1
|
Nayer B, Tan JL, Alshoubaki YK, Lu YZ, Legrand JMD, Lau S, Hu N, Park AJ, Wang XN, Amann-Zalcenstein D, Hickey PF, Wilson T, Kuhn GA, Müller R, Vasanthakumar A, Akira S, Martino MM. Local administration of regulatory T cells promotes tissue healing. Nat Commun 2024; 15:7863. [PMID: 39251592 PMCID: PMC11383969 DOI: 10.1038/s41467-024-51353-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 08/05/2024] [Indexed: 09/11/2024] Open
Abstract
Regulatory T cells (Tregs) are crucial immune cells for tissue repair and regeneration. However, their potential as a cell-based regenerative therapy is not yet fully understood. Here, we show that local delivery of exogenous Tregs into injured mouse bone, muscle, and skin greatly enhances tissue healing. Mechanistically, exogenous Tregs rapidly adopt an injury-specific phenotype in response to the damaged tissue microenvironment, upregulating genes involved in immunomodulation and tissue healing. We demonstrate that exogenous Tregs exert their regenerative effect by directly and indirectly modulating monocytes/macrophages (Mo/MΦ) in injured tissues, promoting their switch to an anti-inflammatory and pro-healing state via factors such as interleukin (IL)-10. Validating the key role of IL-10 in exogenous Treg-mediated repair and regeneration, the pro-healing capacity of these cells is lost when Il10 is knocked out. Additionally, exogenous Tregs reduce neutrophil and cytotoxic T cell accumulation and IFN-γ production in damaged tissues, further dampening the pro-inflammatory Mo/MΦ phenotype. Highlighting the potential of this approach, we demonstrate that allogeneic and human Tregs also promote tissue healing. Together, this study establishes exogenous Tregs as a possible universal cell-based therapy for regenerative medicine and provides key mechanistic insights that could be harnessed to develop immune cell-based therapies to enhance tissue healing.
Collapse
Affiliation(s)
- Bhavana Nayer
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Jean L Tan
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Yasmin K Alshoubaki
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Yen-Zhen Lu
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Julien M D Legrand
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Sinnee Lau
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Nan Hu
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Anthony J Park
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Xiao-Nong Wang
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Daniela Amann-Zalcenstein
- Advanced Genomics Facility, Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Peter F Hickey
- Advanced Genomics Facility, Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Trevor Wilson
- MHTP Medical Genomics Facility, Monash Health Translation Precinct, Clayton, VIC, Australia
| | - Gisela A Kuhn
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Ajithkumar Vasanthakumar
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- La Trobe University, Bundoora, VIC, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, Australia
| | - Shizuo Akira
- Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Mikaël M Martino
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia.
- Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center, Osaka University, Osaka, Japan.
- Victorian Heart Institute, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
2
|
Gatto F, Benemei S, Piluso G, Bello L. The complex landscape of DMD mutations: moving towards personalized medicine. Front Genet 2024; 15:1360224. [PMID: 38596212 PMCID: PMC11002111 DOI: 10.3389/fgene.2024.1360224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/26/2024] [Indexed: 04/11/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe genetic disorder characterized by progressive muscle degeneration, with respiratory and cardiac complications, caused by mutations in the DMD gene, encoding the protein dystrophin. Various DMD mutations result in different phenotypes and disease severity. Understanding genotype/phenotype correlations is essential to optimize clinical care, as mutation-specific therapies and innovative therapeutic approaches are becoming available. Disease modifier genes, trans-active variants influencing disease severity and phenotypic expressivity, may modulate the response to therapy, and become new therapeutic targets. Uncovering more disease modifier genes via extensive genomic mapping studies offers the potential to fine-tune prognostic assessments for individuals with DMD. This review provides insights into genotype/phenotype correlations and the influence of modifier genes in DMD.
Collapse
Affiliation(s)
| | | | - Giulio Piluso
- Medical Genetics and Cardiomyology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Napoli, Italy
| | - Luca Bello
- Department of Neurosciences DNS, University of Padova, Padova, Italy
| |
Collapse
|
3
|
Pitzer CR, Paez HG, Ferrandi PJ, Mohamed J, Alway SE. Extracellular vesicles from obese and diabetic mouse plasma alter C2C12 myotube glucose uptake and gene expression. Physiol Rep 2024; 12:e15898. [PMID: 38169108 PMCID: PMC10761623 DOI: 10.14814/phy2.15898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/07/2023] [Accepted: 11/20/2023] [Indexed: 01/05/2024] Open
Abstract
Recent studies have indicated a role for circulating extracellular vesicles (EVs) in the pathogenesis of multiple diseases. However, most in vitro studies have used variable and arbitrary doses of EVs rather than interpreting EVs as an existing component of standard skeletal muscle cell culture media. The current study provides an initial investigation into the effects of circulating EVs on the metabolic phenotype of C2C12 myotubes by replacing EVs from fetal bovine serum with circulating EVs from control mice or mice with obesity and type 2 diabetes (OT2D). We report that EVs associated with OT2D decrease 2-NBDG uptake (a proxy measure of glucose uptake) in the insulin-stimulated state compared to controls. OT2D associated EV treatment also significantly decreased myosin heavy chain type 1 (MHCI) mRNA abundance in myotubes but had no effect on mRNA expression of any other myosin heavy chain isoforms. OT2D-associated circulating EVs also significantly increased lipid accumulation within myotubes without altering the expression of a selection of genes important for lipid entry, synthesis, or catabolism. The data indicate that, in a severely diabetic state, circulating EVs may contribute to insulin resistance and alter gene expression in myotubes in a manner consistent with the skeletal muscle phenotype observed in OT2D.
Collapse
Affiliation(s)
- Christopher R. Pitzer
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences, College of Health ProfessionsThe University of Tennessee Health Science CenterMemphisTennesseeUSA
- Department of Physiology, College of MedicineThe University of Tennessee Health Science CenterMemphisTennesseeUSA
- Integrated Biomedical Sciences Graduate Program, College of Graduate Health SciencesThe University of Tennessee Health Science CenterMemphisTennesseeUSA
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health ProfessionsThe University of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Hector G. Paez
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences, College of Health ProfessionsThe University of Tennessee Health Science CenterMemphisTennesseeUSA
- Department of Physiology, College of MedicineThe University of Tennessee Health Science CenterMemphisTennesseeUSA
- Integrated Biomedical Sciences Graduate Program, College of Graduate Health SciencesThe University of Tennessee Health Science CenterMemphisTennesseeUSA
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health ProfessionsThe University of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Peter J. Ferrandi
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences, College of Health ProfessionsThe University of Tennessee Health Science CenterMemphisTennesseeUSA
- Integrated Biomedical Sciences Graduate Program, College of Graduate Health SciencesThe University of Tennessee Health Science CenterMemphisTennesseeUSA
- Laboratory of Muscle and Nerve, Department of Diagnostic and Health Sciences, College of Health ProfessionsThe University of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Junaith S. Mohamed
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences, College of Health ProfessionsThe University of Tennessee Health Science CenterMemphisTennesseeUSA
- Laboratory of Muscle and Nerve, Department of Diagnostic and Health Sciences, College of Health ProfessionsThe University of Tennessee Health Science CenterMemphisTennesseeUSA
- Tennessee Institute of Regenerative MedicineThe University of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Stephen E. Alway
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences, College of Health ProfessionsThe University of Tennessee Health Science CenterMemphisTennesseeUSA
- Department of Physiology, College of MedicineThe University of Tennessee Health Science CenterMemphisTennesseeUSA
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health ProfessionsThe University of Tennessee Health Science CenterMemphisTennesseeUSA
- Tennessee Institute of Regenerative MedicineThe University of Tennessee Health Science CenterMemphisTennesseeUSA
| |
Collapse
|
4
|
Salati NA, Sharma M, Rao NN, Shetty SS, Radhakrishnan RA. Role of osteopontin in oral epithelial dysplasia, oral submucous fibrosis and oral squamous cell carcinoma. J Oral Maxillofac Pathol 2023; 27:706-714. [PMID: 38304518 PMCID: PMC10829450 DOI: 10.4103/jomfp.jomfp_492_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/27/2022] [Accepted: 03/06/2023] [Indexed: 02/03/2024] Open
Abstract
Background Inflammatory cells and cytokines in the chronically injured mucosa promote fibrosis in the oral submucous fibrosis (OSF) fibrotic milieu. Osteopontin (OPN) is a wound-healing mediator that upregulates the inflammatory response and is involved in the malignancy and fibrosis of multiple organ systems. Objectives We investigated the expression of OPN in oral potentially malignant disorders (OPMDs) and oral squamous cell carcinomas (OSCCs) to determine its role in the malignant transformation and fibrosis of oral tissues. The expression of OPN in OPMDs and OSCCs was compared and correlated, and the role of OPN as a fibrotic mediator in OSF was explained. Study Design A total of 30 cases of normal mucosa and OPMDs (mild dysplasia, severe dysplasia, OSF and OSCCs) were studied by purposive sampling. In these groups, OPN immunoreactivity was examined and correlated with clinical findings. Results In mild dysplasia, OPN expression was restricted to the basal cell layer with moderate staining intensity. In severe dysplasia, it was extremely intense and extended throughout the epithelium. In the OSF, OPN expression was moderate in the perinuclear areas of the basal cell layer. The expression of OPN was very strong in OSCC. A flow diagram explaining the profibrotic role of OPN in OSF has been provided. Conclusion A positive role of OPN in both pathogenesis and malignant transformation of OPMDs and OSCC has been demonstrated.
Collapse
Affiliation(s)
- Nasir A. Salati
- Department of Oral and Maxillofacial Pathology, Dr. Ziauddin Ahmad Dental College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohit Sharma
- Department of Oral Pathology, SGT Dental College Hospital and Research Institute, Gurugram, Haryana, India
| | - Nirmala N. Rao
- Former Dean, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Smitha S. Shetty
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Raghu A. Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
5
|
Wang Y, Hong L, Jiang J, Zhang X, Chen J, Diao H. Osteopontin May Improve Postinjury Muscle Repair Via Matrix Metalloproteinases And tgf-β Activation in Regular Exercise. Int J Med Sci 2023; 20:1202-1211. [PMID: 37575268 PMCID: PMC10416718 DOI: 10.7150/ijms.82925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/28/2023] [Indexed: 08/15/2023] Open
Abstract
Skeletal muscle injuries are commonly observed during sports and trauma. Regular exercise promotes muscle repair; however, the underlying mechanisms require further investigation. In addition to exercise, osteopontin (OPN) contributes to skeletal muscle regeneration and fibrosis following injury. However, whether and how OPN affects matrix proteins to promote post-injury muscle repair remains uncertain. We recruited regular exercise (RE) and sedentary control (SC) groups to determine plasma OPN levels. Additionally, we developed a murine model of muscle contusion injury and compared the extent of damage, inflammatory state, and regeneration-related proteins in OPN knockout (OPN KO) and wild-type (WT) mice. Our results show that regular exercise induced the increase of OPN, matrix metalloproteinases (MMPs), and transforming growth factor-β (TGF-β) expression in plasma. Injured muscle fibers were repaired more slowly in OPN-KO mice than in WT mice. The expression levels of genes and proteins related to muscle regeneration were lower in OPN-KO mice after injury. OPN also promotes fibroblast proliferation, differentiation, and migration. Additionally, OPN upregulates MMP expression by activating TGF-β, which promotes muscle repair. OPN can improve post-injury muscle repair by activating MMPs and TGF-β pathways. It is upregulated by regular exercise. Our study provides a potential target for the treatment of muscle injuries and explains why regular physical exercise is beneficial for muscle repair.
Collapse
Affiliation(s)
| | | | | | | | | | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| |
Collapse
|
6
|
Bello L, Hoffman EP, Pegoraro E. Is it time for genetic modifiers to predict prognosis in Duchenne muscular dystrophy? Nat Rev Neurol 2023; 19:410-423. [PMID: 37308617 DOI: 10.1038/s41582-023-00823-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2023] [Indexed: 06/14/2023]
Abstract
Patients with Duchenne muscular dystrophy (DMD) show clinically relevant phenotypic variability, despite sharing the same primary biochemical defect (dystrophin deficiency). Factors contributing to this clinical variability include allelic heterogeneity (specific DMD mutations), genetic modifiers (trans-acting genetic polymorphisms) and variations in clinical care. Recently, a series of genetic modifiers have been identified, mostly involving genes and/or proteins that regulate inflammation and fibrosis - processes increasingly recognized as being causally linked with physical disability. This article reviews genetic modifier studies in DMD to date and discusses the effect of genetic modifiers on predicting disease trajectories (prognosis), clinical trial design and interpretation (inclusion of genotype-stratified subgroup analyses) and therapeutic approaches. The genetic modifiers identified to date underscore the importance of progressive fibrosis, downstream of dystrophin deficiency, in driving the disease process. As such, genetic modifiers have shown the importance of therapies aimed at slowing this fibrotic process and might point to key drug targets.
