1
|
Lu MY, Fang CY, Hsieh PL, Chao SC, Liao YW, Ohiro Y, Yu CC, Ho DCY. MIAT promotes myofibroblastic activities and transformation in oral submucous fibrosis through sponging the miR-342-3p/SOX6 axis. Aging (Albany NY) 2024; 16:12909-12927. [PMID: 39379100 PMCID: PMC11501384 DOI: 10.18632/aging.206121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/03/2024] [Indexed: 10/10/2024]
Abstract
Oral submucous fibrosis (OSF) is an oral potentially malignant disorder that is closely related to the habit of areca nut chewing. Long non-coding RNA (lncRNA) myocardial infarction-associated transcript (MIAT) has been identified as an essential regulator in the fibrosis progression. However, the role of MIAT in the development of OSF remains unknown. The transcriptomic profile showed that MIAT is significantly overexpressed in the OSF cohort, with a positive correlation to fibrotic markers. The silencing of MIAT expression in primary buccal mucosal fibroblasts (BMFs) markedly inhibited arecoline-induced myofibroblast transformation. Mechanistically, MIAT functioned as a miR-342-3p sponge and suppressed the inhibitory effect of miR-342-3p on SOX6 mRNA, thereby reinstating SOX6 expression. Subsequent RNA expression rescue experiments confirmed that MIAT enhanced resistance to apoptosis and facilitated myofibroblastic properties such as cell mobility and collagen gel contraction by regulating the miR-342-3p/SOX6 axis. Taken together, these results suggest that the abnormal upregulation of MIAT is important in contributing persistent activation of myofibroblasts in fibrotic tissue, which may result from prolonged exposure to the constituents of areca nut. Furthermore, our findings demonstrated that therapeutic avenues that target the MIAT/miR-342-3p/SOX6 axis may be a promising approach for OSF treatments.
Collapse
Affiliation(s)
- Ming-Yi Lu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chih-Yuan Fang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Wan Fang Hospital, Taipei, Taiwan
| | - Pei-Ling Hsieh
- Department of Anatomy, School of Medicine, China Medical University, Taichung, Taiwan
| | - Shih-Chi Chao
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Wen Liao
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yoichi Ohiro
- Oral and Maxillofacial Surgery, Division of Oral Pathobiological Science, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Chen-Chia Yu
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Dennis Chun-Yu Ho
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Wan Fang Hospital, Taipei, Taiwan
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
2
|
Negi CK, Bláhová L, Phan A, Bajard L, Blaha L. Triphenyl Phosphate Alters Methyltransferase Expression and Induces Genome-Wide Aberrant DNA Methylation in Zebrafish Larvae. Chem Res Toxicol 2024; 37:1549-1561. [PMID: 39205618 PMCID: PMC11409374 DOI: 10.1021/acs.chemrestox.4c00223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Emerging environmental contaminants, organophosphate flame retardants (OPFRs), pose significant threats to ecosystems and human health. Despite numerous studies reporting the toxic effects of OPFRs, research on their epigenetic alterations remains limited. In this study, we investigated the effects of exposure to 2-ethylhexyl diphenyl phosphate (EHDPP), tricresyl phosphate (TMPP), and triphenyl phosphate (TPHP) on DNA methylation patterns during zebrafish embryonic development. We assessed general toxicity and morphological changes, measured global DNA methylation and hydroxymethylation levels, and evaluated DNA methyltransferase (DNMT) enzyme activity, as well as mRNA expression of DNMTs and ten-eleven translocation (TET) methylcytosine dioxygenase genes. Additionally, we analyzed genome-wide methylation patterns in zebrafish larvae using reduced-representation bisulfite sequencing. Our morphological assessment revealed no general toxicity, but a statistically significant yet subtle decrease in body length following exposure to TMPP and EHDPP, along with a reduction in head height after TPHP exposure, was observed. Eye diameter and head width were unaffected by any of the OPFRs. There were no significant changes in global DNA methylation levels in any exposure group, and TMPP showed no clear effect on DNMT expression. However, EHDPP significantly decreased only DNMT1 expression, while TPHP exposure reduced the expression of several DNMT orthologues and TETs in zebrafish larvae, leading to genome-wide aberrant DNA methylation. Differential methylation occurred primarily in introns (43%) and intergenic regions (37%), with 9% and 10% occurring in exons and promoter regions, respectively. Pathway enrichment analysis of differentially methylated region-associated genes indicated that TPHP exposure enhanced several biological and molecular functions corresponding to metabolism and neurological development. KEGG enrichment analysis further revealed TPHP-mediated potential effects on several signaling pathways including TGFβ, cytokine, and insulin signaling. This study identifies specific changes in DNA methylation in zebrafish larvae after TPHP exposure and brings novel insights into the epigenetic mode of action of TPHP.
Collapse
Affiliation(s)
- Chander K Negi
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Lucie Bláhová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Audrey Phan
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Lola Bajard
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Ludek Blaha
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| |
Collapse
|
3
|
Ma L, He X, Wu Q. The Molecular Regulatory Mechanism in Multipotency and Differentiation of Wharton's Jelly Stem Cells. Int J Mol Sci 2023; 24:12909. [PMID: 37629090 PMCID: PMC10454700 DOI: 10.3390/ijms241612909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) are isolated from Wharton's jelly tissue of umbilical cords. They possess the ability to differentiate into lineage cells of three germ layers. WJ-MSCs have robust proliferative ability and strong immune modulation capacity. They can be easily collected and there are no ethical problems associated with their use. Therefore, WJ-MSCs have great tissue engineering value and clinical application prospects. The identity and functions of WJ-MSCs are regulated by multiple interrelated regulatory mechanisms, including transcriptional regulation and epigenetic modifications. In this article, we summarize the latest research progress on the genetic/epigenetic regulation mechanisms and essential signaling pathways that play crucial roles in pluripotency and differentiation of WJ-MSCs.
Collapse
Affiliation(s)
| | | | - Qiang Wu
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| |
Collapse
|
4
|
Jimenez MT, Clark ML, Wright JM, Michieletto MF, Liu S, Erickson I, Dohnalova L, Uhr GT, Tello-Cajiao J, Joannas L, Williams A, Gagliani N, Bewtra M, Tomov VT, Thaiss CA, Henao-Mejia J. The miR-181 family regulates colonic inflammation through its activity in the intestinal epithelium. J Exp Med 2022; 219:213450. [PMID: 36074090 PMCID: PMC9462864 DOI: 10.1084/jem.20212278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 06/02/2022] [Accepted: 08/11/2022] [Indexed: 11/04/2022] Open
Abstract
The intestinal epithelium is a key physical interface that integrates dietary and microbial signals to regulate nutrient uptake and mucosal immune cell function. The transcriptional programs that regulate intestinal epithelial cell (IEC) quiescence, proliferation, and differentiation have been well characterized. However, how gene expression networks critical for IECs are posttranscriptionally regulated during homeostasis or inflammatory disease remains poorly understood. Herein, we show that a conserved family of microRNAs, miR-181, is significantly downregulated in IECs from patients with inflammatory bowel disease and mice with chemical-induced colitis. Strikingly, we showed that miR-181 expression within IECs, but not the hematopoietic system, is required for protection against severe colonic inflammation in response to epithelial injury in mice. Mechanistically, we showed that miR-181 expression increases the proliferative capacity of IECs, likely through the regulation of Wnt signaling, independently of the gut microbiota composition. As epithelial reconstitution is crucial to restore intestinal homeostasis after injury, the miR-181 family represents a potential therapeutic target against severe intestinal inflammation.
Collapse
Affiliation(s)
- Monica T Jimenez
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Megan L Clark
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jasmine M Wright
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Michaël F Michieletto
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Suying Liu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Isabel Erickson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Lenka Dohnalova
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Giulia T Uhr
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - John Tello-Cajiao
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Leonel Joannas
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Adam Williams
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Nicola Gagliani
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Meenakshi Bewtra
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA.,Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA.,Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA
| | - Vesselin T Tomov
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Christoph A Thaiss
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jorge Henao-Mejia
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
5
|
Shen J, Hao Z, Luo Y, Zhen H, Liu Y, Wang J, Hu J, Liu X, Li S, Zhao Z, Liu Y, Yang S, Wang L. Deep Small RNA Sequencing Reveals Important miRNAs Related to Muscle Development and Intramuscular Fat Deposition in Longissimus dorsi Muscle From Different Goat Breeds. Front Vet Sci 2022; 9:911166. [PMID: 35769318 PMCID: PMC9234576 DOI: 10.3389/fvets.2022.911166] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/09/2022] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that have been shown to play important post-transcriptional regulatory roles in the growth and development of skeletal muscle tissues. However, limited research into the effect of miRNAs on muscle development in goats has been reported. In this study, Liaoning cashmere (LC) goats and Ziwuling black (ZB) goats with significant phenotype difference in meat production performance were selected and the difference in Longissimus dorsi muscle tissue expression profile of miRNAs between the two goat breeds was then compared using small RNA sequencing. A total of 1,623 miRNAs were identified in Longissimus dorsi muscle tissues of the two goat breeds, including 410 known caprine miRNAs, 928 known species-conserved miRNAs and 285 novel miRNAs. Of these, 1,142 were co-expressed in both breeds, while 230 and 251 miRNAs were only expressed in LC and ZB goats, respectively. Compared with ZB goats, 24 up-regulated miRNAs and 135 miRNAs down-regulated were screened in LC goats. A miRNA-mRNA interaction network showed that the differentially expressed miRNAs would target important functional genes associated with muscle development and intramuscular fat deposition. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that the target genes of differentially expressed miRNAs were significantly enriched in Ras, Rap 1, FoxO, and Hippo signaling pathways. This study suggested that these differentially expressed miRNAs may be responsible for the phenotype differences in meat production performance between the two goat breeds, thereby providing an improved understanding of the roles of miRNAs in muscle tissue of goats.
