1
|
Gharui S, Sengupta D. Molecular Interactions of the Pioneer Transcription Factor GATA3 With DNA. Proteins 2025; 93:555-566. [PMID: 39315643 DOI: 10.1002/prot.26749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/15/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024]
Abstract
The GATA3 transcription factor is a pioneer transcription factor that is critical in the development, proliferation, and maintenance of several immune cell types. Identifying the detailed conformational dynamics and interactions of this transcription factor, as well as its clinically important population variants will allow us to unravel its mode of action. In this study, we analyze the molecular interactions of the GATA3 transcription factor bound to dsDNA as well as three clinically important population variants by atomistic molecular dynamics simulations. We identify the effect of the variants on the DNA conformational dynamics and delineate the differences compared to the wildtype transcription factor that could be related to impaired function. We highlight the structural plasticity in the binding of the GATA3 transcription factor and identify important DNA-protein contacts. Although the DNA-protein contacts are persistent and appear to be stable, they exhibit nanosecond timescale fluctuations and several binding/unbinding events. Further, we identify differential DNA binding in the three variants and show that the N-terminal binding is reduced in two of the variants. Our results indicate that reduced minor groove width and DNA diameter are important hallmarks for the binding of GATA3. Our work is an important step towards understanding the functional dynamics of the GATA3 protein and its clinically significant population variants.
Collapse
Affiliation(s)
- Sowmomita Gharui
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, India
| | - Durba Sengupta
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
2
|
Mitsutani M, Yokoyama M, Hano H, Morita A, Matsushita M, Tagami T, Moriyama K. Growth hormone is involved in GATA1 gene expression via STAT5B in human erythroleukemia and monocytic cell lines. Blood Cells Mol Dis 2025; 110:102894. [PMID: 39303396 DOI: 10.1016/j.bcmd.2024.102894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/06/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
GATAs are a family of transcription factors consisting of six members. Particularly, GATA1 and GATA2 have been reported to promote the development of erythrocytes, megakaryocytes, eosinophils, and mast cells. However, little information is available on the extracellular ligands that promote GATA1 expression. We evaluated whether growth hormone (GH) is an extracellular stimulator that participates in the signal transduction of GATAs, focusing on GATA1 expression in hematopoietic cell lineages. We used a reporter assay, RT-PCR, real-time quantitative PCR, and western blotting to evaluate GH-induced expression of GATA1 and GATA2 in the human erythroleukemic cell line K562 and the non-erythroid cell line U937. GATA1 expression in these hematopoietic cell lines increased at the transcriptional and protein levels in the presence of GH, and was inhibited by a STAT5 specific inhibitor. Cells transfected with activated STAT5B showed increased expression of GATA1. We identified functional STAT5B consensus sequences as binding site-158 bp from the transcription starting site in the GATA1 promoter region. These results suggest that GH directly induces GATA1 expression via GHR/JAK/STAT5 and is related to hematopoietic cell proliferation.
Collapse
Affiliation(s)
- Mana Mitsutani
- Medicine & Clinical Science, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan
| | - Mei Yokoyama
- Medicine & Clinical Science, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan
| | - Hiromi Hano
- Medicine & Clinical Science, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan
| | - Aoi Morita
- Medicine & Clinical Science, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan
| | - Midori Matsushita
- Medicine & Clinical Science, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan
| | - Tetsuya Tagami
- Clinical Research Institute for Endocrine and Metabolic Diseases, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
| | - Kenji Moriyama
- Medicine & Clinical Science, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan; Clinical Research Institute for Endocrine and Metabolic Diseases, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan.
| |
Collapse
|
3
|
Shi W, Yi X, Ruan H, Wang D, Wu D, Jiang P, Luo L, Ma X, Jiang F, Li C, Wu W, Luo L, Li L, Wang G, Qiu J, Huang H. An animal model recapitulates human hepatic diseases associated with GATA6 mutations. Proc Natl Acad Sci U S A 2025; 122:e2317801121. [PMID: 39739787 DOI: 10.1073/pnas.2317801121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 11/21/2024] [Indexed: 01/02/2025] Open
Abstract
Heterozygotic GATA6 mutations are responsible for various congenital diseases in the heart, pancreas, liver, and other organs in humans. However, there is lack of an animal that can comprehensively model these diseases since GATA6 is essential for early embryogenesis. Here, we report the establishment of a gata6 knockout zebrafish which recapitulates most of the symptoms in patients with GATA6 mutations, including cardiac outflow tract defects, pancreatic hypoplasia/agenesis, gallbladder agenesis, and various liver diseases. Particularly in the liver, the zebrafish gata6 model exhibits the paucity of intrahepatic bile ducts, disrupted bile canaliculi, cholestasis, resembling the liver diseases associated with GATA6 mutations. Moreover, an unreported phenotype, hepatic cysts, has been also revealed in the model. Mechanistically, Gata6 interacts with Hhex and binds lrh-1 promoter to synergistically activate its expression, thereby enhancing the Lrh-1-mediated β-catenin signaling which is essential for liver development. This transcriptional activation of lrh-1 is tightly controlled by the negative feedback, in which Lrh1 interacts with Gata6 to weaken its transactivation ability. Moreover, Gata6 level is regulated by Hhex-mediated proteasomal degradation. The orchestration by these three transcription factors precisely modulates Gata6 activity, ensuring β-catenin signaling output and proper liver development in zebrafish. Importantly, the molecular mechanism identified in zebrafish is conserved in human cells. GATA6 mutant variants associated with hepatobiliary malformations in humans interact aberrantly with HHEX, resulting in subsequent impairments of LRH-1 activation. Conclusively, the disease model established here provides both phenotypic and mechanism insights into the human hepatic diseases associated with GATA6 mutations.
Collapse
Affiliation(s)
- Wenpeng Shi
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xiaogui Yi
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
- Research Center of Stem Cells and Ageing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Hua Ruan
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Donglei Wang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Dan Wu
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Pengfei Jiang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Lisha Luo
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xirui Ma
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Faming Jiang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Cairui Li
- Dali Bai Autonomous Prefecture People's Hospital, The Third Affiliated Hospital of Dali University, Dali 671000, China
| | - Weinan Wu
- Affiliated Hospital of Guangdong Medical University and Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang 524001, China
| | - Lingfei Luo
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Li Li
- Research Center of Stem Cells and Ageing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Honghui Huang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
4
|
Bacha R, Pedersen S, Ismail R, Alwisi N, Al-Mansoori L. GATA3: Orchestrating cellular fate through differentiation and proliferation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1872:119893. [PMID: 39725219 DOI: 10.1016/j.bbamcr.2024.119893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/07/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Cell proliferation and differentiation are two fundamental biological processes that occur in biological systems, tightly regulated by various factors such as transcription factors (TFs). Zinc finger proteins are TFs responsible for maintaining the biological balance via coordinating development and functionality within the living cells. GATA binding protein 3 (GATA3), one of the zinc finger proteins, plays an essential role in driving differentiation and proliferation-related processes, thereby contributing to the regulation of the dynamism and productivity of living cells. By elucidating the complex interactions governed by GATA3, this underscores its significance in maintaining cellular homeostasis. Thus, the current review delves into the molecular pathways influenced by GATA3, highlighting its involvement in multiple developmental processes of various tissues and body sites, particularly in the hematopoietic system (T-cell differentiation), neural tissue differentiation, adipose tissue, as well as epithelial cell maturation.
Collapse
Affiliation(s)
- Rim Bacha
- College of Medicine, QU Health, Qatar University, Doha, P.O. Box 2713, Qatar; College of Health Science, QU Health, Qatar University, Doha, P.O. Box 2713, Qatar; Biomedical Research Center, Qatar University, Doha, P.O. Box 2713, Qatar
| | - Shona Pedersen
- College of Medicine, QU Health, Qatar University, Doha, P.O. Box 2713, Qatar
| | - Rana Ismail
- College of Medicine, QU Health, Qatar University, Doha, P.O. Box 2713, Qatar
| | - Nouran Alwisi
- College of Medicine, QU Health, Qatar University, Doha, P.O. Box 2713, Qatar
| | - Layla Al-Mansoori
- Biomedical Research Center, Qatar University, Doha, P.O. Box 2713, Qatar.
| |
Collapse
|
5
|
Adler M, Medzhitov R. Recurrent hyper-motif circuits in developmental programs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.20.624466. [PMID: 39605580 PMCID: PMC11601646 DOI: 10.1101/2024.11.20.624466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
During embryogenesis, homogenous groups of cells self-organize into stereotypic spatial and temporal patterns that make up tissues and organs. These emergent patterns are controlled by transcription factors and secreted signals that regulate cellular fate and behaviors through intracellular regulatory circuits and cell-cell communication circuits. However, the principles of these circuits and how their properties are combined to provide the spatio-temporal properties of tissues remain unclear. Here we develop a framework to explore building-block circuits of developmental programs. We use single-cell gene expression data across developmental stages of the human intestine to infer the key intra- and inter-cellular circuits that control developmental programs. We study how these circuits are joined into higher-level hyper-motif circuits and explore their emergent dynamical properties. This framework uncovers design principles of developmental programs and reveals the rules that allow cells to develop robust and diverse patterns.
Collapse
Affiliation(s)
- Miri Adler
- Department of Genetics, Silberman Institute of Life Science, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Immunology and Cancer Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Tananbaum Center for Theoretical and Analytical Human Biology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ruslan Medzhitov
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
- Tananbaum Center for Theoretical and Analytical Human Biology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
6
|
Sechko EA, Koltakova MP, Khusainova RI, Minniakhmetov IR, Laptev DN. The Identification of a Novel Pathogenic Variant in the GATA6 Gene in a Child with Neonatal Diabetes. Int J Mol Sci 2024; 25:11998. [PMID: 39596087 PMCID: PMC11593795 DOI: 10.3390/ijms252211998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
GATA6 syndrome is a rare monogenic disorder caused by heterozygous variants in the gene GATA6, which controls the early embryonic differentiation of germ layers and the development of different organs. We present the results of the 7-year follow-up of a child with this syndrome as well as the following conditions: diabetes mellitus, exocrine pancreatic insufficiency, gallbladder atresia, and congenital heart disease (CHD). At birth, the patient was diagnosed with neonatal diabetes mellitus (NDM) associated with heart (mitral valve prolapse) and gastrointestinal abnormalities (gallbladder atresia). Diabetes remitted within weeks and relapsed at the age of 2. We identified a de novo variant of a 4-nucleotide deletion (c.1302+4_1302+7del), previously unreported in the literature, in the donor splicing site of exon 3 of the GATA6 gene in a heterozygous state. Screening for other possible components of GATA6 syndrome revealed exocrine pancreatic insufficiency, and pancreatic enzyme replacement therapy resulted in improved dyspeptic symptoms, and growth rates increased. In addition, the patient was diagnosed with autoimmune thyroiditis and progressive myopia.
Collapse
Affiliation(s)
- Elena A. Sechko
- Endocrinology Research Centre, Moscow 117292, Russia (R.I.K.); (I.R.M.)
| | | | | | | | | |
Collapse
|
7
|
Pan S, Long S, Cai L, Wen J, Lin W, Chen G. Identification and in vivo functional analysis of a novel missense mutation in GATA3 causing hypoparathyroidism, sensorineural deafness and renal dysplasia syndrome in a Chinese family. Endocrine 2024:10.1007/s12020-024-04087-6. [PMID: 39505798 DOI: 10.1007/s12020-024-04087-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/26/2024] [Indexed: 11/08/2024]
Abstract
PURPOSE Hypoparathyroidism, sensorineural deafness, and renal dysplasia (HDR) syndrome is a rare autosomal dominant genetic disease associated with mutations in the GATA3 gene, which encodes GATA3 that plays essential roles in vertebrate development. This study aimed to identify and report the pathogenic mutation in GATA3 in a Chinese family diagnosed with HDR syndrome and determine its functional impacts in vivo. SUBJECTS AND METHODS The clinical features of a 25-year-old male patient with HDR syndrome and his parents were collected. GATA3 gene exome sequencing and Sanger sequencing were performed on the proband and his family, respectively. Functional analyses of GATA3 were performed using bioinformatics tools and zebrafish assays to determine pathogenicity and phenotype spectrum. RESULTS A novel, heterozygous, missense mutation in exon 4 of the GATA3 gene, c.863 G > A, p.Cys288Tyr, in the proband and his mother who presented the complete HDR triad, was predicted to be deleterious by in silico tools. 3D structure modeling showed that the variant caused significant structural changes. In vivo studies using a zebrafish animal model revealed the deleterious impact of the variant on the gill buds, otoliths, and pronephros. CONCLUSION We identified a novel missense mutation, GATA3 p.Cys288Tyr, within a family with HDR syndrome and delineated it as a loss-of-function variant in vivo. This expands the spectrum of GATA3 mutations associated with HDR syndrome in the Chinese population and mimics HDR-related changes in vivo.
Collapse
Affiliation(s)
- Shuyao Pan
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Shushu Long
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Liangchun Cai
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Junping Wen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350001, China
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Wei Lin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350001, China.
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China.
| | - Gang Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350001, China.
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China.
| |
Collapse
|
8
|
Varlı HS, Akkurt Yıldırım M, Kızılbey K, Türkoğlu N. Gene Delivery via Octadecylamine-Based Nanoparticles for iPSC Generation from CCD1072-SK Fibroblast Cells. Curr Issues Mol Biol 2024; 46:12588-12607. [PMID: 39590341 PMCID: PMC11593313 DOI: 10.3390/cimb46110747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/01/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
This study presents a novel biotechnological approach using octadecylamine-based solid lipid nanoparticles (OCTNPs) for the first-time reprogramming of human CCD1072-SK fibroblast cells into induced pluripotent stem cells (iPSCs). OCTNPs, with an average size of 178.9 nm and a positive zeta potential of 22.8 mV, were synthesized, thoroughly characterized, and utilized as a non-viral vector to efficiently deliver reprogramming factors, achieving a remarkable transfection efficiency of 82.0%. iPSCs were characterized through immunofluorescence, flow cytometry, and RT-qPCR, confirming the expression of key pluripotency markers such as OCT4, SOX2, and KLF4, with alkaline phosphatase activity further validating their pluripotent state. Following this comprehensive characterization, the iPSCs were successfully differentiated into cardiomyocyte-like cells using 5-azacytidine. Our research highlights the innovative application of OCTNPs as a safe and effective alternative to viral vectors, addressing key limitations of iPSC reprogramming. The novel application of OCTNPs for efficient gene delivery demonstrates a powerful tool for advancing stem cell technologies, minimizing risks associated with viral vectors. These findings pave the way for further innovations in biotechnological applications, particularly in tissue engineering and personalized medicine.
