1
|
Premachandre CK, Quah PS, Tran BM, Vincan E, Deliyannis G, Wong CY, Diaz-Méndez A, Jackson DC, Reading PC, Browning GF, Vaz PK, Wawegama NK. Bovine tracheal organoids for studying Mycoplasma bovis respiratory infections. Vet Microbiol 2025; 300:110340. [PMID: 39675119 DOI: 10.1016/j.vetmic.2024.110340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/08/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
In vitro three-dimensional organoid models simulate key aspects of the structure and function of in vivo organs and have been used to study physiology, host-pathogen interactions, pathogenesis and pharmacodynamics. Although most organoid studies have been developed using human or mouse tissues, recent advancements have enabled the establishment of intestinal and respiratory tract organoids from domestic animal samples. Mycoplasma bovis causes chronic respiratory tract infections in cattle with significant health and economic consequences. The pathogenesis and virulence factors of M. bovis have been studied in several in vitro infection models, but the use of organoids has not been examined previously. In this study, we assessed the feasibility of using a matrix-embedded bovine tracheal organoid system to study respiratory infections with M. bovis. Bovine tracheal organoids were inoculated with M. bovis strain MbovMil and incubated for 72 hours to investigate the ability of M. bovis to proliferate, attach and invade the organoids. M. bovis was able to infect the organoids, resulting in a mean 260-fold increase in the titre of viable M. bovis by 72 hours post-inoculation. Examination of the infected organoids using transmission electron microscopy revealed the presence of mycoplasmas within the organoid cells and membrane bound clusters of M. bovis inside the intercellular junctions. Our findings indicate that bovine tracheal organoids can be used as a model system for studying respiratory tract infections caused by M. bovis.
Collapse
Affiliation(s)
- Chintha K Premachandre
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Pin Shie Quah
- Department of Microbiology and Immunology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne at the Peter Doherty institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Bang Manh Tran
- Department of Infectious Diseases, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Elizabeth Vincan
- Department of Infectious Diseases, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia; Victorian Infectious Diseases Reference Laboratory at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia; Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | - Georgia Deliyannis
- Department of Microbiology and Immunology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne at the Peter Doherty institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Chinn Yi Wong
- Department of Microbiology and Immunology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne at the Peter Doherty institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Andrés Diaz-Méndez
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - David C Jackson
- Department of Microbiology and Immunology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne at the Peter Doherty institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Patrick C Reading
- Department of Microbiology and Immunology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne at the Peter Doherty institute for Infection and Immunity, Melbourne, Victoria 3000, Australia; WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Glenn F Browning
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Paola K Vaz
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nadeeka K Wawegama
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
2
|
Xiao QX, Geng MJ, Wang QL, Fang CL, Zhang JH, Liu Q, Xiong LL. Unraveling the effects of prenatal anesthesia on neurodevelopment: A review of current evidence and future directions. Neurotoxicology 2024; 105:96-110. [PMID: 39276873 DOI: 10.1016/j.neuro.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Human brain development is a complex, multi-stage, and sensitive process, especially during the fetal stage. Animal studies over the last two decades have highlighted the potential risks of anesthetics to the developing brain, impacting its structure and function. This has raised concerns regarding the safety of anesthesia during pregnancy and its influence on fetal brain development, garnering significant attention from the anesthesiology community. Although preclinical studies predominantly indicate the neurotoxic effects of prenatal anesthesia, these findings cannot be directly extrapolated to humans due to interspecies variations. Clinical research, constrained by ethical and technical hurdles in accessing human prenatal brain tissues, often yields conflicting results compared to preclinical data. The emergence of brain organoids as a cutting-edge research tool shows promise in modeling human brain development. When integrated with single-cell sequencing, these organoids offer insights into potential neurotoxic mechanisms triggered by prenatal anesthesia. Despite several retrospective and cohort studies exploring the clinical impact of anesthesia on brain development, many findings remain inconclusive. As such, this review synthesizes preclinical and clinical evidence on the effects of prenatal anesthesia on fetal brain development and suggests areas for future research advancement.
Collapse
Affiliation(s)
- Qiu-Xia Xiao
- Department of Anesthesiology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, China
| | - Min-Jian Geng
- The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
| | - Qiu-Lin Wang
- Department of Anesthesiology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, China
| | - Chang-Le Fang
- Department of Anesthesiology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, China
| | - Jing-Han Zhang
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
| | - Qi Liu
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
| | - Liu-Lin Xiong
- Department of Anesthesiology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, China.
| |
Collapse
|
3
|
Bhattacharya R, Bose D, Kaur T, Patel R, Renuka O, Rodriguez RV. Model Organoids: Integrated Frameworks for the Next Frontier of Healthcare Advancements. Stem Cell Rev Rep 2024:10.1007/s12015-024-10814-3. [PMID: 39527389 DOI: 10.1007/s12015-024-10814-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
The morphogenetic events leading to tissue formation can be recapitulated using organoids, which allows studying new diseases and modelling personalized medicines. In this review, culture systems comparable to human organs are presented, these organoids are created from pluripotent stem cells or adult stem cells. The efficient and reproducible models of human tissues are discussed for biobanking, precision medicine and basic research. Mechanisms used by these model systems with an overview of models from human cells are also covered. As human physiology is different from animals, culture conditions and tissue limits often become challenging. Organoids offer novel approaches for such cases with rapid screening, transplantation studies and in immunotherapy. Discrepancies with large datasets can be handled with an integrated framework of artificial intelligence or AI and machine learning. An attempt has been made to show the improved effectiveness, simplified iterations, along with image analysis that are possible from this synergy. AI-assisted organoids have the potential to transform healthcare by improving disease understanding and accelerating clinical decision-making through personalized and precision medicine.
Collapse
Affiliation(s)
- Riya Bhattacharya
- AI-Research Centre, School of Business, Woxsen University, Hyderabad, Telangana, India
- Centre of Excellence for Health Technology, Ecosystems, & Biodiversity, Woxsen University, Hyderabad, Telangana, India
| | - Debajyoti Bose
- AI-Research Centre, School of Business, Woxsen University, Hyderabad, Telangana, India.
- Centre of Excellence for Health Technology, Ecosystems, & Biodiversity, Woxsen University, Hyderabad, Telangana, India.
| | - Tanveen Kaur
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University of Science and Technology, Ames, IA, USA
| | - Rushik Patel
- AI-Research Centre, School of Business, Woxsen University, Hyderabad, Telangana, India
- School of Technology, Woxsen University, Hyderabad, Telangana, India
| | - Oladri Renuka
- AI-Research Centre, School of Business, Woxsen University, Hyderabad, Telangana, India
- School of Technology, Woxsen University, Hyderabad, Telangana, India
| | - Raul V Rodriguez
- AI-Research Centre, School of Business, Woxsen University, Hyderabad, Telangana, India.
- Centre of Excellence for Health Technology, Ecosystems, & Biodiversity, Woxsen University, Hyderabad, Telangana, India.
- School of Business, Woxsen University, Hyderabad, Telangana, India.
| |
Collapse
|
4
|
Abdollahzadeh F, Khoshdel‐Rad N, Bahrehbar K, Erfanian S, Ezzatizadeh V, Totonchi M, Moghadasali R. Enhancing maturity in 3D kidney micro-tissues through clonogenic cell combinations and endothelial integration. J Cell Mol Med 2024; 28:e18453. [PMID: 38818569 PMCID: PMC11140233 DOI: 10.1111/jcmm.18453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 06/01/2024] Open
Abstract
As an advance laboratory model, three-dimensional (3D) organoid culture has recently been recruited to study development, physiology and abnormality of kidney tissue. Micro-tissues derived from primary renal cells are composed of 3D epithelial structures representing the main characteristics of original tissue. In this research, we presented a simple method to isolate mouse renal clonogenic mesenchymal (MLCs) and epithelial-like cells (ELCs). Then we have done a full characterization of MLCs using flow cytometry for surface markers which showed that more than 93% of cells expressed these markers (Cd44, Cd73 and Cd105). Epithelial and stem/progenitor cell markers characterization also performed for ELC cells and upregulating of these markers observed while mesenchymal markers expression levels were not significantly increased in ELCs. Each of these cells were cultured either alone (ME) or in combination with human umbilical vein endothelial cells (HUVECs) (MEH; with an approximate ratio of 10:5:2) to generate more mature kidney structures. Analysis of 3D MEH renal micro-tissues (MEHRMs) indicated a significant increase in renal-specific gene expression including Aqp1 (proximal tubule), Cdh1 (distal tubule), Umod (loop of Henle), Wt1, Podxl and Nphs1 (podocyte markers), compared to those groups without endothelial cells, suggesting greater maturity of the former tissue. Furthermore, ex ovo transplantation showed greater maturation in the constructed 3D kidney.
Collapse
Affiliation(s)
- Fatemeh Abdollahzadeh
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Department of Developmental BiologyUniversity of Science and CultureTehranIran
| | - Niloofar Khoshdel‐Rad
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Khadijeh Bahrehbar
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Saiedeh Erfanian
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Vahid Ezzatizadeh
- Medical Genetics DepartmentAyandeh Clinical and Genetic LaboratoryVaraminIran
| | - Mehdi Totonchi
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Reza Moghadasali
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| |
Collapse
|
5
|
Okumura A, Aoshima K, Tanimizu N. Generation of in vivo-like multicellular liver organoids by mimicking developmental processes: A review. Regen Ther 2024; 26:219-234. [PMID: 38903867 PMCID: PMC11186971 DOI: 10.1016/j.reth.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/22/2024] Open
Abstract
Liver is involved in metabolic reactions, ammonia detoxification, and immunity. Multicellular liver tissue cultures are more desirable for drug screening, disease modeling, and researching transplantation therapy, than hepatocytes monocultures. Hepatocytes monocultures are not stable for long. Further, hepatocyte-like cells induced from pluripotent stem cells and in vivo hepatocytes are functionally dissimilar. Organoid technology circumvents these issues by generating functional ex vivo liver tissue from intrinsic liver progenitor cells and extrinsic stem cells, including pluripotent stem cells. To function as in vivo liver tissue, the liver organoid cells must be arranged precisely in the 3-dimensional space, closely mimicking in vivo liver tissue. Moreover, for long term functioning, liver organoids must be appropriately vascularized and in contact with neighboring epithelial tissues (e.g., bile canaliculi and intrahepatic bile duct, or intrahepatic and extrahepatic bile ducts). Recent discoveries in liver developmental biology allows one to successfully induce liver component cells and generate organoids. Thus, here, in this review, we summarize the current state of knowledge on liver development with a focus on its application in generating different liver organoids. We also cover the future prospects in creating (functionally and structurally) in vivo-like liver organoids using the current knowledge on liver development.
Collapse
Affiliation(s)
- Ayumu Okumura
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-0071, Japan
| | - Kenji Aoshima
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-0071, Japan
| | - Naoki Tanimizu
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-0071, Japan
| |
Collapse
|
6
|
Kuo YP, Nombela-Arrieta C, Carja O. A theory of evolutionary dynamics on any complex population structure reveals stem cell niche architecture as a spatial suppressor of selection. Nat Commun 2024; 15:4666. [PMID: 38821923 PMCID: PMC11143212 DOI: 10.1038/s41467-024-48617-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 05/02/2024] [Indexed: 06/02/2024] Open
Abstract
How the spatial arrangement of a population shapes its evolutionary dynamics has been of long-standing interest in population genetics. Most previous studies assume a small number of demes or symmetrical structures that, most often, act as well-mixed populations. Other studies use network theory to study more heterogeneous spatial structures, however they usually assume small, regular networks, or strong constraints on the strength of selection considered. Here we build network generation algorithms, conduct evolutionary simulations and derive general analytic approximations for probabilities of fixation in populations with complex spatial structure. We build a unifying evolutionary theory across network families and derive the relevant selective parameter, which is a combination of network statistics, predictive of evolutionary dynamics. We also illustrate how to link this theory with novel datasets of spatial organization and use recent imaging data to build the cellular spatial networks of the stem cell niches of the bone marrow. Across a wide variety of parameters, we find these networks to be strong suppressors of selection, delaying mutation accumulation in this tissue. We also find that decreases in stem cell population size also decrease the suppression strength of the tissue spatial structure.
