastidas-Ponce
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.,Technical University of Munich, Medical Faculty, 81675 Munich, Germany
| | - Katharina Scheibner
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.,Technical University of Munich, Medical Faculty, 81675 Munich, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.,Technical University of Munich, Medical Faculty, 81675 Munich, Germany
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany .,Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany
| |
Collapse
|
33
|
Lee SH, Rhee M, Kim JW, Yoon KH. Generation of Insulin-Expressing Cells in Mouse Small Intestine by Pdx1, MafA, and BETA2/NeuroD. Diabetes Metab J 2017; 41:405-416. [PMID: 29086539 PMCID: PMC5663680 DOI: 10.4093/dmj.2017.41.5.405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/03/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND To develop surrogate insulin-producing cells for diabetes therapy, adult stem cells have been identified in various tissues and studied for their conversion into β-cells. Pancreatic progenitor cells are derived from the endodermal epithelium and formed in a manner similar to gut progenitor cells. Here, we generated insulin-producing cells from the intestinal epithelial cells that induced many of the specific pancreatic transcription factors using adenoviral vectors carrying three genes: PMB (pancreatic and duodenal homeobox 1 [Pdx1], V-maf musculoaponeurotic fibrosarcoma oncogene homolog A [MafA], and BETA2/NeuroD). METHODS By direct injection into the intestine through the cranial mesenteric artery, adenoviruses (Ad) were successfully delivered to the entire intestine. After virus injection, we could confirm that the small intestine of the mouse was appropriately infected with the Ad-Pdx1 and triple Ad-PMB. RESULTS Four weeks after the injection, insulin mRNA was expressed in the small intestine, and the insulin gene expression was induced in Ad-Pdx1 and Ad-PMB compared to control Ad-green fluorescent protein. In addition, the conversion of intestinal cells into insulin-expressing cells was detected in parts of the crypts and villi located in the small intestine. CONCLUSION These data indicated that PMB facilitate the differentiation of mouse intestinal cells into insulin-expressing cells. In conclusion, the small intestine is an accessible and abundant source of surrogate insulin-producing cells.
Collapse
Affiliation(s)
- So Hyun Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Marie Rhee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji Won Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kun Ho Yoon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
34
|
Generation of a pancreatic cancer model using a Pdx1-Flp recombinase knock-in allele. PLoS One 2017; 12:e0184984. [PMID: 28934293 PMCID: PMC5608307 DOI: 10.1371/journal.pone.0184984] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 09/04/2017] [Indexed: 01/07/2023] Open
Abstract
The contribution of the tumor microenvironment to the development of pancreatic adenocarcinoma (PDAC) is unclear. The LSL-KrasG12D/+;LSL-p53R172H/+;Pdx-1-Cre (KPC) tumor model, which is widely utilized to faithfully recapitulate human pancreatic cancer, depends on Cre-mediated recombination in the epithelial lineage to drive tumorigenesis. Therefore, specific Cre-loxP recombination in stromal cells cannot be applied in this model, limiting the in vivo investigation of stromal genetics in tumor initiation and progression. To address this issue, we generated a new Pdx1FlpO knock-in mouse line, which represents the first mouse model to physiologically express FlpO recombinase in pancreatic epithelial cells. This mouse specifically recombines Frt loci in pancreatic epithelial cells, including acinar, ductal, and islet cells. When combined with the Frt-STOP-Frt KrasG12D and p53Frt mouse lines, simultaneous Pdx1FlpO activation of mutant Kras and deletion of p53 results in the spectrum of pathologic changes seen in PDAC, including PanIN lesions and ductal carcinoma. Combination of this KPF mouse model with any stroma-specific Cre can be used to conditionally modify target genes of interest. This will provide an excellent in vivo tool to study the roles of genes in different cell types and multiple cell compartments within the pancreatic tumor microenvironment.
