1
|
Kore MS, Mamsa R, Patil D, Bhatt LK. Ghrelin in Depression: A Promising Therapeutic Target. Mol Neurobiol 2024:10.1007/s12035-024-04554-1. [PMID: 39424690 DOI: 10.1007/s12035-024-04554-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Depression is a widespread disease affecting over 300 million individuals of various ethnicities and socioeconomic backgrounds globally. It frequently strikes early in life and becomes a chronic or recurring lifelong illness. Out of the various hypotheses for the pathophysiology of depression, the gut-brain axis and stress hypothesis are the ones that need to be researched, as psychological stress impairs one or more pathways of the brain-gut axis and is likely to cause brain-gut axis dysfunction and depression. A dysfunctional reciprocal gut-brain relationship may contribute to many diseases, including inflammatory disorders, abnormal stress responses, impaired behavior, and metabolic changes. The hormone ghrelin is a topic of interest concerning the gut-brain axis as it interacts with the gut-brain axis indirectly via the central nervous system or via crossing the blood-brain barrier. Ghrelin release is also affected by the gut microbes, which has also been discussed in the review. This review elaborates on Ghrelin's role in depression and its effect on various aspects like neurogenesis, HPA axis, and neuroinflammation. Furthermore, this review focuses on ghrelin as a potential target for alleviation of depressive symptoms.
Collapse
Affiliation(s)
- Mikhil Santosh Kore
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India
| | - Rumaiza Mamsa
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India
| | - Dipti Patil
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India.
| |
Collapse
|
2
|
Collinge CW, Razzoli M, Mansk R, McGonigle S, Lamming DW, Pacak CA, van der Pluijm I, Niedernhofer L, Bartolomucci A. The mouse Social Frailty Index (mSFI): a novel behavioral assessment for impaired social functioning in aging mice. GeroScience 2024:10.1007/s11357-024-01263-4. [PMID: 38987495 DOI: 10.1007/s11357-024-01263-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/23/2024] [Indexed: 07/12/2024] Open
Abstract
Various approaches exist to quantify the aging process and estimate biological age on an individual level. Frailty indices based on an age-related accumulation of physical deficits have been developed for human use and translated into mouse models. However, declines observed in aging are not limited to physical functioning but also involve social capabilities. The concept of "social frailty" has been recently introduced into human literature, but no index of social frailty exists for laboratory mice yet. To fill this gap, we developed a mouse Social Frailty Index (mSFI) consisting of seven distinct assays designed to quantify social functioning which is relatively simple to execute and is minimally invasive. Application of the mSFI in group-housed male C57BL/6 mice demonstrated a progressively elevated levels of social frailty through the lifespan. Conversely, group-housed females C57BL/6 mice manifested social frailty only at a very old age. Female mice also showed significantly lower mSFI score from 10 months of age onward when compared to males. We also applied the mSFI in male C57BL/6 mice under chronic subordination stress and in chronic isolation, both of which induced larger increases in social frailty compared to age-matched group-housed males. Lastly, we show that the mSFI is enhanced in mouse models that show accelerated biological aging such as progeroid Ercc1-/Δ and Xpg-/- mice of both sexes compared to age matched littermate wild types. In summary, the mSFI represents a novel index to quantify trajectories of biological aging in mice and may help elucidate links between impaired social behavior and the aging process.
Collapse
Affiliation(s)
- Charles W Collinge
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Maria Razzoli
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Rachel Mansk
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Seth McGonigle
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Christina A Pacak
- Greg Marzolf Jr. Muscular Dystrophy Center & Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | - Ingrid van der Pluijm
- Department of Molecular Genetics, and Department of Vascular Surgery, Cardiovascular Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Laura Niedernhofer
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
3
|
Zhou X, Fukuyama H, Sugisawa T, Okita Y, Kanda H, Yamamoto Y, Araki T, Gomi F. Pupillary Light Reflex and Multimodal Imaging in Patients With Central Serous Chorioretinopathy. Invest Ophthalmol Vis Sci 2023; 64:28. [PMID: 37850945 PMCID: PMC10593139 DOI: 10.1167/iovs.64.13.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023] Open
Abstract
Purpose The purpose of this study was to investigate and compare the corresponding alterations of the pupillary response between acute and chronic central serous chorioretinopathy (CSC) and between different disease categories. Methods We recruited patients with unilateral acute and chronic CSC. An eye tracker was applied to determine the pupillary light reflex (PLR) and evaluate the following PLR metrics in healthy eyes: pupil diameter, diameter changes, including relative constriction amplitude (AMP%), and re-dilation ratio (D1%). Baseline optical coherence tomography (OCT), and fluorescein and indocyanine green angiography (FA/ICGA) were performed to analyze the relationship between pupillary response and retinal/choroidal architecture. Results In total, 52 patients were enrolled, including 25 with acute CSC and 27 with chronic CSC. Compared to the chronic CSC group, the acute CSC group displayed a significantly larger baseline pupil diameter (BPD; of 5.51 mm, P = 0.015), lower AMP% (34.40%, P = 0.004), and higher D1% (93.01%, P = 0.002), indicating sympathetic overactivity. On OCT, the total macular volume was positively correlated with the D1% (r = 0.48, P = 0.005) and negatively with AMP (r = -0.47, P = 0.007). On ICGA, the intense choroidal vascular hyperpermeability (CVH) group displayed a greater BPD than the nonintense CVH group. Additionally, 9 cases with later recurrent episodes following therapy showed a lower AMP% and higher D1% than the nonrecurrent group. Conclusions The PLR revealed sympathetic excitation in patients with acute CSC. The stronger D1% was significantly associated with greater total macular volume, and it may be a potential biomarker for predicting the later recurrence of CSC.
Collapse
Affiliation(s)
- Xiaoyin Zhou
- Department of Ophthalmology, Hyogo Medical University, Hyogo, Japan
- Department of Ophthalmology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hisashi Fukuyama
- Department of Ophthalmology, Hyogo Medical University, Hyogo, Japan
| | - Takaaki Sugisawa
- Department of Ophthalmology, Hyogo Medical University, Hyogo, Japan
| | - Yoichi Okita
- Department of Ophthalmology, Hyogo Medical University, Hyogo, Japan
| | - Hiroyuki Kanda
- Department of Ophthalmology, Hyogo Medical University, Hyogo, Japan
| | - Yuki Yamamoto
- Department of Ophthalmology, Hyogo Medical University, Hyogo, Japan
| | - Takashi Araki
- Department of Ophthalmology, Hyogo Medical University, Hyogo, Japan
| | - Fumi Gomi
- Department of Ophthalmology, Hyogo Medical University, Hyogo, Japan
| |
Collapse
|
4
|
Razzoli M, Nyuyki-Dufe K, Chen BH, Bartolomucci A. Contextual modifiers of healthspan, lifespan, and epigenome in mice under chronic social stress. Proc Natl Acad Sci U S A 2023; 120:e2211755120. [PMID: 37043532 PMCID: PMC10120026 DOI: 10.1073/pnas.2211755120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 02/24/2023] [Indexed: 04/13/2023] Open
Abstract
Sustained life stress and low socioeconomic status are among the major causes of aging-related diseases and decreased life expectancy. Experimental rodent models can help to identify the underlying mechanisms, yet very few studies address the long-term consequences of social stress on aging. We conducted a randomized study involving more than 300 male mice of commonly used laboratory strains (C57BL/6J, CD1, and Sv129Ev) chosen for the spontaneous aggression gradient and stress-vulnerability. Mice were exposed to a lifelong chronic psychosocial stress protocol to model social gradients in aging and disease vulnerability. Low social rank, inferred based on a discretized aggression index, was found to negatively impact lifespan in our study population. However, social rank interacted with genetic background in that low-ranking C57BL/6J, high-ranking Sv129Ev, and middle-ranking CD1 mice had lower survival, respectively, implying a cost of maintaining a given social rank that varies across strains. Machine learning linear discriminant analysis identified baseline fat-free mass as the most important predictor of mouse genetic background and social rank in the present dataset. Finally, strain and social rank differences were significantly associated with epigenetic changes, most significantly in Sv129Ev mice and in high-ranking compared to lower ranking subjects. Overall, we identified genetic background and social rank as critical contextual modifiers of aging and lifespan in an ethologically relevant rodent model of social stress, thereby providing a preclinical experimental paradigm to study the impact of social determinants of health disparities and accelerated aging.
Collapse
Affiliation(s)
- Maria Razzoli
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN55455
| | - Kewir Nyuyki-Dufe
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN55455
| | - Brian H. Chen
- FOXO Technologies Inc., Minneapolis, MN55401
- Division of Epidemiology, The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA92093
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN55455
| |
Collapse
|
5
|
Cabana-Domínguez J, Antón-Galindo E, Fernàndez-Castillo N, Singgih EL, O'Leary A, Norton WH, Strekalova T, Schenck A, Reif A, Lesch KP, Slattery D, Cormand B. The translational genetics of ADHD and related phenotypes in model organisms. Neurosci Biobehav Rev 2023; 144:104949. [PMID: 36368527 DOI: 10.1016/j.neubiorev.2022.104949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent neurodevelopmental disorder resulting from the interaction between genetic and environmental risk factors. It is well known that ADHD co-occurs frequently with other psychiatric disorders due, in part, to shared genetics factors. Although many studies have contributed to delineate the genetic landscape of psychiatric disorders, their specific molecular underpinnings are still not fully understood. The use of animal models can help us to understand the role of specific genes and environmental stimuli-induced epigenetic modifications in the pathogenesis of ADHD and its comorbidities. The aim of this review is to provide an overview on the functional work performed in rodents, zebrafish and fruit fly and highlight the generated insights into the biology of ADHD, with a special focus on genetics and epigenetics. We also describe the behavioral tests that are available to study ADHD-relevant phenotypes and comorbid traits in these models. Furthermore, we have searched for new models to study ADHD and its comorbidities, which can be useful to test potential pharmacological treatments.
Collapse
Affiliation(s)
- Judit Cabana-Domínguez
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain.
| | - Ester Antón-Galindo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain
| | - Noèlia Fernàndez-Castillo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain
| | - Euginia L Singgih
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Aet O'Leary
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany; Division of Neuropsychopharmacology, Department of Psychology, University of Tartu, Tartu, Estonia
| | - William Hg Norton
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Tatyana Strekalova
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany, and Department of Neuropsychology and Psychiatry, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany, and Department of Neuropsychology and Psychiatry, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands
| | - David Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain.
| |
Collapse
|
6
|
Borgsted C, Høgh S, Høgsted ES, Fonnesbech‐Sandberg L, Ekelund K, Albrechtsen CK, Wiis JT, Hegaard H, Cvetanovska E, Juul A, Frederiksen H, Pinborg A, Weikop P, Frokjaer V. The role of central serotonergic markers and estradiol changes in perinatal mental health. Acta Psychiatr Scand 2022; 146:357-369. [PMID: 35729864 PMCID: PMC9796905 DOI: 10.1111/acps.13461] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 01/29/2023]
Abstract
OBJECTIVE Women have an increased risk for mental distress and depressive symptoms in relation to pregnancy and birth. The serotonin transporter (SERT) may be involved in the emergence of depressive symptoms postpartum and during other sex-hormone transitions. It may be associated with cerebrospinal fluid (CSF) levels of the main serotonin metabolite 5-hydroxyindolacetic acid (5-HIAA). In 100 healthy pregnant women, who were scheduled to deliver by cesarean section (C-section), we evaluated 5-HIAA and estradiol contributions to mental distress 5 weeks postpartum. METHODS Eighty-two women completed the study. CSF collected at C-section was analyzed for 5-HIAA, with high performance liquid chromatography. Serum estradiol concentrations were quantified by liquid chromatography tandem mass spectrometry before C-section and postpartum. Postpartum mental distress was evaluated with the Edinburgh Postnatal Depression Scale (EPDS). Associations between EPDS, 5-HIAA, and Δestradiol were evaluated in linear regression models adjusted for age, parity and SERT genotype. RESULTS Higher levels of postpartum mental distress symptoms were negatively associated with a large decrease in estradiol concentrations (βΔE2 = 0.73, p = 0.007) and, on a trend level, positively associated with high antepartum 5-HIAA levels (β5-HIAA = 0.002, p = 0.06). CONCLUSION In a cohort of healthy pregnant women, postpartum mental distress was higher in women with high antepartum 5-HIAA (trend) and lower in women with a large perinatal estradiol decrease. We speculate that high antepartum 5-HIAA is a proxy of SERT levels, that carry over to the postpartum period and convey susceptibility to mental distress. In healthy women, the postpartum return to lower estradiol concentrations may promote mental well-being.