Collapse
Affiliation(s)
- Yang Ping Kuo
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
- Joint Carnegie Mellon University-University of Pittsburgh Ph.D. Program in Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - César Nombela-Arrieta
- Department of Medical Oncology and Hematology, University and University Hospital Zurich, Zurich, Switzerland
| | - Oana Carja
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Boylin K, Aquino GV, Purdon M, Abedi K, Kasendra M, Barrile R. Basic models to advanced systems: harnessing the power of organoids-based microphysiological models of the human brain. Biofabrication 2024; 16:032007. [PMID: 38749420 DOI: 10.1088/1758-5090/ad4c08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Understanding the complexities of the human brain's function in health and disease is a formidable challenge in neuroscience. While traditional models like animals offer valuable insights, they often fall short in accurately mirroring human biology and drug responses. Moreover, recent legislation has underscored the need for more predictive models that more accurately represent human physiology. To address this requirement, human-derived cell cultures have emerged as a crucial alternative for biomedical research. However, traditional static cell culture models lack the dynamic tissue microenvironment that governs human tissue function. Advancedin vitrosystems, such as organoids and microphysiological systems (MPSs), bridge this gap by offering more accurate representations of human biology. Organoids, which are three-dimensional miniaturized organ-like structures derived from stem cells, exhibit physiological responses akin to native tissues, but lack essential tissue-specific components such as functional vascular structures and immune cells. Recent endeavors have focused on incorporating endothelial cells and immune cells into organoids to enhance vascularization, maturation, and disease modeling. MPS, including organ-on-chip technologies, integrate diverse cell types and vascularization under dynamic culture conditions, revolutionizing brain research by bridging the gap betweenin vitroandin vivomodels. In this review, we delve into the evolution of MPS, with a particular focus on highlighting the significance of vascularization in enhancing the viability, functionality, and disease modeling potential of organoids. By examining the interplay of vasculature and neuronal cells within organoids, we can uncover novel therapeutic targets and gain valuable insights into disease mechanisms, offering the promise of significant advancements in neuroscience and improved patient outcomes.
Collapse
Affiliation(s)
- Katherine Boylin
- Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, United States of America
- Center for Stem Cells and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Grace V Aquino
- Center for Stem Cells and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Michael Purdon
- Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, United States of America
- Center for Stem Cells and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Kimia Abedi
- Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, United States of America
- Center for Stem Cells and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Magdalena Kasendra
- Center for Stem Cells and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Riccardo Barrile
- Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, United States of America
- Center for Stem Cells and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| |
Collapse
|
8
|
Llorente C. The Imperative for Innovative Enteric Nervous System-Intestinal Organoid Co-Culture Models: Transforming GI Disease Modeling and Treatment. Cells 2024; 13:820. [PMID: 38786042 PMCID: PMC11119846 DOI: 10.3390/cells13100820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
This review addresses the need for innovative co-culture systems integrating the enteric nervous system (ENS) with intestinal organoids. The breakthroughs achieved through these techniques will pave the way for a transformative era in gastrointestinal (GI) disease modeling and treatment strategies. This review serves as an introduction to the companion protocol paper featured in this journal. The protocol outlines the isolation and co-culture of myenteric and submucosal neurons with small intestinal organoids. This review provides an overview of the intestinal organoid culture field to establish a solid foundation for effective protocol application. Remarkably, the ENS surpasses the number of neurons in the spinal cord. Referred to as the "second brain", the ENS orchestrates pivotal roles in GI functions, including motility, blood flow, and secretion. The ENS is organized into myenteric and submucosal plexuses. These plexuses house diverse subtypes of neurons. Due to its proximity to the gut musculature and its cell type complexity, there are methodological intricacies in studying the ENS. Diverse approaches such as primary cell cultures, three-dimensional (3D) neurospheres, and induced ENS cells offer diverse insights into the multifaceted functionality of the ENS. The ENS exhibits dynamic interactions with the intestinal epithelium, the muscle layer, and the immune system, influencing epithelial physiology, motility, immune responses, and the microbiome. Neurotransmitters, including acetylcholine (ACh), serotonin (5-HT), and vasoactive intestinal peptide (VIP), play pivotal roles in these intricate interactions. Understanding these dynamics is imperative, as the ENS is implicated in various diseases, ranging from neuropathies to GI disorders and neurodegenerative diseases. The emergence of organoid technology presents an unprecedented opportunity to study ENS interactions within the complex milieu of the small and large intestines. This manuscript underscores the urgent need for standardized protocols and advanced techniques to unravel the complexities of the ENS and its dynamic relationship with the gut ecosystem. The insights gleaned from such endeavors hold the potential to revolutionize GI disease modeling and treatment paradigms.
Collapse
Affiliation(s)
- Cristina Llorente
- Department of Medicine, University of California San Diego, MC0063, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
9
|
Pauer SM, Buß B, Diener M, Ballout J. Time-dependent effects of tumor necrosis factor α on Ca 2+-dependent secretion in murine small intestinal organoids. Front Physiol 2024; 15:1382238. [PMID: 38737827 PMCID: PMC11082751 DOI: 10.3389/fphys.2024.1382238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/15/2024] [Indexed: 05/14/2024] Open
Abstract
Background Intestinal organoids are stem cell-derived, 3D "mini-guts" with similar functions as the native intestinal epithelium such as electrolyte transport or establishment of an epithelial barrier. During intestinal inflammation, epithelial functions are dysregulated by proinflammatory cytokines like tumor necrosis factor α (TNFα) and other messengers from the immune system resulting in a loss of electrolytes and water due to an impaired epithelial barrier and higher net secretion. Methods A murine small intestinal organoid model was established to study (long-term) effects of TNFα on the intestinal epithelium in vitro using live imaging, immunohistochemical staining and qPCR. Results TNFα induced apoptosis in intestinal organoids as indicated by an increased number of cells with immunoreactivity for cleaved caspase 3. Furthermore, TNFα exposure led to swelling of the organoids which was inhibited by bumetanide and was concomitant with an upregulation of the bumetanide-sensitive Na+-K+-2Cl- symporter 1 (NKCC1) as shown by qPCR. Fura-2 imaging experiments revealed time-dependent changes in Ca2+ signaling consisting of a rise in the basal cytosolic Ca2+ concentration at day 1 and an increase of the carbachol-induced Ca2+ response after 3 days TNFα exposure. This was prevented by preincubation with La3+, an inhibitor of non-selective cation channels, or by using a Ca2+-free buffer indicating an enhancement of the Ca2+ influx from the extracellular side by the cytokine. No significant changes in cDNA levels of epithelial barrier proteins could be observed in the presence of TNFα. Conclusion Intestinal organoids are a useful tool to study the mechanism underlying the TNFα-induced secretion on enterocytes such as the regulation of NKCC1 expression or the modulation of cellular Ca2+ signaling.
Collapse
Affiliation(s)
| | | | | | - Jasmin Ballout
- Institute for Veterinary Physiology and Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
10
|
Mulero-Russe A, García AJ. Engineered Synthetic Matrices for Human Intestinal Organoid Culture and Therapeutic Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307678. [PMID: 37987171 PMCID: PMC10922691 DOI: 10.1002/adma.202307678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/02/2023] [Indexed: 11/22/2023]
Abstract
Human intestinal organoids (HIOs) derived from pluripotent stem cells or adult stem cell biopsies represent a powerful platform to study human development, drug testing, and disease modeling in vitro, and serve as a cell source for tissue regeneration and therapeutic advances in vivo. Synthetic hydrogels can be engineered to serve as analogs of the extracellular matrix to support HIO growth and differentiation. These hydrogels allow for tuning the mechanical and biochemical properties of the matrix, offering an advantage over biologically derived hydrogels such as Matrigel. Human intestinal organoids have been used for repopulating transplantable intestinal grafts and for in vivo delivery to an injured intestinal site. The use of synthetic hydrogels for in vitro culture and for in vivo delivery is expected to significantly increase the relevance of human intestinal organoids for drug screening, disease modeling, and therapeutic applications.
Collapse
Affiliation(s)
- Adriana Mulero-Russe
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Andrés J García
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
11
|
Perlman M, Senger S, Verma S, Carey J, Faherty CS. A foundational approach to culture and analyze malnourished organoids. Gut Microbes 2023; 15:2248713. [PMID: 37724815 PMCID: PMC10512930 DOI: 10.1080/19490976.2023.2248713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/07/2023] [Indexed: 09/21/2023] Open
Abstract
The gastrointestinal (GI) epithelium plays a major role in nutrient absorption, barrier formation, and innate immunity. The development of organoid-based methodology has significantly impacted the study of the GI epithelium, particularly in the fields of mucosal biology, immunity, and host-microbe interactions. Various effects on the GI epithelium, such as genetics and nutrition, impact patients and alter disease states. Thus, incorporating these effects into organoid-based models will facilitate a better understanding of disease progression and offer opportunities to evaluate therapeutic candidates. One condition that has a significant effect on the GI epithelium is malnutrition, and studying the mechanistic impacts of malnutrition would enhance our understanding of several pathologies. Therefore, the goal of this study was to begin to develop methodology to generate viable malnourished organoids with accessible techniques and resources that can be used for a wide array of mechanistic studies. By selectively limiting distinct macronutrient components of organoid media, we were able to successfully culture and evaluate malnourished organoids. Genetic and protein-based analyses were used to validate the approach and confirm the presence of known biomarkers of malnutrition. Additionally, as proof-of-concept, we utilized malnourished organoid-derived monolayers to evaluate the effect of malnourishment on barrier formation and the ability of the bacterial pathogen Shigella flexneri to infect the GI epithelium. This work serves as the basis for new and exciting techniques to alter the nutritional state of organoids and investigate the related impacts on the GI epithelium.
Collapse
Affiliation(s)
- Meryl Perlman
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Stefania Senger
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, MA, USA
| | - Smriti Verma
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - James Carey
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, MA, USA
| | - Christina S. Faherty
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Agarwal P, Cadart C, Fort L, Gahan J, Greenspan L, Juan T, Kameneva P, Miao Y. Pathway to Independence: the future of developmental biology. Development 2023; 150:dev202360. [PMID: 37812057 PMCID: PMC10705336 DOI: 10.1242/dev.202360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
In 2022, Development launched its Pathway to Independence (PI) Programme, aimed at supporting postdocs as they transition to their first independent position. We selected eight talented researchers as the first cohort of PI Fellows. In this article, each of our Fellows provides their perspective on the future of their field. Together, they paint an exciting picture of the current state of and open questions in developmental biology.