Collapse
Affiliation(s)
- Luca Bello
- Department of Neurosciences (DNS), University of Padova, Padova, Italy
| | - Eric P Hoffman
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University (State University of New York), Binghamton, NY, USA
| | - Elena Pegoraro
- Department of Neurosciences (DNS), University of Padova, Padova, Italy.
| |
Collapse
|
7
|
Coulis G, Jaime D, Guerrero-Juarez C, Kastenschmidt JM, Farahat PK, Nguyen Q, Pervolarakis N, McLinden K, Thurlow L, Movahedi S, Duarte J, Sorn A, Montoya E, Mozaffar I, Dragan M, Othy S, Joshi T, Hans CP, Kimonis V, MacLean AL, Nie Q, Wallace LM, Harper SQ, Mozaffar T, Hogarth MW, Bhattacharya S, Jaiswal JK, Golann DR, Su Q, Kessenbrock K, Stec M, Spencer MJ, Zamudio JR, Villalta SA. Single-cell and spatial transcriptomics identify a macrophage population associated with skeletal muscle fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.18.537253. [PMID: 37131694 PMCID: PMC10153153 DOI: 10.1101/2023.04.18.537253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The monocytic/macrophage system is essential for skeletal muscle homeostasis, but its dysregulation contributes to the pathogenesis of muscle degenerative disorders. Despite our increasing knowledge of the role of macrophages in degenerative disease, it still remains unclear how macrophages contribute to muscle fibrosis. Here, we used single-cell transcriptomics to determine the molecular attributes of dystrophic and healthy muscle macrophages. We identified six novel clusters. Unexpectedly, none corresponded to traditional definitions of M1 or M2 macrophage activation. Rather, the predominant macrophage signature in dystrophic muscle was characterized by high expression of fibrotic factors, galectin-3 and spp1. Spatial transcriptomics and computational inferences of intercellular communication indicated that spp1 regulates stromal progenitor and macrophage interactions during muscular dystrophy. Galectin-3 + macrophages were chronically activated in dystrophic muscle and adoptive transfer assays showed that the galectin-3 + phenotype was the dominant molecular program induced within the dystrophic milieu. Histological examination of human muscle biopsies revealed that galectin-3 + macrophages were also elevated in multiple myopathies. These studies advance our understanding of macrophages in muscular dystrophy by defining the transcriptional programs induced in muscle macrophages, and reveal spp1 as a major regulator of macrophage and stromal progenitor interactions.
Collapse
Affiliation(s)
- Gerald Coulis
- Department of Physiology and Biophysics, University of California Irvine, USA
- Institute for Immunology, University of California Irvine, USA
| | - Diego Jaime
- Department of Physiology and Biophysics, University of California Irvine, USA
- Institute for Immunology, University of California Irvine, USA
| | - Christian Guerrero-Juarez
- Department of Mathematics, University of California Irvine, USA
- Department of Developmental and Cell Biology, University of California Irvine, USA
| | - Jenna M. Kastenschmidt
- Department of Physiology and Biophysics, University of California Irvine, USA
- Institute for Immunology, University of California Irvine, USA
| | - Philip K. Farahat
- Department of Physiology and Biophysics, University of California Irvine, USA
- Institute for Immunology, University of California Irvine, USA
| | - Quy Nguyen
- Department of Biological Chemistry, University of California Irvine, USA
| | | | - Katherine McLinden
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, USA
| | - Lauren Thurlow
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, USA
| | - Saba Movahedi
- Department of Physiology and Biophysics, University of California Irvine, USA
| | - Jorge Duarte
- Department of Physiology and Biophysics, University of California Irvine, USA
| | - Andrew Sorn
- Department of Physiology and Biophysics, University of California Irvine, USA
| | - Elizabeth Montoya
- Department of Physiology and Biophysics, University of California Irvine, USA
| | - Izza Mozaffar
- Department of Physiology and Biophysics, University of California Irvine, USA
| | - Morgan Dragan
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, USA
| | - Shivashankar Othy
- Department of Physiology and Biophysics, University of California Irvine, USA
- Institute for Immunology, University of California Irvine, USA
| | - Trupti Joshi
- Department of Health Management and Informatics, University of Missouri, Columbia, USA
| | - Chetan P. Hans
- Department of Cardiovascular Medicine, University of Missouri, Columbia, USA
| | | | - Adam L. MacLean
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, USA
| | - Qing Nie
- Department of Mathematics, University of California Irvine, USA
- Department of Developmental and Cell Biology, University of California Irvine, USA
| | - Lindsay M. Wallace
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital
| | - Scott Q. Harper
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital
| | - Tahseen Mozaffar
- Department of Neurology, University of California Irvine, USA
- Department of Pathology and Laboratory Medicine, University of California Irvine, USA
| | - Marshall W. Hogarth
- Children’s National Hospital, Research Center for Genetic Medicine, Washington, DC, USA
| | - Surajit Bhattacharya
- Children’s National Hospital, Research Center for Genetic Medicine, Washington, DC, USA
| | - Jyoti K. Jaiswal
- Children’s National Hospital, Research Center for Genetic Medicine, Washington, DC, USA
| | | | - Qi Su
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Kai Kessenbrock
- Department of Biological Chemistry, University of California Irvine, USA
| | - Michael Stec
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | | | - Jesse R. Zamudio
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, USA
| | - S. Armando Villalta
- Department of Physiology and Biophysics, University of California Irvine, USA
- Institute for Immunology, University of California Irvine, USA
- Department of Neurology, University of California Irvine, USA
| |
Collapse
|
8
|
Patsalos A, Halasz L, Medina-Serpas MA, Berger WK, Daniel B, Tzerpos P, Kiss M, Nagy G, Fischer C, Simandi Z, Varga T, Nagy L. A growth factor-expressing macrophage subpopulation orchestrates regenerative inflammation via GDF-15. J Exp Med 2022; 219:e20210420. [PMID: 34846534 PMCID: PMC8635277 DOI: 10.1084/jem.20210420] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/03/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022] Open
Abstract
Muscle regeneration is the result of the concerted action of multiple cell types driven by the temporarily controlled phenotype switches of infiltrating monocyte-derived macrophages. Pro-inflammatory macrophages transition into a phenotype that drives tissue repair through the production of effectors such as growth factors. This orchestrated sequence of regenerative inflammatory events, which we termed regeneration-promoting program (RPP), is essential for proper repair. However, it is not well understood how specialized repair-macrophage identity develops in the RPP at the transcriptional level and how induced macrophage-derived factors coordinate tissue repair. Gene expression kinetics-based clustering of blood circulating Ly6Chigh, infiltrating inflammatory Ly6Chigh, and reparative Ly6Clow macrophages, isolated from injured muscle, identified the TGF-β superfamily member, GDF-15, as a component of the RPP. Myeloid GDF-15 is required for proper muscle regeneration following acute sterile injury, as revealed by gain- and loss-of-function studies. Mechanistically, GDF-15 acts both on proliferating myoblasts and on muscle-infiltrating myeloid cells. Epigenomic analyses of upstream regulators of Gdf15 expression identified that it is under the control of nuclear receptors RXR/PPARγ. Finally, immune single-cell RNA-seq profiling revealed that Gdf15 is coexpressed with other known muscle regeneration-associated growth factors, and their expression is limited to a unique subpopulation of repair-type macrophages (growth factor-expressing macrophages [GFEMs]).
Collapse
Affiliation(s)
- Andreas Patsalos
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL
| | - Laszlo Halasz
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL
| | - Miguel A. Medina-Serpas
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL
| | - Wilhelm K. Berger
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL
| | - Bence Daniel
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL
| | - Petros Tzerpos
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Máté Kiss
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gergely Nagy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | | - Zoltan Simandi
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL
| | - Tamas Varga
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Laszlo Nagy
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
9
|
Du Y, Mao L, Wang Z, Yan K, Zhang L, Zou J. Osteopontin - The stirring multifunctional regulatory factor in multisystem aging. Front Endocrinol (Lausanne) 2022; 13:1014853. [PMID: 36619570 PMCID: PMC9813443 DOI: 10.3389/fendo.2022.1014853] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Osteopontin (OPN) is a multifunctional noncollagenous matrix phosphoprotein that is expressed both intracellularly and extracellularly in various tissues. As a growth regulatory protein and proinflammatory immunochemokine, OPN is involved in the pathological processes of many diseases. Recent studies have found that OPN is widely involved in the aging processes of multiple organs and tissues, such as T-cell senescence, atherosclerosis, skeletal muscle regeneration, osteoporosis, neurodegenerative changes, hematopoietic stem cell reconstruction, and retinal aging. However, the regulatory roles and mechanisms of OPN in the aging process of different tissues are not uniform, and OPN even has diverse roles in different developmental stages of the same tissue, generating uncertainty for the future study and utilization of OPN. In this review, we will summarize the regulatory role and molecular mechanism of OPN in different tissues and cells, such as the musculoskeletal system, central nervous system, cardiovascular system, liver, and eye, during senescence. We believe that a better understanding of the mechanism of OPN in the aging process will help us develop targeted and comprehensive therapeutic strategies to fight the spread of age-related diseases.
Collapse
|
10
|
Du Y, Zhang L, Wang Z, Zhao X, Zou J. Endocrine Regulation of Extra-skeletal Organs by Bone-derived Secreted Protein and the effect of Mechanical Stimulation. Front Cell Dev Biol 2021; 9:778015. [PMID: 34901023 PMCID: PMC8652208 DOI: 10.3389/fcell.2021.778015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/03/2021] [Indexed: 12/23/2022] Open
Abstract
Bone serves as the support for body and provide attachment points for the muscles. The musculoskeletal system is the basis for the human body to complete exercise. Studies believe that bone is not only the basis for constructing structures, but also participates in the regulation of organs outside bone. The realization of this function is closely related to the protein secreted by bone. Whether bone can realize their positions in the human body is also related to their secretion. Bone-derived proteins provide a medium for the targeted regulation of bones on organs, making the role of bone in human body more profound and concrete. Mechanical stimulation effects the extra-skeletal organs by causing quantitative changes in bone-derived factors. When bone receives mechanical stimulation, the nichle of bone responds, and the secretion of various factors changes. However, whether the proteins secreted by bone can interfere with disease requires more research. In this review article, we will first introduce the important reasons and significance of the in-depth study on bone-derived secretory proteins, and summarize the locations, structures and functions of these proteins. These functions will not only focus on the bone metabolism process, but also be reflected in the cross-organ regulation. We specifically explain the role of typical bone-derived secretory factors such as osteocalcin (OCN), osteopontin (OPN), sclerostin (SOST) and fibroblast growth factor 23 (FGF23) in different organs and metabolic processes, then establishing the relationship between them and diseases. Finally, we will discuss whether exercise or mechanical stimulation can have a definite effect on bone-derived secretory factors. Understanding their important role in cross-organ regulation is of great significance for the treatment of diseases, especially for the elderly people with more than one basic disease.
Collapse
Affiliation(s)
- Yuxiang Du
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Lingli Zhang
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Zhikun Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Xuan Zhao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jun Zou
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
11
|
Tanaka S, Hamada Y, Yokoyama Y, Yamamoto H, Kogo M. Osteopontin-derived synthetic peptide SVVYGLR upregulates functional regeneration of oral and maxillofacial soft-tissue injury. JAPANESE DENTAL SCIENCE REVIEW 2021; 57:174-181. [PMID: 34630775 PMCID: PMC8487951 DOI: 10.1016/j.jdsr.2021.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/31/2021] [Accepted: 09/13/2021] [Indexed: 01/03/2023] Open
Abstract
Wound healing in the oral and maxillofacial region is a complicated and interactive process. Severe mucosal or skeletal muscle injury by trauma or surgery induces worse healing conditions, including delayed wound closure and repair with excessive scar tissue. These complications lead to persistent functional impairment, such as digestive behavior or suppression of maxillofacial growth in infancy. Osteopontin (OPN), expressed in a variety of cells, is multifunctional and comprises a number of functional domains. Seven amino acids sequence, SVVYGLR (SV peptide), exposed by thrombin cleavage of OPN, has angiogenic activity and promotes fibroblast differentiation into myofibroblasts and increased expression of collagen type III. Additionally, synthetic SV peptide shows faster dermal and oral mucosal wound closure by facilitating cell motility and migratory activities in dermal- or mucosal-derived keratinocytes and fibroblasts. Moreover, cell motility and differentiation in myogenic cell populations are accelerated by SV peptide, which contributes to the facilitation of matured myofibers and scarless healing and favorable functional regeneration after skeletal muscle injury. SV peptide has high affinity with TGF-β, with potential involvement of the TGF-β/Smad signaling pathway. Clinical application of single-dose SV peptide could be a powerful alternative treatment option for excessive oral and maxillofacial wound care to prevent disadvantageous events.
