1
|
Pellerin D, Iruzubieta P, Xu IRL, Danzi MC, Cortese A, Synofzik M, Houlden H, Zuchner S, Brais B. Recent Advances in the Genetics of Ataxias: An Update on Novel Autosomal Dominant Repeat Expansions. Curr Neurol Neurosci Rep 2025; 25:16. [PMID: 39820740 DOI: 10.1007/s11910-024-01400-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2024] [Indexed: 01/19/2025]
Abstract
PURPOSE OF REVIEW Autosomal dominant cerebellar ataxias, also known as spinocerebellar ataxias (SCAs), are genetically and clinically diverse neurodegenerative disorders characterized by progressive cerebellar dysfunction. Despite advances in sequencing technologies, a large proportion of patients with SCA still lack a definitive genetic diagnosis. The advent of advanced bioinformatic tools and emerging genomics technologies, such as long-read sequencing, offers an unparalleled opportunity to close the diagnostic gap for hereditary ataxias. This article reviews the recently identified repeat expansion SCAs and describes their molecular basis, epidemiology, and clinical features. RECENT FINDINGS Leveraging advanced bioinformatic tools and long-read sequencing, recent studies have identified novel pathogenic short tandem repeat expansions in FGF14, ZFHX3, and THAP11, associated with SCA27B, SCA4, and SCA51, respectively. SCA27B, caused by an intronic (GAA)•(TTC) repeat expansion, has emerged as one of the most common forms of adult-onset hereditary ataxias, especially in European populations. The coding GGC repeat expansion in ZFHX3 causing SCA4 was identified more than 25 years after the disorder's initial clinical description and appears to be a rare cause of ataxia outside northern Europe. SCA51, caused by a coding CAG repeat expansion, is overall rare and has been described in a small number of patients. The recent identification of three novel pathogenic repeat expansions underscores the importance of this class of genomic variation in the pathogenesis of SCAs. Progress in sequencing technologies holds promise for closing the diagnostic gap in SCAs and guiding the development of therapeutic strategies for ataxia.
Collapse
Affiliation(s)
- David Pellerin
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, University College London, London, UK
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, QC, Canada
| | - Pablo Iruzubieta
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, QC, Canada
- Department of Neurosciences, Biogipuzkoa Health Research Institute, San Sebastián, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), Madrid, Spain
| | - Isaac R L Xu
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Matt C Danzi
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andrea Cortese
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, University College London, London, UK
| | - Matthis Synofzik
- Division of Translational Genomics of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, University College London, London, UK
| | - Stephan Zuchner
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Bernard Brais
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, QC, Canada.
- Department of Human Genetics, McGill University, Montreal, QC, Canada.
| |
Collapse
|
2
|
Nolbrant S, Wallace JL, Ding J, Zhu T, Sevetson JL, Kajtez J, Baldacci IA, Corrigan EK, Hoglin K, McMullen R, Schmitz MT, Breevoort A, Swope D, Wu F, Pavlovic BJ, Salama SR, Kirkeby A, Huang H, Schaefer NK, Pollen AA. INTERSPECIES ORGANOIDS REVEAL HUMAN-SPECIFIC MOLECULAR FEATURES OF DOPAMINERGIC NEURON DEVELOPMENT AND VULNERABILITY. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.14.623592. [PMID: 39605599 PMCID: PMC11601475 DOI: 10.1101/2024.11.14.623592] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The disproportionate expansion of telencephalic structures during human evolution involved tradeoffs that imposed greater connectivity and metabolic demands on midbrain dopaminergic neurons. Despite the central role of dopaminergic neurons in human-enriched disorders, molecular specializations associated with human-specific features and vulnerabilities of the dopaminergic system remain unexplored. Here, we establish a phylogeny-in-a-dish approach to examine gene regulatory evolution by differentiating pools of human, chimpanzee, orangutan, and macaque pluripotent stem cells into ventral midbrain organoids capable of forming long-range projections, spontaneous activity, and dopamine release. We identify human-specific gene expression changes related to axonal transport of mitochondria and reactive oxygen species buffering and candidate cis- and trans-regulatory mechanisms underlying gene expression divergence. Our findings are consistent with a model of evolved neuroprotection in response to tradeoffs related to brain expansion and could contribute to the discovery of therapeutic targets and strategies for treating disorders involving the dopaminergic system.
Collapse
Affiliation(s)
- Sara Nolbrant
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- These authors contributed equally
| | - Jenelle L. Wallace
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- These authors contributed equally
| | - Jingwen Ding
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- These authors contributed equally
| | - Tianjia Zhu
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Jess L. Sevetson
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Cruz, CA, United States of America
- Genomics Institute, University of California Santa Cruz, CA, United States of America
| | - Janko Kajtez
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW)), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Isabella A. Baldacci
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Emily K. Corrigan
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Kaylynn Hoglin
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Reed McMullen
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Matthew T. Schmitz
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Arnar Breevoort
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Dani Swope
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Fengxia Wu
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Anatomy and Neurobiology, Shandong University, Jinan, Shandong Province, China
| | - Bryan J. Pavlovic
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Sofie R. Salama
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Cruz, CA, United States of America
- Genomics Institute, University of California Santa Cruz, CA, United States of America
| | - Agnete Kirkeby
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW)), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Experimental Medical Sciences, Wallenberg Center for Molecular Medicine (WCMM) and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Hao Huang
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Nathan K. Schaefer
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Alex A. Pollen
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Lead contact
| |
Collapse
|
3
|
Chen SY, Chen YC, Liu TY, Chang KC, Chang SS, Wu N, Lee Wu D, Dunlap RK, Chan CJ, Yang JS, Liao CC, Tsai FJ. Novel Genes Associated With Atrial Fibrillation and the Predictive Models for AF Incorporating Polygenic Risk Score and PheWAS-Derived Risk Factors. Can J Cardiol 2024; 40:2117-2127. [PMID: 39142603 DOI: 10.1016/j.cjca.2024.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Atrial fibrillation (AF), the most common atrial arrhythmia, presents with varied clinical manifestations. Despite the identification of genetic loci associated with AF, particularly in specific populations, research within Asian ethnicities remains limited. In this study we aimed to develop predictive models for AF using AF-associated single-nucleotide polymorphisms (SNPs) from a genome-wide association study (GWAS) on a substantial cohort of Taiwanese individuals, to evaluate the predictive efficacy of the model. METHODS There were 75,121 subjects, that included 5694 AF patients and 69,427 normal control subjects with GWAS data, and we merged polygenic risk scores from AF-associated SNPs with phenome-wide association study-derived risk factors. Advanced statistical and machine learning techniques were used to develop and evaluate AF predictive models for discrimination and calibration. RESULTS The study identified the top 30 significant SNPs associated with AF, predominantly on chromosomes 10 and 16, implicating genes like NEURL1, SH3PXD2A, INA, NT5C2, STN1, and ZFHX3. Notably, INA, NT5C2, and STN1 were newly linked to AF. The GWAS predictive power using polygenic risk score-continuous shrinkage analysis for AF exhibited an area under the curve of 0.600 (P < 0.001), which improved to 0.855 (P < 0.001) after adjusting for age and sex. Phenome-wide association study analysis showed the top 10 diseases associated with these genes were circulatory system diseases. CONCLUSIONS Integrating genetic and phenotypic data enhanced the accuracy and clinical relevance of AF predictive models. The findings suggest promise for refining AF risk assessment, enabling personalized interventions, and reducing AF-related morbidity and mortality burdens.
Collapse
Affiliation(s)
- Shih-Yin Chen
- School of Chinese Medicine, China Medical University, Taichung, Taiwan; Genetics Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Chia Chen
- Million-Person Precision Medicine Initiative, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Ting-Yuan Liu
- Million-Person Precision Medicine Initiative, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Kuan-Cheng Chang
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University Hospital, Taichung, Taiwan; School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Shih-Sheng Chang
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University Hospital, Taichung, Taiwan; School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Ning Wu
- Department of Biological Sciences, Southeastern Oklahoma State University, Durant, Oklahoma, USA
| | - Donald Lee Wu
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Tulsa, Oklahoma, USA
| | - Rylee Kay Dunlap
- College of Osteopathic Medicine, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma, USA
| | - Chia-Jung Chan
- Genetics Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Jai-Sing Yang
- Genetics Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chi Chou Liao
- Genetics Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Fuu-Jen Tsai
- School of Chinese Medicine, China Medical University, Taichung, Taiwan; Genetics Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan; Department of Medical Genetics, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
4
|
Mei T, Chen Y, Gao Y, Zhao H, Lyu X, Lin J, Niu T, Han H, Tong Z. Formaldehyde initiates memory and motor impairments under weightlessness condition. NPJ Microgravity 2024; 10:100. [PMID: 39468074 PMCID: PMC11519943 DOI: 10.1038/s41526-024-00441-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 10/21/2024] [Indexed: 10/30/2024] Open
Abstract
During space flight, prolonged weightlessness stress exerts a range of detrimental impacts on the physiology and psychology of astronauts. These manifestations encompass depressive symptoms, anxiety, and impairments in both short-term memory and motor functions, albeit the precise underlying mechanisms remain elusive. Recent studies have revealed that hindlimb unloading (HU) animal models, which simulate space weightlessness, exhibited a disorder in memory and motor function associated with endogenous formaldehyde (FA) accumulation in the hippocampus and cerebellum, disruption of brain extracellular space (ECS), and blockage of interstitial fluid (ISF) drainage. Notably, the impairment of the blood-brain barrier (BBB) caused by space weightlessness elicits the infiltration of albumin and hemoglobin from the blood vessels into the brain ECS. However, excessive FA has the potential to form cross-links between these two proteins and amyloid-beta (Aβ), thereby obstructing ECS and inducing neuron death. Moreover, FA can inhibit N-methyl-D-aspartate (NMDA) currents by crosslinking NR1 and NR2B subunits, thus impairing memory. Additionally, FA has the ability to modulate the levels of certain microRNAs (miRNAs) such as miRNA-29b, which can affect the expression of aquaporin-4 (AQP4) so as to regulate ECS structure and ISF drainage. Especially, the accumulation of FA may inactivate the ataxia telangiectasia-mutated (ATM) protein kinase by forming cross-linking, a process that is associated with ataxia. Hence, this review presents that weightlessness stress-derived FA may potentially serve as a crucial catalyst in the deterioration of memory and motor abilities in the context of microgravity.
Collapse
Affiliation(s)
- Tianhao Mei
- Beijing Geriatric Hospital, Beijing, China
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ying Chen
- Beijing Geriatric Hospital, Beijing, China
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yajuan Gao
- Department of Radiology, Peking University Third Hospital, Beijing, China. Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China
- NMPA key Laboratory for Evaluation of Medical Imaging Equipment and Technique, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Hang Zhao
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xingzhou Lyu
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jing Lin
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tianye Niu
- Shenzhen Bay Laboratory, Shenzhen, China.
- University of Science and Technology of China, Anhui, China.
| | - Hongbin Han
- Department of Radiology, Peking University Third Hospital, Beijing, China. Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
- NMPA key Laboratory for Evaluation of Medical Imaging Equipment and Technique, Beijing, China.
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.
| | - Zhiqian Tong
- Beijing Geriatric Hospital, Beijing, China.
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
5
|
Martins RS, Weber J, Johnson B, Luo J, Poulikidis K, Latif MJ, Razi SS, Al Shetawi AH, Lebovics RS, Bhora FY. Identifying Molecular Pathophysiology and Potential Therapeutic Options in Iatrogenic Tracheal Stenosis. Biomedicines 2024; 12:1323. [PMID: 38927530 PMCID: PMC11201234 DOI: 10.3390/biomedicines12061323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
INTRODUCTION While most patients with iatrogenic tracheal stenosis (ITS) respond to endoscopic ablative procedures, approximately 15% experience a recalcitrant, recurring disease course that is resistant to conventional management. We aimed to explore genetic profiles of patients with recalcitrant ITS to understand underlying pathophysiology and identify novel therapeutic options. METHODS We collected 11 samples of granulation tissue from patients with ITS and performed RNA sequencing. We identified the top 10 most highly up- and down-regulated genes and cellular processes that these genes corresponded to. For the most highly dysregulated genes, we identified potential therapeutic options that favorably regulate their expression. RESULTS The dysregulations in gene expression corresponded to hyperkeratinization (upregulation of genes involved in keratin production and keratinocyte differentiation) and cellular proliferation (downregulation of cell cycle regulating and pro-apoptotic genes). Genes involved in retinoic acid (RA) metabolism and signaling were dysregulated in a pattern suggesting local cellular RA deficiency. Consequently, RA also emerged as the most promising potential therapeutic option for ITS, as it favorably regulated seven of the ten most highly dysregulated genes. CONCLUSION This is the first study to characterize the role of hyperkeratinization and dysregulations in RA metabolism and signaling in the disease pathophysiology. Given the ability of RA to favorably regulate key genes involved in ITS, future studies must explore its efficacy as a potential therapeutic option for patients with recalcitrant ITS.