Collapse
Affiliation(s)
- Priti Agarwal
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Clotilde Cadart
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Loic Fort
- Vanderbilt University School of Medicine, 465 21st Avenue South, U 3200 MRB III, Nashville, TN 37240-7935, USA
| | - James Gahan
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Leah Greenspan
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Thomas Juan
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, D-61231 Bad Nauheim, Germany
| | - Polina Kameneva
- The Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria
| | - Yuchuan Miao
- Department of Genetics, Harvard Medical School and Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
13
|
Kim JH, Mun SJ, Kim JH, Son MJ, Kim SY. Integrative analysis of single-cell RNA-seq and ATAC-seq reveals heterogeneity of induced pluripotent stem cell-derived hepatic organoids. iScience 2023; 26:107675. [PMID: 37680467 PMCID: PMC10481365 DOI: 10.1016/j.isci.2023.107675] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/30/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023] Open
Abstract
To gain deeper insights into transcriptomes and epigenomes of organoids, liver organoids from two states (expandable and more differentiated) were subjected to single-cell RNA-seq (scRNA-seq) and single-cell ATAC-seq (scATAC-seq) analyses. Mitochondrial gene expression was higher in differentiated than in non-differentiated hepatocytes, with ATAC-seq peaks increasing near the mitochondrial control region. Differentiation of liver organoids resulted in the expression of transcription factors that act as enhancers and repressors. In addition, epigenetic mechanisms regulating the expression of alpha-fetoprotein (AFP) and albumin (ALB) differed in liver organoids and adult liver. Knockdown of PDX1, an essential transcription factor for pancreas development, led to the hepatic maturation of liver organoids through regulation of AFP and ALB expression. This integrative analysis of the transcriptomes and epigenomes of liver organoids at the single-cell level may contribute to a better understanding of the regulatory networks during liver development and the further development of mature in vitro human liver models.
Collapse
Affiliation(s)
| | - Seon Ju Mun
- Stem Cell Convergence Research Center, Daejeon, Korea
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, Korea
| | - Jeong-Hwan Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Myung Jin Son
- Stem Cell Convergence Research Center, Daejeon, Korea
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, Korea
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seon-Young Kim
- Korean Bioinformation Center, Daejeon, Korea
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, Korea
| |
Collapse
|
14
|
Qu F, Li W, Xu J, Zhang R, Ke J, Ren X, Meng X, Qin L, Zhang J, Lu F, Zhou X, Luo X, Zhang Z, Wang M, Wu G, Pei D, Chen J, Cui G, Suo S, Peng G. Three-dimensional molecular architecture of mouse organogenesis. Nat Commun 2023; 14:4599. [PMID: 37524711 PMCID: PMC10390492 DOI: 10.1038/s41467-023-40155-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 07/16/2023] [Indexed: 08/02/2023] Open
Abstract
Mammalian embryos exhibit sophisticated cellular patterning that is intricately orchestrated at both molecular and cellular level. It has recently become apparent that cells within the animal body display significant heterogeneity, both in terms of their cellular properties and spatial distributions. However, current spatial transcriptomic profiling either lacks three-dimensional representation or is limited in its ability to capture the complexity of embryonic tissues and organs. Here, we present a spatial transcriptomic atlas of all major organs at embryonic day 13.5 in the mouse embryo, and provide a three-dimensional rendering of molecular regulation for embryonic patterning with stacked sections. By integrating the spatial atlas with corresponding single-cell transcriptomic data, we offer a detailed molecular annotation of the dynamic nature of organ development, spatial cellular interactions, embryonic axes, and divergence of cell fates that underlie mammalian development, which would pave the way for precise organ engineering and stem cell-based regenerative medicine.
Collapse
Affiliation(s)
- Fangfang Qu
- Center for Cell Lineage and Atlas, Bioland Laboratory, Guangzhou, China
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, 510005, Guangzhou, Guangdong, China
- Guangzhou Laboratory, 510005, Guangzhou, Guangdong, China
| | - Wenjia Li
- Center for Cell Lineage and Atlas, Bioland Laboratory, Guangzhou, China
- Guangzhou Laboratory, 510005, Guangzhou, Guangdong, China
- The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, 510005, Guangzhou, Guangdong, China
| | - Jian Xu
- Center for Cell Lineage and Atlas, Bioland Laboratory, Guangzhou, China
| | - Ruifang Zhang
- Center for Cell Lineage and Atlas, Bioland Laboratory, Guangzhou, China
| | - Jincan Ke
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, 510530, Guangzhou, China
| | - Xiaodie Ren
- Center for Cell Lineage and Atlas, Bioland Laboratory, Guangzhou, China
| | - Xiaogao Meng
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, 510530, Guangzhou, China
- Life Science and Medicine, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Lexin Qin
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, 510530, Guangzhou, China
| | - Jingna Zhang
- Center for Cell Lineage and Atlas, Bioland Laboratory, Guangzhou, China
| | - Fangru Lu
- Center for Cell Lineage and Atlas, Bioland Laboratory, Guangzhou, China
| | - Xin Zhou
- Center for Cell Lineage and Atlas, Bioland Laboratory, Guangzhou, China
| | - Xi Luo
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, 510530, Guangzhou, China
| | - Zhen Zhang
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, 510530, Guangzhou, China
| | - Minhan Wang
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, 510530, Guangzhou, China
| | - Guangming Wu
- Center for Cell Lineage and Atlas, Bioland Laboratory, Guangzhou, China
- Guangzhou Laboratory, 510005, Guangzhou, Guangdong, China
- School of Basic Medical Sciences, Guangzhou Medical University, 510005, Guangzhou, Guangdong, China
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Jiekai Chen
- Center for Cell Lineage and Atlas, Bioland Laboratory, Guangzhou, China
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, 510530, Guangzhou, China
| | - Guizhong Cui
- Center for Cell Lineage and Atlas, Bioland Laboratory, Guangzhou, China.
- Guangzhou Laboratory, 510005, Guangzhou, Guangdong, China.
- School of Basic Medical Sciences, Guangzhou Medical University, 510005, Guangzhou, Guangdong, China.
| | - Shengbao Suo
- Guangzhou Laboratory, 510005, Guangzhou, Guangdong, China.
- The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, 510005, Guangzhou, Guangdong, China.
| | - Guangdun Peng
- Center for Cell Lineage and Atlas, Bioland Laboratory, Guangzhou, China.
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, 510530, Guangzhou, China.
| |
Collapse
|
15
|
Jalilian E, Shin SR. Novel model of cortical-meningeal organoid co-culture system improves human cortical brain organoid cytoarchitecture. Sci Rep 2023; 13:7809. [PMID: 37183210 PMCID: PMC10183460 DOI: 10.1038/s41598-023-35077-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/12/2023] [Indexed: 05/16/2023] Open
Abstract
Human cortical organoids (hCOs), derived from human induced pluripotent stem cells (iPSCs), provide a platform to interrogate mechanisms of human brain development and diseases in complex three- dimensional tissues. However, current hCO development methods lack important non-neural tissues, such as the surrounding meningeal layer, that have been shown to be essential for normal corticogenesis and brain development. Here, we first generated hCOs from a single rosette to create more homogenous organoids with consistent size around 250 µm by day 5. We then took advantage of a 3D co-culture system to encapsulate brain organoids with a thin layer of meningeal cells from the very early stages of cortical development. Immunostaining analysis was performed to display different cortical layer markers during different stages of development. Real-time monitoring of organoid development using IncuCyte displayed enhanced morphology and increased growth rate over time. We found that meningeal-encapsulated organoids illustrated better laminar organization by exhibiting higher expression of REELIN by Cajal-Retzius neurons. Presence of meningeal cells resulted in a greater expansion of TBR2 intermediate progenitor cells (IPCs), the deep cortical layer (CTIP2) and upper cortical layer (BRN2). Finally, meningeal-encapsulated organoids enhanced outer radial glial and astrocyte formation illustrated by stronger expression of HOPX and GFAP markers, respectively. This study presents a novel 3D co-culture platform to more closely mimic the in vivo cortical brain structure and enable us to better investigating mechanisms underlying the neurodevelopmental disorders during embryonic development.
Collapse
Affiliation(s)
- Elmira Jalilian
- Department of Neurology, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA.
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA.
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Cambridge, MA, 02139, USA
| |
Collapse
|
16
|
Du X, Dong Y, Li W, Chen Y. hPSC-derived lung organoids: Potential opportunities and challenges. Heliyon 2023; 9:e13498. [PMID: 36814627 PMCID: PMC9939602 DOI: 10.1016/j.heliyon.2023.e13498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Three-dimensional hPSC-derived lung organoids resemble the fetal lung stage, making them an excellent model for studying human lung development. However, current hPSC-derived lung organoids remain incomplete as they lack native lung components such as vasculature, neurons and immune cells. This highlights the need to generate more complex hPSC-derived lung organoids that can faithfully mimic native human lungs for studying human lung development, regeneration, disease modeling and drug screen. In this review, we will discuss the current studies related to the generation of hPSC-derived lung organoids, highlighting how hPSC-derived lung organoids can contribute to the understanding of human lung development. We further focus on potential approaches to generate more complex hPSC-derived lung organoids containing native cellular components. Finally, we discuss the present limitations and potential applications of hPSC-derived lung organoids in the future.
Collapse
Affiliation(s)
- Xiaoli Du
- Department of Hematology, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Yongpin Dong
- Department of Emergency and Critical Care, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Wenfang Li
- Department of Emergency and Critical Care, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, China,Corresponding author.
| | - Yong Chen
- Central Laboratory, Guizhou Provincial People's Hospital, Guiyang 550002, China,Corresponding author.
| |
Collapse
|
17
|
Demchenko A, Lavrov A, Smirnikhina S. Lung organoids: current strategies for generation and transplantation. Cell Tissue Res 2022; 390:317-333. [PMID: 36178558 PMCID: PMC9522545 DOI: 10.1007/s00441-022-03686-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 09/08/2022] [Indexed: 01/19/2023]
Abstract
Lung diseases occupy a leading position in human morbidity and are the third leading cause of death. Often the chronic forms of these diseases do not respond to therapy, so that lung transplantation is the only treatment option. The development of cellular and biotechnologies offers a new solution-the use of lung organoids for transplantation in such patients. Here, we review types of lung organoids, methods of their production and characterization, and experimental works on transplantation in vivo. These results show the promise of work in this direction. Despite the current problems associated with a low degree of cell engraftment, immune response, and insufficient differentiation, we are confident that organoid transplantation will find it is clinical application.
Collapse
Affiliation(s)
- Anna Demchenko
- Research Centre for Medical Genetics, Laboratory of Genome Editing, Moscow, 115522 Russia
| | - Alexander Lavrov
- Research Centre for Medical Genetics, Laboratory of Genome Editing, Moscow, 115522 Russia
| | - Svetlana Smirnikhina
- Research Centre for Medical Genetics, Laboratory of Genome Editing, Moscow, 115522 Russia
| |
Collapse
|
18
|
Niethammer M, Burgdorf T, Wistorf E, Schönfelder G, Kleinsorge M. In vitro models of human development and their potential application in developmental toxicity testing. Development 2022; 149:276688. [DOI: 10.1242/dev.200933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Recent publications describe the development of in vitro models of human development, for which applications in developmental toxicity testing can be envisaged. To date, these regulatory assessments have exclusively been performed in animal studies, the relevance of which to adverse reactions in humans may be questioned. Recently developed cell culture-based models of embryo-fetal development, however, do not yet exhibit sufficient levels of standardisation and reproducibility. Here, the advantages and shortcomings of both in vivo and in vitro developmental toxicity testing are addressed, as well as the possibility of integrated testing strategies as a viable option in the near future.