Collapse
Affiliation(s)
- Hanife Sevgi Varlı
- Department of Molecular Biology and Genetics, Institute of Science and Technology, Yildiz Technical University, 34220 Istanbul, Türkiye; (H.S.V.); (M.A.Y.)
- Central Research Laboratory, Yildiz Technical University, 34220 Istanbul, Türkiye
| | - Meryem Akkurt Yıldırım
- Department of Molecular Biology and Genetics, Institute of Science and Technology, Yildiz Technical University, 34220 Istanbul, Türkiye; (H.S.V.); (M.A.Y.)
| | - Kadriye Kızılbey
- Basic Sciences, Faculty of Engineering and Natural Sciences, Acıbadem Mehmet Ali Aydınlar University, 34752 Istanbul, Türkiye
| | - Nelisa Türkoğlu
- Department of Molecular Biology and Genetics, Institute of Science and Technology, Yildiz Technical University, 34220 Istanbul, Türkiye; (H.S.V.); (M.A.Y.)
| |
Collapse
|
9
|
Bowden S, Brislinger-Engelhardt MM, Hansen M, Temporal-Plo A, Weber D, Hägele S, Lorenz F, Litwin T, Kreutz C, Walentek P. Foxi1 regulates multiple steps of mucociliary development and ionocyte specification through transcriptional and epigenetic mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.27.620464. [PMID: 39484493 PMCID: PMC11527170 DOI: 10.1101/2024.10.27.620464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Foxi1 is a master regulator of ionocytes (ISCs / INCs) across species and organs. Two subtypes of ISCs exist, and both α- and β-ISCs regulate pH- and ion-homeostasis in epithelia. Gain and loss of FOXI1 function are associated with human diseases, including Pendred syndrome, male infertility, renal acidosis and cancers. Foxi1 functions were predominantly studied in the context of ISC specification, however, reports indicate additional functions in early and ectodermal development. Here, we re-investigated the functions of Foxi1 in Xenopus laevis embryonic mucociliary epidermis development and found a novel function for Foxi1 in the generation of Notch-ligand expressing mucociliary multipotent progenitors (MPPs). We demonstrate that Foxi1 has multiple concentration-dependent functions: At low levels, Foxi1 confers ectodermal competence through transcriptional and epigenetic mechanisms, while at high levels, Foxi1 induces a multi-step process of ISC specification and differentiation. We further describe how foxi1 expression is affected through auto- and Notch-regulation, how Ubp1 and Dmrt2 regulate ISC subtype differentiation, and how this developmental program affects Notch signaling as well as mucociliary patterning. Together, we reveal novel functions for Foxi1 in Xenopus mucociliary epidermis formation, relevant to our understanding of vertebrate development and human disease.
Collapse
Affiliation(s)
- Sarah Bowden
- Internal Medicine IV, Medical Center - University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
- IMPRS-IEM International Max Planck Research School of Immunobiology, Epigenetics and Metabolism, Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Magdalena Maria Brislinger-Engelhardt
- Internal Medicine IV, Medical Center - University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
- SGBM Spemann Graduate School for Biology and Medicine, University of Freiburg, Albertstrasse 19A, 79104 Freiburg, Germany
| | - Mona Hansen
- Internal Medicine IV, Medical Center - University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
- SGBM Spemann Graduate School for Biology and Medicine, University of Freiburg, Albertstrasse 19A, 79104 Freiburg, Germany
| | - Africa Temporal-Plo
- Internal Medicine IV, Medical Center - University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
- IMPRS-IEM International Max Planck Research School of Immunobiology, Epigenetics and Metabolism, Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Damian Weber
- Internal Medicine IV, Medical Center - University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
| | - Sandra Hägele
- Internal Medicine IV, Medical Center - University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
| | - Fabian Lorenz
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
- IMBI Institute of Medical Biometry and Statistics, Medical Center - University of Freiburg, Stefan-Meier-Strasse 26, 79104, Freiburg, Germany
| | - Tim Litwin
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
- IMBI Institute of Medical Biometry and Statistics, Medical Center - University of Freiburg, Stefan-Meier-Strasse 26, 79104, Freiburg, Germany
| | - Clemens Kreutz
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
- IMBI Institute of Medical Biometry and Statistics, Medical Center - University of Freiburg, Stefan-Meier-Strasse 26, 79104, Freiburg, Germany
| | - Peter Walentek
- Internal Medicine IV, Medical Center - University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
- IMPRS-IEM International Max Planck Research School of Immunobiology, Epigenetics and Metabolism, Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
- SGBM Spemann Graduate School for Biology and Medicine, University of Freiburg, Albertstrasse 19A, 79104 Freiburg, Germany
| |
Collapse
|
10
|
Muncie-Vasic JM, Sinha T, Clark AP, Brower EF, Saucerman JJ, Black BL, Bruneau BG. Heart tube morphogenesis is regulated by segment-specific gene regulatory networks controlled by MEF2C. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.01.621613. [PMID: 39554149 PMCID: PMC11566030 DOI: 10.1101/2024.11.01.621613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The transcription factor MEF2C plays a critical role in the development of the linear heart tube, but the specific transcriptional networks controlled by MEF2C remain largely undefined. To address this, we performed combined single-nucleus RNA-and ATAC-sequencing on wild type and MEF2C-null embryos at distinct stages of development. We identified a broadly "posteriorized" cardiac gene signature and chromatin landscape throughout the heart tube in the absence of MEF2C. By integrating our gene expression and chromatin accessibility data in a deep-learning based model, we were able to construct developmental trajectories for each of the outflow tract, ventricular, and inflow tract lineages and determined how each of these segment-specific trajectories were distinctly altered in the MEF2C-null embryos. We computationally identified potential segment-specific MEF2C-dependent enhancers, and from these candidates, identified novel enhancers with activity in the developing heart tube using transgenesis in zebrafish. Finally, using inferred gene regulatory networks we discovered a genetic interaction between Mef2c and the atrial nuclear hormone receptor Nr2f2 , revealing that the MEF2C-null heart malformations are partly driven by a transcriptional network with increased NR2F2 activity. These studies not only provide a rich description of the genomic regulation of early heart tube development, but provide a generalizable framework for using genetic mutants to dissect the transcriptional networks that govern developmental processes.
Collapse
|
11
|
Opris CE, Suciu H, Flamand S, Opris CI, Hamida AH, Gurzu S. Update on the genetic profile of mitral valve development and prolapse. Pathol Res Pract 2024; 262:155535. [PMID: 39182449 DOI: 10.1016/j.prp.2024.155535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/21/2024] [Accepted: 08/11/2024] [Indexed: 08/27/2024]
Abstract
The purpose of this review is to present a comprehensive overview of the literature published up to February 2024 on the PubMed database regarding the development of mitral valve disease, with detailed reference to mitral valve prolapse, from embryology to a genetic profile. Out of the 3291 publications that deal with mitral valve embryology, 215 refer to mitral valve genetics and 83 were selected for further analysis. After reviewing these data, we advocate for the importance of a gene-based therapy that should be available soon, to prevent or treat non-invasively the valvular degeneration.
Collapse
Affiliation(s)
- Carmen Elena Opris
- Department of Adult and Children Cardiovascular Recovery, Emergency Institute for Cardio-Vascular Diseases and Transplantation, Targu Mures 540139, Romania; Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Science and Technology, Targu Mures , Romania; Department of Cardiovascular Surgery, Emergency University Hospital, Romania
| | - Horatiu Suciu
- Department of Surgery, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, Targu Mures 540139, Romania; Romanian Academy of Medical Sciences, Romania; Department of Cardiovascular Surgery, Emergency University Hospital, Romania
| | - Sanziana Flamand
- Department of Surgery, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, Targu Mures 540139, Romania; Department of Cardiovascular Surgery, Emergency University Hospital, Romania
| | - Cosmin Ioan Opris
- Department of Surgery, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, Targu Mures 540139, Romania; Department of Cardiovascular Surgery, Emergency University Hospital, Romania
| | - Al Hussein Hamida
- Department of Surgery, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, Targu Mures 540139, Romania
| | - Simona Gurzu
- Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Science and Technology, Targu Mures , Romania; Romanian Academy of Medical Sciences, Romania; Research Center for Oncopathology and Translational Medicine (CCOMT), George Emil Palade University of Medicine, Pharmacy, Science and Technology, Targu Mures, Romania.
| |
Collapse
|
12
|
Chen EX, Hu SC, Xu JQ, Liu KY, Tang J, Shen XP, Liang X, Xie YL, Ge LX, Luo X, Wang YX, Xiang YL, Ding YB. Suppression of GATA3 promotes epithelial-mesenchymal transition and simultaneous cellular senescence in human extravillous trophoblasts. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119768. [PMID: 38838858 DOI: 10.1016/j.bbamcr.2024.119768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
The regulatory mechanism of the transcription factor GATA3 in the differentiation and maturation process of extravillous trophoblasts (EVT) in early pregnancy placenta, as well as its relevance to the occurrence of pregnancy disorders, remains poorly understood. This study leveraged single-cell RNA sequencing data from placental organoid models and placental tissue to explore the dynamic changes in GATA3 expression during EVT maturation. The expression pattern exhibited an initial upregulation followed by subsequent downregulation, with aberrant GATA3 localization observed in cases of recurrent miscarriage (RM). By identifying global targets regulated by GATA3 in primary placental EVT cells, JEG3, and HTR8/SVneo cell lines, this study offered insights into its regulatory mechanisms across different EVT cell models. Shared regulatory targets among these cell types and activation of trophoblast cell marker genes emphasized the importance of GATA3 in EVT differentiation and maturation. Knockdown of GATA3 in JEG3 cells led to repression of GATA3-induced epithelial-mesenchymal transition (EMT), as evidenced by changes in marker gene expression levels and enhanced migration ability. Additionally, interference with GATA3 accelerated cellular senescence, as indicated by reduced proliferation rates and increased activity levels for senescence-associated β-galactosidase enzyme, along with elevated expression levels for senescence-associated genes. This study provides comprehensive insights into the dual role of GATA3 in regulating EMT and cellular senescence during EVT differentiation, shedding light on the dynamic changes in GATA3 expression in normal and pathological placental conditions.
Collapse
Affiliation(s)
- En-Xiang Chen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; Department of Toxicology, Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China; Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Department of Basic Medical Sciences, Changsha Medical University, Hunan 410219, China
| | - Si-Chen Hu
- Department of Toxicology, Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Jia-Qi Xu
- Department of Toxicology, Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Kun-Yan Liu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Jing Tang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; Department of Toxicology, Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Xi-Peng Shen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Xiao Liang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - You-Long Xie
- Department of Toxicology, Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Lu-Xin Ge
- Department of Toxicology, Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China; Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University. Hunan 410219, China
| | - Xin Luo
- Department of Obstetrics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ying-Xiong Wang
- Department of Toxicology, Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China.
| | - Yun-Long Xiang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China.
| | - Yu-Bin Ding
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China; Department of Toxicology, Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
13
|
Aswani BS, Hegde M, Vishwa R, Alqahtani MS, Abbas M, Almubarak HA, Sethi G, Kunnumakkara AB. Tackling exosome and nuclear receptor interaction: an emerging paradigm in the treatment of chronic diseases. Mil Med Res 2024; 11:67. [PMID: 39327610 PMCID: PMC11426102 DOI: 10.1186/s40779-024-00564-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 08/06/2024] [Indexed: 09/28/2024] Open
Abstract
Nuclear receptors (NRs) function as crucial transcription factors in orchestrating essential functions within the realms of development, host defense, and homeostasis of body. NRs have garnered increased attention due to their potential as therapeutic targets, with drugs directed at NRs demonstrating significant efficacy in impeding chronic disease progression. Consequently, these pharmacological agents hold promise for the treatment and management of various diseases. Accumulating evidence emphasizes the regulatory role of exosome-derived microRNAs (miRNAs) in chronic inflammation, disease progression, and therapy resistance, primarily by modulating transcription factors, particularly NRs. By exploiting inflammatory pathways such as protein kinase B (Akt)/mammalian target of rapamycin (mTOR), nuclear factor kappa-B (NF-κB), signal transducer and activator of transcription 3 (STAT3), and Wnt/β-catenin signaling, exosomes and NRs play a pivotal role in the panorama of development, physiology, and pathology. The internalization of exosomes modulates NRs and initiates diverse autocrine or paracrine signaling cascades, influencing various processes in recipient cells such as survival, proliferation, differentiation, metabolism, and cellular defense mechanisms. This comprehensive review meticulously examines the involvement of exosome-mediated NR regulation in the pathogenesis of chronic ailments, including atherosclerosis, cancer, diabetes, liver diseases, and respiratory conditions. Additionally, it elucidates the molecular intricacies of exosome-mediated communication between host and recipient cells via NRs, leading to immunomodulation. Furthermore, it outlines the implications of exosome-modulated NR pathways in the prophylaxis of chronic inflammation, delineates current limitations, and provides insights into future perspectives. This review also presents existing evidence on the role of exosomes and their components in the emergence of therapeutic resistance.