Collapse
|
35
|
Al-Khawaga S, Memon B, Butler AE, Taheri S, Abou-Samra AB, Abdelalim EM. Pathways governing development of stem cell-derived pancreatic β cells: lessons from embryogenesis. Biol Rev Camb Philos Soc 2017. [DOI: 10.1111/brv.12349] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sara Al-Khawaga
- Diabetes Research Center, Qatar Biomedical Research Institute; Hamad Bin Khalifa University, Qatar Foundation, Education City; Doha Qatar
| | - Bushra Memon
- Diabetes Research Center, Qatar Biomedical Research Institute; Hamad Bin Khalifa University, Qatar Foundation, Education City; Doha Qatar
| | - Alexandra E. Butler
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine; University of California; Los Angeles CA 90095 U.S.A
| | - Shahrad Taheri
- Department of Medicine; Weill Cornell Medicine in Qatar, Qatar Foundation, Education City, PO BOX 24144; Doha Qatar
- Department of Medicine; Qatar Metabolic Institute, Hamad Medical Corporation; Doha Qatar
| | - Abdul B. Abou-Samra
- Department of Medicine; Weill Cornell Medicine in Qatar, Qatar Foundation, Education City, PO BOX 24144; Doha Qatar
- Department of Medicine; Qatar Metabolic Institute, Hamad Medical Corporation; Doha Qatar
| | - Essam M. Abdelalim
- Diabetes Research Center, Qatar Biomedical Research Institute; Hamad Bin Khalifa University, Qatar Foundation, Education City; Doha Qatar
| |
Collapse
|
36
|
Vieira A, Druelle N, Avolio F, Napolitano T, Navarro-Sanz S, Silvano S, Collombat P. β-Cell Replacement Strategies: The Increasing Need for a "β-Cell Dogma". Front Genet 2017. [PMID: 28634486 PMCID: PMC5459879 DOI: 10.3389/fgene.2017.00075] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Type 1 diabetes is an auto-immune disease resulting in the loss of pancreatic β-cells and, consequently, in chronic hyperglycemia. Insulin supplementation allows diabetic patients to control their glycaemia quite efficiently, but treated patients still display an overall shortened life expectancy and an altered quality of life as compared to their healthy counterparts. In this context and due to the ever increasing number of diabetics, establishing alternative therapies has become a crucial research goal. Most current efforts therefore aim at generating fully functional insulin-secreting β-like cells using multiple approaches. In this review, we screened the literature published since 2011 and inventoried the selected markers used to characterize insulin-secreting cells generated by in vitro differentiation of stem/precursor cells or by means of in vivo transdifferentiation. By listing these features, we noted important discrepancies when comparing the different approaches for the initial characterization of insulin-producing cells as true β-cells. Considering the recent advances achieved in this field of research, the necessity to establish strict guidelines has become a subject of crucial importance, especially should one contemplate the next step, which is the transplantation of in vitro or ex vivo generated insulin-secreting cells in type 1 diabetic patients.
Collapse
Affiliation(s)
- Andhira Vieira
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, iBV, Université Côte d'AzurNice, France
| | - Noémie Druelle
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, iBV, Université Côte d'AzurNice, France
| | - Fabio Avolio
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, iBV, Université Côte d'AzurNice, France
| | - Tiziana Napolitano
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, iBV, Université Côte d'AzurNice, France
| | - Sergi Navarro-Sanz
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, iBV, Université Côte d'AzurNice, France
| | - Serena Silvano
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, iBV, Université Côte d'AzurNice, France
| | - Patrick Collombat
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, iBV, Université Côte d'AzurNice, France
| |
Collapse
|
37
|
Abstract
A small number of cells in the adult pancreas are endocrine cells. They are arranged in clusters called islets of Langerhans. The islets make insulin, glucagon, and other endocrine hormones, and release them into the blood circulation. These hormones help control the level of blood glucose. Therefore, a dysfunction of endocrine cells in the pancreas results in impaired glucose homeostasis, or diabetes mellitus. The pancreas is an organ that originates from the evaginations of pancreatic progenitor cells in the epithelium of the foregut endoderm. Pancreas organogenesis and maturation of the islets of Langerhans occurs via a coordinated and complex interplay of transcriptional networks and signaling molecules, which guide a stepwise and repetitive process of the propagation of progenitor cells and their maturation, eventually resulting in a fully functional organ. Increasing our understanding of the extrinsic, as well as intrinsic mechanisms that control these processes should facilitate the efforts to generate surrogate β cells from ES or iPS cells, or to reactivate the function of important cell types within pancreatic islets that are lost in diabetes.
Collapse
Affiliation(s)
- Yoshio Fujitani
- Laboratory of Developmental Biology & Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
- AMED-CREST Program, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| |
Collapse
|
38
|
Matsuoka TA, Kawashima S, Miyatsuka T, Sasaki S, Shimo N, Katakami N, Kawamori D, Takebe S, Herrera PL, Kaneto H, Stein R, Shimomura I. Mafa Enables Pdx1 to Effectively Convert Pancreatic Islet Progenitors and Committed Islet α-Cells Into β-Cells In Vivo. Diabetes 2017; 66:1293-1300. [PMID: 28223284 PMCID: PMC5399608 DOI: 10.2337/db16-0887] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 02/06/2017] [Indexed: 12/18/2022]
Abstract
Among the therapeutic avenues being explored for replacement of the functional islet β-cell mass lost in type 1 diabetes (T1D), reprogramming of adult cell types into new β-cells has been actively pursued. Notably, mouse islet α-cells will transdifferentiate into β-cells under conditions of near β-cell loss, a condition similar to T1D. Moreover, human islet α-cells also appear to poised for reprogramming into insulin-positive cells. Here we have generated transgenic mice conditionally expressing the islet β-cell-enriched Mafa and/or Pdx1 transcription factors to examine their potential to transdifferentiate embryonic pan-islet cell Ngn3-positive progenitors and the later glucagon-positive α-cell population into β-cells. Mafa was found to both potentiate the ability of Pdx1 to induce β-cell formation from Ngn3-positive endocrine precursors and enable Pdx1 to produce β-cells from α-cells. These results provide valuable insight into the fundamental mechanisms influencing islet cell plasticity in vivo.