Collapse
Affiliation(s)
- Russell Seth Martins
- Division of Thoracic Surgery, Department of Surgery, Hackensack Meridian School of Medicine, Hackensack Meridian Health (HMH) Network, Edison, NJ 08820, USA; (R.S.M.); (J.W.); (J.L.); (K.P.); (M.J.L.); (S.S.R.)
| | - Joanna Weber
- Division of Thoracic Surgery, Department of Surgery, Hackensack Meridian School of Medicine, Hackensack Meridian Health (HMH) Network, Edison, NJ 08820, USA; (R.S.M.); (J.W.); (J.L.); (K.P.); (M.J.L.); (S.S.R.)
| | - Bryan Johnson
- Department of Surgery, Mount Carmel Health System, Columbus, OH 43213, USA;
| | - Jeffrey Luo
- Division of Thoracic Surgery, Department of Surgery, Hackensack Meridian School of Medicine, Hackensack Meridian Health (HMH) Network, Edison, NJ 08820, USA; (R.S.M.); (J.W.); (J.L.); (K.P.); (M.J.L.); (S.S.R.)
| | - Kostantinos Poulikidis
- Division of Thoracic Surgery, Department of Surgery, Hackensack Meridian School of Medicine, Hackensack Meridian Health (HMH) Network, Edison, NJ 08820, USA; (R.S.M.); (J.W.); (J.L.); (K.P.); (M.J.L.); (S.S.R.)
| | - Mohammed Jawad Latif
- Division of Thoracic Surgery, Department of Surgery, Hackensack Meridian School of Medicine, Hackensack Meridian Health (HMH) Network, Edison, NJ 08820, USA; (R.S.M.); (J.W.); (J.L.); (K.P.); (M.J.L.); (S.S.R.)
| | - Syed Shahzad Razi
- Division of Thoracic Surgery, Department of Surgery, Hackensack Meridian School of Medicine, Hackensack Meridian Health (HMH) Network, Edison, NJ 08820, USA; (R.S.M.); (J.W.); (J.L.); (K.P.); (M.J.L.); (S.S.R.)
| | - Al Haitham Al Shetawi
- Division of Surgical Oncology, Department of Surgery, Vassar Brothers Medical Center, Nuvance Health, Dyson Center for Cancer Care, Poughkeepsie, NY 12601, USA;
- Division of Oral and Maxillofacial Surgery, Department of Surgery, Vassar Brothers Medical Center, Nuvance Health, Poughkeepsie, NY 12601, USA
| | - Robert S. Lebovics
- Division of Otolaryngology, Department of Surgery, Hackensack Meridian School of Medicine, Hackensack Meridian Health (HMH) Network, Edison, NJ 08820, USA;
| | - Faiz Y. Bhora
- Division of Thoracic Surgery, Department of Surgery, Hackensack Meridian School of Medicine, Hackensack Meridian Health (HMH) Network, Edison, NJ 08820, USA; (R.S.M.); (J.W.); (J.L.); (K.P.); (M.J.L.); (S.S.R.)
| |
Collapse
|
6
|
Mimpen JY, Ramos-Mucci L, Paul C, Kurjan A, Hulley PA, Ikwuanusi CT, Cohen CJ, Gwilym SE, Baldwin MJ, Cribbs AP, Snelling SJB. Single nucleus and spatial transcriptomic profiling of healthy human hamstring tendon. FASEB J 2024; 38:e23629. [PMID: 38742770 DOI: 10.1096/fj.202300601rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 05/16/2024]
Abstract
The molecular and cellular basis of health in human tendons remains poorly understood. Among human tendons, hamstring tendon has markedly low pathology and can provide a prototypic healthy tendon reference. The aim of this study was to determine the transcriptomes and location of all cell types in healthy hamstring tendon. Using single nucleus RNA sequencing, we profiled the transcriptomes of 10 533 nuclei from four healthy donors and identified 12 distinct cell types. We confirmed the presence of two fibroblast cell types, endothelial cells, mural cells, and immune cells, and identified cell types previously unreported in tendons, including different skeletal muscle cell types, satellite cells, adipocytes, and undefined nervous system cells. The location of these cell types within tendon was defined using spatial transcriptomics and imaging, and potential transcriptional networks and cell-cell interactions were analyzed. We demonstrate that fibroblasts have the highest number of potential cell-cell interactions in our dataset, are present throughout the tendon, and play an important role in the production and organization of extracellular matrix, thus confirming their role as key regulators of hamstring tendon homeostasis. Overall, our findings underscore the complexity of the cellular networks that underpin healthy human tendon function and the central role of fibroblasts as key regulators of hamstring tendon tissue homeostasis.
Collapse
Affiliation(s)
- Jolet Y Mimpen
- The Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Lorenzo Ramos-Mucci
- The Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Claudia Paul
- The Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Alina Kurjan
- The Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Philippa A Hulley
- The Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | | | - Carla J Cohen
- Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom of Great Britain and Northern Ireland
| | - Stephen E Gwilym
- The Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Mathew J Baldwin
- The Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Adam P Cribbs
- The Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Sarah J B Snelling
- The Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Wallenius J, Kafantari E, Jhaveri E, Gorcenco S, Ameur A, Karremo C, Dobloug S, Karrman K, de Koning T, Ilinca A, Landqvist Waldö M, Arvidsson A, Persson S, Englund E, Ehrencrona H, Puschmann A. Exonic trinucleotide repeat expansions in ZFHX3 cause spinocerebellar ataxia type 4: A poly-glycine disease. Am J Hum Genet 2024; 111:82-95. [PMID: 38035881 PMCID: PMC10806739 DOI: 10.1016/j.ajhg.2023.11.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 12/02/2023] Open
Abstract
Autosomal-dominant ataxia with sensory and autonomic neuropathy is a highly specific combined phenotype that we described in two Swedish kindreds in 2014; its genetic cause had remained unknown. Here, we report the discovery of exonic GGC trinucleotide repeat expansions, encoding poly-glycine, in zinc finger homeobox 3 (ZFHX3) in these families. The expansions were identified in whole-genome datasets within genomic segments that all affected family members shared. Non-expanded alleles carried one or more interruptions within the repeat. We also found ZFHX3 repeat expansions in three additional families, all from the region of Skåne in southern Sweden. Individuals with expanded repeats developed balance and gait disturbances at 15 to 60 years of age and had sensory neuropathy and slow saccades. Anticipation was observed in all families and correlated with different repeat lengths determined through long-read sequencing in two family members. The most severely affected individuals had marked autonomic dysfunction, with severe orthostatism as the most disabling clinical feature. Neuropathology revealed p62-positive intracytoplasmic and intranuclear inclusions in neurons of the central and enteric nervous system, as well as alpha-synuclein positivity. ZFHX3 is located within the 16q22 locus, to which spinocerebellar ataxia type 4 (SCA4) repeatedly had been mapped; the clinical phenotype in our families corresponded well with the unique phenotype described in SCA4, and the original SCA4 kindred originated from Sweden. ZFHX3 has known functions in neuronal development and differentiation n both the central and peripheral nervous system. Our findings demonstrate that SCA4 is caused by repeat expansions in ZFHX3.
Collapse
Affiliation(s)
- Joel Wallenius
- Neurology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, 222 42 Lund, Sweden
| | - Efthymia Kafantari
- Neurology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, 222 42 Lund, Sweden
| | - Emma Jhaveri
- Neurology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, 222 42 Lund, Sweden
| | - Sorina Gorcenco
- Neurology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, 222 42 Lund, Sweden
| | - Adam Ameur
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 23 Uppsala, Sweden
| | - Christin Karremo
- Neurology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, 222 42 Lund, Sweden
| | - Sigurd Dobloug
- Neurology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, 222 42 Lund, Sweden; Department of Neurology, Helsingborg General Hospital, 252 23 Helsingborg, Sweden
| | - Kristina Karrman
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, 222 42 Lund, Sweden; Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, 221 85 Lund, Sweden
| | - Tom de Koning
- Pediatrics, Department of Clinical Sciences Lund, Lund University, 221 84 Lund, Sweden
| | - Andreea Ilinca
- Neurology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, 222 42 Lund, Sweden
| | - Maria Landqvist Waldö
- Division of Clinical Sciences Helsingborg, Department of Clinical Sciences Lund, Lund University, 221 84 Lund, Sweden
| | - Andreas Arvidsson
- Neurology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, 222 42 Lund, Sweden
| | - Staffan Persson
- Neurology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, 222 42 Lund, Sweden
| | - Elisabet Englund
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, 221 85 Lund, Sweden; Pathology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, 222 42 Lund, Sweden
| | - Hans Ehrencrona
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, 222 42 Lund, Sweden; Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, 221 85 Lund, Sweden
| | - Andreas Puschmann
- Neurology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, 222 42 Lund, Sweden; SciLifeLab National Research Infrastructure, Lund University, 221 84 Lund, Sweden.
| |
Collapse
|
8
|
Reichlmeir M, Canet-Pons J, Koepf G, Nurieva W, Duecker RP, Doering C, Abell K, Key J, Stokes MP, Zielen S, Schubert R, Ivics Z, Auburger G. In Cerebellar Atrophy of 12-Month-Old ATM-Null Mice, Transcriptome Upregulations Concern Most Neurotransmission and Neuropeptide Pathways, While Downregulations Affect Prominently Itpr1, Usp2 and Non-Coding RNA. Cells 2023; 12:2399. [PMID: 37830614 PMCID: PMC10572167 DOI: 10.3390/cells12192399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/14/2023] Open
Abstract
The autosomal recessive disorder Ataxia-Telangiectasia is caused by a dysfunction of the stress response protein, ATM. In the nucleus of proliferating cells, ATM senses DNA double-strand breaks and coordinates their repair. This role explains T-cell dysfunction and tumour risk. However, it remains unclear whether this function is relevant for postmitotic neurons and underlies cerebellar atrophy, since ATM is cytoplasmic in postmitotic neurons. Here, we used ATM-null mice that survived early immune deficits via bone-marrow transplantation, and that reached initial neurodegeneration stages at 12 months of age. Global cerebellar transcriptomics demonstrated that ATM depletion triggered upregulations in most neurotransmission and neuropeptide systems. Downregulated transcripts were found for the ATM interactome component Usp2, many non-coding RNAs, ataxia genes Itpr1, Grid2, immediate early genes and immunity factors. Allelic splice changes affected prominently the neuropeptide machinery, e.g., Oprm1. Validation experiments with stressors were performed in human neuroblastoma cells, where ATM was localised only to cytoplasm, similar to the brain. Effect confirmation in SH-SY5Y cells occurred after ATM depletion and osmotic stress better than nutrient/oxidative stress, but not after ATM kinase inhibition or DNA stressor bleomycin. Overall, we provide pioneer observations from a faithful A-T mouse model, which suggest general changes in synaptic and dense-core vesicle stress adaptation.
Collapse
Affiliation(s)
- Marina Reichlmeir
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (M.R.); (J.C.-P.); (J.K.)
| | - Júlia Canet-Pons
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (M.R.); (J.C.-P.); (J.K.)
| | - Gabriele Koepf
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (M.R.); (J.C.-P.); (J.K.)
| | - Wasifa Nurieva
- Transposition and Genome Engineering, Research Centre of the Division of Hematology, Gene and Cell Therapy, Paul Ehrlich Institute, 63225 Langen, Germany; (W.N.); (Z.I.)
| | - Ruth Pia Duecker
- Division of Pediatrics, Pulmonology, Allergology, Infectious Diseases and Gastroenterology, Children’s Hospital, University Hospital, Goethe-University, 60590 Frankfurt am Main, Germany; (R.P.D.); (S.Z.); (R.S.)
| | - Claudia Doering
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, 60590 Frankfurt am Main, Germany;
| | - Kathryn Abell
- Cell Signaling Technology, Inc., Danvers, MA 01923, USA; (K.A.); (M.P.S.)
| | - Jana Key
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (M.R.); (J.C.-P.); (J.K.)
| | - Matthew P. Stokes
- Cell Signaling Technology, Inc., Danvers, MA 01923, USA; (K.A.); (M.P.S.)
| | - Stefan Zielen
- Division of Pediatrics, Pulmonology, Allergology, Infectious Diseases and Gastroenterology, Children’s Hospital, University Hospital, Goethe-University, 60590 Frankfurt am Main, Germany; (R.P.D.); (S.Z.); (R.S.)
- Respiratory Research Institute, Medaimun GmbH, 60596 Frankfurt am Main, Germany
| | - Ralf Schubert
- Division of Pediatrics, Pulmonology, Allergology, Infectious Diseases and Gastroenterology, Children’s Hospital, University Hospital, Goethe-University, 60590 Frankfurt am Main, Germany; (R.P.D.); (S.Z.); (R.S.)
| | - Zoltán Ivics
- Transposition and Genome Engineering, Research Centre of the Division of Hematology, Gene and Cell Therapy, Paul Ehrlich Institute, 63225 Langen, Germany; (W.N.); (Z.I.)
| | - Georg Auburger
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (M.R.); (J.C.-P.); (J.K.)
| |
Collapse
|
9
|
Jameson HS, Hanley A, Hill MC, Xiao L, Ye J, Bapat A, Ronzier E, Hall AW, Hucker WJ, Clauss S, Barazza M, Silber E, Mina J, Tucker NR, Mills RW, Dong JT, Milan DJ, Ellinor PT. Loss of the Atrial Fibrillation-Related Gene, Zfhx3, Results in Atrial Dilation and Arrhythmias. Circ Res 2023; 133:313-329. [PMID: 37449401 PMCID: PMC10527554 DOI: 10.1161/circresaha.123.323029] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND ZFHX3 (zinc finger homeobox 3), a gene that encodes a large transcription factor, is at the second-most significantly associated locus with atrial fibrillation (AF), but its function in the heart is unknown. This study aims to identify causative genetic variation related to AF at the ZFHX3 locus and examine the impact of Zfhx3 loss on cardiac function in mice. METHODS CRISPR-Cas9 genome editing, chromatin immunoprecipitation, and luciferase assays in pluripotent stem cell-derived cardiomyocytes were used to identify causative genetic variation related to AF at the ZFHX3 locus. Cardiac function was assessed by echocardiography, magnetic resonance imaging, electrophysiology studies, calcium imaging, and RNA sequencing in mice with heterozygous and homozygous cardiomyocyte-restricted Zfhx3 loss (Zfhx3 Het and knockout, respectively). Human cardiac single-nucleus ATAC (assay for transposase-accessible chromatin)-sequencing data was analyzed to determine which genes in atrial cardiomyocytes are directly regulated by ZFHX3. RESULTS We found single-nucleotide polymorphism (SNP) rs12931021 modulates an enhancer regulating ZFHX3 expression, and the AF risk allele is associated with decreased ZFHX3 transcription. We observed a gene-dose response in AF susceptibility with Zfhx3 knockout mice having higher incidence, frequency, and burden of AF than Zfhx3 Het and wild-type mice, with alterations in conduction velocity, atrial action potential duration, calcium handling and the development of atrial enlargement and thrombus, and dilated cardiomyopathy. Zfhx3 loss results in atrial-specific differential effects on genes and signaling pathways involved in cardiac pathophysiology and AF. CONCLUSIONS Our findings implicate ZFHX3 as the causative gene at the 16q22 locus for AF, and cardiac abnormalities caused by loss of cardiac Zfhx3 are due to atrial-specific dysregulation of pathways involved in AF susceptibility. Together, these data reveal a novel and important role for Zfhx3 in the control of cardiac genes and signaling pathways essential for normal atrial function.
