1
|
Zhou Q, Guo X, Chen T, Liu Y, Ji H, Sun Y, Yang X, Ouyang C, Liu X, Lei M. The neuroprotective role of celastrol on hippocampus in diabetic rats by inflammation restraint, insulin signaling adjustment, Aβ reduction and synaptic plasticity alternation. Biomed Pharmacother 2024; 179:117397. [PMID: 39232386 DOI: 10.1016/j.biopha.2024.117397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024] Open
Abstract
Celastrol, the primary constituent of Tripterygium wilfordii, has demonstrated neuroprotective properties in rats with dementia by reducing inflammation. A high-fat diet and streptozotocin injection were utilized to establish a diabetic rat model, which was then employed to investigate the possible protective effect of celastrol against the development of diabetes-induced learning and memory deficits. Afterwards, the experimental animals received a dose of celastrol by gavage (4 mg/kg/d). An animal study showed that celastrol enhanced insulin sensitivity and glucose tolerance in diabetic rats. In the Morris water maze test, rats with diabetes performed poorly in terms of spatial learning and memory; treatment with celastrol improved these outcomes. Additionally, administration of celastrol downregulated the expression of inflammatory-related proteins (NF-κB, IKKα, TNF-α, IL-1β, and IL-6) and greatly reduced the generation of Aβ in the diabetic hippocampus tissue. Moreover, the insulin signaling pathway-related proteins PI3K, AKT, and GSK-3β were significantly upregulated in diabetic rats after celastrol was administered. Also, celastrol prevented damage to the brain structures and increased the synthesis of synaptic proteins like PSD-95 and SYT1. In conclusion, celastrol exerts a neuroprotective effect by modulating the insulin signaling system and reducing inflammatory responses, which helps to ameliorate the cognitive impairment associated with diabetes.
Collapse
Affiliation(s)
- Qiaofeng Zhou
- Hubei Key Laboratory of Diabetes And Angiopathy, Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Xiying Guo
- Hubei Key Laboratory of Diabetes And Angiopathy, Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Tu Chen
- Xianning Public Inspection and Testing Center, Xianning 437100, China
| | - Yumin Liu
- Wuhan Huake Reproductive Specialist Hospital, Wuhan 430000, China
| | - Huimin Ji
- Hubei Key Laboratory of Diabetes And Angiopathy, Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Yixuan Sun
- Hubei Key Laboratory of Diabetes And Angiopathy, Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Xiaosong Yang
- Hubei Key Laboratory of Diabetes And Angiopathy, Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Changhan Ouyang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Xiufen Liu
- Hubei Key Laboratory of Diabetes And Angiopathy, Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China.
| | - Min Lei
- Hubei Key Laboratory of Diabetes And Angiopathy, Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China.
| |
Collapse
|
2
|
Sethi P, Bhaskar R, Singh KK, Gupta S, Han SS, Avinash D, Abomughaid MM, Koul A, Rani B, Ghosh S, Jha NK, Sinha JK. Exploring advancements in early detection of Alzheimer's disease with molecular assays and animal models. Ageing Res Rev 2024; 100:102411. [PMID: 38986845 DOI: 10.1016/j.arr.2024.102411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
Alzheimer's Disease (AD) is a challenging neurodegenerative condition, with overwhelming implications for affected individuals and healthcare systems worldwide. Animal models have played a crucial role in studying AD pathogenesis and testing therapeutic interventions. Remarkably, studies on the genetic factors affecting AD risk, such as APOE and TREM2, have provided valuable insights into disease mechanisms. Early diagnosis has emerged as a crucial factor in effective AD management, as demonstrated by clinical studies emphasizing the benefits of initiating treatment at early stages. Novel diagnostic technologies, including RNA sequencing of microglia, offer promising avenues for early detection and monitoring of AD progression. Therapeutic strategies remain to evolve, with a focus on targeting amyloid beta (Aβ) and tau pathology. Advances in animal models, such as APP-KI mice, and the advancement of anti-Aβ drugs signify progress towards more effective treatments. Therapeutically, the focus has shifted towards intricate approaches targeting multiple pathological pathways simultaneously. Strategies aimed at reducing Aβ plaque accumulation, inhibiting tau hyperphosphorylation, and modulating neuroinflammation are actively being explored, both in preclinical models and clinical trials. While challenges continue in developing validated animal models and translating preclinical findings to clinical success, the continuing efforts in understanding AD at molecular, cellular, and clinical levels offer hope for improved management and eventual prevention of this devastating disease.
Collapse
Affiliation(s)
- Paalki Sethi
- GloNeuro, Sector 107, Vishwakarma Road, Noida, Uttar Pradesh 201301, India
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeonsang 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeonsang 38541, Republic of Korea
| | - Krishna Kumar Singh
- Symbiosis Centre for Information Technology (SCIT), Rajiv Gandhi InfoTech Park, Hinjawadi, Pune, Maharashtra 411057, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeonsang 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeonsang 38541, Republic of Korea
| | - D Avinash
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Apurva Koul
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab 140307, India
| | - Bindu Rani
- Department of Medicine, National Institute of Medical Sciences, NIMS University, Jaipur, Rajsthan, India
| | - Shampa Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida, Uttar Pradesh 201301, India.
| | - Niraj Kumar Jha
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab 140401, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India.
| | | |
Collapse
|
3
|
Cyr B, Curiel Cid R, Loewenstein D, Vontell RT, Dietrich WD, Keane RW, de Rivero Vaccari JP. The Inflammasome Adaptor Protein ASC in Plasma as a Biomarker of Early Cognitive Changes. Int J Mol Sci 2024; 25:7758. [PMID: 39063000 PMCID: PMC11276719 DOI: 10.3390/ijms25147758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/13/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
Dementia is a group of symptoms including memory loss, language difficulties, and other types of cognitive and functional impairments that affects 57 million people worldwide, with the incidence expected to double by 2040. Therefore, there is an unmet need to develop reliable biomarkers to diagnose early brain impairments so that emerging interventions can be applied before brain degeneration. Here, we performed biomarker analyses for apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), neurofilament light chain (NfL), glial fibrillary acidic protein (GFAP), and amyloid-β 42/40 (Aβ42/40) ratio in the plasma of older adults. Participants had blood drawn at baseline and underwent two annual clinical and cognitive evaluations. The groups tested either cognitively normal on both evaluations (NN), cognitively normal year 1 but cognitively impaired year 2 (NI), or cognitively impaired on both evaluations (II). ASC was elevated in the plasma of the NI group compared to the NN and II groups. Additionally, Aβ42 was increased in the plasma in the NI and II groups compared to the NN group. Importantly, the area under the curve (AUC) for ASC in participants older than 70 years old in NN vs. NI groups was 0.81, indicating that ASC is a promising plasma biomarker for early detection of cognitive decline.
Collapse
Affiliation(s)
- Brianna Cyr
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami, Miami, FL 33136, USA; (B.C.); (W.D.D.); (R.W.K.)
| | - Rosie Curiel Cid
- Center for Cognitive Neuroscience and Aging, University of Miami, Miami, FL 33136, USA; (R.C.C.); (D.L.)
| | - David Loewenstein
- Center for Cognitive Neuroscience and Aging, University of Miami, Miami, FL 33136, USA; (R.C.C.); (D.L.)
| | | | - W. Dalton Dietrich
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami, Miami, FL 33136, USA; (B.C.); (W.D.D.); (R.W.K.)
| | - Robert W. Keane
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami, Miami, FL 33136, USA; (B.C.); (W.D.D.); (R.W.K.)
- Department of Physiology and Biophysics, University of Miami, Miami, FL 33136, USA
| | - Juan Pablo de Rivero Vaccari
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami, Miami, FL 33136, USA; (B.C.); (W.D.D.); (R.W.K.)
- Center for Cognitive Neuroscience and Aging, University of Miami, Miami, FL 33136, USA; (R.C.C.); (D.L.)
- Department of Physiology and Biophysics, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
4
|
Yu X, Guo J, Song Y, Wei B, Shi Y, Zhao Y, Zhao Z, Gao Q, Wang B, Sun M. HDAC1/2/3-mediated downregulation of neurogranin is involved in cognitive impairment in offspring exposed to maternal subclinical hypothyroidism. FASEB J 2024; 38:e23736. [PMID: 38865202 DOI: 10.1096/fj.202400389r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/15/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024]
Abstract
Subclinical hypothyroidism (SCH) in pregnancy is the most common form of thyroid dysfunction in pregnancy, which can affect fetal nervous system development and increase the risk of neurodevelopmental disorders after birth. However, the mechanism of the effect of maternal subclinical hypothyroidism on fetal brain development and behavioral phenotypes is still unclear and requires further study. In this study, we constructed a mouse model of maternal subclinical hypothyroidism by exposing dams to drinking water containing 50 ppm propylthiouracil (PTU) during pregnancy and found that its offspring were accompanied by severe cognitive deficits by behavioral testing. Mechanistically, gestational SCH resulted in the upregulation of protein expression and activity of HDAC1/2/3 in the hippocampus of the offspring. ChIP analysis revealed that H3K9ac on the neurogranin (Ng) promoter was reduced in the hippocampus of the offspring of SCH, with a significant reduction in Ng protein, leading to reduced expression levels of synaptic plasticity markers PSD95 (a membrane-associated protein in the postsynaptic density) and SYN (synaptophysin, a specific marker for presynaptic terminals), and impaired synaptic plasticity. In addition, administration of MS-275 (an HDAC1/2/3-specific inhibitor) to SCH offspring alleviated impaired synaptic plasticity and cognitive dysfunction in offspring. Thus, our study suggests that maternal subclinical hypothyroidism may mediate offspring cognitive dysfunction through the HDAC1/2/3-H3K9ac-Ng pathway. Our study contributes to the understanding of the signaling mechanisms underlying maternal subclinical hypothyroidism-mediated cognitive impairment in the offspring.
Collapse
Affiliation(s)
- Xi Yu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jun Guo
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yueyang Song
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Bin Wei
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yajun Shi
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yan Zhao
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zejun Zhao
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qinqin Gao
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Bin Wang
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Miao Sun
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China
- Center for Medical Genetics and Prenatal Diagnosis, Key Laboratory of Birth Defect Prevention and Genetic, Medicine of Shandong Health Commission, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong, China
| |
Collapse
|
5
|
Mohammadi H, Ariaei A, Ghobadi Z, Gorgich EAC, Rustamzadeh A. Which neuroimaging and fluid biomarkers method is better in theranostic of Alzheimer's disease? An umbrella review. IBRO Neurosci Rep 2024; 16:403-417. [PMID: 38497046 PMCID: PMC10940808 DOI: 10.1016/j.ibneur.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/24/2024] [Indexed: 03/19/2024] Open
Abstract
Biomarkers are measured to evaluate physiological and pathological processes as well as responses to a therapeutic intervention. Biomarkers can be classified as diagnostic, prognostic, predictor, clinical, and therapeutic. In Alzheimer's disease (AD), multiple biomarkers have been reported so far. Nevertheless, finding a specific biomarker in AD remains a major challenge. Three databases, including PubMed, Web of Science, and Scopus were selected with the keywords of Alzheimer's disease, neuroimaging, biomarker, and blood. The results were finalized with 49 potential CSF/blood and 35 neuroimaging biomarkers. To distinguish normal from AD patients, amyloid-beta42 (Aβ42), plasma glial fibrillary acidic protein (GFAP), and neurofilament light (NFL) as potential biomarkers in cerebrospinal fluid (CSF) as well as the serum could be detected. Nevertheless, most of the biomarkers fairly change in the CSF during AD, listed as kallikrein 6, virus-like particles (VLP-1), galectin-3 (Gal-3), and synaptotagmin-1 (Syt-1). From the neuroimaging aspect, atrophy is an accepted biomarker for the neuropathologic progression of AD. In addition, Magnetic resonance spectroscopy (MRS), diffusion weighted imaging (DWI), diffusion tensor imaging (DTI), tractography (DTT), positron emission tomography (PET), and functional magnetic resonance imaging (fMRI), can be used to detect AD. Using neuroimaging and CSF/blood biomarkers, in combination with artificial intelligence, it is possible to obtain information on prognosis and follow-up on the different stages of AD. Hence physicians could select the suitable therapy to attenuate disease symptoms and follow up on the efficiency of the prescribed drug.
Collapse
Affiliation(s)
- Hossein Mohammadi
- Department of Bioimaging, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences (MUI), Isfahan, Islamic Republic of Iran
| | - Armin Ariaei
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Zahra Ghobadi
- Advanced Medical Imaging Ward, Pars Darman Medical Imaging Center, Karaj, Islamic Republic of Iran
| | - Enam Alhagh Charkhat Gorgich
- Department of Anatomy, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Islamic Republic of Iran
| | - Auob Rustamzadeh
- Cellular and Molecular Research Center, Research Institute for Non-communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
6
|
Menéndez-Valladares P, Acevedo Aguilera R, Núñez-Jurado D, López Azcárate C, Domínguez Mayoral AM, Fernández-Vega A, Pérez-Sánchez S, Lamana Vallverdú M, García-Sánchez MI, Morales Bravo M, Busquier T, Montaner J. A Search for New Biological Pathways in Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy by Proteomic Research. J Clin Med 2024; 13:3138. [PMID: 38892848 PMCID: PMC11172732 DOI: 10.3390/jcm13113138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Background/Objectives: Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) is a hereditary small vessel disease leading to significant morbidity and mortality. Despite advances in genetic diagnosis, the underlying pathophysiology remains incompletely understood. Proteomic studies offer insights into disease mechanisms by identifying altered protein expression patterns. Here, we conducted a proteomic analysis to elucidate molecular pathways associated with CADASIL. Methods: We enrolled genetically diagnosed CADASIL patients and healthy, genetically related controls. Plasma samples were subjected to proteomic analysis using the Olink platform, measuring 552 proteins across six panels. The data were analyzed from several approaches by using three different statistical methods: Exploratory Principal Component Analysis (PCA) and Partial Least Squares-Discriminant Analysis (PLS-DA), differential expression with moderated t-test, and gene set enrichment analysis (GSEA). In addition, bioinformatics analysis, including volcano plot, heatmap, and Variable Importance on Projection (VIP) scores from the PLS-DA model were drawn. Results: Significant differences in protein expression were observed between CADASIL patients and controls. RSPO1 and FGF-19 exhibited elevated levels (p < 0.05), while PPY showed downregulation (p < 0.05) in CADASIL patients, suggesting their involvement in disease pathogenesis. Furthermore, MIC-A/B expression varied significantly between patients with mutations in exon 4 versus exon 11 of the NOTCH3 gene (p < 0.05), highlighting potential immunological mechanisms underlying CADASIL. We identified altered pathways using GSEA, applied after ranking the study data. Conclusions: Our study provides novel insights into the proteomic profile of CADASIL, identifying dysregulated proteins associated with vascular pathology, metabolic dysregulation, and immune activation. These findings contribute to a deeper understanding of CADASIL pathophysiology and may inform the development of targeted therapeutic strategies. Further research is warranted to validate these biomarkers and elucidate their functional roles in disease progression.
