1
|
Mukherjee A, Anoop C, Nongthomba U. What a tangled web we weave: crosstalk between JAK-STAT and other signalling pathways during development in Drosophila. FEBS J 2025. [PMID: 39821459 DOI: 10.1111/febs.17391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/26/2024] [Accepted: 12/23/2024] [Indexed: 01/19/2025]
Abstract
The Janus kinase-signal transducer and activator of transcription (JAK-STAT) signalling pathway is a key player in animal development and physiology. Although it functions in a variety of processes, the net output of JAK-STAT signalling depends on its spatiotemporal activation, as well as extensive crosstalk with other signalling pathways. Drosophila, with its relatively simple signal transduction pathways and plethora of genetic analysis tools, is an ideal system for dissecting JAK-STAT signalling interactions. In this review, we explore studies in Drosophila revealing that JAK-STAT signalling lies at the nexus of a complex network of interlinked pathways, including epidermal growth factor receptor (EGFR), c-Jun N-terminal kinase (JNK), Notch, Insulin, Hippo, bone morphogenetic protein (BMP), Hedgehog (Hh) and Wingless (Wg). These pathways can synergise with or antagonise one another to produce a variety of outcomes. Given the conserved nature of signal transduction pathways, we conclude with our perspective on the implication of JAK-STAT signalling dysregulation in human diseases, and how studies in Drosophila have the potential to inform and influence clinical research.
Collapse
Affiliation(s)
- Amartya Mukherjee
- Department of Developmental Biology and Genetics, Indian Institute of Science (IISc), Bangalore, India
| | - Chaithra Anoop
- Department of Biological Science, Indian Institute of Science Education and Research (IISER), Mohali, India
| | - Upendra Nongthomba
- Department of Developmental Biology and Genetics, Indian Institute of Science (IISc), Bangalore, India
| |
Collapse
|
2
|
Zhang L, Huang Y, Zhu W. The Therapeutic Mechanisms of Huayu Quban Capsule in Treating Acne Vulgaris Are Uncovered Through Network Pharmacology and Molecular Docking. J Cosmet Dermatol 2025; 24:e16632. [PMID: 39552028 PMCID: PMC11743294 DOI: 10.1111/jocd.16632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/30/2024] [Indexed: 11/19/2024]
Abstract
PURPOSE To uncover how the Huayu Quban (HYQB) capsule treats acne vulgaris (AV) through the use of network pharmacology and molecular docking technology. METHODS The traditional Chinese medicine system pharmacology database (TCMSP) was used to identify the components and potential targets of HYQB capsule. Targets related to AV were identified by screening the GeneCards, Disease Gene Network (DisGeNET) and Online Mendelian Inheritance in Man (OMIM) databases. The protein-protein interaction (PPI) network between targets of active ingredients and AV targets was built using the STRING database. Cytoscape3.7.2 software was used to create the visualization network for the 'herb-component-target' and identify the key targets. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were utilized for functional enrichment analysis of the primary targets. Subsequently, molecular docking technology was employed to confirm the interaction between key components and core targets. RESULTS The technique discovered 50 different active substances and 270 associated therapeutic targets in the HYQB capsule as well as predicting 70 targets for treating acne vulgaris. Cytoscape hubba plug-in identified 19 key target genes, with the top 5 being TNF, IL1B, CCL2, SIRT1, IFNG, and IL10. Analysis of KEGG pathways revealed significant enrichment of immune-related pathways, including TNF and IL-17 signaling pathways, among the target genes. The HYQB capsule also involves lipid and atherosclerosis, Th17 cell differentiation, and the AGE-RAGE signaling pathway in diabetic complication signaling pathways. Molecular docking results showed that quercetin, luteolin, kaempferol, and wogonin, the core components of HYQB, had good binding ability with the first 4 core targets. CONCLUSIONS The HYQB capsule may have a synergistic effect on inhibiting sebaceous adipogenesis and sebum cell differentiation and play an effect on AV through anti-inflammatory and antioxidant effects of different signaling pathways.
Collapse
Affiliation(s)
- Lei Zhang
- Kunshan Hospital of Traditional Chinese MedicineKunshanChina
| | - Yu Huang
- Kunshan Hospital of Traditional Chinese MedicineKunshanChina
| | - Wei Zhu
- Kunshan Hospital of Traditional Chinese MedicineKunshanChina
| |
Collapse
|
3
|
Klemm JW, Van Hazel C, Harris RE. Regeneration following tissue necrosis is mediated by non-apoptotic caspase activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605350. [PMID: 39091851 PMCID: PMC11291143 DOI: 10.1101/2024.07.26.605350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Tissue necrosis is a devastating complication for many human diseases and injuries. Unfortunately, our understanding of necrosis and how it impacts surrounding healthy tissue - an essential consideration when developing effective methods to treat such injuries - has been limited by a lack of robust genetically tractable models. Our lab previously established a method to study necrosis-induced regeneration in the Drosophila wing imaginal disc, which revealed a unique phenomenon whereby cells at a distance from the injury upregulate caspase activity in a process called Necrosis-induced Apoptosis (NiA) that is vital for regeneration. Here we have further investigated this phenomenon, showing that NiA is predominantly associated with the highly regenerative pouch region of the disc, shaped by genetic factors present in the presumptive hinge. Furthermore, we find that a proportion of NiA fail to undergo apoptosis, instead surviving effector caspase activation to persist within the tissue and stimulate reparative proliferation late in regeneration. This proliferation relies on the initiator caspase Dronc, and occurs independent of JNK, ROS or mitogens associated with the previously characterized Apoptosis-induced Proliferation (AiP) mechanism. These data reveal a new means by which non-apoptotic Dronc signaling promotes regenerative proliferation in response to necrotic damage.
Collapse
Affiliation(s)
- Jacob W Klemm
- Arizona State University, 427 E Tyler Mall LSE 229, Tempe, AZ 85287-4501
| | - Chloe Van Hazel
- Arizona State University, 427 E Tyler Mall LSE 229, Tempe, AZ 85287-4501
| | - Robin E Harris
- Arizona State University, 427 E Tyler Mall LSE 229, Tempe, AZ 85287-4501
| |
Collapse
|
4
|
Li P, Huang D. Targeting the JAK-STAT pathway in colorectal cancer: mechanisms, clinical implications, and therapeutic potential. Front Cell Dev Biol 2024; 12:1507621. [PMID: 39659524 PMCID: PMC11628519 DOI: 10.3389/fcell.2024.1507621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Colorectal cancer (CRC) remains one of the most prevalent and fatal malignancies worldwide, consistently ranking among the top three in terms of incidence and mortality. Despite notable advancements in early detection and therapeutic interventions, survival outcomes for advanced-stage CRC are still dismal, largely due to issues such as drug resistance and metastasis. Recent research has increasingly implicated the JAK-STAT signaling pathway as a pivotal contributor to CRC pathogenesis. This evolutionarily conserved pathway plays a key role in transmitting extracellular signals to the nucleus, thereby modulating gene expression involved in numerous fundamental biological processes. In CRC, dysregulation of the JAK-STAT pathway is frequently observed and is strongly associated with tumor progression, including processes such as cellular proliferation, apoptosis, metastasis, immune evasion, and the sustenance of cancer stem cells. Given its integral role in CRC advancement, the JAK-STAT pathway has gained recognition as a viable therapeutic target. Extensive evidence from preclinical and clinical models supports the efficacy and safety of targeting components of the JAK-STAT pathway, presenting new therapeutic possibilities for patients with CRC, particularly in addressing drug resistance and enhancing treatment outcomes. This review offers a detailed exploration of the JAK-STAT pathway, focusing on its regulatory mechanisms in CRC-related malignancies. Moreover, it examines the association between JAK-STAT protein expression, clinical features, prognosis, and its therapeutic potential in CRC management.
Collapse
Affiliation(s)
- Penghui Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Marshall EKP, Nunes C, Burbaud S, Vincent CM, Munroe NO, Simoes da Silva CJ, Wadhawan A, Pearson WH, Sangen J, Boeck L, Floto RA, S Dionne M. Microbial metabolism disrupts cytokine activity to impact host immune response. Proc Natl Acad Sci U S A 2024; 121:e2405719121. [PMID: 39514319 PMCID: PMC11573640 DOI: 10.1073/pnas.2405719121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
Host-pathogen interactions are shaped by the metabolic status of both the host and pathogen. The host must regulate metabolism to fuel the immune response, while the pathogen must extract metabolic resources from the host to enable its own survival. In this study, we focus on the metabolic interactions of Mycobacterium abscessus with Drosophila melanogaster. We identify MAB_1132c as an asparagine transporter required for pathogenicity in M. abscessus. We show that this requirement is specifically associated with damage to the host: flies infected with MAB_1132c knockout bacteria, or with wild-type bacteria grown in asparagine-restricted conditions, are longer lived without showing a significant change in bacterial load. This is associated with a reduction in the host innate immune response, demonstrated by the decreased transcription of antimicrobial peptides as well as a significant reduction in the ability of the infection to disrupt systemic insulin signaling. Much of the increase in host survival during infection with asparagine-limited M. abscessus can be attributed to alterations in unpaired cytokine signaling. This demonstrates that asparagine transport in M. abscessus prior to infection is not required for replicative fitness in vivo but does significantly influence the interaction with the host immune responses.
Collapse
Affiliation(s)
- Eleanor K P Marshall
- Centre for Bacterial Resistance Biology, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Catarina Nunes
- Centre for Bacterial Resistance Biology, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Sophie Burbaud
- Department of Medicine, Molecular Immunity Unit, University of Cambridge, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
- Cambridge Centre for Artificial Intelligence in Medicine, Cambridge CB3 0WA, United Kingdom
| | - Crystal M Vincent
- Centre for Bacterial Resistance Biology, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Natalie O Munroe
- Centre for Bacterial Resistance Biology, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Carolina J Simoes da Silva
- Centre for Bacterial Resistance Biology, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Ashima Wadhawan
- Centre for Bacterial Resistance Biology, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - William H Pearson
- Centre for Bacterial Resistance Biology, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Jasper Sangen
- Department of Medicine, Molecular Immunity Unit, University of Cambridge, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
- Cambridge Centre for Artificial Intelligence in Medicine, Cambridge CB3 0WA, United Kingdom
| | - Lucas Boeck
- Department of Biomedicine, University of Basel, Basel 4031, Switzerland
| | - R Andres Floto
- Department of Medicine, Molecular Immunity Unit, University of Cambridge, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
- Cambridge Centre for Artificial Intelligence in Medicine, Cambridge CB3 0WA, United Kingdom
- Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge CB2 0AY, United Kingdom
| | - Marc S Dionne
- Centre for Bacterial Resistance Biology, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
6
|
Wu M, Liu R, Liu Y, Shen F, Zhao Y, Sheng X. Role of HPV E7/miR-143-3p/SH2D3A pathway in regulating the occurrence and development of cervical cancer. J Gynecol Oncol 2024; 36:36.e34. [PMID: 39366917 DOI: 10.3802/jgo.2025.36.e34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 07/13/2024] [Accepted: 08/16/2024] [Indexed: 10/06/2024] Open
Abstract
OBJECTIVE This study aims to explore the role of SH2D3A in cervical cancer, as well as its potential interaction with human papillomavirus (HPV) E7 and microRNA (miRNA). METHODS Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and immunohistochemistry were used to compare the expressions of SH2D3A in tissues. To assess the effects of SH2D3A on cervical cancer cell phenotypes, SH2D3A was knocked down in SiHa and HeLa cells, followed by cell proliferation (Cell Counting Kit-8 assay), apoptosis (flow cytometry), and invasion (Transwell assay) analyses. A transplantation tumor model was established to compare the tumorigenic ability of cervical cancer cells before and after SH2D3A silencing. Bioinformatics analysis predicted and dual-luciferase reporter assays verified the sponge adsorption effect of SH2D3A on miRNA. Western blot and qRT-PCR analyses were conducted to examine the impact on target genes following the downregulation of HPV E7 and SH2D3A. RESULTS SH2D3A expression was significantly elevated in cervical cancer tissues. SH2D3A silencing inhibited cell proliferation and invasion, induced apoptosis, and reduced tumorigenesis in nude mice. Bioinformatics tools identified a binding relationship between SH2D3A and miR-143-3p, confirmed by the luciferase reporter assays. Western blot analysis revealed that SH2D3A knockdown led to decreased levels of Janus kinase 1 (JAK1) and signal transducer and activator of transcription 3 (STAT3) proteins. Additionally, qRT-PCR showed that SH2D3A mRNA levels decreased after HPV E7 silencing, whereas miR-143-3p levels significantly increased. CONCLUSION HPV E7 influences SH2D3A expression through miR-143-3p, thereby regulating the JAK1/STAT3 pathway. This mechanism promotes the occurrence and development of cervical cancer.
