1
|
Li C, Feng Y, Feng L, Li M. Causal relationship between dyslipidemia and diabetic neuropathy: a mendelian randomization study. Metab Brain Dis 2024; 40:78. [PMID: 39729198 DOI: 10.1007/s11011-024-01448-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/06/2024] [Indexed: 12/28/2024]
Abstract
Some studies have shown an association between dyslipidemia and diabetic neuropathy (DN), but the genetic association has not been clarified. Therefore, the present study aimed to investigate the genetic causal association between dyslipidemia and DN through a Mendelian randomization (MR) approach. Genetic causal associations between total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL), and high-density lipoprotein cholesterol (HDL) and DN were investigated by MR to provide a basis for the prevention and treatment of DN. Significant and independent single-nucleotide polymorphisms (SNPs) identified in genome-wide association studies were selected as instrumental variables (IVs) for MR analysis. Inverse variance weighted (IVW), MR‒Egger regression, weighted median (WME), simple mode (SM), and weighted mode (WM) methods were used to analyze causal associations. Heterogeneity and multiplicity tests were also performed and analyzed using the leave-one-out method to assess the stability of the results. Genetically predicted TC and DN (OR = 0.793, 95% CI = 0.655⁓0.961, P = 0.019) and LDL and DN (OR = 0.842, 95% CI = 0.711⁓0.998, P = 0.049) may be causally associated, but no causal associations were found between TG and DN (OR = 0.837, 95% CI = 0.631⁓1.111, P = 0.221) or between HDL and DN (OR = 1.192, 95% CI = 0.940⁓1.510, P = 0.149). TC and LDL may have genetic causal associations with DN, though no genetic causal associations were found for TG or HDL with DN. However, this study may have several limitations, and further clinical studies are needed to expand the sample size for future validation.
Collapse
Affiliation(s)
- Cong Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yu Feng
- Affiliated Hospital of the Changchun University of Chinese Medicine, Changchun, China
| | - Lina Feng
- Department of Neurology, the Second Affiliated Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, China.
- Department of Neurology, Third Affiliated Clinical Hospital of the Changchun University of Chinese Medicine, Changchun, 130022, China.
| | - Mingquan Li
- Department of Neurology, Third Affiliated Clinical Hospital of the Changchun University of Chinese Medicine, Changchun, 130022, China.
| |
Collapse
|
2
|
Eid SA, Elzinga SE, Kim B, Rumora AE, Hayes JM, Carter A, Pacut C, Allouch AM, Koubek EJ, Feldman EL. High-Intensity Interval Training, Caloric Restriction, or Their Combination Have Beneficial Effects on Metabolically Acquired Peripheral Neuropathy. Diabetes 2024; 73:1895-1907. [PMID: 39163551 PMCID: PMC11493763 DOI: 10.2337/db23-0997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 08/09/2024] [Indexed: 08/22/2024]
Abstract
Peripheral neuropathy (PN) is a prevalent and debilitating complication of obesity, prediabetes, and type 2 diabetes, which remains poorly understood and lacks disease-modifying therapies. Fortunately, diet and/or exercise have emerged as effective treatment strategies for PN. Here, we examined the impact of caloric restriction (CR) and high-intensity interval training (HIIT) interventions, alone or combined (HIIT-CR), on metabolic and PN outcomes in high-fat diet (HFD) mice. HFD feeding alone resulted in obesity, impaired glucose tolerance, and PN. Peripheral nerves isolated from these mice also developed insulin resistance (IR). CR and HIIT-CR, but not HIIT alone, improved HFD-induced metabolic dysfunction. However, all interventions improved PN to similar extents. When examining the underlying neuroprotective mechanisms in whole nerves, we found that CR and HIIT-CR activate the fuel-sensing enzyme AMPK. We then performed complimentary in vitro work in Schwann cells, the glia of peripheral nerves. Treating primary Schwann cells with the saturated fatty acid palmitate to mimic prediabetic conditions caused IR, which was reversed by the AMPK activator, AICAR. Together, these results enhance our understanding of PN pathogenesis, the differential mechanisms by which diet and exercise may improve PN, and Schwann cell-specific contributions to nerve insulin signaling and PN progression. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
| | | | - Bhumsoo Kim
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | - Amy E. Rumora
- Department of Neurology, University of Michigan, Ann Arbor, MI
- Department of Neurology, Columbia University, New York, NY
| | - John M. Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | - Andrew Carter