Collapse
Affiliation(s)
- Paloma Menéndez-Valladares
- Department of Neurology, Virgen Macarena University Hospital, 41009 Seville, Spain; (P.M.-V.); (R.A.A.); (D.N.-J.); (C.L.A.); (S.P.-S.); (M.L.V.); (M.M.B.); (J.M.)
- Department of Neurology, Institute of Biomedicine of Seville (IBIS), 41013 Seville, Spain
- Department of Clinical Biochemistry, Virgen Macarena University Hospital, 41009 Seville, Spain
- Commission of Neurochemistry and Neurological Diseases, Spanish Society of Laboratory Medicine, 08025 Barcelona, Spain
| | - Rosa Acevedo Aguilera
- Department of Neurology, Virgen Macarena University Hospital, 41009 Seville, Spain; (P.M.-V.); (R.A.A.); (D.N.-J.); (C.L.A.); (S.P.-S.); (M.L.V.); (M.M.B.); (J.M.)
- Department of Neurology, Institute of Biomedicine of Seville (IBIS), 41013 Seville, Spain
| | - David Núñez-Jurado
- Department of Neurology, Virgen Macarena University Hospital, 41009 Seville, Spain; (P.M.-V.); (R.A.A.); (D.N.-J.); (C.L.A.); (S.P.-S.); (M.L.V.); (M.M.B.); (J.M.)
- Department of Neurology, Institute of Biomedicine of Seville (IBIS), 41013 Seville, Spain
- Department of Clinical Biochemistry, Virgen Macarena University Hospital, 41009 Seville, Spain
| | - Cristina López Azcárate
- Department of Neurology, Virgen Macarena University Hospital, 41009 Seville, Spain; (P.M.-V.); (R.A.A.); (D.N.-J.); (C.L.A.); (S.P.-S.); (M.L.V.); (M.M.B.); (J.M.)
- Department of Neurology, Institute of Biomedicine of Seville (IBIS), 41013 Seville, Spain
| | - Ana María Domínguez Mayoral
- Department of Neurology, Virgen Macarena University Hospital, 41009 Seville, Spain; (P.M.-V.); (R.A.A.); (D.N.-J.); (C.L.A.); (S.P.-S.); (M.L.V.); (M.M.B.); (J.M.)
- Department of Neurology, Institute of Biomedicine of Seville (IBIS), 41013 Seville, Spain
| | - Alejandro Fernández-Vega
- Department of Neurology, Virgen Macarena University Hospital, 41009 Seville, Spain; (P.M.-V.); (R.A.A.); (D.N.-J.); (C.L.A.); (S.P.-S.); (M.L.V.); (M.M.B.); (J.M.)
- Department of Neurology, Institute of Biomedicine of Seville (IBIS), 41013 Seville, Spain
| | - Soledad Pérez-Sánchez
- Department of Neurology, Virgen Macarena University Hospital, 41009 Seville, Spain; (P.M.-V.); (R.A.A.); (D.N.-J.); (C.L.A.); (S.P.-S.); (M.L.V.); (M.M.B.); (J.M.)
- Department of Neurology, Institute of Biomedicine of Seville (IBIS), 41013 Seville, Spain
| | - Marcel Lamana Vallverdú
- Department of Neurology, Virgen Macarena University Hospital, 41009 Seville, Spain; (P.M.-V.); (R.A.A.); (D.N.-J.); (C.L.A.); (S.P.-S.); (M.L.V.); (M.M.B.); (J.M.)
- Department of Neurology, Institute of Biomedicine of Seville (IBIS), 41013 Seville, Spain
| | | | - María Morales Bravo
- Department of Neurology, Virgen Macarena University Hospital, 41009 Seville, Spain; (P.M.-V.); (R.A.A.); (D.N.-J.); (C.L.A.); (S.P.-S.); (M.L.V.); (M.M.B.); (J.M.)
- Department of Neurology, Institute of Biomedicine of Seville (IBIS), 41013 Seville, Spain
| | - Teresa Busquier
- Department of Radiology, Virgen Macarena University Hospital, 41009 Seville, Spain;
| | - Joan Montaner
- Department of Neurology, Virgen Macarena University Hospital, 41009 Seville, Spain; (P.M.-V.); (R.A.A.); (D.N.-J.); (C.L.A.); (S.P.-S.); (M.L.V.); (M.M.B.); (J.M.)
- Department of Neurology, Institute of Biomedicine of Seville (IBIS), 41013 Seville, Spain
| |
Collapse
|
7
|
Li B, Shi X, Chen E, Wu X. Improvement effects of cyclic peptides from Annona squamosa on cognitive decline in neuroinflammatory mice. Food Sci Biotechnol 2024; 33:1437-1448. [PMID: 38585570 PMCID: PMC10992170 DOI: 10.1007/s10068-023-01441-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/26/2023] [Accepted: 09/19/2023] [Indexed: 04/09/2024] Open
Abstract
Cyclic peptides can resist enzymatic hydrolysis to pass through the intestine barrier, which may reduce the risk of mild cognition decline. But evidence is lacking on whether they work by alleviating neuroinflammation. A cylic peptide from Annona squamosa, Cylic(PIYAG), was biologically evaluated in vivo and in vitro. Cylic(PIYAG) enhanced the spatial memory ability of LPS-induced mice. And treatment with Cylic(PIYAG) markedly reduced the iNOS, MCP-1, TNF-α, and gp91phox expression induced by LPS. Cylic(PIYAG, 0.01, 0.05 and 0.2 μM) could significantly reduce the protein expression level of COX-2 and iNOS (P < 0.05) in BV2 cells. The concentration of Cylic(PIYAG) in blood reached a peak of 3.64 ± 1.22 μg/ml after intragastric administration in 1 h. And fluorescence microscope shows that Cylic(PIYAG) mainly locates and may play an anti-inflammatory role in the cytoplasm of microglia. This study demonstrates that the peptidic can prevent microglia activation, decrease the inflammatory reaction, improve the cognition of LPS-induced mice. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01441-8.
Collapse
Affiliation(s)
- Bo Li
- Neurology Department, Anqing Medical Center, Anhui Medical University, Anqing, China
| | - Xueying Shi
- Neurology Department, Anqing Medical Center, Anhui Medical University, Anqing, China
| | - Erhua Chen
- Clinical Nutrition Department, Anqing Hospital Affiliated to Anhui Medical University, Anqing, 246000 Anhui China
| | - Xiaocui Wu
- Department of Neurology, Graduate School, Anhui Medical University, Hefei, 230000 Anhui China
| |
Collapse
|
8
|
Liu Y, Xia P, Zong S, Zheng N, Cui X, Wang C, Wang M, Wang X, Yu S, Zhao H, Lu Z. Inhibition of Alzheimer's disease by 4-octyl itaconate revealed by RNA-seq transcriptome analysis. Eur J Pharmacol 2024; 968:176432. [PMID: 38369275 DOI: 10.1016/j.ejphar.2024.176432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
AIMS This study aimed to examine the therapeutic effects and response mechanisms of 4-OI in Alzheimer's disease (AD). METHODS In this study, network pharmacology was employed to analyze potential targets for AD drug therapy. Immunofluorescence and quantitative reverse transcription polymerase chain reaction (qRT-PCR) techniques were utilized to detect inflammatory phenotypes in a 4-OI-resistant mouse microglia cell line (BV2). We conducted four classical behavioral experiments, namely the open field test, new object recognition test, Y maze test, and Morris water maze, to assess the emotional state and cognitive level of APPswe/PS1dE9 (referred to as APP/PS1) mice after 4-OI treatment. Hematoxylin and eosin (HE) staining, along with immunofluorescence staining, were performed to detect amyloid (Aβ) deposition in mouse brain tissue. To explore the potential molecular mechanisms regulating the effects of 4-OI treatment, we performed RNA-SEQ and transcription factor prediction analyses. Additionally, mouse BV2 cells underwent Western blotting analysis to elucidate potential molecular mechanisms underlying the observed effects. RESULTS We discovered that 4-OI exerts an inhibitory effect on neuroinflammation by promoting autophagy. This effect is attributed to the activation of the AMPK/mTOR/ULK1 pathway, achieved through enhanced phosphorylation of AMPK and ULK1, coupled with a reduction in mTOR phosphorylation. Furthermore, 4-OI significantly enhances neuronal recovery in the hippocampus and diminishes Aβ plaque deposition in APP/PS1 mice, improved anxiety in mice, and ultimately led to improved cognitive function. CONCLUSIONS Overall, the results of this study demonstrated that 4-OI improved cognitive deficits in AD mice, confirming the therapeutic effect of 4-OI on AD.
Collapse
Affiliation(s)
- Yingchao Liu
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Pengcheng Xia
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shuai Zong
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ni Zheng
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xiaolin Cui
- School of Medicine, Shandong University, Jinan, Shandong, China
| | - Cuicui Wang
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Miaomiao Wang
- Department of Clinical Laboratory Medicine, Jining No. 1 People's Hospital, Jining, 272029, Shandong, China
| | - Xueying Wang
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shuyi Yu
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Hao Zhao
- Department of Otolaryngology, Head and Neck Surgery, People's Hospital, Peking University, Beijing, China
| | - Zhiming Lu
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
9
|
Smith HS, Robinson JO, Levchenko A, Pereira S, Pascual B, Bradbury K, Arbones V, Fong J, Shulman JM, McGuire AL, Masdeu J. Research Participants' Perspectives on Precision Diagnostics for Alzheimer's Disease. J Alzheimers Dis 2024; 97:1261-1274. [PMID: 38250770 PMCID: PMC10894569 DOI: 10.3233/jad-230609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
BACKGROUND Understanding research participants' responses to learning Alzheimer's disease (AD) risk information is important to inform clinical implementation of precision diagnostics given rapid advances in disease modifying therapies. OBJECTIVE We assessed participants' perspectives on the meaning of their amyloid positron emission tomography (PET) imaging results for their health, self-efficacy to understand their results, psychological impact of learning their results, experience receiving their results from the clinical team, and interest in genetic testing for AD risk. METHODS We surveyed individuals who were being clinically evaluated for AD and received PET imaging six weeks after the return of results. We analyzed responses to close-ended survey items by PET result using Fisher's exact test and qualitatively coded open-ended responses. RESULTS A total of 88 participants completed surveys, most of whom had mild cognitive impairment due to AD (38.6%), AD (28.4%), or were cognitively unimpaired (21.6%). Participants subjectively understood their results (25.3% strongly agreed, 41.8% agreed), which could help them plan (16.5% strongly agreed, 49.4% agreed). Participants with a negative PET result (n = 25) reported feelings of relief (Fisher's exact p < 0.001) and happiness (p < 0.001) more frequently than those with a positive result. Most participants felt that they were treated respectfully and were comfortable voicing concerns during the disclosure process. Genetic testing was anticipated to be useful for medical care decisions (48.2%) and to inform family members about AD risk (42.9%). CONCLUSIONS Participants had high subjective understanding and self-efficacy around their PET results and did not experience negative psychological effects. Interest in genetic testing was high.
Collapse
Affiliation(s)
- Hadley Stevens Smith
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, USA
- Department of Population Medicine, Harvard Medical School, Boston, MA, USA
| | - Jill O Robinson
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, USA
| | - Ariel Levchenko
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, USA
| | - Stacey Pereira
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, USA
| | - Belen Pascual
- Department of Neurology, Nantz National Alzheimer Center, Houston Methodist, Houston, TX, USA
| | - Kathleen Bradbury
- Department of Neurology, Nantz National Alzheimer Center, Houston Methodist, Houston, TX, USA
| | - Victoria Arbones
- Department of Neurology, Nantz National Alzheimer Center, Houston Methodist, Houston, TX, USA
| | - Jamie Fong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Joshua M Shulman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Center for Alzheimer's and Neurodegenerative Diseases, Baylor College of Medicine, Houston, TX, USA
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Amy L McGuire
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, USA
| | - Joseph Masdeu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
10
|
Ning M, An L, Dong L, Zhu R, Hao J, Liu X, Zhang Y. Causal Associations Between Gut Microbiota, Gut Microbiota-Derived Metabolites, and Alzheimer's Disease: A Multivariable Mendelian Randomization Study. J Alzheimers Dis 2024; 100:229-237. [PMID: 38788075 DOI: 10.3233/jad-240082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Background Multiple studies have demonstrated that the gut microbiome is closely related to the onset of Alzheimer's disease, but the causal relationship between the gut microbiome and AD, as well as potential mediating factors, have not been fully explored. Objective Our aim is to validate the causal relationship between the gut microbiome and the onset of AD and determine the key mechanism by which the gut microbiome mediates AD through blood metabolites using Mendelian randomization (MR) analysis methods. Methods We first conducted bidirectional and mediating MR analyses using gut microbiota, blood amino acid metabolites, and AD-related single nucleotide polymorphisms as research data. In the analysis process, the inverse variance-weighted average method was mainly used as the primary method, with other methods serving as supplementary evidence. Results Ultimately, we found that six types of gut bacteria and two blood amino acid metabolites have a causal effect on AD. Subsequent mediation analysis proved that decreased glutamine concentration mediates the negative causal effect of Holdemanella bacteria on AD (mediation ratio of 14.5%), and increased serum alanine concentration mediates the positive causal effect of Parabacteroide bacteria on AD (mediation ratio of 9.4%). Conclusions Our study demonstrates the causality of Holdemanella and Parabacteroides bacteria in the onset of AD and suggests that the reduced glutamine and increased alanine serums concentration may be key nodes in mediating this effect.