Collapse
Affiliation(s)
- Babu Santha Aswani
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Ravichandran Vishwa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, 61421, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, 61421, Abha, Saudi Arabia
| | - Hassan Ali Almubarak
- Division of Radiology, Department of Medicine, College of Medicine and Surgery, King Khalid University, 61421, Abha, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117699, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India.
| |
Collapse
|
14
|
Carlisle SG, Albasha H, Michelena HI, Sabate-Rotes A, Bianco L, De Backer J, Mosquera LM, Yetman AT, Bissell MM, Andreassi MG, Foffa I, Hui DS, Caffarelli A, Kim YY, Guo D, Citro R, De Marco M, Tretter JT, McBride KL, Milewicz DM, Body SC, Prakash SK. Rare genomic copy number variants implicate new candidate genes for bicuspid aortic valve. PLoS One 2024; 19:e0304514. [PMID: 39240962 PMCID: PMC11379187 DOI: 10.1371/journal.pone.0304514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/14/2024] [Indexed: 09/08/2024] Open
Abstract
Bicuspid aortic valve (BAV), the most common congenital heart defect, is a major cause of aortic valve disease requiring valve interventions and thoracic aortic aneurysms predisposing to acute aortic dissections. The spectrum of BAV ranges from early onset valve and aortic complications (EBAV) to sporadic late onset disease. Rare genomic copy number variants (CNVs) have previously been implicated in the development of BAV and thoracic aortic aneurysms. We determined the frequency and gene content of rare CNVs in EBAV probands (n = 272) using genome-wide SNP microarray analysis and three complementary CNV detection algorithms (cnvPartition, PennCNV, and QuantiSNP). Unselected control genotypes from the Database of Genotypes and Phenotypes were analyzed using identical methods. We filtered the data to select large genic CNVs that were detected by multiple algorithms. Findings were replicated in a BAV cohort with late onset sporadic disease (n = 5040). We identified 3 large and rare (< 1,1000 in controls) CNVs in EBAV probands. The burden of CNVs intersecting with genes known to cause BAV when mutated was increased in case-control analysis. CNVs intersecting with GATA4 and DSCAM were enriched in cases, recurrent in other datasets, and segregated with disease in families. In total, we identified potentially pathogenic CNVs in 9% of EBAV cases, implicating alterations of candidate genes at these loci in the pathogenesis of BAV.
Collapse
Affiliation(s)
- Steven G Carlisle
- University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Hasan Albasha
- University College Dublin School of Medicine, Dublin, Ireland
| | | | | | - Lisa Bianco
- Vall d'Hebron University Hospital, Barcelona, Spain
| | | | | | - Anji T Yetman
- University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | | | | | - Ilenia Foffa
- Consiglio Nazionale delle Richerche (CNR), Instituto di Fisiologia Clinica, Pisa, Italy
| | - Dawn S Hui
- University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Anthony Caffarelli
- Hoag Memorial Hospital Presbyterian, Newport Beach, California, United States of America
| | - Yuli Y Kim
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Dongchuan Guo
- University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Rodolfo Citro
- University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy
| | - Margot De Marco
- Schola Medica Salernitana, University of Salerno, Baronissi, Italy
| | | | - Kim L McBride
- University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Dianna M Milewicz
- University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Simon C Body
- Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Siddharth K Prakash
- University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| |
Collapse
|
15
|
Wipplinger M, Mink S, Bublitz M, Gassner C. Regulation of the Lewis Blood Group Antigen Expression: A Literature Review Supplemented with Computational Analysis. Transfus Med Hemother 2024; 51:225-236. [PMID: 39135855 PMCID: PMC11318966 DOI: 10.1159/000538863] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/11/2024] [Indexed: 08/15/2024] Open
Abstract
Background The Lewis (Le) blood group system, unlike most other blood groups, is not defined by antigens produced internally to the erythrocytes and their precursors but rather by glycan antigens adsorbed on to the erythrocyte membrane from the plasma. These oligosaccharides are synthesized by the two fucosyltransferases FUT2 and FUT3 mainly in epithelial cells of the digestive tract and transferred to the plasma. At their place of synthesis, some Lewis blood group carbohydrate antigen variants also seem to be involved in various gastrointestinal malignancies. However, relatively little is known about the transcriptional regulation of FUT2 and FUT3. Summary To address this question, we screened existing literature and additionally used in silico prediction tools to identify novel candidate regulators for FUT2 and FUT3 and combine these findings with already known data on their regulation. With this approach, we were able to describe a variety of transcription factors, RNA binding proteins and microRNAs, which increase FUT2 and FUT3 transcription and translation upon interaction. Key Messages Understanding the regulation of FUT2 and FUT3 is crucial to fully understand the blood group system Lewis (ISBT 007 LE) phenotypes, to shed light on the role of the different Lewis antigens in various pathologies, and to identify potential new diagnostic targets for these diseases.
Collapse
Affiliation(s)
- Martin Wipplinger
- Institute of Translational Medicine, Private University in the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Sylvia Mink
- Central Medical Laboratories, Feldkirch, Austria
- Medical-Scientific Faculty, Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Maike Bublitz
- Institute of Translational Medicine, Private University in the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Christoph Gassner
- Institute of Translational Medicine, Private University in the Principality of Liechtenstein, Triesen, Liechtenstein
| |
Collapse
|
16
|
Perna A, Hay E, Lucariello A, Scala B, De Blasiis P, Komici K, Sgambati E, Guerra G, Baldi A, De Luca A. GATA3 and TGF-β in normal placenta and pre-eclampsia. Tissue Cell 2024; 88:102402. [PMID: 38759523 DOI: 10.1016/j.tice.2024.102402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/23/2024] [Accepted: 05/03/2024] [Indexed: 05/19/2024]
Abstract
GATA3 plays critical roles in the development and function of various tissues and organs throughout the body. Likewise, TGF-β signaling is critical for placental development and can interact with GATA3. We aimed to investigate the involvement of the multifunctional cytokine and transcription factor in trophoblast development. By using immunohistochemistry, we evaluated the localization and expression level of GATA3 and TGF-β in placentas at term of normal pregnancy and with pre-eclampsia. Up-regulation of both GATA3 and TGF-β was observed in pathological placentas, with localization in the villus epithelium (syncytiotrophoblast) stroma and decidua. Our data show altered expression of TGF-β and GATA3, which downstream could lead to a cascade of events that negatively influence trophoblast development and contribute to the pathogenesis of pre-eclampsia.
Collapse
Affiliation(s)
- Angelica Perna
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso 86100, Italy.
| | - Eleonora Hay
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Angela Lucariello
- Department of Sport Sciences and Wellness, University of Naples "Parthenope", Naples 80133, Italy
| | - Beatrice Scala
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Paolo De Blasiis
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Klara Komici
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso 86100, Italy
| | - Eleonora Sgambati
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, Pesche, Isernia 86090, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso 86100, Italy
| | - Alfonso Baldi
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta 81100, Italy
| | - Antonio De Luca
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| |
Collapse
|
17
|
Guo J, Wang H, Huang C, Lai C, Shang W, Luo S, Chen L. PLAU, transcriptionally negatively regulated by GATA6, promotes lung squamous carcinoma cell proliferation and migration. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119744. [PMID: 38702016 DOI: 10.1016/j.bbamcr.2024.119744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/31/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Lung squamous cell carcinoma (LUSC) is associated with high mortality and has limited therapeutic treatment options. Plasminogen activator urokinase (PLAU) plays important roles in tumor cell malignancy. However, the oncogenic role of PLAU in the progression of LUSC remains unknown. GATA-binding factor 6 (GATA6), a key regulator of lung development, inhibits LUSC cell proliferation and migration, but the underlying regulatory mechanism remains to be further explored. Moreover, the regulatory effect of GATA6 on PLAU expression has not been reported. The aim of this study was to identify the role of PLAU and the transcriptional inhibition mechanism of GATA6 on PLAU expression in LUSC. METHODS To identify the potential target genes regulated by GATA6, differentially expressed genes (DEGs) obtained from GEO datasets analysis and RNA-seq experiment were subjected to Venn analysis and correlation heatmap analysis. The transcriptional regulatory effects of GATA6 on PLAU expression were detected by real-time PCR, immunoblotting, and dual-luciferase reporter assays. The oncogenic effects of PLAU on LUSC cell proliferation and migration were evaluated by EdU incorporation, Matrigel 3D culture and Transwell assays. PLAU expression was detected in tissue microarray of LUSC via immunohistochemistry (IHC) assay. To determine prognostic factors for prognosis of LUSC patients, the clinicopathological characteristics and PLAU expression were subjected to univariate Cox regression analysis. RESULTS PLAU overexpression promoted LUSC cell proliferation and migration. PLAU is overexpressed in LUSC tissues compared with normal tissues. Consistently, high PLAU expression, which acts as an independent risk factor, is associated with poor prognosis of LUSC patients. Furthermore, the expression of PLAU is transcriptionally regulated by GATA6. CONCLUSION In this work, it was revealed that PLAU is a novel oncogene for LUSC and a new molecular regulatory mechanism of GATA6 in LUSC was unveiled. Targeting the GATA6/PLAU pathway might help in the development of novel therapeutic treatment strategies for LUSC.
Collapse
Affiliation(s)
- Jiankun Guo
- Center for Experimental Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Hailong Wang
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Changhua Huang
- Center for Experimental Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Caihong Lai
- Huankui Academy, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Wenli Shang
- Huankui Academy, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Shiwen Luo
- Center for Experimental Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Limin Chen
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
18
|
Yang X, Ye T, Rong L, Peng H, Tong J, Xiao X, Wan X, Guo J. GATA4 Forms a Positive Feedback Loop with CDX2 to Transactivate MUC2 in Bile Acids-Induced Gastric Intestinal Metaplasia. Gut Liver 2024; 18:414-425. [PMID: 36860162 PMCID: PMC11096910 DOI: 10.5009/gnl220394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 03/03/2023] Open
Abstract
Background/Aims Gastric intestinal metaplasia (GIM), a common precancerous lesion of gastric cancer, can be caused by bile acid reflux. GATA binding protein 4 (GATA4) is an intestinal transcription factor involved in the progression of gastric cancer. However, the expression and regulation of GATA4 in GIM has not been clarified. Methods The expression of GATA4 in bile acid-induced cell models and human specimens was examined. The transcriptional regulation of GATA4 was investigated by chromatin immunoprecipitation and luciferase reporter gene analysis. An animal model of duodenogastric reflux was used to confirm the regulation of GATA4 and its target genes by bile acids. Results GATA4 expression was elevated in bile acid-induced GIM and human specimens. GATA4 bound to the promoter of mucin 2 (MUC2) and stimulate its transcription. GATA4 and MUC2 expression was positively correlated in GIM tissues. Nuclear transcription factor-κB activation was required for the upregulation of GATA4 and MUC2 in bile acid-induced GIM cell models. GATA4 and caudal-related homeobox 2 (CDX2) reciprocally transactivated each other to drive the transcription of MUC2. In chenodeoxycholic acid-treated mice, MUC2, CDX2, GATA4, p50, and p65 expression levels were increased in the gastric mucosa. Conclusions GATA4 is upregulated and can form a positive feedback loop with CDX2 to transactivate MUC2 in GIM. NF-κB signaling is involved in the upregulation of GATA4 by chenodeoxycholic acid.
Collapse
Affiliation(s)
- Xiaofang Yang
- Department of Gastroenterology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University School of Medicine, Chongqing, China
| | - Ting Ye
- Department of Gastroenterology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University School of Medicine, Chongqing, China
| | - Li Rong
- Department of Gastroenterology, Bishan Hospital of Chongqing, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Peng
- Department of Gastroenterology, Bishan Hospital of Chongqing, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Jin Tong
- Department of Gastroenterology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University School of Medicine, Chongqing, China
| | - Xiao Xiao
- Department of Gastroenterology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University School of Medicine, Chongqing, China
| | - Xiaoqiang Wan
- Department of Gastroenterology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University School of Medicine, Chongqing, China
| | - Jinjun Guo
- Department of Gastroenterology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University School of Medicine, Chongqing, China
- Department of Gastroenterology, Bishan Hospital of Chongqing, Bishan Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
19
|
Kubo N, Chen PB, Hu R, Ye Z, Sasaki H, Ren B. H3K4me1 facilitates promoter-enhancer interactions and gene activation during embryonic stem cell differentiation. Mol Cell 2024; 84:1742-1752.e5. [PMID: 38513661 PMCID: PMC11069443 DOI: 10.1016/j.molcel.2024.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/17/2024] [Accepted: 02/26/2024] [Indexed: 03/23/2024]
Abstract
Histone H3 lysine 4 mono-methylation (H3K4me1) marks poised or active enhancers. KMT2C (MLL3) and KMT2D (MLL4) catalyze H3K4me1, but their histone methyltransferase activities are largely dispensable for transcription during early embryogenesis in mammals. To better understand the role of H3K4me1 in enhancer function, we analyze dynamic enhancer-promoter (E-P) interactions and gene expression during neural differentiation of the mouse embryonic stem cells. We found that KMT2C/D catalytic activities were only required for H3K4me1 and E-P contacts at a subset of candidate enhancers, induced upon neural differentiation. By contrast, a majority of enhancers retained H3K4me1 in KMT2C/D catalytic mutant cells. Surprisingly, H3K4me1 signals at these KMT2C/D-independent sites were reduced after acute depletion of KMT2B, resulting in aggravated transcriptional defects. Our observations therefore implicate KMT2B in the catalysis of H3K4me1 at enhancers and provide additional support for an active role of H3K4me1 in enhancer-promoter interactions and transcription in mammalian cells.
Collapse
Affiliation(s)
- Naoki Kubo
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA; Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| | - Poshen B Chen
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA; Genome Institute of Singapore, Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore; Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore
| | - Rong Hu
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Zhen Ye
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Bing Ren
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA; Center for Epigenomics, Department of Cellular and Molecular Medicine, Moores Cancer Center and Institute of Genome Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA.
| |
Collapse
|
20
|
Kuga T, Chiba A, Murayama G, Hosomi K, Nakagawa T, Yahagi Y, Noto D, Kusaoi M, Kawano F, Yamaji K, Tamura N, Miyake S. Enhanced GATA4 expression in senescent systemic lupus erythematosus monocytes promotes high levels of IFNα production. Front Immunol 2024; 15:1320444. [PMID: 38605949 PMCID: PMC11007064 DOI: 10.3389/fimmu.2024.1320444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/11/2024] [Indexed: 04/13/2024] Open
Abstract
Enhanced interferon α (IFNα) production has been implicated in the pathogenesis of systemic lupus erythematosus (SLE). We previously reported IFNα production by monocytes upon activation of the stimulator of IFN genes (STING) pathway was enhanced in patients with SLE. We investigated the mechanism of enhanced IFNα production in SLE monocytes. Monocytes enriched from the peripheral blood of SLE patients and healthy controls (HC) were stimulated with 2'3'-cyclic GAMP (2'3'-cGAMP), a ligand of STING. IFNα positive/negative cells were FACS-sorted for RNA-sequencing analysis. Gene expression in untreated and 2'3'-cGAMP-stimulated SLE and HC monocytes was quantified by real-time PCR. The effect of GATA binding protein 4 (GATA4) on IFNα production was investigated by overexpressing GATA4 in monocytic U937 cells by vector transfection. Chromatin immunoprecipitation was performed to identify GATA4 binding target genes in U937 cells stimulated with 2'3'-cGAMP. Differentially expressed gene analysis of cGAS-STING stimulated SLE and HC monocytes revealed the enrichment of gene sets related to cellular senescence in SLE. CDKN2A, a marker gene of cellular senescence, was upregulated in SLE monocytes at steady state, and its expression was further enhanced upon STING stimulation. GATA4 expression was upregulated in IFNα-positive SLE monocytes. Overexpression of GATA4 enhanced IFNα production in U937 cells. GATA4 bound to the enhancer region of IFIT family genes and promoted the expressions of IFIT1, IFIT2, and IFIT3, which promote type I IFN induction. SLE monocytes with accelerated cellular senescence produced high levels of IFNα related to GATA4 expression upon activation of the cGAS-STING pathway.