Collapse
|
6
|
Saleem M, Rahman S, Elijovich F, Laffer CL, Ertuglu LA, Masenga SK, Kirabo A. Sox6, A Potential Target for MicroRNAs in Cardiometabolic Disease. Curr Hypertens Rep 2022; 24:145-156. [PMID: 35124768 DOI: 10.1007/s11906-022-01175-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW The study aims to review recent advances in knowledge on the interplay between miRNAs and the sex-determining Region Y (SRY)-related high-mobility-group box 6 (Sox6) in physiology and pathophysiology, highlighting an important role in autoimmune and cardiometabolic conditions. RECENT FINDINGS The transcription factor Sox6 is an important member of the SoxD family and plays an indispensable role in adult tissue homeostasis, regeneration, and physiology. Abnormal expression of the Sox6 gene has been implicated in several disease conditions including diabetes, cardiomyopathy, autoimmune diseases, and hypertension. Expression of Sox6 is regulated by miRNAs, which are RNAs of about 22 nucleotides, and have also been implicated in several pathophysiological conditions where Sox6 plays a role. Regulation of Sox6 by miRNAs is important in diverse physiological tissues and organs. Dysregulation of the interplay between miRNAs and Sox6 is an important determinant of various disease conditions and may be actionable for therapeutic purposes.
Collapse
Affiliation(s)
- Mohammad Saleem
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN, 37232-6602, USA
| | - Sharla Rahman
- Centre for Translational and Clinical Research, Jamia Hamdard, New Delhi, India
| | - Fernando Elijovich
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN, 37232-6602, USA
| | - Cheryl L Laffer
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN, 37232-6602, USA
| | - Lale A Ertuglu
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN, 37232-6602, USA
| | - Sepiso K Masenga
- School of Medicine and Health Sciences, Mulungushi University, HAND Research Group, Livingstone, Zambia
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN, 37232-6602, USA.
| |
Collapse
|
7
|
Wang J, Yao W, Li J, Zhang Q, Wei L. Identification of a novel circ_0001946/miR-1290/SOX6 ceRNA network in esophageal squamous cell cancer. Thorac Cancer 2022; 13:1299-1310. [PMID: 35411716 PMCID: PMC9058308 DOI: 10.1111/1759-7714.14381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/23/2022] [Indexed: 12/24/2022] Open
Abstract
Background Circular RNAs (circRNAs) can function as competing endogenous RNAs (ceRNAs) to impact the development of esophageal squamous cell cancer (ESCC). Human circ_0001946 has been identified as a potential anticancer factor in ESCC, yet our understanding of its molecular basis remains limited. Methods Circ_0001946, microRNA (miR)‐1290 and SRY‐box transcription factor 6 (SOX6) were quantified by quantitative reasl‐time PCR (qRT‐PCR) or immunoblotting. Cell proliferation was assessed by CCK‐8 and EDU assays. Cell apoptosis and invasion were evaluated by flow cytometry and transwell assays, respectively. Cell migration was detected by transwell and wound‐healing assays. The direct relationship between miR‐1290 and circ_0001946 or SOX6 was determined by dual‐luciferase reporter and RNA immunoprecipitation (RIP) assays. Xenograft model assays were used to assess the role of circ_0001946 in tumor growth. Results Circ_0001946 expression was attenuated in human ESCC, and circ_0001946 increase impeded cell proliferation, invasion, migration and enhanced apoptosis in vitro. Moreover, circ_0001946 increase diminished xenograft growth in vivo. Mechanistically, circ_0001946 bound to miR‐1290, and re‐expression of miR‐1290 reversed circ_0001946‐dependent cell properties. SOX6 was a miR‐1290 target and it was responsible for the regulation of miR‐1290 in cell properties. Furthermore, circ_0001946 functioned as a ceRNA to regulate SOX6 expression via miR‐1290. Conclusion Our findings uncover an undescribed molecular mechanism, the circ_0001946/miR‐1290/SOX6 ceRNA crosstalk, for the anti‐ESCC activity of circ_0001946.
Collapse
Affiliation(s)
- Jianjun Wang
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Wenjian Yao
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Jiwei Li
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Quan Zhang
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Li Wei
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| |
Collapse
|
8
|
Associations between Gene-Gene Interaction and Overweight/Obesity of 12-Month-Old Chinese Infants. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1499454. [PMID: 35295960 PMCID: PMC8920651 DOI: 10.1155/2022/1499454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/07/2022] [Accepted: 02/12/2022] [Indexed: 11/18/2022]
Abstract
Background Childhood overweight and obesity (OW/OB) is a worldwide public health problem, and its genetic risks remain unclear. Objectives To investigate risks of OW/OB associated with genetic variances in SEC16B rs543874 and rs10913469, BDNF rs11030104 and rs6265, NT5C2 rs11191580, PTBP2 rs11165675, ADCY9 rs2531995, FAM120A rs7869969, KCNQ1 rs2237892, and C4orf33 rs2968990 in Chinese infants at 12-month old. Methods We conducted a case-control study with 734 infants included at delivery and followed up to 12-month old. The classification and regression tree analysis were used to generate the structure of the gene-gene interactions, while the unconditional multivariate logistic regression models were applied to analyze the single SNP, gene-gene interactions, and cumulative effects of the genotypes on OW/OB, adjusted for potential confounders. Results There were 219 (29.84%) OW/OB infants. Rs543874 G allele and rs11030104 AA genotype increased the risk of OW/OB in 12-month-old infants (P < 0.05). Those carrying both rs11030104 AA genotype and rs10913469 C allele had 4.3 times greater OW/OB than those carrying rs11030104 G allele, rs11191580 C allele, rs11165675 A allele, and rs543874 AA genotype. Meanwhile, the risk of OW/OB increased with the number of the risk genotypes individuals harbored. Conclusions Rs543874, rs11030104, and rs11191580 were associated with OW/OB in 12-month-old Chinese infants, and the three SNPs together with rs10913469 and rs11165675 had a combined effect on OW/OB.
Collapse
|
9
|
Haynes JM, Sibuea SM, Aguiar AA, Li F, Ho JK, Pouton CW. Inhibition of β-catenin dependent WNT signalling upregulates the transcriptional repressor NR0B1 and downregulates markers of an A9 phenotype in human embryonic stem cell-derived dopaminergic neurons: Implications for Parkinson's disease. PLoS One 2021; 16:e0261730. [PMID: 34941945 PMCID: PMC8700011 DOI: 10.1371/journal.pone.0261730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/07/2021] [Indexed: 11/28/2022] Open
Abstract
In this study we investigate how β-catenin-dependent WNT signalling impacts midbrain dopaminergic neuron (mDA) specification. mDA cultures at day 65 of differentiation responded to 25 days of the tankyrase inhibitor XAV969 (XAV, 100nM) with reduced expression of markers of an A9 mDA phenotype (KCNJ6, ALDH1A1 and TH) but increased expression of the transcriptional repressors NR0B1 and NR0B2. Overexpression of NR0B1 and or NR0B2 promoted a loss of A9 dopaminergic neuron phenotype markers (KCNJ6, ALDH1A1 and TH). Overexpression of NR0B1, but not NR0B2 promoted a reduction in expression of the β-catenin-dependent WNT signalling pathway activator RSPO2. Analysis of Parkinson’s disease (PD) transcriptomic databases shows a profound PD-associated elevation of NR0B1 as well as reduced transcript for RSPO2. We conclude that reduced β-catenin-dependent WNT signalling impacts dopaminergic neuron identity, in vitro, through increased expression of the transcriptional repressor, NR0B1. We also speculate that dopaminergic neuron regulatory mechanisms may be perturbed in PD and that this may have an impact upon both existing nigral neurons and also neural progenitors transplanted as PD therapy.
Collapse
Affiliation(s)
- John M. Haynes
- Stem Cell Biology Group, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- * E-mail:
| | - Shanti M. Sibuea
- Stem Cell Biology Group, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Badan Pengawas Obat dan Makanan, Jakarta, Indonesia
| | - Alita A. Aguiar
- Stem Cell Biology Group, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Fangwei Li
- Stem Cell Biology Group, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Joan K. Ho
- Stem Cell Biology Group, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Colin W. Pouton
- Stem Cell Biology Group, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
10
|
Song MA, Seffernick AE, Archer KJ, Mori KM, Park SY, Chang L, Ernst T, Tiirikainen M, Peplowska K, Wilkens LR, Le Marchand L, Lim U. Race/ethnicity-associated blood DNA methylation differences between Japanese and European American women: an exploratory study. Clin Epigenetics 2021; 13:188. [PMID: 34635168 PMCID: PMC8507376 DOI: 10.1186/s13148-021-01171-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Racial/ethnic disparities in health reflect a combination of genetic and environmental causes, and DNA methylation may be an important mediator. We compared in an exploratory manner the blood DNA methylome of Japanese Americans (JPA) versus European Americans (EUA). METHODS Genome-wide buffy coat DNA methylation was profiled among healthy Multiethnic Cohort participant women who were Japanese (JPA; n = 30) or European (EUA; n = 28) Americans aged 60-65. Differentially methylated CpGs by race/ethnicity (DM-CpGs) were identified by linear regression (Bonferroni-corrected P < 0.1) and analyzed in relation to corresponding gene expression, a priori selected single nucleotide polymorphisms (SNPs), and blood biomarkers of inflammation and metabolism using Pearson or Spearman correlations (FDR < 0.1). RESULTS We identified 174 DM-CpGs with the majority of hypermethylated in JPA compared to EUA (n = 133), often in promoter regions (n = 48). Half (51%) of the genes corresponding to the DM-CpGs were involved in liver function and liver disease, and the methylation in nine genes was significantly correlated with gene expression for DM-CpGs. A total of 156 DM-CpGs were associated with rs7489665 (SH2B1). Methylation of DM-CpGs was correlated with blood levels of the cytokine MIP1B (n = 146). We confirmed some of the DM-CpGs in the TCGA adjacent non-tumor liver tissue of Asians versus EUA. CONCLUSION We found a number of differentially methylated CpGs in blood DNA between JPA and EUA women with a potential link to liver disease, specific SNPs, and systemic inflammation. These findings may support further research on the role of DNA methylation in mediating some of the higher risk of liver disease among JPA.