Collapse
Affiliation(s)
- Min Ning
- Department of Geriatrics, Shanghai General Hospital, Clinical Medical College of Nanjing Medical University, Shanghai, China
| | - Lina An
- Department of Geriatrics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liang Dong
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
| | - Ranran Zhu
- Department of Geriatrics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingjing Hao
- Department of Geriatrics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueyuan Liu
- Department of Neurology, Shanghai Tenth People's Hospital, Clinical Medical College of Nanjing Medical University, Shanghai, China
| | - Yuanyuan Zhang
- Department of Cardiovascular Medicine, Hong Hui Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
| |
Collapse
|
11
|
Zhao M, Zhang G, Huang S, Zhang J, Zhu Y, Zhu X, Zhang R, Li F. An activatable small-molecule fluorogenic probe for detection and quantification of beta-amyloid aggregates. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123145. [PMID: 37478711 DOI: 10.1016/j.saa.2023.123145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/20/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
Extracellular accumulation of β amyloid (Aβ) peptides in the brain is thought to be a pathological hallmark and initial event before the symptom starts of Alzheimer's patients. Herein, we developed two series of benzo[d]thiazole-based small-molecule compounds (BM1-BM4, BPM1-BPM4) with a donor-acceptor (D-A) or donor-π-acceptor (D-π-A) architecture, respectively, based on structure-activity relationship. Among them, the optimized BPM1 not only displayed the highest binding affinity to Aβ aggregates over other proteins or Aβ monomers, but was readily activated its fluorescence with 10-fold fluorescence enhancement, allowing for specifically and sensitively detecting Aβ aggregates. BPM1 also exhibits several other advantages including low molecular weight, low cytotoxicity and excellent biological stability. Besides, cell staining results confirmed that SK-N-BE(2) cells can be fluorescently lighted up as well as cell permeability and damage when treated with BPM1-bound Aβ1-42 aggregates.
Collapse
Affiliation(s)
- Meng Zhao
- Department of Nuclear Medicine, Research Center for Translations Medicine, the Second Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Gang Zhang
- Department of Nuclear Medicine, Research Center for Translations Medicine, the Second Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Shan Huang
- Department of Nuclear Medicine, Research Center for Translations Medicine, the Second Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Jingmiao Zhang
- Department of Nuclear Medicine, Research Center for Translations Medicine, the Second Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Yingzhong Zhu
- School of Chemistry and Chemical Engineering and Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China.
| | - Xiaxia Zhu
- Department of Nuclear Medicine, Research Center for Translations Medicine, the Second Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Ruilong Zhang
- School of Chemistry and Chemical Engineering and Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| | - Fei Li
- Department of Nuclear Medicine, Research Center for Translations Medicine, the Second Hospital of Anhui Medical University, Hefei 230601, PR China.
| |
Collapse
|
12
|
Wang Q, Tao S, Xing L, Liu J, Xu C, Xu X, Ding H, Shen Q, Yu X, Zheng Y. SNAP25 is a potential target for early stage Alzheimer's disease and Parkinson's disease. Eur J Med Res 2023; 28:570. [PMID: 38053192 DOI: 10.1186/s40001-023-01360-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 09/11/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) and Parkinson's disease (PD), two common irreversible neurodegenerative diseases, share similar early stage syndromes, such as olfaction dysfunction. Yet, the potential comorbidity mechanism of AD and PD was not fully elucidated. METHODS The gene expression profiles of GSE5281 and GSE8397 were downloaded from the Gene Expression Omnibus (GEO) database. We utilized a series of bioinformatics analyses to screen the overlapped differentially expressed genes (DEGs). The hub genes were further identified by the plugin CytoHubba of Cytoscape and validated in the hippocampus (HIP) samples of APP/PS-1 transgenic mice and the substantial nigra (SN) samples of A53T transgenic mice by real-time quantitative polymerase chain reaction (RT-qPCR). Meanwhile, the expression of the target genes in the olfactory epithelium/bulb was detected by RT-qPCR. Finally, molecular docking was used to screen potential compounds for the target gene. RESULTS One hundred seventy-four overlapped DEGs were identified in AD and PD. Five of the top ten enrichment pathways mainly focused on the synapse. Five hub genes were identified and further validated. As a common factor in AD and PD, the changes of synaptosomal-associated protein 25 (SNAP25) mRNA in olfactory epithelium/bulb were significantly decreased and had a strong association with those in the HIP and SN samples. Pazopanib was the optimal compound targeting SNAP25, with a binding energy of - 9.2 kcal/mol. CONCLUSIONS Our results provided a theoretical basis for understanding the comorbidity mechanism of AD and PD and highlighted that SNAP25 in the olfactory epithelium may serve as a potential target for early detection and intervention in both AD and PD.
Collapse
Affiliation(s)
- Qian Wang
- Department of Radiology, Xuzhou Central Hospital, Xuzhou, 221004, Jiangsu, China
| | - Sijue Tao
- Laboratory Animal Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Lei Xing
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Jiuyu Liu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Cankun Xu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Xinyi Xu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Haohan Ding
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Qi Shen
- Neurological Institute, Columbia University, NY Presbyterian Hospital, New York, NY, USA.
| | - Xiaobo Yu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an, 710062, Shanxi, China.
| | - Yingwei Zheng
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
13
|
Bai Q, Sun D, Zeng Y, Zhu J, Zhang C, Zhang X, Chen L, Zhou X, Ye L, Tang Y, Liu Y, Morozova-Roche LA. Effect of Proinflammatory S100A9 Protein on Migration and Proliferation of Microglial Cells. J Mol Neurosci 2023; 73:983-995. [PMID: 37947991 DOI: 10.1007/s12031-023-02168-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Alzheimer's disease (AD) is a multifactorial disease affecting aging population worldwide. Neuroinflammation became a focus of research as one of the major pathologic processes relating to the disease onset and progression. Proinflammatory S100A9 is the central culprit in the amyloid-neuroinflammatory cascade implicated in AD and other neurodegenerative diseases. We studied the effect of S100A9 on microglial BV-2 cell proliferation and migration. The responses of BV-2 cells to S100A9 stimulation were monitored in real-time using live cell microscopy, transcriptome sequencing, immunofluorescence staining, western blot analysis, and ELISA. We observed that a low dose of S100A9 promotes migration and proliferation of BV-2 cells. However, acute inflammatory condition (i.e., high S100A9 doses) causes diminished cell viability; it is uncovered that S100A9 activates TLR-4 and TLR-7 signaling pathways, leading to TNF-α and IL-6 expression, which affect BV-2 cell migration and proliferation in a concentration-dependent manner. Interestingly, the effects of S100A9 are not only inhibited by TNF-α and IL-6 antibodies. The addition of amyloid-β (Aβ) 1-40 peptide resumes the capacities of BV-2 cells to the level of low S100A9 concentrations. Based on these results, we conclude that in contrast to the beneficial effects of low S100A9 dose, high S100A9 concentration leads to impaired mobility and proliferation of immune cells, reflecting neurotoxicity at acute inflammatory conditions. However, the formation of Aβ plaques may be a natural mechanism that rescues cells from the proinflammatory and cytotoxic effects of S100A9, especially considering that inflammation is one of the primary causes of AD.
Collapse
Affiliation(s)
- Qiao Bai
- Chongqing Medical University, 1 Medical College Road, Yu Zhong District, Chongqing, China
| | - Dan Sun
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi, China
| | - Yang Zeng
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi, China
| | - Jie Zhu
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi, China
| | - Ce Zhang
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi, China
| | - Xiaoyin Zhang
- Chongqing Medical University, 1 Medical College Road, Yu Zhong District, Chongqing, China
| | - Li Chen
- Chongqing Medical University, 1 Medical College Road, Yu Zhong District, Chongqing, China
| | - Xin Zhou
- Chongqing Medical University, 1 Medical College Road, Yu Zhong District, Chongqing, China
| | - Liu Ye
- Chongqing Medical University, 1 Medical College Road, Yu Zhong District, Chongqing, China
| | - Yong Tang
- Chongqing Medical University, 1 Medical College Road, Yu Zhong District, Chongqing, China
| | - Yonggang Liu
- Chongqing Medical University, 1 Medical College Road, Yu Zhong District, Chongqing, China.
| | | |
Collapse
|
14
|
Song X, Kirtipal N, Lee S, Malý P, Bharadwaj S. Current therapeutic targets and multifaceted physiological impacts of caffeine. Phytother Res 2023; 37:5558-5598. [PMID: 37679309 DOI: 10.1002/ptr.8000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/04/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023]
Abstract
Caffeine, which shares consubstantial structural similarity with purine adenosine, has been demonstrated as a nonselective adenosine receptor antagonist for eliciting most of the biological functions at physiologically relevant dosages. Accumulating evidence supports caffeine's beneficial effects against different disorders, such as total cardiovascular diseases and type 2 diabetes. Conversely, paradoxical effects are also linked to caffeine ingestion in humans including hypertension-hypotension and tachycardia-bradycardia. These observations suggest the association of caffeine action with its ingested concentration and/or concurrent interaction with preferential molecular targets to direct explicit events in the human body. Thus, a coherent analysis of the functional targets of caffeine, relevant to normal physiology, and disease pathophysiology, is required to understand the pharmacology of caffeine. This review provides a broad overview of the experimentally validated targets of caffeine, particularly those of therapeutic interest, and the impacts of caffeine on organ-specific physiology and pathophysiology. Overall, the available empirical and epidemiological evidence supports the dose-dependent functional activities of caffeine and advocates for further studies to get insights into the caffeine-induced changes under specific conditions, such as asthma, DNA repair, and cancer, in view of its therapeutic applications.
Collapse
Affiliation(s)
- Xinjie Song
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Nikhil Kirtipal
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Sunjae Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Petr Malý
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences v.v.i, BIOCEV Research Center, Vestec, Czech Republic
| | - Shiv Bharadwaj
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences v.v.i, BIOCEV Research Center, Vestec, Czech Republic
| |
Collapse
|
15
|
Cáceres C, Heusser B, Garnham A, Moczko E. The Major Hypotheses of Alzheimer's Disease: Related Nanotechnology-Based Approaches for Its Diagnosis and Treatment. Cells 2023; 12:2669. [PMID: 38067098 PMCID: PMC10705786 DOI: 10.3390/cells12232669] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/25/2023] [Accepted: 09/19/2023] [Indexed: 12/18/2023] Open
Abstract
Alzheimer's disease (AD) is a well-known chronic neurodegenerative disorder that leads to the progressive death of brain cells, resulting in memory loss and the loss of other critical body functions. In March 2019, one of the major pharmaceutical companies and its partners announced that currently, there is no drug to cure AD, and all clinical trials of the new ones have been cancelled, leaving many people without hope. However, despite the clear message and startling reality, the research continued. Finally, in the last two years, the Food and Drug Administration (FDA) approved the first-ever medications to treat Alzheimer's, aducanumab and lecanemab. Despite researchers' support of this decision, there are serious concerns about their effectiveness and safety. The validation of aducanumab by the Centers for Medicare and Medicaid Services is still pending, and lecanemab was authorized without considering data from the phase III trials. Furthermore, numerous reports suggest that patients have died when undergoing extended treatment. While there is evidence that aducanumab and lecanemab may provide some relief to those suffering from AD, their impact remains a topic of ongoing research and debate within the medical community. The fact is that even though there are considerable efforts regarding pharmacological treatment, no definitive cure for AD has been found yet. Nevertheless, it is strongly believed that modern nanotechnology holds promising solutions and effective clinical strategies for the development of diagnostic tools and treatments for AD. This review summarizes the major hallmarks of AD, its etiological mechanisms, and challenges. It explores existing diagnostic and therapeutic methods and the potential of nanotechnology-based approaches for recognizing and monitoring patients at risk of irreversible neuronal degeneration. Overall, it provides a broad overview for those interested in the evolving areas of clinical neuroscience, AD, and related nanotechnology. With further research and development, nanotechnology-based approaches may offer new solutions and hope for millions of people affected by this devastating disease.
Collapse
Affiliation(s)
| | | | | | - Ewa Moczko
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar 2562307, Chile; (C.C.)
| |
Collapse
|
16
|
Chong JR, Chai YL, Xing H, Herr DR, Wenk MR, Francis PT, Ballard C, Aarsland D, Silver DL, Chen CP, Cazenave‐Gassiot A, Lai MKP. Decreased DHA-containing phospholipids in the neocortex of dementia with Lewy bodies are associated with soluble Aβ 42 , phosphorylated α-synuclein, and synaptopathology. Brain Pathol 2023; 33:e13190. [PMID: 37463072 PMCID: PMC10580008 DOI: 10.1111/bpa.13190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023] Open
Abstract
Docosahexaenoic acid (DHA) is an essential omega-3 polyunsaturated fatty acid implicated in cognitive functions by promoting synaptic protein expression. While alterations of specific DHA-containing phospholipids have been described in the neocortex of patients with Alzheimer's disease (AD), the status of these lipids in dementia with Lewy bodies (DLB), known to manifest aggregated α-synuclein-containing Lewy bodies together with variable amyloid pathology, is unclear. In this study, post-mortem samples from the parietal cortex of 25 DLB patients and 17 age-matched controls were processed for phospholipidomics analyses using a liquid chromatography-tandem mass spectrometry (LC-MS/MS) platform. After controlling for false discovery rate, six out of the 46 identified putative DHA-phospholipid species were significantly decreased in DLB, with only one showing increase. Altered putative DHA-phospholipid species were subsequently validated with further LC-MS/MS measurements. Of the DHA-containing phospholipid (DCP) species showing decreases, five negatively correlated with soluble beta-amyloid (Aβ42) levels, whilst three also correlated with phosphorylated α-synuclein (all p < 0.05). Furthermore, five of these phospholipid species correlated with deficits of presynaptic Rab3A, postsynaptic neurogranin, or both (all p < 0.05). Finally, we found altered immunoreactivities of brain lysolipid DHA transporter, MFSD2A, and the fatty acid binding protein FABP5 in DLB parietal cortex. In summary, we report alterations of specific DCP species in DLB, as well as their associations with markers of neuropathological burden and synaptopathology. These results support the potential role of DHA perturbations in DLB as well as therapeutic targets.