Collapse
Affiliation(s)
- Taiga Kuga
- Department of Immunology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
- Department of Internal Medicine and Rheumatology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Asako Chiba
- Department of Immunology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Goh Murayama
- Department of Internal Medicine and Rheumatology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Kosuke Hosomi
- Department of Immunology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Tomoya Nakagawa
- Department of Immunology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Yoshiyuki Yahagi
- Department of Immunology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
- Department of Internal Medicine and Rheumatology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Daisuke Noto
- Department of Immunology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Makio Kusaoi
- Department of Internal Medicine and Rheumatology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Fuminori Kawano
- Graduate School of Health Sciences, Matsumoto University, Matsumoto, Nagano, Japan
| | - Ken Yamaji
- Department of Internal Medicine and Rheumatology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Naoto Tamura
- Department of Internal Medicine and Rheumatology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Sachiko Miyake
- Department of Immunology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
21
|
Aurigemma I, Lanzetta O, Cirino A, Allegretti S, Lania G, Ferrentino R, Poondi Krishnan V, Angelini C, Illingworth E, Baldini A. Endothelial gene regulatory elements associated with cardiopharyngeal lineage differentiation. Commun Biol 2024; 7:351. [PMID: 38514806 PMCID: PMC10957928 DOI: 10.1038/s42003-024-06017-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 03/06/2024] [Indexed: 03/23/2024] Open
Abstract
Endothelial cells (EC) differentiate from multiple sources, including the cardiopharyngeal mesoderm, which gives rise also to cardiac and branchiomeric muscles. The enhancers activated during endothelial differentiation within the cardiopharyngeal mesoderm are not completely known. Here, we use a cardiogenic mesoderm differentiation model that activates an endothelial transcription program to identify endothelial regulatory elements activated in early cardiogenic mesoderm. Integrating chromatin remodeling and gene expression data with available single-cell RNA-seq data from mouse embryos, we identify 101 putative regulatory elements of EC genes. We then apply a machine-learning strategy, trained on validated enhancers, to predict enhancers. Using this computational assay, we determine that 50% of these sequences are likely enhancers, some of which are already reported. We also identify a smaller set of regulatory elements of well-known EC genes and validate them using genetic and epigenetic perturbation. Finally, we integrate multiple data sources and computational tools to search for transcriptional factor binding motifs. In conclusion, we show EC regulatory sequences with a high likelihood to be enhancers, and we validate a subset of them using computational and cell culture models. Motif analyses show that the core EC transcription factors GATA/ETS/FOS is a likely driver of EC regulation in cardiopharyngeal mesoderm.
Collapse
Affiliation(s)
- Ilaria Aurigemma
- PhD program in Molecular Medicine and Medical Biotechnology, University Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Italy
| | - Olga Lanzetta
- Institute of Genetics and Biophysics, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Andrea Cirino
- Institute of Genetics and Biophysics, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Sara Allegretti
- PhD program in Molecular Medicine and Medical Biotechnology, University Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Gabriella Lania
- Institute of Genetics and Biophysics, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Rosa Ferrentino
- Institute of Genetics and Biophysics, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Varsha Poondi Krishnan
- Institute of Genetics and Biophysics, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Claudia Angelini
- Istituto Applicazioni del Calcolo, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Elizabeth Illingworth
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Italy
| | - Antonio Baldini
- PhD program in Molecular Medicine and Medical Biotechnology, University Federico II, Via Sergio Pansini 5, 80131, Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Via Sergio Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
22
|
Shepherdson JL, Friedman RZ, Zheng Y, Sun C, Oh IY, Granas DM, Cohen BA, Chen S, White MA. Pathogenic variants in CRX have distinct cis-regulatory effects on enhancers and silencers in photoreceptors. Genome Res 2024; 34:243-255. [PMID: 38355306 PMCID: PMC10984388 DOI: 10.1101/gr.278133.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 02/01/2024] [Indexed: 02/16/2024]
Abstract
Dozens of variants in the gene for the homeodomain transcription factor (TF) cone-rod homeobox (CRX) are linked with human blinding diseases that vary in their severity and age of onset. How different variants in this single TF alter its function in ways that lead to a range of phenotypes is unclear. We characterized the effects of human disease-causing variants on CRX cis-regulatory function by deploying massively parallel reporter assays (MPRAs) in mouse retina explants carrying knock-ins of two variants, one in the DNA-binding domain (p.R90W) and the other in the transcriptional effector domain (p.E168d2). The degree of reporter gene dysregulation in these mutant Crx retinas corresponds with their phenotypic severity. The two variants affect similar sets of enhancers, and p.E168d2 has distinct effects on silencers. Cis-regulatory elements (CREs) near cone photoreceptor genes are enriched for silencers that are derepressed in the presence of p.E168d2. Chromatin environments of CRX-bound loci are partially predictive of episomal MPRA activity, and distal elements whose accessibility increases later in retinal development are enriched for CREs with silencer activity. We identified a set of potentially pleiotropic regulatory elements that convert from silencers to enhancers in retinas that lack a functional CRX effector domain. Our findings show that phenotypically distinct variants in different domains of CRX have partially overlapping effects on its cis-regulatory function, leading to misregulation of similar sets of enhancers while having a qualitatively different impact on silencers.
Collapse
Affiliation(s)
- James L Shepherdson
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA
| | - Ryan Z Friedman
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA
| | - Yiqiao Zheng
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA
| | - Chi Sun
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA
| | - Inez Y Oh
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA
| | - David M Granas
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA
| | - Barak A Cohen
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA
| | - Shiming Chen
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA;
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA
| | - Michael A White
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA;
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA
| |
Collapse
|
23
|
Ju W, Lin L, Zhang Q, Lv X, Teng S, Hong Y, Shao Z, Na H, Yu S. GATA6 inhibits the biological function of non-small cell lung cancer by modulating glucose metabolism. J Cancer Res Clin Oncol 2024; 150:126. [PMID: 38483616 PMCID: PMC10940364 DOI: 10.1007/s00432-024-05664-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 02/23/2024] [Indexed: 03/17/2024]
Abstract
PURPOSE This study aims to explore the role of GATA6 in lung cancer, with a focus on its impact on metabolic processes. METHODS We assessed GATA6 expression in lung cancer tissues and its association with patient prognosis. In vitro cell function experiments were conducted to investigate the effects of altered GATA6 levels on lung cancer cell proliferation and migration. Mechanistic insights were gained by examining GATA6's influence on glucose metabolism-related genes, particularly its effect on c-Myc mRNA expression. RESULTS Our study revealed significant down-regulation of GATA6 in lung cancer tissues, and this down-regulation was strongly correlated with unfavorable patient prognosis. Elevating GATA6 levels effectively inhibited the proliferation and migration of lung cancer cells in our cell function experiments. Mechanistically, we found that GATA6 suppressed the expression of c-Myc mRNA, impacting genes related to glucose metabolism. As a result, glucose uptake and metabolism in lung cancer cells were disrupted, ultimately impeding their malignant behaviors. CONCLUSION Our study provides crucial insights into the metabolic regulation of GATA6 in lung cancer cells. These findings have the potential to offer a solid theoretical foundation for the development of novel clinical treatments for lung cancer.
Collapse
Affiliation(s)
- Weiwei Ju
- Institute of Molecular Medicine, Medical College of Liaodong University, Dandong, 118003, China
| | - Lijuan Lin
- Institute of Molecular Medicine, Medical College of Liaodong University, Dandong, 118003, China
| | - Qifang Zhang
- Institute of Molecular Medicine, Medical College of Liaodong University, Dandong, 118003, China
| | - Xiumei Lv
- Institute of Molecular Medicine, Medical College of Liaodong University, Dandong, 118003, China
| | - Shaohui Teng
- Institute of Molecular Medicine, Medical College of Liaodong University, Dandong, 118003, China
| | - Yu Hong
- Institute of Molecular Medicine, Medical College of Liaodong University, Dandong, 118003, China
| | - Zhixiang Shao
- Pathology Department, Dandong First Hospital, Dandong, 118003, China
| | - Hanyun Na
- Pathology Department, Dandong First Hospital, Dandong, 118003, China
| | - Shengjin Yu
- Institute of Molecular Medicine, Medical College of Liaodong University, Dandong, 118003, China.
| |
Collapse
|
24
|
Yue X, Luo Y, Wang J, Huang D. Monogenic Diabetes with GATA6 Mutations: Characterization of a Novel Family and a Comprehensive Analysis of the GATA6 Clinical and Genetics Traits. Mol Biotechnol 2024; 66:467-474. [PMID: 37204622 PMCID: PMC10881634 DOI: 10.1007/s12033-023-00761-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/26/2023] [Indexed: 05/20/2023]
Abstract
Monogenic diabetes caused by GATA6 mutations were almost described as neonatal diabetes, and the phenotypic spectrum has expanded since then. Our study underscores the broad phenotypic spectrum by reporting a de novo GATA6 mutation in a family. Furthermore, we reviewed related literature to summarize the clinical and genetic characteristics of monogenic diabetes with GATA6 mutations (n = 39) in order to improve clinicians' understanding of the disease. We conclude that the GATA6 missense mutation (c. 749G > T, p. Gly250Val) is not reported presently, characterized by adult-onset diabetes with pancreatic dysplasia and located in transcriptional activation region. Carries with GATA6 mutations (n = 55) have a variable spectrum of diabetes, ranging from neonatal (72.7%), childhood-onset (20%) to adults-onset (7.5%). 83.5% of patients with abnormal pancreatic development. Heart and hepatobillary defects are the most common abnormalities of extrapancreatic features. Most mutations with GATA6 are loss of function (LOF, 71.8%) and located in functional region. Functional studies mostly support loss-of-function as the pathophysiological mechanism. In conclusion, there are various types of diabetes with GATA6 mutations, which can also occur in adult diabetes. Phenotypic defects with GATA6 mutations are most frequently malformations of pancreas and heart. This highlights the importance of comprehensive clinical evaluation of identified carriers to evaluate their full phenotypic spectrum.
Collapse
Affiliation(s)
- Xing Yue
- Department of Metabolism and Endocrinology, The Third Hospital of Changsha, Laodongxi Road #176, Changsha, 410011, Hunan, People's Republic of China.
| | - Yaheng Luo
- Department of Metabolism and Endocrinology, The Third Hospital of Changsha, Laodongxi Road #176, Changsha, 410011, Hunan, People's Republic of China
| | - Jing Wang
- Department of Metabolism and Endocrinology, The Third Hospital of Changsha, Laodongxi Road #176, Changsha, 410011, Hunan, People's Republic of China
| | - Debin Huang
- Department of Metabolism and Endocrinology, The Third Hospital of Changsha, Laodongxi Road #176, Changsha, 410011, Hunan, People's Republic of China.
| |
Collapse
|
25
|
Virolainen PA, Chekunova EM. GATA family transcription factors in alga Chlamydomonas reinhardtii. Curr Genet 2024; 70:1. [PMID: 38353733 DOI: 10.1007/s00294-024-01280-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/17/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024]
Abstract
GATA family transcription factors (GATA-TFs) are metalloproteins that regulate many metabolic pathways. These conserved proteins recognize the consensus sequence (A/T)GATA(A/G) in the promoter regions of many genes and regulate their transcription in response to environmental signals. Currently, the study of GATA-TFs is of increasing interest. GATA genes and their proteins are most actively studied in vascular plants and fungi. Based on the results of numerous studies, it has been shown that GATA factors regulate the metabolic pathways of nitrogen and carbon, and also play a major role in the processes induced by light and circadian rhythms. In algae, GATA-TFs remain poorly studied, and information about them is scattered. In this work, all known data on GATA-TFs in the unicellular green alga Chlamydomonas reinhardtii has been collected and systematized. The genome of this alga contains 12 GATA coding genes. Using the phylogenetic analysis, we identified three classes of GATA factors in C. reinhardtii according to the structure of the zinc finger domain and showed their difference from the classification of GATA factors developed on vascular plants.