Collapse
Affiliation(s)
- Susumu Tanaka
- The 1st Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Yoshinosuke Hamada
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Health Economics and Management, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Pediatric Dentistry, Osaka Dental University, Osaka, Japan
| | - Yuhki Yokoyama
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hirofumi Yamamoto
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Mikihiko Kogo
- The 1st Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Osaka, Japan
| |
Collapse
|
12
|
Kuraoka M, Aoki Y, Takeda S. Development of outcome measures according to dystrophic phenotypes in canine X-linked muscular dystrophy in Japan. Exp Anim 2021; 70:419-430. [PMID: 34135266 PMCID: PMC8614006 DOI: 10.1538/expanim.21-0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked lethal muscle disorder characterized by primary muscle degeneration. Therapeutic strategies for DMD have been extensively explored, and some are in the stage of human clinical trials. Along with the development of new therapies, sensitive outcome measures are needed to monitor the effects of new treatments. Therefore, we investigated outcome measures such as biomarkers and motor function evaluation in a dystrophic model of beagle dogs, canine X-linked muscular dystrophy in Japan (CXMDJ). Osteopontin (OPN), a myogenic inflammatory cytokine, was explored as a potential biomarker in dystrophic dogs over the disease course. The serum OPN levels of CXMDJ dystrophic dogs were elevated, even in the early disease phase, and this could be related to the presence of regenerating muscle fibers; as such, OPN would be a promising biomarker for muscle regeneration. Next, accelerometry, which is an efficient method to quantify performance in validated tasks, was used to evaluate motor function longitudinally in dystrophic dogs. We measured three-axis acceleration and angular velocity with wireless hybrid sensors during gait evaluations. Multiple parameters of acceleration and angular velocity showed notedly lower values in dystrophic dogs compared with wild-type dogs, even at the onset of muscle weakness. These parameters accordingly decreased with exacerbation of clinical manifestations along with the disease course. Multiple parameters also indicated gait abnormalities in dystrophic dogs, such as a waddling gait. These outcome measures could be applicable in clinical trials of patients with DMD or other muscle disorders.
Collapse
Affiliation(s)
- Mutsuki Kuraoka
- Laboratory of Experimental Animal Science, Nippon Veterinary and Life Science University.,Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry
| | - Shin'ichi Takeda
- National Institute of Neuroscience, National Center of Neurology and Psychiatry
| |
Collapse
|
13
|
Hamada Y, Tanaka S, Fujishita Y, Cho JS, Usuki T, Yokoyama Y, Wu X, Mori S, Yamamoto H, Kogo M. The synthetic peptide SVVYGLR promotes myogenic cell motility via the TGFβ1/Smad signaling pathway and facilitates skeletal myogenic differentiation in vitro. Dent Mater J 2021; 40:957-963. [PMID: 33716279 DOI: 10.4012/dmj.2020-354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In the present study, we investigated the possible involvement of the TGF-β/Smad signaling pathway in the osteopontin-derived SVVYGLR (SV) peptide-mediated migratory activities of myogenic cells and evaluated the facilitative effects of the SV peptide on the differentiation of myogenic cells in vitro. The SV peptide-induced migration in both human-derived satellite cells and myoblasts was substantially suppressed by the TGF-β1 receptor inhibitor SB431542 or SB505124. Besides, the expression level of the Smad3 phosphorylation was further enhanced by the addition of the SV peptide in comparison with control groups. Furthermore, an increase in the expression of myogenin-positive nuclei and a higher number of nascent myotubes with myosin heavy chain expression was confirmed in cultured myoblasts supplemented with the SV peptide. These results suggest that the involvement of the TGF-β/Smad signaling pathway in the SV peptide-mediated migration and the facilitative effect of the SV peptide on the differentiation of myogenic cells into myotubes.
Collapse
Affiliation(s)
- Yoshinosuke Hamada
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University.,Department of Health Economics and Management, Graduate School of Medicine, Osaka University.,Department of Pediatric Dentistry, Osaka Dental University
| | - Susumu Tanaka
- The 1st Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University
| | - Yohei Fujishita
- The 1st Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University
| | - Jung-Soo Cho
- The 1st Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University
| | - Takasuke Usuki
- The 1st Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University
| | - Yuhki Yokoyama
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University
| | - Xin Wu
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University
| | - Seiji Mori
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University.,Department of Medical Technology, Faculty of Health Sciences, Morinomiya University of Medical Sciences
| | - Hirofumi Yamamoto
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University
| | - Mikihiko Kogo
- The 1st Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University
| |
Collapse
|
14
|
Tanaka S, Yasuda T, Hamada Y, Kawaguchi N, Fujishita Y, Mori S, Yokoyama Y, Yamamoto H, Kogo M. Synthetic peptide SVVYGLR upregulates cell motility and facilitates oral mucosal wound healing. Peptides 2020; 134:170405. [PMID: 32920045 DOI: 10.1016/j.peptides.2020.170405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/17/2022]
Abstract
Osteopontin-derived SVVYGLR (SV) 7-amino-acid sequence is a multifunctional and synthetic SV peptide implicated in angiogenesis, production of collagen III, and fibroblast differentiation into myofibroblasts. This study investigated the effect of the SV peptide on mucosal wound healing activity. Normal human-derived gingival fibroblasts (NHGF) and human oral mucosa keratinocytes (HOMK) were used for in vitro experiments. In addition, an oral punch wound was prepared at the buccal mucosa in male rats aged 11 weeks, and we evaluated the effect of local injection of SV peptide on wound healing. The synthetic SV peptide showed no influence on the proliferation and adhesion properties of NHGF and HOMK, but it enhanced the cell motility and migration activities. TGF-β1 receptor inhibitor, SB431542 or SB505124, substantially suppressed the SV peptide-induced migration activity, suggesting an involvement of TGF-β1 receptor activation. Furthermore, SV peptide accelerated the healing process of an in vivo oral wound model, compared with control groups. Further immunohistological staining of wound tissue revealed that an increase in capillary growth and the greater number of fibroblasts and myofibroblasts that migrated into the wound area might contribute to the facilitation of the healing process produced by the SV peptide. The SV peptide has beneficial effects on oral wound healing through enhancement of the earlier phase consisting of angiogenesis and remodeling with granulation tissue. The synthetic SV peptide can be a useful treatment option, particularly for intractable mucosal wounds caused by trauma or surgery for progressive lesions such as oral cancer.
Collapse
Affiliation(s)
- Susumu Tanaka
- The 1st Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Osaka, Japan.
| | - Takuji Yasuda
- The 1st Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Osaka, Japan.
| | - Yoshinosuke Hamada
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan; Department of Health Economics and Management, Graduate School of Medicine, Osaka University, Osaka, Japan; Department of Pediatric Dentistry, Osaka Dental University, Osaka, Japan.
| | - Naomasa Kawaguchi
- Department of Cardiovascular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan; Departments of Drug Discovery Cardiovascular Regeneration, Graduate School of Medicine, Osaka University, Osaka, Japan; Graduate School of Health Sciences, Morinomiya University of Medical Sciences, Osaka, Japan.
| | - Yohei Fujishita
- The 1st Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Osaka, Japan.
| | - Seiji Mori
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan; Department of Medical Technology, Faculty of Health Sciences, Morinomiya University of Medical Sciences, Osaka, Japan.
| | - Yuhki Yokoyama
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | - Hirofumi Yamamoto
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | - Mikihiko Kogo
- The 1st Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Osaka, Japan.
| |
Collapse
|
15
|
Zou C, Pei S, Yan W, Lu Q, Zhong X, Chen Q, Pan S, Wang Z, Wang H, Zheng D. Cerebrospinal Fluid Osteopontin and Inflammation-Associated Cytokines in Patients With Anti- N-Methyl-D-Aspartate Receptor Encephalitis. Front Neurol 2020; 11:519692. [PMID: 33250837 PMCID: PMC7676223 DOI: 10.3389/fneur.2020.519692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 09/02/2020] [Indexed: 01/24/2023] Open
Abstract
Anti-N-methyl-d-aspartate receptor (anti-NMDAR) encephalitis is an autoimmune neurological disorder. Osteopontin (OPN) is a secreted multifunctional phosphorylated glycoprotein that regulates various autoimmune and inflammatory diseases, but its diagnostic and prognostic values in anti-NMDAR encephalitis patients remain elusive. This retrospective study aimed to determine the levels of OPN and related cytokines in cerebrospinal fluid (CSF) of anti-NMDAR encephalitis patients and to assess their influence on disease severity so as to evaluate their efficacy as biomarkers for diagnosis and prognosis. CSF samples from 33 anti-NMDAR encephalitis, 13 viral encephalitis, and 21 controls were collected. All CSF were tested for levels of OPN and inflammation-associated cytokines [interleukin (IL)-6, IL-10, and tumor necrosis factor (TNF)-α] via ELISA. In addition, 15 anti-NMDAR encephalitis patients without follow-up relapse were re-examined for these four parameters 3 months later. The clinical status was evaluated by modified Rankin Scale (mRS) scores. Results showed that the CSF levels of these cytokines were increased in anti-NMDAR encephalitis patients compared to controls but not viral encephalitis patients. Their levels were decreased in remission compared with that in acute stage. Moreover, CSF OPN positively correlated with IL-6, white blood cell (WBC) counts, and C-reactive protein (CRP) levels in anti-NMDAR encephalitis patients. However, no associations were found between OPN or related cytokines and mRS scores in acute stage in anti-NMDAR encephalitis patients. Overall, CSF OPN and related cytokines were increased when anti-NMDAR encephalitis patients are in acute stage and decreased in remission, suggesting the underlying neuro-inflammatory process in this disease. However, they are not qualified with diagnostic or prognostic value.
Collapse
Affiliation(s)
- Cong Zou
- Department of Neurology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shanshan Pei
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Yan
- Department of Neurology, The First People's Hospital of Kashgar Prefecture, Kashgar, China
| | - Qingbo Lu
- Department of Neurology, The First People's Hospital of Kashgar Prefecture, Kashgar, China
| | - Xiaomei Zhong
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiong Chen
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Suyue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhanhang Wang
- Department of Neurology, Guangdong 999 Brain Hospital, Guangzhou, China
| | - Honghao Wang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dong Zheng
- Department of Neurology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
16
|
Creation and characterization of an immortalized canine myoblast cell line: Myok9. Mamm Genome 2020; 31:95-109. [PMID: 32246189 DOI: 10.1007/s00335-020-09833-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 03/23/2020] [Indexed: 12/12/2022]
Abstract
The availability of an in vitro canine cell line would reduce the need for dogs for primary in vitro cell culture and reduce overall cost in pre-clinical studies. An immortalized canine muscle cell line, named Myok9, from primary myoblasts of a normal dog has been developed by the authors. Immortalization was performed by SV40 viral transfection of the large T antigen into the primary muscle cells. Proliferation assays, growth curves, quantitative PCR, western blotting, mass spectrometry, and light microscopy were performed to characterize the MyoK9 cell line at different stages of growth and differentiation. The expression of muscle-related genes was determined to assess myogenic origin. Myok9 cells expressed dystrophin and other muscle-specific proteins during differentiation, as detected with mass spectrometry and western blotting. Using the Myok9 cell line, new therapies before moving to pre-clinical studies to enhance the number and speed of analyses and reduce the cost of early experimentation can be tested now. This cell line will be made available to the research community to further evaluate potential therapeutics.
Collapse
|
17
|
Quan N, Harris LR, Halder R, Trinidad CV, Johnson BW, Horton S, Kimler BF, Pritchard MT, Duncan FE. Differential sensitivity of inbred mouse strains to ovarian damage in response to low-dose total body irradiation†. Biol Reprod 2020; 102:133-144. [PMID: 31436294 PMCID: PMC7334620 DOI: 10.1093/biolre/ioz164] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 07/08/2019] [Accepted: 08/15/2019] [Indexed: 12/15/2022] Open
Abstract
Radiation induces ovarian damage and accelerates reproductive aging. Inbred mouse strains exhibit differential sensitivity to lethality induced by total body irradiation (TBI), with the BALB/cAnNCrl (BALB/c) strain being more sensitive than the 129S2/SvPasCrl (129) strain. However, whether TBI-induced ovarian damage follows a similar pattern of strain sensitivity is unknown. To examine this possibility, female BALB/c and 129 mice were exposed to a single dose of 1 Gy (cesium-137 γ) TBI at 5 weeks of age, and ovarian tissue was harvested for histological and gene expression analyses 2 weeks post exposure. Sham-treated mice served as controls. 1 Gy radiation nearly eradicated the primordial follicles and dramatically decreased the primary follicles in both strains. In contrast, larger growing follicles were less affected in the 129 relative to BALB/c strain. Although this TBI paradigm did not induce detectable ovarian fibrosis in either of the strains, we did observe strain-dependent changes in osteopontin (Spp1) expression, a gene involved in wound healing, inflammation, and fibrosis. Ovaries from BALB/c mice exhibited higher baseline Spp1 expression that underwent a significant decrease in response to radiation relative to ovaries from the 129 strain. A correspondingly greater change in the ovarian matrix, as evidenced by reduced ovarian hyaluronan content, was also observed following TBI in BALB/c mice relative to 129 mice. These early changes in the ovary may predispose BALB/c mice to more pronounced late effects of TBI. Taken together, our results demonstrate that aspects of ovarian damage mirror other organ systems with respect to overall strain-dependent radiation sensitivity.