Collapse
Affiliation(s)
- Joyce R. Chong
- Department of PharmacologyYong Loo Lin School of Medicine, National University of SingaporeKent RidgeSingapore
- Memory, Aging and Cognition CentreNational University Health SystemKent RidgeSingapore
| | - Yuek Ling Chai
- Department of PharmacologyYong Loo Lin School of Medicine, National University of SingaporeKent RidgeSingapore
- Memory, Aging and Cognition CentreNational University Health SystemKent RidgeSingapore
| | - Huayang Xing
- Department of PharmacologyYong Loo Lin School of Medicine, National University of SingaporeKent RidgeSingapore
| | - Deron R. Herr
- Department of PharmacologyYong Loo Lin School of Medicine, National University of SingaporeKent RidgeSingapore
| | - Markus R. Wenk
- Department of BiochemistryYong Loo Lin School of Medicine, National University of SingaporeKent RidgeSingapore
- Singapore Lipidomics Incubator (SLING), Life Sciences InstituteNational University of SingaporeKent RidgeSingapore
| | | | - Clive Ballard
- College of Medicine and HealthUniversity of ExeterExeterUK
| | - Dag Aarsland
- Department of Old Age PsychiatryInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
- Centre for Age‐Related MedicineStavanger University HospitalStavangerNorway
| | - David L. Silver
- Signature Research Program in Cardiovascular and Metabolic DisordersDuke‐National University of Singapore (NUS) Medical SchoolOutramSingapore
| | - Christopher P. Chen
- Department of PharmacologyYong Loo Lin School of Medicine, National University of SingaporeKent RidgeSingapore
- Memory, Aging and Cognition CentreNational University Health SystemKent RidgeSingapore
| | - Amaury Cazenave‐Gassiot
- Department of BiochemistryYong Loo Lin School of Medicine, National University of SingaporeKent RidgeSingapore
- Singapore Lipidomics Incubator (SLING), Life Sciences InstituteNational University of SingaporeKent RidgeSingapore
| | - Mitchell K. P. Lai
- Department of PharmacologyYong Loo Lin School of Medicine, National University of SingaporeKent RidgeSingapore
- Memory, Aging and Cognition CentreNational University Health SystemKent RidgeSingapore
- College of Medicine and HealthUniversity of ExeterExeterUK
| |
Collapse
|
17
|
Jemimah S, AlShehhi A. c-Diadem: a constrained dual-input deep learning model to identify novel biomarkers in Alzheimer's disease. BMC Med Genomics 2023; 16:244. [PMID: 37833700 PMCID: PMC10571239 DOI: 10.1186/s12920-023-01675-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is an incurable, debilitating neurodegenerative disorder. Current biomarkers for AD diagnosis require expensive neuroimaging or invasive cerebrospinal fluid sampling, thus precluding early detection. Blood-based biomarker discovery in Alzheimer's can facilitate less-invasive, routine diagnostic tests to aid early intervention. Therefore, we propose "c-Diadem" (constrained dual-input Alzheimer's disease model), a novel deep learning classifier which incorporates KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway constraints on the input genotyping data to predict disease, i.e., mild cognitive impairment (MCI)/AD or cognitively normal (CN). SHAP (SHapley Additive exPlanations) was used to explain the model and identify novel, potential blood-based genetic markers of MCI/AD. METHODS We developed a novel constrained deep learning neural network which utilizes SNPs (single nucleotide polymorphisms) and microarray data from ADNI (Alzheimer's Disease Neuroimaging Initiative) to predict the disease status of participants, i.e., CN or with disease (MCI/AD), and identify potential blood-based biomarkers for diagnosis and intervention. The dataset contains samples from 626 participants, of which 212 are CN (average age 74.6 ± 5.4 years) and 414 patients have MCI/AD (average age 72.7 ± 7.6 years). KEGG pathway information was used to generate constraints applied to the input tensors, thus enhancing the interpretability of the model. SHAP scores were used to identify genes which could potentially serve as biomarkers for diagnosis and targets for drug development. RESULTS Our model's performance, with accuracy of 69% and AUC of 70% in the test dataset, is superior to previous models. The SHAP scores show that SNPs in PRKCZ, PLCB1 and ITPR2 as well as expression of HLA-DQB1, EIF1AY, HLA-DQA1, and ZFP57 have more impact on model predictions. CONCLUSIONS In addition to predicting MCI/AD, our model has been interrogated for potential genetic biomarkers using SHAP. From our analysis, we have identified blood-based genetic markers related to Ca2+ ion release in affected regions of the brain, as well as depression. The findings from our study provides insights into disease mechanisms, and can facilitate innovation in less-invasive, cost-effective diagnostics. To the best of our knowledge, our model is the first to use pathway constraints in a multimodal neural network to identify potential genetic markers for AD.
Collapse
Affiliation(s)
- Sherlyn Jemimah
- Department of Biomedical Engineering, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Aamna AlShehhi
- Department of Biomedical Engineering, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
18
|
Tan Q, Liu L, Wang S, Wang Q, Sun Y. Dexmedetomidine Promoted HSPB8 Expression via Inhibiting the lncRNA SNHG14/UPF1 Axis to Inhibit Apoptosis of Nerve Cells in AD : The Role of Dexmedetomidine in AD. Neurotox Res 2023; 41:471-480. [PMID: 37656385 DOI: 10.1007/s12640-023-00653-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 09/02/2023]
Abstract
Dexmedetomidine (Dex) is reported to play a neuroprotective role in Alzheimer's disease (AD). However, the specific mechanism remains unclear. Figure out the underlying molecular mechanism of Dex regulating nerve cell apoptosis in the AD model. The AD model in vitro was established after SH-SY5Y cells were treated with Aβ1 - 42 at (10 μM) for 24 h. The interaction among UPF1, lncRNA SNHG14, and HSPB8 was verified by RIP assay. Cell viability, apoptosis, the level of genes, and proteins were detected by CCK-8 assay, flow cytometry, Western blot, and qRT-PCR, respectively. Dex downregulated lncRNA SNHG14 level and inhibited apoptosis of nerve cells. LncRNA SNHG14 overexpression reversed the inhibitory effect of Dex on nerve cell apoptosis in the AD model. LncRNA SNHG14 attenuated HSPB8 mRNA stability by recruiting UPF1. HSPB8 overexpression inhibited apoptosis of nerve cells in the AD model. Moreover, HSPB8 knockdown reversed the inhibitory effect of Dex on nerve cell apoptosis in the AD model. Our study demonstrated that Dex promoted HSPB8 expression via inhibiting the lncRNA SNHG14/UPF1 axis to inhibit nerve cell apoptosis in AD.
Collapse
Affiliation(s)
- QingYun Tan
- Department of Anesthesiology, The First Affiliated Hospital of Jiamusi University, No.348, dexiang Street, Xiangyang District, Jiamusi, 154002, Heilongjiang Province, People's Republic of China
| | - LiLi Liu
- Department of Anesthesiology, Second Department of Jiamusi Central Hospital, Jiamusi, 154002, Heilongjiang Province, People's Republic of China
| | - Shuo Wang
- Department of Anesthesiology, The First Affiliated Hospital of Jiamusi University, No.348, dexiang Street, Xiangyang District, Jiamusi, 154002, Heilongjiang Province, People's Republic of China
| | - QingDong Wang
- Department of Anesthesiology, The First Affiliated Hospital of Jiamusi University, No.348, dexiang Street, Xiangyang District, Jiamusi, 154002, Heilongjiang Province, People's Republic of China.
| | - Yu Sun
- Department of Anesthesiology, The First Affiliated Hospital of Jiamusi University, No.348, dexiang Street, Xiangyang District, Jiamusi, 154002, Heilongjiang Province, People's Republic of China.
| |
Collapse
|
19
|
Xu C, Zhao L, Dong C. The performance of plasma phosphorylated tau231 in detecting Alzheimer's disease: A systematic review with meta-analysis. Eur J Neurosci 2023; 58:3132-3149. [PMID: 37501373 DOI: 10.1111/ejn.16085] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023]
Abstract
Cerebrospinal fluid (CSF) phosphorylated tau231 (P-tau231) is associated with neuropathological outcomes of Alzheimer's disease (AD). The invasive access of cerebrospinal fluid has greatly stimulated interest in the identification of blood-based P-tau231, and the recent advent of single-molecule array assay for the quantification of plasma P-tau231 may provide a turning point to evaluate the usefulness of P-tau231 as an AD-related biomarker. Yet, in the plasma P-tau231 literature, findings with regard to its diagnostic utility have been inconsistent, and thus, we aimed to statistically investigate the potential of plasma P-tau231 in the context of AD via meta-analysis. Publications on plasma P-tau231 were systematically retrieved from PubMed, EMBASE, the Cochrane library and Web of Science databases. A total of 10 studies covering 2007 participants were included, and we conducted random-effect or fixed-effect meta-analysis, sensitivity analysis and publication bias analysis using the STATA SE 14.0 software. According to our quantitative integration, plasma P-tau231 increased from cognitively unimpaired (CU) populations to mild cognitive impairment to AD and showed significant changes in pairwise comparisons of AD, mild cognitive impairment and CU. Plasma P-tau231 level was significantly higher in CU controls with positive amyloid-β (Aβ) status compared with Aβ-negative CU group. Additionally, the excellent diagnostic accuracy of plasma P-tau231 for asymptomatic Aβ pathology was verified by the pooled value of area under the receiver operating characteristic curves (standard mean difference [95% confidence interval]: .75 [.69, .81], P < 0.00001). Overall, the increased plasma P-tau231 concentrations were found in relation to the early development and progression of AD.
Collapse
Affiliation(s)
- Chang Xu
- Department of Neurology, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Li Zhao
- Department of Neurology, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Chunbo Dong
- Department of Neurology, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
20
|
Khan F, Joshi A, Devkota HP, Subramaniyan V, Kumarasamy V, Arora J. Dietary glucosinolates derived isothiocyanates: chemical properties, metabolism and their potential in prevention of Alzheimer's disease. Front Pharmacol 2023; 14:1214881. [PMID: 37554984 PMCID: PMC10404612 DOI: 10.3389/fphar.2023.1214881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/04/2023] [Indexed: 08/10/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia affecting millions of people worldwide. It is a progressive, irreversible, and incurable neurodegenerative disorder that disrupts the synaptic communication between millions of neurons, resulting in neuronal death and functional loss due to the abnormal accumulation of two naturally occurring proteins, amyloid β (Aβ) and tau. According to the 2018 World Alzheimer's Report, there is no single case of an Alzheimer's survivor; even 1 in 3 people die from Alzheimer's disease, and it is a growing epidemic across the globe fruits and vegetables rich in glucosinolates (GLCs), the precursors of isothiocyanates (ITCs), have long been known for their pharmacological properties and recently attracted increased interest for the possible prevention and treatment of neurodegenerative diseases. Epidemiological evidence from systematic research findings and clinical trials suggests that nutritional and functional dietary isothiocyanates interfere with the molecular cascades of Alzheimer's disease pathogenesis and prevent neurons from functional loss. The aim of this review is to explore the role of glucosinolates derived isothiocyanates in various molecular mechanisms involved in the progression of Alzheimer's disease and their potential in the prevention and treatment of Alzheimer's disease. It also covers the chemical diversity of isothiocyanates and their detailed mechanisms of action as reported by various in vitro and in vivo studies. Further clinical studies are necessary to evaluate their pharmacokinetic parameters and effectiveness in humans.
Collapse
Affiliation(s)
- Farhana Khan
- Laboratory of Bio-Molecular Technology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Abhishek Joshi
- Laboratory of Bio-Molecular Technology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Vetriselvan Subramaniyan
- Department of Pharmacology, Center for Transdisciplinary Research, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Jaya Arora
- Laboratory of Bio-Molecular Technology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| |
Collapse
|
21
|
Liu JJ, Long YF, Xu P, Guo HD, Cui GH. Pathogenesis of miR-155 on nonmodifiable and modifiable risk factors in Alzheimer's disease. Alzheimers Res Ther 2023; 15:122. [PMID: 37452431 PMCID: PMC10347850 DOI: 10.1186/s13195-023-01264-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 06/28/2023] [Indexed: 07/18/2023]
Abstract
Alzheimer's disease (AD) is a common age-related neurodegenerative disease in the central nervous system and is the primary cause of dementia. It is clinically characterized by the memory impairment, aphasia, apraxia, agnosia, visuospatial and executive dysfunction, behavioral changes, and so on. Incidence of this disease was bound up with age, genetic factors, cardiovascular and cerebrovascular dysfunction, and other basic diseases, but the exact etiology has not been clarified. MicroRNAs (miRNAs) are small endogenous non-coding RNAs that were involved in the regulation of post-transcriptional gene expression. miRNAs have been extensively studied as noninvasive potential biomarkers for disease due to their relative stability in bodily fluids. In addition, they play a significant role in the physiological and pathological processes of various neurological disorders, including stroke, AD, and Parkinson's disease. MiR-155, as an important pro-inflammatory mediator of neuroinflammation, was reported to participate in the progression of β-amyloid peptide and tau via regulating immunity and inflammation. In this review, we put emphasis on the effects of miR-155 on AD and explore the underlying biological mechanisms which could provide a novel approach for diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Jia-Jia Liu
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yun-Fan Long
- Department of Neurology, Shanghai No. 9 People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Peng Xu
- Affiliated Hospital of Jining Medical University, Jining, 272000, Shandong, China.
| | - Hai-Dong Guo
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Guo-Hong Cui
- Department of Neurology, Shanghai No. 9 People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
22
|
Murillo AMM, Laguna MF, Valle LG, Tramarin L, Ramirez Y, Lavín Á, Santamaría B, Holgado M. A New Optical Interferometric Biosensing System Enhanced with Nanoparticles for Alzheimer's Disease in Serum. BIOSENSORS 2023; 13:707. [PMID: 37504106 PMCID: PMC10377685 DOI: 10.3390/bios13070707] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/26/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023]
Abstract
In this scientific work, we demonstrate, for the first time, a new biosensing system and procedure to measure specifically the total Tau (T-Tau) protein in serum, one of the most relevant biomarkers of Alzheimer's disease (AD). AD is a progressive brain disorder that produces neuronal and cognitive dysfunction and affects a high percentage of people worldwide. For this reason, diagnosing AD at the earliest possible stage involves improving diagnostic systems. We report on the use of interferometric bio-transducers integrated with 65 microwells forming diagnostic KITs read-out by using the Interferometric Optical Detection Method (IODM). Moreover, biofunctionalized silicon dioxide (SiO2) nanoparticles (NPs) acting as interferometric enhancers of the bio-transducers signal allow for the improvement of both the optical read-out signal and its ability to work with less-invasive biological samples such as serum instead of cerebrospinal fluid (CSF). As a result, in this paper, we describe for the first time a relevant diagnostic alternative to detect Tau protein at demanding concentrations of 10 pg/mL or even better, opening the opportunity to be used for detecting other relevant AD-related biomarkers in serum, such as β-amyloid and phosphorylated Tau (P-Tau), neurofilaments, among others that can be considered relevant for AD.