Collapse
Affiliation(s)
- Min-Ae Song
- Division of Environmental Health Science, College of Public Health, The Ohio State University, 404 Cunz Hall, 1841 Neil Ave., Columbus, OH, 43210, USA.
| | - Anna Eames Seffernick
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Kellie J Archer
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Kellie M Mori
- Division of Environmental Health Science, College of Public Health, The Ohio State University, 404 Cunz Hall, 1841 Neil Ave., Columbus, OH, 43210, USA
| | - Song-Yi Park
- Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Linda Chang
- School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Thomas Ernst
- School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Maarit Tiirikainen
- Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Karolina Peplowska
- Genomics and Bioinformatics Shared Resources, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Lynne R Wilkens
- Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Loïc Le Marchand
- Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Unhee Lim
- Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
11
|
Ludwig-Słomczyńska AH, Seweryn MT, Kapusta P, Pitera E, Mantaj U, Cyganek K, Gutaj P, Dobrucka Ł, Wender-Ożegowska E, Małecki MT, Wołkow PP. The transcriptome-wide association search for genes and genetic variants which associate with BMI and gestational weight gain in women with type 1 diabetes. Mol Med 2021; 27:6. [PMID: 33472578 PMCID: PMC7818927 DOI: 10.1186/s10020-020-00266-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/30/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Clinical data suggest that BMI and gestational weight gain (GWG) are strongly interconnected phenotypes; however, the genetic basis of the latter is rather unclear. Here we aim to find genes and genetic variants which influence BMI and/or GWG. METHODS We have genotyped 316 type 1 diabetics using Illumina Infinium Omni Express Exome-8 v1.4 arrays. The GIANT, ARIC and T2D-GENES summary statistics were used for TWAS (performed with PrediXcan) in adipose tissue. Next, the analysis of association of imputed expression with BMI in the general and diabetic cohorts (Analysis 1 and 2) or GWG (Analysis 3 and 4) was performed, followed by variant association analysis (1 Mb around identified loci) with the mentioned phenotypes. RESULTS In Analysis 1 we have found 175 BMI associated genes and 19 variants (p < 10-4) which influenced GWG, with the strongest association for rs11465293 in CCL24 (p = 3.18E-06). Analysis 2, with diabetes included in the model, led to discovery of 1812 BMI associated loci and 207 variants (p < 10-4) influencing GWG, with the strongest association for rs9690213 in PODXL (p = 9.86E-07). In Analysis 3, among 648 GWG associated loci, 2091 variants were associated with BMI (FDR < 0.05). In Analysis 4, 7 variants in GWG associated loci influenced BMI in the ARIC cohort. CONCLUSIONS Here, we have shown that loci influencing BMI might have an impact on GWG and GWG associated loci might influence BMI, both in the general and T1DM cohorts. The results suggest that both phenotypes are related to insulin signaling, glucose homeostasis, mitochondrial metabolism, ubiquitinoylation and inflammatory responses.
Collapse
Affiliation(s)
| | - Michał T Seweryn
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Kraków, Poland
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Przemysław Kapusta
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Kraków, Poland
| | - Ewelina Pitera
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Kraków, Poland
| | - Urszula Mantaj
- Department of Reproduction, Poznan University of Medical Sciences, Poznan, Poland
| | - Katarzyna Cyganek
- Department of Metabolic Diseases, University Hospital Kraków, Kraków, Poland
- Department of Metabolic Diseases, Jagiellonian University Medical College, Kraków, Poland
| | - Paweł Gutaj
- Department of Reproduction, Poznan University of Medical Sciences, Poznan, Poland
| | - Łucja Dobrucka
- Department of Metabolic Diseases, University Hospital Kraków, Kraków, Poland
| | - Ewa Wender-Ożegowska
- Department of Reproduction, Poznan University of Medical Sciences, Poznan, Poland
| | - Maciej T Małecki
- Department of Metabolic Diseases, University Hospital Kraków, Kraków, Poland
- Department of Metabolic Diseases, Jagiellonian University Medical College, Kraków, Poland
| | - Paweł P Wołkow
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Kraków, Poland.
| |
Collapse
|
12
|
Cao X, Zhang J, Apaer S, Yao G, Li T. microRNA-19a-3p and microRNA-376c-3p Promote Hepatocellular Carcinoma Progression Through SOX6-Mediated Wnt/β-Catenin Signaling Pathway. Int J Gen Med 2021; 14:89-102. [PMID: 33469348 PMCID: PMC7812052 DOI: 10.2147/ijgm.s278538] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
Background Recent researches have suggested that microRNA (miR)-19a-3p and miR-376c-3p might function as initiators in diverse cancers. Based on which, in this current study, we aimed to probe into the combined effects and mechanisms of miR-19a-3p and miR-376c-3p in hepatocellular carcinoma (HCC) cells. Methods Tumor tissues and adjacent normal tissues from 21 cases of HCC patients, HCC cell lines, and human normal liver cell lines were used in this study. RT-qPCR and Western blot were implemented to detect the expression of miR-19a-3p, miR-376c-3p, SOX6, and Wnt/β-catenin pathway-associated factors in HCC tissues and cells. The direct relationships between miR-19a-3p or miR-376c-3p and SOX6 were confirmed by luciferase activity assay. HCC cells were treated with miR-19a-3p inhibitor, miR-376c-3p inhibitor, or oe-SOX-6 to figure out their functions in HCC malignancy. The in vivo assays were conducted for the confirmation of in vitro results. Results In both HCC tissues and cells, miR-19a-3p and miR-376c-3p were highly expressed, and SOX6 was poorly expressed. Depleted miR-19a-3p or miR-376c-3p was found to result in retarded HCC development. Bioinformatics analysis and luciferase activity assay revealed that SOX6 was the common target gene of miR-19a-3p and miR-376c-3p. Overexpressed SOX6 was demonstrated to block the Wnt/β-catenin pathway, thereby slowing down HCC progression. The in vivo assays showed that suppressed miR-19a-3p or miR-376c-3p and elevated SOX6 could reduce the tumor volume and weight of nude mice. Conclusion This study suggests that miR-19a-3p/miR-376c-3p activates the Wnt/β-catenin pathway via targeting SOX6, contributing to promoted biological functions of HCC cells.
Collapse
Affiliation(s)
- Xinling Cao
- Department of Liver Transplantation & Laparoscopic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, People's Republic of China
| | - Jingjing Zhang
- Department of Nephrology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, People's Republic of China
| | - Shadike Apaer
- Department of Liver Transplantation & Laparoscopic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, People's Republic of China
| | - Gang Yao
- Department of Liver Transplantation & Laparoscopic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, People's Republic of China
| | - Tao Li
- Department of Liver Transplantation & Laparoscopic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, People's Republic of China
| |
Collapse
|
13
|
Li J, Yang T, Tang H, Sha Z, Chen R, Chen L, Yu Y, Rowe GC, Das S, Xiao J. Inhibition of lncRNA MAAT Controls Multiple Types of Muscle Atrophy by cis- and trans-Regulatory Actions. Mol Ther 2020; 29:1102-1119. [PMID: 33279721 DOI: 10.1016/j.ymthe.2020.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 11/09/2020] [Accepted: 11/29/2020] [Indexed: 12/18/2022] Open
Abstract
Muscle atrophy is associated with negative outcomes in a variety of diseases. Identification of a common therapeutic target would address a significant unmet clinical need. Here, we identify a long non-coding RNA (lncRNA) (muscle-atrophy-associated transcript, lncMAAT) as a common regulator of skeletal muscle atrophy. lncMAAT is downregulated in multiple types of muscle-atrophy models both in vivo (denervation, Angiotensin II [AngII], fasting, immobilization, and aging-induced muscle atrophy) and in vitro (AngII, H2O2, and tumor necrosis factor alpha [TNF-α]-induced muscle atrophy). Gain- and loss-of-function analysis both in vitro and in vivo reveals that downregulation of lncMAAT is sufficient to induce muscle atrophy, while overexpression of lncMAAT can ameliorate multiple types of muscle atrophy. Mechanistically, lncMAAT negatively regulates the transcription of miR-29b through SOX6 by a trans-regulatory module and increases the expression of the neighboring gene Mbnl1 by a cis-regulatory module. Therefore, overexpression of lncMAAT may represent a promising therapy for muscle atrophy induced by different stimuli.