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | - Crystal Pacut
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | - Adam M. Allouch
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | - Emily J. Koubek
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
3
|
Yu Z, Yang J, Jiang Y, Wei M, Lyu Y, Yang D, Shen S, Han Y, Li M. Metabolomic and lipidomic profiling of the spinal cord in type 2 diabetes mellitus rats with painful neuropathy. Metab Brain Dis 2024; 39:1117-1130. [PMID: 38980579 PMCID: PMC11349861 DOI: 10.1007/s11011-024-01376-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
In this paper we investigated lipid and metabolite changes in diabetic neuropathy, using untargeted lipidomics and metabolomics analyses of the spinal cords from streptozotocin-treated diabetic rats.170 metabolites and 45 lipids were dysregulated in the painful diabetic neuropathy (PDN) phase. Pathway enrichment analysis revealed perturbations in starch and sucrose, tryptophan, pyrimidine, cysteine and methionine, thiamine, tyrosine, and nucleotides. The disturbance of tyrosine, tryptophan, methionine, triacylglycerol, and phosphatidylethanolamine metabolism indicated that pathological mechanisms in the PDN involved energy metabolism, oxidative stress, and neural reparative regeneration. These revelations offered potential biomarkers for PDN and enriched the comprehension of the complex molecular mechanisms characterizing PDN, establishing a solid foundation for subsequent inquiries into neural convalescence and recovery after PDN.
Collapse
Affiliation(s)
- Zhuoying Yu
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, China
| | - Jing Yang
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, China
| | - Ye Jiang
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, China
| | - Min Wei
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, China
| | - Yanhan Lyu
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, China
| | - Dongsheng Yang
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, China
| | - Shixiong Shen
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, China
| | - Yongzheng Han
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, China.
| | - Min Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
4
|
Wang C, An T, Lu C, Liu T, Shan X, Zhu Z, Gao Y. Tangzhiping Decoction Improves Glucose and Lipid Metabolism and Exerts Protective Effects Against White Adipose Tissue Dysfunction in Prediabetic Mice. Drug Des Devel Ther 2024; 18:2951-2969. [PMID: 39050798 PMCID: PMC11268521 DOI: 10.2147/dddt.s462603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024] Open
Abstract
Background Prediabetes, characterized by a series of metabolic abnormalities, increases the risk of diabetes and cardiovascular diseases. Tangzhiping (TZP), a clinically validated traditional Chinese medicine formula, is used to treat impaired glucose tolerance. However, the underlying mechanism of TZP in intervening prediabetes is not fully elucidated. Purpose The current study aimed to evaluate the protective effect of TZP against prediabetes mice and explore its potential mechanism. Methods After establishing a prediabetic animal model through 12 weeks of high-fat diet (HFD) feeding, mice were subjected to TZP for 8 weeks. Various parameters related to body weight, glucose and lipid metabolism, and insulin sensitivity were measured. Histopathological examinations observed adipose cell size and liver lipid deposition. The Sable Promethion system assessed energy metabolism activity. Transcriptomic analysis of Epididymal white adipose tissue (EWAT) identified enriched pathways and genes. The key genes in the enriched pathways were identified through RT-PCR. Results Our data revealed that the administration of TZP reduced body weight and fat mass in a prediabetes mouse model. TZP normalized the glucose and insulin levels, improved insulin resistance, and decreased plasma TC and FFA. The alleviation of adipose tissue hypertrophy and lipid deposition by TZP was demonstrated through pathological examination. Indirect calorimetry measurements indicated a potential increase in VO2 and EE levels with TZP. The results of EWAT transcription showed that TZP reversed pathways and genes related to inflammation and catabolic metabolism. RT-PCR demonstrated that the mRNA expression of inflammation and lipolysis, including Tlr2, Ccr5, Ccl9, Itgb2, Lipe, Pnpla2, Cdo1, Ces1d, Echs1, and Acad11, were changed by TZP treatment. Conclusion TZP effectively alleviates obesity, impaired glucose and lipid metabolism, and insulin resistance. The effect of TZP might be associated with the regulation of gene expression in dysfunctional adipose tissue.