Collapse
Affiliation(s)
- Taka-Aki Matsuoka
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Satoshi Kawashima
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takeshi Miyatsuka
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
- Center for Molecular Diabetology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shugo Sasaki
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Naoki Shimo
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Naoto Katakami
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Dan Kawamori
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Satomi Takebe
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Pedro L Herrera
- Department of Genetic Medicine and Development, University of Geneva Faculty of Medicine, Geneva, Switzerland
| | - Hideaki Kaneto
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, Okayama, Japan
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, TN
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
39
|
El-Salhy M, Umezawa K, Hatlebakk JG, Gilja OH. Abnormal differentiation of stem cells into enteroendocrine cells in rats with DSS-induced colitis. Mol Med Rep 2017; 15:2106-2112. [PMID: 28259987 PMCID: PMC5364957 DOI: 10.3892/mmr.2017.6266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 12/05/2016] [Indexed: 12/13/2022] Open
Abstract
The present study aimed to determine whether there is an association between abnormalities in enteroendocrine cells in dextran sulfate sodium (DSS)-induced colitis and the clonogenic and/or proliferative activities of stem cells. A total of 48 male Wistar rats were divided into four groups. Animals in the control group were provided with normal drinking water, whereas DSS colitis was induced in the remaining three groups. The rats with DSS-induced colitis were randomized into the following three groups: i) DSS group, which received 0.5 ml 0.5% carboxymethyl cellulose (CMC; vehicle); ii) DSS-G group, which was treated with 3-[(dodecylthiocarbonyl)-methyl]-glutarimide at 20 mg/kg body weight in 0.5% CMC; and iii) DSS-Q group, which was treated with dehydroxymethylepoxyquinomicin at 15 mg/kg body weight in 0.5% CMC. Treatments were administered intraperitoneally twice daily for 5 days in all groups. Subsequently, tissue samples from the colon were stained with hematoxylin-eosin, or immunostained for chromogranin A (CgA), Musashi 1 (Msi1), Math-1, neurogenin 3 (Neurog3) and neurogenic differentiation D1 (NeuroD1). The densities of CgA, Msi1-, Math-1-, Neurog3- and NeuroD1-immunoreactive cells were determined. DTCM-G, and DHMEQ ameliorated the inflammation in DSS-induced colitis. The density of CgA-, Neurog3- and NeuroD1-immunoreactive cells was significantly higher in the DSS group compared with in the control group, and the density of CgA cells was correlated with the densities of Neurog3- and NeuroD1-immunoreactive cells. There were no significant differences in the densities of Msi1- and Math-1-immunoreactive cells among the four experimental groups. The elevated densities of enteroendocrine cells detected in DSS-induced colitis may be due to the increased differentiation of early enteroendocrine progenitors during secretory lineage. It is probable that the DSS-induced inflammatory processes trigger certain signaling pathways, which control differentiation of the stem-cell secretory lineage into mature enteroendocrine cells.
Collapse
Affiliation(s)
- Magdy El-Salhy
- Division of Gastroenterology, Department of Medicine, Stord Hospital, 5409 Stord, Norway
| | - Kazuo Umezawa
- Department of Molecular Target Medicine, Aichi Medical University, School of Medicine, Nagakute, Aichi 480‑1195, Japan
| | - Jan Gunnar Hatlebakk
- Division of Gastroenterology, Department of Clinical Medicine, University of Bergen, 5007 Bergen, Norway
| | - Odd Helge Gilja
- Division of Gastroenterology, Department of Clinical Medicine, University of Bergen, 5007 Bergen, Norway
| |
Collapse
|
40
|
Larsen HL, Grapin-Botton A. The molecular and morphogenetic basis of pancreas organogenesis. Semin Cell Dev Biol 2017; 66:51-68. [PMID: 28089869 DOI: 10.1016/j.semcdb.2017.01.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 01/08/2023]
Abstract
The pancreas is an essential endoderm-derived organ that ensures nutrient metabolism via its endocrine and exocrine functions. Here we review the essential processes governing the embryonic and early postnatal development of the pancreas discussing both the mechanisms and molecules controlling progenitor specification, expansion and differentiation. We elaborate on how these processes are orchestrated in space and coordinated with morphogenesis. We draw mainly from experiments conducted in the mouse model but also from investigations in other model organisms, complementing a recent comprehensive review of human pancreas development (Jennings et al., 2015) [1]. The understanding of pancreas development in model organisms provides a framework to interpret how human mutations lead to neonatal diabetes and may contribute to other forms of diabetes and to guide the production of desired pancreatic cell types from pluripotent stem cells for therapeutic purposes.