Collapse
Affiliation(s)
- Jin Li
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai 200444, China; School of Medicine, Shanghai University, Shanghai 200444, China
| | - Tingting Yang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Haifei Tang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Zhao Sha
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Rui Chen
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Lei Chen
- Department of Spine Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Yan Yu
- Department of Spine Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Glenn C Rowe
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Saumya Das
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02214, USA
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai 200444, China; School of Medicine, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
14
|
Saleem M, Barturen‐Larrea P, Gomez JA. Emerging roles of Sox6 in the renal and cardiovascular system. Physiol Rep 2020; 8:e14604. [PMID: 33230925 PMCID: PMC7683808 DOI: 10.14814/phy2.14604] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/15/2022] Open
Abstract
The function of Sex-determining Region Y (SRY)-related high-mobility-group box (Sox) family of transcription factors in cell fate decisions during embryonic development are well-established. Accumulating evidence indicates that the Sox family of transcription factors are fundamental in adult tissue homeostasis, regeneration, and physiology. The SoxD subfamily of genes are expressed in various cell types of different organs during embryogenesis and adulthood and have been involved in cell-fate determination, cellular proliferation and survival, differentiation, and terminal maturation in a number of cell lineages. The dysregulation in the function of SoxD proteins (i.e. Sox5, Sox6, Sox13, and Sox23) have been implicated in different disease conditions such as chondrodysplasia, cancer, diabetes, hypertension, autoimmune diseases, osteoarthritis among others. In this minireview, we present recent developments related to the transcription factor Sox6, which is involved in a number of diseases such as diabetic nephropathy, adipogenesis, cardiomyopathy, inflammatory bowel disease, and cancer. Sox6 has been implicated in the regulation of renin expression and JG cell recruitment in mice during sodium depletion and dehydration. We provide a current perspective of Sox6 research developments in last five years, and the implications of Sox6 functions in cardiovascular physiology and disease conditions.
Collapse
Affiliation(s)
- Mohammad Saleem
- Department of Medicine / Clinical Pharmacology DivisionVanderbilt University Medical CenterNashvilleTNUSA
| | - Pierina Barturen‐Larrea
- Department of Medicine / Clinical Pharmacology DivisionVanderbilt University Medical CenterNashvilleTNUSA
| | - Jose A. Gomez
- Department of Medicine / Clinical Pharmacology DivisionVanderbilt University Medical CenterNashvilleTNUSA
| |
Collapse
|
15
|
Chen L, Xie Y, Ma X, Zhang Y, Li X, Zhang F, Gao Y, Fan Y, Gu L, Wang L, Zhang X, Fu B. SOX6 represses tumor growth of clear cell renal cell carcinoma by HMG domain-dependent regulation of Wnt/β-catenin signaling. Mol Carcinog 2020; 59:1159-1173. [PMID: 32794610 DOI: 10.1002/mc.23246] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/26/2020] [Accepted: 08/05/2020] [Indexed: 01/18/2023]
Abstract
Sex-determining region Y box (SOXs) are expressed in various cells and control cell fate and differentiation in a multitude of physiologic processes. SOX6, a main representative of SOXs, is involved in the regulation of carcinogenesis in various human malignancies. However, the role of SOX6 in clear cell renal cell carcinoma (ccRCC) remains unclear. In this study, SOX6 expression in ccRCC and its clinical significance were investigated. In vitro and in vivo assays were used to explore the tumor-related function and the underlying molecular mechanism of SOX6 in ccRCC. We confirmed that SOX6 was frequently downregulated in ccRCC tissues and cell lines. Besides, downregulation of SOX6 was significantly associated with larger tumor sizes, advanced tumor stage, higher Fuhrman grades, and its expression could act as an independent prognostic factor for ccRCC (hazards ratio = 0.590, P = .026). Gain/loss-of-function experiments demonstrated that SOX6 could remarkably inhibit tumor cell growth and foci formation in vitro and xenograft tumorigenesis in vivo, respectively. Mechanistically, SOX6 could influence cell cycle by regulating the G1/the S phase transition and had an inhibitory effect on Wnt/β-catenin signaling as well as its target genes, c-Myc and cyclin D1. Interesting, the tumor-suppressive function of SOX6 was proved to be dependent on its specific high-mobility-group (HMG) domain. In general, our findings indicated that SOX6 was a novel tumor suppressor and prognostic biomarker in ccRCC. SOX6 could inhibit tumor growth by negatively regulating the Wnt/β-catenin signaling pathway in an HMG domain-dependent manner in ccRCC, which might provide a novel therapeutic approach for ccRCC.
Collapse
Affiliation(s)
- Luyao Chen
- Department of Urology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yongpeng Xie
- Department of Urology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Ma
- Department of Urology, Chinese PLA General Hospital, Beijing, China
| | - Yu Zhang
- Department of Urology, Chinese PLA General Hospital, Beijing, China
| | - Xintao Li
- Department of Urology, Chinese PLA Air Force General Hospital, Beijing, China
| | - Fan Zhang
- Department of Urology, Chinese PLA General Hospital, Beijing, China
| | - Yu Gao
- Department of Urology, Chinese PLA General Hospital, Beijing, China
| | - Yang Fan
- Department of Urology, Chinese PLA General Hospital, Beijing, China
| | - Liangyou Gu
- Department of Urology, Chinese PLA General Hospital, Beijing, China
| | - Lei Wang
- Department of Urology, Chinese PLA General Hospital, Beijing, China
| | - Xu Zhang
- Department of Urology, Chinese PLA General Hospital, Beijing, China
| | - Bin Fu
- Department of Urology, First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
16
|
Ambele MA, Dhanraj P, Giles R, Pepper MS. Adipogenesis: A Complex Interplay of Multiple Molecular Determinants and Pathways. Int J Mol Sci 2020; 21:E4283. [PMID: 32560163 PMCID: PMC7349855 DOI: 10.3390/ijms21124283] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/07/2020] [Indexed: 11/24/2022] Open
Abstract
The formation of adipocytes during embryogenesis has been largely understudied. However, preadipocytes appear to originate from multipotent mesenchymal stromal/stem cells which migrate from the mesoderm to their anatomical localization. Most studies on adipocyte formation (adipogenesis) have used preadipocytes derived from adult stem/stromal cells. Adipogenesis consists of two phases, namely commitment and terminal differentiation. This review discusses the role of signalling pathways, epigenetic modifiers, and transcription factors in preadipocyte commitment and differentiation into mature adipocytes, as well as limitations in our understanding of these processes. To date, a limited number of transcription factors, genes and signalling pathways have been described to regulate preadipocyte commitment. One reason could be that most studies on adipogenesis have used preadipocytes already committed to the adipogenic lineage, which are therefore not suitable for studying preadipocyte commitment. Conversely, over a dozen molecular players including transcription factors, genes, signalling pathways, epigenetic regulators, and microRNAs have been described to be involved in the differentiation of preadipocytes to adipocytes; however, only peroxisome proliferator-activated receptor gamma has proven to be clinically relevant. A detailed understanding of how the molecular players underpinning adipogenesis relate to adipose tissue function could provide new therapeutic approaches for addressing obesity without compromising adipose tissue function.
Collapse
Affiliation(s)
- Melvin A. Ambele
- Department of Immunology, and SAMRC Extramural Unit for Stem Cell Research and Therapy, Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (M.A.A.); (P.D.); (R.G.)
- Department of Oral Pathology and Oral Biology, School of Dentistry, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Priyanka Dhanraj
- Department of Immunology, and SAMRC Extramural Unit for Stem Cell Research and Therapy, Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (M.A.A.); (P.D.); (R.G.)
| | - Rachel Giles
- Department of Immunology, and SAMRC Extramural Unit for Stem Cell Research and Therapy, Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (M.A.A.); (P.D.); (R.G.)
| | - Michael S. Pepper
- Department of Immunology, and SAMRC Extramural Unit for Stem Cell Research and Therapy, Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (M.A.A.); (P.D.); (R.G.)
| |
Collapse
|
17
|
Calore M, Lorenzon A, Vitiello L, Poloni G, Khan MAF, Beffagna G, Dazzo E, Sacchetto C, Polishchuk R, Sabatelli P, Doliana R, Carnevale D, Lembo G, Bonaldo P, De Windt L, Braghetta P, Rampazzo A. A novel murine model for arrhythmogenic cardiomyopathy points to a pathogenic role of Wnt signalling and miRNA dysregulation. Cardiovasc Res 2020; 115:739-751. [PMID: 30304392 DOI: 10.1093/cvr/cvy253] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 09/06/2018] [Accepted: 10/09/2018] [Indexed: 12/19/2022] Open
Abstract
AIMS Arrhythmogenic cardiomyopathy (AC) is one of the most common inherited cardiomyopathies, characterized by progressive fibro-fatty replacement in the myocardium. Clinically, AC manifests itself with ventricular arrhythmias, syncope, and sudden death and shows wide inter- and intra-familial variability. Among the causative genes identified so far, those encoding for the desmosomal proteins plakophilin-2 (PKP2), desmoplakin (DSP), and desmoglein-2 (DSG2) are the most commonly mutated. So far, little is known about the molecular mechanism(s) behind such a varied spectrum of phenotypes, although it has been shown that the causative mutations not only lead to structural abnormalities but also affect the miRNA profiling of cardiac tissue. Here, we aimed at studying the pathogenic effects of a nonsense mutation of the desmoglein-2 gene, both at the structural level and in terms of miRNA expression pattern. METHODS AND RESULTS We generated transgenic mice with cardiomyocyte-specific overexpression of a FLAG-tagged human desmoglein-2 harbouring the Q558* nonsense mutation found in an AC patient. The hearts of these mice showed signs of fibrosis, decrease in desmosomal size and number, and reduction of the Wnt/β-catenin signalling. Genome-wide RNA-Seq performed in Tg-hQ hearts and non-transgenic hearts revealed that 24 miRNAs were dysregulated in transgenic animals. Further bioinformatic analyses for selected miRNAs suggested that miR-217-5p, miR-499-5p, and miR-708-5p might be involved in the pathogenesis of the disease. CONCLUSION Down-regulation of the canonical Wnt/β-catenin signalling might be considered a common key event in the AC pathogenesis. We identified the miRNA signature in AC hearts, with miR-708-5p and miR-217-5p being the most up-regulated and miR-499-5p the most down-regulated miRNAs. All of them were predicted to be involved in the regulation of the Wnt/β-catenin pathway and might reveal the potential pathophysiology mechanisms of AC, as well as be useful as therapeutic targets for the disease.