Collapse
Affiliation(s)
- Natalie Quan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Lacey R Harris
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ritika Halder
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Camille V Trinidad
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Brian W Johnson
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Shulamit Horton
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Bruce F Kimler
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Michele T Pritchard
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
18
|
The "Usual Suspects": Genes for Inflammation, Fibrosis, Regeneration, and Muscle Strength Modify Duchenne Muscular Dystrophy. J Clin Med 2019; 8:jcm8050649. [PMID: 31083420 PMCID: PMC6571893 DOI: 10.3390/jcm8050649] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/29/2019] [Accepted: 05/03/2019] [Indexed: 01/14/2023] Open
Abstract
Duchenne muscular dystrophy (DMD), the most severe form of dystrophinopathy, is quite homogeneous with regards to its causative biochemical defect, i.e., complete dystrophin deficiency, but not so much with regards to its phenotype. For instance, muscle weakness progresses to the loss of independent ambulation at a variable age, starting from before 10 years, to even after 16 years (with glucocorticoid treatment). Identifying the bases of such variability is relevant for patient counseling, prognosis, stratification in trials, and identification of therapeutic targets. To date, variants in five loci have been associated with variability in human DMD sub-phenotypes: SPP1, LTBP4, CD40, ACTN3, and THBS1. Four of these genes (SPP1, LTBP4, CD40, and THBS1) are implicated in several interconnected molecular pathways regulating inflammatory response to muscle damage, regeneration, and fibrosis; while ACTN3 is known as “the gene for speed”, as it contains a common truncating polymorphism (18% of the general population), which reduces muscle power and sprint performance. Studies leading to the identification of these modifiers were mostly based on a “candidate gene” approach, hence the identification of modifiers in “usual suspect” pathways, which are already known to modify muscle in disease or health. Unbiased approaches that are based on genome mapping have so far been applied only initially, but they will probably represent the focus of future developments in this field, and will hopefully identify novel, “unsuspected” therapeutic targets. In this article, we summarize the state of the art of modifier loci of human dystrophin deficiency, and attempt to assess their relevance and implications on both clinical management and translational research.
Collapse
|
19
|
Wasgewatte Wijesinghe DK, Mackie EJ, Pagel CN. Normal inflammation and regeneration of muscle following injury require osteopontin from both muscle and non-muscle cells. Skelet Muscle 2019; 9:6. [PMID: 30808406 PMCID: PMC6390361 DOI: 10.1186/s13395-019-0190-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/27/2019] [Indexed: 12/28/2022] Open
Abstract
Background Osteopontin is secreted by skeletal muscle myoblasts and macrophages, and its expression is upregulated in muscle following injury. Osteopontin is present in many different structural forms, which vary in their expression patterns and effects on cells. Using a whole muscle autograft model of muscle injury in mice, we have previously shown that inflammation and regeneration of muscle following injury are delayed by the absence of osteopontin. The current study was undertaken to determine whether muscle or non-muscle cells provide the source of osteopontin required for its role in muscle regeneration. Methods The extensor digitorum longus muscle of wild-type and osteopontin-null mice was removed and returned to its bed in the same animal (autograft) or placed in the corresponding location in an animal of the opposite genotype (allograft). Grafts were harvested at various times after surgery and analysed by histology, flow cytometry and quantitative polymerase chain reaction. Data were analysed using one- or two-way ANOVA or Kruskal-Wallis test. Results Immunohistochemistry confirmed that osteopontin was expressed by macrophages in osteopontin-null muscle allografts in wild-type hosts and by myoblasts in wild-type allografts in osteopontin-null hosts. The decrease in muscle fibre number observed in wild-type autografts following grafting and the subsequent appearance of regenerating fibres were delayed in both types of allografts to a similar extent as in osteopontin-null autografts. Infiltration of neutrophils, macrophages and M1 and M2 macrophage subtypes were also delayed by lack of osteopontin in the muscle and/or host. While the proportion of macrophages showing the M1 phenotype was not affected, the proportion showing the M2 phenotype was decreased by osteopontin deficiency. Expression of tumour necrosis factor-α and interleukin-4 was lower in osteopontin-null than in wild-type autografts, and there was no difference between the osteopontin-null graft types. Conclusions Osteopontins from muscle and non-muscle sources are equally important in the acute response of muscle to injury, and cannot substitute for each other, suggesting that they play distinct roles in regulation of cell behaviour. Future studies of mechanisms of osteopontin’s roles in acute muscle inflammation and regeneration will need to investigate responses to osteopontins derived from both myoblasts and macrophages.
Collapse
Affiliation(s)
- Dimuthu K Wasgewatte Wijesinghe
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Eleanor J Mackie
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Charles N Pagel
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
20
|
Al-Attar R, Storey KB. Effects of anoxic exposure on the nuclear factor of activated T cell (NFAT) transcription factors in the stress-tolerant wood frog. Cell Biochem Funct 2018; 36:420-430. [PMID: 30411386 DOI: 10.1002/cbf.3362] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/15/2018] [Accepted: 10/03/2018] [Indexed: 11/08/2022]
Abstract
The wood frog, Lithobates sylvaticus (also known as Rana sylvatica), is used for studying natural freeze tolerance. These animals convert 65% to 70% of their total body water into extracellular ice and survive freezing for weeks in winter. Freezing interrupts oxygen delivery to organs; thus, wood frogs limit their ATP usage by depressing their metabolism and redirecting the available energy only to prosurvival processes. Here, we studied the nuclear factor of activated T cell (NFAT) transcription factor family in response to 24-hour anoxia, and 4-hour aerobic recovery in liver and skeletal muscle. Protein expression levels of NFATc1-c4, calcineurin A and glycogen synthase kinase 3β (NFAT regulators), osteopontin, and atrial natriuretic peptide (ANP) (targets of NFATc3 and NFATc4, respectively) were measured by immunoblotting, and the DNA-binding activities of NFATc1-c4 were measured by DNA-protein interaction ELISAs. Results show that NFATc4, calcineurin, and ANP protein expression as well as NFATc4 DNA binding increased during anoxia in liver where calcineurin and ANP protein levels and NFATc4 DNA binding remaining high after aerobic recovery. Anoxia caused a significant increase in NFATc3 protein expression but not DNA-binding activity in muscle. Our results show that anoxia can increase NFATc4 transcriptional activity in liver, leading to the increase in expression of cytoprotective genes in the wood frog. Understanding the molecular mechanisms involved in mediating survival under anoxia/reoxygenation conditions in a naturally stress-tolerant model, such as the wood frog, provides insightful information on the prosurvival regulatory mechanisms involved in combating stress. This information will also further our understanding of metabolic rate depression and answer the question of how frogs tolerate prolonged periods of oxygen deprivation and resume to full function upon recovery without facing any detrimental side effects as other animals would.
Collapse
Affiliation(s)
- Rasha Al-Attar
- Institude of Biochemistry and Department of Biology, Carleton University, Ottawa, Canada
| | - Kenneth B Storey
- Institude of Biochemistry and Department of Biology, Carleton University, Ottawa, Canada
| |
Collapse
|
21
|
Abstract
The immune response to acute muscle damage is important for normal repair. However, in chronic diseases such as many muscular dystrophies, the immune response can amplify pathology and play a major role in determining disease severity. Muscular dystrophies are inheritable diseases that vary tremendously in severity, but share the progressive loss of muscle mass and function that can be debilitating and lethal. Mutations in diverse genes cause muscular dystrophy, including genes that encode proteins that maintain membrane strength, participate in membrane repair, or are components of the extracellular matrix or the nuclear envelope. In this article, we explore the hypothesis that an important feature of many muscular dystrophies is an immune response adapted to acute, infrequent muscle damage that is misapplied in the context of chronic injury. We discuss the involvement of the immune system in the most common muscular dystrophy, Duchenne muscular dystrophy, and show that the immune system influences muscle death and fibrosis as disease progresses. We then present information on immune cell function in other muscular dystrophies and show that for many muscular dystrophies, release of cytosolic proteins into the extracellular space may provide an initial signal, leading to an immune response that is typically dominated by macrophages, neutrophils, helper T-lymphocytes, and cytotoxic T-lymphocytes. Although those features are similar in many muscular dystrophies, each muscular dystrophy shows distinguishing features in the magnitude and type of inflammatory response. These differences indicate that there are disease-specific immunomodulatory molecules that determine response to muscle cell damage caused by diverse genetic mutations. © 2018 American Physiological Society. Compr Physiol 8:1313-1356, 2018.
Collapse
Affiliation(s)
- James G. Tidball
- Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, California, USA
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, USA
| | - Steven S. Welc
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
| | - Michelle Wehling-Henricks
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
| |
Collapse
|
22
|
Terruzzi I, Montesano A, Senesi P, Vacante F, Benedini S, Luzi L. Ranolazine promotes muscle differentiation and reduces oxidative stress in C2C12 skeletal muscle cells. Endocrine 2017; 58:33-45. [PMID: 27933435 PMCID: PMC5608860 DOI: 10.1007/s12020-016-1181-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 11/14/2016] [Indexed: 01/22/2023]
Abstract
PURPOSE The purpose of this study is to investigate Ranolazine action on skeletal muscle differentiation and mitochondrial oxidative phenomena. Ranolazine, an antianginal drug, which acts blocking the late INaL current, was shown to lower hemoglobin A1c in patients with diabetes. In the present study, we hypothesized an action of Ranolazine on skeletal muscle cells regeneration and oxidative process, leading to a reduction of insulin resistance. METHODS 10 μM Ranolazine was added to C2C12 murine myoblastic cells during proliferation, differentiation and newly formed myotubes. RESULTS Ranolazine promoted the development of a specific myogenic phenotype: increasing the expression of myogenic regulator factors and inhibiting cell cycle progression factor (p21). Ranolazine stimulated calcium signaling (calmodulin-dependent kinases) and reduced reactive oxygen species levels. Furthermore, Ranolazine maintained mitochondrial homeostasis. During the differentiation phase, Ranolazine promoted myotubes formation. Ranolazine did not modify kinases involved in skeletal muscle differentiation and glucose uptake (extracellular signal-regulated kinases 1/2 and AKT pathways), but activated calcium signaling pathways. During proliferation, Ranolazine did not modify the number of mitochondria while decreasing osteopontin protein levels. Lastly, neo-formed myotubes treated with Ranolazine showed typical hypertrophic phenotype. CONCLUSION In conclusion, our results indicate that Ranolazine stimulates myogenesis and reduces a pro-oxidant inflammation/oxidative condition, activating a calcium signaling pathway. These newly described mechanisms may partially explain the glucose lowering effect of the drug.
Collapse
Affiliation(s)
- Ileana Terruzzi
- Diabetes Research Institute, Metabolism, Nutrigenomics and Cellular Differentiation Unit, San Raffaele Scientific Institute, 60 Olgettina street, 20132, Milan, Italy.
| | - Anna Montesano
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Pamela Senesi
- Metabolism Research Center, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Fernanda Vacante
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Stefano Benedini
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Metabolism Research Center, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Livio Luzi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Metabolism Research Center, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| |
Collapse
|
23
|
SPP1 genotype and glucocorticoid treatment modify osteopontin expression in Duchenne muscular dystrophy cells. Hum Mol Genet 2017; 26:3342-3351. [DOI: 10.1093/hmg/ddx218] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/26/2017] [Indexed: 02/06/2023] Open
|
24
|
Potent pro-inflammatory and pro-fibrotic molecules, osteopontin and galectin-3, are not major disease modulators of laminin α2 chain-deficient muscular dystrophy. Sci Rep 2017; 7:44059. [PMID: 28281577 PMCID: PMC5345027 DOI: 10.1038/srep44059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/01/2017] [Indexed: 01/21/2023] Open
Abstract
A large number of human diseases are caused by chronic tissue injury with fibrosis potentially leading to organ failure. There is a need for more effective anti-fibrotic therapies. Congenital muscular dystrophy type 1A (MDC1A) is a devastating form of muscular dystrophy caused by laminin α2 chain-deficiency. It is characterized with early inflammation and build-up of fibrotic lesions, both in patients and MDC1A mouse models (e.g. dy3K/dy3K). Despite the enormous impact of inflammation on tissue remodelling in disease, the inflammatory response in MDC1A has been poorly described. Consequently, a comprehensive understanding of secondary mechanisms (impaired regeneration, enhanced fibrosis) leading to deterioration of muscle phenotype in MDC1A is missing. We have monitored inflammatory processes in dy3K/dy3K muscle and created mice deficient in laminin α2 chain and osteopontin or galectin-3, two pro-inflammatory and pro-fibrotic molecules drastically increased in dystrophic muscle. Surprisingly, deletion of osteopontin worsened the phenotype of dy3K/dy3K mice and loss of galectin-3 did not reduce muscle pathology. Our results indicate that osteopontin could even be a beneficial immunomodulator in MDC1A. This knowledge is essential for the design of future therapeutic interventions for muscular dystrophies that aim at targeting inflammation, especially that osteopontin inhibition has been suggested for Duchenne muscular dystrophy therapy.