Collapse
Affiliation(s)
- Hjalte List Larsen
- DanStem, University of Copenhagen, 3 B Blegdamsvej, DK-2200 Copenhagen N, Denmark
| | - Anne Grapin-Botton
- DanStem, University of Copenhagen, 3 B Blegdamsvej, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
41
|
El-Salhy M, Mazzawi T, Umezawa K, Gilja OH. Enteroendocrine cells, stem cells and differentiation progenitors in rats with TNBS-induced colitis. Int J Mol Med 2016; 38:1743-1751. [PMID: 27779708 PMCID: PMC5117771 DOI: 10.3892/ijmm.2016.2787] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 09/14/2016] [Indexed: 12/15/2022] Open
Abstract
Patients with inflammatory bowel disease (IBD), as well as animal models of human IBD have abnormal enteroendocrine cells. The present study aimed to identify the possible mechanisms underlying these abnormalities. For this purpose, 40 male Wistar rats were divided into 4 groups as follows: the control group, the group with trinitrobenzene sulfonic acid (TNBS)-induced colitis with no treatment (TNBS group), the group with TNBS-induced colitis treated with 3-[(dodecylthiocarbonyl)-methyl]-glutarimide (DTCM-G; an activator protein-1 inhibitor) (DTCM-G group), and the group with TNBS-induced colitis treated with dehydroxymethylepoxyquinomicin (DHMEQ; a nuclear factor-κB inhibitor) treatment (DHMEQ group). Three days following the administration of TNBS, the rats were treated as follows: those in the control and TNBS groups received 0.5 ml of the vehicle [0.5% carboxymethyl cellulose (CMC)], those in the DTCM-G group received DTCM-G at 20 mg/kg body weight in 0.5% CMC, and those in the DHMEQ group received DHMEQ at 15 mg/kg body weight in 0.5% CMC. All injections were administered intraperitoneally twice daily for 5 days. The rats were then sacrificed, and tissue samples were taken from the colon. The tissue sections were stained with hemotoxylin-eosin and immunostained for chromogranin A (CgA), serotonin, peptide YY (PYY), oxyntomodulin, pancreatic polypeptide (PP), somatostatin, Musashi1 (Msi1), Math1, Neurogenin3 (Neurog3) and NeuroD1. The staining was quantified using image analysis software. The densities of CgA-, PYY-, PP-, Msi1-, Neurog3- and NeuroD1-positive cells were significantly lower in the TNBS group than those in the control group, while those of serotonin-, oxyntomodulin- and somatostatin-positive cells were significantly higher in the TNBS group than those in the control group. Treatment with either DTCM-G or DHMEQ restored the densities of enteroendocrine cells, stem cells and their progenitors to normal levels. It was thus concluded that the abnormalities in enteroendocrine cells and stem cells and their differentiation progenitors may be caused by certain signaling substances produced under inflammatory processes, resulting in changes in hormone expression in enteroendocrine cells. These substances may also interfere with the colonogenic activity and the differentiation of the stem-cell secretory lineage into mature enteroendocrine cells.
Collapse
Affiliation(s)
- Magdy El-Salhy
- Division of Gastroenterology, Department of Medicine, Stord Helse-Fonna Hospital, 5416 Stord, Norway
| | - Tarek Mazzawi
- Division of Gastroenterology, Institute of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
| | - Kazuo Umezawa
- Department of Molecular Target Medicine, School of Aichi Medical University, School of Medicine, Nagakute, 480-1195 Aichi, Japan
| | - Odd Helge Gilja
- Division of Gastroenterology, Institute of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
| |
Collapse
|
42
|
Spaeth JM, Walker EM, Stein R. Impact of Pdx1-associated chromatin modifiers on islet β-cells. Diabetes Obes Metab 2016; 18 Suppl 1:123-7. [PMID: 27615141 PMCID: PMC5918695 DOI: 10.1111/dom.12730] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 05/03/2016] [Indexed: 12/11/2022]
Abstract
Diabetes mellitus arises from insufficient insulin secretion from pancreatic islet β-cells. In type 2 diabetes (T2D), β-cell dysfunction is associated with inactivation and/or loss of transcription factor (TF) activity, including Pdx1. Notably, this particular TF is viewed as a master regulator of pancreas development and islet β-cell formation, identity and function. TFs, like Pdx1, recruit coregulators to transduce activating and/or repressing signals to the general transcriptional machinery for controlling gene expression, including modifiers of DNA, histones and nucleosome architecture. These coregulators impart a secondary layer of control that can be exploited to modulate TF activity. In this review, we describe Pdx1-recruited coregulators that impact chromatin structure, consequently influencing normal β-cell function and likely Pdx1 activity in pathophysiological settings.