Collapse
Affiliation(s)
- Heather S. Jameson
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Alan Hanley
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA
| | - Matthew C. Hill
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA
| | - Ling Xiao
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Jiangchuan Ye
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA
| | - Aneesh Bapat
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA
| | - Elsa Ronzier
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Amelia Weber Hall
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA
| | - William J. Hucker
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA
| | - Sebastian Clauss
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine I, University Hospital Munich, Campus Grosshadern, Ludwig-Maximilians University Munich (LMU), 81377 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site: Munich Heart Alliance, Munich, Germany
- Walter Brendel Centre of Experimental Medicine, University Hospital, LMU Munich, Germany
| | - Miranda Barazza
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Elizabeth Silber
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Julie Mina
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | | | - Robert W. Mills
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | | | | | - Patrick T. Ellinor
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA
| |
Collapse
|
10
|
Wen C, Geervliet M, de Vries H, Fabà L, den Hil PJRV, Skovgaard K, Savelkoul HFJ, Schols HA, Wells JM, Tijhaar E, Smidt H. Agaricus subrufescens fermented rye affects the development of intestinal microbiota, local intestinal and innate immunity in suckling-to-nursery pigs. Anim Microbiome 2023; 5:24. [PMID: 37041617 PMCID: PMC10088699 DOI: 10.1186/s42523-023-00244-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/23/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Agaricus subrufescens is considered as one of the most important culinary-medicinal mushrooms around the world. It has been widely suggested to be used for the development of functional food ingredients to promote human health ascribed to the various properties (e.g., anti-inflammatory, antioxidant, and immunomodulatory activities). In this context, the interest in A. subrufescens based feed ingredients as alternatives for antibiotics has also been fuelled during an era of reduced/banned antibiotics use. This study aimed to investigate the effects of a fermented feed additive -rye overgrown with mycelium (ROM) of A. subrufescens-on pig intestinal microbiota, mucosal gene expression and local and systemic immunity during early life. Piglets received ROM or a tap water placebo (Ctrl) perorally every other day from day 2 after birth until 2 weeks post-weaning. Eight animals per treatment were euthanized and dissected on days 27, 44 and 70. RESULTS The results showed ROM piglets had a lower inter-individual variation of faecal microbiota composition before weaning and a lower relative abundance of proteobacterial genera in jejunum (Undibacterium and Solobacterium) and caecum (Intestinibacter and Succinivibrionaceae_UCG_001) on day 70, as compared to Ctrl piglets. ROM supplementation also influenced gut mucosal gene expression in both ileum and caecum on day 44. In ileum, ROM pigs showed increased expression of TJP1/ZO1 but decreased expression of CLDN3, CLDN5 and MUC2 than Ctrl pigs. Genes involved in TLR signalling (e.g., TICAM2, IRAK4 and LY96) were more expressed but MYD88 and TOLLIP were less expressed in ROM pigs than Ctrl animals. NOS2 and HIF1A involved in redox signalling were either decreased or increased in ROM pigs, respectively. In caecum, differentially expressed genes between two groups were mainly shown as increased expression (e.g., MUC2, PDGFRB, TOLLIP, TNFAIP3 and MYD88) in ROM pigs. Moreover, ROM animals showed higher NK cell activation in blood and enhanced IL-10 production in ex vivo stimulated MLN cells before weaning. CONCLUSIONS Collectively, these results suggest that ROM supplementation in early life modulates gut microbiota and (local) immune system development. Consequently, ROM supplementation may contribute to improving health of pigs during the weaning transition period and reducing antibiotics use.
Collapse
Affiliation(s)
- Caifang Wen
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Mirelle Geervliet
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Hugo de Vries
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Host-Microbe Interactomics Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Lluís Fabà
- Research and Development, Trouw Nutrition, Amersfoort, The Netherlands
| | - Petra J Roubos-van den Hil
- Research and Development, Trouw Nutrition, Amersfoort, The Netherlands
- DSM Food and Beverages - Fresh Dairy, Wageningen, The Netherlands
| | - Kerstin Skovgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Huub F J Savelkoul
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Henk A Schols
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Jerry M Wells
- Host-Microbe Interactomics Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Edwin Tijhaar
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands.
| |
Collapse
|
11
|
Influence of ZFHX3 Polymorphisms on the Risk of Ischemic Stroke in Chinese Han Population. Cardiovasc Toxicol 2023; 23:93-106. [PMID: 36800142 DOI: 10.1007/s12012-023-09783-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023]
Abstract
The association of ZFHX3 gene polymorphisms with ischemia stroke (IS) susceptibility has been clarified in Europeans, but not in the Chinese Han population. To assess the effect of ZFHX3 polymorphisms on IS risk, rs7193343, rs879324, and rs12932445 were selected and genotyped using the Agena MassARRAY platform in 694 patients and 687 healthy controls. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated by logistic regression model adjusted for age, sex, smoking, and drinking status. The potentially influential factors for IS risk were analyzed using multifactor dimension reduction (MDR) software v3.0.2 and least absolute shrinkage and selection operator (LASSO) logistic regression. Our results displayed that rs879324 (p = 0.011, OR = 0.81) and rs12932445 (p = 0.012, OR = 0.81) were protective factors for IS in the Chinese Han population. Specifically, rs879324 had a lower susceptibility to IS in subjects aged ≤ 64 years, non-smokers, and non-drinkers (p < 0.05). Furthermore, rs12932445 was associated with a reduced risk of IS in people aged > 64 years, females, non-smokers, and non-drinkers (p < 0.05). MDR and LASSO analyses revealed that rs879324 was the most influential factor for IS risk. These findings suggested that ZFHX3 variants may be biomarkers in IS occurrence in the Chinese Han population, which may provide a new insight into the etiology of IS.
Collapse
|
12
|
Shahbazi M, Zhang X, Dinh PC, Sanchez VA, Trendowski MR, Shuey MM, Nguyen T, Feldman DR, Vaughn DJ, Fung C, Kollmannsberger C, Martin NE, Einhorn LH, Cox NJ, Frisina RD, Travis LB, Dolan ME. Comprehensive association analysis of speech recognition thresholds after cisplatin-based chemotherapy in survivors of adult-onset cancer. Cancer Med 2023; 12:2999-3012. [PMID: 36097363 PMCID: PMC9939144 DOI: 10.1002/cam4.5218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 11/05/2022] Open
Abstract
PURPOSE Deficits in speech understanding constitute one of the most severe consequences of hearing loss. Here we investigate the clinical and genetic risk factors for symmetric deterioration of speech recognition thresholds (SRT) among cancer survivors treated with cisplatin. METHODS SRT was measured using spondaic words and calculating the mean of measurements for both ears with symmetric SRT values. For clinical associations, SRT-based hearing disability (SHD) was defined as SRT≥15 dB hearing loss and clinical variables were derived from the study dataset. Genotyped blood samples were used for GWAS with rank-based inverse normal transformed SRT values as the response variable. Age was used as a covariate in association analyses. RESULTS SHD was inversely associated with self-reported health (p = 0.004). Current smoking (p = 0.002), years of smoking (p = 0.02), BMI (p < 0.001), and peripheral motor neuropathy (p = 0.003) were positively associated with SHD, while physical activity was inversely associated with SHD (p = 0.005). In contrast, cumulative cisplatin dose, peripheral sensory neuropathy, hypertension, and hypercholesterolemia were not associated with SHD. Although no genetic variants had an association p value < 5 × 10-8 , 22 genetic variants were suggestively associated (p < 10-5 ) with SRT deterioration. Three of the top variants in 10 respective linkage disequilibrium regions were either positioned within the coding sequence or were eQTLs for genes involved in neuronal development (ATE1, ENAH, and ZFHX3). CONCLUSION Current results improve our understanding of risk factors for SRT deterioration in cancer survivors. Higher BMI, lower physical activity, and smoking are associated with SHD. Larger samples would allow for expansion of the current findings on the genetic architecture of SRT.
Collapse
Affiliation(s)
| | - Xindi Zhang
- Department of MedicineUniversity of ChicagoChicagoIllinoisUSA
| | - Paul C. Dinh
- Department of Medical OncologyIndiana UniversityIndianapolisIndianaUSA
| | - Victoria A. Sanchez
- Department of Otolaryngology—Head and Neck SurgeryUniversity of South FloridaTampaFloridaUSA
| | | | - Megan M. Shuey
- Department of Medicine and Vanderbilt Genetics Institute, Vanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Tessa Nguyen
- Center for Audiology, Speech, Language and LearningNorthwesthern UniversityChicagoIllinoisUSA
| | | | - Darren R. Feldman
- Department of Medical Oncology, Memorial Sloan‐Kettering Cancer CenterNew YorkNew YorkUSA
| | - David J. Vaughn
- Department of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Chunkit Fung
- J.P. Wilmot Cancer Institute, University of Rochester Medical CenterRochesterNew YorkUSA
| | | | - Neil E. Martin
- Department of Radiation OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
| | | | - Nancy J. Cox
- Department of Medicine and Vanderbilt Genetics Institute, Vanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Robert D. Frisina
- Departments of Medical Engineering and Communication Sciences and Disorders, Global Center for Hearing and Speech ResearchUniversity of South FloridaTampaFloridaUSA
| | - Lois B. Travis
- Department of Medical OncologyIndiana UniversityIndianapolisIndianaUSA
| | | |
Collapse
|
13
|
Wang X, Wang Z, Wu J, Wang L, Li X, Shen H, Li H, Xu J, Li W, Chen G. Thioredoxin 1 regulates the pentose phosphate pathway via ATM phosphorylation after experimental subarachnoid hemorrhage in rats. Brain Res Bull 2022; 185:162-173. [PMID: 35588962 DOI: 10.1016/j.brainresbull.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/20/2022] [Accepted: 05/12/2022] [Indexed: 11/18/2022]
Abstract
Subarachnoid hemorrhage (SAH), a type of hemorrhagic stroke, is a neurological emergency with high morbidity and mortality. Early brain injury (EBI) after SAH is the leading cause of poor prognosis in SAH patients. TRX system is a NADPH-dependent antioxidant system which is composed of thioredoxin reductase (TRXR), thioredoxin (TRX). The pentose phosphate pathway (PPP), a pathway through which glucose can be metabolized, is a major source of NADPH. Thioredoxin 1 (TRX1) is a member of thioredoxin system mainly located in cytoplasm. Serine/threonine kinases ataxia telangiectasia mutated (ATM) is an important oxidative stress receptor, and TRX1 can regulate ATM phosphorylation and then affect the activity of PPP key enzyme glucose 6-phosphate dehydrogenase (G6PD). However, whether TRX1 is involved in the regulation of PPP pathway after subarachnoid hemorrhage remains unclear. The results showed that after SAH, the level of TRX1 and phosphor-ATM decreased while the level of TRXR1 increased. G6PD protein level remained unchanged but the activity decreased, and the NADPH contents decreased. Overexpression of TRX1 by lentivirus upregulates the level of phosphor-ATM, G6PD activity and NADPH content. TRX1 overexpression improved short-term and long-term neurobehavioral outcomes and alleviated neuronal impairment in rats. Nissl staining showed that upregulation of TRX1 reduced cortical neuron injury. Our study shows that TRX1 participates in the PPP pathway by regulating phosphorylation ATM, which is accomplished by affecting G6PD activity. TRX1 may be an important target for EBI intervention after SAH.
Collapse
Affiliation(s)
- Xiaodong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Jie Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Lingling Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Jianguo Xu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Wen Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| |
Collapse
|
14
|
Neha S, Dholaniya PS. The Prevailing Role of Topoisomerase 2 Beta and its Associated Genes in Neurons. Mol Neurobiol 2021; 58:6443-6459. [PMID: 34546528 DOI: 10.1007/s12035-021-02561-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 09/11/2021] [Indexed: 12/01/2022]
Abstract
Topoisomerase 2 beta (TOP2β) is an enzyme that alters the topological states of DNA by making a transient double-strand break during the transcription process. The direct interaction of TOP2β with DNA strand results in transcriptional regulation of certain genes and some studies have suggested that a particular set of genes are regulated by TOP2β, which have a prominent role in various stages of neuron from development to degeneration. In this review, we discuss the role of TOP2β in various phases of the neuron's life. Based on the existing reports, we have compiled the list of genes, which are directly regulated by the enzyme, from different studies and performed their functional classification. We discuss the role of these genes in neurogenesis, neuron migration, fate determination, differentiation and maturation, generation of neural circuits, and senescence.