Collapse
|
25
|
Quattrocelli M, Spencer MJ, McNally EM. Outside in: The matrix as a modifier of muscular dystrophy. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2017; 1864:572-579. [PMID: 28011285 PMCID: PMC5262521 DOI: 10.1016/j.bbamcr.2016.12.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/14/2016] [Accepted: 12/19/2016] [Indexed: 02/07/2023]
Abstract
Muscular dystrophies are genetic conditions leading to muscle degeneration and often, impaired regeneration. Duchenne Muscular Dystrophy is a prototypical form of muscular dystrophy, and like other forms of genetically inherited muscle diseases, pathological progression is variable. Variability in muscular dystrophy can arise from differences in the manner in which the primary mutation impacts the affected protein's function; however, clinical heterogeneity also derives from secondary mutations in other genes that can enhance or reduce pathogenic features of disease. These genes, called genetic modifiers, regulate the pathophysiological context of dystrophic degeneration and regeneration. Understanding the mechanistic links between genetic modifiers and dystrophic progression sheds light on pathologic remodeling, and provides novel avenues to therapeutically intervene to reduce muscle degeneration. Based on targeted genetic approaches and unbiased genomewide screens, several modifiers have been identified for muscular dystrophy, including extracellular agonists of signaling cascades. This review will focus on identification and possible mechanisms of recently identified modifiers for muscular dystrophy, including osteopontin, latent TGFβ binding protein 4 (LTBP4) and Jagged1. Moreover, we will review the investigational approaches that aim to target modifier pathways and thereby counteract dystrophic muscle wasting.
Collapse
Affiliation(s)
| | - Melissa J Spencer
- Dept of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | |
Collapse
|
26
|
Makishi S, Saito K, Ohshima H. Osteopontin-deficiency disturbs direct osteogenesis in the process of achieving osseointegration following immediate placement of endosseous implants. Clin Implant Dent Relat Res 2016; 19:496-504. [PMID: 27943627 DOI: 10.1111/cid.12467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 11/05/2016] [Indexed: 11/25/2022]
Abstract
BACKGROUND The role of osteopontin (OPN) in the process of achieving osseointegration following implantation remains to be clarified. PURPOSE This study aimed to analyze the healing patterns of the bone-implant interface after immediate placement of implants in the maxillae of 4-week-old Opn-knockout (KO) and wild-type (WT) mice. MATERIALS AND METHODS After maxillary first molars were extracted, cavities were prepared with a drill and titanium implants blasted with ceramic abrasives containing hydroxyapatite/β-tricalcium phosphate were placed. Following fixation at 3, 5, 7, and 28 days after implantation, the samples were analyzed using immunohistochemistry, in situ hybridization, and an electron probe micro analyzer. RESULTS Two types of bone healing were observed in the process of achieving osseointegration: "direct osteogenesis," where bone formation occurs at the implant surface, and "indirect osteogenesis," where it does at the pre-existing damaged bone surface in the WT mice. Direct osteogenesis occurred after the recruitment of tartrate resistant acid phosphatase-positive cells and the deposition of OPN on the implant surface. In contrast, the rate of osseointegration or direct osteogenesis was significantly low, and cell proliferation was disturbed in the Opn-KO mice. CONCLUSIONS These results suggest that Opn-deficiency disturbs direct osteogenesis to lead the delayed osseointegration after immediate placement of endosseous implants.
Collapse
Affiliation(s)
- Sanako Makishi
- General Dentistry and Clinical Education Unit, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Kotaro Saito
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
27
|
Bello L, Flanigan KM, Weiss RB, Spitali P, Aartsma-Rus A, Muntoni F, Zaharieva I, Ferlini A, Mercuri E, Tuffery-Giraud S, Claustres M, Straub V, Lochmüller H, Barp A, Vianello S, Pegoraro E, Punetha J, Gordish-Dressman H, Giri M, McDonald CM, Hoffman EP. Association Study of Exon Variants in the NF-κB and TGFβ Pathways Identifies CD40 as a Modifier of Duchenne Muscular Dystrophy. Am J Hum Genet 2016; 99:1163-1171. [PMID: 27745838 DOI: 10.1016/j.ajhg.2016.08.023] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 08/29/2016] [Indexed: 12/12/2022] Open
Abstract
The expressivity of Mendelian diseases can be influenced by factors independent from the pathogenic mutation: in Duchenne muscular dystrophy (DMD), for instance, age at loss of ambulation (LoA) varies between individuals whose DMD mutations all abolish dystrophin expression. This suggests the existence of trans-acting variants in modifier genes. Common single nucleotide polymorphisms (SNPs) in candidate genes (SPP1, encoding osteopontin, and LTBP4, encoding latent transforming growth factor β [TGFβ]-binding protein 4) have been established as DMD modifiers. We performed a genome-wide association study of age at LoA in a sub-cohort of European or European American ancestry (n = 109) from the Cooperative International Research Group Duchenne Natural History Study (CINRG-DNHS). We focused on protein-altering variants (Exome Chip) and included glucocorticoid treatment as a covariate. As expected, due to the small population size, no SNPs displayed an exome-wide significant p value (< 1.8 × 10-6). Subsequently, we prioritized 438 SNPs in the vicinities of 384 genes implicated in DMD-related pathways, i.e., the nuclear-factor-κB and TGFβ pathways. The minor allele at rs1883832, in the 5'-untranslated region of CD40, was associated with earlier LoA (p = 3.5 × 10-5). This allele diminishes the expression of CD40, a co-stimulatory molecule for T cell polarization. We validated this association in multiple independent DMD cohorts (United Dystrophinopathy Project, Bio-NMD, and Padova, total n = 660), establishing this locus as a DMD modifier. This finding points to cell-mediated immunity as a relevant pathogenetic mechanism and potential therapeutic target in DMD.
Collapse
Affiliation(s)
- Luca Bello
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA; Department of Neuroscience, University of Padova, 35128 Padova, Italy
| | - Kevin M Flanigan
- The Center for Gene Therapy, Nationwide Children's Hospital, The Ohio State University, Columbus, OH 43205, USA; Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA; Department of Neurology, The Ohio State University, Columbus, OH 43205, USA
| | - Robert B Weiss
- Department of Human Genetics, The University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Pietro Spitali
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne NE1 3BZ, UK
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, University College London Institute of Child Health, London WC1N 1EH, UK
| | - Irina Zaharieva
- Dubowitz Neuromuscular Centre, University College London Institute of Child Health, London WC1N 1EH, UK
| | - Alessandra Ferlini
- Department of Medical Sciences, UOL of Medical Genetics, University of Ferrara, 44121 Ferrara, Italy
| | - Eugenio Mercuri
- Paediatric Neuropsychiatry Unit, Policlinico Gemelli, Catholic University, 00168 Rome, Italy
| | - Sylvie Tuffery-Giraud
- Laboratory of Genetics of Rare Diseases, EA 7402, University of Montpellier, 34093 Montpellier, France
| | - Mireille Claustres
- Laboratory of Genetics of Rare Diseases, EA 7402, University of Montpellier, 34093 Montpellier, France
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne NE1 3BZ, UK
| | - Hanns Lochmüller
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne NE1 3BZ, UK
| | - Andrea Barp
- Department of Neuroscience, University of Padova, 35128 Padova, Italy
| | - Sara Vianello
- Department of Neuroscience, University of Padova, 35128 Padova, Italy
| | - Elena Pegoraro
- Department of Neuroscience, University of Padova, 35128 Padova, Italy
| | - Jaya Punetha
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Heather Gordish-Dressman
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Mamta Giri
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Craig M McDonald
- University of California Davis Medical Center, Sacramento, CA 95817, USA
| | - Eric P Hoffman
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA.
| |
Collapse
|
28
|
Singh R, Hui T, Matsui A, Allahem Z, Johnston CD, Ruiz-Torruella M, Rittling SR. Modulation of infection-mediated migration of neutrophils and CXCR2 trafficking by osteopontin. Immunology 2016; 150:74-86. [PMID: 27599164 DOI: 10.1111/imm.12668] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/23/2016] [Accepted: 08/31/2016] [Indexed: 12/16/2022] Open
Abstract
Osteopontin (OPN) is a pro-inflammatory protein that paradoxically protects against inflammation and bone destruction in a mouse model of endodontic infection. Here we have tested the hypothesis that this effect of OPN is mediated by effects on migration of innate immune cells to the site of infection. Using the air pouch as a model of endodontic infection in mice, we showed that neutrophil accumulation at the site of infection with a mixture of endodontic pathogens is significantly reduced in OPN-deficient mice. Reduced neutrophil accumulation in the absence of OPN was accompanied by an increase in bacterial load. OPN-deficiency did not affect neutrophil survival, CXCR2 ligand expression, or the production of inflammatory cytokines in the air pouch. In vitro, OPN enhanced neutrophil migration to CXCL1, whereas in vivo, inhibition of CXCR2 suppressed cellular infiltration in air pouches of infected wild-type mice by > 50%, but had no effect in OPN-deficient mice. OPN increased cell surface expression of CXCR2 on bone marrow neutrophils in an integrin-αv -dependent manner, and suppressed the internalization of CXCR2 in the absence of ligand. Together, these results support a model where the protective effect of OPN results from enhanced initial neutrophil accumulation at sites of infection resulting in optimal bacterial killing. We describe a novel mechanism for this effect of OPN: integrin-αv -dependent suppression of CXCR2 internalization in neutrophils, which increases the ability of these cells to migrate to sites of infection in response to CXCR2 ligands.
Collapse
Affiliation(s)
- Rani Singh
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, MA, USA.,Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Tommy Hui
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, MA, USA
| | - Aritsune Matsui
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, MA, USA
| | - Ziyad Allahem
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, MA, USA
| | - Christopher D Johnston
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, MA, USA.,Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | | | - Susan R Rittling
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, MA, USA.,Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| |
Collapse
|
29
|
Many GM, Yokosaki Y, Uaesoontrachoon K, Nghiem PP, Bello L, Dadgar S, Yin Y, Damsker JM, Cohen HB, Kornegay JN, Bamman MM, Mosser DM, Nagaraju K, Hoffman EP. OPN-a induces muscle inflammation by increasing recruitment and activation of pro-inflammatory macrophages. Exp Physiol 2016; 101:1285-1300. [PMID: 27452303 PMCID: PMC5095808 DOI: 10.1113/ep085768] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 07/15/2016] [Indexed: 02/06/2023]
Abstract
New Findings What is the central question of this study? What is the functional relevance of OPN isoform expression in muscle pathology? What is the main finding and its importance? The full‐length human OPN‐a isoform is the most pro‐inflammatory isoform in the muscle microenvironment, acting on macrophages and myoblasts in an RGD‐integrin‐dependent manner. OPN‐a upregulates expression of tenascin‐C (TNC), a known Toll‐like receptor 4 (TLR4) agonist. Blocking TLR4 signalling inhibits the pro‐inflammatory effects of OPN‐a, suggesting that a potential mechanism of OPN action is by promoting TNC–TLR4 signalling.
Although osteopontin (OPN) is an important mediator of muscle remodelling in health and disease, functional differences in human spliced OPN variants in the muscle microenvironment have not been characterized. We thus sought to define the pro‐inflammatory activities of human OPN isoforms (OPN‐a, OPN‐b and OPN‐c) on cells present in regenerating muscle. OPN transcripts were quantified in normal and dystrophic human and dog muscle. Human macrophages and myoblasts were stimulated with recombinant human OPN protein isoforms, and cytokine mRNA and protein induction was assayed. OPN isoforms were greatly increased in dystrophic human (OPN‐a > OPN‐b > OPN‐c) and dog muscle (OPN‐a = OPN‐c). In healthy human muscle, mechanical loading also upregulated OPN‐a expression (eightfold; P < 0.01), but did not significantly upregulate OPN‐c expression (twofold; P > 0.05). In vitro, OPN‐a displayed the most pronounced pro‐inflammatory activity among isoforms, acting on both macrophages and myoblasts. In vitro and in vivo data revealed that OPN‐a upregulated tenascin‐C (TNC), a known Toll‐like receptor 4 (TLR4) agonist. Inhibition of TLR4 signalling attenuated OPN‐mediated macrophage cytokine production. In summary, OPN‐a is the most abundant and functionally active human spliced isoform in the skeletal muscle microenvironment. Here, OPN‐a promotes pro‐inflammatory signalling in both macrophages and myoblasts, possibly through induction of TNC–TLR4 signalling. Together, our findings suggest that specific targeting of OPN‐a and/or TNC signalling in the damaged muscle microenvironment may be of therapeutic relevance.