Collapse
Affiliation(s)
- J M Spaeth
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - E M Walker
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - R Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee.
| |
Collapse
|
43
|
Culture and establishment of self-renewing human and mouse adult liver and pancreas 3D organoids and their genetic manipulation. Nat Protoc 2016; 11:1724-43. [PMID: 27560176 DOI: 10.1038/nprot.2016.097] [Citation(s) in RCA: 463] [Impact Index Per Article: 57.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adult somatic tissues have proven difficult to expand in vitro, largely because of the complexity of recreating appropriate environmental signals in culture. We have overcome this problem recently and developed culture conditions for adult stem cells that allow the long-term expansion of adult primary tissues from small intestine, stomach, liver and pancreas into self-assembling 3D structures that we have termed 'organoids'. We provide a detailed protocol that describes how to grow adult mouse and human liver and pancreas organoids, from cell isolation and long-term expansion to genetic manipulation in vitro. Liver and pancreas cells grow in a gel-based extracellular matrix (ECM) and a defined medium. The cells can self-organize into organoids that self-renew in vitro while retaining their tissue-of-origin commitment, genetic stability and potential to differentiate into functional cells in vitro (hepatocytes) and in vivo (hepatocytes and endocrine cells). Genetic modification of these organoids opens up avenues for the manipulation of adult stem cells in vitro, which could facilitate the study of human biology and allow gene correction for regenerative medicine purposes. The complete protocol takes 1-4 weeks to generate self-renewing 3D organoids and to perform genetic manipulation experiments. Personnel with basic scientific training can conduct this protocol.
Collapse
|
44
|
Jin T. Current Understanding on Role of the Wnt Signaling Pathway Effector TCF7L2 in Glucose Homeostasis. Endocr Rev 2016; 37:254-77. [PMID: 27159876 DOI: 10.1210/er.2015-1146] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The role of the Wnt signaling pathway in metabolic homeostasis has drawn our intensive attention, especially after the genome-wide association study discovery that certain polymorphisms of its key effector TCF7L2 are strongly associated with the susceptibility to type 2 diabetes. For a decade, great efforts have been made in determining the function of TCF7L2 in various metabolic organs, which have generated both considerable achievements and disputes. In this review, I will briefly introduce the canonical Wnt signaling pathway, focusing on its effector β-catenin/TCF, including emphasizing the bidirectional feature of TCFs and β-catenin post-translational modifications. I will then summarize the observations on the association between TCF7L2 polymorphisms and type 2 diabetes risk. The main content, however, is on the intensive functional exploration of the metabolic role of TCF7L2, including the disputes generated on determining its role in the pancreas and liver with various transgenic mouse lines. Finally, I will discuss those achievements and disputes and present my future perspectives.
Collapse
Affiliation(s)
- Tianru Jin
- Division of Advanced Diagnostics, Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
| |
Collapse
|
45
|
Dash SN, Hakonen E, Ustinov J, Otonkoski T, Andersson O, Lehtonen S. sept7b is required for the differentiation of pancreatic endocrine progenitors. Sci Rep 2016; 6:24992. [PMID: 27114183 PMCID: PMC4845001 DOI: 10.1038/srep24992] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/05/2016] [Indexed: 12/14/2022] Open
Abstract
Protection or restoration of pancreatic β-cell mass as a therapeutic treatment for type 1 diabetes requires understanding of the mechanisms that drive the specification and development of pancreatic endocrine cells. Septins are filamentous small GTPases that function in the regulation of cell division, cytoskeletal organization and membrane remodeling, and are involved in various tissue-specific developmental processes. However, their role in pancreatic endocrine cell differentiation remains unknown. Here we show by functional manipulation techniques in transgenic zebrafish lines that suppression of sept7b, the zebrafish ortholog of human SEPT7, profoundly increases the number of endocrine progenitors but limits their differentiation, leading to reduction in β- and α-cell mass. Furthermore, we discovered that shh (sonic hedgehog) expression in the endoderm, essential for the development of pancreatic progenitors of the dorsal pancreatic bud, is absent in larvae depleted of sept7b. We also discovered that sept7b is important for the differentiation of ventral pancreatic bud-derived cells: sept7b-depleted larvae exhibit downregulation of Notch receptors notch1a and notch1b and show precocious differentiation of NeuroD-positive endocrine cells in the intrapancreatic duct and gut epithelium. Collectively, this study provides a novel insight into the development of pancreatic endocrine progenitors, revealing an essential role for sept7b in endocrine progenitor differentiation.