Collapse
Affiliation(s)
- Martina Calore
- Department of Biology, University of Padua, Via Ugo Bassi 58/B, Padua, Italy.,Department of Cardiology, Faculty of Health, Medicine and Life Sciences, Maastricht University, MD Maastricht, The Netherlands
| | - Alessandra Lorenzon
- Department of Biology, University of Padua, Via Ugo Bassi 58/B, Padua, Italy
| | - Libero Vitiello
- Department of Biology, University of Padua, Via Ugo Bassi 58/B, Padua, Italy.,Italian Inter-University Institute of Myology, Padua, Italy
| | - Giulia Poloni
- Department of Biology, University of Padua, Via Ugo Bassi 58/B, Padua, Italy
| | - Mohsin A F Khan
- Department of Experimental Cardiology, Biostatistics and Bioinformatics, Academic Medical Center, Amsterdam, The Netherlands
| | - Giorgia Beffagna
- Department of Biology, University of Padua, Via Ugo Bassi 58/B, Padua, Italy
| | - Emanuela Dazzo
- Department of Biology, University of Padua, Via Ugo Bassi 58/B, Padua, Italy
| | - Claudia Sacchetto
- Department of Biology, University of Padua, Via Ugo Bassi 58/B, Padua, Italy
| | - Roman Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Patrizia Sabatelli
- National Research Council of Italy, Institute of Molecular Genetics, Bologna, Italy
| | - Roberto Doliana
- Department of Translational Research, CRO-IRCCS National Cancer Institute, Aviano, Italy
| | - Daniela Carnevale
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, Pozzilli, Italy.,Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Lembo
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, Pozzilli, Italy.,Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padua, Via Ugo Bassi 58/B, Padua, Italy
| | - Leon De Windt
- Department of Cardiology, Faculty of Health, Medicine and Life Sciences, Maastricht University, MD Maastricht, The Netherlands
| | - Paola Braghetta
- Department of Molecular Medicine, University of Padua, Via Ugo Bassi 58/B, Padua, Italy
| | - Alessandra Rampazzo
- Department of Biology, University of Padua, Via Ugo Bassi 58/B, Padua, Italy
| |
Collapse
|
18
|
Shi L, Liu L, Lv X, Ma Z, Li C, Li Y, Zhao F, Sun D, Han B. Identification of genetic effects and potential causal polymorphisms of CPM gene impacting milk fatty acid traits in Chinese Holstein. Anim Genet 2020; 51:491-501. [PMID: 32301146 DOI: 10.1111/age.12936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 02/03/2020] [Accepted: 03/15/2020] [Indexed: 11/27/2022]
Abstract
Our previous GWAS revealed 83 significant SNPs and 20 promising candidate genes associated with milk fatty acid traits in dairy cattle. Out of them, the carboxypeptidase M (CPM) gene contains a genome-wide significant SNP, Hapmap49848-BTA-106779, which is strongly associated with myristic acid (C14:0; P = 0.0064). Herein, we aimed to confirm the genetic effects of CPM on milk fatty acids in Chinese Holstein. Seven SNPs were detected by re-sequencing the sequences of entire exons and 3000 bp of up-/downstream flanking regions of the CPM gene, of which three were in 5' flanking region, one in the 3' UTR and three were in the 3' flanking region. Using the Haploview 4.1, we estimated the LD among the identified SNPs and found two haplotype blocks. With the animal model, we performed the SNP- and haplotype-based association analyses, and observed that these SNPs and haplotype blocks mainly had strong genetic associations with medium-chain saturated fatty acids (caproic acid, C6:0; caprylic acid, C8:0; capric acid, C10:0; and lauric acid, C12:0) (P < 0.0001-0.0257). In addition, using the Genomatix software, we predicted that three SNPs in the 5' flanking region of CPM (g.45079507A>G, g.45080228C>A and g.45080335C>G) changed the transcription factor binding sites for PREF (progesterone receptor biding site), ZBRK1 (transcription factor with eight central zinc fingers and an N-terminal KRAB domain), SOX9 (sex-determining region Y-box 9, dimeric binding sites), SOX6 (sex-determining region Y-box 6) and FOXP1-ES (alternative splicing variant of FOXP1, activated in ESCs). Further, the dual-luciferase reporter assay showed these three SNPs altered the transcriptional activity of CPM gene (P ≤ 0.0006). In summary, using the post-GWAS strategy, we first confirmed the significant genetic effects of CPM with milk fatty acids in dairy cattle, and identified three potential causal mutations.
Collapse
Affiliation(s)
- L Shi
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, China.,Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - L Liu
- Beijing Dairy Cattle Center, Beijing, 100192, China
| | - X Lv
- Beijing Dairy Cattle Center, Beijing, 100192, China
| | - Z Ma
- Beijing Dairy Cattle Center, Beijing, 100192, China
| | - C Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, China
| | - Y Li
- Beijing Dairy Cattle Center, Beijing, 100192, China
| | - F Zhao
- Beijing Dairy Cattle Center, Beijing, 100192, China
| | - D Sun
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, China
| | - B Han
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
19
|
Sawada T, Chater TE, Sasagawa Y, Yoshimura M, Fujimori-Tonou N, Tanaka K, Benjamin KJM, Paquola ACM, Erwin JA, Goda Y, Nikaido I, Kato T. Developmental excitation-inhibition imbalance underlying psychoses revealed by single-cell analyses of discordant twins-derived cerebral organoids. Mol Psychiatry 2020; 25:2695-2711. [PMID: 32764691 PMCID: PMC7577852 DOI: 10.1038/s41380-020-0844-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/23/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023]
Abstract
Despite extensive genetic and neuroimaging studies, detailed cellular mechanisms underlying schizophrenia and bipolar disorder remain poorly understood. Recent progress in single-cell RNA sequencing (scRNA-seq) technologies enables identification of cell-type-specific pathophysiology. However, its application to psychiatric disorders is challenging because of methodological difficulties in analyzing human brains and the confounds due to a lifetime of illness. Brain organoids derived from induced pluripotent stem cells (iPSCs) of the patients are a powerful avenue to investigate the pathophysiological processes. Here, we generated iPSC-derived cerebral organoids from monozygotic twins discordant for psychosis. scRNA-seq analysis of the organoids revealed enhanced GABAergic specification and reduced cell proliferation following diminished Wnt signaling in the patient, which was confirmed in iPSC-derived forebrain neuronal cells. Two additional monozygotic twin pairs discordant for schizophrenia also confirmed the excess GABAergic specification of the patients' neural progenitor cells. With a well-controlled genetic background, our data suggest that unbalanced specification of excitatory and inhibitory neurons during cortical development underlies psychoses.
Collapse
Affiliation(s)
- Tomoyo Sawada
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Wako, Saitama, Japan. .,Lieber Institute for Brain Development, Baltimore, MD, USA. .,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Thomas E. Chater
- grid.474690.8Laboratory for Synaptic Plasticity and Connectivity, RIKEN Center for Brain Science, Wako, Saitama Japan
| | - Yohei Sasagawa
- grid.508743.dLaboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Wako, Saitama Japan
| | - Mika Yoshimura
- grid.508743.dLaboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Wako, Saitama Japan
| | - Noriko Fujimori-Tonou
- grid.474690.8Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Wako, Saitama Japan
| | - Kaori Tanaka
- grid.508743.dLaboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Wako, Saitama Japan
| | - Kynon J. M. Benjamin
- grid.429552.dLieber Institute for Brain Development, Baltimore, MD USA ,grid.21107.350000 0001 2171 9311Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Apuã C. M. Paquola
- grid.429552.dLieber Institute for Brain Development, Baltimore, MD USA ,grid.21107.350000 0001 2171 9311Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Jennifer A. Erwin
- grid.429552.dLieber Institute for Brain Development, Baltimore, MD USA ,grid.21107.350000 0001 2171 9311Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD USA ,grid.21107.350000 0001 2171 9311Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD USA
| | - Yukiko Goda
- grid.474690.8Laboratory for Synaptic Plasticity and Connectivity, RIKEN Center for Brain Science, Wako, Saitama Japan
| | - Itoshi Nikaido
- grid.508743.dLaboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Wako, Saitama Japan ,grid.265073.50000 0001 1014 9130Functional Genome Informatics, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Tokyo Japan ,grid.20515.330000 0001 2369 4728Master’s/Doctoral Program in Life Science Innovation (Bioinformatics), Degree Programs in Systems and Information Engineering, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki Japan
| | - Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Wako, Saitama, Japan. .,Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo, Japan.
| |
Collapse
|
20
|
Liu X, Du B, Zhang P, Zhang J, Zhu Z, Liu B, Fan R. miR-380-3p regulates melanogenesis by targeting SOX6 in melanocytes from alpacas (Vicugna pacos). BMC Genomics 2019; 20:962. [PMID: 31823726 PMCID: PMC6905097 DOI: 10.1186/s12864-019-6343-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 11/27/2019] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Melanocytes are derived from neural crest stem cells in the embryonic stage. In mature melanocytes, a series of complex enzyme-catalyzed reactions leads to the production of melanins, which determine the hair and skin colors of animals. The process of melanogenesis is complex and can be regulated by mRNA, microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) genes. MiRNAs are a type of endogenous noncoding RNA approximately 22 nt in size that predominantly regulate gene expression by inhibiting translation. miR-380-3p is a candidate miRNA potentially related to melanogenesis. To better understand the mechanism of miR-380-3p melanogenesis regulation, plasmids to overexpress or knockdown miR-380-3p were transfected into alpaca melanocytes, and their effects on melanogenesis were evaluated. RESULTS In situ hybridization identified a positive miR-380-3p signal in alpaca melanocyte cytoplasm. Luciferase activity assays confirmed that SOX6 is targeted by miR-380-3p. miR-380-3p overexpression and knockdown in alpaca melanocytes respectively downregulated and upregulated SOX6 expression at the mRNA and protein levels. Additionally, miR-380-3p overexpression and knockdown, respectively, in alpaca melanocytes decreased and increased the mRNA levels of melanin transfer-related genes, including microphthalmia-associated transcription factor (MITF), tyrosinase (TYR), tyrosine-related protein-1 (TYRP1), and dopachrome tautomerase (DCT). In contrast, miR-380-3p overexpression and knockdown respectively increased and decreased the mRNA levels of β-catenin. Additionally, the effect of miR-380-3p on melanogenesis was assessed by Masson-Fontana melanin staining. CONCLUSIONS The results demonstrated that miR-380-3p targeted SOX6 to regulate melanogenesis by influencing β-catenin and MITF transcription and translation, which reduced the expression of downstream genes, including TYR, TYRP1, and DCT. These results provide insights into the mechanisms through which miR-380-3p controls melanogenesis.