Collapse
Affiliation(s)
- Meiyao Wu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Obstetrics and Gynaecology, Queen Mary Hospital, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Renci Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yao Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Fan Shen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yang Zhao
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiujie Sheng
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
7
|
Johnson CS, Williams M, Sham K, Belluschi S, Ma W, Wang X, Lau WWY, Kaufmann KB, Krivdova G, Calderbank EF, Mende N, McLeod J, Mantica G, Li J, Grey-Wilson C, Drakopoulos M, Basheer S, Sinha S, Diamanti E, Basford C, Wilson NK, Howe SJ, Dick JE, Göttgens B, Green AR, Francis N, Laurenti E. Adaptation to ex vivo culture reduces human hematopoietic stem cell activity independently of the cell cycle. Blood 2024; 144:729-741. [PMID: 38805639 PMCID: PMC7616366 DOI: 10.1182/blood.2023021426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 04/25/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024] Open
Abstract
ABSTRACT Loss of long-term hematopoietic stem cell (LT-HSC) function ex vivo hampers the success of clinical protocols that rely on culture. However, the kinetics and mechanisms through which this occurs remain incompletely characterized. In this study, through time-resolved single-cell RNA sequencing, matched in vivo functional analysis, and the use of a reversible in vitro system of early G1 arrest, we defined the sequence of transcriptional and functional events that occur during the first ex vivo division of human LT-HSCs. We demonstrated that the sharpest loss in LT-HSC repopulation capacity happens early on, between 6 and 24 hours of culture, before LT-HSCs commit to cell cycle progression. During this time window, LT-HSCs adapt to the culture environment, limit the global variability in gene expression, and transiently upregulate gene networks involved in signaling and stress responses. From 24 hours, LT-HSC progression past early G1 contributes to the establishment of differentiation programs in culture. However, contrary to the current assumptions, we demonstrated that the loss of HSC function ex vivo is independent of cell cycle progression. Finally, we showed that targeting LT-HSC adaptation to culture by inhibiting the early activation of JAK/STAT signaling improves HSC long-term repopulating function ex vivo. Collectively, our study demonstrated that controlling early LT-HSC adaptation to ex vivo culture, for example, via JAK inhibition, is critically important to improve HSC gene therapy and expansion protocols.
Collapse
Affiliation(s)
- Carys S. Johnson
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Cell Process Development, Cell and Gene Therapy, GlaxoSmithKline, Stevenage, United Kingdom
| | - Matthew Williams
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Kendig Sham
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Serena Belluschi
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Wenjuan Ma
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Xiaonan Wang
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Winnie W. Y. Lau
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | | | - Gabriela Krivdova
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Emily F. Calderbank
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Nicole Mende
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Jessica McLeod
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Giovanna Mantica
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Juan Li
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Charlotte Grey-Wilson
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Michael Drakopoulos
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Shaaezmeen Basheer
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Shubhankar Sinha
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Evangelia Diamanti
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Christina Basford
- Cell Process Development, Cell and Gene Therapy, GlaxoSmithKline, Stevenage, United Kingdom
| | - Nicola K. Wilson
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Steven J. Howe
- Cell Process Development, Cell and Gene Therapy, GlaxoSmithKline, Stevenage, United Kingdom
| | - John E. Dick
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Berthold Göttgens
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Anthony R. Green
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Natalie Francis
- Cell Process Development, Cell and Gene Therapy, GlaxoSmithKline, Stevenage, United Kingdom
- Department of Gene Therapy and Regenerative Medicine, King’s College London, London, United Kingdom
| | - Elisa Laurenti
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
8
|
Terry D, Schweibenz C, Moberg K. Local Ecdysone synthesis in a wounded epithelium sustains developmental delay and promotes regeneration in Drosophila. Development 2024; 151:dev202828. [PMID: 38775023 PMCID: PMC11234263 DOI: 10.1242/dev.202828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/03/2024] [Indexed: 06/04/2024]
Abstract
Regenerative ability often declines as animals mature past embryonic and juvenile stages, suggesting that regeneration requires redirection of growth pathways that promote developmental growth. Intriguingly, the Drosophila larval epithelia require the hormone ecdysone (Ec) for growth but require a drop in circulating Ec levels to regenerate. Examining Ec dynamics more closely, we find that transcriptional activity of the Ec-receptor (EcR) drops in uninjured regions of wing discs, but simultaneously rises in cells around the injury-induced blastema. In parallel, blastema depletion of genes encoding Ec biosynthesis enzymes blocks EcR activity and impairs regeneration but has no effect on uninjured wings. We find that local Ec/EcR signaling is required for injury-induced pupariation delay following injury and that key regeneration regulators upd3 and Ets21c respond to Ec levels. Collectively, these data indicate that injury induces a local source of Ec within the wing blastema that sustains a transcriptional signature necessary for developmental delay and tissue repair.
Collapse
Affiliation(s)
- Douglas Terry
- Graduate Programs in Genetic and Molecular Biology, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Colby Schweibenz
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Graduate Program in Biochemistry, Cell, and Developmental Biology, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
| | - Kenneth Moberg
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
9
|
Church SJ, Pulianmackal AJ, Dixon JA, Loftus LV, Amend SR, Pienta K, Cackowski FC, Buttitta LA. Oncogenic signaling in the adult Drosophila prostate-like accessory gland leads to activation of a conserved pro-tumorigenic program, in the absence of proliferation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593549. [PMID: 38853988 PMCID: PMC11160766 DOI: 10.1101/2024.05.10.593549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Drosophila models for tumorigenesis and metastasis have revealed conserved mechanisms of signaling that are also involved in mammalian cancer. Many of these models use the proliferating tissues of the larval stages of Drosophila development, when tissues are highly mitotically active, or stem cells are abundant. Fewer Drosophila tumorigenesis models use adult animals to initiate tumor formation when many tissues are largely terminally differentiated and postmitotic. The Drosophila accessory glands are prostate-like tissues and a model for some aspects of prostate tumorigenesis using this tissue has been explored. In this model, oncogenic signaling was induced during the proliferative stage of accessory gland development, raising the question of how oncogenic activity would impact the terminally differentiated and postmitotic adult tissue. Here, we show that oncogenic signaling in the adult Drosophila accessory gland leads to activation of a conserved pro-tumorigenic program, similar to that observed in mitotic larval tissues, but in the absence of proliferation. Oncogenic signaling in the adult postmitotic gland leads to tissue hyperplasia with nuclear anaplasia and aneuploidy through endoreduplication, which increases polyploidy and occasionally results in non-mitotic neoplastic-like extrusions. We compare gene expression changes in our Drosophila model with that of endocycling prostate cancer cells induced by chemotherapy, which potentially mediate tumor recurrence after treatment. Similar signaling pathways are activated in the Drosophila gland and endocycling cancer cells, suggesting the adult accessory glands provide a useful model for aspects of prostate cancer progression that do not involve cellular proliferation.
Collapse
Affiliation(s)
- S. Jaimian Church
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Ajai J. Pulianmackal
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Joseph A. Dixon
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Luke V. Loftus
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sarah R. Amend
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Kenneth Pienta
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Frank C. Cackowski
- Karmanos Cancer Institute and Wayne State University Department of Oncology, Detroit, MI
| | - Laura A. Buttitta
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
10
|
Mao S, Xie C, Liu Y, Zhao Y, Li M, Gao H, Xiao Y, Zou Y, Zheng Z, Gao Y, Xie J, Tian B, Wang L, Hua Y, Xu H. Apurinic/apyrimidinic endodeoxyribonuclease 1 (APE1) promotes stress granule formation via YBX1 phosphorylation in ovarian cancer. Cell Mol Life Sci 2024; 81:113. [PMID: 38436697 PMCID: PMC10912283 DOI: 10.1007/s00018-023-05086-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/30/2023] [Accepted: 12/12/2023] [Indexed: 03/05/2024]
Abstract
APE1 is an essential gene involved in DNA damage repair, the redox regulation of transcriptional factors (TFs) and RNA processing. APE1 overexpression is common in cancers and correlates with poor patient survival. Stress granules (SGs) are phase-separated cytoplasmic assemblies that cells form in response to environmental stresses. Precise regulation of SGs is pivotal to cell survival, whereas their dysregulation is increasingly linked to diseases. Whether APE1 engages in modulating SG dynamics is worthy of investigation. In this study, we demonstrate that APE1 colocalizes with SGs and promotes their formation. Through phosphoproteome profiling, we discover that APE1 significantly alters the phosphorylation landscape of ovarian cancer cells, particularly the phosphoprofile of SG proteins. Notably, APE1 promotes the phosphorylation of Y-Box binding protein 1 (YBX1) at S174 and S176, leading to enhanced SG formation and cell survival. Moreover, expression of the phosphomutant YBX1 S174/176E mimicking hyperphosphorylation in APE1-knockdown cells recovered the impaired SG formation. These findings shed light on the functional importance of APE1 in SG regulation and highlight the importance of YBX1 phosphorylation in SG dynamics.
Collapse
Affiliation(s)
- Shuyu Mao
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China
| | - Chong Xie
- Institute for Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China
- Department of Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Yufeng Liu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China
| | - Ye Zhao
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China
| | - Mengxia Li
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinses Academy of Sciences, Hangzhou, China
| | - Han Gao
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinses Academy of Sciences, Hangzhou, China
| | - Yue Xiao
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China
| | - Yongkang Zou
- Department of Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhiguo Zheng
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Ya Gao
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China
| | - Juan Xie
- Department of Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Bing Tian
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China
| | - Liangyan Wang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China
| | - Yuejin Hua
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China.
| | - Hong Xu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China.
| |
Collapse
|
11
|
Terry D, Schweibenz C, Moberg K. Local ecdysone synthesis in a wounded epithelium sustains developmental delay and promotes regeneration in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.25.581888. [PMID: 38464192 PMCID: PMC10925115 DOI: 10.1101/2024.02.25.581888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Regenerative ability often declines as animals mature past embryonic and juvenile stages, suggesting that regeneration requires redirection of growth pathways that promote developmental growth. Intriguingly, the Drosophila larval epithelia require the hormone ecdysone (Ec) for growth but require a drop in circulating Ec levels to regenerate. Examining Ec dynamics more closely, we find that transcriptional activity of the Ec-receptor (EcR) drops in uninjured regions of wing discs, but simultaneously rises in cells around the injury-induced blastema. In parallel, blastema depletion of genes encoding Ec biosynthesis enzymes blocks EcR activity and impairs regeneration but has no effect on uninjured wings. We find that local Ec/EcR signaling is required for injury-induced pupariation delay following injury and that key regeneration regulators upd3 and Ets21c respond to Ec levels. Collectively, these data indicate that injury induces a local source of Ec within the wing blastema that sustains a transcriptional signature necessary for developmental delay and tissue repair.