Collapse
Affiliation(s)
- Mirjam Niethammer
- German Federal Institute for Risk Assessment, German Centre for the Protection of Laboratory Animals (Bf3R) 1 , 10589 Berlin , Germany
| | - Tanja Burgdorf
- German Federal Institute for Risk Assessment, German Centre for the Protection of Laboratory Animals (Bf3R) 1 , 10589 Berlin , Germany
| | - Elisa Wistorf
- German Federal Institute for Risk Assessment, German Centre for the Protection of Laboratory Animals (Bf3R) 1 , 10589 Berlin , Germany
| | - Gilbert Schönfelder
- German Federal Institute for Risk Assessment, German Centre for the Protection of Laboratory Animals (Bf3R) 1 , 10589 Berlin , Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health 2 , 10117 Berlin , Germany
| | - Mandy Kleinsorge
- German Federal Institute for Risk Assessment, German Centre for the Protection of Laboratory Animals (Bf3R) 1 , 10589 Berlin , Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin 3 , 10178 Berlin , Germany
| |
Collapse
|
19
|
Hautefort I, Poletti M, Papp D, Korcsmaros T. Everything You Always Wanted to Know About Organoid-Based Models (and Never Dared to Ask). Cell Mol Gastroenterol Hepatol 2022; 14:311-331. [PMID: 35643188 PMCID: PMC9233279 DOI: 10.1016/j.jcmgh.2022.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 12/12/2022]
Abstract
Homeostatic functions of a living tissue, such as the gastrointestinal tract, rely on highly sophisticated and finely tuned cell-to-cell interactions. These crosstalks evolve and continuously are refined as the tissue develops and give rise to specialized cells performing general and tissue-specific functions. To study these systems, stem cell-based in vitro models, often called organoids, and non-stem cell-based primary cell aggregates (called spheroids) appeared just over a decade ago. These models still are evolving and gaining complexity, making them the state-of-the-art models for studying cellular crosstalk in the gastrointestinal tract, and to investigate digestive pathologies, such as inflammatory bowel disease, colorectal cancer, and liver diseases. However, the use of organoid- or spheroid-based models to recapitulate in vitro the highly complex structure of in vivo tissue remains challenging, and mainly restricted to expert developmental cell biologists. Here, we condense the founding knowledge and key literature information that scientists adopting the organoid technology for the first time need to consider when using these models for novel biological questions. We also include information that current organoid/spheroid users could use to add to increase the complexity to their existing models. We highlight the current and prospective evolution of these models through bridging stem cell biology with biomaterial and scaffold engineering research areas. Linking these complementary fields will increase the in vitro mimicry of in vivo tissue, and potentially lead to more successful translational biomedical applications. Deepening our understanding of the nature and dynamic fine-tuning of intercellular crosstalks will enable identifying novel signaling targets for new or repurposed therapeutics used in many multifactorial diseases.
Collapse
Affiliation(s)
- Isabelle Hautefort
- Earlham Institute, Organisms and Ecosystems Programme, Norwich, United Kingdom
| | - Martina Poletti
- Earlham Institute, Organisms and Ecosystems Programme, Norwich, United Kingdom; Quadram Institute Bioscience, Gut Microbes and Health Programme, Norwich, United Kingdom
| | - Diana Papp
- Quadram Institute Bioscience, Gut Microbes and Health Programme, Norwich, United Kingdom
| | - Tamas Korcsmaros
- Earlham Institute, Organisms and Ecosystems Programme, Norwich, United Kingdom; Quadram Institute Bioscience, Gut Microbes and Health Programme, Norwich, United Kingdom; Imperial College London, Department of Metabolism, Digestion and Reproduction, London, United Kingdom.
| |
Collapse
|
20
|
Goluba K, Kunrade L, Riekstina U, Parfejevs V. Schwann Cells in Digestive System Disorders. Cells 2022; 11:832. [PMID: 35269454 PMCID: PMC8908985 DOI: 10.3390/cells11050832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/18/2022] Open
Abstract
Proper functioning of the digestive system is ensured by coordinated action of the central and peripheral nervous systems (PNS). Peripheral innervation of the digestive system can be viewed as intrinsic and extrinsic. The intrinsic portion is mainly composed of the neurons and glia of the enteric nervous system (ENS), while the extrinsic part is formed by sympathetic, parasympathetic, and sensory branches of the PNS. Glial cells are a crucial component of digestive tract innervation, and a great deal of research evidence highlights the important status of ENS glia in health and disease. In this review, we shift the focus a bit and discuss the functions of Schwann cells (SCs), the glial cells of the extrinsic innervation of the digestive system. For more context, we also provide information on the basic findings regarding the function of innervation in disorders of the digestive organs. We find diverse SC roles described particularly in the mouth, the pancreas, and the intestine. We note that most of the scientific evidence concerns the involvement of SCs in cancer progression and pain, but some research identifies stem cell functions and potential for regenerative medicine.
Collapse
Affiliation(s)
| | | | | | - Vadims Parfejevs
- Faculty of Medicine, University of Latvia, House of Science, Jelgavas Str. 3, LV-1004 Riga, Latvia; (K.G.); (L.K.); (U.R.)
| |
Collapse
|
21
|
Liu C, Niu K, Xiao Q. Updated perspectives on vascular cell specification and pluripotent stem cell-derived vascular organoids for studying vasculopathies. Cardiovasc Res 2022; 118:97-114. [PMID: 33135070 PMCID: PMC8752356 DOI: 10.1093/cvr/cvaa313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/15/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
Vasculopathy is a pathological process occurring in the blood vessel wall, which could affect the haemostasis and physiological functions of all the vital tissues/organs and is one of the main underlying causes for a variety of human diseases including cardiovascular diseases. Current pharmacological interventions aiming to either delay or stop progression of vasculopathies are suboptimal, thus searching novel, targeted, risk-reducing therapeutic agents, or vascular grafts with full regenerative potential for patients with vascular abnormalities are urgently needed. Since first reported, pluripotent stem cells (PSCs), particularly human-induced PSCs, have open new avenue in all research disciplines including cardiovascular regenerative medicine and disease remodelling. Assisting with recent technological breakthroughs in tissue engineering, in vitro construction of tissue organoid made a tremendous stride in the past decade. In this review, we provide an update of the main signal pathways involved in vascular cell differentiation from human PSCs and an extensive overview of PSC-derived tissue organoids, highlighting the most recent discoveries in the field of blood vessel organoids as well as vascularization of other complex tissue organoids, with the aim of discussing the key cellular and molecular players in generating vascular organoids.
Collapse
MESH Headings
- Blood Vessels/metabolism
- Blood Vessels/pathology
- Blood Vessels/physiopathology
- Cell Culture Techniques
- Cell Differentiation
- Cell Lineage
- Cells, Cultured
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Humans
- Induced Pluripotent Stem Cells/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neovascularization, Pathologic
- Neovascularization, Physiologic
- Organoids
- Phenotype
- Signal Transduction
- Vascular Diseases/metabolism
- Vascular Diseases/pathology
- Vascular Diseases/physiopathology
Collapse
Affiliation(s)
- Chenxin Liu
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Heart Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Kaiyuan Niu
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Heart Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Heart Centre, Charterhouse Square, London EC1M 6BQ, UK
- Key Laboratory of Cardiovascular Diseases at The Second Affiliated Hospital
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, Guangdong 511436, China
| |
Collapse
|
22
|
Bertassoni LE. Bioprinting of Complex Multicellular Organs with Advanced Functionality-Recent Progress and Challenges Ahead. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2101321. [PMID: 35060652 PMCID: PMC10171718 DOI: 10.1002/adma.202101321] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/20/2021] [Indexed: 05/12/2023]
Abstract
Bioprinting has emerged as one of the most promising strategies for fabrication of functional organs in the lab as an alternative to transplant organs. While progress in the field has mostly been restricted to a few miniaturized tissues with minimal biological functionality until a few years ago, recent progress has advanced the concept of building three-dimensional multicellular organ complexity remarkably. This review discusses a series of milestones that have paved the way for bioprinting of tissue constructs that have advanced levels of biological and architectural functionality. Critical materials, engineering and biological challenges that are key to addressing the desirable function of engineered organs are presented. These are discussed in light of the many difficulties to replicate the heterotypic organization of multicellular solid organs, the nanoscale precision of the extracellular microenvironment in hierarchical tissues, as well as the advantages and limitations of existing bioprinting methods to adequately overcome these barriers. In summary, the advances of the field toward realistic manufacturing of functional organs have never been so extensive, and this manuscript serves as a road map for some of the recent progress and the challenges ahead.
Collapse
Affiliation(s)
- Luiz E Bertassoni
- Division of Biomaterials and Biomechanics, School of Dentistry, Oregon Health and Science University, Portland, OR, 97201, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
- Center for Regenerative Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97239, USA
| |
Collapse
|
23
|
Ida Y, Umetsu A, Furuhashi M, Watanabe M, Hikage F, Ohguro H. The EP2 agonist, omidenepag, alters the physical stiffness of 3D spheroids prepared from human corneal stroma fibroblasts differently depending on the osmotic pressure. FASEB J 2021; 36:e22067. [PMID: 34914140 DOI: 10.1096/fj.202101263r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/23/2021] [Accepted: 11/10/2021] [Indexed: 11/11/2022]
Abstract
The objective of the current study was to examine the drug-induced effects of the EP2 agonist, omidenapag (OMD), on human corneal stroma, two- and three-dimensional (2D and 3D) cultures of human corneal stroma fibroblasts (HCSFs). The drug-induced effects on 2D monolayers and 3D spheroids were characterized by examining the ultrastructures by scanning electron microscope (SEM), transendothelial electrical resistance (TEER) measurements, and fluorescein isothiocyanate (FITC)-dextran permeability. The physical properties of 3D spheroids with respect to size and stiffness were also examined. In addition, the gene expressions of extracellular matrix (ECM) molecules, including collagen (COL) 1, 4, and 6, and fibronectin (FN), a tissue inhibitor of metalloproteinase (TIMP) 1-4, matrix metalloproteinase (MMP) 2, 9, and 14, aquaporin1 (AQP1), and several endoplasmic reticulum (ER) stress-related factors were evaluated. In the 2D HCSFs, OMD induced (1) a significant increase in ECM deposits, as evidenced by SEM, the mRNA expression of COL4 and FN, and (2) a decrease in TEER values and a concentration-dependent increase in FITC-dextran permeability. In the case of 3D spheroids, OMD had no effect on size but a substantial increase in stiffness was observed. Furthermore, such OMD-induced effects on stiffness were dramatically modulated by the osmotic pressure of the system. In contrast to the above 2D cultures, among the ECM molecules and the modulators of 3D spheroids, namely, TIMPS and MMPs, the down-regulation of COL1, TIMP1 and 2 and the up-regulation of MMP9 were observed. Interestingly, such diversity in terms of OMD-induced gene expressions between 2D and 3D cultures was also recognized in AQP1 (2D; no significant change, 3D; significant up-regulation) and ER stress-related genes. The findings presented herein suggest that the EP2 agonist, OMD, alters the physical stiffness of 3D spheroids obtained from human corneal stroma fibroblasts and this alteration is dependent on the osmotic pressures. 2D and 3D cell cultures may be useful for evaluating the drug induced effects of OMD toward human corneal stroma.