Collapse
Affiliation(s)
- Gina M Many
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC, USA.,Department of Integrative Systems Biology, George Washington University School of Medicine & Health Sciences, Washington, DC, USA.,Department of Cell, Developmental and Integrative Biology, University of Alabama Birmingham, Birmingham, AL, USA
| | | | | | - Peter P Nghiem
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC, USA.,Department of Integrative Systems Biology, George Washington University School of Medicine & Health Sciences, Washington, DC, USA.,Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Luca Bello
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC, USA
| | - Sherry Dadgar
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC, USA
| | - Ying Yin
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Jesse M Damsker
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC, USA.,ReveraGen BioPharma, Rockville, MD, USA
| | - Heather B Cohen
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Joe N Kornegay
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Marcas M Bamman
- Department of Cell, Developmental and Integrative Biology, University of Alabama Birmingham, Birmingham, AL, USA
| | - David M Mosser
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Kanneboyina Nagaraju
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC, USA.,Department of Integrative Systems Biology, George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Eric P Hoffman
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC, USA. .,Department of Integrative Systems Biology, George Washington University School of Medicine & Health Sciences, Washington, DC, USA.
| |
Collapse
|
30
|
Miyatake S, Shimizu-Motohashi Y, Takeda S, Aoki Y. Anti-inflammatory drugs for Duchenne muscular dystrophy: focus on skeletal muscle-releasing factors. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:2745-58. [PMID: 27621596 PMCID: PMC5012616 DOI: 10.2147/dddt.s110163] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Duchenne muscular dystrophy (DMD), an incurable and a progressive muscle wasting disease, is caused by the absence of dystrophin protein, leading to recurrent muscle fiber damage during contraction. The inflammatory response to fiber damage is a compelling candidate mechanism for disease exacerbation. The only established pharmacological treatment for DMD is corticosteroids to suppress muscle inflammation, however this treatment is limited by its insufficient therapeutic efficacy and considerable side effects. Recent reports show the therapeutic potential of inhibiting or enhancing pro- or anti-inflammatory factors released from DMD skeletal muscles, resulting in significant recovery from muscle atrophy and dysfunction. We discuss and review the recent findings of DMD inflammation and opportunities for drug development targeting specific releasing factors from skeletal muscles. It has been speculated that nonsteroidal anti-inflammatory drugs targeting specific inflammatory factors are more effective and have less side effects for DMD compared with steroidal drugs. For example, calcium channels, reactive oxygen species, and nuclear factor-κB signaling factors are the most promising targets as master regulators of inflammatory response in DMD skeletal muscles. If they are combined with an oligonucleotide-based exon skipping therapy to restore dystrophin expression, the anti-inflammatory drug therapies may address the present therapeutic limitation of low efficiency for DMD.
Collapse
Affiliation(s)
- Shouta Miyatake
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Yuko Shimizu-Motohashi
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| |
Collapse
|
31
|
Saito K, Nakatomi M, Ida-Yonemochi H, Ohshima H. Osteopontin Is Essential for Type I Collagen Secretion in Reparative Dentin. J Dent Res 2016; 95:1034-41. [PMID: 27126446 DOI: 10.1177/0022034516645333] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Osteopontin (OPN) is a highly phosphorylated glycoprotein that is a prominent component of the mineralized extracellular matrix of bone. The secretion of OPN by immunocompetent cells plays a role in the differentiation of odontoblast-like cells during pulpal healing following tooth transplantation. This study aimed to clarify the role of OPN during reparative dentinogenesis. A groove-shaped cavity was prepared on the mesial surface of the upper first molars of wild-type (WT) and Opn knockout (KO) mice, and the samples were collected at intervals of 1 to 14 d. The demineralized sections were processed for immunohistochemistry for Ki67, nestin, OPN, dentin sialoprotein (DSP), integrin αvβ3, and type I collagen; in situ hybridization for Opn, col1a1, and dentin sialophosphoprotein (Dspp); and apoptosis assay. For the loss and gain of function experiments, an in vitro culture assay for evaluating dentin-pulp complex regeneration was performed. On day 1 in WT mice, odontoblasts beneath the affected dentin lost nestin immunoreactivity. On day 3, the expression of Opn was recognized at the mesial dental pulp, and OPN was deposited along the predentin-dentin border. Nestin-positive newly differentiated odontoblast-like cells expressed both Dspp and col1a1 and showed positive immunoreactivity for integrin αvβ3, DSP, and type I collagen. Until day 14, reparative dentin formation continued next to the preexisting dentin at the mesial coronal pulp. In contrast, there was no reparative dentin in the Opn KO mice where nestin- and DSP-positive newly differentiated odontoblast-like cells lacked immunoreaction for type I collagen. The in vitro organ culture demonstrated that the administration of recombinant OPN rescued the type I collagen secretion by odontoblast-like cells in the Opn KO mice. The results suggested that the deposition of OPN at the calcification front is essential for the type I collagen secretion by newly differentiated odontoblast-like cells to form reparative dentin during pulpal healing following cavity preparation.
Collapse
Affiliation(s)
- K Saito
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - M Nakatomi
- Division of Anatomy, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Japan
| | - H Ida-Yonemochi
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - H Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
32
|
Kuraoka M, Kimura E, Nagata T, Okada T, Aoki Y, Tachimori H, Yonemoto N, Imamura M, Takeda S. Serum Osteopontin as a Novel Biomarker for Muscle Regeneration in Duchenne Muscular Dystrophy. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1302-12. [PMID: 26963343 DOI: 10.1016/j.ajpath.2016.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 12/25/2015] [Accepted: 01/05/2016] [Indexed: 12/20/2022]
Abstract
Duchenne muscular dystrophy is a lethal X-linked muscle disorder. We have already reported that osteopontin (OPN), an inflammatory cytokine and myogenic factor, is expressed in the early dystrophic phase in canine X-linked muscular dystrophy in Japan, a dystrophic dog model. To further explore the possibility of OPN as a new biomarker for disease activity in Duchenne muscular dystrophy, we monitored serum OPN levels in dystrophic and wild-type dogs at different ages and compared the levels to other serum markers, such as serum creatine kinase, matrix metalloproteinase-9, and tissue inhibitor of metalloproteinase-1. Serum OPN levels in the dystrophic dogs were significantly elevated compared with those in wild-type dogs before and 1 hour after a cesarean section birth and at the age of 3 months. The serum OPN level was significantly correlated with the phenotypic severity of dystrophic dogs at the period corresponding to the onset of muscle weakness, whereas other serum markers including creatine kinase were not. Immunohistologically, OPN was up-regulated in infiltrating macrophages and developmental myosin heavy chain-positive regenerating muscle fibers in the dystrophic dogs, whereas serum OPN was highly elevated. OPN expression was also observed during the synergic muscle regeneration process induced by cardiotoxin injection. In conclusion, OPN is a promising biomarker for muscle regeneration in dystrophic dogs and can be applicable to boys with Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Mutsuki Kuraoka
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - En Kimura
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan; Translational Medical Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Tetsuya Nagata
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Neurology and Neurological Science, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takashi Okada
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hisateru Tachimori
- Department of Mental Health Policy and Evaluation, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Naohiro Yonemoto
- Department of Psychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Michihiro Imamura
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.
| |
Collapse
|
33
|
Almeida CF, Martins PC, Vainzof M. Comparative transcriptome analysis of muscular dystrophy models Large(myd), Dmd(mdx)/Large(myd) and Dmd(mdx): what makes them different? Eur J Hum Genet 2016; 24:1301-9. [PMID: 26932192 DOI: 10.1038/ejhg.2016.16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 01/26/2016] [Accepted: 02/01/2016] [Indexed: 11/09/2022] Open
Abstract
Muscular dystrophies (MD) are a clinically and genetically heterogeneous group of Mendelian diseases. The underlying pathophysiology and phenotypic variability in each form are much more complex, suggesting the involvement of many other genes. Thus, here we studied the whole genome expression profile in muscles from three mice models for MD, at different time points: Dmd(mdx) (mutation in dystrophin gene), Large(myd-/-) (mutation in Large) and Dmd(mdx)/Large(myd-/-) (both mutations). The identification of altered biological functions can contribute to understand diseases and to find prognostic biomarkers and points for therapeutic intervention. We identified a substantial number of differentially expressed genes (DEGs) in each model, reflecting diseases' complexity. The main biological process affected in the three strains was immune system, accounting for the majority of enriched functional categories, followed by degeneration/regeneration and extracellular matrix remodeling processes. The most notable differences were in 21-day-old Dmd(mdx), with a high proportion of DEGs related to its regenerative capacity. A higher number of positive embryonic myosin heavy chain (eMyHC) fibers confirmed this. The new Dmd(mdx)/Large(myd-/-) model did not show a highly different transcriptome from the parental lineages, with a profile closer to Large(myd-/-), but not bearing the same regenerative potential as Dmd(mdx). This is the first report about transcriptome profile of a mouse model for congenital MD and Dmd(mdx)/Large(myd). By comparing the studied profiles, we conclude that alterations in biological functions due to the dystrophic process are very similar, and that the intense regeneration in Dmd(mdx) involves a large number of activated genes, not differentially expressed in the other two strains.
Collapse
Affiliation(s)
- Camila F Almeida
- Laboratory of Muscle Proteins and Comparative Histopathology, Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Poliana Cm Martins
- Laboratory of Muscle Proteins and Comparative Histopathology, Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Mariz Vainzof
- Laboratory of Muscle Proteins and Comparative Histopathology, Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
34
|
Ding Y, Chen J, Cui G, Wei Y, Lu C, Wang L, Diao H. Pathophysiological role of osteopontin and angiotensin II in atherosclerosis. Biochem Biophys Res Commun 2016; 471:5-9. [PMID: 26828266 DOI: 10.1016/j.bbrc.2016.01.142] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 01/22/2016] [Indexed: 01/13/2023]
Affiliation(s)
- Yulong Ding
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003 Hangzhou, China
| | - Jianing Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003 Hangzhou, China
| | - Guangying Cui
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003 Hangzhou, China
| | - Yingfeng Wei
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003 Hangzhou, China
| | - Chong Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003 Hangzhou, China
| | - Lin Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003 Hangzhou, China
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003 Hangzhou, China.
| |
Collapse
|
35
|
Ryz NR, Lochner A, Bhullar K, Ma C, Huang T, Bhinder G, Bosman E, Wu X, Innis SM, Jacobson K, Vallance BA. Dietary vitamin D3 deficiency alters intestinal mucosal defense and increases susceptibility to Citrobacter rodentium-induced colitis. Am J Physiol Gastrointest Liver Physiol 2015; 309:G730-42. [PMID: 26336925 PMCID: PMC4628967 DOI: 10.1152/ajpgi.00006.2015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 08/27/2015] [Indexed: 01/31/2023]
Abstract
Vitamin D deficiency affects more that 1 billion people worldwide. Although thought to increase risk of bacterial infections, the importance of vitamin D on host defense against intestinal bacterial pathogens is currently unclear since injection of the active form of vitamin D, 1,25(OH)2D3, increased susceptibility to the enteric bacterial pathogen Citrobacter rodentium by suppressing key immune/inflammatory factors. To further characterize the role of vitamin D during bacteria-induced colitis, we fed weanling mice either vitamin D3-deficient or vitamin D3-sufficient diets for 5 wk and then challenged them with C. rodentium. Vitamin D3-deficient mice lost significantly more body weight, carried higher C. rodentium burdens, and developed worsened histological damage. Vitamin D3-deficient mice also suffered greater bacterial translocation to extra-intestinal tissues, including mesenteric lymph nodes, spleen, and liver. Intestinal tissues of infected vitamin D3-deficient mice displayed increased inflammatory cell infiltrates as well as significantly higher gene transcript levels of inflammatory mediators TNF-α, IL-1β, IL-6, TGF-β, IL-17A, and IL-17F as well as the antimicrobial peptide REG3γ. Notably, these exaggerated inflammatory responses accelerated the loss of commensal microbes and were associated with an impaired ability to detoxify bacterial lipopolysaccharide. Overall, these studies show that dietary-induced vitamin D deficiency exacerbates intestinal inflammatory responses to infection, also impairing host defense.
Collapse
Affiliation(s)
- Natasha R. Ryz
- 1Division of Gastroenterology, Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; and
| | - Arion Lochner
- 1Division of Gastroenterology, Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; and
| | - Kirandeep Bhullar
- 1Division of Gastroenterology, Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; and
| | - Caixia Ma
- 1Division of Gastroenterology, Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; and
| | - Tina Huang
- 1Division of Gastroenterology, Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; and
| | - Ganive Bhinder
- 1Division of Gastroenterology, Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; and
| | - Else Bosman
- 1Division of Gastroenterology, Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; and
| | - Xiujuan Wu
- 1Division of Gastroenterology, Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; and
| | - Sheila M. Innis
- 2Division of Neonatology, Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevan Jacobson
- 1Division of Gastroenterology, Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; and
| | - Bruce A. Vallance
- 1Division of Gastroenterology, Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; and
| |
Collapse
|
36
|
Barp A, Bello L, Politano L, Melacini P, Calore C, Polo A, Vianello S, Sorarù G, Semplicini C, Pantic B, Taglia A, Picillo E, Magri F, Gorni K, Messina S, Vita GL, Vita G, Comi GP, Ermani M, Calvo V, Angelini C, Hoffman EP, Pegoraro E. Genetic Modifiers of Duchenne Muscular Dystrophy and Dilated Cardiomyopathy. PLoS One 2015; 10:e0141240. [PMID: 26513582 PMCID: PMC4626372 DOI: 10.1371/journal.pone.0141240] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/05/2015] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVE Dilated cardiomyopathy (DCM) is a major complication and leading cause of death in Duchenne muscular dystrophy (DMD). DCM onset is variable, suggesting modifier effects of genetic or environmental factors. We aimed to determine if polymorphisms previously associated with age at loss of independent ambulation (LoA) in DMD (rs28357094 in the SPP1 promoter, rs10880 and the VTTT/IAAM haplotype in LTBP4) also modify DCM onset. METHODS A multicentric cohort of 178 DMD patients was genotyped by TaqMan assays. We performed a time-to-event analysis of DCM onset, with age as time variable, and finding of left ventricular ejection fraction < 50% and/or end diastolic volume > 70 mL/m2 as event (confirmed by a previous normal exam < 12 months prior); DCM-free patients were censored at the age of last echocardiographic follow-up. RESULTS Patients were followed up to an average age of 15.9 ± 6.7 years. Seventy-one/178 patients developed DCM, and median age at onset was 20.0 years. Glucocorticoid corticosteroid treatment (n = 88 untreated; n = 75 treated; n = 15 unknown) did not have a significant independent effect on DCM onset. Cardiological medications were not administered before DCM onset in this population. We observed trends towards a protective effect of the dominant G allele at SPP1 rs28357094 and recessive T allele at LTBP4 rs10880, which was statistically significant in steroid-treated patients for LTBP4 rs10880 (< 50% T/T patients developing DCM during follow-up [n = 13]; median DCM onset 17.6 years for C/C-C/T, log-rank p = 0.027). CONCLUSIONS We report a putative protective effect of DMD genetic modifiers on the development of cardiac complications, that might aid in risk stratification if confirmed in independent cohorts.