Collapse
Affiliation(s)
- Ana María M Murillo
- Group of Optics, Photonics, and Biophotonics, Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Parque Científico y Tecnológico de la UPM, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos, IdISSC, C/Profesor Martín Lagos s/n, 4ª Planta Sur, 28040 Madrid, Spain
| | - María Fe Laguna
- Group of Optics, Photonics, and Biophotonics, Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Parque Científico y Tecnológico de la UPM, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos, IdISSC, C/Profesor Martín Lagos s/n, 4ª Planta Sur, 28040 Madrid, Spain
- Department of Applied Physics and Materials Engineering, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, C/José Gutiérrez Abascal, 2, 28006 Madrid, Spain
| | - Luis G Valle
- Group of Optics, Photonics, and Biophotonics, Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Parque Científico y Tecnológico de la UPM, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos, IdISSC, C/Profesor Martín Lagos s/n, 4ª Planta Sur, 28040 Madrid, Spain
| | - Luca Tramarin
- Group of Optics, Photonics, and Biophotonics, Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Parque Científico y Tecnológico de la UPM, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos, IdISSC, C/Profesor Martín Lagos s/n, 4ª Planta Sur, 28040 Madrid, Spain
| | - Yolanda Ramirez
- Group of Optics, Photonics, and Biophotonics, Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Parque Científico y Tecnológico de la UPM, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Álvaro Lavín
- Group of Optics, Photonics, and Biophotonics, Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Parque Científico y Tecnológico de la UPM, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos, IdISSC, C/Profesor Martín Lagos s/n, 4ª Planta Sur, 28040 Madrid, Spain
- Department of Applied Physics and Materials Engineering, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, C/José Gutiérrez Abascal, 2, 28006 Madrid, Spain
| | - Beatriz Santamaría
- Group of Optics, Photonics, and Biophotonics, Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Parque Científico y Tecnológico de la UPM, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos, IdISSC, C/Profesor Martín Lagos s/n, 4ª Planta Sur, 28040 Madrid, Spain
- Department of Mechanics, Chemistry and Industrial Design Engineering, Escuela Superior de Ingeniería y Diseño Industrial, Universidad Politécnica de Madrid, Ronda de Valencia 3, 28012 Madrid, Spain
| | - Miguel Holgado
- Group of Optics, Photonics, and Biophotonics, Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Parque Científico y Tecnológico de la UPM, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos, IdISSC, C/Profesor Martín Lagos s/n, 4ª Planta Sur, 28040 Madrid, Spain
- Department of Applied Physics and Materials Engineering, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, C/José Gutiérrez Abascal, 2, 28006 Madrid, Spain
| |
Collapse
|
23
|
Zhou F, Sun Y, Xie X, Zhao Y. Blood and CSF chemokines in Alzheimer's disease and mild cognitive impairment: a systematic review and meta-analysis. Alzheimers Res Ther 2023; 15:107. [PMID: 37291639 DOI: 10.1186/s13195-023-01254-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
OBJECTIVE Chemokines, which are chemotactic inflammatory mediators involved in controlling the migration and residence of all immune cells, are closely associated with brain inflammation, recognized as one of the potential processes/mechanisms associated with cognitive impairment. We aim to determine the chemokines which are significantly altered in Alzheimer's disease (AD) and mild cognitive impairment (MCI), as well as the respective effect sizes, by performing a meta-analysis of chemokines in cerebrospinal fluid (CSF) and blood (plasma or serum). METHODS We searched three databases (Pubmed, EMBASE and Cochrane library) for studies regarding chemokines. The three pairwise comparisons were as follows: AD vs HC, MCI vs healthy controls (HC), and AD vs MCI. The fold-change was calculated using the ratio of mean (RoM) chemokine concentration for every study. Subgroup analyses were performed for exploring the source of heterogeneity. RESULTS Of 2338 records identified from the databases, 61 articles comprising a total of 3937 patients with AD, 1459 with MCI, and 4434 healthy controls were included. The following chemokines were strongly associated with AD compared with HC: blood CXCL10 (RoM, 1.92, p = 0.039), blood CXCL9 (RoM, 1.78, p < 0.001), blood CCL27 (RoM, 1.34, p < 0.001), blood CCL15 (RoM, 1.29, p = 0.003), as well as CSF CCL2 (RoM, 1.19, p < 0.001). In the comparison of AD with MCI, there was significance for blood CXCL9 (RoM, 2.29, p < 0.001), blood CX3CL1 (RoM, 0.77, p = 0.017), and blood CCL1 (RoM, 1.37, p < 0.001). Of the chemokines tested, blood CX3CL1 (RoM, 2.02, p < 0.001) and CSF CCL2 (RoM, 1.16, p = 0.004) were significant for the comparison of MCI with healthy controls. CONCLUSIONS Chemokines CCL1, CCL2, CCL15, CCL27, CXCL9, CXCL10, and CX3CL1 might be most promising to serve as key molecular markers of cognitive impairment, although more cohort studies with larger populations are needed.
Collapse
Affiliation(s)
- Futao Zhou
- School of Basic Medicine, Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, China.
| | - Yangyan Sun
- School of Basic Medicine, Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, China
| | - Xinhua Xie
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Yushi Zhao
- School of Basic Medicine, Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, China
| |
Collapse
|
24
|
Zhang X, Subbanna S, Williams CRO, Canals-Baker S, Smiley JF, Wilson DA, Das BC, Saito M. Anti-inflammatory Action of BT75, a Novel RARα Agonist, in Cultured Microglia and in an Experimental Mouse Model of Alzheimer's Disease. Neurochem Res 2023; 48:1958-1970. [PMID: 36781685 PMCID: PMC10355192 DOI: 10.1007/s11064-023-03888-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/15/2023]
Abstract
BT75, a boron-containing retinoid, is a novel retinoic acid receptor (RAR)α agonist synthesized by our group. Previous studies indicated that activation of retinoic acid (RA) signaling may attenuate progression of Alzheimer's disease (AD). Presently, we aimed to examine the anti-inflammatory effect of BT75 and explore the possible mechanism using cultured cells and an AD mouse model. Pretreatment with BT75 (1-25 µM) suppressed the release of nitric oxide (NO) and IL-1β in the culture medium of mouse microglial SIM-A9 cells activated by LPS. BMS195614, an RARα antagonist, partially blocked the inhibition of NO production by BT75. Moreover, BT75 attenuated phospho-Akt and phospho-NF-κB p65 expression augmented by LPS. In addition, BT75 elevated arginase 1, IL-10, and CD206, and inhibited inducible nitric oxide synthase (iNOS) and IL-6 formation in LPS-treated SIM-A9 cells, suggesting the promotion of M1-M2 microglial phenotypic polarization. C57BL/6 mice were injected intracerebroventricularly (icv) with streptozotocin (STZ) (3 mg/kg) to provide an AD-like mouse model. BT75 (5 mg/kg) or the vehicle was intraperitoneally (ip) injected to icv-STZ mice once a day for 3 weeks. Immunohistochemical analyses indicated that GFAP-positive cells and rod or amoeboid-like Iba1-positive cells, which increased in the hippocampal fimbria of icv-STZ mice, were reduced by BT75 treatment. Western blot results showed that BT75 decreased levels of neuronal nitric oxide synthase (nNOS), GFAP, and phosphorylated Tau, and increased levels of synaptophysin in the hippocampus of icv-STZ mice. BT75 may attenuate neuroinflammation by affecting the Akt/NF-κB pathway and microglial M1-M2 polarization in LPS-stimulated SIM-A9 cells. BT75 also reduced AD-like pathology including glial activation in the icv-STZ mice. Thus, BT75 may be a promising anti-inflammatory and neuroprotective agent worthy of further AD studies.
Collapse
Affiliation(s)
- Xiuli Zhang
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd, Orangeburg, NY, 10962, USA
| | - Shivakumar Subbanna
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd, Orangeburg, NY, 10962, USA
| | - Colin R O Williams
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Stefanie Canals-Baker
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd, Orangeburg, NY, 10962, USA
| | - John F Smiley
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd, Orangeburg, NY, 10962, USA
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Donald A Wilson
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Department of Child and Adolescent Psychiatry, New York University Medical Center, New York, NY, USA
| | - Bhaskar C Das
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, 75 DeKalb Ave., Brooklyn, NY, 11201, USA.
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Mariko Saito
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd, Orangeburg, NY, 10962, USA.
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
25
|
Xu Y, Jiang H, Zhu B, Cao M, Feng T, Sun Z, Du G, Zhao Z. Advances and applications of fluids biomarkers in diagnosis and therapeutic targets of Alzheimer's disease. CNS Neurosci Ther 2023. [PMID: 37144603 DOI: 10.1111/cns.14238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/25/2023] [Accepted: 04/12/2023] [Indexed: 05/06/2023] Open
Abstract
AIMS Alzheimer's disease (AD) is a neurodegenerative disease with challenging early diagnosis and effective treatments due to its complex pathogenesis. AD patients are often diagnosed after the appearance of the typical symptoms, thereby delaying the best opportunity for effective measures. Biomarkers could be the key to resolving the challenge. This review aims to provide an overview of application and potential value of AD biomarkers in fluids, including cerebrospinal fluid, blood, and saliva, in diagnosis and treatment. METHODS A comprehensive search of the relevant literature was conducted to summarize potential biomarkers for AD in fluids. The paper further explored the biomarkers' utility in disease diagnosis and drug target development. RESULTS Research on biomarkers mainly focused on amyloid-β (Aβ) plaques, Tau protein abnormal phosphorylation, axon damage, synaptic dysfunction, inflammation, and related hypotheses associated with AD mechanisms. Aβ42 , total Tau (t-Tau), and phosphorylated Tau (p-Tau), have been endorsed for their diagnostic and predictive capability. However, other biomarkers remain controversial. Drugs targeting Aβ have shown some efficacy and those that target BACE1 and Tau are still undergoing development. CONCLUSION Fluid biomarkers hold considerable potential in the diagnosis and drug development of AD. However, improvements in sensitivity and specificity, and approaches for managing sample impurities, need to be addressed for better diagnosis.
Collapse
Affiliation(s)
- Yanan Xu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- School of Pharmacy, Capital Medical University, Beijing, China
| | - Hailun Jiang
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bin Zhu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Mingnan Cao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Feng
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhongshi Sun
- Department of Pharmacy, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Zhigang Zhao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- School of Pharmacy, Capital Medical University, Beijing, China
| |
Collapse
|
26
|
Jacobsen AM, van de Merbel NC, Ditlevsen DK, Tvermosegaard K, Schalk F, Lambert W, Bundgaard C, Pedersen JT, Rosenqvist N. A Quantitative LC-MS/MS Method for Distinguishing the Tau Protein Forms Phosphorylated and Nonphosphorylated at Serine-396. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:441-451. [PMID: 36719168 DOI: 10.1021/jasms.2c00324] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Hyperphosphorylated tau protein is well-known to be involved in the formation of neurofibrillary tangles and the progression of age-related neurodegenerative diseases (tauopathies), including Alzheimer's Disease (AD). Tau protein phosphorylated at serine-396 (pS396-tau) is often linked to disease progression, and we therefore developed an analytical method to measure pS396-tau in cerebrospinal fluid (CSF) in humans and animal models of AD. In the S396-region, multiple phosphorylation sites are present, causing structural complexity and sensitivity challenges for conventional bottom-up mass spectrometry approaches. Here, we present an indirect LC-MS/MS method for quantification of pS396-tau. We take advantage of the reproducible miscleavage caused by S396 being preceded by a lysine (K395) and the proteolytic enzyme trypsin not cleaving when the following amino acid is phosphorylated. Therefore, treatment with trypsin discriminates between the forms of tau with and without phosphorylation at S396 and pS396-tau can be quantified as the difference between total S396-tau and nonphosphorylated S396-tau. To qualify the method, it was successfully applied for quantification of pS396-tau in human CSF from healthy controls and patients with Mild Cognitive Impairment and AD. In addition, the method was applied for rTg4510 mice where a clear dose dependent decrease in pS396-tau was observed in CSF following intravenous administration of a monoclonal antibody (Lu AF87908, hC10.2) targeting the tau epitope containing pS396. Finally, a formal validation of the method was conducted. In conclusion, this sensitive LC-MS/MS-based method for measurement of pS396-tau in CSF allows for quantitative translational biomarker applications for tauopathies including investigations of potential drug induced effects.
Collapse
Affiliation(s)
- Anne-Marie Jacobsen
- Department of Translational DMPK, Lundbeck, Ottiliavej 9, DK-2500 Valby, Copenhagen, Denmark
| | | | | | | | - Frank Schalk
- ICON Bioanalytical Laboratories, Amerikaweg 18, 9407TK Assen
| | - Wietske Lambert
- ICON Bioanalytical Laboratories, Amerikaweg 18, 9407TK Assen
| | - Christoffer Bundgaard
- Department of Translational DMPK, Lundbeck, Ottiliavej 9, DK-2500 Valby, Copenhagen, Denmark
| | | | - Nina Rosenqvist
- Histology & Pathology Models, Lundbeck, DK-2500 Valby, Copenhagen, Denmark
| |
Collapse
|
27
|
Identification of hub proteins in cerebrospinal fluid as potential biomarkers of Alzheimer's disease by integrated bioinformatics. J Neurol 2023; 270:1487-1500. [PMID: 36396814 DOI: 10.1007/s00415-022-11476-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a heterogeneous neurodegenerative disease with complex pathophysiology. Therefore, the identification of novel effective fluid biomarkers is essential for Alzheimer's disease diagnosis and drug development. This study aimed to identify potential candidate hub proteins in cerebrospinal fluid for precise Alzheimer's disease diagnosis using bioinformatics methods. METHODS A total of 29 co-significant differentially expressed proteins were identified by differential protein expression analysis in four different cohorts. Functional enrichment analysis revealed that most of these proteins were enriched in pathways related to glycometabolism. Using the Least Absolute Shrinkage and Selection Operator (LASSO) and random forest feature selection methods, six hub proteins [14-3-3 protein zeta/delta (YWHAZ), SPARC-related modular calcium-binding protein 1 (SMOC1), aldolase A (ALDOA), pyruvate kinase isoenzyme type M2 (PKM), chitinase-3-like protein 1 (CHI3L1), and secreted phosphoprotein 1 (SPP1)] were identified. RESULTS These six hub proteins were upregulated in the cerebrospinal fluid of patients with Alzheimer's disease compared with cognitively unimpaired control individuals. Meanwhile, SMOC1, ALDOA, and PKM were specifically upregulated in the cerebrospinal fluid of patients with Alzheimer's disease but not in other neurodegenerative diseases. Build AD diagnostic models showed that a single hub protein or six hub proteins combination had an excellent ability to discriminate Alzheimer's disease. CONCLUSIONS In conclusion, our study suggests that these identified hub proteins, which are related to glycometabolism, may be potential biomarkers for further basic and clinical research in Alzheimer's disease.
Collapse
|
28
|
The Role of Zinc in Modulating Acid-Sensing Ion Channel Function. Biomolecules 2023; 13:biom13020229. [PMID: 36830598 PMCID: PMC9953155 DOI: 10.3390/biom13020229] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Acid-sensing ion channels (ASICs) are proton-gated, voltage-independent sodium channels widely expressed throughout the central and peripheral nervous systems. They are involved in synaptic plasticity, learning/memory, fear conditioning and pain. Zinc, an important trace metal in the body, contributes to numerous physiological functions, with neurotransmission being of note. Zinc has been implicated in the modulation of ASICs by binding to specific sites on these channels and exerting either stimulatory or inhibitory effects depending on the ASIC subtype. ASICs have been linked to several neurological and psychological disorders, such as Alzheimer's disease, Parkinson's disease, ischemic stroke, epilepsy and cocaine addiction. Different ASIC isoforms contribute to the persistence of each of these neurological and psychological disorders. It is critical to understand how various zinc concentrations can modulate specific ASIC subtypes and how zinc regulation of ASICs can contribute to neurological and psychological diseases. This review elucidates zinc's structural interactions with ASICs and discusses the potential therapeutic implications zinc may have on neurological and psychological diseases through targeting ASICs.