Collapse
Affiliation(s)
- Neha S
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500 046, India
| | - Pankaj Singh Dholaniya
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500 046, India.
| |
Collapse
|
15
|
Moulay Lakhdar I, Ferlazzo ML, Al Choboq J, Berthel E, Sonzogni L, Devic C, Granzotto A, Thariat J, Foray N. Fibroblasts from Retinoblastoma Patients Show Radiosensitivity Linked to Abnormal Localization of the ATM Protein. Curr Eye Res 2020; 46:546-557. [PMID: 32862699 DOI: 10.1080/02713683.2020.1808998] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE/AIM OF THE STUDY Retinoblastoma (Rb) is a rare form of pediatric cancer that develops from retina cells. Bilateral and some unilateral forms of Rb are associated with heterozygous germline mutations of the (retinoblastoma 1) RB1 gene. RB1 mutations are also associated with a significant risk of secondary malignancy like head and neck tumors. Hence, to date, even if Rb patients are less subjected to radiotherapy to treat their primary ocular tumors, their healthy tissues may be exposed to significant doses of ionizing radiation during the treatment against their secondary malignancies with a significant risk of adverse tissue reactions (radiosensitivity) and/or radiation-induced cancer (radiosusceptibility). However, the biological role of the Rb protein in response to radiation remains misunderstood. Since the ataxia telangiectasia mutated (ATM) protein is a key protein of radiation response and since untransformed skin fibroblasts are a current model to quantify cellular radiosensitivity, we investigated here for the first time the functionality of the ATM-dependent signaling and repair pathway of the radiation-induced DNA double-strand breaks (DSB) in irradiated skin fibroblasts derived from Rb patients. MATERIALS AND METHODS The major biomarkers of the DSB repair and signaling, namely clonogenic cell survival, micronuclei, nuclear foci of the phosphorylated forms of the X variant of the H2A histone (γH2AX), the phosphorylated forms of the ATM protein (pATM) and the meiotic recombination 11 nuclease (MRE11) were assessed in untransformed skin fibroblasts derived from three Rb patients. RESULTS Skin fibroblasts from Rb patients showed significant cellular radiosensitivity, incomplete DSB recognition, delay in the ATM nucleo-shuttling and exacerbated MRE11 nuclease activity. Treatment with statin and bisphosphonates led to significant complementation of these impairments. CONCLUSIONS Our findings strongly suggest the involvement of the ATM kinase in the radiosensitivity/radiosusceptibility phenotype observed in Rb cases.
Collapse
Affiliation(s)
- Ismahane Moulay Lakhdar
- Institut National De La Santé Et De La Recherche Médicale, UA8 Unit, Radiations, Defense, Health and Environment, Centre Léon-Bérard, Lyon, France
| | - Mélanie L Ferlazzo
- Institut National De La Santé Et De La Recherche Médicale, UA8 Unit, Radiations, Defense, Health and Environment, Centre Léon-Bérard, Lyon, France
| | - Joelle Al Choboq
- Institut National De La Santé Et De La Recherche Médicale, UA8 Unit, Radiations, Defense, Health and Environment, Centre Léon-Bérard, Lyon, France
| | - Elise Berthel
- Institut National De La Santé Et De La Recherche Médicale, UA8 Unit, Radiations, Defense, Health and Environment, Centre Léon-Bérard, Lyon, France
| | - Laurène Sonzogni
- Institut National De La Santé Et De La Recherche Médicale, UA8 Unit, Radiations, Defense, Health and Environment, Centre Léon-Bérard, Lyon, France
| | - Clément Devic
- Institut National De La Santé Et De La Recherche Médicale, UA8 Unit, Radiations, Defense, Health and Environment, Centre Léon-Bérard, Lyon, France.,Fibermetrix, 7 Allée De l'Europe, Entsheim, France
| | - Adeline Granzotto
- Institut National De La Santé Et De La Recherche Médicale, UA8 Unit, Radiations, Defense, Health and Environment, Centre Léon-Bérard, Lyon, France
| | | | - Nicolas Foray
- Institut National De La Santé Et De La Recherche Médicale, UA8 Unit, Radiations, Defense, Health and Environment, Centre Léon-Bérard, Lyon, France
| |
Collapse
|
16
|
Wang Y, Hao Y, Zhao Y, Huang Y, Lai D, Du T, Wan X, Zhu Y, Liu Z, Wang Y, Wang N, Zhang P. TRIM28 and TRIM27 are required for expressions of PDGFRβ and contractile phenotypic genes by vascular smooth muscle cells. FASEB J 2020; 34:6271-6283. [PMID: 32162409 DOI: 10.1096/fj.201902828rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/20/2020] [Accepted: 02/27/2020] [Indexed: 12/12/2022]
Abstract
Vascular smooth muscle cells (VSMCs) in the normal arterial media continually express contractile phenotypic markers which are reduced dramatically in response to injury. Tripartite motif-containing proteins are a family of scaffold proteins shown to regulate gene silencing, cell growth, and differentiation. We here investigated the biological role of tripartite motif-containing 28 (TRIM28) and tripartite motif-containing 27 (TRIM27) in VSMCs. We observed that siRNA-mediated knockdown of TRIM28 and TRIM27 inhibited platelet-derived growth factor (PDGF)-induced migration in human VSMCs. Both TRIM28 and TRIM27 can regulate serum response element activity and were required for maintaining the contractile gene expression in human VSMCs. At the same time, TRIM28 and TRIM27 knockdown reduced the expression of PDGF receptor-β (PDGFRβ) and the phosphorylation of its downstream signaling components. Immunoprecipitation showed that TRIM28 formed complexes with TRIM27 through its N-terminal RING-B boxes-Coiled-Coil domain. Furthermore, TRIM28 and TRIM27 were shown to be upregulated and mediate the VSMC contractile marker gene and PDGFRβ expression in differentiating human bone marrow mesenchymal stem cells. In conclusion, we identified that TRIM28 and TRIM27 cooperatively maintain the endogenous expression of PDGFRβ and contractile phenotype of human VSMCs.
Collapse
Affiliation(s)
- Yinfang Wang
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Cardiovascular Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yilong Hao
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanyuan Zhao
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yitong Huang
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dongwu Lai
- Department of Cardiovascular Medicine and Vascular Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Du
- Department of Gastrointestinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaohong Wan
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Yuefeng Zhu
- Department of Cardiovascular Medicine and Vascular Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zongjun Liu
- Department of Cardiovascular Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Nanping Wang
- The Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Peng Zhang
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Cardiovascular Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Hefei, China
| |
Collapse
|
17
|
Xie GH, Dai HJ, Liu F, Zhang YP, Zhu L, Nie JJ, Wu JH. A Dual Role of ATM in Ischemic Preconditioning and Ischemic Injury. Cell Mol Neurobiol 2019; 40:785-799. [PMID: 31845160 DOI: 10.1007/s10571-019-00773-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 12/05/2019] [Indexed: 11/25/2022]
Abstract
The ataxia-telangiectasia mutated (ATM) protein is regarded as the linchpin of cellular defenses to stress. Deletion of ATM results in strong oxidative stress and degenerative diseases in the nervous system. However, the role of ATM in neuronal ischemic preconditioning and lethal ischemic injury is still largely unknown. In this study, mice cortical neurons preconditioned with sublethal exposure to oxygen glucose deprivation (OGD) exhibited ATM/glucose-6-phosphate dehydrogenase pathway activation. Additionally, pharmacological inhibition of ATM prior to the preconditioning reversed neuroprotection provided by preconditioning in vitro and in vivo. Meanwhile, we found that ATM/P53 pro-apoptosis pathway was driven by lethal OGD injury, and pharmacological inhibition of ATM during fatal oxygen-glucose deprivation/reperfusion injury promoted neuronal survival. More importantly, inhibition of ATM activity after cerebral ischemia protected against cerebral ischemic-reperfusion damage in mice. In conclusion, our data show the dual role of ATM in neuronal ischemic preconditioning and lethal ischemic injury, involving in the protection of ischemic preconditioning, but promoting neuronal death in lethal ischemic injury. Thus, the present study provides new opportunity for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Guang-Hui Xie
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Han-Jun Dai
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Fang Liu
- General surgery department of Xinhua Hospital of Hubei Province, Wuhan, 430015, China
| | - Ying-Pei Zhang
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Dong-Hu Road #169, Wuhan, 430071, Hubei, China
| | - Li Zhu
- Department of Pharmacy, Tongren Hospital of Wuhan University, Wuhan, 430071, China
| | - Jun-Jie Nie
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Dong-Hu Road #169, Wuhan, 430071, Hubei, China
| | - Jian-Hua Wu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Dong-Hu Road #169, Wuhan, 430071, Hubei, China.
| |
Collapse
|
18
|
Ferlazzo M, Berthel E, Granzotto A, Devic C, Sonzogni L, Bachelet JT, Pereira S, Bourguignon M, Sarasin A, Mezzina M, Foray N. Some mutations in the xeroderma pigmentosum D gene may lead to moderate but significant radiosensitivity associated with a delayed radiation-induced ATM nuclear localization. Int J Radiat Biol 2019; 96:394-410. [PMID: 31738647 DOI: 10.1080/09553002.2020.1694189] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Purpose: Xeroderma Pigmentosum (XP) is a rare, recessive genetic disease associated with photosensitivity, skin cancer proneness, neurological abnormalities and impaired nucleotide excision repair of the UV-induced DNA damage. Less frequently, XP can be associated with sensitivity to ionizing radiation (IR). Here, a complete radiobiological characterization was performed on a panel of fibroblasts derived from XP-group D patients (XPD).Materials and methods: Cellular radiosensitivity and the functionality of the recognition and repair of chromosome breaks and DNA double-strand breaks (DSB) was evaluated by different techniques including clonogenic cell survival, micronuclei, premature chromosome condensation, pulsed-field gel electrophoresis, chromatin decondensation and immunofluorescence assays. Quantitative correlations between each endpoint were analyzed systematically.Results: Among the seven fibroblast cell lines tested, those derived from three non-relative patients holding the p.[Arg683Trp];[Arg616Pro] XPD mutations showed significant cellular radiosensitivity, high yield of residual micronuclei, incomplete DSB recognition, DSB and chromosome repair defects, impaired ATM, MRE11 relocalization, significant chromatin decondensation. Interestingly, XPD transduction and treatment with statins and bisphosphonates known to accelerate the radiation-induced ATM nucleoshuttling led to significant complementation of these impairments.Conclusions: Our findings suggest that some subsets of XPD patients may be at risk of radiosensitivity reactions and treatment with statins and bisphosphonates may be an interesting approach of radioprotection countermeasure. Different mechanistic models were discussed to better understand the potential specificity of the p.[Arg683Trp];[Arg616Pro] XPD mutations.
Collapse
Affiliation(s)
- Mélanie Ferlazzo
- Institut National de la Santé et de la Recherche Médicale, UA8 Unit, "Radiations: Defense, Health and Environment" Centre Léon-Bérard, Lyon, France
| | - Elise Berthel
- Institut National de la Santé et de la Recherche Médicale, UA8 Unit, "Radiations: Defense, Health and Environment" Centre Léon-Bérard, Lyon, France
| | - Adeline Granzotto
- Institut National de la Santé et de la Recherche Médicale, UA8 Unit, "Radiations: Defense, Health and Environment" Centre Léon-Bérard, Lyon, France
| | - Clément Devic
- Institut National de la Santé et de la Recherche Médicale, UA8 Unit, "Radiations: Defense, Health and Environment" Centre Léon-Bérard, Lyon, France.,Fibermetrix, Entzheim, France
| | - Laurène Sonzogni
- Institut National de la Santé et de la Recherche Médicale, UA8 Unit, "Radiations: Defense, Health and Environment" Centre Léon-Bérard, Lyon, France
| | - Jean-Thomas Bachelet
- Institut National de la Santé et de la Recherche Médicale, UA8 Unit, "Radiations: Defense, Health and Environment" Centre Léon-Bérard, Lyon, France
| | - Sandrine Pereira
- Institut National de la Santé et de la Recherche Médicale, UA8 Unit, "Radiations: Defense, Health and Environment" Centre Léon-Bérard, Lyon, France
| | - Michel Bourguignon
- Institut National de la Santé et de la Recherche Médicale, UA8 Unit, "Radiations: Defense, Health and Environment" Centre Léon-Bérard, Lyon, France.,Faculté de Médecine Simone-Veil, Université Paris-Saclay, Versailles, France
| | - Alain Sarasin
- Centre National de la Recherche Scientifique, UMR 8200, Institut Gustave-Roussy, Villejuif, France
| | - Mauro Mezzina
- European Association for Scientific Career Orientation, Paray-Vieille-Poste, France
| | - Nicolas Foray
- Institut National de la Santé et de la Recherche Médicale, UA8 Unit, "Radiations: Defense, Health and Environment" Centre Léon-Bérard, Lyon, France
| |
Collapse
|
19
|
Cheng W, Kao Y, Chao T, Lin Y, Chen S, Chen Y. MicroRNA-133 suppresses ZFHX3-dependent atrial remodelling and arrhythmia. Acta Physiol (Oxf) 2019; 227:e13322. [PMID: 31152485 DOI: 10.1111/apha.13322] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 05/16/2019] [Accepted: 05/28/2019] [Indexed: 01/26/2023]
Abstract
AIM Atrial fibrillation (AF) is an important cause of morbidity and mortality in the modern world. Loss-of-function mutation in the zinc finger homeobox 3 gene (ZFHX3) is associated with increased risk of AF. MicroRNAs (miRNAs) participate in arrhythmogenesis, and thus miRNA modulators may be applicable as therapeutic modalities for AF. However, the altered miRNA profiles after ZFHX3 knockdown (KD) remain unclear. This study aimed to analyse the changes of miRNA expression in loss-of-function of ZFHX3 and the effect of miRNA modulation on atrial arrhythmias in this model. METHODS We performed small RNA deep sequencing on ZFHX3-KD and control HL-1 mouse atrial myocytes. The effect of miRNAs on ZFHX3-dependent atrial arrhythmia was evaluated through in vitro and in vivo assays in mice. RESULTS Among the differentially expressed miRNAs, 11 were down-regulated and 6 were up-regulated after ZFHX3 KD. Quantitative real-time PCR analysis confirmed that after ZFHX3 KD, miR-133a and miR-133b were significantly down-regulated, whereas miR-184 was the most significantly up-regulated. DIANA-miRPath analysis suggested that miR-133a/b down-regulation increases the targeted signalling of miR-133 (ie, adrenergic, Wnt/calcium and fibroblast growth factor receptor 1 signalling), which could contribute to pathological remodelling of cardiomyocytes. These results were confirmed through Western blotting. After transfection of miR-133a/b mimics in ZFHX3-KD cells, miR-133a/b levels increased, accompanied by the inhibition of their target signalling. Treatment with miR-133a/b mimics diminished ZFHX3 KD-induced atrial ectopy in mice. CONCLUSION ZFHX3-KD promotes distinct miRNA expressional changes in atrial myocytes. MiR-133a/b mimics may reverse signalling of ZFHX3 KD-mediated cardiac remodelling and atrial arrhythmia.