Collapse
Affiliation(s)
- Yosuke Ida
- Department of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Araya Umetsu
- Department of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Megumi Watanabe
- Department of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Fumihito Hikage
- Department of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Ohguro
- Department of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
24
|
Rico K, Duan S, Pandey RL, Chen Y, Chakrabarti JT, Starr J, Zavros Y, Else T, Katona BW, Metz DC, Merchant JL. Genome analysis identifies differences in the transcriptional targets of duodenal versus pancreatic neuroendocrine tumours. BMJ Open Gastroenterol 2021; 8:bmjgast-2021-000765. [PMID: 34750164 PMCID: PMC8576490 DOI: 10.1136/bmjgast-2021-000765] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022] Open
Abstract
Objective Gastroenteropancreatic neuroendocrine tumours (GEP-NETs) encompass a diverse group of neoplasms that vary in their secretory products and in their location within the gastrointestinal tract. Their prevalence in the USA is increasing among all adult age groups. Aim To identify the possible derivation of GEP-NETs using genome-wide analyses to distinguish small intestinal neuroendocrine tumours, specifically duodenal gastrinomas (DGASTs), from pancreatic neuroendocrine tumours. Design Whole exome sequencing and RNA-sequencing were performed on surgically resected GEP-NETs (discovery cohort). RNA transcript profiles available in the Gene Expression Omnibus were analysed using R integrated software (validation cohort). Digital spatial profiling (DSP) was used to analyse paraffin-embedded GEP-NETs. Human duodenal organoids were treated with 5 or 10 ng/mL of tumor necrosis factor alpha (TNFα) prior to qPCR and western blot analysis of neuroendocrine cell specification genes. Results Both the discovery and validation cohorts of small intestinal neuroendocrine tumours induced expression of mesenchymal and calcium signalling pathways coincident with a decrease in intestine-specific genes. In particular, calcium-related, smooth muscle and cytoskeletal genes increased in DGASTs, but did not correlate with MEN1 mutation status. Interleukin 17 (IL-17) and tumor necrosis factor alpha (TNFα) signalling pathways were elevated in the DGAST RNA-sequencing. However, DSP analysis confirmed a paucity of immune cells in DGASTs compared with the adjacent tumour-associated Brunner’s glands. Immunofluorescent analysis showed production of these proinflammatory cytokines and phosphorylated signal transducer and activator of transcription 3 (pSTAT3) by the tumours and stroma. Human duodenal organoids treated with TNFα induced neuroendocrine tumour genes, SYP, CHGA and NKX6.3. Conclusions Stromal–epithelial interactions induce proinflammatory cytokines that promote Brunner’s gland reprogramming.
Collapse
Affiliation(s)
- Karen Rico
- Department of Medicine, University of Arizona Medical Center - University Campus, Tucson, Arizona, USA
| | - Suzann Duan
- Department of Medicine, University of Arizona Medical Center - University Campus, Tucson, Arizona, USA
| | - Ritu L Pandey
- Department of Cellular and Molecular Medicine, University of Arizona Medical Center - University Campus, Tucson, Arizona, USA
| | - Yuliang Chen
- Department of Cellular and Molecular Medicine, University of Arizona Medical Center - University Campus, Tucson, Arizona, USA
| | - Jayati T Chakrabarti
- Department of Cellular and Molecular Medicine, University of Arizona Medical Center - University Campus, Tucson, Arizona, USA
| | - Julie Starr
- Department of Internal Medicine, Division of Gastroenterology, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA
| | - Yana Zavros
- Department of Cellular and Molecular Medicine, University of Arizona Medical Center - University Campus, Tucson, Arizona, USA
| | - Tobias Else
- Department of Internal Medicine-Endocrinology, University of Michigan, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Bryson W Katona
- Department of Internal Medicine, Division of Gastroenterology, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA
| | - David C Metz
- Department of Internal Medicine, Division of Gastroenterology, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA
| | - Juanita L Merchant
- Department of Medicine, University of Arizona Medical Center - University Campus, Tucson, Arizona, USA
| |
Collapse
|
25
|
Jones BC, Shibuya S, Durkin N, De Coppi P. Regenerative medicine for childhood gastrointestinal diseases. Best Pract Res Clin Gastroenterol 2021; 56-57:101769. [PMID: 35331401 DOI: 10.1016/j.bpg.2021.101769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 01/31/2023]
Abstract
Several paediatric gastrointestinal diseases result in life-shortening organ failure. For many of these conditions, current therapeutic options are suboptimal and may not offer a cure. Regenerative medicine is an inter-disciplinary field involving biologists, engineers, and clinicians that aims to produce cell and tissue-based therapies to overcome organ failure. Exciting advances in stem cell biology, materials science, and bioengineering bring engineered gastrointestinal cell and tissue therapies to the verge of clinical trial. In this review, we summarise the requirements for bioengineered therapies, the possible sources of the various cellular and non-cellular components, and the progress towards clinical translation of oesophageal and intestinal tissue engineering to date.
Collapse
Affiliation(s)
- Brendan C Jones
- Stem Cell and Regenerative Medicine Section, Developmental Biology and Cancer Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom; Specialist Neonatal and Paediatric Surgery Unit, Great Ormond Street Hospital, London, United Kingdom
| | - Soichi Shibuya
- Stem Cell and Regenerative Medicine Section, Developmental Biology and Cancer Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Natalie Durkin
- Stem Cell and Regenerative Medicine Section, Developmental Biology and Cancer Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom; Specialist Neonatal and Paediatric Surgery Unit, Great Ormond Street Hospital, London, United Kingdom
| | - Paolo De Coppi
- Stem Cell and Regenerative Medicine Section, Developmental Biology and Cancer Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom; Specialist Neonatal and Paediatric Surgery Unit, Great Ormond Street Hospital, London, United Kingdom.
| |
Collapse
|
26
|
Yang Q, Liberali P. Collective behaviours in organoids. Curr Opin Cell Biol 2021; 72:81-90. [PMID: 34332339 PMCID: PMC8533486 DOI: 10.1016/j.ceb.2021.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 12/17/2022]
Abstract
Collective behaviour emerges from interacting units within communities, such as migrating herds, swimming fish schools, and cells within tissues. At the microscopic level, collective behaviours include collective cell migration in development and cancer invasion, rhythmic gene expression in pattern formation, cell competition in homeostasis and cancer, force generation and mechano-sensing in morphogenesis. Studying the initiation and the maintenance of collective cell behaviours is key to understand the principles of development, regeneration and disease. However, the manifold influences of contributing factors in in vivo environments challenge the dissection of causalities in animal models. As an alternative model that has emerged to overcome this difficulty, in vitro three-dimensional organoid cultures provide a reductionist approach yet retain similarities with the in vivo tissue in cellular composition and tissue organisation. Here, we focus on recent progresses in studying collective behaviours in different organoid systems and discuss their advantages and the possibility of improvement for future applications.
Collapse
Affiliation(s)
- Qiutan Yang
- Friedrich Miescher Institute for Biomedical Research (FMI), Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Prisca Liberali
- Friedrich Miescher Institute for Biomedical Research (FMI), Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel. Petersplatz 1, 4001 Basel, Switzerland.
| |
Collapse
|
27
|
Sang Y, Miller LC, Nelli RK, Giménez-Lirola LG. Harness Organoid Models for Virological Studies in Animals: A Cross-Species Perspective. Front Microbiol 2021; 12:725074. [PMID: 34603253 PMCID: PMC8481363 DOI: 10.3389/fmicb.2021.725074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/27/2021] [Indexed: 02/02/2023] Open
Abstract
Animal models and cell culture in vitro are primarily used in virus and antiviral immune research. Whereas the limitation of these models to recapitulate the viral pathogenesis in humans has been made well aware, it is imperative to introduce more efficient systems to validate emerging viruses in both domestic and wild animals. Organoids ascribe to representative miniatures of organs (i.e., mini-organs), which are derived from three-dimensional culture of stem cells under respective differential conditions mimicking endogenous organogenetic niches. Organoids have broadened virological studies in the human context, particularly in recent uses for COVID19 research. This review examines the status and potential for cross-species applied organotypic culture in validating emerging animal, particularly zoonotic, viruses in domestic and wild animals.
Collapse
Affiliation(s)
- Yongming Sang
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, United States
| | - Laura C Miller
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, IA, United States
| | - Rahul K Nelli
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Luis Gabriel Giménez-Lirola
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
28
|
Bittenglova K, Habart D, Saudek F, Koblas T. The Potential of Pancreatic Organoids for Diabetes Research and Therapy. Islets 2021; 13:85-105. [PMID: 34523383 PMCID: PMC8528407 DOI: 10.1080/19382014.2021.1941555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 06/04/2021] [Indexed: 10/20/2022] Open
Abstract
The success of clinical transplantation of pancreas or isolated pancreatic islets supports the concept of cell-based cure for diabetes. One limitation is the shortage of cadaver human pancreata. The demand-supply gap could potentially be bridged by harnessing the self-renewal capacity of stem cells. Pluripotent stem cells and adult pancreatic stem cells have been explored as possible cell sources. Recently, a system for long-term culture of proposed adult pancreatic stem cells in a form of organoids was developed. Generated organoids partially mimic the architecture and cell-type composition of pancreatic tissue. Here, we review the attempts over the past decade, to utilize the organoid cell culture principles in order to identify, expand, and differentiate the adult pancreatic stem cells from different compartments of mouse and human pancreata. The development of the culture conditions, effects of specific growth factors and small molecules is discussed. The potential utility of the adult pancreatic stem cells is considered in the context of other cell sources.
Collapse
Affiliation(s)
- Katerina Bittenglova
- Department of Diabetes, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - David Habart
- Department of Diabetes, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Frantisek Saudek
- Department of Diabetes, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Tomas Koblas
- Department of Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| |
Collapse
|
29
|
Organoids in modelling infectious diseases. Drug Discov Today 2021; 27:223-233. [PMID: 34418577 DOI: 10.1016/j.drudis.2021.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 05/14/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022]
Abstract
Approaches based on animal and two-dimensional (2D) cell culture models cannot ensure reliable results in modeling novel pathogens or in drug testing in the short term; therefore, there is rising interest in platforms such as organoids. To develop a toolbox that can be used successfully to overcome current issues in modeling various infections, it is essential to provide a framework of recent achievements in applying organoids. Organoids have been used to study viruses, bacteria, and protists that cause, for example, respiratory, gastrointestinal, and liver diseases. Their future as models of infection will be associated with improvements in system complexity, including abilities to model tissue structure, a dynamic microenvironment, and coinfection. Teaser. Organoids are a flexible tool for modelling viral, bacterial and protist infections. They can provide fast and reliable information on the biology of pathogens and in drug screening, and thus have become essential in combatting emerging infectious diseases.
Collapse
|
30
|
Grönholm M, Feodoroff M, Antignani G, Martins B, Hamdan F, Cerullo V. Patient-Derived Organoids for Precision Cancer Immunotherapy. Cancer Res 2021; 81:3149-3155. [PMID: 33687948 PMCID: PMC7616950 DOI: 10.1158/0008-5472.can-20-4026] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/29/2021] [Accepted: 03/05/2021] [Indexed: 11/16/2022]
Abstract
Cancer immunotherapy has revolutionized the way tumors are treated. Nevertheless, efficient and robust testing platforms are still missing, including clinically relevant human ex vivo tumor assays that allow pretreatment testing of cancer therapies and selection of the most efficient and safe therapy for a specific patient. In the case of immunotherapy, this testing platform would require not only cancer cells, but also the tumor microenvironment, including immune cells. Here, we discuss the applications of patient-derived tumor organoid cultures and the possibilities in using complex immune-organoid cultures to provide preclinical testing platforms for precision cancer immunotherapy.
Collapse
Affiliation(s)
- Mikaela Grönholm
- Laboratory of ImmunoViroTherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
- TRIMM, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Michaela Feodoroff
- Laboratory of ImmunoViroTherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- TRIMM, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- FIMM, Institute for Molecular Medicine Finland, Helsinki Institute for Life Sciences (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Gabriella Antignani
- Laboratory of ImmunoViroTherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- TRIMM, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Beatriz Martins
- Laboratory of ImmunoViroTherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- TRIMM, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Firas Hamdan
- Laboratory of ImmunoViroTherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- TRIMM, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Vincenzo Cerullo
- Laboratory of ImmunoViroTherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
- TRIMM, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- Department of Molecular Medicine and Medical Biotechnology and CEINGE, Naples University Federico II, Naples, Italy
| |
Collapse
|
31
|
The role of physical cues in the development of stem cell-derived organoids. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 51:105-117. [PMID: 34120215 PMCID: PMC8964551 DOI: 10.1007/s00249-021-01551-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023]
Abstract
Organoids are a novel three-dimensional stem cells’ culture system that allows the in vitro recapitulation of organs/tissues structure complexity. Pluripotent and adult stem cells are included in a peculiar microenvironment consisting of a supporting structure (an extracellular matrix (ECM)-like component) and a cocktail of soluble bioactive molecules that, together, mimic the stem cell niche organization. It is noteworthy that the balance of all microenvironmental components is the most critical step for obtaining the successful development of an accurate organoid instead of an organoid with heterogeneous morphology, size, and cellular composition. Within this system, mechanical forces exerted on stem cells are collected by cellular proteins and transduced via mechanosensing—mechanotransduction mechanisms in biochemical signaling that dictate the stem cell specification process toward the formation of organoids. This review discusses the role of the environment in organoids formation and focuses on the effect of physical components on the developmental system. The work starts with a biological description of organoids and continues with the relevance of physical forces in the organoid environment formation. In this context, the methods used to generate organoids and some relevant published reports are discussed as examples showing the key role of mechanosensing–mechanotransduction mechanisms in stem cell-derived organoids.