Collapse
Affiliation(s)
- Camilla Borgsted
- Neurobiology Research UnitCopenhagen University Hospital ‐ RigshospitaletCopenhagenDenmark,Mental Health Services in the Capital Region of DenmarkCopenhagenDenmark,Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Stinne Høgh
- Neurobiology Research UnitCopenhagen University Hospital ‐ RigshospitaletCopenhagenDenmark,Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark,Department of ObstetricsCopenhagen University Hospital ‐ RigshospitaletCopenhagenDenmark
| | - Emma Sofie Høgsted
- Neurobiology Research UnitCopenhagen University Hospital ‐ RigshospitaletCopenhagenDenmark
| | | | - Kim Ekelund
- Department of Anaesthesiology, Juliane Marie CenterCopenhagen University Hospital ‐ RigshospitaletCopenhagenDenmark
| | - Charlotte Krebs Albrechtsen
- Department of Anaesthesiology, Juliane Marie CenterCopenhagen University Hospital ‐ RigshospitaletCopenhagenDenmark
| | - Julie Therese Wiis
- Department of AnaesthesiologyCopenhagen University Hospital ‐ HerlevHerlevDenmark
| | - Hanne Hegaard
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark,Department of ObstetricsCopenhagen University Hospital ‐ RigshospitaletCopenhagenDenmark
| | - Eleonora Cvetanovska
- Department of Obstetrics and Gynaecology, Herlev HospitalCopenhagen University HospitalHerlevDenmark
| | - Anders Juul
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark,Department of Growth and ReproductionCopenhagen University Hospital ‐ RigshospitaletCopenhagenDenmark
| | - Hanne Frederiksen
- Department of Growth and ReproductionCopenhagen University Hospital ‐ RigshospitaletCopenhagenDenmark
| | - Anja Pinborg
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark,Department of FertilityCopenhagen University Hospital ‐ RigshospitaletCopenhagenDenmark
| | - Pia Weikop
- Center for Translational NeuromedicineUniversity of CopenhagenCopenhagenDenmark
| | - Vibe Frokjaer
- Neurobiology Research UnitCopenhagen University Hospital ‐ RigshospitaletCopenhagenDenmark,Mental Health Services in the Capital Region of DenmarkCopenhagenDenmark,Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
7
|
Wang X, Wang K, Wu X, Huang W, Yang L. Role of the cAMP-PKA-CREB-BDNF pathway in abnormal behaviours of serotonin transporter knockout mice. Behav Brain Res 2022; 419:113681. [PMID: 34838579 DOI: 10.1016/j.bbr.2021.113681] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 11/02/2022]
Abstract
Serotonin transporter gene-linked polymorphic region polymorphisms are associated with anxiety, neuroticism, affective disorders and vulnerability to stressful life events; however, the relevant physiological mechanisms are not well understood. Serotonin transporter knockout mice have been widely used as a model of allelic variation of serotonin transporter function in humans; herein, wild-type mice and heterozygous and homozygous knockout mice models were established to explore the behavioural changes related to different genotypes and the possible physiological mechanisms. Behavioural changes were assessed using behavioural tests, namely, elevated plus maze, open field, Morris water maze and rotarod tests. Serum indicators were detected using the enzyme-linked immunosorbent assay. Compared with wild-type mice, homozygous mice showed significant anxiety-like behaviours in the plus maze and open field tests; conversely, anxiety-like behaviours in heterozygous mice were less pronounced. Homozygous mice also showed cognitive impairment and motor inhibition in the Morris water maze and rotarod tests. Serotonin levels decreased in both heterozygous and homozygous mice, and 5-hydroxytryptophan, protein kinase A, adenylyl cyclase, cyclic adenosine monophosphate response element-binding protein and brain-derived neurotrophic factor levels were lower in homozygous mice than in wild-type and heterozygous mice, whereas no statistical differences were found between wild-type and heterozygous mice. Additionally, there was a correlation between serological and behavioural indicators. This study provided experimental evidence that the cyclic adenosine monophosphate-protein kinase A-cyclic adenosine monophosphate response element-binding protein-brain-derived neurotrophic factor pathway may be involved in the regulation of polymorphism to stress and enriched the behavioural and physiological characteristics of serotonin transporter knockout mice.
Collapse
Affiliation(s)
- Xiaomin Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, PR China
| | - Ke Wang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, PR China
| | - Xiangmin Wu
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, PR China
| | - Wenxiu Huang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, PR China
| | - Li Yang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, PR China.
| |
Collapse
|
8
|
Grant MK, Razzoli M, Abdelgawad IY, Mansk R, Seelig D, Bartolomucci A, Zordoky BN. Juvenile exposure to doxorubicin alters the cardiovascular response to adult-onset psychosocial stress in mice. Stress 2022; 25:291-304. [PMID: 35942624 PMCID: PMC9749214 DOI: 10.1080/10253890.2022.2104121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Childhood cancer survivors have a high risk for premature cardiovascular diseases, mainly due to cardiotoxic cancer treatments such as doxorubicin (DOX). Psychosocial stress is a significant cardiovascular risk factor and an enormous burden in childhood cancer survivors. Although observational studies suggest that psychosocial stress is associated with cardiovascular complications in cancer survivors, there is no translationally relevant animal model to study this interaction. We established a "two-hit" model in which juvenile mice were administered DOX (4 mg/kg/week for 3 weeks), paired to a validated model of chronic subordination stress (CSS) 5 weeks later upon reaching adulthood. Blood pressure, heart rate, and activity were monitored by radio-telemetry. At the end of CSS experiment, cardiac function was assessed by echocardiography. Cardiac fibrosis and inflammation were assessed by histopathologic analysis. Gene expressions of inflammatory and fibrotic markers were determined by PCR. Juvenile exposure to DOX followed by adult-onset CSS caused cardiac fibrosis and inflammation as evident by histopathologic findings and upregulated gene expression of multiple inflammatory and fibrotic markers. Intriguingly, juvenile exposure to DOX blunted CSS-induced hypertension but not CSS-induced tachycardia. There were no significant differences in cardiac function parameters among all groups, but juvenile exposure to DOX abrogated the hypertrophic response to CSS. In conclusion, we established a translationally relevant mouse model of juvenile DOX-induced cardiotoxicity that predisposes to adult-onset stress-induced adverse cardiac remodeling. Psychosocial stress should be taken into consideration in cardiovascular risk stratification of DOX-treated childhood cancer survivors.
Collapse
Affiliation(s)
- Marianne K.O. Grant
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, USA
| | - Maria Razzoli
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Ibrahim Y. Abdelgawad
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, USA
| | - Rachel Mansk
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Davis Seelig
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, MN, USA
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Beshay N. Zordoky
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, USA
- Corresponding Author Beshay Zordoky, PhD, 3-120 Weaver-Densford Hall, 308 Harvard Street SE, Minneapolis, MN 55455, United States of America, Phone: 1-612-625-6499,
| |
Collapse
|
9
|
Xie MJ, Iwata K, Ishikawa Y, Nomura Y, Tani T, Murata K, Fukazawa Y, Matsuzaki H. Autistic-Like Behavior and Impairment of Serotonin Transporter and AMPA Receptor Trafficking in N-Ethylmaleimide Sensitive Factor Gene-Deficient Mice. Front Genet 2021; 12:748627. [PMID: 34745222 PMCID: PMC8563833 DOI: 10.3389/fgene.2021.748627] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/04/2021] [Indexed: 01/22/2023] Open
Abstract
Autism spectrum disorder (ASD), characterized by profound impairment in social interactions and communication skills, is the most common neurodevelopmental disorder. Many studies on the mechanisms underlying the development of ASD have focused on the serotonergic system; however, these studies have failed to completely elucidate the mechanisms. We previously identified N-ethylmaleimide-sensitive factor (NSF) as a new serotonin transporter (SERT)-binding protein and described its importance in SERT membrane trafficking and uptake in vitro. In the present study, we generated Nsf +/- mice and investigated their behavioral, neurotransmitter, and neurophysiological phenotypes in vivo. Nsf +/- mice exhibited abnormalities in sociability, communication, repetitiveness, and anxiety. Additionally, Nsf loss led to a decrease in membrane SERT expression in the raphe and accumulation of glutamate alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors at the synaptic membrane surface in the hippocampal CA1 region. We found that postsynaptic density and long-term depression were impaired in the hippocampal CA1 region of Nsf +/- mice. Taken together, these findings demonstrate that NSF plays a role in synaptic plasticity and glutamatergic and serotonergic systems, suggesting a possible mechanism by which the gene is linked to the pathophysiology of autistic behaviors.
Collapse
Affiliation(s)
- Min-Jue Xie
- Division of Development of Mental Functions, Research Center for Child Mental Development, University of Fukui, Fukui, Japan.,Life Science Innovation Center, University of Fukui, Fukui, Japan.,United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka University, Osaka, Japan
| | - Keiko Iwata
- Division of Development of Mental Functions, Research Center for Child Mental Development, University of Fukui, Fukui, Japan.,Life Science Innovation Center, University of Fukui, Fukui, Japan.,United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka University, Osaka, Japan
| | - Yasuyuki Ishikawa
- Department of Systems Life Engineering, Maebashi Institute of Technology, Maebashi, Japan
| | - Yuki Nomura
- School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Tomomi Tani
- School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Koshi Murata
- Division of Brain Structures and Function, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Yugo Fukazawa
- Division of Development of Mental Functions, Research Center for Child Mental Development, University of Fukui, Fukui, Japan.,Life Science Innovation Center, University of Fukui, Fukui, Japan.,Division of Brain Structures and Function, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Hideo Matsuzaki
- Division of Development of Mental Functions, Research Center for Child Mental Development, University of Fukui, Fukui, Japan.,Life Science Innovation Center, University of Fukui, Fukui, Japan.,United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka University, Osaka, Japan
| |
Collapse
|
10
|
Lyons CE, Zhou X, Razzoli M, Chen M, Xia W, Ashe K, Zhang B, Bartolomucci A. Lifelong chronic psychosocial stress induces a proteomic signature of Alzheimer's disease in wildtype mice. Eur J Neurosci 2021; 55:2971-2985. [PMID: 34048087 DOI: 10.1111/ejn.15329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 04/26/2021] [Accepted: 05/23/2021] [Indexed: 12/25/2022]
Abstract
Late onset, sporadic Alzheimer's disease (AD) accounts for the vast majority of cases. Unlike familial AD, the factors that drive the onset of sporadic AD are poorly understood, although aging and stress play a role. The early onset/severity of neuropathology observed in most genetic mouse models of AD hampers the study of the role of aging and environmental factors; thus alternate strategies are necessary to understand the contributions of these factors to sporadic AD. We demonstrate that mice acquiring a low social status (subordinate) in a lifelong chronic psychosocial stress (CPS) model, accrue widespread proteomic changes in the frontal/temporal cortex during aging. To better understand the significance of these stress-induced changes, we compared the differentially expressed proteins (DEPs) of subordinate mice to those of patients at varying stages of dementia. Sixteen and fifteen DEPs upregulated in subordinate mice were also upregulated in patients with mild cognitive impairment (MCI) and AD, respectively. Six of those upregulated proteins (CPE, ERC2, GRIN2B, SLC6A1, SYN1, WFS1) were shared by subordinate mice and patients with MCI or AD. Finally, comparison with a spatially detailed transcriptomic database revealed that the superior frontal gyrus and hippocampus had the greatest overlap between mice subjected to lifelong CPS and AD patients. Overall, most of the overlapping proteins were functionally associated with enhanced NMDA receptor mediated glutamatergic signaling, an excitotoxicity mechanism known to affect neurodegeneration. These findings support the association between stress and AD progression and provide valuable insight into potential early biomarkers and protein mediators of this relationship.
Collapse
Affiliation(s)
- Carey E Lyons
- Department of Integrative Physiology and Biology, University of Minnesota, Minneapolis, MN, USA.,Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Xianxiao Zhou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria Razzoli
- Department of Integrative Physiology and Biology, University of Minnesota, Minneapolis, MN, USA
| | - Mei Chen
- Geriatric Research Education Clinical Center, Bedford VA Healthcare System, Bedford, MA, USA
| | - Weiming Xia
- Geriatric Research Education Clinical Center, Bedford VA Healthcare System, Bedford, MA, USA.,Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Karen Ashe
- Department of Neurology and N. Bud Grossman Center for Memory Research and Care, University of Minnesota, and Minneapolis VA Medical Center, Minneapolis, MN, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alessandro Bartolomucci
- Department of Integrative Physiology and Biology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
11
|
Jansen van Vuren E, Steyn SF, Brink CB, Möller M, Viljoen FP, Harvey BH. The neuropsychiatric manifestations of COVID-19: Interactions with psychiatric illness and pharmacological treatment. Biomed Pharmacother 2021; 135:111200. [PMID: 33421734 PMCID: PMC7834135 DOI: 10.1016/j.biopha.2020.111200] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/15/2020] [Accepted: 12/26/2020] [Indexed: 12/12/2022] Open
Abstract
The recent outbreak of the corona virus disease (COVID-19) has had major global impact. The relationship between severe acute respiratory syndrome coronavirus (SARS-CoV-2) infection and psychiatric diseases is of great concern, with an evident link between corona virus infections and various central and peripheral nervous system manifestations. Unmitigated neuro-inflammation has been noted to underlie not only the severe respiratory complications of the disease but is also present in a range of neuro-psychiatric illnesses. Several neurological and psychiatric disorders are characterized by immune-inflammatory states, while treatments for these disorders have distinct anti-inflammatory properties and effects. With inflammation being a common contributing factor in SARS-CoV-2, as well as psychiatric disorders, treatment of either condition may affect disease progression of the other or alter response to pharmacological treatment. In this review, we elucidate how viral infections could affect pre-existing psychiatric conditions and how pharmacological treatments of these conditions may affect overall progress and outcome in the treatment of SARS-CoV-2. We address whether any treatment-induced benefits and potential adverse effects may ultimately affect the overall treatment approach, considering the underlying dysregulated neuro-inflammatory processes and potential drug interactions. Finally, we suggest adjunctive treatment options for SARS-CoV-2-associated neuro-psychiatric symptoms.
Collapse
Affiliation(s)
- Esmé Jansen van Vuren
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa.
| | - Stephan F Steyn
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Christiaan B Brink
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Marisa Möller
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Francois P Viljoen
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Brian H Harvey
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa; South African MRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
12
|
Lyte JM, Gheorghe CE, Goodson MS, Kelley-Loughnane N, Dinan TG, Cryan JF, Clarke G. Gut-brain axis serotonergic responses to acute stress exposure are microbiome-dependent. Neurogastroenterol Motil 2020; 32:e13881. [PMID: 32391630 DOI: 10.1111/nmo.13881] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/06/2020] [Accepted: 04/17/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Understanding the mechanisms underpinning the response to acute stress is critical for determining how this can be modulated in both health and disease and across sexes. Stress can markedly alter the microbiome and gut-brain axis signaling with the serotonergic system being particularly sensitive to acute stress. As the impact of acute stress on regional serotonergic dynamics in the gut-brain axis and the contribution of the microbiome to this are poorly appreciated, we used microbiota-deficient mice to assess whether the serotonergic response to acute stress exposure is microbiome dependent. METHODS Adult male and female conventional, germ-free, and colonized germ-free mice underwent a single acute stressor and samples were harvested immediately or 45 minutes following stress. Serotonin and related metabolites and serotonergic gene expression were determined. KEY RESULTS Our data clearly show the microbiota influenced gastrointestinal serotonergic response to acute stress in a sex- and region-dependent manner. Male-specific poststress increases in colonic serotonin were absent in germ-free mice but normalized following colonization. mRNA serotonergic gene expression was differentially expressed in colon and ileum of germ-free mice on a sex-dependent basis. Within the frontal cortex, absence of the microbiome altered basal serotonin, its main metabolite 5-hydroxyindoleacetic acid, and prevented stress-induced increases in serotonin turnover. CONCLUSIONS AND INFERENCES The gut microbiome influences the set points of the brain and gastrointestinal serotonergic systems and affected their response to acute stress in a sex- and region-dependent manner.