Collapse
Affiliation(s)
| | - Elina Hakonen
- Research Program for Molecular Neurology and Biomedicum Stem Cell Center, University of Helsinki, Helsinki, Finland
| | - Jarkko Ustinov
- Research Program for Molecular Neurology and Biomedicum Stem Cell Center, University of Helsinki, Helsinki, Finland
| | - Timo Otonkoski
- Research Program for Molecular Neurology and Biomedicum Stem Cell Center, University of Helsinki, Helsinki, Finland
| | - Olov Andersson
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Sanna Lehtonen
- Department of Pathology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
46
|
Calzada L, Morales A, Sosa-Larios TC, Reyes-Castro LA, Rodríguez-González GL, Rodríguez-Mata V, Zambrano E, Morimoto S. Maternal protein restriction during gestation impairs female offspring pancreas development in the rat. Nutr Res 2016; 36:855-62. [PMID: 27440540 DOI: 10.1016/j.nutres.2016.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/17/2016] [Accepted: 03/22/2016] [Indexed: 02/08/2023]
Abstract
A maternal low-protein (LP) diet programs fetal pancreatic islet β-cell development and function and predisposes offspring to metabolic dysfunction later in life. We hypothesized that maternal protein restriction during pregnancy differentially alters β- and α-cell populations in offspring by modifying islet ontogeny and function throughout life. We aimed to investigate the effect of an LP maternal diet on pancreatic islet morphology and cellular composition in female offspring on postnatal days (PNDs) 7, 14, 21, 36, and 110. Mothers were divided into 2 groups: during pregnancy, the control group (C) was fed a diet containing 20% casein, and the LP group was fed an isocaloric diet with 10% casein. Offspring pancreases were obtained at each PND and then processed. β and α cells were detected by immunohistochemistry, and cellular area and islet size were quantified. Islet cytoarchitecture and total area were similar in C and LP offspring at all ages studied. At the early ages (PNDs 7-21), the proportion of β cells was lower in LP than C offspring. The proportion of α cells was lower in LP than C offspring on PND 14 and higher on PND 21. The β/α-cell ratio was lower in LP compared with C offspring on PNDs 7 and 21 and higher on PND 36 (being similar on PNDs 14 and 110). We concluded that maternal protein restriction during pregnancy modifies offspring islet cell ontogeny by altering the proportions of islet sizes and by reducing the number of β cells postnatally, which may impact pancreatic function in adult life.
Collapse
Affiliation(s)
- Lizbeth Calzada
- Department of Reproductive Biology, National Institute of Medical Science and Nutrition "Salvador Zubirán", Vasco de Quiroga 15 Col. Belisario Domínguez Sección XVI, Tlalpan, CP. 14080 Mexico City, Mexico
| | - Angélica Morales
- Department of Reproductive Biology, National Institute of Medical Science and Nutrition "Salvador Zubirán", Vasco de Quiroga 15 Col. Belisario Domínguez Sección XVI, Tlalpan, CP. 14080 Mexico City, Mexico
| | - Tonantzin C Sosa-Larios
- Department of Reproductive Biology, National Institute of Medical Science and Nutrition "Salvador Zubirán", Vasco de Quiroga 15 Col. Belisario Domínguez Sección XVI, Tlalpan, CP. 14080 Mexico City, Mexico
| | - Luis A Reyes-Castro
- Department of Reproductive Biology, National Institute of Medical Science and Nutrition "Salvador Zubirán", Vasco de Quiroga 15 Col. Belisario Domínguez Sección XVI, Tlalpan, CP. 14080 Mexico City, Mexico
| | - Guadalupe L Rodríguez-González
- Department of Reproductive Biology, National Institute of Medical Science and Nutrition "Salvador Zubirán", Vasco de Quiroga 15 Col. Belisario Domínguez Sección XVI, Tlalpan, CP. 14080 Mexico City, Mexico
| | - Verónica Rodríguez-Mata
- Department of Cell and Tissue Biology, School of Medicine, Universidad Nacional Autónoma de México, Apto 70-250, CP. 04510 Mexico City, Mexico
| | - Elena Zambrano
- Department of Reproductive Biology, National Institute of Medical Science and Nutrition "Salvador Zubirán", Vasco de Quiroga 15 Col. Belisario Domínguez Sección XVI, Tlalpan, CP. 14080 Mexico City, Mexico
| | - Sumiko Morimoto
- Department of Reproductive Biology, National Institute of Medical Science and Nutrition "Salvador Zubirán", Vasco de Quiroga 15 Col. Belisario Domínguez Sección XVI, Tlalpan, CP. 14080 Mexico City, Mexico.