Collapse
Affiliation(s)
- Douglas Terry
- Graduate Programs in Genetics and Molecular Biology, Laney Graduate School, Emory University
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| | - Colby Schweibenz
- Graduate Programs in Biochemistry, Cell, and Developmental Biology, Laney Graduate School, Emory University
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| | - Kenneth Moberg
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
12
|
Zhong J, Jing A, Zheng S, Li S, Zhang X, Ren C. Physiological and molecular mechanisms of insect appendage regeneration. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:9. [PMID: 36859631 PMCID: PMC9978051 DOI: 10.1186/s13619-022-00156-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/21/2022] [Indexed: 03/03/2023]
Abstract
Regeneration, as a fascinating scientific field, refers to the ability of animals replacing lost tissue or body parts. Many metazoan organisms have been reported with the regeneration phenomena, but showing evolutionarily variable abilities. As the most diverse metazoan taxon, hundreds of insects show strong appendage regeneration ability. The regeneration process and ability are dependent on many factors, including macroscopic physiological conditions and microscopic molecular mechanisms. This article reviews research progress on the physiological conditions and internal underlying mechanisms controlling appendage regeneration in insects.
Collapse
Affiliation(s)
- Jiru Zhong
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Andi Jing
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Shaojuan Zheng
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Sheng Li
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631 China ,grid.263785.d0000 0004 0368 7397Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, 514779 China
| | - Xiaoshuai Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| | - Chonghua Ren
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China. .,Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, 514779, China.
| |
Collapse
|
13
|
Guo H, Liu XZ, Long GJ, Gong LL, Zhang MQ, Ma YF, Hull JJ, Dewer Y, He M, He P. Functional characterization of developmentally critical genes in the white-backed planthopper: Efficacy of nanoparticle-based dsRNA sprays for pest control. PEST MANAGEMENT SCIENCE 2023; 79:1048-1061. [PMID: 36325939 DOI: 10.1002/ps.7271] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/30/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR), zinc finger homeodomain-2 (zfh-2), Abdominal-A (Abd-A), and Abdominal-B (Abd-B) regulate the growth and development of the insect abdomen. However, their potential roles in pest control have not been fully assessed. The development of insecticide resistance to multiple chemistries in the white-backed planthopper (WBPH), a major pest of rice, has prompted interest in novel pest control approaches that are ecologically friendly. Although pest management approaches based on double-stranded RNA (dsRNA)-mediated RNA interference (RNAi) have potential, their susceptibility to degradation limits large-scale field applications. These limitations, however, can be overcome with nanoparticle-dsRNA complexes that have greater environmental stability and improved cellular uptake. RESULTS In this study, at 5 days post-injection, transcripts for the four gene targets were reduced relative to controls and all of the experimental groups exhibited significant phenotypic defects and increased mortality. To evaluate the potential of these gene targets for field applications, a nanocarrier-dsRNA spray delivery system was assessed for RNAi efficacy. At 11 days post-spray, significant phenotypic defects and increased mortality were observed in all experimental groups. CONCLUSION Taken together, the results confirm the suitability of the target genes (SfEGFR, Sfzfh-2, SfAbd-A, and SfAbd-B) for pest management and demonstrate the efficacy of the nanocarrier spray system for inducing RNAi-mediated knockdown. As such, the study lays the foundation for the further development and optimization of this technology for large-scale field applications. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huan Guo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| | - Xuan-Zheng Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| | - Gui-Jun Long
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| | - Lang-Lang Gong
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| | - Meng-Qi Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| | - Yun-Feng Ma
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| | - J Joe Hull
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ, USA
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Giza, Egypt
| | - Ming He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| | - Peng He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| |
Collapse
|
14
|
Velagala V, Soundarrajan DK, Unger MF, Gazzo D, Kumar N, Li J, Zartman J. The multimodal action of G alpha q in coordinating growth and homeostasis in the Drosophila wing imaginal disc. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.08.523049. [PMID: 36711848 PMCID: PMC9881979 DOI: 10.1101/2023.01.08.523049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background G proteins mediate cell responses to various ligands and play key roles in organ development. Dysregulation of G-proteins or Ca 2+ signaling impacts many human diseases and results in birth defects. However, the downstream effectors of specific G proteins in developmental regulatory networks are still poorly understood. Methods We employed the Gal4/UAS binary system to inhibit or overexpress Gαq in the wing disc, followed by phenotypic analysis. Immunohistochemistry and next-gen RNA sequencing identified the downstream effectors and the signaling cascades affected by the disruption of Gαq homeostasis. Results Here, we characterized how the G protein subunit Gαq tunes the size and shape of the wing in the larval and adult stages of development. Downregulation of Gαq in the wing disc reduced wing growth and delayed larval development. Gαq overexpression is sufficient to promote global Ca 2+ waves in the wing disc with a concomitant reduction in the Drosophila final wing size and a delay in pupariation. The reduced wing size phenotype is further enhanced when downregulating downstream components of the core Ca 2+ signaling toolkit, suggesting that downstream Ca 2+ signaling partially ameliorates the reduction in wing size. In contrast, Gαq -mediated pupariation delay is rescued by inhibition of IP 3 R, a key regulator of Ca 2+ signaling. This suggests that Gαq regulates developmental phenotypes through both Ca 2+ -dependent and Ca 2+ -independent mechanisms. RNA seq analysis shows that disruption of Gαq homeostasis affects nuclear hormone receptors, JAK/STAT pathway, and immune response genes. Notably, disruption of Gαq homeostasis increases expression levels of Dilp8, a key regulator of growth and pupariation timing. Conclusion Gαq activity contributes to cell size regulation and wing metamorphosis. Disruption to Gαq homeostasis in the peripheral wing disc organ delays larval development through ecdysone signaling inhibition. Overall, Gαq signaling mediates key modules of organ size regulation and epithelial homeostasis through the dual action of Ca 2+ -dependent and independent mechanisms.
Collapse
|
15
|
Gattupalli M, Dey P, Poovizhi S, Patel RB, Mishra D, Banerjee S. The Prospects of RNAs and Common Significant Pathways in Cancer Therapy and Regenerative Medicine. Regen Med 2023. [DOI: 10.1007/978-981-19-6008-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
16
|
Serras F. The sooner, the better: ROS, kinases and nutrients at the onset of the damage response in Drosophila. Front Cell Dev Biol 2022; 10:1047823. [PMID: 36353511 PMCID: PMC9637634 DOI: 10.3389/fcell.2022.1047823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/11/2022] [Indexed: 11/20/2022] Open
Abstract
One of the main topics in regeneration biology is the nature of the early signals that trigger the damage response. Recent advances in Drosophila point to the MAP3 kinase Ask1 as a molecular hub that integrates several signals at the onset of regeneration. It has been discovered that reactive oxygen species (ROS) produced in damaged imaginal discs and gut epithelia will activate the MAP3 kinase Ask1. Severely damaged and apoptotic cells produce an enormous amount of ROS, which ensures their elimination by activating Ask1 and in turn the pro-apoptotic function of JNK. However, this creates an oxidative stress environment with beneficial effects that is sensed by neighboring healthy cells. This environment, in addition to the Pi3K/Akt nutrient sensing pathway, can be integrated into Ask1 to launch regeneration. Ultimately the activity of Ask1 depends on these and other inputs and modulates its signaling to achieve moderate levels of p38 and low JNK signaling and thus promote survival and regeneration. This model based on the dual function of Ask1 for early response to damage is discussed here.
Collapse
Affiliation(s)
- Florenci Serras
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institute of Biomedicine of the University of Barcelona, University of Barcelona, Barcelona, Spain
| |
Collapse
|
17
|
Ting CY, Tan SY, Gan GG, Zain SM, Pung YF, Ong DBL, Bee PC. Downregulation of hsa-miR-548d-3p and overexpression of HOXA9 in diffuse large B-cell lymphoma patients and the risk of R-CHOP chemotherapy resistance and disease progression. Int J Lab Hematol 2022; 44:907-917. [PMID: 35830966 DOI: 10.1111/ijlh.13928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/12/2022] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Routine categorization of DLBCL patients into GCB and non-GCB groups by Hans' criteria could not accurately predict chemotherapy resistance and disease progression in patients treated with standard R-CHOP therapy. There is a need to identify better biomarker predictors to enhance assisted selection of chemotherapy regimens for DLBCL patients. AIM OF THE STUDY To identify dysregulated miRNAs and mRNAs that are predictive of resistance to R-CHOP chemotherapy or disease progression in patients with DLBCL. METHODS miRNA and mRNA profiling were performed on archival FFPE samples of the DLBCL patients. miRabel and miRNet bioinformatic tools were applied to determine experimental validated miRNA-mRNA target interaction. The significance of the genomic predictive values was assessed using adjusted odds ratios (AOR) and 95% confidence intervals (CI). RESULTS 19/36 were R-CHOP therapy-resistant whilst 17/36 were R-CHOP therapy-sensitive. Ten dysregulated miRNAs and 12 dysregulated mRNAs were identified in therapy-resistant DLBCL patients. These dysregulated miRNAs and mRNA cause therapy resistance and disease progression in DLBCL patients, most likely via upregulation of the anti-apoptotic protein bcl2, activation of the JAK/STAT signalling pathway and dysregulation of p53 pathway. Downregulation of hsa-miR-548d-3p and overexpression of HOXA9 mRNA were significantly associated with therapy resistance and disease progression in DLBCL patients [hsa-miR-548d-3p AOR: 0.258, 95%CI: 0.097-0.684, p = 0.006]. CONCLUSION DLBCL patients with downregulation of hsa-miR-548d-3p and overexpression of HOXA9 mRNA are more likely to experience R-CHOP therapy resistance and disease progression.
Collapse
Affiliation(s)
- Choo-Yuen Ting
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Soo-Yong Tan
- Department of Pathology, National University of Singapore, Singapore, Singapore
| | - Gin-Gin Gan
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Shamsul-Mohd Zain
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yuh-Fen Pung
- Division of Biomedical Science, University of Nottingham Malaysia, Semenyih, selangor, Malaysia
| | - Diana Bee-Lan Ong
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ping-Chong Bee
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Cao X, Rojas M, Pastor-Pareja JC. Intrinsic and damage-induced JAK/STAT signaling regulate developmental timing by the Drosophila prothoracic gland. Dis Model Mech 2021; 15:273570. [PMID: 34842272 PMCID: PMC8807578 DOI: 10.1242/dmm.049160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 11/15/2021] [Indexed: 11/20/2022] Open
Abstract
Development involves tightly paced, reproducible sequences of events, yet it must adjust to conditions external to it, such as resource availability and organismal damage. A major mediator of damage-induced immune responses in vertebrates and insects is JAK/STAT signaling. At the same time, JAK/STAT activation by the Drosophila Upd cytokines is pleiotropically involved in normal development of multiple organs. Whether inflammatory and developmental JAK/STAT roles intersect is unknown. Here, we show that JAK/STAT is active during development of the prothoracic gland (PG), which controls metamorphosis onset through ecdysone production. Reducing JAK/STAT signaling decreased PG size and advanced metamorphosis. Conversely, JAK/STAT hyperactivation by overexpression of pathway components or SUMOylation loss caused PG hypertrophy and metamorphosis delay. Tissue damage and tumors, known to secrete Upd cytokines, also activated JAK/STAT in the PG and delayed metamorphosis, at least in part by inducing expression of the JAK/STAT target Apontic. JAK/STAT damage signaling, therefore, regulates metamorphosis onset by co-opting its developmental role in the PG. Our findings in Drosophila provide insights on how systemic effects of damage and cancer can interfere with hormonally controlled development and developmental transitions. Summary: Damage signaling from tumors mediated by JAK/STAT-activating Upd cytokines delays the Drosophila larva–pupa transition through co-option of a JAK/STAT developmental role in the prothoracic gland.