Collapse
Affiliation(s)
- Xuexian Liu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Mingxian South Road, Taigu, China
| | - Bin Du
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Mingxian South Road, Taigu, China
| | - Pengqian Zhang
- Department of Ecology Research, Beijing Milu Ecological Research Center, Nanhaizi, Daxing district, Beijing, China
| | - Junzhen Zhang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Mingxian South Road, Taigu, China
| | - Zhiwei Zhu
- College of Life Science, Shanxi Agricultural University, Taigu, China
| | - Bo Liu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Mingxian South Road, Taigu, China
| | - Ruiwen Fan
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Mingxian South Road, Taigu, China.
| |
Collapse
|
21
|
Liu J, Zhang Z, Xu J, Song X, Yuan W, Miao M, Liang H, Du J. Genome-wide DNA methylation changes in placenta tissues associated with small for gestational age newborns; cohort study in the Chinese population. Epigenomics 2019; 11:1399-1412. [PMID: 31596135 DOI: 10.2217/epi-2019-0004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Aim: To investigate DNA methylation changes in placenta tissues associated with small for gestational age (SGA). Materials & methods: A prospective cohort study consisting of 1292 pregnant women from China (including 39 SGA with placenta tissues) was performed, microarray and pyrosequencing were conducted. Results: Total 2012 methylation variable positions stood out from all probes (p < 0.05; Δβ > 0.2). In SGA cases, a CpG site within ANKRD20B showed lower methylation level (p = 0.032) than appropriate for gestational age in validation cohort. Five sites within FAM198A (p = 0.047, 0.050, 0.039, 0.026 and 0.043, respectively) had a reduced methylation in male newborns whose mother had preconception folic acid supplementation. Conclusion: DNA methylation changes in placenta tissues may be associated with SGA, maternal preconception folic acid supplementation status and also be fetal sex-specific.
Collapse
Affiliation(s)
- Junwei Liu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Pharmacy, Fudan University, Shanghai 200032, China
| | - Zhaofeng Zhang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Pharmacy, Fudan University, Shanghai 200032, China
| | - Jianhua Xu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Pharmacy, Fudan University, Shanghai 200032, China
| | - Xiuxia Song
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai 200032, China
| | - Wei Yuan
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai 200032, China
| | - Maohua Miao
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai 200032, China
| | - Hong Liang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai 200032, China
| | - Jing Du
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Pharmacy, Fudan University, Shanghai 200032, China
| |
Collapse
|
22
|
Ma J, Lwigale P. Transformation of the Transcriptomic Profile of Mouse Periocular Mesenchyme During Formation of the Embryonic Cornea. Invest Ophthalmol Vis Sci 2019; 60:661-676. [PMID: 30786278 PMCID: PMC6383728 DOI: 10.1167/iovs.18-26018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose Defects in neural crest development are a major contributing factor in corneal dysgenesis, but little is known about the genetic landscape during corneal development. The purpose of this study was to provide a detailed transcriptome profile and evaluate changes in gene expression during mouse corneal development. Methods RNA sequencing was used to uncover the transcriptomic profile of periocular mesenchyme (pNC) isolated at embryonic day (E) 10.5 and corneas isolated at E14.5 and E16.5. The spatiotemporal expression of several differentially expressed genes was validated by in situ hybridization. Results Analysis of the whole-transcriptome profile between pNC and embryonic corneas identified 3815 unique differentially expressed genes. Pathway analysis revealed an enrichment of differentially expressed genes involved in signal transduction (retinoic acid, transforming growth factor-β, and Wnt pathways) and transcriptional regulation. Conclusions Our analyses, for the first time, identify a large number of differentially expressed genes during progressive stages of mouse corneal development. Our data provide a comprehensive transcriptomic profile of the developing cornea. Combined, these data serve as a valuable resource for the identification of novel regulatory networks crucial for the advancement of studies in congenital defects, stem cell therapy, bioengineering, and adult corneal diseases.
Collapse
Affiliation(s)
- Justin Ma
- BioSciences Department, Rice University, Houston, Texas, United States
| | - Peter Lwigale
- BioSciences Department, Rice University, Houston, Texas, United States
| |
Collapse
|
23
|
Bovo S, Mazzoni G, Bertolini F, Schiavo G, Galimberti G, Gallo M, Dall'Olio S, Fontanesi L. Genome-wide association studies for 30 haematological and blood clinical-biochemical traits in Large White pigs reveal genomic regions affecting intermediate phenotypes. Sci Rep 2019; 9:7003. [PMID: 31065004 PMCID: PMC6504931 DOI: 10.1038/s41598-019-43297-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 04/16/2019] [Indexed: 12/20/2022] Open
Abstract
Haematological and clinical-biochemical parameters are considered indicators of the physiological/health status of animals and might serve as intermediate phenotypes to link physiological aspects to production and disease resistance traits. The dissection of the genetic variability affecting these phenotypes might be useful to describe the resilience of the animals and to support the usefulness of the pig as animal model. Here, we analysed 15 haematological and 15 clinical-biochemical traits in 843 Italian Large White pigs, via three genome-wide association scan approaches (single-trait, multi-trait and Bayesian). We identified 52 quantitative trait loci (QTLs) associated with 29 out of 30 analysed blood parameters, with the most significant QTL identified on porcine chromosome 14 for basophil count. Some QTL regions harbour genes that may be the obvious candidates: QTLs for cholesterol parameters identified genes (ADCY8, APOB, ATG5, CDKAL1, PCSK5, PRL and SOX6) that are directly involved in cholesterol metabolism; other QTLs highlighted genes encoding the enzymes being measured [ALT (known also as GPT) and AST (known also as GOT)]. Moreover, the multivariate approach strengthened the association results for several candidate genes. The obtained results can contribute to define new measurable phenotypes that could be applied in breeding programs as proxies for more complex traits.
Collapse
Affiliation(s)
- Samuele Bovo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy
| | - Gianluca Mazzoni
- Department of Health Technology, Technical University of Denmark (DTU), Lyngby, 2800, Denmark
| | - Francesca Bertolini
- National Institute of Aquatic Resources, Technical University of Denmark (DTU), Lyngby, 2800, Denmark
| | - Giuseppina Schiavo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy
| | - Giuliano Galimberti
- Department of Statistical Sciences "Paolo Fortunati", University of Bologna, Via delle Belle Arti 41, 40126, Bologna, Italy
| | - Maurizio Gallo
- Associazione Nazionale Allevatori Suini (ANAS), Via Nizza 53, 00198, Roma, Italy
| | - Stefania Dall'Olio
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy
| | - Luca Fontanesi
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy.
| |
Collapse
|
24
|
Faillaci F, Milosa F, Critelli RM, Turola E, Schepis F, Villa E. Obese zebrafish: A small fish for a major human health condition. Animal Model Exp Med 2018; 1:255-265. [PMID: 30891575 PMCID: PMC6388073 DOI: 10.1002/ame2.12042] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/11/2018] [Accepted: 10/18/2018] [Indexed: 12/14/2022] Open
Abstract
Obesity is becoming a silent worldwide epidemic, with a steady increase in both adults and children. To date, even though several drugs have been licensed for long-term obesity treatment, none of them are yet used in routine clinical practice. So far the only successful intervention has been behavioral therapy. A suitable and economic experimental model mimicking the human condition would therefore be extremely useful to evaluate preventive measures and novel treatments. Zebrafish are emerging as an important model system to study obesity and related metabolic disease. Remarkable similarities have been reported in lipid metabolism and the adipogenic pathway between zebrafish and mammals. Moreover, the zebrafish possesses a number of features-the relative inexpensiveness of animal husbandry, its optical transparency and the ability to produce a large number of offspring at low cost-that make it ideal for large-scale screening and for testing drugs and intervention. In this review, we summarize recent progress in using zebrafish as a model system to study obesity and obesity-related metabolic disorders. We describe several zebrafish models (in both larvae and adult animals) that develop obesity and non-alcoholic fatty liver disease (NAFLD) using different approaches, including gene manipulation, diet manipulation and modification of microbiota composition. For these models, we have outlined the specific aspects related to obesity and its development and we have summarized their advantages and limitations.