Collapse
Affiliation(s)
- Pavel A Virolainen
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russian Federation.
| | - Elena M Chekunova
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russian Federation
| |
Collapse
|
26
|
Pohjolainen L, Kinnunen SM, Auno S, Kiriazis A, Pohjavaara S, Kari-Koskinen J, Zore M, Jumppanen M, Yli-Kauhaluoma J, Talman V, Ruskoaho H, Välimäki MJ. Switching of hypertrophic signalling towards enhanced cardiomyocyte identity and maturity by a GATA4-targeted compound. Stem Cell Res Ther 2024; 15:5. [PMID: 38167208 PMCID: PMC10763434 DOI: 10.1186/s13287-023-03623-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The prevalence of heart failure is constantly increasing, and the prognosis of patients remains poor. New treatment strategies to preserve cardiac function and limit cardiac hypertrophy are therefore urgently needed. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are increasingly used as an experimental platform for cardiac in vitro studies. However, in contrast to adult cardiomyocytes, hiPSC-CMs display immature morphology, contractility, gene expression and metabolism and hence express a naive phenotype that resembles more of a foetal cardiomyocyte. METHODS A library of 14 novel compounds was synthesized in-house and screened for GATA4-NKX2-5 reporter activity and cellular toxicity. The most potent compound, 3i-1262, along with previously reported GATA4-acting compounds, were selected to investigate their effects on hypertrophy induced by endothelin-1 or mechanical stretch. Morphological changes and protein expression were characterized using immunofluorescence staining and high-content analysis. Changes in gene expression were studied using qPCR and RNA sequencing. RESULTS The prototype compound 3i-1262 inhibited GATA4-NKX2-5 synergy in a luciferase reporter assay. Additionally, the isoxazole compound 3i-1262 inhibited the hypertrophy biomarker B-type natriuretic peptide (BNP) by reducing BNP promoter activity and proBNP expression in neonatal rat ventricular myocytes and hiPSC-CMs, respectively. Treatment with 3i-1262 increased metabolic activity and cardiac troponin T expression in hiPSC-CMs without affecting GATA4 protein levels. RNA sequencing analysis revealed that 3i-1262 induces gene expression related to metabolic activity and cell cycle exit, indicating a change in the identity and maturity status of hiPSC-CMs. The biological processes that were enriched in upregulated genes in response to 3i-1262 were downregulated in response to mechanical stretch, and conversely, the downregulated processes in response to 3i-1262 were upregulated in response to mechanical stretch. CONCLUSIONS There is currently a lack of systematic understanding of the molecular modulation and control of hiPSC-CM maturation. In this study, we demonstrated that the GATA4-interfering compound 3i-1262 reorganizes the cardiac transcription factor network and converts hypertrophic signalling towards enhanced cardiomyocyte identity and maturity. This conceptually unique approach provides a novel structural scaffold for further development as a modality to promote cardiomyocyte specification and maturity.
Collapse
Affiliation(s)
- Lotta Pohjolainen
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Sini M Kinnunen
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Samuli Auno
- Drug Research Program and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Alexandros Kiriazis
- Drug Research Program and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Saana Pohjavaara
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Julia Kari-Koskinen
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Matej Zore
- Drug Research Program and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Mikael Jumppanen
- Drug Research Program and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Jari Yli-Kauhaluoma
- Drug Research Program and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Virpi Talman
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Heikki Ruskoaho
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Mika J Välimäki
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland.
| |
Collapse
|
27
|
Yasuhara J, Manivannan SN, Majumdar U, Gordon DM, Lawrence PJ, Aljuhani M, Myers K, Stiver C, Bigelow AM, Galantowicz M, Yamagishi H, McBride KL, White P, Garg V. Novel pathogenic GATA6 variant associated with congenital heart disease, diabetes mellitus and necrotizing enterocolitis. Pediatr Res 2024; 95:146-155. [PMID: 37700164 DOI: 10.1038/s41390-023-02811-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Pathogenic GATA6 variants have been associated with congenital heart disease (CHD) and a spectrum of extracardiac abnormalities, including pancreatic agenesis, congenital diaphragmatic hernia, and developmental delay. However, the comprehensive genotype-phenotype correlation of pathogenic GATA6 variation in humans remains to be fully understood. METHODS Exome sequencing was performed in a family where four members had CHD. In vitro functional analysis of the GATA6 variant was performed using immunofluorescence, western blot, and dual-luciferase reporter assay. RESULTS A novel, heterozygous missense variant in GATA6 (c.1403 G > A; p.Cys468Tyr) segregated with affected members in a family with CHD, including three with persistent truncus arteriosus. In addition, one member had childhood onset diabetes mellitus (DM), and another had necrotizing enterocolitis (NEC) with intestinal perforation. The p.Cys468Tyr variant was located in the c-terminal zinc finger domain encoded by exon 4. The mutant protein demonstrated an abnormal nuclear localization pattern with protein aggregation and decreased transcriptional activity. CONCLUSIONS We report a novel, familial GATA6 likely pathogenic variant associated with CHD, DM, and NEC with intestinal perforation. These findings expand the phenotypic spectrum of pathologic GATA6 variation to include intestinal abnormalities. IMPACT Exome sequencing identified a novel heterozygous GATA6 variant (p.Cys468Tyr) that segregated in a family with CHD including persistent truncus arteriosus, atrial septal defects and bicuspid aortic valve. Additionally, affected members displayed extracardiac findings including childhood-onset diabetes mellitus, and uniquely, necrotizing enterocolitis with intestinal perforation in the first four days of life. In vitro functional assays demonstrated that GATA6 p.Cys468Tyr variant leads to cellular localization defects and decreased transactivation activity. This work supports the importance of GATA6 as a causative gene for CHD and expands the phenotypic spectrum of pathogenic GATA6 variation, highlighting neonatal intestinal perforation as a novel extracardiac phenotype.
Collapse
Affiliation(s)
- Jun Yasuhara
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - Sathiya N Manivannan
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - Uddalak Majumdar
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - David M Gordon
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Patrick J Lawrence
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Mona Aljuhani
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - Katherine Myers
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - Corey Stiver
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Amee M Bigelow
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Mark Galantowicz
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - Hiroyuki Yamagishi
- Division of Pediatric Cardiology, Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Kim L McBride
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Peter White
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Vidu Garg
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA.
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA.
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA.
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
28
|
Liao Y, Li R, Pei J, Zhang J, Chen B, Dong H, Feng X, Zhang H, Shang Y, Sui L, Kong Y. Melatonin suppresses tumor proliferation and metastasis by targeting GATA2 in endometrial cancer. J Pineal Res 2024; 76:e12918. [PMID: 37814536 DOI: 10.1111/jpi.12918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 10/11/2023]
Abstract
Endometrial cancer (EC) is a reproductive system disease that occurs in perimenopausal and postmenopausal women. However, its etiology is unclear. Melatonin (MT) has been identified as a therapeutic agent for EC; however, its exact mechanism remains unclear. In the present study, we determined that GATA-binding protein 2 (GATA2) is expressed at low levels in EC and regulated by MT. MT upregulates the expression of GATA2 through MT receptor 1A (MTNR1A), whereas GATA2 can promote the expression of MTNR1A by binding to its promoter region. In addition, in vivo and in vitro experiments showed that MT inhibited the proliferation and metastasis of EC cells by upregulating GATA2 expression. The protein kinase B (AKT) pathway was also affected. In conclusion, these findings suggest that MT and GATA2 play significant roles in EC development.
Collapse
Affiliation(s)
- Yangyou Liao
- Core Laboratory of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Ruiling Li
- Core Laboratory of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jingyuan Pei
- Core Laboratory of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Juan Zhang
- Core Laboratory of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Bo Chen
- Core Laboratory of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Haojie Dong
- Core Laboratory of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Xiaoyu Feng
- Core Laboratory of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Hongshuo Zhang
- Core Laboratory of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yuhong Shang
- Department of Gynecology, First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Linlin Sui
- Core Laboratory of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Ying Kong
- Core Laboratory of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
29
|
Shepherdson JL, Friedman RZ, Zheng Y, Sun C, Oh IY, Granas DM, Cohen BA, Chen S, White MA. Pathogenic variants in Crx have distinct cis-regulatory effects on enhancers and silencers in photoreceptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.27.542576. [PMID: 37292699 PMCID: PMC10245955 DOI: 10.1101/2023.05.27.542576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dozens of variants in the photoreceptor-specific transcription factor (TF) CRX are linked with human blinding diseases that vary in their severity and age of onset. It is unclear how different variants in this single TF alter its function in ways that lead to a range of phenotypes. We examined the effects of human disease-causing variants on CRX cis-regulatory function by deploying massively parallel reporter assays (MPRAs) in live mouse retinas carrying knock-ins of two variants, one in the DNA binding domain (p.R90W) and the other in the transcriptional effector domain (p.E168d2). The degree of reporter gene dysregulation caused by the variants corresponds with their phenotypic severity. The two variants affect similar sets of enhancers, while p.E168d2 has stronger effects on silencers. Cis-regulatory elements (CREs) near cone photoreceptor genes are enriched for silencers that are de-repressed in the presence of p.E168d2. Chromatin environments of CRX-bound loci were partially predictive of episomal MPRA activity, and silencers were notably enriched among distal elements whose accessibility increases later in retinal development. We identified a set of potentially pleiotropic regulatory elements that convert from silencers to enhancers in retinas that lack a functional CRX effector domain. Our findings show that phenotypically distinct variants in different domains of CRX have partially overlapping effects on its cis-regulatory function, leading to misregulation of similar sets of enhancers, while having a qualitatively different impact on silencers.
Collapse
Affiliation(s)
- James L. Shepherdson
- Department of Genetics
- Edison Family Center for Genome Sciences & Systems Biology
| | - Ryan Z. Friedman
- Department of Genetics
- Edison Family Center for Genome Sciences & Systems Biology
| | | | - Chi Sun
- Department of Ophthalmology and Visual Sciences
| | - Inez Y. Oh
- Department of Ophthalmology and Visual Sciences
| | - David M. Granas
- Department of Genetics
- Edison Family Center for Genome Sciences & Systems Biology
| | - Barak A. Cohen
- Department of Genetics
- Edison Family Center for Genome Sciences & Systems Biology
| | - Shiming Chen
- Department of Ophthalmology and Visual Sciences
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Michael A. White
- Department of Genetics
- Edison Family Center for Genome Sciences & Systems Biology
| |
Collapse
|
30
|
Wang Z, Wang X, Lan X, Zhu H, Qu L, Pan C. Polymorphism within the GATA binding protein 4 gene is significantly associated with goat litter size. Anim Biotechnol 2023; 34:4291-4300. [PMID: 36421983 DOI: 10.1080/10495398.2022.2147533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
GATA binding protein 4 (GATA4) is a typical transcription binding factor, and its main functions include regulating the proliferation, differentiation and apoptosis of ovarian granulosa cells, promoting spermatogenesis and sex differentiation, implying that this gene have possibly roles in animal reproduction. This study aims to detect five potential insertion/deletions (indels) of the GATA4 gene in 606 healthy unrelated Shaanbei white cashmere (SBWC) goats and analyze its association with the litter size. The electrophoresis and DNA sequencing identified two polymorphic indels (e.g., P4-Del-8bp and P5-Ins-9bp indel). Then T-test analysis showed that P4-Del-8bp was significantly correlated with litter size (p = 0.022) because of two different genotypes detected, e.g., insertion-deletion (ID) and deletion-deletion (DD), and the average litter size of individuals with DD genotype goats was higher than that of others. However, there was no correlation between P5-Ins-9bp and lambing of goats. Chi-square (X2) test found that the distribution of and P4-Del-8bp genotypes (X2 = 6.475, p = 0.011) was significantly different between single and multiple-lamb groups, while P5-Ins-9bp (X2 = 0.030, p = 0.862) was not. Therefore, these findings revealed that P4-Del-8bp polymorphism of goat GATA4 gene was a potential molecular marker significantly associated with litter size, which can be used for the marker-assisted selection (MAS) breeding to improve goat industry.
Collapse
Affiliation(s)
- Zhiying Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xinyu Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Haijing Zhu
- Life Science Research Center, Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, China
| | - Lei Qu
- Life Science Research Center, Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, China
| | - Chuanying Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
31
|
Lin CY, Chang YM, Tseng HY, Shih YL, Yeh HH, Liao YR, Tang HH, Hsu CL, Chen CC, Yan YT, Kao CF. Epigenetic regulator RNF20 underlies temporal hierarchy of gene expression to regulate postnatal cardiomyocyte polarization. Cell Rep 2023; 42:113416. [PMID: 37967007 DOI: 10.1016/j.celrep.2023.113416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 09/19/2023] [Accepted: 10/25/2023] [Indexed: 11/17/2023] Open
Abstract
Differentiated cardiomyocytes (CMs) must undergo diverse morphological and functional changes during postnatal development. However, the mechanisms underlying initiation and coordination of these changes remain unclear. Here, we delineate an integrated, time-ordered transcriptional network that begins with expression of genes for cell-cell connections and leads to a sequence of structural, cell-cycle, functional, and metabolic transitions in mouse postnatal hearts. Depletion of histone H2B ubiquitin ligase RNF20 disrupts this gene network and impairs CM polarization. Subsequently, assay for transposase-accessible chromatin using sequencing (ATAC-seq) analysis confirmed that RNF20 contributes to chromatin accessibility in this context. As such, RNF20 is likely to facilitate binding of transcription factors at the promoters of genes involved in cell-cell connections and actin organization, which are crucial for CM polarization and functional integration. These results suggest that CM polarization is one of the earliest events during postnatal heart development and provide insights into how RNF20 regulates CM polarity and the postnatal gene program.
Collapse
Affiliation(s)
- Chia-Yeh Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei, Taiwan
| | - Yao-Ming Chang
- Institute of Biomedical Sciences, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei, Taiwan
| | - Hsin-Yi Tseng
- Institute of Cellular and Organismic Biology, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei, Taiwan
| | - Yen-Ling Shih
- Institute of Biomedical Sciences, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei, Taiwan
| | - Hsiao-Hui Yeh
- Institute of Biomedical Sciences, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei, Taiwan
| | - You-Rou Liao
- Institute of Cellular and Organismic Biology, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei, Taiwan
| | - Han-Hsuan Tang
- Institute of Cellular and Organismic Biology, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei, Taiwan
| | - Chia-Ling Hsu
- Institute of Cellular and Organismic Biology, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei, Taiwan
| | - Chien-Chang Chen
- Institute of Biomedical Sciences, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei, Taiwan
| | - Yu-Ting Yan
- Institute of Biomedical Sciences, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei, Taiwan.
| | - Cheng-Fu Kao
- Institute of Cellular and Organismic Biology, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei, Taiwan.
| |
Collapse
|
32
|
Ravid Lustig L, Sampath Kumar A, Schwämmle T, Dunkel I, Noviello G, Limberg E, Weigert R, Pacini G, Buschow R, Ghauri A, Stötzel M, Wittler L, Meissner A, Schulz EG. GATA transcription factors drive initial Xist upregulation after fertilization through direct activation of long-range enhancers. Nat Cell Biol 2023; 25:1704-1715. [PMID: 37932452 PMCID: PMC10635832 DOI: 10.1038/s41556-023-01266-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/22/2023] [Indexed: 11/08/2023]
Abstract
X-chromosome inactivation (XCI) balances gene expression between the sexes in female mammals. Shortly after fertilization, upregulation of Xist RNA from one X chromosome initiates XCI, leading to chromosome-wide gene silencing. XCI is maintained in all cell types, except the germ line and the pluripotent state where XCI is reversed. The mechanisms triggering Xist upregulation have remained elusive. Here we identify GATA transcription factors as potent activators of Xist. Through a pooled CRISPR activation screen in murine embryonic stem cells, we demonstrate that GATA1, as well as other GATA transcription factors can drive ectopic Xist expression. Moreover, we describe GATA-responsive regulatory elements in the Xist locus bound by different GATA factors. Finally, we show that GATA factors are essential for XCI induction in mouse preimplantation embryos. Deletion of GATA1/4/6 or GATA-responsive Xist enhancers in mouse zygotes effectively prevents Xist upregulation. We propose that the activity or complete absence of various GATA family members controls initial Xist upregulation, XCI maintenance in extra-embryonic lineages and XCI reversal in the epiblast.