Collapse
|
32
|
Martyn I, Gartner ZJ. Expanding the boundaries of synthetic development. Dev Biol 2021; 474:62-70. [PMID: 33587913 PMCID: PMC8052276 DOI: 10.1016/j.ydbio.2021.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/12/2022]
Abstract
Embryonic tissue boundaries are critical to not only cement newly patterned structures during development, but also to serve as organizing centers for subsequent rounds of morphogenesis. Although this latter role is especially difficult to study in vivo, synthetic embryology offers a new vantage point and fresh opportunities. In this review, we cover recent progress towards understanding and controlling in vitro boundaries and how they impact synthetic model systems. A key point this survey highlights is that the outcome of self-organization is strongly dependent on the boundary imposed, and new insight into the complex functions of embryonic boundaries will be necessary to create better self-organizing tissues for basic science, drug development, and regenerative medicine.
Collapse
Affiliation(s)
- Iain Martyn
- Department of Pharmaceutical Chemistry, NSF Center for Cellular Construction, San Francisco, CA, USA
| | - Zev J Gartner
- Department of Pharmaceutical Chemistry, Chan Zuckerberg Biohub, NSF Center for Cellular Construction, San Francisco, CA, USA.
| |
Collapse
|
33
|
Ollivier A, Mahe MM, Guasch G. Modeling Gastrointestinal Diseases Using Organoids to Understand Healing and Regenerative Processes. Cells 2021; 10:cells10061331. [PMID: 34072095 PMCID: PMC8230068 DOI: 10.3390/cells10061331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 12/25/2022] Open
Abstract
The gastrointestinal tract is a continuous series of organs from the mouth to the esophagus, stomach, intestine and anus that allows digestion to occur. These organs are frequently associated with chronic stress and injury during life, subjecting these tissues to frequent regeneration and to the risk of developing disease-associated cancers. The possibility of generating human 3D culture systems, named organoids, that resemble histologically and functionally specific organs, has opened up potential applications in the analysis of the cellular and molecular mechanisms involved in epithelial wound healing and regenerative therapy. Here, we review how during normal development homeostasis takes place, and the role of the microenvironmental niche cells in the intestinal stem cell crypt as an example. Then, we introduce the notion of a perturbed niche during disease conditions affecting the esophageal–stomach junction and the colon, and describe the potential applications of organoid models in the analysis of human gastrointestinal disease mechanisms. Finally, we highlight the perspectives of organoid-based regenerative therapy to improve the repair of the epithelial barrier.
Collapse
Affiliation(s)
- Alexane Ollivier
- Aix-Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Epithelial Stem Cells and Cancer Team, CEDEX 09, 13273 Marseille, France;
| | - Maxime M. Mahe
- Cincinnati Children’s Hospital Medical Center, Department of Pediatric General and Thoracic Surgery, Cincinnati, OH 45229, USA;
- University of Cincinnati, Department of Pediatrics, Cincinnati, OH 45220, USA
- UMR Inserm 1235-TENS, INSERM, Université de Nantes, Institut des Maladies de l’Appareil Digestif–CHU de Nantes, 1 Rue Gaston Veil, CEDEX 1, 44035 Nantes, France
| | - Géraldine Guasch
- Aix-Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Epithelial Stem Cells and Cancer Team, CEDEX 09, 13273 Marseille, France;
- Correspondence:
| |
Collapse
|
34
|
Sanz-Rubio D, Khalyfa A, Qiao Z, Ullate J, Marin JM, Kheirandish-Gozal L, Gozal D. Cell-Selective Altered Cargo Properties of Extracellular Vesicles Following In Vitro Exposures to Intermittent Hypoxia. Int J Mol Sci 2021; 22:ijms22115604. [PMID: 34070558 PMCID: PMC8198838 DOI: 10.3390/ijms22115604] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/09/2021] [Accepted: 05/19/2021] [Indexed: 01/09/2023] Open
Abstract
Intermittent hypoxia (IH), a hallmark of obstructive sleep apnea (OSA), is associated with cardiovascular and metabolic dysfunction. However, the mechanisms underlying these morbidities remain poorly delineated. Extracellular vesicles (EVs) mediate intercellular communications, play pivotal roles in a multitude of physiological and pathological processes, and could mediate IH-induced cellular effects. Here, the effects of IH on human primary cells and the release of EVs were examined. Microvascular endothelial cells (HMVEC-d), THP1 monocytes, THP1 macrophages M0, THP1 macrophages M1, THP1 macrophages M2, pre-adipocytes, and differentiated adipocytes (HAd) were exposed to either room air (RA) or IH for 24 h. Secreted EVs were isolated and characterized using transmission electron microscopy, nanoparticle tracking analysis, and Western blotting. The effects of each of the cell-derived EVs on endothelial cell (EC) monolayer barrier integrity, on naïve THP1 macrophage polarity, and on adipocyte insulin sensitivity were also evaluated. IH did not alter EVs cell quantal release, but IH-EVs derived from HMVEC-d (p < 0.01), THP1 M0 (p < 0.01) and HAd (p < 0.05) significantly disrupted HMVEC-d monolayer integrity, particularly after H2O2 pre-conditioning. IH-EVs from HMVEC-d and THP1 M0 elicited M2-polarity changes did not alter insulin sensitivity responses. IH induces cell-selective changes in EVs cargo, which primarily seem to target the emergence of endothelial dysfunction. Thus, changes in EVs cargo from selected cell sources in vivo may play causal roles in some of the adverse outcomes associated with OSA.
Collapse
Affiliation(s)
- David Sanz-Rubio
- Department of Child Health, Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO 65201, USA; (D.S.-R.); (Z.Q.); (J.U.); (L.K.-G.); (D.G.)
- Translational Research Unit, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria de Aragón (IISAragón), 50009 Zaragoza, Spain;
| | - Abdelnaby Khalyfa
- Department of Child Health, Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO 65201, USA; (D.S.-R.); (Z.Q.); (J.U.); (L.K.-G.); (D.G.)
- Correspondence: ; Tel.: +1-573-884-7685
| | - Zhuanhong Qiao
- Department of Child Health, Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO 65201, USA; (D.S.-R.); (Z.Q.); (J.U.); (L.K.-G.); (D.G.)
| | - Jorge Ullate
- Department of Child Health, Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO 65201, USA; (D.S.-R.); (Z.Q.); (J.U.); (L.K.-G.); (D.G.)
| | - José M. Marin
- Translational Research Unit, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria de Aragón (IISAragón), 50009 Zaragoza, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERes), 28029 Madrid, Spain
| | - Leila Kheirandish-Gozal
- Department of Child Health, Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO 65201, USA; (D.S.-R.); (Z.Q.); (J.U.); (L.K.-G.); (D.G.)
| | - David Gozal
- Department of Child Health, Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO 65201, USA; (D.S.-R.); (Z.Q.); (J.U.); (L.K.-G.); (D.G.)
| |
Collapse
|
35
|
Handl S, von Heydebrand F, Voelkl S, Oostendorp RAJ, Wilke J, Kremer AN, Mackensen A, Lutzny-Geier G. Immune modulatory effects of Idelalisib in stromal cells of chronic lymphocytic leukemia. Leuk Lymphoma 2021; 62:2679-2689. [PMID: 33999745 DOI: 10.1080/10428194.2021.1927019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Molecular targets of tyrosine kinase inhibitors are not restricted to the B-cell compartment but also regulate functions in the tumor microenvironment. Increasing evidence suggests that B-cell receptor-associated kinases like protein kinase C (PKC)-β is essential for the formation of a microenvironment supporting leukemic growth. Here we describe the effect of Idelalisib on the PKCβ/NF-κB and Notch pathway in stromal cells upon contact to primary chronic lymphocytic leukemia cells (CLL). There is no Idelalisib-dependent regulation of the Notch expression in stromal cells, whereas Idelalisib induces PKCβ expression and activates the canonical NF-κB pathway. Idelalisib deregulates important immune-modulatory proteins in activated stromal cells, which might provoke the patient's side effects. Additionally, we established a 3D-stroma/leukemia model, that can give us a more defined look into the communication between tumor and stromal cells than standard cell cultures. This opens up the possibility to improve therapies, especially in the context of minimal-residual disease.
Collapse
Affiliation(s)
- Sarah Handl
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Franziska von Heydebrand
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Simon Voelkl
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Robert A J Oostendorp
- Clinic and Polyclinic for Internal Medicine III: Hematology and Oncology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Jochen Wilke
- Practice for Oncology and Hematology, Fürth, Germany
| | - Anita N Kremer
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Andreas Mackensen
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Gloria Lutzny-Geier
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
36
|
Specific substrates composed of collagen and fibronectin support the formation of epithelial cell sheets by MDCK cells lacking α-catenin or classical cadherins. Cell Tissue Res 2021; 385:127-148. [PMID: 33864500 DOI: 10.1007/s00441-021-03448-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 03/03/2021] [Indexed: 10/21/2022]
Abstract
The effect of the extracellular matrix substrates on the formation of epithelial cell sheets was studied using MDCK cells in which the α-catenin gene was disrupted. Although the mutant cells did not form an epithelial cell sheet in conventional cell culture, the cells formed an epithelial cell sheet when they were cultured on or in a collagen gel; the same results were not observed when cells were cultured on collagen-coated cover glasses or culture dishes. Moreover, the cells cultured on the cell culture inserts coated with fibronectin, Matrigel, or vitronectin formed epithelial cell sheets, whereas the cells cultured on cover glasses coated with these proteins did not form the structure, implying that the physical and chemical features of the substrates exert a profound effect on the formation of epithelial cell sheets. MDCK cells lacking the expression of E- and K-cadherins displayed similar properties. When the mutant MDCK cells were cultured in the presence of blebbistatin, they formed epithelial cell sheets, suggesting that myosin II was involved in the formation of these sheets. These cell sheets showed intimate cell-cell adhesion, and electron microscopy confirmed the formation of cell junctions. We propose that specific ECM substrates organize the formation of basic epithelial cell sheets, whereas classical cadherins stabilize cell-cell contacts and promote the formation of structures.
Collapse
|
37
|
Kretzschmar K. Cancer research using organoid technology. J Mol Med (Berl) 2021; 99:501-515. [PMID: 33057820 PMCID: PMC8026469 DOI: 10.1007/s00109-020-01990-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/14/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022]
Abstract
Organoid technology has rapidly transformed basic biomedical research and contributed to significant discoveries in the last decade. With the application of protocols to generate organoids from cancer tissue, organoid technology has opened up new opportunities for cancer research and therapy. Using organoid cultures derived from healthy tissues, different aspects of tumour initiation and progression are widely studied including the role of pathogens or specific cancer genes. Cancer organoid cultures, on the other hand, are applied to generate biobanks, perform drug screens, and study mutational signatures. With the incorporation of cellular components of the tumour microenvironment such as immune cells into the organoid cultures, the technology is now also exploited in the rapidly advancing field of immuno-oncology. In this review, I discuss how organoid technology is currently being utilised in cancer research and what obstacles are still to be overcome for its broader use in anti-cancer therapy.