Collapse
Affiliation(s)
- Francesca Faillaci
- Department of Internal MedicineGastroenterology UnitUniversity of Modena and Reggio EmiliaModenaItaly
- Women in Hepatology GroupModenaItaly
| | - Fabiola Milosa
- Women in Hepatology GroupModenaItaly
- National Institute of Gastroenterology“S. de Bellis” Research HospitalCastellana GrotteItaly
| | - Rosina Maria Critelli
- Department of Internal MedicineGastroenterology UnitUniversity of Modena and Reggio EmiliaModenaItaly
- Women in Hepatology GroupModenaItaly
| | - Elena Turola
- Department of Internal MedicineEndocrinology UnitAOU of ParmaParmaItaly
| | - Filippo Schepis
- Department of Internal MedicineGastroenterology UnitUniversity of Modena and Reggio EmiliaModenaItaly
| | - Erica Villa
- Department of Internal MedicineGastroenterology UnitUniversity of Modena and Reggio EmiliaModenaItaly
- Women in Hepatology GroupModenaItaly
| |
Collapse
|
25
|
Correa-Rodríguez M, Schmidt-RioValle J, Rueda-Medina B. SOX6 rs7117858 polymorphism is associated with osteoporosis and obesity-related phenotypes. Eur J Clin Invest 2018; 48:e13011. [PMID: 30062780 DOI: 10.1111/eci.13011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/29/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND SOX6 has been recently proposed as a pleiotropic gene for obesity and osteoporosis. The aim of this study was to investigate whether the rs7117858 genetic variant in SOX6 was associated with bone mass assessed by quantitative ultrasound (QUS) and obesity-related measures in a population of young adults. METHODS A cross-sectional study was conducted in 550 unrelated healthy individuals of Caucasian ancestry (381 (69.3%) female and 169 (30.7%) male; mean age 20.46 ± 2.69). Bone mass was assessed through calcaneal QUS) parameter (BUA, dB/MHz). Obesity-related traits including weight, body mass index (BMI), fat mass (FM) and fat-free mass (FFM) were analysed. RESULTS The linear regression analysis revealed that the rs7117858 SNP was significantly associated with FFM after adjustments for covariables in the whole sample (P = 0.027, β (95% CI) = 0.053 (0.092, 1.516). In addition, a significant association with QUS measurement adjusted for confounding factors was found in females (P = 0.043, β (95% CI) = 0.104 (0.138. 8.384). CONCLUSIONS We demonstrate for the first time that SOX6 influence FFM and QUS trait in a population of young adults, suggesting the implication of this gene in obesity and osteoporosis-related phenotypes during early adulthood.
Collapse
Affiliation(s)
- María Correa-Rodríguez
- Department of Nursing, Faculty of Health Sciences, University of Granada, Granada, Spain.,Instituto Investigación Biosanitaria, IBS, Granada, Spain
| | - Jacqueline Schmidt-RioValle
- Department of Nursing, Faculty of Health Sciences, University of Granada, Granada, Spain.,Centro de Investigación Mente, Cerebro y Comportamiento (CIMCYC), University of Granada, Granada, Spain
| | - Blanca Rueda-Medina
- Department of Nursing, Faculty of Health Sciences, University of Granada, Granada, Spain.,Instituto Investigación Biosanitaria, IBS, Granada, Spain
| |
Collapse
|
26
|
Kuri-Harcuch W, Velez-delValle C, Vazquez-Sandoval A, Hernández-Mosqueira C, Fernandez-Sanchez V. A cellular perspective of adipogenesis transcriptional regulation. J Cell Physiol 2018; 234:1111-1129. [PMID: 30146705 DOI: 10.1002/jcp.27060] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/25/2018] [Indexed: 12/19/2022]
Abstract
Adipose cells store lipids in the cytoplasm and signal systemically through secretion of adipokines and other molecules that regulate body energy metabolism. Differentiation of fat cells and its regulation has been the focus of extensive research since the early 1970s. In this review, we had attempted to examine the research bearing on the control of adipose cell differentiation, some of it dating back to the early days when Howard Green and his group described the preadipocyte cell lines 3T3-L1 and 3T3-F442A during 1974-1975. We also concentrated our attention on research published during the last few years, emphasizing data described on transcription factors that regulate adipose differentiation, outside of those that were reported earlier as part of the canonical adipogenic transcriptional cascade, which has been the subject of ample reviews by several groups of researchers. We focused on the studies carried out with the two preadipocyte cell culture models, the 3T3-L1 and 3T3-F442A cells that have provided essential data on adipose biology.
Collapse
Affiliation(s)
- Walid Kuri-Harcuch
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Cristina Velez-delValle
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Alfredo Vazquez-Sandoval
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Claudia Hernández-Mosqueira
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Veronica Fernandez-Sanchez
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
27
|
Gu Y, Zhang CWH, Wang L, Zhao Y, Wang H, Ye Q, Gao S. Association Analysis between Body Mass Index and Genomic DNA Methylation across 15 Major Cancer Types. J Cancer 2018; 9:2532-2542. [PMID: 30026852 PMCID: PMC6036895 DOI: 10.7150/jca.23535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 05/01/2018] [Indexed: 12/17/2022] Open
Abstract
Cancer incidence and mortality increase with increasing body mass index (BMI), but BMI-associated epigenetic alterations in cancer remain elusive. We hypothesized that BMI would be associated with DNA methylation alterations in cancers. To test this hypothesis, here, we estimated the associations between DNA methylation and BMI through two different methods across 15 cancer types, at approximately 485,000 CpG sites and 2415 samples using data from The Cancer Genome Atlas. After comparing the DNA methylation levels in control BMI and high BMI individuals, we found differentially methylated CpG sites (DMSs) in cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD), and uterine corpus endometrial carcinoma (UCEC) (False Discovery Rate < 0.05). The DMSs of COAD or UCEC were enriched in several obesity-induced and cancer-related pathways. Next, when BMI was used as a continuous variable, we identified BMI-associated methylated CpG sites (BMS) (P (Bonferroni) < 0.05) in CHOL (BMS = 1), COAD (BMS = 1), and UCEC (BMS = 4) using multivariable linear regression. In UCEC, three of the BMSs can predict the clinical outcomes and survival of patients with the tumors. Overall, we observed associations between DNA methylation and high BMI in CHOL, COAD, and UCEC. Furthermore, three BMI-associated CpGs were identified as potential biomarkers for UCEC prognosis.
Collapse
Affiliation(s)
- Yinmin Gu
- University of Science and Technology of China, Hefei 230026, China.,CAS Key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | | | - Liang Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuhui Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hui Wang
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Qinong Ye
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Shan Gao
- CAS Key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.,Medical College, Guizhou University, Guiyang 550025, China
| |
Collapse
|
28
|
Trizzino M, Kapusta A, Brown CD. Transposable elements generate regulatory novelty in a tissue-specific fashion. BMC Genomics 2018; 19:468. [PMID: 29914366 PMCID: PMC6006921 DOI: 10.1186/s12864-018-4850-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 06/01/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Transposable elements (TE) are an important source of evolutionary novelty in gene regulation. However, the mechanisms by which TEs contribute to gene expression are largely uncharacterized. RESULTS Here, we leverage Roadmap and GTEx data to investigate the association of TEs with active and repressed chromatin in 24 tissues. We find 112 human TE families enriched in active regions of the genome across tissues. Short Interspersed Nuclear Elements (SINEs) and DNA transposons are the most frequently enriched classes, while Long Terminal Repeat Retrotransposons (LTRs) are often enriched in a tissue-specific manner. We report across-tissue variability in TE enrichment in active regions. Genes with consistent expression across tissues are less likely to be associated with TE insertions. TE presence in repressed regions similarly follows tissue-specific patterns. Moreover, different TE classes correlate with different repressive marks: LTRs and Long Interspersed Nuclear Elements (LINEs) are overrepresented in regions marked by H3K9me3, while the other TEs are more likely to overlap regions with H3K27me3. Young TEs are typically enriched in repressed regions and depleted in active regions. We detect multiple instances of TEs that are enriched in tissue-specific active regulatory regions. Such TEs contain binding sites for transcription factors that are master regulators for the given tissue. These TEs are enriched in intronic enhancers, and their tissue-specific enrichment correlates with tissue-specific variations in the expression of the nearest genes. CONCLUSIONS We provide an integrated overview of the contribution of TEs to human gene regulation. Expanding previous analyses, we demonstrate that TEs can potentially contribute to the turnover of regulatory sequences in a tissue-specific fashion.
Collapse
Affiliation(s)
- Marco Trizzino
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, USA. .,Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA.
| | - Aurélie Kapusta
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA.,USTAR, Center for Genetic Discovery, Salt Lake City, UT, USA
| | - Christopher D Brown
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA. .,Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
29
|
Kamel M, Ninov N. Catching new targets in metabolic disease with a zebrafish. Curr Opin Pharmacol 2017; 37:41-50. [DOI: 10.1016/j.coph.2017.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/04/2017] [Accepted: 08/11/2017] [Indexed: 12/12/2022]
|
30
|
Irisin is a pro-myogenic factor that induces skeletal muscle hypertrophy and rescues denervation-induced atrophy. Nat Commun 2017; 8:1104. [PMID: 29062100 PMCID: PMC5653663 DOI: 10.1038/s41467-017-01131-0] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 08/22/2017] [Indexed: 01/04/2023] Open
Abstract
Exercise induces expression of the myokine irisin, which is known to promote browning of white adipose tissue and has been shown to mediate beneficial effects following exercise. Here we show that irisin induces expression of a number of pro-myogenic and exercise response genes in myotubes. Irisin increases myogenic differentiation and myoblast fusion via activation of IL6 signaling. Injection of irisin in mice induces significant hypertrophy and enhances grip strength of uninjured muscle. Following skeletal muscle injury, irisin injection improves regeneration and induces hypertrophy. The effects of irisin on hypertrophy are due to activation of satellite cells and enhanced protein synthesis. In addition, irisin injection rescues loss of skeletal muscle mass following denervation by enhancing satellite cell activation and reducing protein degradation. These data suggest that irisin functions as a pro-myogenic factor in mice. Exercise induces expression of the myokine Irisin. Here the authors show that Irisin promotes muscle hypertrophy and regeneration following injury or denervation in mice, by activating satellite cells and modulating protein synthesis and degradation.