Collapse
Affiliation(s)
- Xueya Cao
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Marta Rojas
- School of Medicine, Tsinghua University, Beijing, China
| | - José Carlos Pastor-Pareja
- School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| |
Collapse
|
19
|
Soo TCC, Bhassu S. Differential STAT gene expressions of Penaeus monodon and Macrobrachium rosenbergii in response to white spot syndrome virus (WSSV) and bacterial infections: Additional insight into genetic variations and transcriptomic highlights. PLoS One 2021; 16:e0258655. [PMID: 34653229 PMCID: PMC8519450 DOI: 10.1371/journal.pone.0258655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/04/2021] [Indexed: 01/14/2023] Open
Abstract
Diseases have remained the major issue for shrimp aquaculture industry for decades by which different shrimp species demonstrated alternative disease resistance or tolerance. However, there had been insufficient studies on the underlying host mechanisms of such phenomenon. Hence, in this study, the main objective involves gaining a deeper understanding into the functional importance of shrimp STAT gene from the aspects of expression, sequence, structure, and associated genes. STAT gene was selected primarily because of its vital signalling roles in stress, endocrine, and immune response. The differential gene expressions of Macrobrachium rosenbergii STAT (MrST) and Penaeus monodon STAT (PmST) under White Spot Syndrome Virus (WSSV) and Vibrio parahaemolyticus/VpAHPND infections were identified through qPCR analysis. Notably, during both pathogenic infections, MrST demonstrated significant gene expression down-regulations (during either early or later post-infection time points) whereas PmST showed only significant gene expression up-regulations. Important sequence conservation or divergence was highlighted through STAT sequence comparison especially amino acid alterations at 614 aa [K (Lysine) to E (Glutamic Acid)] and 629 aa [F (Phenylalanine) to V (Valine)] from PmST (AY327491.1) to PmST (disease tolerant strain). There were significant differences observed between in silico characterized structures of MrST and PmST proteins. Important functional differentially expressed genes (DEGs) in the aspects of stress, endocrine, immune, signalling, and structural were uncovered through comparative transcriptomic analysis. The DEGs associated with STAT functioning were identified including inositol 1,4,5-trisphosphate receptor, hsp90, caspase, ATP binding cassette transmembrane transporter, C-type Lectin, HMGB, ALF1, ALF3, superoxide dismutase, glutathione peroxidase, catalase, and TBK1. The main findings of this study are STAT differential gene expression patterns, sequence divergence, structural differences, and associated functional DEGs. These findings can be further utilized for shrimp health or host response diagnostic studies. STAT gene can also be proposed as a suitable candidate for future studies of shrimp innate immune enhancement.
Collapse
Affiliation(s)
- Tze Chiew Christie Soo
- Faculty of Science, Animal Genetics and Genome Evolutionary Laboratory (AGAGEL), Department of Genetics and Molecular Biology, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Subha Bhassu
- Faculty of Science, Animal Genetics and Genome Evolutionary Laboratory (AGAGEL), Department of Genetics and Molecular Biology, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
- Terra Aqua Laboratory, Centre for Research in Biotechnology for Agriculture (CEBAR), Research Management and Innovation Complex, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
20
|
Whiteley SL, Holleley CE, Wagner S, Blackburn J, Deveson IW, Marshall Graves JA, Georges A. Two transcriptionally distinct pathways drive female development in a reptile with both genetic and temperature dependent sex determination. PLoS Genet 2021; 17:e1009465. [PMID: 33857129 PMCID: PMC8049264 DOI: 10.1371/journal.pgen.1009465] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/03/2021] [Indexed: 12/19/2022] Open
Abstract
How temperature determines sex remains unknown. A recent hypothesis proposes that conserved cellular mechanisms (calcium and redox; 'CaRe' status) sense temperature and identify genes and regulatory pathways likely to be involved in driving sexual development. We take advantage of the unique sex determining system of the model organism, Pogona vitticeps, to assess predictions of this hypothesis. P. vitticeps has ZZ male: ZW female sex chromosomes whose influence can be overridden in genetic males by high temperatures, causing male-to-female sex reversal. We compare a developmental transcriptome series of ZWf females and temperature sex reversed ZZf females. We demonstrate that early developmental cascades differ dramatically between genetically driven and thermally driven females, later converging to produce a common outcome (ovaries). We show that genes proposed as regulators of thermosensitive sex determination play a role in temperature sex reversal. Our study greatly advances the search for the mechanisms by which temperature determines sex.
Collapse
Affiliation(s)
- Sarah L. Whiteley
- Institute for Applied Ecology, University of Canberra, Canberra, Australia
- Australian National Wildlife Collection CSIRO National Research Collections Australia, Canberra, Australia
| | - Clare E. Holleley
- Australian National Wildlife Collection CSIRO National Research Collections Australia, Canberra, Australia
| | - Susan Wagner
- Institute for Applied Ecology, University of Canberra, Canberra, Australia
| | - James Blackburn
- Garvan Institute of Medical Research, Sydney, Australia
- St. Vincent’s Clinical School, UNSW, Sydney, Australia
| | - Ira W. Deveson
- Garvan Institute of Medical Research, Sydney, Australia
- St. Vincent’s Clinical School, UNSW, Sydney, Australia
| | - Jennifer A. Marshall Graves
- Institute for Applied Ecology, University of Canberra, Canberra, Australia
- Latrobe University, Melbourne, Australia
| | - Arthur Georges
- Institute for Applied Ecology, University of Canberra, Canberra, Australia
| |
Collapse
|
21
|
Dong YL, Vadla GP, Lu JYJ, Ahmad V, Klein TJ, Liu LF, Glazer PM, Xu T, Chabu CY. Cooperation between oncogenic Ras and wild-type p53 stimulates STAT non-cell autonomously to promote tumor radioresistance. Commun Biol 2021; 4:374. [PMID: 33742110 PMCID: PMC7979758 DOI: 10.1038/s42003-021-01898-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 02/23/2021] [Indexed: 12/27/2022] Open
Abstract
Oncogenic RAS mutations are associated with tumor resistance to radiation therapy. Cell-cell interactions in the tumor microenvironment (TME) profoundly influence therapy outcomes. However, the nature of these interactions and their role in Ras tumor radioresistance remain unclear. Here we use Drosophila oncogenic Ras tissues and human Ras cancer cell radiation models to address these questions. We discover that cellular response to genotoxic stress cooperates with oncogenic Ras to activate JAK/STAT non-cell autonomously in the TME. Specifically, p53 is heterogeneously activated in Ras tumor tissues in response to irradiation. This mosaicism allows high p53-expressing Ras clones to stimulate JAK/STAT cytokines, which activate JAK/STAT in the nearby low p53-expressing surviving Ras clones, leading to robust tumor re-establishment. Blocking any part of this cell-cell communication loop re-sensitizes Ras tumor cells to irradiation. These findings suggest that coupling STAT inhibitors to radiotherapy might improve clinical outcomes for Ras cancer patients.
Collapse
Affiliation(s)
- Yong-Li Dong
- Howard Hughes Medical Institute, Department of Genetics, Yale University School of Medicine, Boyer Center for Molecular Medicine, New Haven, CT, USA
- State Key Laboratory of Genetic Engineering and National Center for International Research, Fudan-Yale Biomedical Research Center, Institute of Developmental Biology and Molecular Medicine, School of Life Sciences, Fudan University, Shanghai, China
| | - Gangadhara P Vadla
- Division of Biological Sciences, College of Veterinary Medicine, Department of Surgery, University of Missouri, Columbia, MO, USA
| | - Jin-Yu Jim Lu
- Howard Hughes Medical Institute, Department of Genetics, Yale University School of Medicine, Boyer Center for Molecular Medicine, New Haven, CT, USA
- Yale-Waterbury Internal Medicine Residency Program, Waterbury, CT, USA
| | - Vakil Ahmad
- Division of Biological Sciences, College of Veterinary Medicine, Department of Surgery, University of Missouri, Columbia, MO, USA
| | - Thomas J Klein
- Howard Hughes Medical Institute, Department of Genetics, Yale University School of Medicine, Boyer Center for Molecular Medicine, New Haven, CT, USA
- South Florida Radiation Oncology, West Palm Beach, FL, USA
| | - Lu-Fang Liu
- Howard Hughes Medical Institute, Department of Genetics, Yale University School of Medicine, Boyer Center for Molecular Medicine, New Haven, CT, USA
| | - Peter M Glazer
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Tian Xu
- Howard Hughes Medical Institute, Department of Genetics, Yale University School of Medicine, Boyer Center for Molecular Medicine, New Haven, CT, USA.
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China.
| | - Chiswili-Yves Chabu
- Division of Biological Sciences, College of Veterinary Medicine, Department of Surgery, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
22
|
Guntur AR, Venkatanarayan A, Gangula S, Lundell MJ. Zfh-2 facilitates Notch-induced apoptosis in the CNS and appendages of Drosophila melanogaster. Dev Biol 2021; 475:65-79. [PMID: 33705738 DOI: 10.1016/j.ydbio.2021.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 12/26/2022]
Abstract
Apoptosis is a fundamental remodeling process for most tissues during development. In this manuscript we examine a pro-apoptotic function for the Drosophila DNA binding protein Zfh-2 during development of the central nervous system (CNS) and appendages. In the CNS we find that a loss-of-function zfh-2 allele gives an overall reduction of apoptotic cells in the CNS, and an altered pattern of expression for the axonal markers 22C10 and FasII. This same loss-of-function zfh-2 allele causes specific cells in the NB7-3 lineage of the CNS that would normally undergo apoptosis to be inappropriately maintained, whereas a gain-of-function zfh-2 allele has the opposite effect, resulting in a loss of normal NB 7-3 progeny. We also demonstrate that Zfh-2 and Hunchback reciprocally repress each other's gene expression which limits apoptosis to later born progeny of the NB7-3 lineage. Apoptosis is also required for proper segmentation of the fly appendages. We find that Zfh-2 co-localizes with apoptotic cells in the folds of the imaginal discs and presumptive cuticular joints. A reduction of Zfh-2 levels with RNAi inhibits expression of the pro-apoptotic gene reaper, and produces abnormal joints in the leg, antenna and haltere. Apoptosis has previously been shown to be activated by Notch signaling in both the NB7-3 CNS lineage and the appendage joints. Our results indicate that Zfh-2 facilitates Notch-induced apoptosis in these structures.
Collapse
Affiliation(s)
- Ananya R Guntur
- Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | | | - Sindhura Gangula
- Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Martha J Lundell
- Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA.
| |
Collapse
|
23
|
Duval KEA, Wagner RJ, Beiss V, Fiering SN, Steinmetz NF, Hoopes PJ. Cowpea Mosaic Virus Nanoparticle Enhancement of Hypofractionated Radiation in a B16 Murine Melanoma Model. Front Oncol 2020; 10:594614. [PMID: 33392089 PMCID: PMC7773968 DOI: 10.3389/fonc.2020.594614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/02/2020] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION Virus and virus-like nanoparticles (VNPs) have been used for a variety of preclinical treatments, including in situ anti-cancer vaccination. The Cowpea mosaic virus (CPMV) is a VNP that has shown the ability to stimulate an anti-cancer immune response. The hypothesis of this study is two-fold: that intratumoral CPMV enhances the immunogenetic and cytotoxic response of hypofractionated radiation (15 Gy or 3 x 8 Gy), and that the effect differs between fraction regimens in the murine B16 flank melanoma model. METHODS CPMV nanoparticles were delivered intratumorally, 100 μg/tumor to B16 murine melanoma flank tumors alone, and in combination with either 15 Gy or 3 x 8 Gy (3 consecutive days). Tumors were assessed for immune and cytotoxic gene and protein expression, and cytotoxic T cell infiltration 4 days post treatment. Treatment based tumor control was assessed by a 3-fold tumor growth assay. RESULTS Both CPMV and radiation alone demonstrated the activation of a number of important immune and cytotoxic genes including natural killer cell and T cell mediated cytotoxicity pathways. However, the combination treatment activated greater expression than either treatment alone. CPMV combined with a single dose of 15 Gy demonstrated greater immune and cytotoxic gene expression, protein expression, CD8+ T cell infiltration activity, and greater tumor growth delay compared to 3 x 8 Gy with CPMV. CONCLUSION CPMV presents a unique and promising hypofractionated radiation adjuvant that leads to increased anti-tumor cytotoxic and immune signaling, especially with respect to the immune mediated cytotoxicity, immune signaling, and toll-like receptor signaling pathways. This improvement was greater with a single dose than with a fractionated dose.