Collapse
Affiliation(s)
- Joshua M Lyte
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Michael S Goodson
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, USA
| | - Nancy Kelley-Loughnane
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, USA
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| |
Collapse
|
13
|
Gellner AK, Voelter J, Schmidt U, Beins EC, Stein V, Philipsen A, Hurlemann R. Molecular and neurocircuitry mechanisms of social avoidance. Cell Mol Life Sci 2020; 78:1163-1189. [PMID: 32997200 PMCID: PMC7904739 DOI: 10.1007/s00018-020-03649-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/09/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022]
Abstract
Humans and animals live in social relationships shaped by actions of approach and avoidance. Both are crucial for normal physical and mental development, survival, and well-being. Active withdrawal from social interaction is often induced by the perception of threat or unpleasant social experience and relies on adaptive mechanisms within neuronal networks associated with social behavior. In case of confrontation with overly strong or persistent stressors and/or dispositions of the affected individual, maladaptive processes in the neuronal circuitries and its associated transmitters and modulators lead to pathological social avoidance. This review focuses on active, fear-driven social avoidance, affected circuits within the mesocorticolimbic system and associated regions and a selection of molecular modulators that promise translational potential. A comprehensive review of human research in this field is followed by a reflection on animal studies that offer a broader and often more detailed range of analytical methodologies. Finally, we take a critical look at challenges that could be addressed in future translational research on fear-driven social avoidance.
Collapse
Affiliation(s)
- Anne-Kathrin Gellner
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Jella Voelter
- Department of Psychiatry, School of Medicine and Health Sciences, University of Oldenburg, Hermann-Ehlers-Str. 7, 26160, Bad Zwischenahn, Germany
| | - Ulrike Schmidt
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.,Department of Psychiatry Und Psychotherapy, University of Göttingen, Von-Siebold-Str. 5, 37075, Göttingen, Germany
| | - Eva Carolina Beins
- Institute of Human Genetics, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Valentin Stein
- Institute of Physiology II, University Hospital Bonn, 53115, Bonn, Germany
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - René Hurlemann
- Division of Medical Psychology, Department of Psychiatry, University Hospital, Venusberg-Campus 1, 53127, Bonn, Germany. .,Department of Psychiatry, School of Medicine and Health Sciences, University of Oldenburg, Hermann-Ehlers-Str. 7, 26160, Bad Zwischenahn, Germany. .,Research Center Neurosensory Science, University of Oldenburg, 26129, Oldenburg, Germany.
| |
Collapse
|
14
|
Ike KG, de Boer SF, Buwalda B, Kas MJ. Social withdrawal: An initially adaptive behavior that becomes maladaptive when expressed excessively. Neurosci Biobehav Rev 2020; 116:251-267. [DOI: 10.1016/j.neubiorev.2020.06.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 05/28/2020] [Accepted: 06/24/2020] [Indexed: 12/29/2022]
|
15
|
Macrì S, Karakaya M, Spinello C, Porfiri M. Zebrafish exhibit associative learning for an aversive robotic stimulus. Lab Anim (NY) 2020; 49:259-264. [PMID: 32778807 DOI: 10.1038/s41684-020-0599-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 06/18/2020] [Indexed: 12/21/2022]
Abstract
Zebrafish have quickly emerged as a species of choice in preclinical research, holding promise to advance the field of behavioral pharmacology through high-throughput experiments. Besides biological and heuristic considerations, zebrafish also constitute a fundamental tool that fosters the replacement of mammals with less sentient experimental subjects. Notwithstanding these features, experimental paradigms to investigate emotional and cognitive domains in zebrafish are still limited. Studies on emotional memories have provided sound methodologies to investigate fear conditioning in zebrafish, but these protocols may still benefit from a reconsideration of the independent variables adopted to elicit aversion. Here, we designed a fear-conditioning paradigm in which wild-type zebrafish were familiarized over six training sessions with an empty compartment and a fear-eliciting one. The fearful stimulus was represented by three zebrafish replicas exhibiting a fully synchronized and polarized motion as they were maneuvered along 3D trajectories by a robotic platform. When allowed to freely swim between the two compartments in the absence of the robotic stimulus (test session), zebrafish displayed a marked avoidance of the stimulus-paired one. To investigate whether fear conditioning was modulated by psychoactive compounds, two groups of zebrafish were administered ethanol (0.25% and 1.00%, ethanol/water, by volume) a few minutes before the test session. We observed that ethanol administration abolished the conditioned avoidance of the stimulus-paired compartment. Ultimately, this study confirms that robotic stimuli may be used in the design of fear-conditioning paradigms, which are sensitive to pharmacological manipulations.
Collapse
Affiliation(s)
- Simone Macrì
- Department of Mechanical and Aerospace Engineering, New York University, Tandon School of Engineering, Brooklyn, NY, USA.,Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Mert Karakaya
- Department of Mechanical and Aerospace Engineering, New York University, Tandon School of Engineering, Brooklyn, NY, USA
| | - Chiara Spinello
- Department of Mechanical and Aerospace Engineering, New York University, Tandon School of Engineering, Brooklyn, NY, USA
| | - Maurizio Porfiri
- Department of Mechanical and Aerospace Engineering, New York University, Tandon School of Engineering, Brooklyn, NY, USA. .,Department of Biomedical Engineering, New York University, Tandon School of Engineering, Brooklyn, NY, USA.
| |
Collapse
|
16
|
Roversi K, Buizza C, Brivio P, Calabrese F, Verheij MMM, Antoniazzi CTD, Burger ME, Riva MA, Homberg JR. Neonatal Tactile Stimulation Alters Behaviors in Heterozygous Serotonin Transporter Male Rats: Role of the Amygdala. Front Behav Neurosci 2020; 14:142. [PMID: 32903627 PMCID: PMC7438747 DOI: 10.3389/fnbeh.2020.00142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/23/2020] [Indexed: 02/02/2023] Open
Abstract
The serotonin transporter (SERT) gene, especially the short allele of the human serotonin transporter linked polymorphic region (5-HTTLPR), has been associated with the development of stress-related neuropsychiatric disorders. In line, exposure to early life stress in SERT knockout animals contributes to anxiety- and depression-like behavior. However, there is a lack of investigation of how early-life exposure to beneficial stimuli, such as tactile stimulation (TS), affects later life behavior in these animals. In this study, we investigated the effect of TS on social, anxiety, and anhedonic behavior in heterozygous SERT knockouts rats and wild-type controls and its impact on gene expression in the basolateral amygdala. Heterozygous SERT+/– rats were submitted to TS during postnatal days 8–14, for 10 min per day. In adulthood, rats were assessed for social and affective behavior. Besides, brain-derived neurotrophic factor (Bdnf) gene expression and its isoforms, components of glutamatergic and GABAergic systems as well as glucocorticoid-responsive genes were measured in the basolateral amygdala. We found that exposure to neonatal TS improved social and affective behavior in SERT+/– animals compared to naïve SERT+/– animals and was normalized to the level of naïve SERT+/+ animals. At the molecular level, we observed that TS per se affected Bdnf, the glucocorticoid-responsive genes Nr4a1, Gadd45β, the co-chaperone Fkbp5 as well as glutamatergic and GABAergic gene expression markers including the enzyme Gad67, the vesicular GABA transporter, and the vesicular glutamate transporter genes. Our results suggest that exposure of SERT+/– rats to neonatal TS can normalize their phenotype in adulthood and that TS per se alters the expression of plasticity and stress-related genes in the basolateral amygdala. These findings demonstrate the potential effect of a supportive stimulus in SERT rodents, which are more susceptible to develop psychiatric disorders.
Collapse
Affiliation(s)
- Karine Roversi
- Department of Physiology and Pharmacology, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil
| | - Carolina Buizza
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Paola Brivio
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Michel M M Verheij
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Caren T D Antoniazzi
- International Centre for Neurotherapeutics, Dublin City University, Dublin, Ireland
| | - Marilise E Burger
- Department of Physiology and Pharmacology, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil
| | - Marco A Riva
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
17
|
Lyons CE, Bartolomucci A. Stress and Alzheimer's disease: A senescence link? Neurosci Biobehav Rev 2020; 115:285-298. [PMID: 32461080 PMCID: PMC7483955 DOI: 10.1016/j.neubiorev.2020.05.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 04/11/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022]
Abstract
Chronic stress has been shown to promote numerous aging-related diseases, and to accelerate the aging process itself. Of particular interest is the impact of stress on Alzheimer's disease (AD), the most prevalent form of dementia. The vast majority of AD cases have no known genetic cause, making it vital to identify the environmental factors involved in the onset and progression of the disease. Age is the greatest risk factor for AD, and measures of biological aging such as shorter telomere length, significantly increase likelihood for developing AD. Stress is also considered a crucial contributor to AD, as indicated by a formidable body of research, although the mechanisms underlying this association remain unclear. Here we review human and animal literature on the impact of stress on AD and discuss the mechanisms implicated in the interaction. In particular we will focus on the burgeoning body of research demonstrating that senescent cells, which accumulate with age and actively drive a number of aging-related diseases, may be a key mechanism through which stress drives AD.
Collapse
Affiliation(s)
- Carey E Lyons
- Department of Integrative Biology and Physiology, University of Minnesota, United States; Graduate Program in Neuroscience, University of Minnesota, United States.
| | | |
Collapse
|
18
|
Keesom SM, Hurley LM. Silence, Solitude, and Serotonin: Neural Mechanisms Linking Hearing Loss and Social Isolation. Brain Sci 2020; 10:brainsci10060367. [PMID: 32545607 PMCID: PMC7349698 DOI: 10.3390/brainsci10060367] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022] Open
Abstract
For social animals that communicate acoustically, hearing loss and social isolation are factors that independently influence social behavior. In human subjects, hearing loss may also contribute to objective and subjective measures of social isolation. Although the behavioral relationship between hearing loss and social isolation is evident, there is little understanding of their interdependence at the level of neural systems. Separate lines of research have shown that social isolation and hearing loss independently target the serotonergic system in the rodent brain. These two factors affect both presynaptic and postsynaptic measures of serotonergic anatomy and function, highlighting the sensitivity of serotonergic pathways to both types of insult. The effects of deficits in both acoustic and social inputs are seen not only within the auditory system, but also in other brain regions, suggesting relatively extensive effects of these deficits on serotonergic regulatory systems. Serotonin plays a much-studied role in depression and anxiety, and may also influence several aspects of auditory cognition, including auditory attention and understanding speech in challenging listening conditions. These commonalities suggest that serotonergic pathways are worthy of further exploration as potential intervening mechanisms between the related conditions of hearing loss and social isolation, and the affective and cognitive dysfunctions that follow.
Collapse
Affiliation(s)
- Sarah M. Keesom
- Department of Biology, Utica College, Utica, NY 13502, USA
- Correspondence:
| | - Laura M. Hurley
- Center for the Integrative Study of Animal Behavior, Department of Biology, Indiana University, Bloomington, IN 47405, USA;
| |
Collapse
|
19
|
Kneer K, Reinhard J, Ziegler C, Slyschak A, Schiele M, Vietz M, Peters K, Meisenzahl EM, Pauli P, Reif A, Deckert J, Romanos M, Domschke K, Neufang S. Serotonergic influence on depressive symptoms and trait anxiety is mediated by negative life events and frontal activation in children and adolescents. Eur Child Adolesc Psychiatry 2020; 29:691-706. [PMID: 31422473 DOI: 10.1007/s00787-019-01389-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 08/07/2019] [Indexed: 12/18/2022]
Abstract
Depression and anxiety are common in childhood and adolescence. Even though cardinal symptoms differ, there is a considerable overlap regarding the pathogenic influence of serotonergic innervation, negative life experience, disturbed emotion perception/affect regulation, and impaired neural functioning in the fronto-limbic circuit. In this study, we examined the effect of the 5-HTTLPR/rs25531 genotype on depressive symptoms and trait anxiety under the consideration of the amount of negative life events in healthy children and adolescents (N = 389). In a subsample of 49 subjects, we performed fMRI to add fronto-limbic brain activation as a second interacting factor. Across all subjects, negative life events moderated the influence of the 5-HTTLPR/rs25531 genotype on both depressive symptoms and trait anxiety. In the fMRI subsample, 5-HTTLPR/rs25531 S + S/LG + S/LA + LGLA + LGLG genotype-associated left middle frontal gyrus (MFG) activation mediated the influence of 5-HTTLPR/rs25531 genotype on depressive symptoms, however, only in combination with negative life events. Genetic influence on trait anxiety was predominantly mediated by negative life events; only LALA genotype-specific activation in the right MFG worked as a mediator in combination with negative life events. The present findings hint towards distinct mechanisms mediating the influence of 5-HTTLPR/rs25531 genotype on depressive symptoms and anxiety, with negative life events playing a crucial role in both phenotypes. With regard to depressive symptoms, however, this influence was only visible in combination with MFG activation, whereas, in anxiety, it was independent of brain activation.
Collapse
Affiliation(s)
- Katharina Kneer
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - Julia Reinhard
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - Christiane Ziegler
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anna Slyschak
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - Miriam Schiele
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Melanie Vietz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - Katharina Peters
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - Eva M Meisenzahl
- Department of Psychiatry and Psychotherapy, Medical Faculty Heinrich-Heine University, Bergische Landstraße 2, 40629, Düsseldorf, Germany
| | - Paul Pauli
- Department of Psychology, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Jürgen Deckert
- Department of Psychiatry, Psychotherapy and Psychosomatics, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - Marcel Romanos
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Susanne Neufang
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany.