Collapse
Affiliation(s)
- Liat Ravid Lustig
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Abhishek Sampath Kumar
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Till Schwämmle
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Ilona Dunkel
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Gemma Noviello
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Elodie Limberg
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Raha Weigert
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Guido Pacini
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - René Buschow
- Microscopy and Cryo-Electron Microscopy, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Afrah Ghauri
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Maximilian Stötzel
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Lars Wittler
- Transgenic Unit, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Edda G Schulz
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
33
|
Carlisle SG, Albasha H, Michelena H, Sabate-Rotes A, Bianco L, De Backer J, Mosquera LM, Yetman AT, Bissell MM, Andreassi MG, Foffa I, Hui DS, Caffarelli A, Kim YY, Guo DC, Citro R, De Marco M, Tretter JT, McBride KL, Milewicz DM, Body SC, Prakash SK. Rare Genomic Copy Number Variants Implicate New Candidate Genes for Bicuspid Aortic Valve. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.23.23297397. [PMID: 37961530 PMCID: PMC10635161 DOI: 10.1101/2023.10.23.23297397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Bicuspid aortic valve (BAV), the most common congenital heart defect, is a major cause of aortic valve disease requiring valve interventions and thoracic aortic aneurysms predisposing to acute aortic dissections. The spectrum of BAV ranges from early onset valve and aortic complications (EBAV) to sporadic late onset disease. Rare genomic copy number variants (CNVs) have previously been implicated in the development of BAV and thoracic aortic aneurysms. We determined the frequency and gene content of rare CNVs in EBAV probands (n = 272) using genome-wide SNP microarray analysis and three complementary CNV detection algorithms (cnvPartition, PennCNV, and QuantiSNP). Unselected control genotypes from the Database of Genotypes and Phenotypes were analyzed using identical methods. We filtered the data to select large genic CNVs that were detected by multiple algorithms. Findings were replicated in cohorts with late onset sporadic disease (n = 5040). We identified 34 large and rare (< 1:1000 in controls) CNVs in EBAV probands. The burden of CNVs intersecting with genes known to cause BAV when mutated was increased in case-control analysis. CNVs intersecting with GATA4 and DSCAM were enriched in cases, recurrent in other datasets, and segregated with disease in families. In total, we identified potentially pathogenic CNVs in 8% of EBAV cases, implicating alterations of candidate genes at these loci in the pathogenesis of BAV.
Collapse
Affiliation(s)
- Steven G Carlisle
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Hasan Albasha
- UCD School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Hector Michelena
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Anna Sabate-Rotes
- Department of Pediatric Cardiology, Hospital Vall d'Hebron, Facultad de Medicina, Universidad Autònoma Barcelona, Barcelona, Spain
| | - Lisa Bianco
- Department of Pediatric Cardiology, Hospital Vall d'Hebron, Facultad de Medicina, Universidad Autònoma Barcelona, Barcelona, Spain
| | - Julie De Backer
- Centre for Medical Genetics, Ghent University Hospital, Ghent, Belgium; VASCERN HTAD European Reference Centre, Belgium; Department of Pediatrics, Division of Pediatric Cardiology, Ghent University Hospital, Ghent, Belgium; Department of Cardiology, Ghent University Hospital, Ghent, Belgium
| | | | - Anji T Yetman
- Children's Hospital and Medical Center, University of Nebraska, Omaha, Nebraska
| | - Malenka M Bissell
- Deparmentt of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | | | - Ilenia Foffa
- Consiglio Nazionale delle Richerche (CNR), Instituto di Fisiologia Clinica, Pisa, Italy
| | - Dawn S Hui
- Department of Cardiothoracic Surgery, University of Texas Health Science Center San Antonio, Texas
| | - Anthony Caffarelli
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California
| | - Yuli Y Kim
- Division of Cardiovascular Medicine, The Hospital of the University of Pennsylvania, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Philadelphia Adult Congenital Heart Center, The Children's Hospital of Philadelphia, Perelman Center for Advanced Medicine, Penn Medicine, Philadelphia, Pennsylvania
| | - Dong-Chuan Guo
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Rodolfo Citro
- Cardio-Thoracic and Vascular Department, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy
| | - Margot De Marco
- Department of Medicine, Surgery and Dentistry Schola Medica Salernitana, University of Salerno, Baronissi, Italy
| | - Justin T Tretter
- Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kim L McBride
- Division of Human Genetics, Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Dianna M Milewicz
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Simon C Body
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, Massachusetts
| | - Siddharth K Prakash
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
34
|
Hu P, Wang B, Jin D, Gu Y, He H, Meng X, Zhu W, Chiang DY, Li W, MacRae CA, Zu Y. Modeling of large-scale hoxbb cluster deletions in zebrafish uncovers a role for segmentation pathways in atrioventricular boundary specification. Cell Mol Life Sci 2023; 80:317. [PMID: 37801106 PMCID: PMC11072906 DOI: 10.1007/s00018-023-04933-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/19/2023] [Indexed: 10/07/2023]
Abstract
Hox genes orchestrate the segmental specification of the muscular circulatory system in invertebrates but it has not proven straightforward to decipher segmental parallels in the vertebrate heart. Recently, patients with HOXB gene cluster deletion were found to exhibit abnormalities including atrioventricular canal defects. Using CRISPR, we established a mutant with the orthologous hoxbb cluster deletion in zebrafish. The mutant exhibited heart failure and atrioventricular regurgitation at 5 days. Analyzing the four genes in the hoxbb cluster, isolated deletion of hoxb1b-/- recapitulated the cardiac abnormalities, supporting hoxb1b as the causal gene. Both in situ and in vitro data indicated that hoxb1b regulates gata5 to inhibit hand2 expression and ultimately is required to pattern the vertebrate atrioventricular boundary. Together, these data reveal a role for segmental specification in vertebrate cardiac development and highlight the utility of CRISPR techniques for efficiently exploring the function of large structural genomic lesions.
Collapse
Affiliation(s)
- Peinan Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Bingqi Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Dongxu Jin
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yedan Gu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Hongyang He
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiangli Meng
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Wandi Zhu
- Cardiovascular Medicine Division, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - David Y Chiang
- Cardiovascular Medicine Division, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, 48824, USA
| | - Calum A MacRae
- Cardiovascular Medicine Division, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, 02115, USA.
| | - Yao Zu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
- Cardiovascular Medicine Division, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
35
|
Aktar A, Heit B. Role of the pioneer transcription factor GATA2 in health and disease. J Mol Med (Berl) 2023; 101:1191-1208. [PMID: 37624387 DOI: 10.1007/s00109-023-02359-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023]
Abstract
The transcription factor GATA2 is involved in human diseases ranging from hematopoietic disorders, to cancer, to infectious diseases. GATA2 is one of six GATA-family transcription factors that act as pioneering transcription factors which facilitate the opening of heterochromatin and the subsequent binding of other transcription factors to induce gene expression from previously inaccessible regions of the genome. Although GATA2 is essential for hematopoiesis and lymphangiogenesis, it is also expressed in other tissues such as the lung, prostate gland, gastrointestinal tract, central nervous system, placenta, fetal liver, and fetal heart. Gene or transcriptional abnormalities of GATA2 causes or predisposes patients to several diseases including the hematological cancers acute myeloid leukemia and acute lymphoblastic leukemia, the primary immunodeficiency MonoMAC syndrome, and to cancers of the lung, prostate, uterus, kidney, breast, gastric tract, and ovaries. Recent data has also linked GATA2 expression and mutations to responses to infectious diseases including SARS-CoV-2 and Pneumocystis carinii pneumonia, and to inflammatory disorders such as atherosclerosis. In this article we review the role of GATA2 in the etiology and progression of these various diseases.
Collapse
Affiliation(s)
- Amena Aktar
- Department of Microbiology and Immunology; the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Bryan Heit
- Department of Microbiology and Immunology; the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, ON, N6A 5C1, Canada.
- Robarts Research Institute, London, ON, N6A 3K7, Canada.
| |
Collapse
|
36
|
Bota EC, Koumoundourou D, Ravazoula P, Zolota V, Psachoulia C, Kardari M, Karampitsakos T, Tzouvelekis A, Tzelepi V, Sampsonas F. A comprehensive analysis of GATA3 expression in carcinomas of various origins with emphasis on lung carcinomas. Monaldi Arch Chest Dis 2023; 94. [PMID: 37667882 DOI: 10.4081/monaldi.2023.2641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/27/2023] [Indexed: 09/06/2023] Open
Abstract
GATA3 is a transcription factor involved in the embryogenesis of multiple human tissues and organs and in maintaining cell differentiation and tissue homeostasis in the adult organism. GATA3 is also involved in carcinogenesis and is regarded as a sensitive marker for urothelial and breast carcinomas, although its expression in carcinomas of non-breast/urothelial origin has been frequently reported. In this study, we sought to examine the extent and intensity of GATA3 expression in various carcinomas, mainly lung, urothelial, breast, and various other primary sites. Patients with breast carcinoma (n=40), carcinoma of the urinary bladder/renal pelvis (n=40), lung carcinoma (n=110), and various other origins (n=45) were included in the study. 165 patients had a primary tumor diagnosis, and 70 cases had a metastatic tumor diagnosis. Our results showed that GATA3 expression was significantly more common in carcinomas of the breast, urinary bladder, and renal pelvis compared to all other origins. All primary and 93% of metastatic urinary bladder carcinomas and 94% of primary and 80% of metastatic breast carcinomas expressed GATA3. Expression was lower in the non-urothelial histology of urinary primaries and in triple-negative breast carcinomas (TNBC). Focal staining, mostly faint, was seen in 5.6% of the primary lung adenocarcinomas and 35% of the primary lung squamous cell carcinomas. More extensive and intense staining was seen in 3.7% of the primary lung adenocarcinomas and 12% of the primary lung squamous cell carcinomas. Expression, mostly focal, was also seen in 30% of the metastatic lung carcinomas. Finally, high expression was seen in 12.5% of the other tumors (one metastatic pancreatic carcinoma, one metastatic salivary gland adenocarcinoma not otherwise specified, one metastatic squamous cell carcinoma of the skin, one primary uterine cervix serous carcinoma, and one squamous cell carcinoma of the head and neck), and focal expression was present in another 22% of them. No ideal cut-off for positivity for GATA3 staining could be identified, as increasing the cut-off in either the extent or the intensity of staining increased specificity but decreased sensitivity. In conclusion, our study shows that although GATA3 staining is very helpful in everyday practice in determining the breast/urothelial origin of carcinomas, there are two caveats to its use: the first is that nonclassical histologies of urothelial carcinomas and TNBC may be negative for the marker, and secondly, carcinomas of various origins may show (although rarely) intense positivity.
Collapse
Affiliation(s)
| | | | | | - Vasiliki Zolota
- Department of Pathology and Cytopathology, University Hospital of Patras; Department of Pathology, University of Patras.
| | | | - Maria Kardari
- Department of Pathology and Cytopathology, University Hospital of Patras.
| | | | | | - Vasiliki Tzelepi
- Department of Pathology and Cytopathology, University Hospital of Patras; Department of Pathology, University of Patras.
| | | |
Collapse
|
37
|
Williams RTP, King DC, Mastroianni IR, Hill JL, Apenes NW, Ramirez G, Miner EC, Moore A, Coleman K, Nishimura EO. Transcriptome profiling of the Caenorhabditis elegans intestine reveals that ELT-2 negatively and positively regulates intestinal gene expression within the context of a gene regulatory network. Genetics 2023; 224:iyad088. [PMID: 37183501 PMCID: PMC10411582 DOI: 10.1093/genetics/iyad088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/16/2023] Open
Abstract
ELT-2 is the major transcription factor (TF) required for Caenorhabditis elegans intestinal development. ELT-2 expression initiates in embryos to promote development and then persists after hatching through the larval and adult stages. Though the sites of ELT-2 binding are characterized and the transcriptional changes that result from ELT-2 depletion are known, an intestine-specific transcriptome profile spanning developmental time has been missing. We generated this dataset by performing Fluorescence Activated Cell Sorting on intestine cells at distinct developmental stages. We analyzed this dataset in conjunction with previously conducted ELT-2 studies to evaluate the role of ELT-2 in directing the intestinal gene regulatory network through development. We found that only 33% of intestine-enriched genes in the embryo were direct targets of ELT-2 but that number increased to 75% by the L3 stage. This suggests additional TFs promote intestinal transcription especially in the embryo. Furthermore, only half of ELT-2's direct target genes were dependent on ELT-2 for their proper expression levels, and an equal proportion of those responded to elt-2 depletion with over-expression as with under-expression. That is, ELT-2 can either activate or repress direct target genes. Additionally, we observed that ELT-2 repressed its own promoter, implicating new models for its autoregulation. Together, our results illustrate that ELT-2 impacts roughly 20-50% of intestine-specific genes, that ELT-2 both positively and negatively controls its direct targets, and that the current model of the intestinal regulatory network is incomplete as the factors responsible for directing the expression of many intestinal genes remain unknown.