Collapse
Affiliation(s)
- Kai Kretzschmar
- Mildred Scheel Early Career Centre (MSNZ) for Cancer Research Würzburg, University Hospital Würzburg, MSNZ/IZKF, Josef-Schneider-Str. 2, 97080, Würzburg, Germany.
| |
Collapse
|
38
|
Frum T, Spence JR. hPSC-derived organoids: models of human development and disease. J Mol Med (Berl) 2021; 99:463-473. [PMID: 32857169 PMCID: PMC7914270 DOI: 10.1007/s00109-020-01969-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/30/2020] [Accepted: 08/18/2020] [Indexed: 12/18/2022]
Abstract
Organoids derived from human pluripotent stem cells (hPSCs) have emerged as important models for investigating human-specific aspects of development and disease. Here we discuss hPSC-derived organoids through the lens of development-highlighting how stages of human development align with the development of hPSC-derived organoids in the tissue culture dish. Using hPSC-derived lung and intestinal organoids as examples, we discuss the value and application of such systems for understanding human biology, as well as strategies for enhancing organoid complexity and maturity.
Collapse
Affiliation(s)
- Tristan Frum
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jason R Spence
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI, USA.
| |
Collapse
|
39
|
Human pluripotent stem-cell-derived alveolar organoids for modeling pulmonary fibrosis and drug testing. Cell Death Discov 2021; 7:48. [PMID: 33723255 PMCID: PMC7961057 DOI: 10.1038/s41420-021-00439-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/19/2021] [Accepted: 02/13/2021] [Indexed: 02/06/2023] Open
Abstract
Detailed understanding of the pathogenesis and development of effective therapies for pulmonary fibrosis (PF) have been hampered by lack of in vitro human models that recapitulate disease pathophysiology. In this study, we generated alveolar organoids (AOs) derived from human pluripotent stem cells (hPSCs) for use as an PF model and for drug efficacy evaluation. Stepwise direct differentiation of hPSCs into alveolar epithelial cells by mimicking developmental cues in a temporally controlled manner was used to generate multicellular AOs. Derived AOs contained the expected spectrum of differentiated cells, including alveolar progenitors, type 1 and 2 alveolar epithelial cells and mesenchymal cells. Treatment with transforming growth factor (TGF-β1) induced fibrotic changes in AOs, offering a PF model for therapeutic evaluation of a structurally truncated form (NP-011) of milk fat globule-EGF factor 8 (MFG-E8) protein. The significant fibrogenic responses and collagen accumulation that were induced by treatment with TGF-β1 in these AOs were effectively ameliorated by treatment with NP-011 via suppression of extracellular signal-regulated kinase (ERK) signaling. Furthermore, administration of NP-011 reversed bleomycin-induced lung fibrosis in mice also via ERK signaling suppression and collagen reduction. This anti-fibrotic effect mirrored that following Pirfenidone and Nintedanib administration. Furthermore, NP-011 interacted with macrophages, which accelerated the collagen uptake for eliminating accumulated collagen in fibrotic lung tissues. This study provides a robust in vitro human organoid system for modeling PF and assessing anti-fibrotic mechanisms of potential drugs and suggests that modified MGF-E8 protein has therapeutic potential for treating PF.
Collapse
|
40
|
Zahmatkesh E, Khoshdel-Rad N, Mirzaei H, Shpichka A, Timashev P, Mahmoudi T, Vosough M. Evolution of organoid technology: Lessons learnt in Co-Culture systems from developmental biology. Dev Biol 2021; 475:37-53. [PMID: 33684433 DOI: 10.1016/j.ydbio.2021.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 02/07/2023]
Abstract
In recent years, the development of 3D organoids has opened new avenues of investigation into development, physiology, and regenerative medicine. Organoid formation and the process of organogenesis share common developmental pathways; thus, our knowledge of developmental biology can help model the complexity of different organs to refine organoids into a more sophisticated platform. The developmental process is strongly dependent on complex networks and communication of cell-cell and cell-matrix interactions among different cell populations and their microenvironment, during embryogenesis. These interactions affect cell behaviors such as proliferation, survival, migration, and differentiation. Co-culture systems within the organoid technology were recently developed and provided the highly physiologically relevant systems. Supportive cells including various types of endothelial and stromal cells provide the proper microenvironment, facilitate organoid assembly, and improve vascularization and maturation of organoids. This review discusses the role of the co-culture systems in organoid generation, with a focus on how knowledge of developmental biology has directed and continues to shape the development of more evolved 3D co-culture system-derived organoids.
Collapse
Affiliation(s)
- Ensieh Zahmatkesh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Regenrative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Niloofar Khoshdel-Rad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Regenrative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Anastasia Shpichka
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia.
| | - Peter Timashev
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia; Institute for Regenerative Medicine, Sechenov University, Moscow, Russia; Chemistry Department, Lomonosov Moscow State University, Moscow, Russia; Department of Polymers and Composites, N.N.Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia.
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Massoud Vosough
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Regenrative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
41
|
|
42
|
Mun SJ, Lee J, Chung KS, Son MY, Son MJ. Effect of Microbial Short-Chain Fatty Acids on CYP3A4-Mediated Metabolic Activation of Human Pluripotent Stem Cell-Derived Liver Organoids. Cells 2021; 10:cells10010126. [PMID: 33440728 PMCID: PMC7827634 DOI: 10.3390/cells10010126] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/19/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
The early and accurate prediction of the hepatotoxicity of new drug targets during nonclinical drug development is important to avoid postmarketing drug withdrawals and late-stage failures. We previously established long-term expandable and functional human-induced pluripotent stem cell (iPSC)-derived liver organoids as an alternative source for primary human hepatocytes. However, PSC-derived organoids are known to present immature fetal characteristics. Here, we treated these liver organoids with microbial short-chain fatty acids (SCFAs) to improve metabolic maturation based on microenvironmental changes in the liver during postnatal development. The effects of the three main SCFA components (acetate, propionate, and butyrate) and their mixture on liver organoids were determined. Propionate (1 µM) significantly promoted the CYP3A4/CYP3A7 expression ratio, and acetate (1 µM), propionate (1 µM), and butyrate (1 µM) combination treatment, compared to no treatment (control), substantially increased CYP3A4 activity and albumin secretion, as well as gene expression. More importantly, mixed SCFA treatment accurately revealed troglitazone-induced hepatotoxicity, which was redeemed on a potent CYP3A4 inhibitor ketoconazole treatment. Overall, we determined, for the first time, that SCFA mixture treatment might contribute to the accurate evaluation of the CYP3A4-dependent drug toxicity by improving metabolic activation, including CYP3A4 expression, of liver organoids.
Collapse
Affiliation(s)
- Seon Ju Mun
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (S.J.M.); (J.L.); (K.-S.C.)
- Department of Functional Genomics, Korea University of Science & Technology (UST), 217 Gajungro, Yuseong-gu, Daejeon 34113, Korea
| | - Jaeseo Lee
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (S.J.M.); (J.L.); (K.-S.C.)
| | - Kyung-Sook Chung
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (S.J.M.); (J.L.); (K.-S.C.)
- Department of Functional Genomics, Korea University of Science & Technology (UST), 217 Gajungro, Yuseong-gu, Daejeon 34113, Korea
- Biomedical Translational Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Mi-Young Son
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (S.J.M.); (J.L.); (K.-S.C.)
- Department of Functional Genomics, Korea University of Science & Technology (UST), 217 Gajungro, Yuseong-gu, Daejeon 34113, Korea
- Correspondence: (M.-Y.S.); (M.J.S.); Tel.: +82-42-860-4426 (M.-Y.S.); +82-42-860-4477 (M.J.S.)
| | - Myung Jin Son
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (S.J.M.); (J.L.); (K.-S.C.)
- Department of Functional Genomics, Korea University of Science & Technology (UST), 217 Gajungro, Yuseong-gu, Daejeon 34113, Korea
- Correspondence: (M.-Y.S.); (M.J.S.); Tel.: +82-42-860-4426 (M.-Y.S.); +82-42-860-4477 (M.J.S.)
| |
Collapse
|
43
|
Wheeler ML, Oyen ML. Bioengineering Approaches for Placental Research. Ann Biomed Eng 2021; 49:1805-1818. [PMID: 33420547 DOI: 10.1007/s10439-020-02714-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022]
Abstract
Research into the human placenta's complex functioning is complicated by a lack of suitable physiological in vivo models. Two complementary approaches have emerged recently to address these gaps in understanding, computational in silico techniques, including multi-scale modeling of placental blood flow and oxygen transport, and cellular in vitro approaches, including organoids, tissue engineering, and organ-on-a-chip models. Following a brief introduction to the placenta's structure and function and its influence on the substantial clinical problem of preterm birth, these different bioengineering approaches are reviewed. The cellular techniques allow for investigation of early first-trimester implantation and placental development, including critical biological processes such as trophoblast invasion and trophoblast fusion, that are otherwise very difficult to study. Similarly, computational models of the placenta and the pregnant pelvis at later-term gestation allow for investigations relevant to complications that occur when the placenta has fully developed. To fully understand clinical conditions associated with the placenta, including those with roots in early processes but that only manifest clinically at full-term, a holistic approach to the study of this fascinating, temporary but critical organ is required.
Collapse
Affiliation(s)
- Mackenzie L Wheeler
- Department of Engineering, East Carolina University, Greenville, NC, 27834, USA
| | - Michelle L Oyen
- Department of Engineering, East Carolina University, Greenville, NC, 27834, USA.
| |
Collapse
|
44
|
Velazquez JJ, LeGraw R, Moghadam F, Tan Y, Kilbourne J, Maggiore JC, Hislop J, Liu S, Cats D, Chuva de Sousa Lopes SM, Plaisier C, Cahan P, Kiani S, Ebrahimkhani MR. Gene Regulatory Network Analysis and Engineering Directs Development and Vascularization of Multilineage Human Liver Organoids. Cell Syst 2020; 12:41-55.e11. [PMID: 33290741 PMCID: PMC8164844 DOI: 10.1016/j.cels.2020.11.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/13/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022]
Abstract
Pluripotent stem cell (PSC)-derived organoids have emerged as novel multicellular models of human tissue development but display immature phenotypes, aberrant tissue fates, and a limited subset of cells. Here, we demonstrate that integrated analysis and engineering of gene regulatory networks (GRNs) in PSC-derived multilineage human liver organoids direct maturation and vascular morphogenesis in vitro. Overexpression of PROX1 and ATF5, combined with targeted CRISPR-based transcriptional activation of endogenous CYP3A4, reprograms tissue GRNs and improves native liver functions, such as FXR signaling, CYP3A4 enzymatic activity, and stromal cell reactivity. The engineered tissues possess superior liver identity when compared with other PSC-derived liver organoids and show the presence of hepatocyte, biliary, endothelial, and stellate-like cell populations in single-cell RNA-seq analysis. Finally, they show hepatic functions when studied in vivo. Collectively, our approach provides an experimental framework to direct organogenesis in vitro by systematically probing molecular pathways and transcriptional networks that promote tissue development.