Collapse
Affiliation(s)
- Andrea Barp
- Neuromuscular Center, Department of Neuroscience, University of Padova, Padova, Italy
| | - Luca Bello
- Neuromuscular Center, Department of Neuroscience, University of Padova, Padova, Italy
| | - Luisa Politano
- Department of Experimental Medicine, Cardiomyology and Medical Genetics, Second University of Naples, Naples, Italy
| | - Paola Melacini
- Department of Cardiac, Thoracic and Vascular Sciences, Cardiology Section, University of Padova, Padova, Italy
| | - Chiara Calore
- Department of Cardiac, Thoracic and Vascular Sciences, Cardiology Section, University of Padova, Padova, Italy
| | - Angela Polo
- Department of Cardiac, Thoracic and Vascular Sciences, Cardiology Section, University of Padova, Padova, Italy
| | - Sara Vianello
- Neuromuscular Center, Department of Neuroscience, University of Padova, Padova, Italy
| | - Gianni Sorarù
- Neuromuscular Center, Department of Neuroscience, University of Padova, Padova, Italy
| | - Claudio Semplicini
- Neuromuscular Center, Department of Neuroscience, University of Padova, Padova, Italy
| | - Boris Pantic
- Neuromuscular Center, Department of Neuroscience, University of Padova, Padova, Italy
| | - Antonella Taglia
- Department of Experimental Medicine, Cardiomyology and Medical Genetics, Second University of Naples, Naples, Italy
| | - Ester Picillo
- Department of Experimental Medicine, Cardiomyology and Medical Genetics, Second University of Naples, Naples, Italy
| | - Francesca Magri
- Dino Ferrari Centre, Department of Neurological Sciences, University of Milan, I.R.C.C.S. Foundation Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Ksenija Gorni
- NEuroMuscular Omnicentre (NEMO), Fondazione Serena Onlus, Ospedale Niguarda Cà Granda, Milano, Italy
| | - Sonia Messina
- Department of Neurosciences, Psychiatry and Anaesthesiology, University of Messina, Messina, Italy
| | - Gian Luca Vita
- Department of Neurosciences, Psychiatry and Anaesthesiology, University of Messina, Messina, Italy
| | - Giuseppe Vita
- Department of Neurosciences, Psychiatry and Anaesthesiology, University of Messina, Messina, Italy
| | - Giacomo P. Comi
- Dino Ferrari Centre, Department of Neurological Sciences, University of Milan, I.R.C.C.S. Foundation Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Mario Ermani
- Neuromuscular Center, Department of Neuroscience, University of Padova, Padova, Italy
| | - Vincenzo Calvo
- Department of Philosophy, Sociology, Pedagogy and Applied Psychology (FISPPA), University of Padova, Padova, Italy
| | - Corrado Angelini
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Camillo, Venice, Italy
| | - Eric P. Hoffman
- Research Center for Genetic Medicine, Children’s National Medical Center, 111 Michigan Avenue, NW, Washington, DC, 20010, United States of America
| | - Elena Pegoraro
- Neuromuscular Center, Department of Neuroscience, University of Padova, Padova, Italy
- * E-mail:
| |
Collapse
|
37
|
Differential roles of MMP-9 in early and late stages of dystrophic muscles in a mouse model of Duchenne muscular dystrophy. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2170-82. [PMID: 26170062 DOI: 10.1016/j.bbadis.2015.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 07/05/2015] [Accepted: 07/08/2015] [Indexed: 01/08/2023]
Abstract
Matrix metalloprotease (MMP)-9 is an endopeptidase associated with the pathogenesis of Duchenne muscular dystrophy (DMD). The precise function of MMP-9 in DMD has not been elucidated to date. We investigated the effect of genetic ablation of MMP-9 in the mdx mouse model (mdx/Mmp9(-/-)). At the early disease stage, the muscles of mdx/Mmp9(-/-) mice showed reduced necrosis and neutrophil invasion, accompanied by down-regulation of chemokine MIP-2. In addition, muscle regeneration was enhanced, which coincided with increased macrophage infiltration and upregulation of MCP-1, and resulted in increased muscle strength. The mdx/Mmp9(-/-) mice also displayed accelerated upregulation of osteopontin expression in skeletal muscle at the acute onset phase of dystrophy. However, at a later disease stage, the mice exhibited muscle growth impairment through altered expression of myogenic factors, and increased fibroadipose tissue. These results showed that MMP-9 might have multiple functions during disease progression. Therapy targeting MMP-9 may improve muscle pathology and function at the early disease stage, but continuous inhibition of this protein may result in the accumulation of fibroadipose tissues and reduced muscle strength at the late disease stage.
Collapse
|
38
|
Kornegay JN, Spurney CF, Nghiem PP, Brinkmeyer-Langford CL, Hoffman EP, Nagaraju K. Pharmacologic management of Duchenne muscular dystrophy: target identification and preclinical trials. ILAR J 2015; 55:119-49. [PMID: 24936034 DOI: 10.1093/ilar/ilu011] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked human disorder in which absence of the protein dystrophin causes degeneration of skeletal and cardiac muscle. For the sake of treatment development, over and above definitive genetic and cell-based therapies, there is considerable interest in drugs that target downstream disease mechanisms. Drug candidates have typically been chosen based on the nature of pathologic lesions and presumed underlying mechanisms and then tested in animal models. Mammalian dystrophinopathies have been characterized in mice (mdx mouse) and dogs (golden retriever muscular dystrophy [GRMD]). Despite promising results in the mdx mouse, some therapies have not shown efficacy in DMD. Although the GRMD model offers a higher hurdle for translation, dogs have primarily been used to test genetic and cellular therapies where there is greater risk. Failed translation of animal studies to DMD raises questions about the propriety of methods and models used to identify drug targets and test efficacy of pharmacologic intervention. The mdx mouse and GRMD dog are genetically homologous to DMD but not necessarily analogous. Subcellular species differences are undoubtedly magnified at the whole-body level in clinical trials. This problem is compounded by disparate cultures in clinical trials and preclinical studies, pointing to a need for greater rigor and transparency in animal experiments. Molecular assays such as mRNA arrays and genome-wide association studies allow identification of genetic drug targets more closely tied to disease pathogenesis. Genes in which polymorphisms have been directly linked to DMD disease progression, as with osteopontin, are particularly attractive targets.
Collapse
|
39
|
Chaillou T, Jackson JR, England JH, Kirby TJ, Richards-White J, Esser KA, Dupont-Versteegden EE, McCarthy JJ. Identification of a conserved set of upregulated genes in mouse skeletal muscle hypertrophy and regrowth. J Appl Physiol (1985) 2014; 118:86-97. [PMID: 25554798 DOI: 10.1152/japplphysiol.00351.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The purpose of this study was to compare the gene expression profile of mouse skeletal muscle undergoing two forms of growth (hypertrophy and regrowth) with the goal of identifying a conserved set of differentially expressed genes. Expression profiling by microarray was performed on the plantaris muscle subjected to 1, 3, 5, 7, 10, and 14 days of hypertrophy or regrowth following 2 wk of hind-limb suspension. We identified 97 differentially expressed genes (≥2-fold increase or ≥50% decrease compared with control muscle) that were conserved during the two forms of muscle growth. The vast majority (∼90%) of the differentially expressed genes was upregulated and occurred at a single time point (64 out of 86 genes), which most often was on the first day of the time course. Microarray analysis from the conserved upregulated genes showed a set of genes related to contractile apparatus and stress response at day 1, including three genes involved in mechanotransduction and four genes encoding heat shock proteins. Our analysis further identified three cell cycle-related genes at day and several genes associated with extracellular matrix (ECM) at both days 3 and 10. In conclusion, we have identified a core set of genes commonly upregulated in two forms of muscle growth that could play a role in the maintenance of sarcomere stability, ECM remodeling, cell proliferation, fast-to-slow fiber type transition, and the regulation of skeletal muscle growth. These findings suggest conserved regulatory mechanisms involved in the adaptation of skeletal muscle to increased mechanical loading.
Collapse
Affiliation(s)
- Thomas Chaillou
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky; Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Janna R Jackson
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky; Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky; Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| | - Jonathan H England
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky; Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Tyler J Kirby
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky; Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky; Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| | - Jena Richards-White
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| | - Karyn A Esser
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky; Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Esther E Dupont-Versteegden
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky; Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky; Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| | - John J McCarthy
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky; Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky;
| |
Collapse
|
40
|
Wolak T. Osteopontin - a multi-modal marker and mediator in atherosclerotic vascular disease. Atherosclerosis 2014; 236:327-37. [PMID: 25128758 DOI: 10.1016/j.atherosclerosis.2014.07.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/26/2014] [Accepted: 07/07/2014] [Indexed: 02/07/2023]
Abstract
Atherosclerosis is a chronic inflammatory process of the vessel wall with systemic correlates. It is now well established that patients' outcome is tightly linked to atherosclerotic plaque stability, potentially more so than to the mere plaque size. Osteopontin (OPN) is an integrin-binding ligand, N-linked glycoprotein, which was recognized as a significant participant in the atherosclerotic inflammatory milieu. Evidence from several genetic mouse models suggests that OPN is an enhancer of atherosclerosis. This may be mediated by its capacity to enhance inflammation in the atherosclerotic plaque. Interestingly, OPN may also possess potentially protective vascular effects, such as attenuation of vascular calcification. In humans circulating levels of OPN were found to be independently associated with the severity of coronary atherosclerosis. Moreover, several studies report that high plasma OPN levels were associated with increased risk for major adverse cardiac events. This review aims to critically assess current understanding of the role of OPN in the atherosclerotic process, from animal models to clinical practice. Specific focus is given to evaluating whether OPN could serve as a marker for monitoring coronary atherosclerosis severity, and in parallel, assess the evidence for its role as a mediator in the pathogenic pathways leading to atherosclerotic vascular disease.
Collapse
Affiliation(s)
- Talya Wolak
- Hypertension Unit Faculty of Health Sciences, Soroka University Medical Center, Ben-Gurion University of the Negev, Be'er-Sheva, Israel.
| |
Collapse
|
41
|
Dysregulation of matricellular proteins is an early signature of pathology in laminin-deficient muscular dystrophy. Skelet Muscle 2014; 4:14. [PMID: 25075272 PMCID: PMC4114446 DOI: 10.1186/2044-5040-4-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 06/02/2014] [Indexed: 12/21/2022] Open
Abstract
Background MDC1A is a congenital neuromuscular disorder with developmentally complex and progressive pathologies that results from a deficiency in the protein laminin α2. MDC1A is associated with a multitude of pathologies, including increased apoptosis, inflammation and fibrosis. In order to assess and treat a complicated disease such as MDC1A, we must understand the natural history of the disease so that we can identify early disease drivers and pinpoint critical time periods for implementing potential therapies. Results We found that DyW mice show significantly impaired myogenesis and high levels of apoptosis as early as postnatal week 1. We also saw a surge of inflammatory response at the first week, marked by high levels of infiltrating macrophages, nuclear factor κB activation, osteopontin expression and overexpression of inflammatory cytokines. Fibrosis markers and related pathways were also observed to be elevated throughout early postnatal development in these mice, including periostin, collagen and fibronectin gene expression, as well as transforming growth factor β signaling. Interestingly, fibronectin was found to be the predominant fibrous protein of the extracellular matrix in early postnatal development. Lastly, we observed upregulation in various genes related to angiotensin signaling. Methods We sought out to examine the dysregulation of various pathways throughout early development (postnatal weeks 1-4) in the DyW mouse, the most commonly used mouse model of laminin-deficient muscular dystrophy. Muscle function tests (stand-ups and retractions) as well as gene (qRT-PCR) and protein levels (western blot, ELISA), histology (H&E, picrosirius red staining) and immunohistochemistry (fibronectin, TUNEL assay) were used to assess dysregulation of matricelluar protieins. Conclusions Our results implicate the involvement of multiple signaling pathways in driving the earliest stages of pathology in DyW mice. As opposed to classical dystrophies, such as Duchenne muscular dystrophy, the dysregulation of various matricellular proteins appears to be a distinct feature of the early progression of DyW pathology. On the basis of our results, we believe that therapies that may reduce apoptosis and stabilize the homeostasis of extracellular matrix proteins may have increased efficacy if started at a very early age.