- Department of Psychiatry and Psychotherapy, Medical Faculty Heinrich-Heine University, Bergische Landstraße 2, 40629, Düsseldorf, Germany.
| |
Collapse
|
20
|
Razzoli M, Lindsay A, Law ML, Chamberlain CM, Southern WM, Berg M, Osborn J, Engeland WC, Metzger JM, Ervasti JM, Bartolomucci A. Social stress is lethal in the mdx model of Duchenne muscular dystrophy. EBioMedicine 2020; 55:102700. [PMID: 32192914 PMCID: PMC7251247 DOI: 10.1016/j.ebiom.2020.102700] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/10/2020] [Accepted: 02/18/2020] [Indexed: 12/19/2022] Open
Abstract
Background Duchenne muscular dystrophy (DMD) is caused by the loss of dystrophin. Severe and ultimately lethal, DMD progresses relatively slowly in that patients become wheelchair bound only around age twelve with a survival expectancy reaching the third decade of life. Methods The mildly-affected mdx mouse model of DMD, and transgenic DysΔMTB-mdx and Fiona-mdx mice expressing dystrophin or utrophin, respectively, were exposed to either mild (scruffing) or severe (subordination stress) stress paradigms and profiled for their behavioral and physiological responses. A subgroup of mdx mice exposed to subordination stress were pretreated with the beta-blocker metoprolol. Findings Subordination stress caused lethality in ∼30% of mdx mice within 24 h and ∼70% lethality within 48 h, which was not rescued by metoprolol. Lethality was associated with heart damage, waddling gait and hypo-locomotion, as well as marked up-regulation of the hypothalamus-pituitary-adrenocortical axis. A novel cardiovascular phenotype emerged in mdx mice, in that scruffing caused a transient drop in arterial pressure, while subordination stress caused severe and sustained hypotension with concurrent tachycardia. Transgenic expression of dystrophin or utrophin in skeletal muscle protected mdx mice from scruffing and social stress-induced responses including mortality. Interpretation We have identified a robust new stress phenotype in the otherwise mildly affected mdx mouse that suggests relatively benign handling may impact the outcome of behavioural experiments, but which should also expedite the knowledge-based therapy development for DMD. Funding Greg Marzolf Jr. Foundation, Summer's Wish Fund, NIAMS, Muscular Dystrophy Association, University of Minnesota and John and Cheri Gunvalson Trust.
Collapse
Affiliation(s)
- Maria Razzoli
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Angus Lindsay
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Michelle L Law
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Christopher M Chamberlain
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, MN, United States
| | - William M Southern
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Madeleine Berg
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - John Osborn
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - William C Engeland
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Joseph M Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - James M Ervasti
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, MN, United States.
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States.
| |
Collapse
|
21
|
Wilson C, Li S, Hannan AJ, Renoir T. Antidepressant-like effects of ketamine in a mouse model of serotonergic dysfunction. Neuropharmacology 2020; 168:107998. [PMID: 32061666 DOI: 10.1016/j.neuropharm.2020.107998] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 02/05/2020] [Accepted: 02/09/2020] [Indexed: 12/28/2022]
Abstract
Traditional monoaminergic treatments of depression frequently exhibit suboptimal tolerability and effectiveness. The 'short' (s) allele variant of 5-HTTLPR is known to compromise transcriptional efficacy of the serotonin transporter (5-HTT) and can reduce treatment response to traditional antidepressants (e.g. selective serotonin reuptake inhibitors or SSRIs). This study sought to establish the 5-HTT knock-out (KO) line as a mouse model of SSRI-resistant depression and assess its response to a novel glutamatergic antidepressant, ketamine, a non-competitive N-methyl-d-aspartate receptor (NMDAR) antagonist. Following acute antidepressant treatment, 5-HTT KO mice and wild-type (WT) controls were subjected to the forced-swim test (FST), one of the most widely used techniques to detect acute antidepressant response. As hypothesised, when assessed 30 min after administration in the FST, the SSRI sertraline (20 mg/kg, i.p.) produced antidepressant-like effects in WT control but not in 5-HTT KO mice. In contrast, ketamine (20 mg/kg, i.p.) induced antidepressant-like effects in both genotypes. 5-HTT KO mice also exhibited a reduced locomotor response to both MK-801 (another NMDAR antagonist) and ketamine, and reduced GluN2A protein levels in the hippocampus, suggesting glutamatergic dysfunction in this model. These results highlight the utility of 5-HTT KO mice as a relevant model of SSRI-resistant depression and demonstrate that ketamine can produce acute antidepressant-like effects in conditions of 5-HTT deficiency. These findings extend existing literature that indicates ketamine is effective in ameliorating symptoms of treatment-resistant depression and may have implications for understanding the cellular and molecular mechanisms underlying the antidepressant effects of ketamine. This article is part of the special issue entitled 'Serotonin Research: Crossing Scales and Boundaries'.
Collapse
Affiliation(s)
- Carey Wilson
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia; Melbourne School of Psychological Science, University of Melbourne, Parkville, Australia
| | - Shanshan Li
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia; Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Australia
| | - Thibault Renoir
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia; Facssulty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia.
| |
Collapse
|
22
|
Ajmone-Cat MA, Spinello C, Valenti D, Franchi F, Macrì S, Vacca RA, Laviola G. Brain-Immune Alterations and Mitochondrial Dysfunctions in a Mouse Model of Paediatric Autoimmune Disorder Associated with Streptococcus: Exacerbation by Chronic Psychosocial Stress. J Clin Med 2019; 8:jcm8101514. [PMID: 31547098 PMCID: PMC6833026 DOI: 10.3390/jcm8101514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/18/2022] Open
Abstract
Adverse psychosocial experiences have been shown to modulate individual responses to immune challenges and affect mitochondrial functions. The aim of this study was to investigate inflammation and immune responses as well as mitochondrial bioenergetics in an experimental model of Paediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcus (PANDAS). Starting in adolescence (postnatal day 28), male SJL/J mice were exposed to five injections (interspaced by two weeks) with Group-A beta-haemolytic streptococcus (GAS) homogenate. Mice were exposed to chronic psychosocial stress, in the form of protracted visual exposure to an aggressive conspecific, for four weeks. Our results indicate that psychosocial stress exacerbated individual response to GAS administrations whereby mice exposed to both treatments exhibited altered cytokine and immune-related enzyme expression in the hippocampus and hypothalamus. Additionally, they showed impaired mitochondrial respiratory chain complexes IV and V, and reduced adenosine triphosphate (ATP) production by mitochondria and ATP content. These brain abnormalities, observed in GAS-Stress mice, were associated with blunted titers of plasma corticosterone. Present data support the hypothesis that challenging environmental conditions, in terms of chronic psychosocial stress, may exacerbate the long-term consequences of exposure to GAS processes through the promotion of central immunomodulatory and oxidative stress.
Collapse
Affiliation(s)
- Maria Antonietta Ajmone-Cat
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena, 299, I-00161 Rome, Italy.
| | - Chiara Spinello
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, I-00161 Rome, Italy.
- Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA.
| | - Daniela Valenti
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, Via Giovanni Amendola 122/O - 70126 Bari, Italy.
| | - Francesca Franchi
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, I-00161 Rome, Italy.
| | - Simone Macrì
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, I-00161 Rome, Italy.
| | - Rosa Anna Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, Via Giovanni Amendola 122/O - 70126 Bari, Italy.
| | - Giovanni Laviola
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, I-00161 Rome, Italy.
| |
Collapse
|
23
|
Maternal separation induces anhedonia in female heterozygous serotonin transporter knockout rats. Behav Brain Res 2019; 356:204-207. [DOI: 10.1016/j.bbr.2018.08.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 01/28/2023]
|
24
|
Tanaka M, Sato A, Kasai S, Hagino Y, Kotajima-Murakami H, Kashii H, Takamatsu Y, Nishito Y, Inagaki M, Mizuguchi M, Hall FS, Uhl GR, Murphy D, Sora I, Ikeda K. Brain hyperserotonemia causes autism-relevant social deficits in mice. Mol Autism 2018; 9:60. [PMID: 30498565 PMCID: PMC6258166 DOI: 10.1186/s13229-018-0243-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/08/2018] [Indexed: 12/19/2022] Open
Abstract
Background Hyperserotonemia in the brain is suspected to be an endophenotype of autism spectrum disorder (ASD). Reducing serotonin levels in the brain through modulation of serotonin transporter function may improve ASD symptoms. Methods We analyzed behavior and gene expression to unveil the causal mechanism of ASD-relevant social deficits using serotonin transporter (Sert) knockout mice. Results Social deficits were observed in both heterozygous knockout mice (HZ) and homozygous knockout mice (KO), but increases in general anxiety were only observed in KO mice. Two weeks of dietary restriction of the serotonin precursor tryptophan ameliorated both brain hyperserotonemia and ASD-relevant social deficits in Sert HZ and KO mice. The expression of rather distinct sets of genes was altered in Sert HZ and KO mice, and a substantial portion of these genes was also affected by tryptophan depletion. Tryptophan depletion in Sert HZ and KO mice was associated with alterations in the expression of genes involved in signal transduction pathways initiated by changes in extracellular serotonin or melatonin, a derivative of serotonin. Only expression of the AU015836 gene was altered in both Sert HZ and KO mice. AU015836 expression and ASD-relevant social deficits normalized after dietary tryptophan restriction. Conclusions These findings reveal a Sert gene dose-dependent effect on brain hyperserotonemia and related behavioral sequelae in ASD and a possible therapeutic target to normalize brain hyperserotonemia and ASD-relevant social deficits. Electronic supplementary material The online version of this article (10.1186/s13229-018-0243-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Miho Tanaka
- 1Department of Psychiatry and Behavioral Sciences, Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506 Japan.,2Molecular and Cellular Medicine, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,3Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Atsushi Sato
- 1Department of Psychiatry and Behavioral Sciences, Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506 Japan.,4Department of Pediatrics, The University of Tokyo Hospital, Tokyo, Japan
| | - Shinya Kasai
- 1Department of Psychiatry and Behavioral Sciences, Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506 Japan
| | - Yoko Hagino
- 1Department of Psychiatry and Behavioral Sciences, Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506 Japan
| | - Hiroko Kotajima-Murakami
- 1Department of Psychiatry and Behavioral Sciences, Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506 Japan
| | - Hirofumi Kashii
- 1Department of Psychiatry and Behavioral Sciences, Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506 Japan
| | - Yukio Takamatsu
- 1Department of Psychiatry and Behavioral Sciences, Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506 Japan
| | - Yasumasa Nishito
- 5Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Masumi Inagaki
- 3Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Masashi Mizuguchi
- 6Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - F Scott Hall
- 7Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH USA
| | - George R Uhl
- 8Branch of Molecular Neurobiology, National Institute on Drug Abuse, Baltimore, MD USA.,9Research Service, New Mexico VA Health Care System, Albuquerque, NM USA
| | - Dennis Murphy
- 10Laboratory of Clinical Science, National Institutes of Health, Bethesda, MD USA
| | - Ichiro Sora
- 11Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazutaka Ikeda
- 1Department of Psychiatry and Behavioral Sciences, Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506 Japan.,2Molecular and Cellular Medicine, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
25
|
Modulation of glucocorticoids by the serotonin transporter polymorphism: A narrative review. Neurosci Biobehav Rev 2018; 92:338-349. [DOI: 10.1016/j.neubiorev.2018.06.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 12/16/2022]
|
26
|
Giudetti AM, Testini M, Vergara D, Priore P, Damiano F, Gallelli CA, Romano A, Villani R, Cassano T, Siculella L, Gnoni GV, Moles A, Coccurello R, Gaetani S. Chronic psychosocial defeat differently affects lipid metabolism in liver and white adipose tissue and induces hepatic oxidative stress in mice fed a high‐fat diet. FASEB J 2018; 33:1428-1439. [DOI: 10.1096/fj.201801130r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Anna M. Giudetti
- Department of Biological and Environmental Sciences and TechnologiesUniversity of Salento Lecce Italy
| | - Mariangela Testini
- Department of Biological and Environmental Sciences and TechnologiesUniversity of Salento Lecce Italy
| | - Daniele Vergara
- Department of Biological and Environmental Sciences and TechnologiesUniversity of Salento Lecce Italy
| | - Paola Priore
- Department of Biological and Environmental Sciences and TechnologiesUniversity of Salento Lecce Italy
| | - Fabrizio Damiano
- Department of Biological and Environmental Sciences and TechnologiesUniversity of Salento Lecce Italy
| | - Cristina Anna Gallelli
- Department of Physiology and Pharmacology V. ErspamerSapienza University of Rome Rome Italy
| | - Adele Romano
- Department of Physiology and Pharmacology V. ErspamerSapienza University of Rome Rome Italy
| | - Rosanna Villani
- Department of Medical and Occupational SciencesUniversity of Foggia Foggia Italy
| | - Tommaso Cassano
- Department of Clinical and Experimental MedicineUniversity of Foggia Foggia Italy
| | - Luisa Siculella
- Department of Biological and Environmental Sciences and TechnologiesUniversity of Salento Lecce Italy
| | - Gabriele V. Gnoni
- Department of Biological and Environmental Sciences and TechnologiesUniversity of Salento Lecce Italy
| | - Anna Moles
- Institute of Cell Biology and Neurobiology (IBCN)National Research Council (CNR) Rome Italy
- Genomia srl Bresso Italy
| | - Roberto Coccurello
- Institute of Cell Biology and Neurobiology (IBCN)National Research Council (CNR) Rome Italy
- Fondazione Santa Lucia-Istituto di Ricovero e Cura a Carattere Scientifico (FSL-IRCCS) Rome Italy
| | - Silvana Gaetani
- Department of Physiology and Pharmacology V. ErspamerSapienza University of Rome Rome Italy
| |
Collapse
|
27
|
Razzoli M, Nyuyki-Dufe K, Gurney A, Erickson C, McCallum J, Spielman N, Marzullo M, Patricelli J, Kurata M, Pope EA, Touma C, Palme R, Largaespada DA, Allison DB, Bartolomucci A. Social stress shortens lifespan in mice. Aging Cell 2018; 17:e12778. [PMID: 29806171 PMCID: PMC6052478 DOI: 10.1111/acel.12778] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2018] [Indexed: 12/29/2022] Open
Abstract
Stress and low socioeconomic status in humans confer increased vulnerability to morbidity and mortality. However, this association is not mechanistically understood nor has its causation been explored in animal models thus far. Recently, cellular senescence has been suggested as a potential mechanism linking lifelong stress to age‐related diseases and shorter life expectancy in humans. Here, we established a causal role for lifelong social stress on shortening lifespan and increasing the risk of cardiovascular disease in mice. Specifically, we developed a lifelong chronic psychosocial stress model in which male mouse aggressive behavior is used to study the impact of negative social confrontations on healthspan and lifespan. C57BL/6J mice identified through unbiased cluster analysis for receiving high while exhibiting low aggression, or identified as subordinate based on an ethologic criterion, had lower median and maximal lifespan, and developed earlier onset of several organ pathologies in the presence of a cellular senescence signature. Critically, subordinate mice developed spontaneous early‐stage atherosclerotic lesions of the aortic sinuses characterized by significant immune cells infiltration and sporadic rupture and calcification, none of which was found in dominant subjects. In conclusion, we present here the first rodent model to study and mechanistically dissect the impact of chronic stress on lifespan and disease of aging. These data highlight a conserved role for social stress and low social status on shortening lifespan and increasing the risk of cardiovascular disease in mammals and identify a potential mechanistic link for this complex phenomenon.