| |
Collapse
|
47
|
Cras-Méneur C, Elghazi L, Fort P, Bernal-Mizrachi E. Noninvasive in vivo imaging of embryonic β-cell development in the anterior chamber of the eye. Islets 2016; 8:35-47. [PMID: 26950054 PMCID: PMC4878273 DOI: 10.1080/19382014.2016.1148236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The fetal environment plays a decisive role in modifying the risk for developing diabetes later in life. Developing novel methodology for noninvasive imaging of β-cell development in vivo under the controlled physiological conditions of the host can serve to understand how this environment affects β-cell growth and differentiation. A number of culture models have been designed for pancreatic rudiment but none match the complexity of the in utero or even normal physiological environment. Speier et al. recently developed a platform of noninvasive in vivo imaging of pancreatic islets using the anterior chamber of the eye where islets get vascularized, grow and respond to physiological changes. The same methodology was adapted for the study of pancreatic development. E13.0, still undifferentiated rudiments with fluorescent lineage tracing were implanted in the AC of the eye, allowing the longitudinal study of their growth and differentiation. Within 48 h the anlages get vascularized and grow but their mesenchyme displays a selective growth advantage. The resulting imbalance leads to alteration in the differentiation pattern of the progenitors. Reducing the mesenchyme to its bare minimum before implantation allows the restoration of a proper balance and a development that mimics the normal pancreatic development. These groundbreaking observations demonstrate that the anterior chamber of the eye provides a good system for noninvasive in vivo fluorescence imaging of the developing pancreas under the physiology of the host and can have important implications for designing strategies to prevent or reverse the deleterious effects of hyperglycemia on altering β-cell function later in life.
Collapse
Affiliation(s)
- Corentin Cras-Méneur
- Internal Medicine Department, Division of Metabolism, Endocrinology and Diabetes, University of Michigan in Ann Arbor, Ann Arbor, Michigan, USA
| | - Lynda Elghazi
- Internal Medicine Department, Division of Metabolism, Endocrinology and Diabetes, University of Michigan in Ann Arbor, Ann Arbor, Michigan, USA
| | - Patrice Fort
- Ophthalmology Department, University of Michigan in Ann Arbor, Ann Arbor, Michigan, USA
| | - Ernesto Bernal-Mizrachi
- Internal Medicine Department, Division of Metabolism, Endocrinology and Diabetes, University of Michigan in Ann Arbor, Ann Arbor, Michigan, USA
- VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| |
Collapse
|
48
|
Abstract
The hedgehog signaling pathway was first discovered in the 1980s. It is a stem cell-related pathway that plays a crucial role in embryonic development, tissue regeneration, and organogenesis. Aberrant activation of hedgehog signaling leads to pathological consequences, including a variety of human tumors such as pancreatic cancer. Multiple lines of evidence indicate that blockade of this pathway with several small-molecule inhibitors can inhibit the development of pancreatic neoplasm. In addition, activated hedgehog signaling has been reported to be involved in fibrogenesis in many tissues, including the pancreas. Therefore, new therapeutic targets based on hedgehog signaling have attracted a great deal of attention to alleviate pancreatic diseases. In this review, we briefly discuss the recent advances in hedgehog signaling in pancreatic fibrogenesis and carcinogenesis and highlight new insights on their potential relationship with respect to the development of novel targeted therapies.