Collapse
|
42
|
Zhou Y, Kaminski HJ, Gong B, Cheng G, Feuerman JM, Kusner L. RNA expression analysis of passive transfer myasthenia supports extraocular muscle as a unique immunological environment. Invest Ophthalmol Vis Sci 2014; 55:4348-59. [PMID: 24917137 DOI: 10.1167/iovs.14-14422] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
PURPOSE Myasthenia gravis demonstrates a distinct predilection for involvement of the extraocular muscles (EOM), and we have hypothesized that this may be due to a unique immunological environment. To assess this hypothesis, we took an unbiased approach to analyze RNA expression profiles in EOM, diaphragm, and extensor digitorum longus (EDL) in rats with experimentally acquired myasthenia gravis (EAMG). METHODS Experimentally acquired myasthenia gravis was induced in rats by intraperitoneal injection of antibody directed against the acetylcholine receptor (AChR), whereas control rats received antibody known to bind the AChR but not induce disease. After 48 hours, animals were killed and muscles analyzed by RNA expression profiling. Profiling results were validated using qPCR and immunohistochemical analysis. RESULTS Sixty-two genes common among all muscle groups were increased in expression. These fell into four major categories: 12.8% stress response, 10.5% immune response, 10.5% metabolism, and 9.0% transcription factors. EOM expressed 212 genes at higher levels, not shared by the other two muscles, and a preponderance of EOM gene changes fell into the immune response category. EOM had the most uniquely reduced genes (126) compared with diaphragm (26) and EDL (50). Only 18 downregulated genes were shared by the three muscles. Histological evaluation and disease load index (sum of fold changes for all genes) demonstrated that EOM had the greatest degree of pathology. CONCLUSIONS Our studies demonstrated that consistent with human myasthenia gravis, EOM demonstrates a distinct RNA expression signature from EDL and diaphragm, which is based on differences in the degree of muscle injury and inflammatory response.
Collapse
Affiliation(s)
- Yuefang Zhou
- Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, Missouri, United States
| | - Henry J Kaminski
- Departments of Neurology, Pharmacology, and Physiology, George Washington University, Washington, DC, United States
| | - Bendi Gong
- Department of Pediatrics, Washington University, St. Louis, Missouri, United States
| | - Georgiana Cheng
- Department of Pathobiology, Cleveland Clinic, Cleveland, Ohio, United States
| | - Jason M Feuerman
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Linda Kusner
- Departments of Neurology, Pharmacology, and Physiology, George Washington University, Washington, DC, United States
| |
Collapse
|
43
|
Barfield WL, Uaesoontrachoon K, Wu CS, Lin S, Chen Y, Wang PC, Kanaan Y, Bond V, Hoffman EP. Eccentric muscle challenge shows osteopontin polymorphism modulation of muscle damage. Hum Mol Genet 2014; 23:4043-50. [PMID: 24626632 PMCID: PMC4082368 DOI: 10.1093/hmg/ddu118] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A promoter polymorphism of the osteopontin (OPN) gene (rs28357094) has been associated with multiple inflammatory states, severity of Duchenne muscular dystrophy (DMD) and muscle size in healthy young adults. We sought to define the mechanism of action of the polymorphism, using allele-specific in vitro reporter assays in muscle cells, and a genotype-stratified intervention in healthy controls. In vitro reporter constructs showed the G allele to respond to estrogen treatment, whereas the T allele showed no transcriptional response. Young adult volunteers (n = 187) were enrolled into a baseline study, and subjects with specific rs28357094 genotypes enrolled into an eccentric muscle challenge intervention [n = 3 TT; n = 3 GG/GT (dominant inheritance model)]. Female volunteers carrying the G allele showed significantly greater inflammation and increased muscle volume change as determined by magnetic resonance imaging T1- and T2-weighted images after eccentric challenge, as well as greater decrement in biceps muscle force. Our data suggest a model where the G allele enables enhanced activities of upstream enhancer elements due to loss of Sp1 binding at the polymorphic site. This results in significantly greater expression of the pro-inflammatory OPN cytokine during tissue remodeling in response to challenge in G allele carriers, promoting muscle hypertrophy in normal females, but increased damage in DMD patients.
Collapse
Affiliation(s)
| | | | - Chung-Sheih Wu
- Department of Radiology, Howard University School of Medicine, Washington, DC, USA
| | - Stephen Lin
- Department of Radiology, Howard University School of Medicine, Washington, DC, USA
| | - Yue Chen
- Department of Radiology, Howard University School of Medicine, Washington, DC, USA
| | - Paul C Wang
- Department of Radiology, Howard University School of Medicine, Washington, DC, USA
| | | | - Vernon Bond
- Department of Health, Human Performance and Leisure Studies, Howard University, Washington, DC, USA
| | - Eric P Hoffman
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, USA
| |
Collapse
|
44
|
Pagel CN, Wasgewatte Wijesinghe DK, Taghavi Esfandouni N, Mackie EJ. Osteopontin, inflammation and myogenesis: influencing regeneration, fibrosis and size of skeletal muscle. J Cell Commun Signal 2013; 8:95-103. [PMID: 24318932 DOI: 10.1007/s12079-013-0217-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 11/25/2013] [Indexed: 12/20/2022] Open
Abstract
Osteopontin is a multifunctional matricellular protein that is expressed by many cell types. Through cell-matrix and cell-cell interactions the molecule elicits a number of responses from a broad range of target cells via its interaction with integrins and the hyaluronan receptor CD44. In many tissues osteopontin has been found to be involved in important physiological and pathological processes, including tissue repair, inflammation and fibrosis. Post-natal skeletal muscle is a highly differentiated and specialised tissue that retains a remarkable capacity for regeneration following injury. Regeneration of skeletal muscle requires the co-ordinated activity of inflammatory cells that infiltrate injured muscle and are responsible for initiating muscle fibre degeneration and phagocytosis of necrotic tissue, and muscle precursor cells that regenerate the injured muscle fibres. This review focuses on the current evidence that osteopontin plays multiple roles in skeletal muscle, with particular emphasis on its role in regeneration and fibrosis following injury, and in determining the severity of myopathic diseases such as Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Charles N Pagel
- Faculty of Veterinary Science, University of Melbourne, Parkville, Victoria, 3010, Australia,
| | | | | | | |
Collapse
|
45
|
Huynh T, Uaesoontrachoon K, Quinn JL, Tatem KS, Heier CR, Van Der Meulen JH, Yu Q, Harris M, Nolan CJ, Haegeman G, Grounds MD, Nagaraju K. Selective modulation through the glucocorticoid receptor ameliorates muscle pathology in mdx mice. J Pathol 2013; 231:223-35. [PMID: 23794417 DOI: 10.1002/path.4231] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 05/11/2013] [Accepted: 06/01/2013] [Indexed: 02/05/2023]
Abstract
The over-expression of NF-κB signalling in both muscle and immune cells contribute to the pathology in dystrophic muscle. The anti-inflammatory properties of glucocorticoids, mediated predominantly through monomeric glucocorticoid receptor inhibition of transcription factors such as NF-κB (transrepression), are postulated to be an important mechanism for their beneficial effects in Duchenne muscular dystrophy. Chronic glucocorticoid therapy is associated with adverse effects on metabolism, growth, bone mineral density and the maintenance of muscle mass. These detrimental effects result from direct glucocorticoid receptor homodimer interactions with glucocorticoid response elements of the relevant genes. Compound A, a non-steroidal selective glucocorticoid receptor modulator, is capable of transrepression without transactivation. We confirm the in vitro NF-κB inhibitory activity of compound A in H-2K(b) -tsA58 mdx myoblasts and myotubes, and demonstrate improvements in disease phenotype of dystrophin deficient mdx mice. Compound A treatment in mdx mice from 18 days of post-natal age to 8 weeks of age increased the absolute and normalized forelimb and hindlimb grip strength, attenuated cathepsin-B enzyme activity (a surrogate marker for inflammation) in forelimb and hindlimb muscles, decreased serum creatine kinase levels and reduced IL-6, CCL2, IFNγ, TNF and IL-12p70 cytokine levels in gastrocnemius (GA) muscles. Compared with compound A, treatment with prednisolone, a classical glucocorticoid, in both wild-type and mdx mice was associated with reduced body weight, reduced GA, tibialis anterior and extensor digitorum longus muscle mass and shorter tibial lengths. Prednisolone increased osteopontin (Spp1) gene expression and osteopontin protein levels in the GA muscles of mdx mice and had less favourable effects on the expression of Foxo1, Foxo3, Fbxo32, Trim63, Mstn and Igf1 in GA muscles, as well as hepatic Igf1 in wild-type mice. In conclusion, selective glucocorticoid receptor modulation by compound A represents a potential therapeutic strategy to improve dystrophic pathology.
Collapse
Affiliation(s)
- Tony Huynh
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, USA; Endocrine Research Unit and the Australian National University Medical School, Canberra Hospital, ACT, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Poulos MG, Batra R, Li M, Yuan Y, Zhang C, Darnell RB, Swanson MS. Progressive impairment of muscle regeneration in muscleblind-like 3 isoform knockout mice. Hum Mol Genet 2013; 22:3547-58. [PMID: 23660517 DOI: 10.1093/hmg/ddt209] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The muscleblind-like (MBNL) genes encode alternative splicing factors that are essential for the postnatal development of multiple tissues, and the inhibition of MBNL activity by toxic C(C)UG repeat RNAs is a major pathogenic feature of the neuromuscular disease myotonic dystrophy. While MBNL1 controls fetal-to-adult splicing transitions in muscle and MBNL2 serves a similar role in the brain, the function of MBNL3 in vivo is unknown. Here, we report that mouse Mbnl3, which encodes protein isoforms that differ in the number of tandem zinc-finger RNA-binding motifs and subcellular localization, is expressed primarily during embryonic development but also transiently during injury-induced adult skeletal muscle regeneration. Mbnl3 expression is required for normal C2C12 myogenic differentiation and high-throughput sequencing combined with cross-linking/immunoprecipitation analysis indicates that Mbnl3 binds preferentially to the 3' untranslated regions of genes implicated in cell growth and proliferation. In addition, Mbnl3ΔE2 isoform knockout mice, which fail to express the major Mbnl3 nuclear isoform, show age-dependent delays in injury-induced muscle regeneration and impaired muscle function. These results suggest that Mbnl3 inhibition by toxic RNA expression may be a contributing factor to the progressive skeletal muscle weakness and wasting characteristic of myotonic dystrophy.
Collapse
Affiliation(s)
- Michael G Poulos
- Department of Molecular Genetics and Microbiology, Genetics Institute and the Center for NeuroGenetics, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Marshall JL, Crosbie-Watson RH. Sarcospan: a small protein with large potential for Duchenne muscular dystrophy. Skelet Muscle 2013; 3:1. [PMID: 23282144 PMCID: PMC3599653 DOI: 10.1186/2044-5040-3-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 11/27/2012] [Indexed: 01/09/2023] Open
Abstract
Purification of the proteins associated with dystrophin, the gene product responsible for Duchenne muscular dystrophy, led to the discovery of the dystrophin-glycoprotein complex. Sarcospan, a 25-kDa transmembrane protein, was the last component to be identified and its function in skeletal muscle has been elusive. This review will focus on progress over the last decade revealing that sarcospan is an important regulator of muscle cell adhesion, strength, and regeneration. Investigations using several transgenic mouse models demonstrate that overexpression of sarcospan in the mouse model for Duchenne muscular dystrophy ameliorates pathology and restores muscle cell binding to laminin. Sarcospan improves cell surface expression of the dystrophin- and utrophin-glycoprotein complexes as well as α7β1 integrin, which are the three major laminin-binding complexes in muscle. Utrophin and α7β1 integrin compensate for the loss of dystrophin and the finding that sarcospan increases their abundance at the extra-synaptic sarcolemma supports the use of sarcospan as a therapeutic target. Newly discovered phenotypes in sarcospan-deficient mice, including a reduction in specific force output and increased drop in force in the diaphragm muscle, result from decreased utrophin and dystrophin expression and further reveal sarcospan’s role in determining abundance of these complexes. Dystrophin protein levels and the specific force output of the diaphragm muscle are further reduced upon genetic removal of α7 integrin (Itga7) in SSPN-deficient mice, demonstrating that interactions between integrin and sarcospan are critical for maintenance of the dystrophin-glycoprotein complex and force production of the diaphragm muscle. Sarcospan is a major regulator of Akt signaling pathways and sarcospan-deficiency significantly impairs muscle regeneration, a process that is dependent on Akt activation. Intriguingly, sarcospan regulates glycosylation of a specific subpopulation of α-dystroglycan, the laminin-binding receptor associated with dystrophin and utrophin, localized to the neuromuscular junction. Understanding the basic mechanisms responsible for assembly and trafficking of the dystrophin- and utrophin-glycoprotein complexes to the cell surface is lacking and recent studies suggest that sarcospan plays a role in these essential processes.
Collapse
Affiliation(s)
- Jamie L Marshall
- Department of Integrative Biology and Physiology, University of California Los Angeles, 610 Charles E, Young Drive East, Terasaki Life Sciences Building, Los Angeles, CA, 90095, USA.
| | | |
Collapse
|