Collapse
Affiliation(s)
- Kayla E. A. Duval
- Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Robert J. Wagner
- Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
| | - Veronique Beiss
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, United States
| | - Steven N. Fiering
- Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| | - Nicole F. Steinmetz
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, United States
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
- Department of Radiology, University of California San Diego, La Jolla, CA, United States
- Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
- Center for Nano-ImmunoEngineering, University of California San Diego, La Jolla, CA, United States
| | - P. Jack Hoopes
- Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| |
Collapse
|
24
|
Harris RE, Stinchfield MJ, Nystrom SL, McKay DJ, Hariharan IK. Damage-responsive, maturity-silenced enhancers regulate multiple genes that direct regeneration in Drosophila. eLife 2020; 9:58305. [PMID: 32490812 PMCID: PMC7299344 DOI: 10.7554/elife.58305] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/28/2020] [Indexed: 12/31/2022] Open
Abstract
Like tissues of many organisms, Drosophila imaginal discs lose the ability to regenerate as they mature. This loss of regenerative capacity coincides with reduced damage-responsive expression of multiple genes needed for regeneration. We previously showed that two such genes, wg and Wnt6, are regulated by a single damage-responsive enhancer that becomes progressively inactivated via Polycomb-mediated silencing as discs mature (Harris et al., 2016). Here we explore the generality of this mechanism and identify additional damage-responsive, maturity-silenced (DRMS) enhancers, some near genes known to be required for regeneration such as Mmp1, and others near genes that we now show function in regeneration. Using a novel GAL4-independent ablation system we characterize two DRMS-associated genes, apontic (apt), which curtails regeneration and CG9752/asperous (aspr), which promotes it. This mechanism of suppressing regeneration by silencing damage-responsive enhancers at multiple loci can be partially overcome by reducing activity of the chromatin regulator extra sex combs (esc).
Collapse
Affiliation(s)
| | | | - Spencer L Nystrom
- University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Daniel J McKay
- University of North Carolina at Chapel Hill, Chapel Hill, United States
| | | |
Collapse
|
25
|
Abstract
Drosophila melanogaster has historically been a workhorse model organism for studying developmental biology. In addition, Drosophila is an excellent model for studying how damaged tissues and organs can regenerate. Recently, new precision approaches that enable both highly targeted injury and genetic manipulation have accelerated progress in this field. Here, we highlight these techniques and review examples of recently discovered mechanisms that regulate regeneration in Drosophila larval and adult tissues. We also discuss how, by applying these powerful approaches, studies of Drosophila can continue to guide the future of regeneration research.
Collapse
Affiliation(s)
- Donald T Fox
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Regeneration Next, Duke University, Durham, NC 27710, USA
| | - Erez Cohen
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Regeneration Next, Duke University, Durham, NC 27710, USA
| | - Rachel Smith-Bolton
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
26
|
Peng DH, Liu YY, Chen W, Hu HN, Luo Y. Epidermal growth factor alleviates cerebral ischemia-induced brain injury by regulating expression of neutrophil gelatinase-associated lipocalin. Biochem Biophys Res Commun 2020; 524:963-969. [DOI: 10.1016/j.bbrc.2020.02.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 02/04/2020] [Indexed: 11/28/2022]
|
27
|
Pinal N, Calleja M, Morata G. Pro-apoptotic and pro-proliferation functions of the JNK pathway of Drosophila: roles in cell competition, tumorigenesis and regeneration. Open Biol 2020; 9:180256. [PMID: 30836847 PMCID: PMC6451367 DOI: 10.1098/rsob.180256] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Jun N-terminal kinase (JNK) is a member of the mitogen-activated protein kinase family. It appears to be conserved in all animal species where it regulates important physiological functions involved in apoptosis, cell migration, cell proliferation and regeneration. In this review, we focus on the functions of JNK in Drosophila imaginal discs, where it has been reported that it can induce both cell death and cell proliferation. We discuss this apparent paradox in the light of recent findings and propose that the pro-apoptotic and the pro-proliferative functions are intrinsic properties of JNK activity. Whether one function or another is predominant depends on the cellular context.
Collapse
Affiliation(s)
- Noelia Pinal
- Centro de Biología Molecular CSIC-UAM , Madrid , Spain
| | | | - Ginés Morata
- Centro de Biología Molecular CSIC-UAM , Madrid , Spain
| |
Collapse
|
28
|
Abstract
Ageing appears to be a nearly universal feature of life, ranging from unicellular microorganisms to humans. Longevity depends on the maintenance of cellular functionality, and an organism's ability to respond to stress has been linked to functional maintenance and longevity. Stress response pathways might indeed become therapeutic targets of therapies aimed at extending the healthy lifespan. Various progeroid syndromes have been linked to genome instability, indicating an important causal role of DNA damage accumulation in the ageing process and the development of age-related pathologies. Recently, non-cell-autonomous mechanisms including the systemic consequences of cellular senescence have been implicated in regulating organismal ageing. We discuss here the role of cellular and systemic mechanisms of ageing and their role in ageing-associated diseases.
Collapse
Affiliation(s)
- Paulo F L da Silva
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany.,Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Björn Schumacher
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany.,Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| |
Collapse
|
29
|
Perner F, Perner C, Ernst T, Heidel FH. Roles of JAK2 in Aging, Inflammation, Hematopoiesis and Malignant Transformation. Cells 2019; 8:cells8080854. [PMID: 31398915 PMCID: PMC6721738 DOI: 10.3390/cells8080854] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 12/22/2022] Open
Abstract
Clonal alterations in hematopoietic cells occur during aging and are often associated with the establishment of a subclinical inflammatory environment. Several age-related conditions and diseases may be initiated or promoted by these alterations. JAK2 mutations are among the most frequently mutated genes in blood cells during aging. The most common mutation within the JAK2 gene is JAK2-V617F that leads to constitutive activation of the kinase and thereby aberrant engagement of downstream signaling pathways. JAK2 mutations can act as central drivers of myeloproliferative neoplasia, a pre-leukemic and age-related malignancy. Likewise, hyperactive JAK-signaling is a hallmark of immune diseases and critically influences inflammation, coagulation and thrombosis. In this review we aim to summarize the current knowledge on JAK2 in clonal hematopoiesis during aging, the role of JAK-signaling in inflammation and lymphocyte biology and JAK2 function in age-related diseases and malignant transformation.
Collapse
Affiliation(s)
- Florian Perner
- Innere Medizin 2, Hämatologie und Onkologie, Universitätsklinikum Jena, 07747 Jena, Germany
- Leibniz-Institute on Aging-Fritz Lipmann Institute (FLI), 07745 Jena, Germany
- Dana-Farber Cancer Institute, Department of Pediatric Oncology, Harvard University, Boston, MA 02467, USA
| | - Caroline Perner
- Center for Immunology & Inflammatory Diseases, Massachusetts General Hospital, and Harvard Medical School, Boston, 02129 MA, USA
| | - Thomas Ernst
- Innere Medizin 2, Hämatologie und Onkologie, Universitätsklinikum Jena, 07747 Jena, Germany
| | - Florian H Heidel
- Innere Medizin 2, Hämatologie und Onkologie, Universitätsklinikum Jena, 07747 Jena, Germany.
- Leibniz-Institute on Aging-Fritz Lipmann Institute (FLI), 07745 Jena, Germany.
| |
Collapse
|
30
|
Zhang H, Huang L, Tao L, Zhang J, Wang F, Zhang X, Fu L. Secalonic acid D induces cell apoptosis in both sensitive and ABCG2-overexpressing multidrug resistant cancer cells through upregulating c-Jun expression. Acta Pharm Sin B 2019; 9:516-525. [PMID: 31193763 PMCID: PMC6543021 DOI: 10.1016/j.apsb.2018.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/04/2018] [Accepted: 11/28/2018] [Indexed: 12/14/2022] Open
Abstract
Secalonic acid D (SAD) could inhibit cell growth in not only sensitive cells but also multidrug resistant (MDR) cells. However, the molecular mechanisms need to be elucidated. Here, we identified that SAD possessed potent cytotoxicity in 3 pairs of MDR and their parental sensitive cells including S1-MI-80 and S1, H460/MX20 and H460, MCF-7/ADR and MCF-7 cells. Furthermore, SAD induced cell G2/M phase arrest via the downregulation of cyclin B1 and the increase of CDC2 phosphorylation. Importantly, JNK pathway upregulated the expression of c-Jun in protein level and increased c-Jun phosphorylation induced by SAD, which was linked to cell apoptosis via c-Jun/Src/STAT3 pathway. To investigate the mechanisms of upregulation of c-Jun protein by SAD, the mRNA expression level and degradation of c-Jun were examined. We found that SAD did not alter the mRNA level of c-Jun but inhibited its proteasome-dependent degradation. Taken together, these results implicate that SAD induces cancer cell death through c-Jun/Src/STAT3 signaling axis by inhibiting the proteasome-dependent degradation of c-Jun in both sensitive cells and ATP-binding cassette transporter sub-family G member 2 (ABCG2)-mediated MDR cells.
Collapse
Key Words
- ABCB1, ATP-binding cassette subfamily B member 1
- ABCG2
- ABCG2, ATP-binding cassette transporter sub-family G member 2
- AP-1, activating protein-1
- Apoptosis
- CHX, cycloheximide
- HUVEC, human umbilical vein endothelial cells
- JNKs, c-Jun N-terminal kinases
- MAPKs, mitogen-activated protein kinases
- MDR, multidrug resistance
- MTT, 3-(4,5-dimethylthiazol-yl)-2,5-diphenyltetrazolium bromide
- Multidrug resistance
- NCM460, human normal colon epithelial cells
- RT-PCR, Real-time polymerase chain reaction
- SAD, Secalonic acid D
- SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis
- SP, side population
- Secalonic acid D
- c-Jun
Collapse
Affiliation(s)
- Hong Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangzhou 510060, China
| | - Liyan Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangzhou 510060, China
| | - Liyang Tao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangzhou 510060, China
| | - Jianye Zhang
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Fang Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangzhou 510060, China
| | - Xu Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangzhou 510060, China
| | - Liwu Fu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangzhou 510060, China
- Corresponding author. Tel.: +86 20 87343163; fax: +86 20 87343170.
| |
Collapse
|
31
|
Sharma J, Larkin J. Therapeutic Implication of SOCS1 Modulation in the Treatment of Autoimmunity and Cancer. Front Pharmacol 2019; 10:324. [PMID: 31105556 PMCID: PMC6499178 DOI: 10.3389/fphar.2019.00324] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/18/2019] [Indexed: 12/14/2022] Open
Abstract
The suppressor of cytokine signaling (SOCS) family of intracellular proteins has a vital role in the regulation of the immune system and resolution of inflammatory cascades. SOCS1, also called STAT-induced STAT inhibitor (SSI) or JAK-binding protein (JAB), is a member of the SOCS family with actions ranging from immune modulation to cell cycle regulation. Knockout of SOCS1 leads to perinatal lethality in mice and increased vulnerability to cancer, while several SNPs associated with the SOCS1 gene have been implicated in human inflammation-mediated diseases. In this review, we describe the mechanism of action of SOCS1 and its potential therapeutic role in the prevention and treatment of autoimmunity and cancer. We also provide a brief outline of the other JAK inhibitors, both FDA-approved and under investigation.