Collapse
Affiliation(s)
- Yongyu Bai
- From the Wenzhou Medical University (Yongyu Bai, JD, QL, YJ, MZ); and Wenzhou Key Laboratory of Surgery (Yongheng Bai, BC), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | | | | | | | | | | | | |
Collapse
|
49
|
Masjkur J, Poser SW, Nikolakopoulou P, Chrousos G, McKay RD, Bornstein SR, Jones PM, Androutsellis-Theotokis A. Endocrine Pancreas Development and Regeneration: Noncanonical Ideas From Neural Stem Cell Biology. Diabetes 2016; 65:314-30. [PMID: 26798118 DOI: 10.2337/db15-1099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Loss of insulin-producing pancreatic islet β-cells is a hallmark of type 1 diabetes. Several experimental paradigms demonstrate that these cells can, in principle, be regenerated from multiple endogenous sources using signaling pathways that are also used during pancreas development. A thorough understanding of these pathways will provide improved opportunities for therapeutic intervention. It is now appreciated that signaling pathways should not be seen as "on" or "off" but that the degree of activity may result in wildly different cellular outcomes. In addition to the degree of operation of a signaling pathway, noncanonical branches also play important roles. Thus, a pathway, once considered as "off" or "low" may actually be highly operational but may be using noncanonical branches. Such branches are only now revealing themselves as new tools to assay them are being generated. A formidable source of noncanonical signal transduction concepts is neural stem cells because these cells appear to have acquired unusual signaling interpretations to allow them to maintain their unique dual properties (self-renewal and multipotency). We discuss how such findings from the neural field can provide a blueprint for the identification of new molecular mechanisms regulating pancreatic biology, with a focus on Notch, Hes/Hey, and hedgehog pathways.
Collapse
Affiliation(s)
- Jimmy Masjkur
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Steven W Poser
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
| | | | - George Chrousos
- First Department of Pediatrics, University of Athens Medical School and Aghia Sophia Children's Hospital, Athens, Greece
| | | | - Stefan R Bornstein
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Peter M Jones
- Diabetes Research Group, Division of Diabetes & Nutritional Sciences, King's College London, London, U.K
| | - Andreas Androutsellis-Theotokis
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany Center for Regenerative Therapies Dresden, Dresden, Germany Department of Stem Cell Biology, Centre for Biomolecular Sciences, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, U.K.
| |
Collapse
|
50
|
Wang A, Yue F, Li Y, Xie R, Harper T, Patel NA, Muth K, Palmer J, Qiu Y, Wang J, Lam DK, Raum JC, Stoffers DA, Ren B, Sander M. Epigenetic priming of enhancers predicts developmental competence of hESC-derived endodermal lineage intermediates. Cell Stem Cell 2016; 16:386-99. [PMID: 25842977 DOI: 10.1016/j.stem.2015.02.013] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 11/23/2014] [Accepted: 02/17/2015] [Indexed: 01/09/2023]
Abstract
Embryonic development relies on the capacity of progenitor cells to appropriately respond to inductive cues, a cellular property known as developmental competence. Here, we report that epigenetic priming of enhancers signifies developmental competence during endodermal lineage diversification. Chromatin mapping during pancreatic and hepatic differentiation of human embryonic stem cells revealed the en masse acquisition of a poised chromatin state at enhancers specific to endoderm-derived cell lineages in gut tube intermediates. Experimentally, the acquisition of this poised enhancer state predicts the ability of endodermal intermediates to respond to inductive signals. Furthermore, these enhancers are first recognized by the pioneer transcription factors FOXA1 and FOXA2 when competence is acquired, while subsequent recruitment of lineage-inductive transcription factors, such as PDX1, leads to enhancer and target gene activation. Together, our results identify the acquisition of a poised chromatin state at enhancers as a mechanism by which progenitor cells acquire developmental competence.
Collapse
Affiliation(s)
- Allen Wang
- Pediatric Diabetes Research Center, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093-0983, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Feng Yue
- Department of Biochemistry and Molecular Biology, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Yan Li
- Ludwig Institute for Cancer Research, La Jolla, CA 92093-0653, USA
| | - Ruiyu Xie
- Pediatric Diabetes Research Center, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093-0983, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Thomas Harper
- Pediatric Diabetes Research Center, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093-0983, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Nisha A Patel
- Pediatric Diabetes Research Center, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093-0983, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Kayla Muth
- Pediatric Diabetes Research Center, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093-0983, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Jeffrey Palmer
- Pediatric Diabetes Research Center, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093-0983, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Yunjiang Qiu
- Ludwig Institute for Cancer Research, La Jolla, CA 92093-0653, USA
| | - Jinzhao Wang
- Pediatric Diabetes Research Center, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093-0983, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Dieter K Lam
- Pediatric Diabetes Research Center, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093-0983, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Jeffrey C Raum
- Division of Endocrinology, Diabetes, and Metabolism, Institute for Diabetes, Obesity and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Doris A Stoffers
- Division of Endocrinology, Diabetes, and Metabolism, Institute for Diabetes, Obesity and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bing Ren
- Ludwig Institute for Cancer Research, La Jolla, CA 92093-0653, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA; Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093-0761, USA; Moores Cancer Center, University of California San Diego, La Jolla, CA 92093-0653, USA.
| | - Maike Sander
- Pediatric Diabetes Research Center, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093-0983, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA; Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093-0761, USA; Moores Cancer Center, University of California San Diego, La Jolla, CA 92093-0653, USA.
| |
Collapse
|