Collapse
Affiliation(s)
- Maria Razzoli
- Department of Integrative Biology and Physiology; University of Minnesota; Minneapolis Minnesota
| | - Kewir Nyuyki-Dufe
- Department of Integrative Biology and Physiology; University of Minnesota; Minneapolis Minnesota
| | - Allison Gurney
- Department of Integrative Biology and Physiology; University of Minnesota; Minneapolis Minnesota
| | - Connor Erickson
- Department of Integrative Biology and Physiology; University of Minnesota; Minneapolis Minnesota
| | - Jacob McCallum
- Department of Integrative Biology and Physiology; University of Minnesota; Minneapolis Minnesota
| | - Nicholas Spielman
- Department of Integrative Biology and Physiology; University of Minnesota; Minneapolis Minnesota
| | - Marta Marzullo
- Department of Integrative Biology and Physiology; University of Minnesota; Minneapolis Minnesota
| | - Jessica Patricelli
- Department of Integrative Biology and Physiology; University of Minnesota; Minneapolis Minnesota
| | - Morito Kurata
- Department of Pediatric and Masonic Cancer Center; University of Minnesota; Minneapolis Minnesota
| | - Emily A. Pope
- Department of Pediatric and Masonic Cancer Center; University of Minnesota; Minneapolis Minnesota
| | - Chadi Touma
- Department of Behavioural Biology; University of Osnabrück; Osnabrück Germany
| | - Rupert Palme
- Department of Biomedical Sciences; University of Veterinary Medicine; Vienna Austria
| | - David A. Largaespada
- Department of Pediatric and Masonic Cancer Center; University of Minnesota; Minneapolis Minnesota
| | - David B. Allison
- School of Public Health; Indiana University - Bloomington; Bloomington Indiana
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology; University of Minnesota; Minneapolis Minnesota
| |
Collapse
|
28
|
Sukoff Rizzo SJ, Crawley JN. Behavioral Phenotyping Assays for Genetic Mouse Models of Neurodevelopmental, Neurodegenerative, and Psychiatric Disorders. Annu Rev Anim Biosci 2017; 5:371-389. [PMID: 28199172 DOI: 10.1146/annurev-animal-022516-022754] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Animal models offer heuristic research tools to understand the causes of human diseases and to identify potential treatments. With rapidly evolving genetic engineering technologies, mutations identified in a human disorder can be generated in the mouse genome. Phenotypic outcomes of the mutation are then explicated to confirm hypotheses about causes and to discover effective therapeutics. Most neurodevelopmental, neurodegenerative, and psychiatric disorders are diagnosed primarily by their prominent behavioral symptoms. Mouse behavioral assays analogous to the human symptoms have been developed to analyze the consequences of mutations and to evaluate proposed therapeutics preclinically. Here we describe the range of mouse behavioral tests available in the established behavioral neuroscience literature, along with examples of their translational applications. Concepts presented have been successfully used in other species, including flies, worms, fish, rats, pigs, and nonhuman primates. Identical strategies can be employed to test hypotheses about environmental causes and gene × environment interactions.
Collapse
Affiliation(s)
| | - Jacqueline N Crawley
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California, Davis School of Medicine, Sacramento, California 95817;
| |
Collapse
|
29
|
Dirven BCJ, Homberg JR, Kozicz T, Henckens MJAG. Epigenetic programming of the neuroendocrine stress response by adult life stress. J Mol Endocrinol 2017; 59:R11-R31. [PMID: 28400482 DOI: 10.1530/jme-17-0019] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/17/2017] [Indexed: 12/11/2022]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis is critically involved in the neuroendocrine regulation of stress adaptation, and the restoration of homeostasis following stress exposure. Dysregulation of this axis is associated with stress-related pathologies like major depressive disorder, post-traumatic stress disorder, panic disorder and chronic anxiety. It has long been understood that stress during early life can have a significant lasting influence on the development of the neuroendocrine system and its neural regulators, partially by modifying epigenetic regulation of gene expression, with implications for health and well-being in later life. Evidence is accumulating that epigenetic plasticity also extends to adulthood, proposing it as a mechanism by which psychological trauma later in life can long-lastingly affect HPA axis function, brain plasticity, neuronal function and behavioural adaptation to neuropsychological stress. Further corroborating this claim is the phenomenon that these epigenetic changes correlate with the behavioural consequences of trauma exposure. Thereby, epigenetic modifications provide a putative molecular mechanism by which the behavioural phenotype and transcriptional/translational potential of genes involved in HPA axis regulation can change drastically in response to environmental challenges, and appear an important target for treatment of stress-related disorders. However, improved insight is required to increase their therapeutic (drug) potential. Here, we provide an overview of the growing body of literature describing the epigenetic modulation of the (primarily neuroendocrine) stress response as a consequence of adult life stress and interpret the implications for, and the challenges involved in applying this knowledge to, the identification and treatment of stress-related psychiatric disorders.
Collapse
MESH Headings
- Animals
- Anxiety/genetics
- Anxiety/metabolism
- Anxiety/physiopathology
- Brain/metabolism
- Brain/physiopathology
- DNA Methylation
- Depressive Disorder, Major/genetics
- Depressive Disorder, Major/metabolism
- Depressive Disorder, Major/physiopathology
- Epigenesis, Genetic
- Histones/genetics
- Histones/metabolism
- Homeostasis
- Humans
- Hypothalamo-Hypophyseal System/metabolism
- Hypothalamo-Hypophyseal System/physiopathology
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Neurons/metabolism
- Neurons/pathology
- Neurotransmitter Agents/metabolism
- Pituitary-Adrenal System/metabolism
- Pituitary-Adrenal System/physiopathology
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Receptors, Mineralocorticoid/genetics
- Receptors, Mineralocorticoid/metabolism
- Stress, Psychological/genetics
- Stress, Psychological/metabolism
- Stress, Psychological/physiopathology
Collapse
Affiliation(s)
- B C J Dirven
- Department of AnatomyDonders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
- Department of Cognitive NeuroscienceDonders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - J R Homberg
- Department of Cognitive NeuroscienceDonders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - T Kozicz
- Department of AnatomyDonders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - M J A G Henckens
- Department of Cognitive NeuroscienceDonders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
30
|
Razzoli M, Pearson C, Crow S, Bartolomucci A. Stress, overeating, and obesity: Insights from human studies and preclinical models. Neurosci Biobehav Rev 2017; 76:154-162. [PMID: 28292531 PMCID: PMC5403578 DOI: 10.1016/j.neubiorev.2017.01.026] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 01/06/2017] [Accepted: 01/21/2017] [Indexed: 12/22/2022]
Abstract
Eating disorders and obesity have become predominant in human society. Their association to modern lifestyle, encompassing calorie-rich diets, psychological stress, and comorbidity with major diseases are well documented. Unfortunately the biological basis remains elusive and the pharmacological treatment inadequate, in part due to the limited availability of valid animal models. Human research on binge eating disorder (BED) proves a strong link between stress exposure and bingeing: state-levels of stress and negative affect are linked to binge eating in individuals with BED both in laboratory settings and the natural environment. Similarly, classical animal models of BED reveal an association between acute exposure to stressors and binging but they are often associated with unchanged or decreased body weight, thus reflecting a negative energy balance, which is uncommon in humans where most commonly BED is associated with excessive or unstable body weight gain. Recent mouse models of subordination stress induce spontaneous binging and hyperphagia, altogether more closely mimicking the behavioral and metabolic features of human BED. Therefore the translational relevance of subordination stress models could facilitate the identification of the neurobiological basis of BED and obesity-associated disease and inform on the development of innovative therapies.
Collapse
Affiliation(s)
- Maria Razzoli
- Department of Integrative Biology and Physiology, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, USA
| | - Carolyn Pearson
- Department of Psychiatry, University of Minnesota, 2450 Riverside Avenue, Minneapolis, MN 55454, USA
| | - Scott Crow
- Department of Psychiatry, University of Minnesota, 2450 Riverside Avenue, Minneapolis, MN 55454, USA; The Emily Program, 2265 Como Avenue, St. Paul, MN 55108, USA
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
31
|
Houwing DJ, Buwalda B, van der Zee EA, de Boer SF, Olivier JDA. The Serotonin Transporter and Early Life Stress: Translational Perspectives. Front Cell Neurosci 2017; 11:117. [PMID: 28491024 PMCID: PMC5405142 DOI: 10.3389/fncel.2017.00117] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 04/07/2017] [Indexed: 01/04/2023] Open
Abstract
The interaction between the serotonin transporter (SERT) linked polymorphic region (5-HTTLPR) and adverse early life stressing (ELS) events is associated with enhanced stress susceptibility and risk to develop mental disorders like major depression, anxiety, and aggressiveness. In particular, human short allele carriers are at increased risk. This 5-HTTLPR polymorphism is absent in the rodent SERT gene, but heterozygous SERT knockout rodents (SERT+/−) show several similarities to the human S-allele carrier, therefore creating an animal model of the human situation. Many rodent studies investigated ELS interactions in SERT knockout rodents combined with ELS. However, underlying neuromolecular mechanisms of the (mal)adaptive responses to adversity displayed by SERT rodents remain to be elucidated. Here, we provide a comprehensive review including studies describing mechanisms underlying SERT variation × ELS interactions in rodents. Alterations at the level of translation and transcription but also epigenetic alterations considerably contribute to underlying mechanisms of SERT variation × ELS interactions. In particular, SERT+/− rodents exposed to adverse early rearing environment may be of high translational and predictive value to the more stress sensitive human short-allele carrier, considering the similarity in neurochemical alterations. Therefore, SERT+/− rodents are highly relevant in research that aims to unravel the complex psychopathology of mental disorders. So far, most studies fail to show solid evidence for increased vulnerability to develop affective-like behavior after ELS in SERT+/− rodents. Several reasons may underlie these failures, e.g., (1) stressors used might not be optimal or severe enough to induce maladaptations, (2) effects in females are not sufficiently studied, and (3) few studies include both behavioral manifestations and molecular correlates of ELS-induced effects in SERT+/− rodents. Of course, one should not exclude the (although unlikely) possibility of SERT+/− rodents not being sensitive to ELS. In conclusion, future studies addressing ELS-induced effects in the SERT+/− rodents should extensively study both long-term behavioral and (epi)genetic aspects in both sexes. Finally, further research is warranted using more severe stressors in animal models. From there on, we should be able to draw solid conclusions whether the SERT+/− exposed to ELS is a suitable translational animal model for studying 5-HTTLPR polymorphism and stress interactions.
Collapse
Affiliation(s)
- Danielle J Houwing
- Unit Behavioral Neuroscience, Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of GroningenGroningen, Netherlands
| | - Bauke Buwalda
- Unit Behavioral Neuroscience, Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of GroningenGroningen, Netherlands
| | - Eddy A van der Zee
- Unit Molecular Neurobiology, Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of GroningenGroningen, Netherlands
| | - Sietse F de Boer
- Unit Behavioral Neuroscience, Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of GroningenGroningen, Netherlands
| | - Jocelien D A Olivier
- Unit Behavioral Neuroscience, Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of GroningenGroningen, Netherlands
| |
Collapse
|
32
|
Tetratricopeptide repeat domain 9A modulates anxiety-like behavior in female mice. Sci Rep 2016; 6:37568. [PMID: 27869229 PMCID: PMC5116628 DOI: 10.1038/srep37568] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/31/2016] [Indexed: 12/17/2022] Open
Abstract
Tetratricopeptide repeat domain 9A (TTC9A) expression is abundantly expressed in the brain. Previous studies in TTC9A knockout (TTC9A-/-) mice have indicated that TTC9A negatively regulates the action of estrogen. In this study we investigated the role of TTC9A on anxiety-like behavior through its functional interaction with estrogen using the TTC9A-/- mice model. A battery of tests on anxiety-related behaviors was conducted. Our results demonstrated that TTC9A-/- mice exhibited an increase in anxiety-like behaviors compared to the wild type TTC9A+/+ mice. This difference was abolished after ovariectomy, and administration of 17-β-estradiol benzoate (EB) restored this escalated anxiety-like behavior in TTC9A-/- mice. Since serotonin is well-known to be the key neuromodulator involved in anxiety behaviors, the mRNA levels of tryptophan hydroxylase (TPH) 1, TPH2 (both are involved in serotonin synthesis), and serotonin transporter (5-HTT) were measured in the ventromedial prefrontal cortex (vmPFC) and dorsal raphe nucleus (DRN). Interestingly, the heightened anxiety in TTC9A-/- mice under EB influence is consistent with a greater induction of TPH 2, and 5-HTT by EB in DRN that play key roles in emotion regulation. In conclusion, our data indicate that TTC9A modulates the anxiety-related behaviors through modulation of estrogen action on the serotonergic system in the DRN.