Collapse
Affiliation(s)
- Jatin Sharma
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Joseph Larkin
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
32
|
Ferro F, Spelat R, Shaw G, Duffy N, Islam MN, O'Shea PM, O'Toole D, Howard L, Murphy JM. Survival/Adaptation of Bone Marrow-Derived Mesenchymal Stem Cells After Long-Term Starvation Through Selective Processes. Stem Cells 2019; 37:813-827. [PMID: 30835892 DOI: 10.1002/stem.2998] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/04/2019] [Accepted: 02/17/2019] [Indexed: 12/25/2022]
Abstract
After in vivo transplantation, mesenchymal stem cells (MSC) face an ischemic microenvironment, characterized by nutrient deprivation and reduced oxygen tension, which reduces their viability and thus their therapeutic potential. Therefore, MSC response to models of in vitro ischemia is of relevance for improving their survival and therapeutic efficacy. The aim of this study was to understand the survival/adaptive response mechanism that MSC use to respond to extreme culture conditions. Specifically, the effect of a long-term starvation on human bone marrow (hBM)-derived MSC cultured in a chemically defined medium (fetal bovine serum-free [SF] and human SF), either in hypoxic or normoxic conditions. We observed that hBM-MSC that were isolated and cultured in SF medium and subjected to a complete starvation for up to 75 days transiently changed their behavior and phenotype. However, at the end of that period, hBM-MSC retained their characteristics as determined by their morphology, DNA damage resistance, proliferation kinetic, and differentiation potential. This survival mode involved a quiescent state, confirmed by increased expression of cell cycle regulators p16, p27, and p57 and decreased expression of proliferating cell nuclear antigen (PCNA), Ki-67, mTOR, and Nanog. In addition, Jak/STAT (STAT6) antiapoptotic activity selected which cells conserved stemness and that supported metabolic, bioenergetic, and scavenging requirements. We also demonstrated that hBM-MSC exploited an autophagic process which induced lipid β-oxidation as an alternative energy source. Priming MSC by concomitant starvation and culture in hypoxic conditions to induce their quiescence would be of benefit to increase MSC survival when transplanted in vivo. Stem Cells 2019;37:813-827.
Collapse
Affiliation(s)
- Federico Ferro
- Regenerative Medicine Institute (REMEDI), School of Medicine, National University of Ireland Galway (NUIG), Galway, Ireland
| | - Renza Spelat
- Neuroscience Area, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Georgina Shaw
- Regenerative Medicine Institute (REMEDI), School of Medicine, National University of Ireland Galway (NUIG), Galway, Ireland
| | - Niamh Duffy
- Regenerative Medicine Institute (REMEDI), School of Medicine, National University of Ireland Galway (NUIG), Galway, Ireland
| | - Md Nahidul Islam
- Regenerative Medicine Institute (REMEDI), School of Medicine, National University of Ireland Galway (NUIG), Galway, Ireland.,Department of Clinical Biochemistry, Saolta University Health Care Group (SUHCG), Galway University Hospitals, Galway, Ireland
| | - Paula M O'Shea
- Department of Clinical Biochemistry, Saolta University Health Care Group (SUHCG), Galway University Hospitals, Galway, Ireland
| | - Daniel O'Toole
- Regenerative Medicine Institute (REMEDI), School of Medicine, National University of Ireland Galway (NUIG), Galway, Ireland
| | - Linda Howard
- Regenerative Medicine Institute (REMEDI), School of Medicine, National University of Ireland Galway (NUIG), Galway, Ireland
| | - J Mary Murphy
- Regenerative Medicine Institute (REMEDI), School of Medicine, National University of Ireland Galway (NUIG), Galway, Ireland
| |
Collapse
|
33
|
Wu Q, Wu W, Fu B, Shi L, Wang X, Kuca K. JNK signaling in cancer cell survival. Med Res Rev 2019; 39:2082-2104. [PMID: 30912203 DOI: 10.1002/med.21574] [Citation(s) in RCA: 205] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/01/2019] [Accepted: 03/08/2019] [Indexed: 12/13/2022]
Abstract
c-Jun N-terminal kinase (JNK) is involved in cancer cell apoptosis; however, emerging evidence indicates that this Janus signaling promotes cancer cell survival. JNK acts synergistically with NF-κB, JAK/STAT, and other signaling molecules to exert a survival function. JNK positively regulates autophagy to counteract apoptosis, and its effect on autophagy is related to the development of chemotherapeutic resistance. The prosurvival effect of JNK may involve an immune evasion mechanism mediated by transforming growth factor-β, toll-like receptors, interferon-γ, and autophagy, as well as compensatory JNK-dependent cell proliferation. The present review focuses on recent advances in understanding the prosurvival function of JNK and its role in tumor development and chemoresistance, including a comprehensive analysis of the molecular mechanisms underlying JNK-mediated cancer cell survival. There is a focus on the specific "Yin and Yang" functions of JNK1 and JNK2 in the regulation of cancer cell survival. We highlight recent advances in our knowledge of the roles of JNK in cancer cell survival, which may provide insight into the distinct functions of JNK in cancer and its potential for cancer therapy.
Collapse
Affiliation(s)
- Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Wenda Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Bishi Fu
- Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA
| | - Lei Shi
- Transcriptional Networks in Lung Cancer Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, United Kingdom
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.,Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur, Malaysia
| |
Collapse
|
34
|
Centrosome Loss Triggers a Transcriptional Program To Counter Apoptosis-Induced Oxidative Stress. Genetics 2019; 212:187-211. [PMID: 30867197 DOI: 10.1534/genetics.119.302051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/08/2019] [Indexed: 12/13/2022] Open
Abstract
Centrosomes play a critical role in mitotic spindle assembly through their role in microtubule nucleation and bipolar spindle assembly. Loss of centrosomes can impair the ability of some cells to properly conduct mitotic division, leading to chromosomal instability, cell stress, and aneuploidy. Multiple aspects of the cellular response to mitotic error associated with centrosome loss appear to involve activation of JNK signaling. To further characterize the transcriptional effects of centrosome loss, we compared gene expression profiles of wild-type and acentrosomal cells from Drosophila wing imaginal discs. We found elevation of expression of JNK target genes, which we verified at the protein level. Consistent with this, the upregulated gene set showed significant enrichment for the AP-1 consensus DNA-binding sequence. We also found significant elevation in expression of genes regulating redox balance. Based on those findings, we examined oxidative stress after centrosome loss, revealing that acentrosomal wing cells have significant increases in reactive oxygen species (ROS). We then performed a candidate genetic screen and found that one of the genes upregulated in acentrosomal cells, glucose-6-phosphate dehydrogenase, plays an important role in buffering acentrosomal cells against increased ROS and helps protect those cells from cell death. Our data and other recent studies have revealed a complex network of signaling pathways, transcriptional programs, and cellular processes that epithelial cells use to respond to stressors, like mitotic errors, to help limit cell damage and maintain normal tissue development.
Collapse
|
35
|
Cheng H, Hao Y, Gao Y, He Y, Luo C, Sun W, Yuan M, Wu X. PLCε promotes urinary bladder cancer cells proliferation through STAT3/LDHA pathway‑mediated glycolysis. Oncol Rep 2019; 41:2844-2854. [PMID: 30864733 PMCID: PMC6448096 DOI: 10.3892/or.2019.7056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 03/04/2019] [Indexed: 02/06/2023] Open
Abstract
Phospholipase Cε (PLCε) and anaerobic glycolysis were determined to be involved in the development of human urinary bladder cancer (UBC), but the mechanisms remain unclear. In the present study, 64 bladder cancer specimens and 42 adjacent tissue specimens were obtained from 64 patients, and immunochemistry indicated that PLCε and lactate dehydrogenase (LDHA) are overexpressed in UBC. PLCε and LDHA were demonstrated to be positively correlated at transcription levels, indicating that one of these two genes may be regulated by another. To elucidate the mechanisms, PLCε was knocked down in T24 cells by short hairpin RNA, and then signal transducer and activator of transcription 3 (STAT3) phosphorylation and LDHA were determined to be downregulated, which indicated that PLCε may serve roles upstream of LDHA through STAT3 to regulate glycolysis in UBC. Furthermore, chromatin immunoprecipitation and luciferase reporter assays were performed to confirm that STAT3 could bind to the promoter of the LDHA gene to enhance its expression. A xenograft tumor mouse model also demonstrated similar results as the in vitro experiments, further confirming the role of PLCε in regulating bladder cell growth in vivo. Collectively, the present study demonstrated that PLCε may regulate glycolysis through the STAT3/LDHA pathway to take part in the development of human UBC.
Collapse
Affiliation(s)
- Honglin Cheng
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yanni Hao
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Yingying Gao
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Yunfeng He
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Chunli Luo
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Wei Sun
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Mengjuan Yuan
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiaohou Wu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
36
|
Narbonne-Reveau K, Maurange C. Developmental regulation of regenerative potential in Drosophila by ecdysone through a bistable loop of ZBTB transcription factors. PLoS Biol 2019; 17:e3000149. [PMID: 30742616 PMCID: PMC6386533 DOI: 10.1371/journal.pbio.3000149] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 02/22/2019] [Accepted: 01/30/2019] [Indexed: 01/08/2023] Open
Abstract
In many organisms, the regenerative capacity of tissues progressively decreases as development progresses. However, the developmental mechanisms that restrict regenerative potential remain unclear. In Drosophila, wing imaginal discs become unable to regenerate upon damage during the third larval stage (L3). Here, we show that production of ecdysone after larvae reach their critical weight (CW) terminates the window of regenerative potential by acting on a bistable loop composed of two antagonistic Broad-complex/Tramtrack/Bric-à-brac Zinc-finger (ZBTB) genes: chinmo and broad (br). Around mid L3, ecdysone signaling silences chinmo and activates br to switch wing epithelial progenitors from a default self-renewing to a differentiation-prone state. Before mid L3, Chinmo promotes a strong regenerative response upon tissue damage. After mid L3, Br installs a nonpermissive state that represses regeneration. Transient down-regulation of ecdysone signaling or Br in late L3 larvae enhances chinmo expression in damaged cells that regain the capacity to regenerate. This work unveils a mechanism that ties the self-renewing and regenerative potential of epithelial progenitors to developmental progression. This study finds that the loss of regeneration potential in Drosophila wing imaginal discs is induced by the production of the steroid hormone ecdysone after the larva reaches its critical weight. Manipulating ecdysone signaling or the downstream transcription factors can uncouple regenerative properties from developmental progression. While some organisms exhibit remarkable regenerative abilities throughout their life, many animals, including mammals, present limited regenerative potential that progressively decreases during development. Understanding the mechanisms underlying this progressive loss is important to devise therapeutic approaches aiming at facilitating the regeneration of a damaged tissue throughout life. The fruitfly Drosophila is a powerful model organism to address such questions. Indeed, while tissues, such as imaginal discs, can fully regenerate if damaged during early development, they fail to do so upon damages during late development. We show here that restriction of regenerative potential occurring during midlarval stages is due to the production of a steroid hormone, named ecdysone. By genetically manipulating ecdysone signaling, we can uncouple regenerative abilities from developmental progression. In particular, we show that ecdysone signaling triggers a switch in the sequential expression of two transcription factors, Chinmo and Broad, that positively and negatively regulate the competence for imaginal disc regeneration, respectively. Our work therefore identifies a key developmental signal that restricts regenerative potential in insects and opens new perspectives on elucidating how regeneration-permissive transcriptional programs are locked as development progresses.
Collapse
Affiliation(s)
| | - Cédric Maurange
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, France
- * E-mail:
| |
Collapse
|
37
|
Cosolo A, Jaiswal J, Csordás G, Grass I, Uhlirova M, Classen AK. JNK-dependent cell cycle stalling in G2 promotes survival and senescence-like phenotypes in tissue stress. eLife 2019; 8:41036. [PMID: 30735120 PMCID: PMC6389326 DOI: 10.7554/elife.41036] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 02/06/2019] [Indexed: 01/10/2023] Open
Abstract
The restoration of homeostasis after tissue damage relies on proper spatial-temporal control of damage-induced apoptosis and compensatory proliferation. In Drosophila imaginal discs these processes are coordinated by the stress response pathway JNK. We demonstrate that JNK signaling induces a dose-dependent extension of G2 in tissue damage and tumors, resulting in either transient stalling or a prolonged but reversible cell cycle arrest. G2-stalling is mediated by downregulation of the G2/M-specific phosphatase String(Stg)/Cdc25. Ectopic expression of stg is sufficient to suppress G2-stalling and reveals roles for stalling in survival, proliferation and paracrine signaling. G2-stalling protects cells from JNK-induced apoptosis, but under chronic conditions, reduces proliferative potential of JNK-signaling cells while promoting non-autonomous proliferation. Thus, transient cell cycle stalling in G2 has key roles in wound healing but becomes detrimental upon chronic JNK overstimulation, with important implications for chronic wound healing pathologies or tumorigenic transformation.