Collapse
Affiliation(s)
- Wan‐Li Cheng
- Graduate Institute of Clinical Medicine, College of Medicine Taipei Medical University Taipei Taiwan
| | - Yu‐Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine Taipei Medical University Taipei Taiwan
- Department of Medical Education and Research, Wan Fang Hospital Taipei Medical University Taipei Taiwan
| | - Tze‐Fan Chao
- Division of Cardiology and Cardiovascular Research Center Taipei Veterans General Hospital Taipei Taiwan
| | - Yung‐Kuo Lin
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine Taipei Medical University Taipei Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital Taipei Medical University Taipei Taiwan
| | - Shih‐Ann Chen
- Division of Cardiology and Cardiovascular Research Center Taipei Veterans General Hospital Taipei Taiwan
- School of Medicine National Yang‐Ming University Taipei Taiwan
| | - Yi‐Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine Taipei Medical University Taipei Taiwan
- Cardiovascular Research Center, Wan Fang Hospital Taipei Medical University Taipei Taiwan
| |
Collapse
|
20
|
Hanas JS, Hocker JRS, Lerner MR, Couch JR. Distinguishing and phenotype monitoring of traumatic brain injury and post-concussion syndrome including chronic migraine in serum of Iraq and Afghanistan war veterans. PLoS One 2019; 14:e0215762. [PMID: 31026304 PMCID: PMC6485717 DOI: 10.1371/journal.pone.0215762] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/08/2019] [Indexed: 12/31/2022] Open
Abstract
Traumatic Brain Injury (TBI) and persistent post-concussion syndrome (PCS) including chronic migraine (CM) are major health issues for civilians and the military. It is important to understand underlying biochemical mechanisms of these conditions, and be able to monitor them in an accurate and minimally invasive manner. This study describes the initial use of a novel serum analytical platform to help distinguish TBI patients, including those with post-traumatic headache (PTH), and to help identify phenotypes at play in these disorders. The hypothesis is that physiological responses to disease states like TBI and PTH and related bodily stresses are reflected in biomolecules in the blood in disease-specific manner. Leave one out (serum sample) cross validations (LOOCV) and sample randomizations were utilized to distinguished serum samples from the following TBI patient groups: TBI +PTSD + CM + severe depression (TBI "most affected" group) vs healthy controls, TBI "most affected" vs TBI, TBI vs controls, TBI + CM vs controls, and TBI + CM vs TBI. Inter-group discriminatory p values were ≤ 10-10, and sample group randomizations resulted in p non-significant values. Peptide/protein identifications of discriminatory mass peaks from the TBI "most affected" vs controls and from the TBI plus vs TBI minus CM groups yielded information of the cellular/molecular effects of these disorders (immune responses, amyloidosis/Alzheimer's disease/dementia, neuronal development). More specific biochemical disease effects appear to involve blood brain barrier, depression, migraine headache, autoimmunity, and autophagy pathways. This study demonstrated the ability for the first time of a novel, accurate, biomarker platform to monitor these conditions in serum, and help identify biochemical relationships leading to better understanding of these disorders and to potential therapeutic approaches.
Collapse
Affiliation(s)
- Jay S. Hanas
- Department of Biochemistry, University of Oklahoma College of Medicine, Oklahoma City, Oklahoma, United States of America
- Department of Surgery, University of Oklahoma College of Medicine, Oklahoma City, Oklahoma, United States of America
- Veterans Administration Hospital, Oklahoma City, Oklahoma, United States of America
| | - James R. S. Hocker
- Department of Biochemistry, University of Oklahoma College of Medicine, Oklahoma City, Oklahoma, United States of America
| | - Megan R. Lerner
- Department of Surgery, University of Oklahoma College of Medicine, Oklahoma City, Oklahoma, United States of America
| | - James R. Couch
- Department of Neurology, University of Oklahoma College of Medicine, Oklahoma City, Oklahoma, United States of America
- Department of Neurology, Veterans Administration Hospital, Oklahoma City, Oklahoma, United States of America
| |
Collapse
|
21
|
Tal E, Alfo M, Zha S, Barzilai A, De Zeeuw CI, Ziv Y, Shiloh Y. Inactive Atm abrogates DSB repair in mouse cerebellum more than does Atm loss, without causing a neurological phenotype. DNA Repair (Amst) 2018; 72:10-17. [PMID: 30348496 PMCID: PMC7985968 DOI: 10.1016/j.dnarep.2018.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 09/22/2018] [Accepted: 10/04/2018] [Indexed: 12/11/2022]
Abstract
The genome instability syndrome, ataxia-telangiectasia (A-T) is caused by null mutations in the ATM gene, that lead to complete loss or inactivation of the gene's product, the ATM protein kinase. ATM is the primary mobilizer of the cellular response to DNA double-strand breaks (DSBs) - a broad signaling network in which many components are ATM targets. The major clinical feature of A-T is cerebellar atrophy, characterized by relentless loss of Purkinje and granule cells. In Atm-knockout (Atm-KO) mice, complete loss of Atm leads to a very mild neurological phenotype, suggesting that Atm loss is not sufficient to markedly abrogate cerebellar structure and function in this organism. Expression of inactive ("kinase-dead") Atm (AtmKD) in mice leads to embryonic lethality, raising the question of whether conditional expression of AtmKD in the murine nervous system would lead to a more pronounced neurological phenotype than Atm loss. We generated two mouse strains in which AtmKD was conditionally expressed as the sole Atm species: one in the CNS and one specifically in Purkinje cells. Focusing our analysis on Purkinje cells, the dynamics of DSB readouts indicated that DSB repair was delayed longer in the presence of AtmKD compared to Atm loss. However, both strains exhibited normal life span and displayed no gross cerebellar histological abnormalities or significant neurological phenotype. We conclude that the presence of AtmKD is indeed more harmful to DSB repair than Atm loss, but the murine central nervous system can reasonably tolerate the extent of this DSB repair impairment. Greater pressure needs to be exerted on genome stability to obtain a mouse model that recapitulates the severe A-T neurological phenotype.
Collapse
Affiliation(s)
- Efrat Tal
- The David and Inez Myers Laboratory for Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, New York, United States
| | - Marina Alfo
- The David and Inez Myers Laboratory for Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, New York, United States
| | - Shan Zha
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Ari Barzilai
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, and the Royal Netherlands Academy of Art & Science, Amsterdam, Netherlands
| | - Yael Ziv
- The David and Inez Myers Laboratory for Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, New York, United States
| | - Yosef Shiloh
- The David and Inez Myers Laboratory for Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, New York, United States.
| |
Collapse
|
22
|
Fuller TD, Westfall TA, Das T, Dawson DV, Slusarski DC. High-throughput behavioral assay to investigate seizure sensitivity in zebrafish implicates ZFHX3 in epilepsy. J Neurogenet 2018; 32:92-105. [PMID: 29718741 DOI: 10.1080/01677063.2018.1445247] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epilepsy, which affects ∼1% of the population, is caused by abnormal synchronous neural activity in the central nervous system (CNS). While there is a significant genetic contribution to epilepsy, the underlying causes for the majority of genetic cases remain unknown. The NIH Undiagnosed Diseases Project (UDP) utilized exome sequencing to identify genetic variants in patients affected by various conditions with undefined etiology, including epilepsy. Confirming the functional relevance of the candidate genes identified by exome sequencing in a timely manner is crucial to translating exome data into clinically useful information. To this end, we developed a high throughput version of a seizure-sensitivity assay in zebrafish (Danio rerio) to rapidly evaluate candidate genes found by exome sequencing. We developed open access software, Studying Epilepsy In Zebrafish using R (SEIZR), to efficiently analyze the data. SEIZR was validated by disrupting function of a known epilepsy gene, prickle 1. Next, using SEIZR, we analyzed a candidate gene from the UDP screen (Zinc Finger Homeobox 3, ZFHX3), and showed that reduced ZFHX3 function in zebrafish results in a significant hyperactive response to the convulsant drug pentylenetetrazol (PTZ). We find that ZFHX3 shows strong expression in the CNS during neurogenesis including in the pallium, thalamus, tegmentum, reticular formation, and medulla oblongata - all regions which have roles in motor control and coordination. Our findings in the zebrafish confirm human ZFHX3 is a strong candidate for further neurological studies. We offer SEIZR to other researchers as a tool to rapidly and efficiently analyze large behavioral data sets.
Collapse
Affiliation(s)
- Tyson D Fuller
- a Department of Biology , University of Iowa , Iowa City , IA , USA.,b Interdisciplinary Graduate Program in Genetics , University of Iowa , Iowa City , IA , USA
| | - Trudi A Westfall
- a Department of Biology , University of Iowa , Iowa City , IA , USA
| | - Tirthasree Das
- a Department of Biology , University of Iowa , Iowa City , IA , USA
| | - Deborah V Dawson
- b Interdisciplinary Graduate Program in Genetics , University of Iowa , Iowa City , IA , USA.,c Iowa Institute for Oral Health Research , University of Iowa , Iowa City , IA , USA.,d Department of Biostatistics , University of Iowa , Iowa City , IA , USA
| | | |
Collapse
|
23
|
Insight into the molecular mechanism of miR-192 regulating Escherichia coli resistance in piglets. Biosci Rep 2018; 38:BSR20171160. [PMID: 29363554 PMCID: PMC5821941 DOI: 10.1042/bsr20171160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/31/2017] [Accepted: 01/23/2018] [Indexed: 11/21/2022] Open
Abstract
MicroRNAs (miRNAs) have important roles in many cellular processes, including cell proliferation, growth and development, and disease control. Previous study demonstrated that the expression of two highly homologous miRNAs (miR-192 and miR-215) was up-regulated in weaned piglets with Escherichia coli F18 infection. However, the potential molecular mechanism of miR-192 in regulating E. coli infection remains unclear in pigs. In the present study, we analyzed the relationship between level of miR-192 and degree of E. coli resistance using transcription activator-like effector nuclease (TALEN), in vitro bacterial adhesion assays, and target genes research. A TALEN expression vector that specifically recognizes the pig miR-192 was constructed and then monoclonal epithelial cells defective in miR-192 were established. We found that miR-192 knockout led to enhance the adhesion ability of the E. coli strains F18ab, F18ac and K88ac, meanwhile increase the expression of target genes (DLG5 and ALCAM) by qPCR and Western blotting analysis. The results suggested that miR-192 and its key target genes (DLG5 and ALCAM) could have a key role in E. coli infection. Based on our findings, we propose that further investigation of miR-192 function is likely to lead to insights into the molecular mechanisms of E. coli infection.
Collapse
|
24
|
Walsh P, Truong V, Hill C, Stoflet ND, Baden J, Low WC, Keirstead SA, Dutton JR, Parr AM. Defined Culture Conditions Accelerate Small-molecule-assisted Neural Induction for the Production of Neural Progenitors from Human-induced Pluripotent Stem Cells. Cell Transplant 2017; 26:1890-1902. [PMID: 29390875 PMCID: PMC5802631 DOI: 10.1177/0963689717737074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 09/20/2017] [Accepted: 09/25/2017] [Indexed: 12/13/2022] Open
Abstract
The use of defined conditions for derivation, maintenance, and differentiation of human-induced pluripotent stem cells (hiPSCs) provides a superior experimental platform to discover culture responses to differentiation cues and elucidate the basic requirements for cell differentiation and fate restriction. Adoption of defined systems for reprogramming, undifferentiated growth, and differentiation of hiPSCs was found to significantly influence early stage differentiation signaling requirements and temporal kinetics for the production of primitive neuroectoderm. The bone morphogenic protein receptor agonist LDN-193189 was found to be necessary and sufficient for neural induction in a monolayer system with landmark antigens paired box 6 and sex-determining region Y-box 1 appearing within 72 h. Preliminary evidence suggests this neuroepithelium was further differentiated to generate ventral spinal neural progenitors that produced electrophysiologically active neurons in vitro, maintaining viability posttransplantation in an immunocompromised host. Our findings support current developments in the field, demonstrating that adoption of defined reagents for the culture and manipulation of pluripotent stem cells is advantages in terms of simplification and acceleration of differentiation protocols, which will be critical for future clinical translation.