Collapse
|
31
|
Amrithraj AI, Kodali A, Nguyen L, Teo AKK, Chang CW, Karnani N, Ng KL, Gluckman PD, Chong YS, Stünkel W. Gestational Diabetes Alters Functions in Offspring's Umbilical Cord Cells With Implications for Cardiovascular Health. Endocrinology 2017; 158:2102-2112. [PMID: 28431037 DOI: 10.1210/en.2016-1889] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/14/2017] [Indexed: 01/19/2023]
Abstract
Because noncommunicable diseases such as type 2 diabetes mellitus have their roots in prenatal development and conditions such as maternal gestational diabetes mellitus (GDM), we aimed to test this hypothesis in primary cells derived from the offspring of mothers with GDM compared with control subjects. We have assessed primary umbilical cord-derived cells such as human umbilical vein endothelial cells (HUVECs) and Wharton's jelly-derived mesenchymal stem cells from the offspring of mothers with and without GDM. We have compared the primary isolates in cell-based assays measuring proliferation, mitochondrial oxygen consumption, and the ability to support blood vessel growth. We conducted gene expression microarray studies with subsequent pathway analysis and candidate gene validation. We observed striking differences between the two groups, such as lower metabolic rates and impairment of endothelial tube formation in cells with GDM background. HUVECs from subjects with maternal GDM have lower expression of the antiapoptotic protein BCL-xL, suggesting compromised angiogenic capabilities. Comparative gene expression analysis revealed blood vessel formation as a major pathway enriched in the GDM-derived HUVECs with the surface marker CD44 as a gene underexpressed in the GDM group. Functional validation of CD44 revealed that it regulates tube formation in HUVECs, thereby providing insights into a pathway imprinted in primary umbilical cord-derived cells from GDM offspring. Our data demonstrate that primary cells isolated from the umbilical cord of offspring born to mothers with GDM maintain metabolic and molecular imprints of maternal hyperglycemia, reflecting an increased risk for cardiovascular disease later in life.
Collapse
Affiliation(s)
- Ajith Isaac Amrithraj
- Singapore Institute for Clinical Sciences, Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), Singapore 117609
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| | - Anjaneyulu Kodali
- Singapore Institute for Clinical Sciences, Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), Singapore 117609
| | - Linh Nguyen
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, A*STAR, Singapore 138673
| | - Adrian Kee Keong Teo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, A*STAR, Singapore 138673
| | - Cheng Wei Chang
- Singapore Institute for Clinical Sciences, Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), Singapore 117609
| | - Neerja Karnani
- Singapore Institute for Clinical Sciences, Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), Singapore 117609
| | - Kai Lyn Ng
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| | - Peter D Gluckman
- Singapore Institute for Clinical Sciences, Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), Singapore 117609
- Liggins Institute, University of Auckland, Auckland 1142, New Zealand
| | - Yap Seng Chong
- Singapore Institute for Clinical Sciences, Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), Singapore 117609
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| | - Walter Stünkel
- Singapore Institute for Clinical Sciences, Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), Singapore 117609
| |
Collapse
|
32
|
Minchin JEN, Rawls JF. A classification system for zebrafish adipose tissues. Dis Model Mech 2017; 10:797-809. [PMID: 28348140 PMCID: PMC5482999 DOI: 10.1242/dmm.025759] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 03/15/2017] [Indexed: 12/18/2022] Open
Abstract
The zebrafish model system offers significant utility for in vivo imaging of adipose tissue (AT) dynamics and for screening to identify chemical and genetic modifiers of adiposity. In particular, AT can be quantified accurately in live zebrafish using fluorescent lipophilic dyes. Although this methodology offers considerable promise, the comprehensive identification and classification of zebrafish ATs has not been performed. Here, we use fluorescent lipophilic dyes and in vivo imaging systematically to identify, classify and quantify the zebrafish AT pool. We identify 34 regionally distinct zebrafish ATs, including five visceral ATs and 22 subcutaneous ATs. For each of these ATs, we describe detailed morphological characteristics to aid their identification in future studies. Furthermore, we quantify the areas for each AT and construct regression models to allow prediction of expected AT size and variation across a range of developmental stages. Finally, we demonstrate the utility of this resource for identifying effects of strain variation and high-fat diet on AT growth. Altogether, this resource provides foundational information on the identity, dynamics and expected quantities of zebrafish ATs for use as a reference for future studies. Summary: A standardized nomenclature and classification system for zebrafish adipose tissues and regression models to predict expected adipose size during the course of zebrafish development.
Collapse
Affiliation(s)
- James E N Minchin
- Department of Molecular Genetics & Microbiology, Duke University, Durham, NC 27710, USA .,Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - John F Rawls
- Department of Molecular Genetics & Microbiology, Duke University, Durham, NC 27710, USA.,Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
33
|
Mota de Sá P, Richard AJ, Hang H, Stephens JM. Transcriptional Regulation of Adipogenesis. Compr Physiol 2017; 7:635-674. [PMID: 28333384 DOI: 10.1002/cphy.c160022] [Citation(s) in RCA: 252] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Adipocytes are the defining cell type of adipose tissue. Once considered a passive participant in energy storage, adipose tissue is now recognized as a dynamic organ that contributes to several important physiological processes, such as lipid metabolism, systemic energy homeostasis, and whole-body insulin sensitivity. Therefore, understanding the mechanisms involved in its development and function is of great importance. Adipocyte differentiation is a highly orchestrated process which can vary between different fat depots as well as between the sexes. While hormones, miRNAs, cytoskeletal proteins, and many other effectors can modulate adipocyte development, the best understood regulators of adipogenesis are the transcription factors that inhibit or promote this process. Ectopic expression and knockdown approaches in cultured cells have been widely used to understand the contribution of transcription factors to adipocyte development, providing a basis for more sophisticated in vivo strategies to examine adipogenesis. To date, over two dozen transcription factors have been shown to play important roles in adipocyte development. These transcription factors belong to several families with many different DNA-binding domains. While peroxisome proliferator-activated receptor gamma (PPARγ) is undoubtedly the most important transcriptional modulator of adipocyte development in all types of adipose tissue, members of the CCAAT/enhancer-binding protein, Krüppel-like transcription factor, signal transducer and activator of transcription, GATA, early B cell factor, and interferon-regulatory factor families also regulate adipogenesis. The importance of PPARγ activity is underscored by several covalent modifications that modulate its activity and its ability to modulate adipocyte development. This review will primarily focus on the transcriptional control of adipogenesis in white fat cells and on the mechanisms involved in this fine-tuned developmental process. © 2017 American Physiological Society. Compr Physiol 7:635-674, 2017.
Collapse
Affiliation(s)
- Paula Mota de Sá
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Allison J Richard
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Hardy Hang
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Jacqueline M Stephens
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| |
Collapse
|
34
|
Abstract
Obesity is a complex and multifactorial disease, which likely comprises multiple subtypes. Emerging data have linked chemical exposures to obesity. As organismal response to environmental exposures includes altered gene expression, identifying the regulatory epigenetic changes involved would be key to understanding the path from exposure to phenotype and provide new tools for exposure detection and risk assessment. In this report, we summarize published data linking early-life exposure to the heavy metals, cadmium and lead, to obesity. We also discuss potential mechanisms, as well as the need for complete coverage in epigenetic screening to fully identify alterations. The keys to understanding how metal exposure contributes to obesity are improved assessment of exposure and comprehensive establishment of epigenetic profiles that may serve as markers for exposures.
Collapse
Affiliation(s)
- Sarah S Park
- Department of Biological Sciences, Center for Human Health & the Environment, North Carolina State University, Raleigh, NC 27695 USA
| | - David A Skaar
- Department of Biological Sciences, Center for Human Health & the Environment, North Carolina State University, Raleigh, NC 27695 USA
| | - Randy L Jirtle
- Department of Biological Sciences, Center for Human Health & the Environment, North Carolina State University, Raleigh, NC 27695 USA.,Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53705, USA.,Department of Sport & Exercise Sciences, Institute of Sport & Physical Activity Research, University of Bedfordshire, Bedford, Bedfordshire, UK
| | - Cathrine Hoyo
- Department of Biological Sciences, Center for Human Health & the Environment, North Carolina State University, Raleigh, NC 27695 USA
| |
Collapse
|
35
|
Papavassiliou KA, Papavassiliou AG. Transcription Factor Drug Targets. J Cell Biochem 2016; 117:2693-2696. [PMID: 27191703 DOI: 10.1002/jcb.25605] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 01/09/2023]
Abstract
Transcription factors represent the point of convergence of multiple signaling pathways within eukaryotic cells. Deregulated transcription factors contribute to the pathogenesis of a plethora of human diseases, ranging from diabetes, inflammatory disorders and cardiovascular disease to many cancers, and thus these proteins hold great therapeutic potential. Direct modulation of transcription factor function by small molecules is no longer regarded a Sisyphean task, as recent work in drug discovery has revealed that transcription factors are amenable to drug inhibition. Here in we summarize, recent advances regarding the significance of transcription factors in human diseases and we discuss emerging pharmacological strategies to modulate transcription factor function. J. Cell. Biochem. 117: 2693-2696, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kostas A Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece.
| |
Collapse
|
36
|
Ge X, Leow S, Sathiakumar D, Stünkel W, Shabbir A, So J, Lomanto D, McFarlane C. Isolation and Culture of Human Adipose-derived Stem Cells from Subcutaneous and Visceral White Adipose Tissue Compartments. Bio Protoc 2016. [DOI: 10.21769/bioprotoc.2027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|