Collapse
|
33
|
Sensory processing sensitivity and serotonin gene variance: Insights into mechanisms shaping environmental sensitivity. Neurosci Biobehav Rev 2016; 71:472-483. [PMID: 27697602 DOI: 10.1016/j.neubiorev.2016.09.029] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 09/26/2016] [Accepted: 09/28/2016] [Indexed: 11/23/2022]
Abstract
Current research supports the notion that the apparently innate trait Sensory Processing Sensitivity (SPS) may act as a modulator of development as function of the environment. Interestingly, the common serotonin transporter linked polymorphic region (5-HTTLPR) does the same. While neural mechanisms underlying SPS are largely unknown, those associated with the 5-HTTLPR have been extensively investigated. We perform a comparative analysis of research findings on sensory processing facets associated with the trait and polymorphism to: 1. detect shared phenotypes and frame a hypothesis towards neural mechanisms underlying SPS; 2. increase the understanding of 5-HTTLPR-associated behavioral patterns. Trait and polymorphism are both associated with differential susceptibility to environmental stimuli; additionally, both involve 1. having stronger emotional reactions, 2. processing of sensory information more deeply, 3. being more aware of environmental subtleties, and 4. being easily overstimulated. We discuss neural mechanisms and environmental conditions that may underlie these four facets. Besides urging the actual assessment of the link between the two, the conclusions of our analyses may guide and focus future research strategies.
Collapse
|
34
|
Tielbeek JJ, Karlsson Linnér R, Beers K, Posthuma D, Popma A, Polderman TJC. Meta-analysis of the serotonin transporter promoter variant (5-HTTLPR) in relation to adverse environment and antisocial behavior. Am J Med Genet B Neuropsychiatr Genet 2016; 171:748-60. [PMID: 26990155 DOI: 10.1002/ajmg.b.32442] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 02/18/2016] [Indexed: 01/26/2023]
Abstract
Several studies have suggested an association between antisocial, aggressive, and delinquent behavior and the short variant of the serotonin transporter gene polymorphism (5-HTTLPR). Yet, genome wide and candidate gene studies in humans have not convincingly shown an association between these behaviors and 5-HTTLPR. Moreover, individual studies examining the effect of 5-HTTLPR in the presence or absence of adverse environmental factors revealed inconsistent results. We therefore performed a meta-analysis to test for the robustness of the potential interaction effect of the "long-short" variant of the 5-HTTLPR genotype and environmental adversities, on antisocial behavior. Eight studies, comprising of 12 reasonably independent samples, totaling 7,680 subjects with an effective sample size of 6,724, were included in the meta-analysis. Although our extensive meta-analysis resulted in a significant interaction effect between the 5-HTTLPR genotype and environmental adversities on antisocial behavior, the methodological constraints of the included studies hampered a confident interpretation of our results, and firm conclusions regarding the direction of effect. Future studies that aim to examine biosocial mechanisms that influence the etiology of antisocial behavior should make use of larger samples, extend to genome-wide genetic risk scores and properly control for covariate interaction terms, ensuring valid and well-powered research designs. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jorim J Tielbeek
- Department of Child and Adolescent Psychiatry, VU University Medical Center Amsterdam, Duivendrecht, The Netherlands.,Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam (NCA), VU University Amsterdam, Amsterdam, The Netherlands
| | - Richard Karlsson Linnér
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam (NCA), VU University Amsterdam, Amsterdam, The Netherlands
| | - Koko Beers
- Department of Child and Adolescent Psychiatry, VU University Medical Center Amsterdam, Duivendrecht, The Netherlands.,Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam (NCA), VU University Amsterdam, Amsterdam, The Netherlands
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam (NCA), VU University Amsterdam, Amsterdam, The Netherlands.,Section Complex Trait Genetics, Department of Clinical Genetics, Neuroscience Campus Amsterdam (NCA), VU University Medical Centre Amsterdam, Amsterdam, The Netherlands
| | - Arne Popma
- Department of Child and Adolescent Psychiatry, VU University Medical Center Amsterdam, Duivendrecht, The Netherlands.,Faculty of Law, Institute of Criminal Law and Criminology, Leiden University, Leiden, The Netherlands
| | - Tinca J C Polderman
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam (NCA), VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
35
|
Petito A, Altamura M, Iuso S, Padalino FA, Sessa F, D'Andrea G, Margaglione M, Bellomo A. The Relationship between Personality Traits, the 5HTT Polymorphisms, and the Occurrence of Anxiety and Depressive Symptoms in Elite Athletes. PLoS One 2016; 11:e0156601. [PMID: 27257942 PMCID: PMC4892635 DOI: 10.1371/journal.pone.0156601] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 05/17/2016] [Indexed: 11/18/2022] Open
Abstract
The purpose of this study was to determine the relationship between personality, the serotonin transporter (5HTT) polymorphisms and the occurrence of anxiety and depressive symptoms in elite athletes. 133 healthy participants completed the NEO Five-Factor Inventory (NEO-FFI). The mood states were assessed using the Profile of Mood States (POMS) questionnaire. The athlete's mental skills were assessed through the Sport Performance Psychological Inventory (IPPS-48). The occurrence of psychiatric and personality disorders was assessed using the Clinical Interview for DSM-IV Disorders. A polymerase chain reaction was employed to identify genotypes at the 5HTTLPR polymorphism. The 5HTTLPR s/s genotype was associated with both neuroticism (p< 0.001) and tension/anxiety symptoms according to the POMS (p<0.02), cognitive anxiety and emotional arousal control according to the IPPS-48 (p<0.01). Significant correlations were proved between neuroticism and symptoms of anxiety and depression (p<0.05). Neuroticism mediates the association between the 5HTTLPR polymorphism and symptoms of cognitive anxiety and emotional arousal control (p<0.05). These results suggest a significant interaction between the 5HTTLPR polymorphism, neuroticism and sport related stress that predict adverse mental health outcomes in athletes. Identification of homogeneous groups of athletes having predispositions to anxiety and depressive symptoms may help to implement early prevention programs.
Collapse
Affiliation(s)
- Annamaria Petito
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Foggia, Foggia, Italy
| | - Mario Altamura
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Foggia, Foggia, Italy
| | - Salvatore Iuso
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Foggia, Foggia, Italy
| | - Flavia A. Padalino
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Foggia, Foggia, Italy
| | - Francesco Sessa
- Department of Clinical and Experimental Medicine, Medical Genetics, University of Foggia, Foggia, Italy
| | - Giovanna D'Andrea
- Department of Clinical and Experimental Medicine, Medical Genetics, University of Foggia, Foggia, Italy
| | - Maurizio Margaglione
- Department of Clinical and Experimental Medicine, Medical Genetics, University of Foggia, Foggia, Italy
| | - Antonello Bellomo
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Foggia, Foggia, Italy
| |
Collapse
|
36
|
Razzoli M, Frontini A, Gurney A, Mondini E, Cubuk C, Katz LS, Cero C, Bolan PJ, Dopazo J, Vidal-Puig A, Cinti S, Bartolomucci A. Stress-induced activation of brown adipose tissue prevents obesity in conditions of low adaptive thermogenesis. Mol Metab 2016; 5:19-33. [PMID: 26844204 PMCID: PMC4703853 DOI: 10.1016/j.molmet.2015.10.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 10/09/2015] [Accepted: 10/13/2015] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Stress-associated conditions such as psychoemotional reactivity and depression have been paradoxically linked to either weight gain or weight loss. This bi-directional effect of stress is not understood at the functional level. Here we tested the hypothesis that pre-stress level of adaptive thermogenesis and brown adipose tissue (BAT) functions explain the vulnerability or resilience to stress-induced obesity. METHODS We used wt and triple β1,β2,β3-Adrenergic Receptors knockout (β-less) mice exposed to a model of chronic subordination stress (CSS) at either room temperature (22 °C) or murine thermoneutrality (30 °C). A combined behavioral, physiological, molecular, and immunohistochemical analysis was conducted to determine stress-induced modulation of energy balance and BAT structure and function. Immortalized brown adipocytes were used for in vitro assays. RESULTS Departing from our initial observation that βARs are dispensable for cold-induced BAT browning, we demonstrated that under physiological conditions promoting low adaptive thermogenesis and BAT activity (e.g. thermoneutrality or genetic deletion of the βARs), exposure to CSS acted as a stimulus for BAT activation and thermogenesis, resulting in resistance to diet-induced obesity despite the presence of hyperphagia. Conversely, in wt mice acclimatized to room temperature, and therefore characterized by sustained BAT function, exposure to CSS increased vulnerability to obesity. Exposure to CSS enhanced the sympathetic innervation of BAT in wt acclimatized to thermoneutrality and in β-less mice. Despite increased sympathetic innervation suggesting adrenergic-mediated browning, norepinephrine did not promote browning in βARs knockout brown adipocytes, which led us to identify an alternative sympathetic/brown adipocytes purinergic pathway in the BAT. This pathway is downregulated under conditions of low adaptive thermogenesis requirements, is induced by stress, and elicits activation of UCP1 in wt and β-less brown adipocytes. Importantly, this purinergic pathway is conserved in human BAT. CONCLUSION Our findings demonstrate that thermogenesis and BAT function are determinant of the resilience or vulnerability to stress-induced obesity. Our data support a model in which adrenergic and purinergic pathways exert complementary/synergistic functions in BAT, thus suggesting an alternative to βARs agonists for the activation of human BAT.
Collapse
Affiliation(s)
- Maria Razzoli
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Andrea Frontini
- Department of Experimental and Clinical Medicine, Center for Obesity, Università Politecnica delle Marche, Ancona 60020, Italy
| | - Allison Gurney
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Eleonora Mondini
- Department of Experimental and Clinical Medicine, Center for Obesity, Università Politecnica delle Marche, Ancona 60020, Italy
| | - Cankut Cubuk
- Computational Genomics Department, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yufera 3, 46012 Valencia, Spain
| | - Liora S. Katz
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cheryl Cero
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Patrick J. Bolan
- Department of Radiology and Center for Magnetic Resonance Research, University of Minnesota, MN 55455, USA
| | - Joaquin Dopazo
- Computational Genomics Department, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yufera 3, 46012 Valencia, Spain
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories, Cambridge CB2 OQQ, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Saverio Cinti
- Department of Experimental and Clinical Medicine, Center for Obesity, Università Politecnica delle Marche, Ancona 60020, Italy
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
37
|
Challis C, Berton O. Top-Down Control of Serotonin Systems by the Prefrontal Cortex: A Path toward Restored Socioemotional Function in Depression. ACS Chem Neurosci 2015; 6:1040-54. [PMID: 25706226 DOI: 10.1021/acschemneuro.5b00007] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Social withdrawal, increased threat perception, and exaggerated reassurance seeking behaviors are prominent interpersonal symptoms in major depressive disorder (MDD). Altered serotonin (5-HT) systems and corticolimbic dysconnectivity have long been suspected to contribute to these symptomatic facets; however, the underlying circuits and intrinsic cellular mechanisms that control 5-HT output during socioemotional interactions remain poorly understood. We review literature that implicates a direct pathway between the ventromedial prefrontal cortex (vmPFC) and dorsal raphe nucleus (DRN) in the adaptive and pathological control of social approach-avoidance behaviors. Imaging and neuromodulation during approach-avoidance tasks in humans point to the cortical control of brainstem circuits as an essential regulator of socioemotional decisions and actions. Parallel rodent studies using viral-based connectomics and optogenetics are beginning to provide a cellular blueprint of the underlying circuitry. In these studies, manipulations of vmPFC synaptic inputs to the DRN have revealed bidirectional influences on socioaffective behaviors via direct monosynaptic excitation and indirect disynaptic inhibition of 5-HT neurons. Additionally, adverse social experiences that result in permanent avoidance biases, such as social defeat, drive long-lasting plasticity in this microcircuit, potentiating the indirect inhibition of 5-HT output. Conversely, neuromodulation of the vmPFC via deep brain stimulation (DBS) attenuates avoidance biases by restoring the direct excitatory drive of 5-HT neurons and strengthening a key subset of forebrain 5-HT projections. Better understanding the cellular organization of the vmPFC-DRN pathway and identifying molecular determinants of its neuroplasticity can open fundamentally novel avenues for the treatment of affective disorders.
Collapse
Affiliation(s)
- Collin Challis
- Department of Psychiatry, ‡Neuroscience Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Olivier Berton
- Department of Psychiatry, ‡Neuroscience Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
38
|
Schipper P, Lopresto D, Reintjes RJ, Joosten J, Henckens MJAG, Kozicz T, Homberg JR. Improved Stress Control in Serotonin Transporter Knockout Rats: Involvement of the Prefrontal Cortex and Dorsal Raphe Nucleus. ACS Chem Neurosci 2015; 6:1143-50. [PMID: 26132384 DOI: 10.1021/acschemneuro.5b00126] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Variations in serotonin transporter (5-HTT) expression have been associated with altered sensitivity to stress. Since controllability is known to alter the impact of a stressor through differential activation of the medial prefrontal cortex (mPFC) and dorsal raphe nucleus (DRN), and that these regions are functionally affected by genetic 5-HTT down-regulation, we hypothesized that 5-HTT expression modulates the effect of controllability on stressor impact and coping. Here, we investigated the effects of a signaled stress controllability task or a yoked uncontrollable stressor on behavioral responding and mPFC and DRN activation. 5-HTT(-/-) rats proved better capable of acquiring the active avoidance task than 5-HTT(+/+) animals. Controllability determined DRN activation in 5-HTT(+/+), but not 5-HTT(-/-), rats, whereas controllability-related activation of the mPFC was independent of genotype. These findings suggest that serotonergic activation in the DRN is involved in stress coping in a 5-HTT expression dependent manner, whereas mPFC activation seems to be implicated in control over stress independently of 5-HTT expression. We speculate that alterations in serotonergic feedback in the DRN might be a potential mechanism driving this differential stress coping.