Collapse
Affiliation(s)
- Patrick Walsh
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Vincent Truong
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Caitlin Hill
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Nicolas D. Stoflet
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA
| | - Jessica Baden
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Walter C. Low
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Susan A. Keirstead
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - James R. Dutton
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Ann M. Parr
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
25
|
Yang XH, Tang F, Shin J, Cunningham JM. Incorporating genomic, transcriptomic and clinical data: a prognostic and stem cell-like MYC and PRC imbalance in high-risk neuroblastoma. BMC SYSTEMS BIOLOGY 2017; 11:92. [PMID: 28984200 PMCID: PMC5629556 DOI: 10.1186/s12918-017-0466-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Previous studies suggested that cancer cells possess traits reminiscent of the biological mechanisms ascribed to normal embryonic stem cells (ESCs) regulated by MYC and Polycomb repressive complex 2 (PRC2). Several poorly differentiated adult tumors showed preferentially high expression levels in targets of MYC, coincident with low expression levels in targets of PRC2. This paper will reveal this ESC-like cancer signature in high-risk neuroblastoma (HR-NB), the most common extracranial solid tumor in children. METHODS We systematically assembled genomic variants, gene expression changes, priori knowledge of gene functions, and clinical outcomes to identify prognostic multigene signatures. First, we assigned a new, individualized prognostic index using the relative expressions between the poor- and good-outcome signature genes. We then characterized HR-NB aggressiveness beyond these prognostic multigene signatures through the imbalanced effects of MYC and PRC2 signaling. We further analyzed Retinoic acid (RA)-induced HR-NB cells to model tumor cell differentiation. Finally, we performed in vitro validation on ZFHX3, a cell differentiation marker silenced by PRC2, and compared cell morphology changes before and after blocking PRC2 in HR-NB cells. RESULTS A significant concurrence existed between exons with verified variants and genes showing MYCN-dependent expression in HR-NB. From these biomarker candidates, we identified two novel prognostic gene-set pairs with multi-scale oncogenic defects. Intriguingly, MYC targets over-represented an unfavorable component of the identified prognostic signatures while PRC2 targets over-represented a favorable component. The cell cycle arrest and neuronal differentiation marker ZFHX3 was identified as one of PRC2-silenced tumor suppressor candidates. Blocking PRC2 reduced tumor cell growth and increased the mRNA expression levels of ZFHX3 in an early treatment stage. This hypothesis-driven systems bioinformatics work offered novel insights into the PRC2-mediated tumor cell growth and differentiation in neuroblastoma, which may exert oncogenic effects together with MYC regulation. CONCLUSION Our results propose a prognostic effect of imbalanced MYC and PRC2 moderations in pediatric HR-NB for the first time. This study demonstrates an incorporation of genomic landscapes and transcriptomic profiles into the hypothesis-driven precision prognosis and biomarker discovery. The application of this approach to neuroblastoma, as well as other cancer more broadly, could contribute to reduced relapse and mortality rates in the long term.
Collapse
Affiliation(s)
- Xinan Holly Yang
- Section of Hematology and Oncology, Departments of Pediatrics, University of Chicago, Chicago, IL, 60637, USA.
| | - Fangming Tang
- Section of Hematology and Oncology, Departments of Pediatrics, University of Chicago, Chicago, IL, 60637, USA
| | - Jisu Shin
- Section of Hematology and Oncology, Departments of Pediatrics, University of Chicago, Chicago, IL, 60637, USA
| | - John M Cunningham
- Section of Hematology and Oncology, Departments of Pediatrics, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
26
|
Kataoka H, Miura Y, Kawaguchi M, Suzuki S, Okamoto Y, Ozeki K, Shimura T, Mizoshita T, Kubota E, Tanida S, Takahashi S, Asai K, Joh T. Expression and subcellular localization of AT motif binding factor 1 in colon tumours. Mol Med Rep 2017; 16:3095-3102. [PMID: 28713972 PMCID: PMC5548027 DOI: 10.3892/mmr.2017.7016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 04/19/2017] [Indexed: 02/02/2023] Open
Abstract
AT motif binding factor 1 (ATBF1) is a transcriptional regulator that functions as a tumour suppressor to negatively affect cancer cell growth. In the present study four specific polyclonal antibodies against ATBF1 were generated, and the expression and intracellular localization of ATBF1 in colonic mucosae, polyps, adenoma and adenocarcinoma tissue samples were investigated. The four polyclonal antibodies produced were as follows: MB34 and MB49, which recognize the N- and C-terminal fragments of ATBF1, respectively; and D1-120 and MB44, which recognize the middle fragments of ATBF1 that contain three nuclear localization signals (NLS). In total, 191 colon samples were examined by immunohistochemical analysis. In addition, colon cancer cells were transfected with four ATBF1 expression vectors, and the subcellular localization of each fragment was examined. Normal colon mucosal cells were not observed to express ATBF1. However, a small number of hyperplastic polyps, serrated adenomas and tubular adenomas expressed ATBF1. Colon cancer cells were observed to express D1-120- and MB44-reactive middle fragments of ATBF1 in their cell nuclei. However, the N- and C-terminal fragments of ATBF1 did not translocate to the nucleus. Transfection of ATBF1 fragments revealed cleavage of the ATBF1 protein and nuclear translocation of the cleaved middle portion containing the NLS. A positive correlation between the cytoplasmic localization of the N- and C-termini of ATBF1, nuclear localization of the middle portion of ATBF1 and malignant cancer cell invasion was observed. In conclusion, the results of the present study suggest that alterations in the expression and subcellular localization of ATBF1, as a result of post-transcriptional modifications, are associated with malignant features of colon tumours.
Collapse
Affiliation(s)
- Hiromi Kataoka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467‑8601, Japan
| | - Yutaka Miura
- Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467‑8601, Japan
| | - Makoto Kawaguchi
- Department of Pathology, Niigata Rosai Hospital, Japan Labor Health and Welfare Organization, Joetsu, Niigata 942‑8502, Japan
| | - Shugo Suzuki
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467‑8601, Japan
| | - Yasuyuki Okamoto
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467‑8601, Japan
| | - Keiji Ozeki
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467‑8601, Japan
| | - Takaya Shimura
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467‑8601, Japan
| | - Tsutomu Mizoshita
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467‑8601, Japan
| | - Eiji Kubota
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467‑8601, Japan
| | - Satoshi Tanida
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467‑8601, Japan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467‑8601, Japan
| | - Kiyofumi Asai
- Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467‑8601, Japan
| | - Takashi Joh
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467‑8601, Japan
| |
Collapse
|
27
|
Choy KR, Watters DJ. Neurodegeneration in ataxia-telangiectasia: Multiple roles of ATM kinase in cellular homeostasis. Dev Dyn 2017; 247:33-46. [PMID: 28543935 DOI: 10.1002/dvdy.24522] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/02/2017] [Accepted: 05/10/2017] [Indexed: 12/13/2022] Open
Abstract
Ataxia-telangiectasia (A-T) is characterized by neuronal degeneration, cancer, diabetes, immune deficiency, and increased sensitivity to ionizing radiation. A-T is attributed to the deficiency of the protein kinase coded by the ATM (ataxia-telangiectasia mutated) gene. ATM is a sensor of DNA double-strand breaks (DSBs) and signals to cell cycle checkpoints and the DNA repair machinery. ATM phosphorylates numerous substrates and activates many cell-signaling pathways. There has been considerable debate about whether a defective DNA damage response is causative of the neurological aspects of the disease. In proliferating cells, ATM is localized mainly in the nucleus; however, in postmitotic cells such as neurons, ATM is mostly cytoplasmic. Recent studies reveal an increasing number of roles for ATM in the cytoplasm, including activation by oxidative stress. ATM associates with organelles including mitochondria and peroxisomes, both sources of reactive oxygen species (ROS), which have been implicated in neurodegenerative diseases and aging. ATM is also associated with synaptic vesicles and has a role in regulating cellular homeostasis and autophagy. The cytoplasmic roles of ATM provide a new perspective on the neurodegenerative process in A-T. This review will examine the expanding roles of ATM in cellular homeostasis and relate these functions to the complex A-T phenotype. Developmental Dynamics 247:33-46, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kay Rui Choy
- School of Natural Sciences, Griffith University, Brisbane, Queensland, Australia
| | - Dianne J Watters
- School of Natural Sciences, Griffith University, Brisbane, Queensland, Australia
| |
Collapse
|
28
|
Wu J, Wang F, Su Z, Liu J, Hu S, Li H, Hu P, Wu D. Role of ataxia-telangiectasia mutated in hydrogen peroxide preconditioning against oxidative stress in Neuro-2a cells. Mol Med Rep 2017; 15:4280-4285. [DOI: 10.3892/mmr.2017.6510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 01/27/2017] [Indexed: 11/05/2022] Open
|
29
|
Chwastek J, Jantas D, Lasoń W. The ATM kinase inhibitor KU-55933 provides neuroprotection against hydrogen peroxide-induced cell damage via a γH2AX/p-p53/caspase-3-independent mechanism: Inhibition of calpain and cathepsin D. Int J Biochem Cell Biol 2017; 87:38-53. [PMID: 28341201 DOI: 10.1016/j.biocel.2017.03.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/20/2017] [Accepted: 03/20/2017] [Indexed: 02/07/2023]
Abstract
The role of the kinase ataxia-telangiectasia mutated (ATM), a well-known protein engaged in DNA damage repair, in the regulation of neuronal responses to oxidative stress remains unexplored. Thus, the neuroprotective efficacy of KU-55933, a potent inhibitor of ATM, against cell damage evoked by oxidative stress (hydrogen peroxide, H2O2) has been studied in human neuroblastoma SH-SY5Y cells and compared with the efficacy of this agent in models of doxorubicin (Dox)- and staurosporine (St)-evoked cell death. KU-55933 inhibited the cell death induced by H2O2 or Dox but not by St in undifferentiated (UN-) and retinoic acid-differentiated (RA)-SH-SY5Y cells, with a more pronounced effect in the latter cell phenotype. Furthermore, this ATM inhibitor attenuated the Dox- but not H2O2-induced caspase-3 activity in both UN- and RA-SH-SY5Y cells. Although KU-55933 inhibited the H2O2- and Dox-induced activation of ATM, it attenuated the toxin-induced phosphorylation of the proteins H2AX and p53 only in the latter model of cell damage. Moreover, the ATM inhibitor prevented the H2O2-evoked increases in calpain and cathepsin D activity and attenuated cell damage to a similar degree as inhibitors of calpain (MDL28170) and cathepsin D (pepstatin A). Finally, we confirmed the neuroprotective potential of KU-55933 against the H2O2- and Dox-evoked cell damage in primary mouse cerebellar granule cells and in the mouse hippocampal HT-22 cell line. Altogether, our results extend the neuroprotective portfolio of KU-55933 to a model of oxidative stress, with this effect not involving inhibition of the γH2AX/p-p53/caspase-3 pathway and instead associated with the attenuation of calpain and cathepsin D activity.
Collapse
Affiliation(s)
- Jakub Chwastek
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, Smętna Street 12, 31-343 Kraków, Poland
| | - Danuta Jantas
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, Smętna Street 12, 31-343 Kraków, Poland.
| | - Władysław Lasoń
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, Smętna Street 12, 31-343 Kraków, Poland
| |
Collapse
|
30
|
Bergström A, Kaalund SS, Skovgaard K, Andersen AD, Pakkenberg B, Rosenørn A, van Elburg RM, Thymann T, Greisen GO, Sangild PT. Limited effects of preterm birth and the first enteral nutrition on cerebellum morphology and gene expression in piglets. Physiol Rep 2017; 4:4/14/e12871. [PMID: 27462071 PMCID: PMC4962075 DOI: 10.14814/phy2.12871] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 06/30/2016] [Indexed: 01/07/2023] Open
Abstract
Preterm pigs show many signs of immaturity that are characteristic of preterm infants. In preterm infants, the cerebellum grows particularly rapid and hypoplasia and cellular lesions are associated with motor dysfunction and cognitive deficits. We hypothesized that functional brain delays observed in preterm pigs would be paralleled by both structural and molecular differences in the cerebellum relative to term born piglets. Cerebella were collected from term (n = 56) and preterm (90% gestation, n = 112) pigs at 0, 5, and 26 days after birth for stereological volume estimations, large‐scale qPCR gene expression analyses (selected neurodevelopmental genes) and western blot protein expression analysis (Sonic Hedgehog pathway). Memory and learning was tested using a T‐maze, documenting that preterm pigs showed delayed learning. Preterm pigs also showed reduced volume of both white and gray matter at all three ages but the proportion of white matter increased postnatally, relative to term pigs. Early initiation of enteral nutrition had limited structural or molecular effects. The Sonic Hedgehog pathway was unaffected by preterm birth. Few differences in expression of the selected genes were found, except consistently higher mRNA levels of Midkine, p75, and Neurotrophic factor 3 in the preterm cerebellum postnatally, probably reflecting an adaptive response to preterm birth. Pig cerebellar development appears more affected by postconceptional age than by environmental factors at birth or postnatally. Compensatory mechanisms following preterm birth may include faster white matter growth and increased expression of selected genes for neurotrophic factors and regulation of angiogenesis. While the pig cerebellum is immature in 90% gestation preterm pigs, it appears relatively mature and resilient toward environmental factors.