Collapse
Affiliation(s)
- Robert T P Williams
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - David C King
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Izabella R Mastroianni
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jessica L Hill
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Nicolai W Apenes
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gabriela Ramirez
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
- Department of Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - E Catherine Miner
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Andrew Moore
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Karissa Coleman
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Erin Osborne Nishimura
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
38
|
Steimle JD, Kim C, Rowton M, Nadadur RD, Wang Z, Stocker M, Hoffmann AD, Hanson E, Kweon J, Sinha T, Choi K, Black BL, Cunningham JM, Moskowitz IP, Ikegami K. ETV2 primes hematoendothelial gene enhancers prior to hematoendothelial fate commitment. Cell Rep 2023; 42:112665. [PMID: 37330911 PMCID: PMC10592526 DOI: 10.1016/j.celrep.2023.112665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 03/14/2023] [Accepted: 06/02/2023] [Indexed: 06/20/2023] Open
Abstract
Mechanisms underlying distinct specification, commitment, and differentiation phases of cell fate determination remain undefined due to difficulties capturing these processes. Here, we interrogate the activity of ETV2, a transcription factor necessary and sufficient for hematoendothelial differentiation, within isolated fate intermediates. We observe transcriptional upregulation of Etv2 and opening of ETV2-binding sites, indicating new ETV2 binding, in a common cardiac-hematoendothelial progenitor population. Accessible ETV2-binding sites are active at the Etv2 locus but not at other hematoendothelial regulator genes. Hematoendothelial commitment coincides with the activation of a small repertoire of previously accessible ETV2-binding sites at hematoendothelial regulators. Hematoendothelial differentiation accompanies activation of a large repertoire of new ETV2-binding sites and upregulation of hematopoietic and endothelial gene regulatory networks. This work distinguishes specification, commitment, and sublineage differentiation phases of ETV2-dependent transcription and suggests that the shift from ETV2 binding to ETV2-bound enhancer activation, not ETV2 binding to target enhancers, drives hematoendothelial fate commitment.
Collapse
Affiliation(s)
- Jeffrey D Steimle
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Chul Kim
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA; Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Megan Rowton
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Rangarajan D Nadadur
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Zhezhen Wang
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Matthew Stocker
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Andrew D Hoffmann
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Erika Hanson
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Junghun Kweon
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Tanvi Sinha
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kyunghee Choi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian L Black
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - John M Cunningham
- Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Ivan P Moskowitz
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA.
| | - Kohta Ikegami
- Division of Molecular and Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA.
| |
Collapse
|
39
|
Lei Y, Klionsky DJ. Transcriptional regulation of autophagy and its implications in human disease. Cell Death Differ 2023; 30:1416-1429. [PMID: 37045910 PMCID: PMC10244319 DOI: 10.1038/s41418-023-01162-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
Macroautophagy/autophagy is a conserved catabolic pathway that is vital for maintaining cell homeostasis and promoting cell survival under stressful conditions. Dysregulation of autophagy is associated with a variety of human diseases, such as cancer, neurodegenerative diseases, and metabolic disorders. Therefore, this pathway must be precisely regulated at multiple levels, involving epigenetic, transcriptional, post-transcriptional, translational, and post-translational mechanisms, to prevent inappropriate autophagy activity. In this review, we focus on autophagy regulation at the transcriptional level, summarizing the transcription factors that control autophagy gene expression in both yeast and mammalian cells. Because the expression and/or subcellular localization of some autophagy transcription factors are altered in certain diseases, we also discuss how changes in transcriptional regulation of autophagy are associated with human pathophysiologies.
Collapse
Affiliation(s)
- Yuchen Lei
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
40
|
Neidviecky E, Deng H. Determination of Complex Formation between Drosophila Nrf2 and GATA4 Factors at Selective Chromatin Loci Demonstrates Transcription Coactivation. Cells 2023; 12:938. [PMID: 36980279 PMCID: PMC10047698 DOI: 10.3390/cells12060938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/03/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Nrf2 is the dominant cellular stress response factor that protects cells through transcriptional responses to xenobiotic and oxidative stimuli. Nrf2 malfunction is highly correlated with many human diseases, but the underlying molecular mechanisms remain to be fully uncovered. GATA4 is a conserved GATA family transcription factor that is essential for cardiac and dorsal epidermal development. Here, we describe a novel interaction between Drosophila Nrf2 and GATA4 proteins, i.e., cap'n'collar C (CncC) and Pannier (Pnr), respectively. Using the bimolecular fluorescence complementation (BiFC) assay-a unique imaging tool for probing protein complexes in living cells-we detected CncC-Pnr complexes in the nuclei of Drosophila embryonic and salivary gland cells. Visualization of CncC-Pnr BiFC signals on the polytene chromosome revealed that CncC and Pnr tend to form complexes in euchromatic regions, with a preference for loci that are not highly occupied by CncC or Pnr alone. Most genes within these loci are activated by the CncC-Pnr BiFC, but not by individually expressed CncC or Pnr fusion proteins, indicating a novel mechanism whereby CncC and Pnr interact at specific genomic loci and coactivate genes at these loci. Finally, CncC-induced early lethality can be rescued by Pnr depletion, suggesting that CncC and Pnr function in the same genetic pathway during the early development of Drosophila. Taken together, these results elucidate a novel crosstalk between the Nrf2 xenobiotic/oxidative response factor and GATA factors in the transcriptional regulation of development. This study also demonstrates that the polytene chromosome BiFC assay is a valuable tool for mapping genes that are targeted by specific transcription factor complexes.
Collapse
Affiliation(s)
| | - Huai Deng
- Department of Biology, University of Minnesota Duluth, 1035 Kirby Drive, Duluth, MN 55812, USA
| |
Collapse
|
41
|
Yamamoto T, Tsuge T, Araki M, Maeda M. Cyclic AMP (cAMP)-dependent proteolysis of GATA6 by proteasome: Zinc-finger domain of GATA6 has signals for nuclear export and proteolysis, both of which are responsive to cAMP. Drug Discov Ther 2023; 17:1-9. [PMID: 36740253 DOI: 10.5582/ddt.2022.01107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transcription factor GATA6 stably expressed in Chinese hamster ovary (CHO)-K1 cells is exported from the nucleus to the cytoplasm and degraded there by proteasome upon treatment with dibutylyl-cyclic AMP (dbcAMP), which is a membrane-permeable cyclic AMP (cAMP) analogue. The cAMP-dependent proteolysis of GATA6 was characterized by dissection of the GATA6 protein into a zinc-finger domain (Zf) and the surrounding region (ΔZf). These segments were separately expressed in CHO-K1 cells stably, and followed by treatment with dbcAMP. The nuclear localized Zf was degraded by proteasome similarly to the full-length GATA6. Site-directed mutants of nuclear localizing signal (NLS) (345RKRKPK350 → AAAAPK and AAAAPA) and closely related GATA4 showed the same behavior. Although nuclear-localized ΔZf was degraded by proteasome, the cytoplasmic-located ΔZf was resistant to proteolysis in contrast to the NLS mutants. We also searched for a potential NLS and nuclear export signal (NES) with computational prediction programs and compared the results with ours. All these results suggest that the amino acid sequence(s) of the Zf of GATA6 is responsive to cAMP-dependent nuclear export and proteolysis.
Collapse
Affiliation(s)
- Tomohisa Yamamoto
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Takeshi Tsuge
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | | | - Masatomo Maeda
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
42
|
Zhao X, Lu J, Zhang C, Chen C, Zhang M, Zhang J, Du Q, Wang H. Methamphetamine induces cardiomyopathy through GATA4/NF-κB/SASP axis-mediated cellular senescence. Toxicol Appl Pharmacol 2023; 466:116457. [PMID: 36914120 DOI: 10.1016/j.taap.2023.116457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/26/2023] [Accepted: 03/08/2023] [Indexed: 03/13/2023]
Abstract
With the world pandemic of methamphetamine (METH), METH-associated cardiomyopathy (MAC) has become a widespread epidemic and is also recognized as a cause of heart failure in young people. The mechanism of occurrence and development of MAC is not clear. In this study, firstly, the animal model was evaluated by echocardiography and myocardial pathological staining. The results revealed that the animal model exhibited cardiac injury consistent with clinical alterations of MAC, and the mice developed cardiac hypertrophy and fibrosis remodeling, which led to systolic dysfunction and left ventricular ejection fraction (%LVEF) < 40%. The expression of cellular senescence marker proteins (p16 and p21) and senescence-associated secretory phenotype (SASP) was significantly increased in mouse myocardial tissue. Secondly, mRNA sequencing analysis of cardiac tissues revealed the key molecule GATA4, and Western blot, qPCR and immunofluorescence results showed that the expression level of GATA4 was significantly increased after METH exposure. Finally, knockdown of GATA4 expression in H9C2 cells in vitro significantly attenuated METH-induced cardiomyocyte senescence. Consequently, METH causes cardiomyopathy through cellular senescence mediated by the GATA4/NF-κB/SASP axis, which is a feasible target for the treatment of MAC.
Collapse
Affiliation(s)
- Xu Zhao
- Centre of General Practice, The Seventh Affiliated Hospital, Southern Medical University, Foshan 528200, China
| | - Jiancong Lu
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Cui Zhang
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen 518055, China
| | - Chuanxiang Chen
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Manting Zhang
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jingyi Zhang
- Centre of General Practice, The Seventh Affiliated Hospital, Southern Medical University, Foshan 528200, China
| | - Qingfeng Du
- Centre of General Practice, The Seventh Affiliated Hospital, Southern Medical University, Foshan 528200, China; School of Traditional Chinese medicine, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, China.
| | - Huijun Wang
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
43
|
Strathmann EA, Hölker I, Tschernoster N, Hosseinibarkooie S, Come J, Martinat C, Altmüller J, Wirth B. Epigenetic regulation of plastin 3 expression by the macrosatellite DXZ4 and the transcriptional regulator CHD4. Am J Hum Genet 2023; 110:442-459. [PMID: 36812914 PMCID: PMC10027515 DOI: 10.1016/j.ajhg.2023.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 02/03/2023] [Indexed: 02/23/2023] Open
Abstract
Dysregulated Plastin 3 (PLS3) levels associate with a wide range of skeletal and neuromuscular disorders and the most common types of solid and hematopoietic cancer. Most importantly, PLS3 overexpression protects against spinal muscular atrophy. Despite its crucial role in F-actin dynamics in healthy cells and its involvement in many diseases, the mechanisms that regulate PLS3 expression are unknown. Interestingly, PLS3 is an X-linked gene and all asymptomatic SMN1-deleted individuals in SMA-discordant families who exhibit PLS3 upregulation are female, suggesting that PLS3 may escape X chromosome inactivation. To elucidate mechanisms contributing to PLS3 regulation, we performed a multi-omics analysis in two SMA-discordant families using lymphoblastoid cell lines and iPSC-derived spinal motor neurons originated from fibroblasts. We show that PLS3 tissue-specifically escapes X-inactivation. PLS3 is located ∼500 kb proximal to the DXZ4 macrosatellite, which is essential for X chromosome inactivation. By applying molecular combing in a total of 25 lymphoblastoid cell lines (asymptomatic individuals, individuals with SMA, control subjects) with variable PLS3 expression, we found a significant correlation between the copy number of DXZ4 monomers and PLS3 levels. Additionally, we identified chromodomain helicase DNA binding protein 4 (CHD4) as an epigenetic transcriptional regulator of PLS3 and validated co-regulation of the two genes by siRNA-mediated knock-down and overexpression of CHD4. We show that CHD4 binds the PLS3 promoter by performing chromatin immunoprecipitation and that CHD4/NuRD activates the transcription of PLS3 by dual-luciferase promoter assays. Thus, we provide evidence for a multilevel epigenetic regulation of PLS3 that may help to understand the protective or disease-associated PLS3 dysregulation.
Collapse
Affiliation(s)
- Eike A Strathmann
- Institute of Human Genetics, University Hospital of Cologne, University Cologne, Kerpener Str. 34, 50931 Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany; Institute for Genetics, University of Cologne, 50674 Cologne, Germany
| | - Irmgard Hölker
- Institute of Human Genetics, University Hospital of Cologne, University Cologne, Kerpener Str. 34, 50931 Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany; Institute for Genetics, University of Cologne, 50674 Cologne, Germany
| | - Nikolai Tschernoster
- Institute of Human Genetics, University Hospital of Cologne, University Cologne, Kerpener Str. 34, 50931 Cologne, Germany; Cologne Center for Genomics and West German Genome Center, University of Cologne, 50931 Cologne, Germany
| | - Seyyedmohsen Hosseinibarkooie
- Institute of Human Genetics, University Hospital of Cologne, University Cologne, Kerpener Str. 34, 50931 Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany; Institute for Genetics, University of Cologne, 50674 Cologne, Germany
| | - Julien Come
- INSERM/ UEVE UMR 861, Université Paris Saclay, I-STEM, 91100 Corbeil-Essonnes, France
| | - Cecile Martinat
- INSERM/ UEVE UMR 861, Université Paris Saclay, I-STEM, 91100 Corbeil-Essonnes, France
| | - Janine Altmüller
- Cologne Center for Genomics and West German Genome Center, University of Cologne, 50931 Cologne, Germany
| | - Brunhilde Wirth
- Institute of Human Genetics, University Hospital of Cologne, University Cologne, Kerpener Str. 34, 50931 Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany; Institute for Genetics, University of Cologne, 50674 Cologne, Germany; Center for Rare Diseases, University Hospital of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
44
|
de Andrés MP, Jackson RJ, Felipe I, Zagorac S, Pilarsky C, Schlitter AM, Martinez de Villareal J, Jang GH, Costello E, Gallinger S, Ghaneh P, Greenhalf W, Knösel T, Palmer DH, Ruemmele P, Weichert W, Buechler M, Hackert T, Neoptolemos JP, Notta F, Malats N, Martinelli P, Real FX. GATA4 and GATA6 loss-of-expression is associated with extinction of the classical programme and poor outcome in pancreatic ductal adenocarcinoma. Gut 2023; 72:535-548. [PMID: 36109153 DOI: 10.1136/gutjnl-2021-325803] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 08/05/2022] [Indexed: 12/08/2022]
Abstract
OBJECTIVE GATA6 is a key regulator of the classical phenotype in pancreatic ductal adenocarcinoma (PDAC). Low GATA6 expression associates with poor patient outcome. GATA4 is the second most expressed GATA factor in the pancreas. We assessed whether, and how, GATA4 contributes to PDAC phenotype and analysed the association of expression with outcome and response to chemotherapy. DESIGN We analysed PDAC transcriptomic data, stratifying cases according to GATA4 and GATA6 expression and identified differentially expressed genes and pathways. The genome-wide distribution of GATA4 was assessed, as well as the effects of GATA4 knockdown. A multicentre tissue microarray study to assess GATA4 and GATA6 expression in samples (n=745) from patients with resectable was performed. GATA4 and GATA6 levels were dichotomised into high/low categorical variables; association with outcome was assessed using univariable and multivariable Cox regression models. RESULTS GATA4 messenger RNA is enriched in classical, compared with basal-like tumours. We classified samples in 4 groups as high/low for GATA4 and GATA6. Reduced expression of GATA4 had a minor transcriptional impact but low expression of GATA4 enhanced the effects of GATA6 low expression. GATA4 and GATA6 display a partially overlapping genome-wide distribution, mainly at promoters. Reduced expression of both proteins in tumours was associated with the worst patient survival. GATA4 and GATA6 expression significantly decreased in metastases and negatively correlated with basal markers. CONCLUSIONS GATA4 and GATA6 cooperate to maintain the classical phenotype. Our findings provide compelling rationale to assess their expression as biomarkers of poor prognosis and therapeutic response.