Collapse
Affiliation(s)
- Cuiting Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, People’s Republic of China
| | - Tian An
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, People’s Republic of China
| | - Cong Lu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, People’s Republic of China
| | - Tiantian Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, People’s Republic of China
| | - Xiaomeng Shan
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, People’s Republic of China
| | - Zhiyao Zhu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, People’s Republic of China
| | - Yanbin Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, People’s Republic of China
| |
Collapse
|
5
|
Ferreira DT, Shen BQ, Mwirigi JM, Shiers S, Sankaranarayanan I, Kotamarti M, Inturi NN, Mazhar K, Ubogu EE, Thomas G, Lalli T, Wukich D, Price TJ. Deciphering the molecular landscape of human peripheral nerves: implications for diabetic peripheral neuropathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.15.599167. [PMID: 38915676 PMCID: PMC11195245 DOI: 10.1101/2024.06.15.599167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Diabetic peripheral neuropathy (DPN) is a prevalent complication of diabetes mellitus that is caused by metabolic toxicity to peripheral axons. We aimed to gain deep mechanistic insight into the disease process using bulk and spatial RNA sequencing on tibial and sural nerves recovered from lower leg amputations in a mostly diabetic population. First, our approach comparing mixed sensory and motor tibial and purely sensory sural nerves shows key pathway differences in affected nerves, with distinct immunological features observed in sural nerves. Second, spatial transcriptomics analysis of sural nerves reveals substantial shifts in endothelial and immune cell types associated with severe axonal loss. We also find clear evidence of neuronal gene transcript changes, like PRPH, in nerves with axonal loss suggesting perturbed RNA transport into distal sensory axons. This motivated further investigation into neuronal mRNA localization in peripheral nerve axons generating clear evidence of robust localization of mRNAs such as SCN9A and TRPV1 in human sensory axons. Our work gives new insight into the altered cellular and transcriptomic profiles in human nerves in DPN and highlights the importance of sensory axon mRNA transport as an unappreciated potential contributor to peripheral nerve degeneration.
Collapse
Affiliation(s)
- Diana Tavares Ferreira
- Department of Neuroscience and Center for Advanced Pain Studies; University of Texas at Dallas, Richardson, TX, USA
| | - Breanna Q Shen
- Department of Neuroscience and Center for Advanced Pain Studies; University of Texas at Dallas, Richardson, TX, USA
| | - Juliet M Mwirigi
- Department of Neuroscience and Center for Advanced Pain Studies; University of Texas at Dallas, Richardson, TX, USA
| | - Stephanie Shiers
- Department of Neuroscience and Center for Advanced Pain Studies; University of Texas at Dallas, Richardson, TX, USA
| | - Ishwarya Sankaranarayanan
- Department of Neuroscience and Center for Advanced Pain Studies; University of Texas at Dallas, Richardson, TX, USA
| | - Miriam Kotamarti
- Department of Neuroscience and Center for Advanced Pain Studies; University of Texas at Dallas, Richardson, TX, USA
| | - Nikhil N Inturi
- Department of Neuroscience and Center for Advanced Pain Studies; University of Texas at Dallas, Richardson, TX, USA
| | - Khadijah Mazhar
- Department of Neuroscience and Center for Advanced Pain Studies; University of Texas at Dallas, Richardson, TX, USA
| | - Eroboghene E Ubogu
- Department of Neurology, Division of Neuromuscular Disease, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Geneva Thomas
- Department of Orthopedic Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Trapper Lalli
- Department of Orthopedic Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Dane Wukich
- Department of Orthopedic Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Theodore J Price
- Department of Neuroscience and Center for Advanced Pain Studies; University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