Collapse
|
29
|
Wei Z, Yang C, Feng K, Guo S, Huang Z, Wang Y, Jian C. p75NTR enhances cognitive dysfunction in a mouse Alzheimer's disease model by inhibiting microRNA-210-3p-mediated PCYT2 through activation of NF-κB. Int J Biol Macromol 2023; 225:404-415. [PMID: 36379282 DOI: 10.1016/j.ijbiomac.2022.11.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Alzheimer's disease (AD) is a main cause of dementia and exhibits abnormality in cognitive behaviors. Here, we probed into the role of p75 neurotrophin receptor (p75NTR) in cognitive dysfunction in AD. Primarily, C57BL/6 mouse and neuroblastoma cells were treated by amyloid-beta1-42 (Aβ1-42), respectively, to establish the in vivo and in vitro models of AD. The downstream genes of p75NTR were predicted by RNA-sequencing and bioinformatics analysis. Then the interaction among p75NTR, nuclear factor kappa B (NF-κB), microRNA-210-3p (miR-210-3p) and phosphoethanolamine cytidylyltransferase 2 (PYCT2) was verified, followed by analysis of their effects on cognitive behaviors and biological characteristics of hippocampal neurons of mouse with AD-like symptoms. p75NTR knockout alleviated cognitive dysfunction in mice with AD-like symptoms and reduced Aβ1-42-induced hippocampal neuron damage and apoptosis. p75NTR up-regulated miR-210-3p expression by activating NF-κB, thereby limiting PCYT2 expression. PCYT2 silencing in p75NTR-/- mice promoted neuronal apoptosis and aggravated cognitive dysfunction in AD mouse models. In summary, p75NTR is capable of accelerating cognitive dysfunction in AD by mediating the NF-κB/miR-210-3p/PCYT2 axis.
Collapse
Affiliation(s)
- Zhongliang Wei
- Department of Anesthesiology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Chengmin Yang
- Department of Neurology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Keyu Feng
- Department of Neurology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Suchan Guo
- Department of Neurology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Zhenzhen Huang
- Department of Neurology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Yifan Wang
- Department of Neurology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Chongdong Jian
- Department of Neurology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China.
| |
Collapse
|
30
|
Grobler C, van Tongeren M, Gettemans J, Kell DB, Pretorius E. Alzheimer's Disease: A Systems View Provides a Unifying Explanation of Its Development. J Alzheimers Dis 2023; 91:43-70. [PMID: 36442193 DOI: 10.3233/jad-220720] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Alzheimer's disease (AD) is a debilitating neurodegenerative disorder affecting 50 million people globally. It is characterized by the presence of extracellular senile plaques and intracellular neurofibrillary tangles, consisting of amyloid-β and hyperphosphorylated tau proteins, respectively. Despite global research efforts, there is currently no cure available, due in part to an incomplete understanding of the disease pathogenesis. Numerous possible mechanisms, or hypotheses, explaining the origins of sporadic or late-onset AD have been proposed, including the amyloid-β, inflammatory, vascular, and infectious hypotheses. However, despite ample evidence, the failure of multiple trial drugs at the clinical stage illuminates the possible pitfalls of these hypotheses. Systems biology is a strategy which aims to elucidate the interactions between parts of a whole. Using this approach, the current paper shows how the four previously mentioned hypotheses of AD pathogenesis can be intricately connected. This approach allows for seemingly contradictory evidence to be unified in a system-focused explanation of sporadic AD development. Within this view, it is seen that infectious agents, such as P. gingivalis, may play a central role. The data presented here shows that when present, P. gingivalis or its virulence factors, such as gingipains, may induce or exacerbate pathologies underlying sporadic AD. This evidence supports the view that infectious agents, and specifically P. gingivalis, may be suitable treatment targets in AD.
Collapse
Affiliation(s)
- Corlia Grobler
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Marvi van Tongeren
- Department of Biomolecular Medicine, Faculty of Medicine & Health Sciences, Ghent University, Ghent, Belgium
| | - Jan Gettemans
- Department of Biomolecular Medicine, Faculty of Medicine & Health Sciences, Ghent University, Ghent, Belgium
| | - Douglas B Kell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa.,Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK.,The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa.,Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
31
|
Ghazimoradi MM, Ghoushi E, Ghobadi Pour M, Karimi Ahmadabadi H, Rafieian-Kopaei M. A Review on Garlic as a Supplement for Alzheimer’s Disease: A Mechanistic Insight into its Direct and Indirect Effects. Curr Pharm Des 2023; 29:519-526. [PMID: 36809972 DOI: 10.2174/1381612829666230222093016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/19/2022] [Accepted: 12/29/2022] [Indexed: 02/24/2023]
Abstract
Alzheimer’s disease (AD) is one of the most complicated neurodegenerative diseases causing dementia in human beings. Aside from that, the incidence of AD is increasing and its treatment is very complicated. There are several known hypotheses regarding the pathology of Alzheimer’s disease, including the amyloid beta hypothesis, tau hypothesis, inflammation hypothesis, and cholinergic hypothesis, which are investigated in different researches to completely elucidate the pathology of AD. Besides, some new mechanisms, such as immune, endocrine, and vagus pathways, as well as bacteria metabolite secretions, are being explained as other causes to be somehow related to AD pathogenesis. There is still no definite treatment for Alzheimer’s disease that can completely cure and eradicate AD. Garlic (Allium sativum) is a traditional herb used as a spice in different cultures, and due to the organosulfur compounds, like allicin, it possesses highly anti-oxidant properties; the benefits of garlic in cardiovascular diseases, like hypertension and atherosclerosis, have been examined and reviewed, although its beneficiary effects in neurodegenerative diseases, such as AD, are not completely understood. In this review, we discuss the effects of garlic based on its components, such as allicin and S-allyl cysteine, on Alzheimer’s disease and the mechanisms of garlic components that can be beneficiary for AD patients, including its effects on amyloid beta, oxidative stress, tau protein, gene expression, and cholinesterase enzymes. Based on the literature review, garlic has been revealed to have beneficiary effects on Alzheimer’s disease, especially in animal studies; however, more studies should be done on humans to find the exact mechanisms of garlic’s effects on AD patients.
Collapse
Affiliation(s)
- Mohammad Mahdi Ghazimoradi
- Faculty of pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Interdisciplinary Neuro-Brain Research and Education Network (INBREN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Ehsan Ghoushi
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Mozhgan Ghobadi Pour
- Department of Physiology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
32
|
Shang D, Huang M, Wang B, Yan X, Wu Z, Zhang X. mtDNA Maintenance and Alterations in the Pathogenesis of Neurodegenerative Diseases. Curr Neuropharmacol 2023; 21:578-598. [PMID: 35950246 PMCID: PMC10207910 DOI: 10.2174/1570159x20666220810114644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/13/2022] [Accepted: 07/18/2022] [Indexed: 11/22/2022] Open
Abstract
Considerable evidence indicates that the semiautonomous organelles mitochondria play key roles in the progression of many neurodegenerative disorders. Mitochondrial DNA (mtDNA) encodes components of the OXPHOS complex but mutated mtDNA accumulates in cells with aging, which mirrors the increased prevalence of neurodegenerative diseases. This accumulation stems not only from the misreplication of mtDNA and the highly oxidative environment but also from defective mitophagy after fission. In this review, we focus on several pivotal mitochondrial proteins related to mtDNA maintenance (such as ATAD3A and TFAM), mtDNA alterations including mtDNA mutations, mtDNA elimination, and mtDNA release-activated inflammation to understand the crucial role played by mtDNA in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease. Our work outlines novel therapeutic strategies for targeting mtDNA.
Collapse
Affiliation(s)
- Dehao Shang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Minghao Huang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Biyao Wang
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xu Yan
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Zhou Wu
- Department of Aging Science and Pharmacology, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
- OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Xinwen Zhang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| |
Collapse
|
33
|
Winder Z, Sudduth TL, Anderson S, Patel E, Neltner J, Martin BJ, Snyder KE, Abner EL, Jicha GA, Nelson PT, Wilcock DM. Examining the association between blood-based biomarkers and human post mortem neuropathology in the University of Kentucky Alzheimer's Disease Research Center autopsy cohort. Alzheimers Dement 2023; 19:67-78. [PMID: 35266629 PMCID: PMC9463400 DOI: 10.1002/alz.12639] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/07/2022] [Accepted: 01/26/2022] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Clinically, detection of disease-causing pathology associated with Alzheimer's disease (AD) and vascular contributions to cognitive impairment and dementia (VCID) is limited to magnetic resonance imaging and positron emission tomography scans, which are expensive and not widely accessible. Here, we assess angiogenic, inflammatory, and AD-related plasma biomarkers to determine their relationships with human post mortem neuropathology. METHOD Plasma samples were analyzed using a digital immunoassay and pathological evaluation was performed by University of Kentucky Alzheimer's Disease Research Center neuropathologists. The association of plasma markers with neuropathology was estimated via proportional odds and logistic regressions adjusted for age. RESULTS Included cases (N = 90) showed increased tau/amyloid beta (Aβ)42 ratio, glial fibrillary acidic protein (GFAP), vascular endothelial growth factor A (VEGF-A), and placental growth factor (PlGF) were positively associated with higher level of AD neuropathological change, while higher Aβ42/Aβ40 ratio was inversely associated. Higher PlGF, VEGF-A, and interleukin 6 were inversely associated with chronic cerebrovascular disease, while Aβ42/Aβ40 ratio was positively associated. DISCUSSION Our results provide support for the continued study of plasma biomarkers as a clinical screening tool for AD and VCID pathology.
Collapse
Affiliation(s)
- Zachary Winder
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
- Departments of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Tiffany L Sudduth
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Sonya Anderson
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Ela Patel
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Janna Neltner
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
- Pathology and Laboratory Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Barbara J Martin
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Katherine E Snyder
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Erin L Abner
- Department of Epidemiology, University of Kentucky, Lexington, Kentucky, USA
| | - Gregory A Jicha
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
- Neurology, College of Public Health, University of Kentucky, Lexington, Kentucky, USA
| | - Peter T Nelson
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
- Pathology and Laboratory Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Donna M Wilcock
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
- Departments of Physiology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
34
|
Liu H, Zhong L, Dai Q, Zhang Y, Yang J. Astragalin alleviates cognitive deficits and neuronal damage in SAMP8 mice through upregulating estrogen receptor expression. Metab Brain Dis 2022; 37:3033-3046. [PMID: 35984596 DOI: 10.1007/s11011-022-01045-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/29/2022] [Indexed: 10/15/2022]
Abstract
Senile plaques composed of β-amyloid protein (Aβ) and neurofibrillary tangles (NFTs) composed of intracellular hyper-phosphorylated tau are major causes of cognitive impairment and neuronal damage in Alzheimer disease (AD). Astragalin (AST), a naturally-occurring flavonoid compound, was reported to have neuroprotective effects in the brain, but its effects in AD remain unknown. Herein, the learning and memory deficits were alleviated and neuronal damage in the hippocampus were inhibited after the senescence-accelerated mouse prone 8 (SAMP8) mouse were given AST (5 mg/kg or 10 mg/kg) daily by gavage for 2 months. Furthermore, AST reduced Aβ1-40 and Aβ1-42 deposition, decreased β-carboxyl-terminal fragment (β-CTF) protein level and tau hyper-phosphorylation, but increased α-CTF protein level and glycogen synthase kinase-3beta (GSK-3β) phosphorylation in hippocampus of SAMP8 mice. Meanwhile, the effects of AST on AD were also explored in vitro by treating primary neurons with amyloid-β1-42 oligomers (Aβ1-42O). Consistently, AST also alleviated amyloid-β1-42 oligomers (Aβ1-42O)-induced neuronal damage, amyloid plaques, and tau phosphorylation in vitro model. Of note, estrogen receptor (ER)α and ERβ expression in the hippocampus of SAMP8 mice and Aβ1-42O-treated neurons was significantly decreased but their levels were increased by AST. Moreover, in vivo and in vitro experiments revealed that ER antagonist, Fulvestrant, reversed the effects caused by AST. Altogether, our investigation indicates that AST may ameliorate cognitive deficits and AD-type pathologies in SAMP8 mice and Aβ1-42O-treated neurons through upregulating ERα and ERβ expression. Our findings indicate the value of AST as a potential reagent for AD treatment.
Collapse
Affiliation(s)
- Hong Liu
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, 150040, Harbin, Heilongjiang, China
| | - Lili Zhong
- Department of Pathology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Qiaomei Dai
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, 150040, Harbin, Heilongjiang, China
| | - Yuwei Zhang
- Department of Physiology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Jing Yang
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, 150040, Harbin, Heilongjiang, China.
| |
Collapse
|
35
|
Xue LL, Huangfu LR, Du RL, Chen L, Yu CY, Xiong LL, Wang TH. The age-specific pathological changes of β-amyloid plaques in the cortex and hippocampus of APP/PS1 transgenic AD mice. Neurol Res 2022; 44:1053-1065. [PMID: 35981107 DOI: 10.1080/01616412.2022.2112368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Numerous pathological variations and complex interactions are involved in the long period prior to cognitive decline in brains with Alzheimer's disease (AD). Thus, elucidation of the pathological disorders can facilitate early AD diagnosis. The aim of this study was to investigate the age-specific pathological changes of β-amyloid plaques in brain tissues of AD mice at different ages. METHODS We arranged the most widely available APP/PS1 transgenic AD models into six age groups: 3, 4 and 6 months (these three groups mimicked early-clinical stage AD), 9, 12 and 15 months (these three groups mimicked late-clinical stage AD). Cell morphology and arrangement in the cortex and hippocampus were observed by hematoxylin and eosin (HE) staining. Congo red staining and immunohistochemical staining were performed to exhibit the distribution of β-amyloid plaques in the cortex and hippocampus of AD brains. RESULTS Our results found that as age increased, the nuclei of cortical and hippocampal cells in AD mice were severely damaged. The number and area of β-amyloid plaques increased in AD mice in correspondence with age revealed by histological experiments. Importantly, β-amyloid plaques were detected in the cortex and hippocampus of 6-month-old AD mice shown by Congo red staining while detected in the cortex and hippocampus of 4-month-old AD mice shown by immunohistochemical staining. CONCLUSIONS The current study revealed the age-related pathological changes of β-amyloid plaques in the cortex and hippocampus of AD mice and displayed a higher specificity of immunohistochemical staining than Congo red staining when detecting pathological changes of brain tissues.