Collapse
Affiliation(s)
- Jeremy J Velazquez
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA; School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Ryan LeGraw
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA; School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Farzaneh Moghadam
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA; School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Yuqi Tan
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Institute for Cell Engineering Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Joseph C Maggiore
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Joshua Hislop
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Silvia Liu
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Davy Cats
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Einthovenweg, 2333 ZC Leiden, the Netherlands
| | - Susana M Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg, 2333 ZC Leiden, the Netherlands
| | - Christopher Plaisier
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Patrick Cahan
- Institute for Cell Engineering Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Samira Kiani
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA; School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Mo R Ebrahimkhani
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA; School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85281, USA; Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Phoenix, AZ 85054, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
45
|
Muckom RJ, Sampayo RG, Johnson HJ, Schaffer DV. Advanced Materials to Enhance Central Nervous System Tissue Modeling and Cell Therapy. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2002931. [PMID: 33510596 PMCID: PMC7840150 DOI: 10.1002/adfm.202002931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Indexed: 05/04/2023]
Abstract
The progressively deeper understanding of mechanisms underlying stem cell fate decisions has enabled parallel advances in basic biology-such as the generation of organoid models that can further one's basic understanding of human development and disease-and in clinical translation-including stem cell based therapies to treat human disease. Both of these applications rely on tight control of the stem cell microenvironment to properly modulate cell fate, and materials that can be engineered to interface with cells in a controlled and tunable manner have therefore emerged as valuable tools for guiding stem cell growth and differentiation. With a focus on the central nervous system (CNS), a broad range of material solutions that have been engineered to overcome various hurdles in constructing advanced organoid models and developing effective stem cell therapeutics is reviewed. Finally, regulatory aspects of combined material-cell approaches for CNS therapies are considered.
Collapse
Affiliation(s)
- Riya J Muckom
- Department of Chemical and Biomolecular Engineering, UC Berkeley, Berkeley, CA 94704, USA
| | - Rocío G Sampayo
- Department of Chemical and Biomolecular Engineering, UC Berkeley, Berkeley, CA 94704, USA
| | - Hunter J Johnson
- Department of Bioengineering, UC Berkeley, Berkeley, CA 94704, USA
| | - David V Schaffer
- Department of Chemical and Biomolecular Engineering, UC Berkeley, Berkeley, CA 94704, USA
| |
Collapse
|
46
|
Nalluri H, Subramanian S, Staley C. Intestinal organoids: a model to study the role of microbiota in the colonic tumor microenvironment. Future Microbiol 2020; 15:1583-1594. [PMID: 33215543 DOI: 10.2217/fmb-2019-0345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cause of cancer worldwide. Recent studies have suggested that a dysbiotic shift in the intestinal microbial composition of CRC patients influences tumorigenesis. Gut microbes are known to be integral for intestinal homeostasis; however, the mechanisms by which they impact CRC are unclear. Further knowledge about these complex interactions may guide future CRC management. Thus, it is crucial to establish high-quality experimental models to understand the relationship between host, tumor, microbiota and their metabolic interactions. In this review, we highlight the significance of intestinal microbiota and their metabolites in CRC, challenges with current experimental models, advantages and limitations of organoid culture and future directions of this novel model system in CRC-associated microbiome research.
Collapse
Affiliation(s)
- Harika Nalluri
- Department of Surgery, Division of Basic & Translational Research, University of Minnesota, Minneapolis, MN 55455, USA
| | - Subbaya Subramanian
- Department of Surgery, Division of Basic & Translational Research, University of Minnesota, Minneapolis, MN 55455, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Christopher Staley
- Department of Surgery, Division of Basic & Translational Research, University of Minnesota, Minneapolis, MN 55455, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.,BioTechnology Institute, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
47
|
Sahu S, Sharan SK. Translating Embryogenesis to Generate Organoids: Novel Approaches to Personalized Medicine. iScience 2020; 23:101485. [PMID: 32864586 PMCID: PMC7441954 DOI: 10.1016/j.isci.2020.101485] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The astounding capacity of pluripotent stem cells (PSCs) to differentiate and self-organize has revolutionized the development of 3D cell culture models. The major advantage is its ability to mimic in vivo microenvironments and cellular interactions when compared with the classical 2D cell culture models. Recent innovations in generating embryo-like structures (including blastoids and gastruloids) from PSCs have advanced the experimental accessibility to understand embryogenesis with immense potential to model human development. Taking cues on how embryonic development leads to organogenesis, PSCs can also be directly differentiated to form mini-organs or organoids of a particular lineage. Organoids have opened new avenues to augment our understanding of stem cell and regenerative biology, tissue homeostasis, and disease mechanisms. In this review, we provide insights from developmental biology with a comprehensive resource of signaling pathways that in a coordinated manner form embryo-like structures and organoids. Moreover, the advent of assembloids and multilineage organoids from PSCs opens a new dimension to study paracrine function and multi-tissue interactions in vitro. Although this led to an avalanche of enthusiasm to utilize organoids for organ transplantation studies, we examine the current limitations and provide perspectives to improve reproducibility, scalability, functional complexity, and cell-type characterization. Taken together, these 3D in vitro organ-specific and patient-specific models hold great promise for drug discovery, clinical management, and personalized medicine.
Collapse
Affiliation(s)
- Sounak Sahu
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Building 560, Room 32-04, 1050 Boyles Street, Frederick, MD 21702, USA
| | - Shyam K. Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Building 560, Room 32-33, 1050 Boyles Street, Frederick, MD 21702, USA
| |
Collapse
|
48
|
Dame K, Ribeiro AJ. Microengineered systems with iPSC-derived cardiac and hepatic cells to evaluate drug adverse effects. Exp Biol Med (Maywood) 2020; 246:317-331. [PMID: 32938227 PMCID: PMC7859673 DOI: 10.1177/1535370220959598] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hepatic and cardiac drug adverse effects are among the leading causes of attrition in drug development programs, in part due to predictive failures of current animal or in vitro models. Hepatocytes and cardiomyocytes differentiated from human induced pluripotent stem cells (iPSCs) hold promise for predicting clinical drug effects, given their human-specific properties and their ability to harbor genetically determined characteristics that underlie inter-individual variations in drug response. Currently, the fetal-like properties and heterogeneity of hepatocytes and cardiomyocytes differentiated from iPSCs make them physiologically different from their counterparts isolated from primary tissues and limit their use for predicting clinical drug effects. To address this hurdle, there have been ongoing advances in differentiation and maturation protocols to improve the quality and use of iPSC-differentiated lineages. Among these are in vitro hepatic and cardiac cellular microsystems that can further enhance the physiology of cultured cells, can be used to better predict drug adverse effects, and investigate drug metabolism, pharmacokinetics, and pharmacodynamics to facilitate successful drug development. In this article, we discuss how cellular microsystems can establish microenvironments for these applications and propose how they could be used for potentially controlling the differentiation of hepatocytes or cardiomyocytes. The physiological relevance of cells is enhanced in cellular microsystems by simulating properties of tissue microenvironments, such as structural dimensionality, media flow, microfluidic control of media composition, and co-cultures with interacting cell types. Recent studies demonstrated that these properties also affect iPSC differentiations and we further elaborate on how they could control differentiation efficiency in microengineered devices. In summary, we describe recent advances in the field of cellular microsystems that can control the differentiation and maturation of hepatocytes and cardiomyocytes for drug evaluation. We also propose how future research with iPSCs within engineered microenvironments could enable their differentiation for scalable evaluations of drug effects.
Collapse
Affiliation(s)
- Keri Dame
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translation Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Alexandre Js Ribeiro
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translation Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
49
|
Kim YH, Han SH, Kim H, Lee SJ, Joo HW, Kim MJ, Shim S, Kim K, Lee J, Jang WS, Park S, Jang H, Lee SB. Evaluation of the radiation response and regenerative effects of mesenchymal stem cell-conditioned medium in an intestinal organoid system. Biotechnol Bioeng 2020; 117:3639-3650. [PMID: 32833232 DOI: 10.1002/bit.27543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 11/10/2022]
Abstract
Intestinal organoids have recently emerged as an in vitro model relevant to the gut system owing to their recapitulation of the native intestinal epithelium with crypt-villus architecture. However, it is unclear whether intestinal organoids reflect the physiology of the in vivo stress response. Here, we systemically investigated the radiation response in organoids and animal models using mesenchymal stem cell-conditioned medium (MSC-CM), which contains secreted paracrine factors. Irradiated organoids exhibited sequential induction of viability loss and regrowth after irradiation (within 12 days), similar to the response of the native intestinal epithelium. Notably, treatment with MSC-CM facilitated the reproliferation of intestinal stem cells (ISCs) and restoration of damaged crypt-villus structures in both models. Furthermore, Wnt/Notch signaling pathways were commonly upregulated by MSC-CM, but not radiation, and pharmacologically selective inhibition of Wnt or Notch signaling attenuated the enhanced recovery of irradiated organoids, with increases in ISCs, following MSC-CM treatment. Interestingly, the expression of Wnt4, Wnt7a, and active β-catenin was increased, but not notch family members, in MSC-CM-treated organoid after irradiation. Treatment of recombinant mouse Wnt4 and Wnt7a after irradiation improved to some extent intestinal epithelial regeneration both in vitro and in vivo. Overall, these results suggested that intestinal organoids recapitulated the physiological stress response of the intestinal epithelium in vivo. Thus, our findings provided important insights into the physiology of intestinal organoids and may contribute to the development of strategies to enhance the functional maturation of engineered organoids.
Collapse
Affiliation(s)
- Young-Heon Kim
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul, Republic of Korea
| | - Sung-Hoon Han
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul, Republic of Korea
| | - Hyewon Kim
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul, Republic of Korea
| | - Sun-Joo Lee
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul, Republic of Korea
| | - Hyun-Woo Joo
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul, Republic of Korea
| | - Min-Jung Kim
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul, Republic of Korea
| | - Sehwan Shim
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul, Republic of Korea
| | - Kyuchang Kim
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul, Republic of Korea
| | - Janet Lee
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul, Republic of Korea
| | - Won-Suk Jang
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul, Republic of Korea
| | - Sunhoo Park
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul, Republic of Korea
| | - Hyosun Jang
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul, Republic of Korea
| | - Seung Bum Lee
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul, Republic of Korea
| |
Collapse
|
50
|
Holloway EM, Wu JH, Czerwinski M, Sweet CW, Wu A, Tsai YH, Huang S, Stoddard AE, Capeling MM, Glass I, Spence JR. Differentiation of Human Intestinal Organoids with Endogenous Vascular Endothelial Cells. Dev Cell 2020; 54:516-528.e7. [PMID: 32841595 PMCID: PMC7480827 DOI: 10.1016/j.devcel.2020.07.023] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/11/2020] [Accepted: 07/29/2020] [Indexed: 12/17/2022]
Abstract
Human pluripotent stem cell (hPSC)-derived intestinal organoids (HIOs) lack some cellular populations found in the native organ, including vasculature. Using single-cell RNA sequencing (scRNA-seq), we have identified a population of endothelial cells (ECs) present early in HIO differentiation that declines over time in culture. Here, we developed a method to expand and maintain this endogenous population of ECs within HIOs (vHIOs). Given that ECs possess organ-specific gene expression, morphology, and function, we used bulk RNA-seq and scRNA-seq to interrogate the developing human intestine, lung, and kidney in order to identify organ-enriched EC gene signatures. By comparing these gene signatures and validated markers to HIO ECs, we find that HIO ECs grown in vitro share the highest similarity with native intestinal ECs relative to kidney and lung. Together, these data demonstrate that HIOs can co-differentiate a native EC population that is properly patterned with an intestine-specific EC transcriptional signature in vitro.
Collapse
Affiliation(s)
- Emily M Holloway
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Joshua H Wu
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Michael Czerwinski
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Caden W Sweet
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Angeline Wu
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yu-Hwai Tsai
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sha Huang
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Amy E Stoddard
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA
| | - Meghan M Capeling
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA
| | - Ian Glass
- Department of Pediatrics, Genetic Medicine, University of Washington, Seattle, WA 98195, USA
| | - Jason R Spence
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA.
| |
Collapse
|