Collapse
Affiliation(s)
- Mónica P de Andrés
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
| | - Richard J Jackson
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Irene Felipe
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Sladjana Zagorac
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
| | | | - Anna Melissa Schlitter
- Institute of Pathology, School of Medicine, Technische Universitat Munchen, Munchen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jaime Martinez de Villareal
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Gun Ho Jang
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Eithne Costello
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Steve Gallinger
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Cancer Centre, University, Toronto, Ontario, Canada
- Health Network, Toronto, Ontario, Canada
- Hepatobiliary/Pancreatic Surgical Oncology Program, University Health Network, Toronto, Ontario, Canada
| | - Paula Ghaneh
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - William Greenhalf
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Thomas Knösel
- Institute of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Daniel H Palmer
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Petra Ruemmele
- Pathologisches Institute, Erlangen University Hospital, Erlangen, Germany
| | - Wilko Weichert
- Institute of Pathology, School of Medicine, Technische Universitat Munchen, Munchen, Germany
| | - Markus Buechler
- Department of General, Visceral, and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Thilo Hackert
- Department of General, Visceral, and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - John P Neoptolemos
- Department of General, Visceral, and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Faiyaz Notta
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Division of Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Núria Malats
- CIBERONC, Madrid, Spain
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
| | - Paola Martinelli
- Institute of Cancer Research, Clinic for Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Francisco X Real
- Departament de Medicina i Ciències de la Vida, Universitt Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
45
|
Functional characterization of GATA6 genetic variants associated with mild congenital heart defects. Biochem Biophys Res Commun 2023; 641:77-83. [PMID: 36525927 DOI: 10.1016/j.bbrc.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/01/2022] [Indexed: 12/04/2022]
Abstract
Damaging GATA6 variants can cause moderate congenital heart defects. With the application of next-generation sequencing approaches, various novel GATA6 variants with unknown significance have been identified from a broad spectrum of congenital heart defects. However, functional assessment for distinct GATA6 variants from different severity of congenital heart defects, especially from mild defects, is lacking, which hinders our understanding of the genotype-phenotype correlations and underlying mechanisms. Here, we assessed the functional consequences of nine rare GATA6 variants, which had been implicated as the most significant variants associated with mild congenital heart defects using the largest case and control cohort. We examined the effects of these variants on subcellular localization, transcriptional activity, and protein interactions in 293T or AC16 cells and their ability to rescue heart malformation in gata6 zebrafish mutant. We found that two of these nine variants, Q120X and S424I, significantly decreased transcriptional activity. Additionally, Q120X altered subcellular localization. Consistent with the in vitro results, the in vivo results showed that Q120X and S424I lost their potency to rescue ventricular malformation in gata6 -/- embryos. The results indicated that Q120X and S424I are pathogenic in mild congenital heart defects. Further, the inconsistence of severely impaired Q120X function and mild CHDs phenotype suggested the complexity of the genotype-phenotype correlation between the GATA6 variant and heart phenotype, which may help to inform prenatal genetic counseling and pre-implantation genotyping for congenital heart defects.
Collapse
|
46
|
Liu L, Peng Y, Liu W, Xu J, Li D, Li X. GATA-binding protein 4 promotes neuroinflammation and cognitive impairment in Aβ 1-42 fibril-infused rats through small nucleolar RNA host gene 1/miR-361-3p axis. CHINESE J PHYSIOL 2023; 66:14-20. [PMID: 36814152 DOI: 10.4103/cjop.cjop-d-22-00057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Aging with dysregulated metabolic and immune homeostasis stimulates pyroptosis, neuroinflammation, and cellular senescence, thus contributing to etiopathogenesis of Alzheimer's disease. GATA-binding protein 4 (GATA4) functions as a transcriptional factor in response to DNA damage, and is associated with neuroinflammation and cellular senescence. The role of GATA4 in Alzheimer's disease was investigated. GATA4 was elevated in hippocampus of Aβ1-42 fibril-infused rats. Injection with shRNA targeting GATA4 reduced escape latency with increase of time in target quadrant and number of platform crossings in Aβ1-42 fibril-infused rats. Moreover, knockdown of GATA4 ameliorated morphological changes of hippocampus and reduced amyloid plaque deposition in Aβ1-42 fibril-infused rats. Silence of GATA4 repressed neuroinflammation and apoptosis in Aβ1-42 fibril-infused rats. Loss of GATA4 in Aβ1-42 fibril-infused rats reduced the expression of specificity protein 1 (Sp1) to downregulate long noncoding RNA small nucleolar RNA host gene 1 (SNHG1) and upregulated miR-361-3p. Loss of SNHG1 ameliorated learning and memory impairments in Aβ1-42 fibril-infused rats. Overexpression of Sp1 attenuated GATA4 silence-induced decrease of escape latency, increase of time in target quadrant, and number of platform crossings in Aβ1-42 fibril-infused rats. In conclusion, silence of GATA4 ameliorated cognitive dysfunction and inhibited hippocampal inflammation and cell apoptosis through regulation of Sp1/SNHG1/miR-361-3p.
Collapse
Affiliation(s)
- Lidan Liu
- Department of Internal Medicine-Neurology, The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yanhui Peng
- Department of Internal Medicine-Neurology, The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Wenping Liu
- Department of Internal Medicine-Neurology, The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jiajun Xu
- Department of Internal Medicine-Neurology, The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Dali Li
- Department of Internal Medicine-Neurology, The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiuwen Li
- Department of Rheumatology and Immunology, The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
47
|
Wang X, Liu S, Yu J. Multi-lineage Differentiation from Hematopoietic Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1442:159-175. [PMID: 38228964 DOI: 10.1007/978-981-99-7471-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The hematopoietic stem cells (HSCs) have the ability to differentiate and give rise to all mature blood cells. Commitment to differentiation progressively limits the self-renewal potential of the original HSCs by regulating the level of lineage-specific gene expression. In this review, we will summarize the current understanding of the molecular mechanisms underlying HSC differentiation toward erythroid, myeloid, and lymphocyte lineages. Moreover, we will decipher how the single-cell technologies advance the lineage-biased HSC subpopulations and their differentiation potential.
Collapse
Affiliation(s)
- Xiaoshuang Wang
- The State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences / Peking Union Medical College, Beijing, China.
- The Institute of Blood Transfusion, Chinese Academy of Medical Sciences / Peking Union Medical College, Chengdu, China.
| | - Siqi Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences / Peking Union Medical College, Beijing, China
| | - Jia Yu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences / Peking Union Medical College, Beijing, China.
- The Institute of Blood Transfusion, Chinese Academy of Medical Sciences / Peking Union Medical College, Chengdu, China.
| |
Collapse
|
48
|
Kim BM, Song HS, Kim JY, Kwon EY, Ha SY, Kim M, Choi JH. Functional characterization of ABCA4 genetic variants related to Stargardt disease. Sci Rep 2022; 12:22282. [PMID: 36566289 PMCID: PMC9790013 DOI: 10.1038/s41598-022-26912-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022] Open
Abstract
The ATP-binding cassette subfamily 4 (ABCA4), a transporter, is localized within the photoreceptors of the retina, and its genetic variants cause retinal dystrophy. Despite the clinical importance of the ABCA4 transporter, a few studies have investigated the function of each variant. In this study, we functionally characterized ABCA4 variants found in Korean patients with Stargardt disease or variants of the ABCA4 promoter region. We observed that four missense variants-p.Arg290Gln, p.Thr1117Ala, p.Cys1140Trp, and p.Asn1588Tyr-significantly decreased ABCA4 expression on the plasma membrane, which could be due to intracellular degradation. There are four major haplotypes in the ABCA4 proximal promoter. We observed that the H1 haplotype (c.-761C>A) indicated significantly increased luciferase activity compared to that of the wild-type, whereas the H3 haplotype (c.-1086A>C) indicated significantly decreased luciferase activity (P < 0.01 and 0.001, respectively). In addition, c.-900A>T in the H2 haplotype exhibited significantly increased luciferase activity compared with that of the wild-type. Two transcription factors, GATA-2 and HLF, were found to function as enhancers of ABCA4 transcription. Our findings suggest that ABCA4 variants in patients with Stargardt disease affect ABCA4 expression. Furthermore, common variants of the ABCA4 proximal promoter alter the ABCA4 transcriptional activity, which is regulated by GATA-2 and HLF transcription factors.
Collapse
Affiliation(s)
- Bo Min Kim
- grid.255649.90000 0001 2171 7754Department of Pharmacology, Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, 25 Magokdong-Ro 2-Gil, Gangseo-Gu, Seoul, 07804 Korea
| | - Hyo Sook Song
- grid.255649.90000 0001 2171 7754Department of Pharmacology, Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, 25 Magokdong-Ro 2-Gil, Gangseo-Gu, Seoul, 07804 Korea
| | - Jin-Young Kim
- grid.255649.90000 0001 2171 7754Department of Pharmacology, Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, 25 Magokdong-Ro 2-Gil, Gangseo-Gu, Seoul, 07804 Korea
| | - Eun Young Kwon
- grid.255649.90000 0001 2171 7754Department of Pharmacology, Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, 25 Magokdong-Ro 2-Gil, Gangseo-Gu, Seoul, 07804 Korea
| | - Seung Yeon Ha
- grid.255649.90000 0001 2171 7754Department of Pharmacology, Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, 25 Magokdong-Ro 2-Gil, Gangseo-Gu, Seoul, 07804 Korea
| | - Minsuk Kim
- grid.255649.90000 0001 2171 7754Department of Pharmacology, Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, 25 Magokdong-Ro 2-Gil, Gangseo-Gu, Seoul, 07804 Korea
| | - Ji Ha Choi
- grid.255649.90000 0001 2171 7754Department of Pharmacology, Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, 25 Magokdong-Ro 2-Gil, Gangseo-Gu, Seoul, 07804 Korea
| |
Collapse
|
49
|
Maruyama T, Hasegawa D, Valenta T, Haigh J, Bouchard M, Basler K, Hsu W. GATA3 mediates nonclassical β-catenin signaling in skeletal cell fate determination and ectopic chondrogenesis. SCIENCE ADVANCES 2022; 8:eadd6172. [PMID: 36449606 PMCID: PMC9710881 DOI: 10.1126/sciadv.add6172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/13/2022] [Indexed: 06/17/2023]
Abstract
Skeletal precursors are mesenchymal in origin and can give rise to distinct sublineages. Their lineage commitment is modulated by various signaling pathways. The importance of Wnt signaling in skeletal lineage commitment has been implicated by the study of β-catenin-deficient mouse models. Ectopic chondrogenesis caused by the loss of β-catenin leads to a long-standing belief in canonical Wnt signaling that determines skeletal cell fate. As β-catenin has other functions, it remains unclear whether skeletogenic lineage commitment is solely orchestrated by canonical Wnt signaling. The study of the Wnt secretion regulator Gpr177/Wntless also raises concerns about current knowledge. Here, we show that skeletal cell fate is determined by β-catenin but independent of LEF/TCF transcription. Genomic and bioinformatic analyses further identify GATA3 as a mediator for the alternative signaling effects. GATA3 alone is sufficient to promote ectopic cartilage formation, demonstrating its essential role in mediating nonclassical β-catenin signaling in skeletogenic lineage specification.
Collapse
Affiliation(s)
- Takamitsu Maruyama
- Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
- University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Daigaku Hasegawa
- Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
- University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Tomas Valenta
- Department of Molecular Life Sciences, University of Zürich, CH-8057 Zürich, Switzerland
| | - Jody Haigh
- CancerCare Manitoba Research Institute, Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba R3E 0V9, Canada
| | - Maxime Bouchard
- Goodman Cancer Institute and Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Konrad Basler
- Department of Molecular Life Sciences, University of Zürich, CH-8057 Zürich, Switzerland
| | - Wei Hsu
- Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
- University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Faculty of Medicine, Harvard University, 25 Shattuck St, Boston, MA 02115, USA
- Harvard School of Dental Medicine, 188 Longwood Ave, Boston, MA 02115, USA
- Harvard Stem Cell Institute, 7 Divinity Ave, Cambridge, MA 02138, USA
| |
Collapse
|
50
|
Multiprotein GLI Transcriptional Complexes as Therapeutic Targets in Cancer. LIFE (BASEL, SWITZERLAND) 2022; 12:life12121967. [PMID: 36556332 PMCID: PMC9786339 DOI: 10.3390/life12121967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
The Hedgehog signaling pathway functions in both embryonic development and adult tissue homeostasis. Importantly, its aberrant activation is also implicated in the progression of multiple types of cancer, including basal cell carcinoma and medulloblastoma. GLI transcription factors function as the ultimate effectors of the Hedgehog signaling pathway. Their activity is regulated by this signaling cascade via their mRNA expression, protein stability, subcellular localization, and ultimately their transcriptional activity. Further, GLI proteins are also regulated by a variety of non-canonical mechanisms in addition to the canonical Hedgehog pathway. Recently, with an increased understanding of epigenetic gene regulation, novel transcriptional regulators have been identified that interact with GLI proteins in multi-protein complexes to regulate GLI transcriptional activity. Such complexes have added another layer of complexity to the regulation of GLI proteins. Here, we summarize recent work on the regulation of GLI transcriptional activity by these novel protein complexes and describe their relevance to cancer, as such GLI regulators represent alternative and innovative druggable targets in GLI-dependent cancers.
Collapse
|