Collapse
Affiliation(s)
- Lu-Lu Xue
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Li-Ren Huangfu
- Animal Zoology Department, Institute of Neuroscience, Kunming medical University, Kunming, Yunnan, China
| | - Ruo-Lan Du
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Chen
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chang-Yin Yu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Liu-Lin Xiong
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Ting-Hua Wang
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China.,Animal Zoology Department, Institute of Neuroscience, Kunming medical University, Kunming, Yunnan, China.,Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
36
|
Ramesh M, Govindaraju T. Multipronged diagnostic and therapeutic strategies for Alzheimer's disease. Chem Sci 2022; 13:13657-13689. [PMID: 36544728 PMCID: PMC9710308 DOI: 10.1039/d2sc03932j] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/13/2022] [Indexed: 12/24/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and a major contributor to dementia cases worldwide. AD is clinically characterized by learning, memory, and cognitive deficits. The accumulation of extracellular amyloid β (Aβ) plaques and neurofibrillary tangles (NFTs) of tau are the pathological hallmarks of AD and are explored as targets for clinical diagnosis and therapy. AD pathology is poorly understood and there are no fully approved diagnosis and treatments. Notwithstanding the gap, decades of research in understanding disease mechanisms have revealed the multifactorial nature of AD. As a result, multipronged and holistic approaches are pertinent to targeting multiple biomarkers and targets for developing effective diagnosis and therapeutics. In this perspective, recent developments in Aβ and tau targeted diagnostic and therapeutic tools are discussed. Novel indirect, combination, and circulating biomarkers as potential diagnostic targets are highlighted. We underline the importance of multiplexing and multimodal detection of multiple biomarkers to generate biomarker fingerprints as a reliable diagnostic strategy. The classical therapeutics targeting Aβ and tau aggregation pathways are described with bottlenecks in the strategy. Drug discovery efforts targeting multifaceted toxicity involving protein aggregation, metal toxicity, oxidative stress, mitochondrial damage, and neuroinflammation are highlighted. Recent efforts focused on multipronged strategies to rationally design multifunctional modulators targeting multiple pathological factors are presented as future drug development strategies to discover potential therapeutics for AD.
Collapse
Affiliation(s)
- Madhu Ramesh
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur P.O. Bengaluru Karnataka 560064 India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur P.O. Bengaluru Karnataka 560064 India
| |
Collapse
|
37
|
Kawakami J, Piccolo SR, Kauwe JK, Graves SW. Gender differences contribute to variability of serum lipid biomarkers for Alzheimer's disease. Biomark Med 2022; 16:1089-1100. [PMID: 36625236 DOI: 10.2217/bmm-2022-0462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Background: Alzheimer's disease (AD) cannot currently be diagnosed by a blood test. One reason may be gender differences. Another may be the statistical methods used. The authors evaluate these possibilities. Objective: The authors applied serum lipidomics to find AD biomarkers in men and women. They hypothesized that AD biomarkers would differ between genders and that machine-learning algorithms would improve diagnostic performance. Methods: Serum lipids were analyzed by mass spectrometry for a training set of AD cases and controls and in a blinded test set. Statistical analyses considered gender differences. Results: Lipids best classifying AD subjects differed significantly between men and women. Robust statistical algorithms did not improve diagnostic performance. Conclusion: Poor performance of AD biomarkers appears to be due primarily to inherent variability in AD patients.
Collapse
Affiliation(s)
- Jie Kawakami
- Department of Chemistry & Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Stephen R Piccolo
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - John Ks Kauwe
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Steven W Graves
- Department of Chemistry & Biochemistry, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
38
|
Baran A, Nowowiejska J, Hermanowicz JM, Sieklucka B, Krahel JA, Kiluk P, Pawlak D, Flisiak I. The Potential Role of Serum Tau Protein (MAPT), Neuronal Cell Adhesion Molecule (NrCAM) and Neprilysin (NEP) in Neurodegenerative Disorders Development in Psoriasis-Preliminary Results. J Clin Med 2022; 11:jcm11175044. [PMID: 36078974 PMCID: PMC9456661 DOI: 10.3390/jcm11175044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Psoriasis is one of the most common dermatoses, which shortens patients’ lives because of the wide comorbidity. However, little is known about its association with neurodegenerative diseases (NDs). We aimed to investigate whether psoriatics are at increased risk of NDs. Sixty patients with plaque-type psoriasis were enrolled into the study. Serum concentrations of tau protein (MAPT), neuronal cell adhesion molecule (NrCAM) and neprilysin (NEP), which are NDs biomarkers and have been hardly studied in psoriasis before, were measured before and after 12 weeks of treatment with acitretin or methotrexate. NrCAM and NEP concentrations were significantly lower in patients than controls, whereas MAPT higher (all p < 0.05). There was no association between these markers and psoriasis severity, BMI or disease duration. After the treatment the concentration of NrCAM and NEP significantly increased and MAPT decreased (p < 0.001, p < 0.05, p < 0.01, respectively). Methotrexate had significant influence on the concentrations of all markers, hence it seems to have neuroprotective properties. Psoriasis severity and duration do not seem to affect the risk of neurodegenerative process. Our results suggest that NDs could be considered as another comorbidity of psoriasis and that further research are needed in order to establish their definite association.
Collapse
Affiliation(s)
- Anna Baran
- Department of Dermatology and Venereology, Medical University of Bialystok, Zurawia 14 St., 15-540 Bialystok, Poland
- Correspondence:
| | - Julia Nowowiejska
- Department of Dermatology and Venereology, Medical University of Bialystok, Zurawia 14 St., 15-540 Bialystok, Poland
| | | | - Beata Sieklucka
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C St., 15-540 Bialystok, Poland
| | - Julita Anna Krahel
- Department of Dermatology and Venereology, Medical University of Bialystok, Zurawia 14 St., 15-540 Bialystok, Poland
| | - Paulina Kiluk
- Department of Dermatology and Venereology, Medical University of Bialystok, Zurawia 14 St., 15-540 Bialystok, Poland
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C St., 15-540 Bialystok, Poland
| | - Iwona Flisiak
- Department of Dermatology and Venereology, Medical University of Bialystok, Zurawia 14 St., 15-540 Bialystok, Poland
| |
Collapse
|
39
|
Alba-González A, Yáñez J, Anadón R, Folgueira M. Neurogranin-like immunoreactivity in the zebrafish brain during development. Brain Struct Funct 2022; 227:2593-2607. [PMID: 36018391 PMCID: PMC9618489 DOI: 10.1007/s00429-022-02550-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/03/2022] [Indexed: 11/30/2022]
Abstract
Neurogranin (Nrgn) is a neural protein that is enriched in the cerebral cortex and is involved in synaptic plasticity via its interaction with calmodulin. Recently we reported its expression in the brain of the adult zebrafish (Alba-González et al. J Comp Neurol 530:1569–1587, 2022). In this study we analyze the development of Nrgn-like immunoreactivity (Nrgn-like-ir) in the brain and sensory structures of zebrafish embryos and larvae, using whole mounts and sections. First Nrgn-like positive neurons appeared by 2 day post-fertilization (dpf) in restricted areas of the brain, mostly in the pallium, epiphysis and hindbrain. Nrgn-like populations increased noticeably by 3 dpf, reaching an adult-like pattern in 6 dpf. Most Nrgn-like positive neurons were observed in the olfactory organ, retina (most ganglion cells, some amacrine and bipolar cells), pallium, lateral hypothalamus, thalamus, optic tectum, torus semicircularis, octavolateralis area, and viscerosensory column. Immunoreactivity was also observed in axonal tracts originating in Nrgn-like neuronal populations, namely, the projection of Nrgn-like immunopositive primary olfactory fibers to olfactory glomeruli, that of Nrgn-like positive pallial cells to the hypothalamus, the Nrgn-like-ir optic nerve to the pretectum and optic tectum, the Nrgn-like immunolabeled lateral hypothalamus to the contralateral region via the horizontal commissure, the octavolateralis area to the midbrain via the lateral lemniscus, and the viscerosensory column to the dorsal isthmus via the secondary gustatory tract. The late expression of Nrgn in zebrafish neurons is probably related to functional maturation of higher brain centers, as reported in the mammalian telencephalon. The analysis of Nrgn expression in the zebrafish brain suggests that it may be a useful marker for specific neuronal circuitries.
Collapse
Affiliation(s)
- Anabel Alba-González
- Department of Biology, Faculty of Sciences, University of A Coruña, Campus da Zapateira, 15008-A, Coruña, Spain.,Centro de Investigaciones Científicas Avanzadas (CICA), University of A Coruña, 15071-A, Coruña, Spain
| | - Julián Yáñez
- Department of Biology, Faculty of Sciences, University of A Coruña, Campus da Zapateira, 15008-A, Coruña, Spain. .,Centro de Investigaciones Científicas Avanzadas (CICA), University of A Coruña, 15071-A, Coruña, Spain.
| | - Ramón Anadón
- Department of Functional Biology, Faculty of Biology, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Mónica Folgueira
- Department of Biology, Faculty of Sciences, University of A Coruña, Campus da Zapateira, 15008-A, Coruña, Spain. .,Centro de Investigaciones Científicas Avanzadas (CICA), University of A Coruña, 15071-A, Coruña, Spain.
| |
Collapse
|
40
|
Nadhan R, Isidoro C, Song YS, Dhanasekaran DN. Signaling by LncRNAs: Structure, Cellular Homeostasis, and Disease Pathology. Cells 2022; 11:2517. [PMID: 36010595 PMCID: PMC9406440 DOI: 10.3390/cells11162517] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 12/11/2022] Open
Abstract
The cellular signaling network involves co-ordinated regulation of numerous signaling molecules that aid the maintenance of cellular as well as organismal homeostasis. Aberrant signaling plays a major role in the pathophysiology of many diseases. Recent studies have unraveled the superfamily of long non-coding RNAs (lncRNAs) as critical signaling nodes in diverse signaling networks. Defective signaling by lncRNAs is emerging as a causative factor underlying the pathophysiology of many diseases. LncRNAs have been shown to be involved in the multiplexed regulation of diverse pathways through both genetic and epigenetic mechanisms. They can serve as decoys, guides, scaffolds, and effector molecules to regulate cell signaling. In comparison with the other classes of RNAs, lncRNAs possess unique structural modifications that contribute to their diversity in modes of action within the nucleus and cytoplasm. In this review, we summarize the structure and function of lncRNAs as well as their vivid mechanisms of action. Further, we provide insights into the role of lncRNAs in the pathogenesis of four major disease paradigms, namely cardiovascular diseases, neurological disorders, cancers, and the metabolic disease, diabetes mellitus. This review serves as a succinct treatise that could open windows to investigate the role of lncRNAs as novel therapeutic targets.
Collapse
Affiliation(s)
- Revathy Nadhan
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ciro Isidoro
- Laboratory of Molecular Pathology and NanoBioImaging, Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Yong Sang Song
- Department of Obstetrics and Gynecology, Cancer Research Institute, College of Medicine, Seoul National University, Seoul 151-921, Korea
| | - Danny N. Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
41
|
Gong X, Zhang H, Liu X, Liu Y, Liu J, Fapohunda FO, Lü P, Wang K, Tang M. Is liquid biopsy mature enough for the diagnosis of Alzheimer's disease? Front Aging Neurosci 2022; 14:977999. [PMID: 35992602 PMCID: PMC9389010 DOI: 10.3389/fnagi.2022.977999] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/18/2022] [Indexed: 01/10/2023] Open
Abstract
The preclinical diagnosis and clinical practice for Alzheimer's disease (AD) based on liquid biopsy have made great progress in recent years. As liquid biopsy is a fast, low-cost, and easy way to get the phase of AD, continual efforts from intense multidisciplinary studies have been made to move the research tools to routine clinical diagnostics. On one hand, technological breakthroughs have brought new detection methods to the outputs of liquid biopsy to stratify AD cases, resulting in higher accuracy and efficiency of diagnosis. On the other hand, diversiform biofluid biomarkers derived from cerebrospinal fluid (CSF), blood, urine, Saliva, and exosome were screened out and biologically verified. As a result, more detailed knowledge about the molecular pathogenesis of AD was discovered and elucidated. However, to date, how to weigh the reports derived from liquid biopsy for preclinical AD diagnosis is an ongoing question. In this review, we briefly introduce liquid biopsy and the role it plays in research and clinical practice. Then, we summarize the established fluid-based assays of the current state for AD diagnostic such as ELISA, single-molecule array (Simoa), Immunoprecipitation-Mass Spectrometry (IP-MS), liquid chromatography-MS, immunomagnetic reduction (IMR), multimer detection system (MDS). In addition, we give an updated list of fluid biomarkers in the AD research field. Lastly, the current outstanding challenges and the feasibility to use a stand-alone biomarker in the joint diagnostic strategy are discussed.
Collapse
Affiliation(s)
- Xun Gong
- Department of Rheumatology and Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Hantao Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xiaoyan Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Yi Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
- Institute of Animal Husbandry, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Junlin Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | | | - Peng Lü
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Kun Wang
- Children’s Center, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Min Tang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
42
|
Zakharova NV, Bugrova AE, Indeykina MI, Fedorova YB, Kolykhalov IV, Gavrilova SI, Nikolaev EN, Kononikhin AS. Proteomic Markers and Early Prediction of Alzheimer's Disease. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:762-776. [PMID: 36171657 DOI: 10.1134/s0006297922080089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 06/16/2023]
Abstract
Alzheimer's disease (AD) is the most common socially significant neurodegenerative pathology, which currently affects more than 30 million elderly people worldwide. Since the number of patients grows every year and may exceed 115 million by 2050, and due to the lack of effective therapies, early prediction of AD remains a global challenge, solution of which can contribute to the timely appointment of a preventive therapy in order to avoid irreversible changes in the brain. To date, clinical assays for the markers of amyloidosis in cerebrospinal fluid (CSF) have been developed, which, in conjunction with the brain MRI and PET studies, are used either to confirm the diagnosis based on obligate clinical criteria or to predict the risk of AD developing at the stage of mild cognitive impairment (MCI). However, the problem of predicting AD at the asymptomatic stage remains unresolved. In this regard, the search for new protein markers and studies of proteomic changes in CSF and blood plasma are of particular interest and may consequentially identify particular pathways involved in the pathogenesis of AD. Studies of specific proteomic changes in blood plasma deserve special attention and are of increasing interest due to the much less invasive method of sample collection as compared to CSF, which is important when choosing the object for large-scale screening. This review briefly summarizes the current knowledge on proteomic markers of AD and considers the prospects of developing reliable methods for early identification of AD risk factors based on the proteomic profile.