Collapse
Affiliation(s)
- Andrea Cosolo
- Center for Biological Systems Analysis, University of Freiburg, Freiburg, Germany.,Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Janhvi Jaiswal
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Gábor Csordás
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Institute for Genetics, University of Cologne, Cologne, Germany
| | - Isabelle Grass
- Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany.,Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany.,Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Mirka Uhlirova
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Institute for Genetics, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Anne-Kathrin Classen
- Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany.,Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany.,Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| |
Collapse
|
38
|
Mao Y, Fu Z, Dong L, Zheng Y, Dong J, Li X. Identification of a 26-lncRNAs Risk Model for Predicting Overall Survival of Cervical Squamous Cell Carcinoma Based on Integrated Bioinformatics Analysis. DNA Cell Biol 2019; 38:322-332. [PMID: 30698466 DOI: 10.1089/dna.2018.4533] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
As a common malignancy in women, cervical squamous cell carcinoma is a major cause of cancer-related mortality globally. Recent studies have demonstrated that long non-coding RNA (lncRNA) can function as potential biomarkers in cancer prognosis; however, little is known about its role in cervical cancer. In this study, we downloaded the gene expression profiles along with the clinical data of patients with cervical squamous cell carcinoma from The Cancer Genome Atlas. By applying bioinformatics analysis including random forest selection and Least Absolute Shrinkage and Selection Operator (LASSO) cox regression model along with 10-fold cross-validation, we constructed a 26-lncRNAs risk model that can be used to predict the overall survival of cervical squamous cell carcinoma. After that, Kaplan-Meier analysis combined with log-rank p test was applied to assess the predictive accuracy of the 26-lncRNAs risk model. Further analysis showed that the prognostic value of 26-lncRNAs risk model was independent of other clinicopathological factors. At last, lncRNAs in the model were put into gene ontology biological process enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathways analysis, which suggested that these lncRNAs might contribute to cancer-associated processes such as cell cycle and apoptosis. This study indicated that lncRNAs signature could be a useful marker to predict the prognosis of cervical squamous cell carcinoma.
Collapse
Affiliation(s)
- Yu Mao
- Department of Oncology, First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Zhanzhao Fu
- Department of Oncology, First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Lixin Dong
- Department of Oncology, First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Yue Zheng
- Department of Oncology, First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Jing Dong
- Department of Oncology, First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Xin Li
- Department of Oncology, First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| |
Collapse
|
39
|
Herrera SC, Bach EA. JAK/STAT signaling in stem cells and regeneration: from Drosophila to vertebrates. Development 2019; 146:dev167643. [PMID: 30696713 PMCID: PMC6361132 DOI: 10.1242/dev.167643] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/03/2018] [Indexed: 12/19/2022]
Abstract
The JAK/STAT pathway is a conserved metazoan signaling system that transduces cues from extracellular cytokines into transcriptional changes in the nucleus. JAK/STAT signaling is best known for its roles in immunity. However, recent work has demonstrated that it also regulates critical homeostatic processes in germline and somatic stem cells, as well as regenerative processes in several tissues, including the gonad, intestine and appendages. Here, we provide an overview of JAK/STAT signaling in stem cells and regeneration, focusing on Drosophila and highlighting JAK/STAT pathway functions in proliferation, survival and cell competition that are conserved between Drosophila and vertebrates.
Collapse
Affiliation(s)
- Salvador C Herrera
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Erika A Bach
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
- Helen L. and Martin S. Kimmel Center for Stem Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
40
|
Fahey-Lozano N, La Marca JE, Portela M, Richardson HE. Drosophila Models of Cell Polarity and Cell Competition in Tumourigenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1167:37-64. [PMID: 31520348 DOI: 10.1007/978-3-030-23629-8_3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cell competition is an important surveillance mechanism that measures relative fitness between cells in a tissue during development, homeostasis, and disease. Specifically, cells that are "less fit" (losers) are actively eliminated by relatively "more fit" (winners) neighbours, despite the less fit cells otherwise being able to survive in a genetically uniform tissue. Originally described in the epithelial tissues of Drosophila larval imaginal discs, cell competition has since been shown to occur in other epithelial and non-epithelial Drosophila tissues, as well as in mammalian model systems. Many genes and signalling pathways have been identified as playing conserved roles in the mechanisms of cell competition. Among them are genes required for the establishment and maintenance of apico-basal cell polarity: the Crumbs/Stardust/Patj (Crb/Sdt/Patj), Bazooka/Par-6/atypical Protein Kinase C (Baz/Par-6/aPKC), and Scribbled/Discs large 1/Lethal (2) giant larvae (Scrib/Dlg1/L(2)gl) modules. In this chapter, we describe the concepts and mechanisms of cell competition, with emphasis on the relationship between cell polarity proteins and cell competition, particularly the Scrib/Dlg1/L(2)gl module, since this is the best described module in this emerging field.
Collapse
Affiliation(s)
- Natasha Fahey-Lozano
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - John E La Marca
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Marta Portela
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute (CSIC), Madrid, Spain
| | - Helena E Richardson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia.
| |
Collapse
|
41
|
Santabárbara-Ruiz P, Esteban-Collado J, Pérez L, Viola G, Abril JF, Milán M, Corominas M, Serras F. Ask1 and Akt act synergistically to promote ROS-dependent regeneration in Drosophila. PLoS Genet 2019; 15:e1007926. [PMID: 30677014 PMCID: PMC6363233 DOI: 10.1371/journal.pgen.1007926] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 02/05/2019] [Accepted: 01/01/2019] [Indexed: 12/30/2022] Open
Abstract
How cells communicate to initiate a regenerative response after damage has captivated scientists during the last few decades. It is known that one of the main signals emanating from injured cells is the Reactive Oxygen Species (ROS), which propagate to the surrounding tissue to trigger the replacement of the missing cells. However, the link between ROS production and the activation of regenerative signaling pathways is not yet fully understood. We describe here the non-autonomous ROS sensing mechanism by which living cells launch their regenerative program. To this aim, we used Drosophila imaginal discs as a model system due to its well-characterized regenerative ability after injury or cell death. We genetically-induced cell death and found that the Apoptosis signal-regulating kinase 1 (Ask1) is essential for regenerative growth. Ask1 senses ROS both in dying and living cells, but its activation is selectively attenuated in living cells by Akt1, the core kinase component of the insulin/insulin-like growth factor pathway. Akt1 phosphorylates Ask1 in a secondary site outside the kinase domain, which attenuates its activity. This modulation of Ask1 activity results in moderate levels of JNK signaling in the living tissue, as well as in activation of p38 signaling, both pathways required to turn on the regenerative response. Our findings demonstrate a non-autonomous activation of a ROS sensing mechanism by Ask1 and Akt1 to replace the missing tissue after damage. Collectively, these results provide the basis for understanding the molecular mechanism of communication between dying and living cells that triggers regeneration.
Collapse
Affiliation(s)
- Paula Santabárbara-Ruiz
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - José Esteban-Collado
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - Lidia Pérez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, Barcelona, Spain
| | - Giacomo Viola
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - Josep F. Abril
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - Marco Milán
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys, Barcelona, Spain
| | - Montserrat Corominas
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys, Barcelona, Spain
| | - Florenci Serras
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| |
Collapse
|
42
|
Grigaitis P, Jonusiene V, Zitkute V, Dapkunas J, Dabkeviciene D, Sasnauskiene A. Exogenous interleukin-1α signaling negatively impacts acquired chemoresistance and alters cell adhesion molecule expression pattern in colorectal carcinoma cells HCT116. Cytokine 2018; 114:38-46. [PMID: 30583087 DOI: 10.1016/j.cyto.2018.11.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/19/2018] [Accepted: 11/25/2018] [Indexed: 02/05/2023]
Abstract
Proinflammatory cytokine and chemokine signaling from the tumor microenvironment is thought to be crucial for developing and sustaining colorectal cancer by regulating a multitude of pathways associated with a variety of cellular mechanisms. Among these pathways there is acquired chemoresistance, which is usually a major obstacle in the way towards successful chemotherapeutic treatment of advanced colorectal cancer cases. Despite of an emerging body of data published on the role of cytokine signaling network in cancer, little is known about the effects of the upstream cytokine interleukin-1α (IL-1α) signaling to the cancer cells. In this study we have shown that the increase in exogenous IL-1α signaling increases chemosensitivity of both chemosensitive and chemoresistant colorectal cancer cell lines, treated with a widely used cytotoxic antimetabolite 5-fluorouracil (5-FU). This was a result of increased cell death but not of the changes in 5-FU-induced cell cycle arrest. Noticeably, combined exogenous IL-1α and 5-FU treatment had significant effects on the expression of cell adhesion molecules, suggesting a decrease in adhesion-dependent chemoresistance and, on the other hand, an increase in metastatic potential of the cells. These results lead to a conclusion that modulation of IL-1 receptor activity could have applications as a part of combination therapy for advanced and highly metastatic colorectal cancers.
Collapse
Affiliation(s)
- Pranas Grigaitis
- Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio al. 7, Vilnius 10227, Lithuania.
| | - Violeta Jonusiene
- Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio al. 7, Vilnius 10227, Lithuania.
| | - Vilmante Zitkute
- Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio al. 7, Vilnius 10227, Lithuania.
| | - Justas Dapkunas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio al. 7, Vilnius 10227, Lithuania.
| | - Daiva Dabkeviciene
- Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio al. 7, Vilnius 10227, Lithuania.
| | - Ausra Sasnauskiene
- Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio al. 7, Vilnius 10227, Lithuania.
| |
Collapse
|
43
|
Verghese S, Su TT. Ionizing radiation induces stem cell-like properties in a caspase-dependent manner in Drosophila. PLoS Genet 2018; 14:e1007659. [PMID: 30462636 PMCID: PMC6248896 DOI: 10.1371/journal.pgen.1007659] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/27/2018] [Indexed: 11/18/2022] Open
Abstract
Cancer treatments including ionizing radiation (IR) can induce cancer stem cell-like properties in non-stem cancer cells, an outcome that can interfere with therapeutic success. Yet, we understand little about what consequences of IR induces stem cell like properties and why some cancer cells show this response but not others. In previous studies, we identified a pool of epithelial cells in Drosophila larval wing discs that display IR-induced stem cell-like properties. These cells are resistant to killing by IR and, after radiation damage, change fate and translocate to regenerate parts of the disc that suffered more cell death. Here, we report the identification of two new pools of cells with IR-induced regenerative capability. We addressed how IR exposure results in the induction of stem cell-like behavior, and found a requirement for IR-induced caspase activity and for Zfh2, a transcription factor and an effector in the JAK/STAT pathway. Unexpectedly, the requirement for caspase activity was cell-autonomous within cell populations that display regenerative behavior. We propose a model in which the requirement for caspase activity and Zfh2 can be explained by apoptotic and non-apoptotic functions of caspases in the induction of stem cell-like behavior. Ionizing Radiation (IR), alone or in combination with other therapies, is used to treat an estimated half of all cancer patients. Yet, we understand little about why some tumors cells respond to treatment while others grow back (regenerate). We identified specific pools of cells within a Drosophila organ that are capable of regeneration after damage by IR. We also identified what it is about IR damage that allows these cells to regenerate. These results help us understand how tissues regenerate after IR damage and will aid in designing better therapies that involve radiation.