Collapse
Affiliation(s)
- Pieter Schipper
- Donders Institute for Brain, Cognition and Behaviour,
Centre for Neuroscience, Department of Cognitive Neuroscience, and ‡Donders
Institute for Brain, Cognition and Behaviour, Centre for Neuroscience,
Department of Anatomy, Radboud University Medical Centre, Geert
Grooteplein 21, 6525 EZ Nijmegen, The Netherlands
| | - Dora Lopresto
- Donders Institute for Brain, Cognition and Behaviour,
Centre for Neuroscience, Department of Cognitive Neuroscience, and ‡Donders
Institute for Brain, Cognition and Behaviour, Centre for Neuroscience,
Department of Anatomy, Radboud University Medical Centre, Geert
Grooteplein 21, 6525 EZ Nijmegen, The Netherlands
| | - Roy J. Reintjes
- Donders Institute for Brain, Cognition and Behaviour,
Centre for Neuroscience, Department of Cognitive Neuroscience, and ‡Donders
Institute for Brain, Cognition and Behaviour, Centre for Neuroscience,
Department of Anatomy, Radboud University Medical Centre, Geert
Grooteplein 21, 6525 EZ Nijmegen, The Netherlands
| | - Joep Joosten
- Donders Institute for Brain, Cognition and Behaviour,
Centre for Neuroscience, Department of Cognitive Neuroscience, and ‡Donders
Institute for Brain, Cognition and Behaviour, Centre for Neuroscience,
Department of Anatomy, Radboud University Medical Centre, Geert
Grooteplein 21, 6525 EZ Nijmegen, The Netherlands
| | - Marloes J. A. G. Henckens
- Donders Institute for Brain, Cognition and Behaviour,
Centre for Neuroscience, Department of Cognitive Neuroscience, and ‡Donders
Institute for Brain, Cognition and Behaviour, Centre for Neuroscience,
Department of Anatomy, Radboud University Medical Centre, Geert
Grooteplein 21, 6525 EZ Nijmegen, The Netherlands
| | - Tamas Kozicz
- Donders Institute for Brain, Cognition and Behaviour,
Centre for Neuroscience, Department of Cognitive Neuroscience, and ‡Donders
Institute for Brain, Cognition and Behaviour, Centre for Neuroscience,
Department of Anatomy, Radboud University Medical Centre, Geert
Grooteplein 21, 6525 EZ Nijmegen, The Netherlands
| | - Judith R. Homberg
- Donders Institute for Brain, Cognition and Behaviour,
Centre for Neuroscience, Department of Cognitive Neuroscience, and ‡Donders
Institute for Brain, Cognition and Behaviour, Centre for Neuroscience,
Department of Anatomy, Radboud University Medical Centre, Geert
Grooteplein 21, 6525 EZ Nijmegen, The Netherlands
| |
Collapse
|
39
|
Chakraborty N, Meyerhoff J, Gautam A, Muhie S, Jibitu M, De Lima TCM, Hammamieh R, Jett M. Gene and stress history interplay in emergence of PTSD-like features. Behav Brain Res 2015; 292:266-77. [PMID: 26025510 DOI: 10.1016/j.bbr.2015.05.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 04/09/2015] [Accepted: 05/22/2015] [Indexed: 12/31/2022]
Abstract
Systematically distinguishing genetic liability from other contributing factors is critical for designing a preventive strategy for post-traumatic stress disorder (PTSD). To address this issue, we investigated a murine model exposing C57BL/6j, DBA/2j and BALB/cj mice to repeated stress via exposure to conspecific aggressors (Agg-E). Naïve mice from each strain were subjected to the proximity of aggressor (Agg) mice for 6h using a 'cage-within-a-cage' paradigm, which was repeated for 5 or 10 days with intermittent and unpredictable direct contact with Agg mice. During the Agg-E stress, DBA/2j developed a different strategy to evade Agg mice, which potentially contributed to its phenotypic resilience to Agg-E stress. Although Agg mice inflicted C57BL/6j and BALB/cj with equivalent numbers of strikes, BALB/cj displayed a distinct behavioral phenotype with delayed exhibition of a number of PTSD-like features. By contrast, C57BL/6j mice displayed unique vulnerability to Agg-E stress induced myocardopathy, possibly attributable to their particular susceptibility to hypoxia. A group of genes (Bdnf, Ngf, Zwint, Cckbr, Slc6a4, Fkbp5) linked to PTSD and synaptic plasticity were significantly altered in C57BL/6j and BALB/cj Agg-E mice. Contributions of Agg-E stress history and genotypic heterogeneity emerged as the key mediators of PTSD-like features. Linking genetic components to specific phenotypic and pathological features could have potential clinical implications.
Collapse
Affiliation(s)
- Nabarun Chakraborty
- US Army Center for Environmental Health Research, Fort Detrick, MD 21702-5010, USA
| | - James Meyerhoff
- US Army Center for Environmental Health Research, Fort Detrick, MD 21702-5010, USA
| | - Aarti Gautam
- US Army Center for Environmental Health Research, Fort Detrick, MD 21702-5010, USA
| | - Seid Muhie
- US Army Center for Environmental Health Research, Fort Detrick, MD 21702-5010, USA
| | - Meskerem Jibitu
- US Army Center for Environmental Health Research, Fort Detrick, MD 21702-5010, USA
| | - Thereza C M De Lima
- Federal University of Santa Catarina - Department of Pharmacology, Florianopolis, SC, Brazil
| | - Rasha Hammamieh
- US Army Center for Environmental Health Research, Fort Detrick, MD 21702-5010, USA.
| | - Marti Jett
- US Army Center for Environmental Health Research, Fort Detrick, MD 21702-5010, USA
| |
Collapse
|
40
|
Razzoli M, Sanghez V, Bartolomucci A. Chronic subordination stress induces hyperphagia and disrupts eating behavior in mice modeling binge-eating-like disorder. Front Nutr 2015; 1. [PMID: 25621284 PMCID: PMC4300527 DOI: 10.3389/fnut.2014.00030] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Background: Eating disorders are associated with physical morbidity and appear to have causal factors like stressful life events and negative affect. Binge-eating disorder (BED) is characterized by eating in a discrete period of time a larger than normal amount of food, a sense of lack of control over eating, and marked distress. There are still unmet needs for the identification of mechanisms regulating excessive eating, which is in part due to the lack of appropriate animal models. We developed a naturalistic murine model of subordination stress-induced hyperphagia associated with the development of obesity. Here, we tested the hypotheses that the eating responses of subordinate mice recapitulate the BED and that limiting hyperphagia could prevent stress-associated metabolic changes. Methods: Adult male mice were exposed to a model of chronic subordination stress (CSS) associated with the automated acquisition of food intake and we performed a detailed meal pattern analysis. Additionally, using a pair-feeding protocol we tested the hypothesis that the manifestation of obesity and the metabolic syndrome could be prevented by limiting hyperphagia. Results: The architecture of feeding of subordinate mice was disrupted during the stress protocol due to disproportionate amount of food ingested at higher rate and with shorter satiety ratio than control mice. Subordinate mice hyperphagia was further exacerbated in response to either hunger or to the acute application of a social defeat. Notably, the obese phenotype but not the fasting hyperglycemia of subordinate mice was abrogated by preventing hyperphagia in a pair-feeding paradigm. Conclusion: Overall, these results support the validity of our CSS to model BED allowing for the determination of the underlying molecular mechanisms and the generation of testable predictions for innovative therapies, based on the understanding of the regulation and the control of food intake.
Collapse
Affiliation(s)
- Maria Razzoli
- Department of Integrative Biology and Physiology, University of Minnesota
| | - Valentina Sanghez
- Department of Integrative Biology and Physiology, University of Minnesota. ; Department of Neuroscience, University of Parma, Parma, Italy
| | | |
Collapse
|
41
|
Ghrelin effects expression of several genes associated with depression-like behavior. Prog Neuropsychopharmacol Biol Psychiatry 2015; 56:227-34. [PMID: 25286107 DOI: 10.1016/j.pnpbp.2014.09.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/23/2014] [Accepted: 09/23/2014] [Indexed: 02/03/2023]
Abstract
Ghrelin (Ghr) is an orexigenic peptide that is being investigated for its potential role in development of anxiety-like behavior and modulation of depressive-like symptoms induced by bilateral olfactory bulbectomy (OB) in rodents. Olfactory bulbectomy is an animal model useful to study of depression and Ghr could be an alternative therapeutic tool in depression therapy. We studied the effects of intracerebroventricular (i.c.v.) Ghr administration on the expression of hypothalamic genes related to depression and mood (delta opioid receptor (DOR), mu opioid receptor (MOR) and kappa opioid receptor (KOR), lutropin-choriogonadotropic hormone receptor (LHCGR), serotonin transporter (SERT), interleukin 1 beta (IL-1b), vasopressin (AVP) and corticotrophin releasing hormone (CRH)) in OB animals, as well as changes in plasma levels of AVP, CRH and adenocorticotropic hormone (ACTH). We found that acute Ghr 0.3 nmol/μl administration increases gene expression of DOR, SERT and LHCGR in OB mice and decreased expression of IL-1b, suggesting that these genes could be involved in the antidepressant-like effects of Ghr. In addition, OB animals exhibit high AVP gene expression and elevated plasma concentrations of AVP and ACTH and acute Ghr 0.3 nmol/μl administration reduces AVP gene expression and the concentration of these hormones, suggesting that peptide-effects on depressive-like behavior could be mediated at least in part via AVP. In conclusion, this study provides new evidence about genes, receptors and hormones involved in the antidepressant mechanism/s induced by Ghr in OB animals.
Collapse
|
42
|
Beery AK, Kaufer D. Stress, social behavior, and resilience: insights from rodents. Neurobiol Stress 2015; 1:116-127. [PMID: 25562050 PMCID: PMC4281833 DOI: 10.1016/j.ynstr.2014.10.004] [Citation(s) in RCA: 239] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 10/24/2014] [Indexed: 11/20/2022] Open
Abstract
The neurobiology of stress and the neurobiology of social behavior are deeply intertwined. The social environment interacts with stress on almost every front: social interactions can be potent stressors; they can buffer the response to an external stressor; and social behavior often changes in response to stressful life experience. This review explores mechanistic and behavioral links between stress, anxiety, resilience, and social behavior in rodents, with particular attention to different social contexts. We consider variation between several different rodent species and make connections to research on humans and non-human primates.
Collapse
Affiliation(s)
- Annaliese K. Beery
- Department of Psychology, Department of Biology, Neuroscience Program, Smith College, Northampton, MA, USA
| | - Daniela Kaufer
- Department of Integrative Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| |
Collapse
|
43
|
Puglisi-Allegra S, Andolina D. Serotonin and stress coping. Behav Brain Res 2014; 277:58-67. [PMID: 25108244 DOI: 10.1016/j.bbr.2014.07.052] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 07/28/2014] [Accepted: 07/29/2014] [Indexed: 12/25/2022]
Abstract
Coping is the necessary outcome of any stressful situation and the major determinant of stress resilience. Coping strategies can be divided into two broad categories, based on the presence (active) or absence (passive) of attempts to act upon the stressor. The role of brain serotonin (5-hydroxytryptamine, 5-HT) in coping behavior that is emerging from studies in animals and humans is the subject of this article. We have focused attention on studies that consider the coping behavior exhibited when the individual is faced with a new stressful experience. Coping styles characterize different species with different evolutionary histories, from fishes to mammals, and evidence shows that serotonin transmission in the central nervous system, with differences in transporter, receptor types and hormone or neurotransmitter influences is critical in determining coping behavior. Moreover, a major role of environmental challenges throughout the lifespan affects brain systems that control coping outcomes through 5-HT transmission. In particular early experiences, for their long-term effects in adulthood, and social experiences throughout the life span, for the effects on serotonin functioning, received attention in preclinical research because of their parallelism in humans and animals. Based on growing evidence pointing to a medial prefrontal cortex-amygdala system in mediating adaptive and maladaptive stress responses, we propose a brain circuit in which serotonin neurons in the dorsal raphe depending on the CRF (corticotropin releasing factor) regulatory action engage a prefrontal cortical-amygdala pathway through 5-HT1A receptors, GABA and Glutamate to moderate coping behavior.
Collapse
Affiliation(s)
- Stefano Puglisi-Allegra
- Dipartimento di Psicologia and Centro "Daniel Bovet," Sapienza Università di Roma, via dei Marsi 78, 00185 Rome, Italy; Fondazione Santa Lucia, IRCCS, via del Fosso di Fiorano 65, 00143 Rome, Italy.
| | - Diego Andolina
- Fondazione Santa Lucia, IRCCS, via del Fosso di Fiorano 65, 00143 Rome, Italy; Dipartimento di scienze cliniche applicate e biotecnologie Università degli Studi dell'Aquila, via Vetoio, 67010 Coppito, L'Aquila, Italy
| |
Collapse
|
44
|
van der Doelen RHA, Deschamps W, D'Annibale C, Peeters D, Wevers RA, Zelena D, Homberg JR, Kozicz T. Early life adversity and serotonin transporter gene variation interact at the level of the adrenal gland to affect the adult hypothalamo-pituitary-adrenal axis. Transl Psychiatry 2014; 4:e409. [PMID: 25004389 PMCID: PMC4119224 DOI: 10.1038/tp.2014.57] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 05/06/2014] [Accepted: 05/22/2014] [Indexed: 01/17/2023] Open
Abstract
The short allelic variant of the serotonin transporter (5-HTT) promoter-linked polymorphic region (5-HTTLPR) has been associated with the etiology of major depression by interaction with early life stress (ELS). Furthermore, 5-HTTLPR has been associated with abnormal functioning of the stress-responsive hypothalamo-pituitary-adrenal (HPA) axis. Here, we examined if, and at what level, the HPA-axis is affected in an animal model for ELS × 5-HTTLPR interactions. Heterozygous and homozygous 5-HTT knockout rats and their wild-type littermates were exposed daily at postnatal days 2-14 to 3 h of maternal separation. When grown to adulthood, plasma levels of adrenocorticotropic hormone (ACTH), and the major rat glucocorticoid, corticosterone (CORT), were measured. Furthermore, the gene expression of key HPA-axis players at the level of the hypothalamus, pituitary and adrenal glands was assessed. No 5-HTT genotype × ELS interaction effects on gene expression were observed at the level of the hypothalamus or pituitary. However, we found significant 5-HTT genotype × ELS interaction effects for plasma CORT levels and adrenal mRNA levels of the ACTH receptor, such that 5-HTT deficiency was associated under control conditions with increased, but after ELS with decreased basal HPA-axis activity. With the use of an in vitro adrenal assay, naïve 5-HTT knockout rats were furthermore shown to display increased adrenal ACTH sensitivity. Therefore, we conclude that basal HPA-axis activity is affected by the interaction of 5-HTT genotype and ELS, and is programmed, within the axis itself, predominantly at the level of the adrenal gland. This study therefore emphasizes the importance of the adrenal gland for HPA-related psychiatric disorders.