Collapse
Affiliation(s)
- Anders Bergström
- Comparative Pediatrics and Nutrition, Department of Clinical Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Sanne S Kaalund
- Comparative Pediatrics and Nutrition, Department of Clinical Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospitals, Copenhagen, Denmark
| | - Kerstin Skovgaard
- Veterinary Institute, Technical University of Denmark, Frederiksberg, Denmark
| | - Anders D Andersen
- Comparative Pediatrics and Nutrition, Department of Clinical Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Bente Pakkenberg
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospitals, Copenhagen, Denmark
| | - Ann Rosenørn
- Comparative Pediatrics and Nutrition, Department of Clinical Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Ruurd M van Elburg
- Danone Nutricia Early Life Nutrition, Nutricia Research, Utrecht, the Netherlands Emma Children's Hospital, Academic Medical Center, Amsterdam, the Netherlands
| | - Thomas Thymann
- Comparative Pediatrics and Nutrition, Department of Clinical Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Gorm O Greisen
- Department of Paediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Per T Sangild
- Comparative Pediatrics and Nutrition, Department of Clinical Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark Department of Paediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
31
|
Gokoolparsadh A, Fang Z, Braidy N, Lin P, Pardy CJ, Eapen V, Clarke R, Voineagu I. Transcriptional response to mitochondrial protease IMMP2L knockdown in human primary astrocytes. Biochem Biophys Res Commun 2017; 482:1252-1258. [DOI: 10.1016/j.bbrc.2016.12.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 12/03/2016] [Indexed: 10/20/2022]
|
32
|
Barzilai A, Schumacher B, Shiloh Y. Genome instability: Linking ageing and brain degeneration. Mech Ageing Dev 2017; 161:4-18. [DOI: 10.1016/j.mad.2016.03.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/23/2016] [Accepted: 03/26/2016] [Indexed: 02/06/2023]
|
33
|
Galluzzi L, Bravo-San Pedro JM, Blomgren K, Kroemer G. Autophagy in acute brain injury. Nat Rev Neurosci 2016; 17:467-84. [PMID: 27256553 DOI: 10.1038/nrn.2016.51] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Autophagy is an evolutionarily ancient mechanism that ensures the lysosomal degradation of old, supernumerary or ectopic cytoplasmic entities. Most eukaryotic cells, including neurons, rely on proficient autophagic responses for the maintenance of homeostasis in response to stress. Accordingly, autophagy mediates neuroprotective effects following some forms of acute brain damage, including methamphetamine intoxication, spinal cord injury and subarachnoid haemorrhage. In some other circumstances, however, the autophagic machinery precipitates a peculiar form of cell death (known as autosis) that contributes to the aetiology of other types of acute brain damage, such as neonatal asphyxia. Here, we dissect the context-specific impact of autophagy on non-infectious acute brain injury, emphasizing the possible therapeutic application of pharmacological activators and inhibitors of this catabolic process for neuroprotection.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Equipe 11 Labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France.,INSERM, U1138, 75006 Paris, France.,Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France.,Université Pierre et Marie Curie/Paris VI, 75006 Paris, France.,Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France
| | - José Manuel Bravo-San Pedro
- Equipe 11 Labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France.,INSERM, U1138, 75006 Paris, France.,Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France.,Université Pierre et Marie Curie/Paris VI, 75006 Paris, France.,Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France
| | - Klas Blomgren
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital Q2:07, 17176 Stockholm, Sweden
| | - Guido Kroemer
- Equipe 11 Labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France.,INSERM, U1138, 75006 Paris, France.,Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France.,Université Pierre et Marie Curie/Paris VI, 75006 Paris, France.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital Q2:07, 17176 Stockholm, Sweden.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France.,Pôle de Biologie, Hopitâl Européen George Pompidou, AP-HP, 75015 Paris, France
| |
Collapse
|
34
|
Kozlov SV, Waardenberg AJ, Engholm-Keller K, Arthur JW, Graham ME, Lavin M. Reactive Oxygen Species (ROS)-Activated ATM-Dependent Phosphorylation of Cytoplasmic Substrates Identified by Large-Scale Phosphoproteomics Screen. Mol Cell Proteomics 2016; 15:1032-47. [PMID: 26699800 PMCID: PMC4813686 DOI: 10.1074/mcp.m115.055723] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/08/2015] [Indexed: 01/06/2023] Open
Abstract
Ataxia-telangiectasia, mutated (ATM) protein plays a central role in phosphorylating a network of proteins in response to DNA damage. These proteins function in signaling pathways designed to maintain the stability of the genome and minimize the risk of disease by controlling cell cycle checkpoints, initiating DNA repair, and regulating gene expression. ATM kinase can be activated by a variety of stimuli, including oxidative stress. Here, we confirmed activation of cytoplasmic ATM by autophosphorylation at multiple sites. Then we employed a global quantitative phosphoproteomics approach to identify cytoplasmic proteins altered in their phosphorylation state in control and ataxia-telangiectasia (A-T) cells in response to oxidative damage. We demonstrated that ATM was activated by oxidative damage in the cytoplasm as well as in the nucleus and identified a total of 9,833 phosphorylation sites, including 6,686 high-confidence sites mapping to 2,536 unique proteins. A total of 62 differentially phosphorylated peptides were identified; of these, 43 were phosphorylated in control but not in A-T cells, and 19 varied in their level of phosphorylation. Motif enrichment analysis of phosphopeptides revealed that consensus ATM serine glutamine sites were overrepresented. When considering phosphorylation events, only observed in control cells (not observed in A-T cells), with predicted ATM sites phosphoSerine/phosphoThreonine glutamine, we narrowed this list to 11 candidate ATM-dependent cytoplasmic proteins. Two of these 11 were previously described as ATM substrates (HMGA1 and UIMCI/RAP80), another five were identified in a whole cell extract phosphoproteomic screens, and the remaining four proteins had not been identified previously in DNA damage response screens. We validated the phosphorylation of three of these proteins (oxidative stress responsive 1 (OSR1), HDGF, and ccdc82) as ATM dependent after H2O2 exposure, and another protein (S100A11) demonstrated ATM-dependence for translocation from the cytoplasm to the nucleus. These data provide new insights into the activation of ATM by oxidative stress through identification of novel substrates for ATM in the cytoplasm.
Collapse
Affiliation(s)
- Sergei V Kozlov
- From the ‡University of Queensland Centre for Clinical Research, University of Queensland, Royal Brisbane & Women's Hospital Campus, Herston, Brisbane, QLD 4029 Australia
| | - Ashley J Waardenberg
- §Bioinformatics Unit, Children's Medical Research Institute, University of Sydney, 214 Hawkesbury Road, Westmead, NSW, 2145, Australia
| | - Kasper Engholm-Keller
- ¶Synapse Proteomics Group, Children's Medical Research Institute, University of Sydney, 214 Hawkesbury Road, Westmead, NSW, 2145, Australia; ‖Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Jonathan W Arthur
- §Bioinformatics Unit, Children's Medical Research Institute, University of Sydney, 214 Hawkesbury Road, Westmead, NSW, 2145, Australia
| | - Mark E Graham
- ¶Synapse Proteomics Group, Children's Medical Research Institute, University of Sydney, 214 Hawkesbury Road, Westmead, NSW, 2145, Australia
| | - Martin Lavin
- From the ‡University of Queensland Centre for Clinical Research, University of Queensland, Royal Brisbane & Women's Hospital Campus, Herston, Brisbane, QLD 4029 Australia;
| |
Collapse
|
35
|
|
36
|
Martin RIR, Owens WA, Cunnington MS, Mayosi BM, Koref MS, Keavney BD. Chromosome 16q22 variants in a region associated with cardiovascular phenotypes correlate with ZFHX3 expression in a transcript-specific manner. BMC Genet 2014; 15:136. [PMID: 25539802 PMCID: PMC4301889 DOI: 10.1186/s12863-014-0136-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 11/24/2014] [Indexed: 11/10/2022] Open
Abstract
Background The ZFHX3 gene, located in Chromosome 16q22.3, codes for a transcription factor which is widely expressed in human tissues. Genome-wide studies have identified associations between variants within the gene and Kawasaki disease and atrial fibrillation. ZFHX3 has two main transcripts that utilise different transcription start sites. We examined the association between genetic variants in the 16q22.3 region and expression of ZFHX3 to identify variants that regulate gene expression. Results We genotyped 65 single-nucleotide polymorphisms to tag genetic variation at the ZFHX3 locus in two cohorts, 451 British individuals recruited in the North East of England and 310 mixed-ancestry individuals recruited in South Africa. Allelic expression analysis revealed that the minor (A) allele of rs8060701, a variant in the first intron of ZFHX3, was associated with a 1.16-fold decrease in allelic expression of both transcripts together, (p = 4.87e-06). The minor (C) allele of a transcribed variant, rs10852515, in the second exon of ZFHX3 isoform A was independently associated with a 1.36-fold decrease in allelic expression of ZFHX3 A (p = 7.06e-31), but not overall ZFHX3 expression. However, analysis of total gene expression of ZFHX3 failed to detect an association with genotype at any variant. Differences in linkage disequilibrium between the two populations allowed fine-mapping of the locus to a 7 kb region overlapping exon 2 of ZFHX3 A. We did not find any association between ZFHX3 expression and any of the variants identified by genome wide association studies. Conclusions ZFHX3 transcription is regulated in a transcript-specific fashion by independent cis-acting transcribed polymorphisms. Our results demonstrate the power of allelic expression analysis and trans-ethnic fine mapping to identify transcript-specific cis-acting regulatory elements. Electronic supplementary material The online version of this article (doi:10.1186/s12863-014-0136-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ruairidh I R Martin
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.
| | - W Andrew Owens
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK. .,Division of Cardiothoracic Services, The James Cook University Hospital, South Tees Hospitals NHS Foundation Trust, Middlesbrough, UK.
| | - Michael S Cunnington
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK. .,Hull and East Yorkshire NHS Trust, Hull, UK.
| | - Bongani M Mayosi
- Department of Medicine, University of Cape Town, Cape Town, South Africa.
| | | | - Bernard D Keavney
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK. .,Institute of Cardiovascular Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
37
|
Sun X, Li J, Dong FN, Dong JT. Characterization of nuclear localization and SUMOylation of the ATBF1 transcription factor in epithelial cells. PLoS One 2014; 9:e92746. [PMID: 24651376 PMCID: PMC3961433 DOI: 10.1371/journal.pone.0092746] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 02/24/2014] [Indexed: 11/30/2022] Open
Abstract
ATBF1/ZFHX3 is a large transcription factor that functions in development, tumorigenesis and other biological processes. ATBF1 is normally localized in the nucleus, but is often mislocalized in the cytoplasm in cancer cells. The mechanism underlying the mislocalization of ATBF1 is unknown. In this study, we analyzed the nuclear localization of ATBF1, and found that ectopically expressed ATBF1 formed nuclear body (NB)-like dots in the nucleus, some of which indeed physically associated with promyelocytic leukemia (PML) NBs. We also defined a 3-amino acid motif, KRK2615-2617, as the nuclear localization signal (NLS) for ATBF1. Interestingly, diffusely distributed nuclear SUMO1 proteins were sequestered into ATBF1 dots, which could be related to ATBF1's physical association with PML NBs, known SUMOylation hotspots. Furthermore, ATBF1 itself was SUMOylated. ATBF1 SUMOylation occurred at more than 3 lysine residues including K2349, K2806 and K3258 and was nuclear specific. Finally, the PIAS3 SUMO1 E3 ligase, which interacts with ATBF1 directly, diminished rather than enhanced ATBF1 SUMOylation, preventing the co-localization of ATBF1 with SUMO1 in the nucleus. These findings suggest that nuclear localization and SUMOylation are important for the transcription factor function of ATBF1, and that ATBF1 could cooperate with PML NBs to regulate protein SUMOylation in different biological processes.
Collapse
Affiliation(s)
- Xiaodong Sun
- Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jie Li
- Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Frederick N. Dong
- Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jin-Tang Dong
- Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
38
|
Yan LB, Shi K, Bing ZT, Sun YL, Shen Y. Proteomic analysis of energy metabolism and signal transduction in irradiated melanoma cells. Int J Ophthalmol 2013; 6:286-94. [PMID: 23826520 DOI: 10.3980/j.issn.2222-3959.2013.03.06] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 05/06/2013] [Indexed: 02/04/2023] Open
Abstract
AIM To analyze proteomic and signal transduction alterations in irradiated melanoma cells. METHODS We combined stable isotope labeling with amino acids in cell culture (SILAC) with highly sensitive shotgun tandem mass spectrometry (MS) to create an efficient approach for protein quantification. Protein-protein interaction was used to analyze relationships among proteins. RESULTS Energy metabolism protein levels were significantly different in glycolysis and not significantly different in oxidative phosphorylation after irradiation. Conversely, tumor suppressor proteins related to cell growth and development were downregulated, and those related to cell death and cell cycle were upregulated in irradiated cells. CONCLUSION Our results indicate that irradiation induces differential expression of the 29 identified proteins closely related to cell survival, cell cycle arrest, and growth inhibition. The data may provide new insights into the pathogenesis of uveal melanoma and guide appropriate radiotherapy.
Collapse
Affiliation(s)
- Lu-Bin Yan
- Department of Surgery, the Second Hospital of Lanzhou University, Lanzhou 730030, Gansu Province, China
| | | | | | | | | |
Collapse
|
39
|
Lavin MF. The appropriateness of the mouse model for ataxia-telangiectasia: neurological defects but no neurodegeneration. DNA Repair (Amst) 2013; 12:612-9. [PMID: 23731731 DOI: 10.1016/j.dnarep.2013.04.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Patients with ataxia-telangiectasia (A-T) are characterised by genome instability, cancer predisposition and a progressive neurodegeneration. A number of model systems have been developed for A-T but none recapitulate all the phenotype. The majority of these models have been generated in mice. While Atm deficient mouse models exhibit much of the phenotype described in patients with A-T, the broad consensus is that they do not display the most debilitating aspect of A-T, i.e. neurodegeneration. Cerebellar atrophy is one of the neuronal characteristics of A-T patients due to defects in neuronal development and progressive loss of Purkinje and granule cells. This is not evident in Atm-deficient mutants but there are multiple reports on neurological abnormalities in these mice. The focus of this review is to evaluate the appropriateness of Atm mutant mouse models for A-T, particularly with reference to neurological abnormalities and how they might relate to neurodegeneration.