Collapse
Affiliation(s)
- Shilpi Verghese
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, United States of America
| | - Tin Tin Su
- University of Colorado Comprehensive Cancer Center, Anschutz Medical Campus, Aurora, CO, United States of America
- * E-mail:
| |
Collapse
|
44
|
Ahmed-de-Prado S, Diaz-Garcia S, Baonza A. JNK and JAK/STAT signalling are required for inducing loss of cell fate specification during imaginal wing discs regeneration in Drosophila melanogaster. Dev Biol 2018; 441:31-41. [PMID: 29870691 DOI: 10.1016/j.ydbio.2018.05.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 05/21/2018] [Accepted: 05/24/2018] [Indexed: 11/25/2022]
Abstract
The regenerative process after tissue damage relies on a variety of cellular responses that includes compensatory cell proliferation and cell fate re-specification. The identification of the signalling networks regulating these cellular events is a central question in regenerative biology. Tissue regeneration models in Drosophila have shown that two of the signals that play a fundamental role during the early stages of regeneration are the c-Jun N-terminal kinase (JNK) and JAK/STAT signalling pathways. These pathways have been shown to be required for controlling regenerative proliferation, however their contribution to the processes of cellular reprogramming and cell fate re-specification that take place during regeneration are largely unknown. Here, we present evidence for a previously unrecognised function of the cooperative activities of JNK and JAK/STAT signalling pathways in inducing loss of cell fate specification in imaginal discs. We show that co-activation of these signalling pathways induces both the cell fate changes in injured areas, as well as in adjacent cells. We have also found that this function relies on the activity of the Caspase initiator encoded by the gene dronc.
Collapse
Affiliation(s)
- Sara Ahmed-de-Prado
- Centro de Biología Molecular "Severo Ochoa", CSIC/UAM, C/Nicolás Cabrera 1, Madrid 28049, Spain
| | - Sandra Diaz-Garcia
- University of California, San Diego Section of Cell&Developmental Biology, La Jolla, CA 92093-0349, USA
| | - Antonio Baonza
- Centro de Biología Molecular "Severo Ochoa", CSIC/UAM, C/Nicolás Cabrera 1, Madrid 28049, Spain.
| |
Collapse
|
45
|
Short-term activation of the Jun N-terminal kinase pathway in apoptosis-deficient cells of Drosophila induces tumorigenesis. Nat Commun 2018; 9:1541. [PMID: 29670104 PMCID: PMC5906466 DOI: 10.1038/s41467-018-04000-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 03/26/2018] [Indexed: 12/17/2022] Open
Abstract
In Drosophila, the JNK pathway eliminates by apoptosis aberrant cells that appear in development. It also performs other functions associated with cell proliferation, but analysis of the latter is hindered by the pro-apoptotic activity. We report the response of apoptosis-deficient cells to transient activation of JNK and show that it causes persistent JNK function during the rest of the development. As a consequence, there is continuous activity of the downstream pathways JAK/STAT, Wg and Dpp, which results in tumour overgrowths. We also show that the oncogenic potential of the Ras-MAPK pathway resides largely on its ability to suppress apoptosis. It has been proposed that a hallmark of tumour cells is that they can evade apoptosis. In reverse, we propose that, in Drosophila, apoptosis-deficient cells become tumorigenic due to their property of acquiring persistent JNK activity after stress events that are inconsequential in tissues in which cells are open to apoptosis. Jun N-terminal kinase (JNK) is necessary for development in tumours, indicating it may play tumour-promoting roles; however, the experimental analysis of the role of JNK in proliferation is hindered by its pro-apoptotic activity. Here the authors carry out experiments in Drosophila with genetic backgrounds that make cells refractory to apoptosis to definitely prove the JNK pathway contribution to tumorigenesis.
Collapse
|
46
|
Drosophila as a Model System to Study Cell Signaling in Organ Regeneration. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7359267. [PMID: 29750169 PMCID: PMC5884440 DOI: 10.1155/2018/7359267] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/06/2018] [Indexed: 12/22/2022]
Abstract
Regeneration is a fascinating phenomenon that allows organisms to replace or repair damaged organs or tissues. This ability occurs to varying extents among metazoans. The rebuilding of the damaged structure depends on regenerative proliferation that must be accompanied by proper cell fate respecification and patterning. These cellular processes are regulated by the action of different signaling pathways that are activated in response to the damage. The imaginal discs of Drosophila melanogaster have the ability to regenerate and have been extensively used as a model system to study regeneration. Drosophila provides an opportunity to use powerful genetic tools to address fundamental problems about the genetic mechanisms involved in organ regeneration. Different studies in Drosophila have helped to elucidate the genes and signaling pathways that initiate regeneration, promote regenerative growth, and induce cell fate respecification. Here we review the signaling networks involved in regulating the variety of cellular responses that are required for discs regeneration.
Collapse
|
47
|
Yang X, Mao X, Ding X, Guan F, Jia Y, Luo L, Li B, Tan H, Cao C. miR-146a down-regulation alleviates H 2O 2-induced cytotoxicity of PC12 cells by regulating MCL1/JAK/STAT pathway : miR-146a down-regulation relieves H2O2-induced PC12 cells cytotoxicity by MCL1/JAK/STAT. Cell Biol Toxicol 2018; 34:479-489. [PMID: 29484526 DOI: 10.1007/s10565-018-9424-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/12/2018] [Indexed: 01/30/2023]
Abstract
Oxidative stress and miRNAs have been confirmed to play an important role in neurological diseases. The study aimed to explore the underlying effect and mechanisms of miR-146a in H2O2-induced injury of PC12 cells. Here, PC12 cells were stimulated with 200 μM of H2O2 to construct oxidative injury model. Cell injury was evaluated on the basis of the changes in cell viability, migration, invasion, apoptosis, and DNA damage. Results revealed that miR-146a expression was up-regulated in H2O2-induced PC12 cells. Functional analysis showed that down-regulation of miR-146a alleviated H2O2-induced cytotoxicity in PC12 cells. Dual-luciferase reporter and western blot assay verified that MCL1 was a direct target gene of miR-146a. Moreover, anti-miR-146a-mediated suppression on cell cytotoxicity was abated following MCL1 knockdown in H2O2-induced PC12 cells. Furthermore, MCL1 activated JAK/STAT signaling pathway and MCL1 overexpression attenuated H2O2-induced cytotoxicity in PC12 cells by JAK/STAT signaling pathway. In conclusion, this study suggested that suppression of miR-146a abated H2O2-induced cytotoxicity in PC12 cells via regulating MCL1/JAK/STAT pathway.
Collapse
Affiliation(s)
- Xuecheng Yang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Xin Mao
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Xuemei Ding
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Fengju Guan
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yuefeng Jia
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Lei Luo
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Bin Li
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Hailin Tan
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Caixia Cao
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, No. 16 of Jiangsu Road, Qingdao, 266003, China.
| |
Collapse
|
48
|
Worley MI, Alexander LA, Hariharan IK. CtBP impedes JNK- and Upd/STAT-driven cell fate misspecifications in regenerating Drosophila imaginal discs. eLife 2018; 7:30391. [PMID: 29372681 PMCID: PMC5823544 DOI: 10.7554/elife.30391] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 01/19/2018] [Indexed: 12/27/2022] Open
Abstract
Regeneration following tissue damage often necessitates a mechanism for cellular re-programming, so that surviving cells can give rise to all cell types originally found in the damaged tissue. This process, if unchecked, can also generate cell types that are inappropriate for a given location. We conducted a screen for genes that negatively regulate the frequency of notum-to-wing transformations following genetic ablation and regeneration of the wing pouch, from which we identified mutations in the transcriptional co-repressor C-terminal Binding Protein (CtBP). When CtBP function is reduced, ablation of the pouch can activate the JNK/AP-1 and JAK/STAT pathways in the notum to destabilize cell fates. Ectopic expression of Wingless and Dilp8 precede the formation of the ectopic pouch, which is subsequently generated by recruitment of both anterior and posterior cells near the compartment boundary. Thus, CtBP stabilizes cell fates following damage by opposing the destabilizing effects of the JNK/AP-1 and JAK/STAT pathways.
Collapse
Affiliation(s)
- Melanie I Worley
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Larissa A Alexander
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Iswar K Hariharan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
49
|
Beira JV, Torres J, Paro R. Signalling crosstalk during early tumorigenesis in the absence of Polycomb silencing. PLoS Genet 2018; 14:e1007187. [PMID: 29357360 PMCID: PMC5794193 DOI: 10.1371/journal.pgen.1007187] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/01/2018] [Accepted: 01/04/2018] [Indexed: 12/19/2022] Open
Abstract
In response to stress and injury a coordinated activation of conserved signalling modules, such as JNK and JAK/STAT, is critical to trigger regenerative tissue restoration. While these pathways rebuild homeostasis and promote faithful organ recovery, it is intriguing that they also become activated in various tumour conditions. Therefore, it is crucial to understand how similar pathways can achieve context-dependent functional outputs, likely depending on cellular states. Compromised chromatin regulation, upon removal of the Polycomb group member polyhomeotic, leads to tumour formation with ectopic activation of JNK signalling, mediated by egr/grnd, in addition to JAK/STAT and Notch. Employing quantitative analyses, we show that blocking ectopic signalling impairs ph tumour growth. Furthermore, JAK/STAT functions in parallel to JNK, while Notch relies on JNK. Here, we reveal a signalling hierarchy in ph tumours that is distinct from the regenerative processes regulated by these pathways. Absence of ph renders a permissive state for expression of target genes, but our results suggest that both loss of repression and the presence of activators may collectively regulate gene expression during tumorigenesis. Further dissecting the effect of signalling, developmental or stress-induced factors will thus elucidate the regulation of physiological responses and the contribution of context-specific cellular states.
Collapse
Affiliation(s)
- Jorge V. Beira
- ETH Zürich, Department of Biosystems Science and Engineering, MattenstrasseBasel, Switzerland
- * E-mail: (JVB); (RP)
| | - Joana Torres
- ETH Zürich, Department of Biosystems Science and Engineering, MattenstrasseBasel, Switzerland
| | - Renato Paro
- ETH Zürich, Department of Biosystems Science and Engineering, MattenstrasseBasel, Switzerland
- Faculty of Science, University of Basel, KlingelbergstrasseBasel, Switzerland
- * E-mail: (JVB); (RP)
| |
Collapse
|
50
|
JAK2/STAT3 pathway is involved in the protective effects of epidermal growth factor receptor activation against cerebral ischemia/reperfusion injury in rats. Neurosci Lett 2017; 662:219-226. [PMID: 29061394 DOI: 10.1016/j.neulet.2017.10.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 10/16/2017] [Accepted: 10/19/2017] [Indexed: 12/14/2022]
Abstract
Cerebral ischemia and reperfusion is a common pathophysiologic process, which is involved in stroke and brain trauma. Recent studies revealed that activating epidermal growth factor receptor (EGFR) ameliorates cerebral ischemia/reperfusion (I/R) injury, however, the precise mechanisms remain to be illuminated. In this study, the neurological behavior was evaluated by Longa score. The infarct volume was performed by 2, 3, 5-triphenyltetrazolium chloride (TTC) staining and the expression of p-EGFR, p-STAT3, connexin (Cx43), Bax and Bcl-2 were detected by Western blot. The neurological behavior and infarct volume were increased in rats with cerebral I/R injury. Epidermal growth factor (EGF) pretreatment significantly decreased neurological deficit and infarct volume. However, the antagonist of EGFR, AG1478 attenuated the EGF-induced reduction of neurological deficit and infarct volume. Moreover, the inhibitor of JAK2/STAT3, AG490 undermined the protective effects stimulated by activating EGFR in rats with I/R injury. In addition, EGF pretreatment increased the expression of Bcl-2 and reduced the expression of Bax and Cx43, and the effects were abolished after using AG1478 and AG490. These findings implicate that JAK2/STAT3 pathway plays the vital role in I/R injury protection from activating EGFR. And the neuroprotective effects may associate with inhibiting the Cx43 expression and the inhibition of apoptosis.
Collapse
|