Collapse
Affiliation(s)
- R H A van der Doelen
- Department of Anatomy, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands,Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands,Department of Anatomy, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein 21 (route 126), 6525 EZ Nijmegen, The Netherlands. E-mail:
| | - W Deschamps
- Department of Cellular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - C D'Annibale
- Department of Cellular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - D Peeters
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands,Department of Cellular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - R A Wevers
- Department of Laboratory Medicine, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - D Zelena
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - J R Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - T Kozicz
- Department of Anatomy, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
45
|
Mice with compromised 5-HTT function lack phosphotyrosine-mediated inhibitory control over prefrontal 5-HT responses. J Neurosci 2014; 34:6107-11. [PMID: 24760870 DOI: 10.1523/jneurosci.3762-13.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The activity of the prefrontal cortex is essential for normal emotional processing and is strongly modulated by serotonin (5-HT). Yet, little is known about the regulatory mechanisms that control the activity of the prefrontal 5-HT receptors. Here, we found and characterized a deregulation of prefrontal 5-HT receptor electrophysiological signaling in mouse models of disrupted serotonin transporter (5-HTT) function, a risk factor for emotional and cognitive disturbances. We identified a novel tyrosine kinase-dependent mechanism that regulates 5-HT-mediated inhibition of prefrontal pyramidal neurons. We report that mice with compromised 5-HTT, resulting from either genetic deletion or brief treatment with selective serotonin reuptake inhibitors during development, have amplified 5-HT1A receptor-mediated currents in adulthood. These greater inhibitory effects of 5-HT are accompanied by enhanced downstream coupling to Kir3 channels. Notably, in normal wild-type mice, we found that these larger 5-HT1A responses can be mimicked through inhibition of Src family tyrosine kinases. By comparison, in our 5-HTT mouse models, the larger 5-HT1A responses were rapidly reduced through inhibition of tyrosine phosphatases. Our findings implicate tyrosine phosphorylation in regulating the electrophysiological effects of prefrontal 5-HT1A receptors with implications for neuropsychiatric diseases associated with emotional dysfunction, such as anxiety and depressive disorders.
Collapse
|
46
|
Spinelli S, Müller T, Friedel M, Sigrist H, Lesch KP, Henkelman M, Rudin M, Seifritz E, Pryce CR. Effects of repeated adolescent stress and serotonin transporter gene partial knockout in mice on behaviors and brain structures relevant to major depression. Front Behav Neurosci 2013; 7:215. [PMID: 24427124 PMCID: PMC3876674 DOI: 10.3389/fnbeh.2013.00215] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 12/13/2013] [Indexed: 12/03/2022] Open
Abstract
In humans, exposure to stress during development is associated with structural and functional alterations of the prefrontal cortex (PFC), amygdala (AMY), and hippocampus (HC) and their circuits of connectivity, and with an increased risk for developing major depressive disorder particularly in carriers of the short (s) variant of the serotonin transporter (5-HTT) gene-linked polymorphic region (5-HTTLPR). Although changes in these regions are found in carriers of the s allele and/or in depressed patients, evidence for a specific genotype × developmental stress effect on brain structure and function is limited. Here, we investigated the effect of repeated stress exposure during adolescence in mice with partial knockout of the 5-HTT gene (HET) vs. wildtype (WT) on early-adulthood behavioral measures and brain structure [using magnetic resonance imaging (MRI)] relevant to human major depression. Behaviorally, adolescent stress (AS) increased anxiety and decreased activity and did so to a similar degree in HET and WT. In a probabilistic reversal learning task, HET-AS mice achieved fewer reversals than did HET-No-AS mice. 5-HTT genotype and AS were without effect on corticosterone stress response. In terms of structural brain differences, AS reduced the volume of two long-range white matter tracts, the optic tract (OT) and the cerebral peduncle (CP), in WT mice specifically. In a region-of-interest analysis, AS was associated with increased HC volume and HET genotype with a decreased frontal lobe volume. In conclusion, we found that 5-HTT and AS genotype exerted long-term effects on behavior and development of brain regions relevant to human depression.
Collapse
Affiliation(s)
- Simona Spinelli
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich Zurich, Switzerland ; Neuroscience Center, University and ETH Zurich Zurich, Switzerland ; Zurich Center for Integrative Human Physiology, University of Zurich Zurich, Switzerland
| | - Tanja Müller
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich Zurich, Switzerland
| | - Miriam Friedel
- Mouse Imaging Centre, Hospital for Sick Children Toronto, Canada
| | - Hannes Sigrist
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich Zurich, Switzerland
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg Würzburg, Germany
| | - Mark Henkelman
- Mouse Imaging Centre, Hospital for Sick Children Toronto, Canada
| | - Markus Rudin
- Neuroscience Center, University and ETH Zurich Zurich, Switzerland ; Institute for Biomedical Engineering, University and ETH Zurich Zurich, Switzerland
| | - Erich Seifritz
- Neuroscience Center, University and ETH Zurich Zurich, Switzerland ; Zurich Center for Integrative Human Physiology, University of Zurich Zurich, Switzerland ; Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich Zurich, Switzerland
| | - Christopher R Pryce
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich Zurich, Switzerland ; Neuroscience Center, University and ETH Zurich Zurich, Switzerland ; Zurich Center for Integrative Human Physiology, University of Zurich Zurich, Switzerland
| |
Collapse
|
47
|
Sanghez V, Razzoli M, Carobbio S, Campbell M, McCallum J, Cero C, Ceresini G, Cabassi A, Govoni P, Franceschini P, de Santis V, Gurney A, Ninkovic I, Parmigiani S, Palanza P, Vidal-Puig A, Bartolomucci A. Psychosocial stress induces hyperphagia and exacerbates diet-induced insulin resistance and the manifestations of the Metabolic Syndrome. Psychoneuroendocrinology 2013; 38:2933-42. [PMID: 24060458 DOI: 10.1016/j.psyneuen.2013.07.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 07/31/2013] [Accepted: 07/31/2013] [Indexed: 01/13/2023]
Abstract
Stress and hypercaloric food are recognized risk factors for obesity, Metabolic Syndrome (MetS) and Type 2 Diabetes (T2D). Given the complexity of these metabolic processes and the unavailability of animal models, there is poor understanding of their underlying mechanisms. We established a model of chronic psychosocial stress in which subordinate mice are vulnerable to weight gain while dominant mice are resilient. Subordinate mice fed a standard diet showed marked hyperphagia, high leptin, low adiponectin, and dyslipidemia. Despite these molecular signatures of MetS and T2D, subordinate mice fed a standard diet were still euglycemic. We hypothesized that stress predisposes subordinate mice to develop T2D when synergizing with other risk factors. High fat diet aggravated dyslipidemia and the MetS thus causing a pre-diabetes-like state in subordinate mice. Contrary to subordinates, dominant mice were fully protected from stress-induced metabolic disorders when fed both a standard- and a high fat-diet. Dominant mice showed a hyperphagic response that was similar to subordinate but, unlike subordinates, showed a significant increase in VO2, VCO2, and respiratory exchange ratio when compared to control mice. Overall, we demonstrated a robust stress- and social status-dependent effect on the development of MetS and T2D and provided insights on the physiological mechanisms. Our results are reminiscent of the effect of the individual socioeconomic status on human health and provide an animal model to study the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Valentina Sanghez
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, USA; Department of Neuroscience, University of Parma, Parma, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Buschert J, Hohoff C, Touma C, Palme R, Rothermundt M, Arolt V, Zhang W, Ambrée O. S100B overexpression increases behavioral and neural plasticity in response to the social environment during adolescence. J Psychiatr Res 2013; 47:1791-9. [PMID: 23972702 DOI: 10.1016/j.jpsychires.2013.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/22/2013] [Accepted: 08/01/2013] [Indexed: 11/27/2022]
Abstract
Genetic variants as well as increased serum levels of the neurotrophic factor S100B are associated with different psychiatric disorders. However, elevated S100B levels are also related to a better therapeutic outcome in psychiatric patients. The functional role of elevated S100B in psychiatric disorders is still unclear. Hence, this study was designed in order to elucidate the differential effects of S100B overexpression in interaction with chronic social stress during adolescence on emotional behavior and adult neurogenesis. S100B transgenic and wild-type mice were housed either in socially stable or unstable environments during adolescence, between postnatal days 28 and 77. In adulthood, anxiety-related behavior in the open field, dark-light, and novelty-induced suppression of feeding test as well as survival of proliferating hippocampal progenitor cells were assessed. S100B transgenic mice revealed significantly reduced anxiety-related behavior in the open field compared to wild-types when reared in stable social conditions. In contrast, when transgenic mice grew up in unstable social conditions, their level of anxiety-related behavior was comparable to the levels of wild-type mice. In addition, S100B overexpressing mice from unstable housing conditions displayed higher numbers of surviving newborn cells in the adult hippocampus which developed into mature neurons. In conclusion, elevated S100B levels increase the susceptibility to environmental stimuli during adolescence resulting in more variable behavioral and neural phenotypes in adulthood. In humans, this increased plasticity might lead to both, enhanced risk for psychiatric disorders in negative environments and improved therapeutic outcome in positive environments.
Collapse
Affiliation(s)
- Jens Buschert
- Department of Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9, D-48149 Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Germany
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Karabeg MM, Grauthoff S, Kollert SY, Weidner M, Heiming RS, Jansen F, Popp S, Kaiser S, Lesch KP, Sachser N, Schmitt AG, Lewejohann L. 5-HTT deficiency affects neuroplasticity and increases stress sensitivity resulting in altered spatial learning performance in the Morris water maze but not in the Barnes maze. PLoS One 2013; 8:e78238. [PMID: 24167611 PMCID: PMC3805519 DOI: 10.1371/journal.pone.0078238] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 09/11/2013] [Indexed: 12/20/2022] Open
Abstract
The purpose of this study was to evaluate whether spatial hippocampus-dependent learning is affected by the serotonergic system and stress. Therefore, 5-HTT knockout (-/-), heterozygous (+/-) and wildtype (+/+) mice were subjected to the Barnes maze (BM) and the Morris water maze (WM), the latter being discussed as more aversive. Additionally, immediate early gene (IEG) expression, hippocampal adult neurogenesis (aN), and blood plasma corticosterone were analyzed. While the performance of 5-HTT-/- mice in the BM was undistinguishable from both other genotypes, they performed worse in the WM. However, in the course of the repeated WM trials 5-HTT-/- mice advanced to wildtype level. The experience of a single trial of either the WM or the BM resulted in increased plasma corticosterone levels in all genotypes. After several trials 5-HTT-/- mice exhibited higher corticosterone concentrations compared with both other genotypes in both tests. Corticosterone levels were highest in 5-HTT-/- mice tested in the WM indicating greater aversiveness of the WM and a greater stress sensitivity of 5-HTT deficient mice. Quantitative immunohistochemistry in the hippocampus revealed increased cell counts positive for the IEG products cFos and Arc as well as for proliferation marker Ki67 and immature neuron marker NeuroD in 5-HTT-/- mice compared to 5-HTT+/+ mice, irrespective of the test. Most differences were found in the suprapyramidal blade of the dentate gyrus of the septal hippocampus. Ki67-immunohistochemistry revealed a genotype x environment interaction with 5-HTT genotype differences in naïve controls and WM experience exclusively yielding more Ki67-positive cells in 5-HTT+/+ mice. Moreover, in 5-HTT-/- mice we demonstrate that learning performance correlates with the extent of aN. Overall, higher baseline IEG expression and increased an in the hippocampus of 5-HTT-/- mice together with increased stress sensitivity may constitute the neurobiological correlate of raised alertness, possibly impeding optimal learning performance in the more stressful WM.
Collapse
Affiliation(s)
- Margherita M. Karabeg
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
- Division of Molecular Psychiatry, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Sandra Grauthoff
- Department of Behavioral Biology, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Sina Y. Kollert
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Magdalena Weidner
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Rebecca S. Heiming
- Department of Behavioral Biology, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Friederike Jansen
- Department of Behavioral Biology, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Sandy Popp
- Division of Molecular Psychiatry, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Sylvia Kaiser
- Department of Behavioral Biology, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Norbert Sachser
- Department of Behavioral Biology, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Angelika G. Schmitt
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
- * E-mail:
| | - Lars Lewejohann
- Department of Behavioral Biology, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
- Behavioural Biology, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
50
|
Patterson ZR, Abizaid A. Stress induced obesity: lessons from rodent models of stress. Front Neurosci 2013; 7:130. [PMID: 23898237 PMCID: PMC3721047 DOI: 10.3389/fnins.2013.00130] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/08/2013] [Indexed: 11/15/2022] Open
Abstract
Stress was once defined as the non-specific result of the body to any demand or challenge to homeostasis. A more current view of stress is the behavioral and physiological responses generated in the face of, or in anticipation of, a perceived threat. The stress response involves activation of the sympathetic nervous system and recruitment of the hypothalamic-pituitary-adrenal (HPA) axis. When an organism encounters a stressor (social, physical, etc.), these endogenous stress systems are stimulated in order to generate a fight-or-flight response, and manage the stressful situation. As such, an organism is forced to liberate energy resources in attempt to meet the energetic demands posed by the stressor. A change in the energy homeostatic balance is thus required to exploit an appropriate resource and deliver useable energy to the target muscles and tissues involved in the stress response. Acutely, this change in energy homeostasis and the liberation of energy is considered advantageous, as it is required for the survival of the organism. However, when an organism is subjected to a prolonged stressor, as is the case during chronic stress, a continuous irregularity in energy homeostasis is considered detrimental and may lead to the development of metabolic disturbances such as cardiovascular disease, type II diabetes mellitus and obesity. This concept has been studied extensively using animal models, and the neurobiological underpinnings of stress induced metabolic disorders are beginning to surface. However, different animal models of stress continue to produce divergent metabolic phenotypes wherein some animals become anorexic and lose body mass while others increase food intake and body mass and become vulnerable to the development of metabolic disturbances. It remains unclear exactly what factors associated with stress models can be used to predict the metabolic outcome of the organism. This review will explore a variety of rodent stress models and discuss the elements that influence the metabolic outcome in order to further extend our understanding of stress-induced obesity.
Collapse
|