Collapse
Affiliation(s)
- Martin F Lavin
- Queensland Institute of Medical Research, Radiation Biology and Oncology, Brisbane, QLD 4029, Australia.
| |
Collapse
|
40
|
Abstract
Atrial fibrillation (AF) is the most-common sustained arrhythmia observed in clinical practice, but response to therapy is highly variable between patients. Current drug therapies to suppress AF are incompletely and unpredictably effective and carry substantial risk of proarrhythmia and noncardiac toxicities. The limited success of therapy for AF is partially the result of heterogeneity of the underlying substrate, interindividual differences in disease mechanisms, and our inability to predict response to therapies in individual patients. In this Review, we discuss the evidence that variability in response to drug therapy is also conditioned by the underlying genetic substrate for AF. Increased susceptibility to AF is mediated through diverse genetic mechanisms, including modulation of the atrial action-potential duration, conduction slowing, and impaired cell-to-cell communication, as well as novel mechanisms, such as regulation of signalling proteins important in the pathogenesis of AF. However, the translation of genetic data to the care of the patients with AF has been limited because of poor understanding of the underlying mechanisms associated with common AF-susceptibility loci, a dearth of prospective, adequately powered studies, and the challenges associated with determining efficacy of antiarrhythmic drugs. What is apparent, however, is the need for appropriately designed, genotype-directed clinical trials.
Collapse
Affiliation(s)
- Dawood Darbar
- Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, 2215B Garland Avenue, Nashville, TN 37323-6602, USA.
| | | |
Collapse
|
41
|
Shiloh Y, Ziv Y. The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat Rev Mol Cell Biol 2013; 14:197-210. [DOI: 10.1038/nrm3546] [Citation(s) in RCA: 1198] [Impact Index Per Article: 99.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
42
|
Abstract
In 1988, the gene responsible for the autosomal recessive disease ataxia- telangiectasia (A-T) was localized to 11q22.3-23.1. It was eventually cloned in 1995. Many independent laboratories have since demonstrated that in replicating cells, ataxia telangiectasia mutated (ATM) is predominantly a nuclear protein that is involved in the early recognition and response to double-stranded DNA breaks. ATM is a high-molecular-weight PI3K-family kinase. ATM also plays many important cytoplasmic roles where it phosphorylates hundreds of protein substrates that activate and coordinate cell-signaling pathways involved in cell-cycle checkpoints, nuclear localization, gene transcription and expression, the response to oxidative stress, apoptosis, nonsense-mediated decay, and others. Appreciating these roles helps to provide new insights into the diverse clinical phenotypes exhibited by A-T patients-children and adults alike-which include neurodegeneration, high cancer risk, adverse reactions to radiation and chemotherapy, pulmonary failure, immunodeficiency, glucose transporter aberrations, insulin-resistant diabetogenic responses, and distinct chromosomal and chromatin changes. An exciting recent development is the ATM-dependent pathology encountered in mitochondria, leading to inefficient respiration and energy metabolism and the excessive generation of free radicals that themselves create life-threatening DNA lesions that must be repaired within minutes to minimize individual cell losses.
Collapse
|
43
|
Zhang S, Kim TS, Dong Y, Kanazawa S, Kawaguchi M, Gao N, Minato H, Takegami T, Nojima T, Asai K, Miura Y. AT motif binding factor 1 (ATBF1) is highly phosphorylated in embryonic brain and protected from cleavage by calpain-1. Biochem Biophys Res Commun 2012; 427:537-41. [PMID: 23022192 DOI: 10.1016/j.bbrc.2012.09.092] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 09/15/2012] [Indexed: 12/12/2022]
Abstract
ATBF1 is a transcription factor that regulates genes responsible for repairing tissues and the protection of cells from oxidative stress. Therefore reduction of ATBF1 promotes susceptibility to varieties of human diseases including neurodegenerative diseases and malignant tumors. The instability of the protein was found to be an important background of diseases. Because ATBF1 is composed of a large 404-kDa protein, it can be easily targeted by proteinases. The protein instability should be a serious problem for the function in the cells and practically for our biochemical study of ATBF1. We have found that calpain-1 is a protease responsible for the degeneration of ATBF1. We observed distinct difference between embryo and adult brain derived ATBF1 regarding the sensitivity to calpain-1. The comparative study showed that eight phosphorylated serine residues (Ser1600, Ser2634, Ser2795, Ser2804, Ser2900, Ser3431, Ser3613, Ser3697) in embryonic brain, but only one site (Ser2634) in adult brain. As long as these amino acids were phosphorylated, ATBF1 derived from embryonic mouse brain showed resistance to cleavage; however, treatment with calf intestine alkaline phosphatase sensitized ATBF1 to be digested by calpain-1. An inhibitor (FK506) against calcineurin, which is a serine/threonine specific phosphatase enhanced the resistance of ATBF1 against the digestion by calpain-1. Taken together, these results demonstrate that these phosphorylation sites on ATBF1 function as a defensive shield to calpain-1.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Herriges JC, Yi L, Hines EA, Harvey JF, Xu G, Gray P, Ma Q, Sun X. Genome-scale study of transcription factor expression in the branching mouse lung. Dev Dyn 2012; 241:1432-53. [PMID: 22711520 PMCID: PMC3529173 DOI: 10.1002/dvdy.23823] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2012] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Mammalian lung development consists of a series of precisely choreographed events that drive the progression from simple lung buds to the elaborately branched organ that fulfills the vital function of gas exchange. Strict transcriptional control is essential for lung development. Among the large number of transcription factors encoded in the mouse genome, only a small portion of them are known to be expressed and function in the developing lung. Thus a systematic investigation of transcription factors expressed in the lung is warranted. RESULTS To enrich for genes that may be responsible for regional growth and patterning, we performed a screen using RNA in situ hybridization to identify genes that show restricted expression patterns in the embryonic lung. We focused on the pseudoglandular stage during which the lung undergoes branching morphogenesis, a cardinal event of lung development. Using a genome-scale probe set that represents over 90% of the transcription factors encoded in the mouse genome, we identified 62 transcription factor genes with localized expression in the epithelium, mesenchyme, or both. Many of these genes have not been previously implicated in lung development. CONCLUSIONS Our findings provide new starting points for the elucidation of the transcriptional circuitry that controls lung development.
Collapse
Affiliation(s)
- John C. Herriges
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| | - Lan Yi
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| | - Elizabeth A. Hines
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| | - Julie F. Harvey
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| | - Guoliang Xu
- Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China 200031
| | - Paul Gray
- Department of Anatomy and Neurobiology, Washington University, St. Louis, MO 63110
| | - Qiufu Ma
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Xin Sun
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
45
|
Inouye M, Ripatti S, Kettunen J, Lyytikäinen LP, Oksala N, Laurila PP, Kangas AJ, Soininen P, Savolainen MJ, Viikari J, Kähönen M, Perola M, Salomaa V, Raitakari O, Lehtimäki T, Taskinen MR, Järvelin MR, Ala-Korpela M, Palotie A, de Bakker PIW. Novel Loci for metabolic networks and multi-tissue expression studies reveal genes for atherosclerosis. PLoS Genet 2012; 8:e1002907. [PMID: 22916037 PMCID: PMC3420921 DOI: 10.1371/journal.pgen.1002907] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 07/01/2012] [Indexed: 12/16/2022] Open
Abstract
Association testing of multiple correlated phenotypes offers better power than univariate analysis of single traits. We analyzed 6,600 individuals from two population-based cohorts with both genome-wide SNP data and serum metabolomic profiles. From the observed correlation structure of 130 metabolites measured by nuclear magnetic resonance, we identified 11 metabolic networks and performed a multivariate genome-wide association analysis. We identified 34 genomic loci at genome-wide significance, of which 7 are novel. In comparison to univariate tests, multivariate association analysis identified nearly twice as many significant associations in total. Multi-tissue gene expression studies identified variants in our top loci, SERPINA1 and AQP9, as eQTLs and showed that SERPINA1 and AQP9 expression in human blood was associated with metabolites from their corresponding metabolic networks. Finally, liver expression of AQP9 was associated with atherosclerotic lesion area in mice, and in human arterial tissue both SERPINA1 and AQP9 were shown to be upregulated (6.3-fold and 4.6-fold, respectively) in atherosclerotic plaques. Our study illustrates the power of multi-phenotype GWAS and highlights candidate genes for atherosclerosis.
Collapse
Affiliation(s)
- Michael Inouye
- Medical Systems Biology, Departments of Pathology and of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Bhatti S, Kozlov S, Farooqi AA, Naqi A, Lavin M, Khanna KK. ATM protein kinase: the linchpin of cellular defenses to stress. Cell Mol Life Sci 2011; 68:2977-3006. [PMID: 21533982 PMCID: PMC11115042 DOI: 10.1007/s00018-011-0683-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/24/2011] [Accepted: 03/29/2011] [Indexed: 01/23/2023]
Abstract
ATM is the most significant molecule involved in monitoring the genomic integrity of the cell. Any damage done to DNA relentlessly challenges the cellular machinery involved in recognition, processing and repair of these insults. ATM kinase is activated early to detect and signal lesions in DNA, arrest the cell cycle, establish DNA repair signaling and faithfully restore the damaged chromatin. ATM activation plays an important role as a barrier to tumorigenesis, metabolic syndrome and neurodegeneration. Therefore, studies of ATM-dependent DNA damage signaling pathways hold promise for treatment of a variety of debilitating diseases through the development of new therapeutics capable of modulating cellular responses to stress. In this review, we have tried to untangle the complex web of ATM signaling pathways with the purpose of pinpointing multiple roles of ATM underlying the complex phenotypes observed in AT patients.
Collapse
Affiliation(s)
- Shahzad Bhatti
- Institute of Molecular Biology and Biotechnology, The University of Lahore, 1 Km Raiwind Road, Thokar Niaz Baig, Lahore, Pakistan
| | - Sergei Kozlov
- Queensland Institute of Medical Research, QIMR, 300 Herston Rd, Herston, Brisbane, 4029 Australia
| | - Ammad Ahmad Farooqi
- Institute of Molecular Biology and Biotechnology, The University of Lahore, 1 Km Raiwind Road, Thokar Niaz Baig, Lahore, Pakistan
| | - Ali Naqi
- Institute of Molecular Biology and Biotechnology, The University of Lahore, 1 Km Raiwind Road, Thokar Niaz Baig, Lahore, Pakistan
| | - Martin Lavin
- Queensland Institute of Medical Research, QIMR, 300 Herston Rd, Herston, Brisbane, 4029 Australia
| | - Kum Kum Khanna
- Queensland Institute of Medical Research, QIMR, 300 Herston Rd, Herston, Brisbane, 4029 Australia
| |
Collapse
|
47
|
Wakili R, Voigt N, Kääb S, Dobrev D, Nattel S. Recent advances in the molecular pathophysiology of atrial fibrillation. J Clin Invest 2011; 121:2955-68. [PMID: 21804195 DOI: 10.1172/jci46315] [Citation(s) in RCA: 432] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) is an extremely common cardiac rhythm disorder that causes substantial morbidity and contributes to mortality. The mechanisms underlying AF are complex, involving both increased spontaneous ectopic firing of atrial cells and impulse reentry through atrial tissue. Over the past ten years, there has been enormous progress in understanding the underlying molecular pathobiology. This article reviews the basic mechanisms and molecular processes causing AF. We discuss the ways in which cardiac disease states, extracardiac factors, and abnormal genetic control lead to the arrhythmia. We conclude with a discussion of the potential therapeutic implications that might arise from an improved mechanistic understanding.
Collapse
Affiliation(s)
- Reza Wakili
- Research Center, Department of Medicine, Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
48
|
Farooqi AA, Waseem S, Riaz AM, Dilawar BA, Mukhtar S, Minhaj S, Waseem MS, Daniel S, Malik BA, Nawaz A, Bhatti S. PDGF: the nuts and bolts of signalling toolbox. Tumour Biol 2011; 32:1057-70. [PMID: 21769672 DOI: 10.1007/s13277-011-0212-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Accepted: 07/07/2011] [Indexed: 12/16/2022] Open
Abstract
PDGF is a growth factor and is extensively involved in multi-dimensional cellular dynamics. It switches on a plethora of molecules other than its classical pathway. It is engaged in various transitions of development; however, if the unleashed potentials lead astray, it brings forth tumourigenesis. Conventionally, it has been assumed that the components of this signalling pathway show fidelity and act with a high degree of autonomy. However, as illustrated by the PDGF signal transduction, reinterpretation of recent data suggests that machinery is often shared between multiple pathways, and other components crosstalk to each other through multiple mechanisms. It is important to note that metastatic cascade is an intricate process that we have only begun to understand in recent years. Many of the early steps of this PDGF cascade are not readily targetable in the clinic. In this review, we will unravel the paradoxes with reference to mitrons and cellular plasticity and discuss how disruption of signalling cascade triggers cellular proliferation phase transition and metastasis. We will also focus on the therapeutic interventions to counteract resultant molecular disorders.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, 1 km defence road, Lahore, Pakistan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Sakamoto K, Karelina K, Obrietan K. CREB: a multifaceted regulator of neuronal plasticity and protection. J Neurochem 2010; 116:1-9. [PMID: 21044077 DOI: 10.1111/j.1471-4159.2010.07080.x] [Citation(s) in RCA: 370] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Since its initial characterization over 20 years ago, there has been intense and unwavering interest in understanding the role of the transcription factor cAMP-responsive element binding protein (CREB) in nervous system physiology. Through an array of experimental approaches and model systems, researchers have begun to unravel the complex and multifaceted role of this transcription factor in such diverse processes as neurodevelopment, synaptic plasticity, and neuroprotection. Here we discuss current insights into the molecular mechanisms by which CREB couples synaptic activity to long-term changes in neuronal plasticity, which is thought to underlie learning and memory. We also discuss work showing that CREB is a critical component of the neuroprotective transcriptional network, and data indicating that CREB dysregulation contributes to an array of neuropathological conditions.
Collapse
Affiliation(s)
- Kensuke Sakamoto
- Department of Neuroscience, Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|