Collapse
Affiliation(s)
- Natalia V Zakharova
- Emanuel Institute for Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia.
| | - Anna E Bugrova
- Emanuel Institute for Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Maria I Indeykina
- Emanuel Institute for Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | | | | | | | - Evgeny N Nikolaev
- Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | | |
Collapse
|
43
|
Zhang HL, Wang XC, Liu R. Zinc in Regulating Protein Kinases and Phosphatases in Neurodegenerative Diseases. Biomolecules 2022; 12:biom12060785. [PMID: 35740910 PMCID: PMC9220840 DOI: 10.3390/biom12060785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 12/12/2022] Open
Abstract
Zinc is essential for human growth and development. As a trace nutrient, zinc plays important roles in numerous signal transduction pathways involved in distinct physiologic or pathologic processes. Protein phosphorylation is a posttranslational modification which regulates protein activity, degradation, and interaction with other molecules. Protein kinases (PKs) and phosphatases (PPs), with their effects of adding phosphate to or removing phosphate from certain substrates, are master regulators in controlling the phosphorylation of proteins. In this review, we summarize the disturbance of zinc homeostasis and role of zinc disturbance in regulating protein kinases and protein phosphatases in neurodegenerative diseases, with the focus of that in Alzheimer’s disease, providing a new perspective for understanding the mechanisms of these neurologic diseases.
Collapse
|
44
|
Schalkamp AK, Rahman N, Monzón-Sandoval J, Sandor C. Deep phenotyping for precision medicine in Parkinson's disease. Dis Model Mech 2022; 15:dmm049376. [PMID: 35647913 PMCID: PMC9178512 DOI: 10.1242/dmm.049376] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A major challenge in medical genomics is to understand why individuals with the same disorder have different clinical symptoms and why those who carry the same mutation may be affected by different disorders. In every complex disorder, identifying the contribution of different genetic and non-genetic risk factors is a key obstacle to understanding disease mechanisms. Genetic studies rely on precise phenotypes and are unable to uncover the genetic contributions to a disorder when phenotypes are imprecise. To address this challenge, deeply phenotyped cohorts have been developed for which detailed, fine-grained data have been collected. These cohorts help us to investigate the underlying biological pathways and risk factors to identify treatment targets, and thus to advance precision medicine. The neurodegenerative disorder Parkinson's disease has a diverse phenotypical presentation and modest heritability, and its underlying disease mechanisms are still being debated. As such, considerable efforts have been made to develop deeply phenotyped cohorts for this disorder. Here, we focus on Parkinson's disease and explore how deep phenotyping can help address the challenges raised by genetic and phenotypic heterogeneity. We also discuss recent methods for data collection and computation, as well as methodological challenges that have to be overcome.
Collapse
Affiliation(s)
| | | | | | - Cynthia Sandor
- UK Dementia Research Institute at Cardiff University,Division of Psychological Medicine and Clinical Neuroscience, Haydn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| |
Collapse
|
45
|
Klyucherev TO, Olszewski P, Shalimova AA, Chubarev VN, Tarasov VV, Attwood MM, Syvänen S, Schiöth HB. Advances in the development of new biomarkers for Alzheimer's disease. Transl Neurodegener 2022; 11:25. [PMID: 35449079 PMCID: PMC9027827 DOI: 10.1186/s40035-022-00296-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 03/28/2022] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is a complex, heterogeneous, progressive disease and is the most common type of neurodegenerative dementia. The prevalence of AD is expected to increase as the population ages, placing an additional burden on national healthcare systems. There is a large need for new diagnostic tests that can detect AD at an early stage with high specificity at relatively low cost. The development of modern analytical diagnostic tools has made it possible to determine several biomarkers of AD with high specificity, including pathogenic proteins, markers of synaptic dysfunction, and markers of inflammation in the blood. There is a considerable potential in using microRNA (miRNA) as markers of AD, and diagnostic studies based on miRNA panels suggest that AD could potentially be determined with high accuracy for individual patients. Studies of the retina with improved methods of visualization of the fundus are also showing promising results for the potential diagnosis of the disease. This review focuses on the recent developments of blood, plasma, and ocular biomarkers for the diagnosis of AD.
Collapse
Affiliation(s)
- Timofey O Klyucherev
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden.,Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Pawel Olszewski
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden
| | - Alena A Shalimova
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden.,Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vladimir N Chubarev
- Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vadim V Tarasov
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Misty M Attwood
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden
| | - Stina Syvänen
- Department of Public Health and Caring Sciences, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Helgi B Schiöth
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden.
| |
Collapse
|
46
|
Effects of Animal-Assisted Therapy (AAT) in Alzheimer’s Disease: A Case Study. Healthcare (Basel) 2022; 10:healthcare10030567. [PMID: 35327045 PMCID: PMC8950375 DOI: 10.3390/healthcare10030567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder, characterized by cortical dementia and irreversibly progressive developments leading to a vegetative state and, finally, to death. Although many aspects of its etiology, diagnosis and treatment still remain obscure and the current approach to the disease mostly suffers from limited and low-efficiency therapeutic means, nevertheless, recent interventions have aimed at improving patients’ quality of life through nonpharmacological approaches, including animal-assisted therapy (AAT), arousing growing interest. In order to assess the physiological and neuropsychological effects of AAT on AD, 24 residents of a rest house in northern Italy were enrolled. The intervention consisted of one 45-minute AAT session per week over ten weeks. Twelve residents (six AD and six non-AD) received AAT and twelve (six AD and six non-AD) were controls. In order to evaluate the physiological and clinical effect of AAT on AD residents, three cardiac parameters, including the systolic and diastolic blood pressure and heart rate, were measured. Moreover, the neurocognitive and depressive states were assessed by the Mini Mental State Examination and the Geriatric Depression Scale, respectively. Analyses were performed by a four-way ANOVA model (including two ways for repeated measures) considering each main effect and interaction possible in the design. Our findings, despite the small sample size, suggest that AAT has a positive significant effect on physiological parameters and neurocognitive impairment, while no effect was observed on the depression level.
Collapse
|
47
|
Reduced parietal activation in participants with mild cognitive impairments during visual-spatial processing measured with functional near-infrared spectroscopy. J Psychiatr Res 2022; 146:31-42. [PMID: 34953303 DOI: 10.1016/j.jpsychires.2021.12.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/02/2021] [Accepted: 12/10/2021] [Indexed: 01/08/2023]
Abstract
Functional Near Infrared Spectroscopy (fNIRS) may be a suitable, simple, and cost-effective brain imaging technique for detecting divergent neuronal patterns at an early stage of neurodegeneration. In course of Mild Cognitive Impairment (MCI) or Alzheimer's disease (AD), a deficit in visual-spatial processing, located in the parietal cortex, is a reliable risk factor. Earlier, we established the application of the clock-hand-angle-discrimination task (ADT) during fNIRS to identify neuronal correlates of the visual-spatial processing in a healthy elderly sample. In this analysis, we aimed to measure and find out differences in the hemodynamic response in MCI participants compared to matched healthy controls. As expected, MCI participants showed more errors over all conditions of pointer length and a higher reaction time in the long and middle pointer length condition. Moreover, results revealed a significant reduction of cortical activation in MCI patients. There was a generally increased activity in both the right as compared to the left hemisphere and the superior parietal brain region as compared to the inferior parietal brain region in both groups. In summary, fNIRS can be implemented in the measurement of visual-spatial processing in MCI patients and healthy elderly based on ADT. MCI participants had difficulties to cope with the ADT. Since neuronal hypoactivity occurs with concomitant behavioral deficits, an additional analysis was performed on a subgroup of MCI patients who performed as well as the control group in behavior. This subgroup analysis also showed a hypoactivation of the parietal cortex, without evidence of a compensatory activation. Therefore, we assume that MCI patients are characterized by a deficit in the parietal cortex. Overall, these findings confirm our hypothesis that hemodynamic deficits in visual-spatial processing, localized in the parietal cortex, are reliable and early diagnostic markers for cognitive decline in risk groups for the development of AD.
Collapse
|
48
|
Guo P, Zhang B, Zhao J, Wang C, Wang Z, Liu A, Du G. Medicine-Food Herbs against Alzheimer’s Disease: A Review of Their Traditional Functional Features, Substance Basis, Clinical Practices and Mechanisms of Action. Molecules 2022; 27:molecules27030901. [PMID: 35164167 PMCID: PMC8839204 DOI: 10.3390/molecules27030901] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/29/2021] [Accepted: 01/17/2022] [Indexed: 02/05/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive, neurodegenerative disorder that currently has reached epidemic proportions among elderly populations around the world. In China, available traditional Chinese medicines (TCMs) that organically combine functional foods with medicinal values are named “Medicine Food Homology (MFH)”. In this review, we focused on MFH varieties for their traditional functional features, substance bases, clinical uses, and mechanisms of action (MOAs) for AD prevention and treatment. We consider the antiAD active constituents from MFH species, their effects on in vitro/in vivo AD models, and their drug targets and signal pathways by summing up the literature via a systematic electronic search (SciFinder, PubMed, and Web of Science). In this paper, several MFH plant sources are discussed in detail from in vitro/in vivo models and methods, to MOAs. We found that most of the MFH varieties exert neuroprotective effects and ameliorate cognitive impairments by inhibiting neuropathological signs (Aβ-induced toxicity, amyloid precursor protein, and phosphorylated Tau immunoreactivity), including anti-inflammation, antioxidative stress, antiautophagy, and antiapoptosis, etc. Indeed, some MFH substances and their related phytochemicals have a broad spectrum of activities, so they are superior to simple single-target drugs in treating chronic diseases. This review can provide significant guidance for people’s healthy lifestyles and drug development for AD prevention and treatment.
Collapse
Affiliation(s)
- Pengfei Guo
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (P.G.); (B.Z.); (J.Z.); (C.W.); (Z.W.)
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Baoyue Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (P.G.); (B.Z.); (J.Z.); (C.W.); (Z.W.)
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jun Zhao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (P.G.); (B.Z.); (J.Z.); (C.W.); (Z.W.)
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chao Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (P.G.); (B.Z.); (J.Z.); (C.W.); (Z.W.)
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhe Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (P.G.); (B.Z.); (J.Z.); (C.W.); (Z.W.)
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ailin Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (P.G.); (B.Z.); (J.Z.); (C.W.); (Z.W.)
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Correspondence: (A.L.); (G.D.)
| | - Guanhua Du
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (P.G.); (B.Z.); (J.Z.); (C.W.); (Z.W.)
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Correspondence: (A.L.); (G.D.)
| |
Collapse
|
49
|
Morozova A, Zorkina Y, Abramova O, Pavlova O, Pavlov K, Soloveva K, Volkova M, Alekseeva P, Andryshchenko A, Kostyuk G, Gurina O, Chekhonin V. Neurobiological Highlights of Cognitive Impairment in Psychiatric Disorders. Int J Mol Sci 2022; 23:1217. [PMID: 35163141 PMCID: PMC8835608 DOI: 10.3390/ijms23031217] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
This review is focused on several psychiatric disorders in which cognitive impairment is a major component of the disease, influencing life quality. There are plenty of data proving that cognitive impairment accompanies and even underlies some psychiatric disorders. In addition, sources provide information on the biological background of cognitive problems associated with mental illness. This scientific review aims to summarize the current knowledge about neurobiological mechanisms of cognitive impairment in people with schizophrenia, depression, mild cognitive impairment and dementia (including Alzheimer's disease).The review provides data about the prevalence of cognitive impairment in people with mental illness and associated biological markers.
Collapse
Affiliation(s)
- Anna Morozova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Yana Zorkina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Olga Abramova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Olga Pavlova
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Konstantin Pavlov
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Kristina Soloveva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Maria Volkova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Polina Alekseeva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Alisa Andryshchenko
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Georgiy Kostyuk
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Olga Gurina
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Vladimir Chekhonin
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
50
|
Ogonowski N, Salcidua S, Leon T, Chamorro-Veloso N, Valls C, Avalos C, Bisquertt A, Rentería ME, Orellana P, Duran-Aniotz C. Systematic Review: microRNAs as Potential Biomarkers in Mild Cognitive Impairment Diagnosis. Front Aging Neurosci 2022; 13:807764. [PMID: 35095478 PMCID: PMC8790149 DOI: 10.3389/fnagi.2021.807764] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/15/2021] [Indexed: 12/14/2022] Open
Abstract
The rate of progression from Mild Cognitive Impairment (MCI) to Alzheimer's disease (AD) is estimated at >10% per year, reaching up to 80-90% after 6 years. MCI is considered an indicator of early-stage AD. In this context, the diagnostic screening of MCI is crucial for detecting individuals at high risk of AD before they progress and manifest further severe symptoms. Typically, MCI has been determined using neuropsychological assessment tools such as the Montreal Cognitive Assessment (MoCA) or Mini-Mental Status Examination (MMSE). Unfortunately, other diagnostic methods are not available or are unable to identify MCI in its early stages. Therefore, identifying new biomarkers for MCI diagnosis and prognosis is a significant challenge. In this framework, miRNAs in serum, plasma, and other body fluids have emerged as a promising source of biomarkers for MCI and AD-related cognitive impairments. Interestingly, miRNAs can regulate several signaling pathways via multiple and diverse targets in response to pathophysiological stimuli. This systematic review aims to describe the current state of the art regarding AD-related target genes modulated by differentially expressed miRNAs in peripheral fluids samples in MCI subjects to identify potential miRNA biomarkers in the early stages of AD. We found 30 articles that described five miRNA expression profiles from peripheral fluid in MCI subjects, showing possible candidates for miRNA biomarkers that may be followed up as fluid biomarkers or therapeutic targets of early-stage AD. However, additional research is needed to validate these miRNAs and characterize the precise neuropathological mechanisms.
Collapse
Affiliation(s)
- Natalia Ogonowski
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Cognitive Neuroscience Center (CNC), National Scientific and Technical Research Council (CONICET), Universidad de San Andrés, Buenos Aires, Argentina
| | - Stefanny Salcidua
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Faculty of Engineering and Sciences, Universidad Adolfo Ibanez, Santiago, Chile
| | - Tomas Leon
- Global Brain Health Institute, Trinity College, Dublin, Ireland
- Memory and Neuropsychiatric Clinic (CMYN) Neurology Department, Hospital del Salvador, Faculty of Medicine, University of Chile, Santiago, Chile
| | | | | | - Constanza Avalos
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
| | | | - Miguel E. Rentería
- Department of Genetics and Computational Biology, Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Paulina Orellana
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
| | - Claudia Duran-Aniotz
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
| |
Collapse
|