6
|
Luo L, Long X, Cheng C, Xu Q, Li J. Development and validation of a risk nomogram model for predicting peripheral neuropathy in patients with type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2024; 15:1338167. [PMID: 38742191 PMCID: PMC11089122 DOI: 10.3389/fendo.2024.1338167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
Objective Diabetic peripheral neuropathy frequently occurs and presents severely in individuals suffering from type 2 diabetes mellitus, representing a significant complication. The objective of this research was to develop a risk nomogram for DPN, ensuring its internal validity and evaluating its capacity to predict the condition. Methods In this retrospective analysis, Suqian First Hospital's cohort from January 2021 to June 2022 encompassed 397 individuals diagnosed with T2DM. A random number table method was utilized to allocate these patients into two groups for training and validation, following a 7:3 ratio. By applying univariate and multivariable logistic regression, predictive factors were refined to construct the nomogram. The model's prediction accuracy was assessed through metrics like the ROC area, HL test, and an analysis of the calibration curve. DCA further appraised the clinical applicability of the model. Emphasis was also placed on internal validation to confirm the model's dependability and consistency. Results Out of 36 evaluated clinicopathological characteristics, a set of four, duration, TBIL, TG, and DPVD, were identified as key variables for constructing the predictive nomogram. The model exhibited robust discriminatory power, evidenced by an AUC of 0.771 (95% CI: 0.714-0.828) in the training cohort and an AUC of 0.754 (95% CI: 0.663-0.845) in the validation group. The congruence of the model's predictions with actual findings was corroborated by the calibration curve. Furthermore, DCA affirmed the clinical value of the model in predicting DPN. Conclusion This research introduces an innovative risk nomogram designed for the prediction of diabetic peripheral neuropathy in individuals suffering from type 2 diabetes mellitus. It offers a valuable resource for healthcare professionals to pinpoint those at elevated risk of developing this complication. As a functional instrument, it stands as a viable option for the prognostication of DPN in clinical settings.
Collapse
Affiliation(s)
- Lingguang Luo
- Department of Endocrinology and Metabolism, The People’s Hospital of Laibin, Guangxi, China
| | - Xinping Long
- Department of Nephrology, The People’s Hospital of Laibin, Guangxi, China
| | - Cheng Cheng
- Department of Endocrinology and Metabolism, Suqian First Hospital, Jiangsu, China
| | - Qian Xu
- Department of Endocrinology and Metabolism, Suqian First Hospital, Jiangsu, China
| | - Jing Li
- Department of Endocrinology and Metabolism, Suqian First Hospital, Jiangsu, China
| |
Collapse
|
7
|
Hakim S, Jain A, Petrova V, Indajang J, Kawaguchi R, Wang Q, Duran ES, Nelson D, Adamson SS, Greene C, Woolf CJ. Macrophages protect against sensory axon degeneration in diabetic neuropathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.577801. [PMID: 38352324 PMCID: PMC10862767 DOI: 10.1101/2024.01.30.577801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Diabetic peripheral neuropathy (DPN) is a common complication of diabetes, causing sensory loss and debilitating neuropathic pain 1,2 . Although the onset and progression of DPN have been linked with dyslipidemia and hyperglycemia 3 , the contribution of inflammation in the pathogenesis of DPN has not been investigated. Here, we use a High Fat High Fructose Diet (HFHFD) to model DPN and the diabetic metabolic syndrome in mice. Diabetic mice develop persistent heat hypoalgesia after three months, but a reduction in epidermal skin innervation only manifests at 6 months. Using single-cell sequencing, we find that CCR2+ macrophages infiltrate the sciatic nerves of diabetic mice well before axonal degeneration is detectable. We show that these infiltrating macrophages share gene expression similarities with nerve crush-induced macrophages 4 and express neurodegeneration-associated microglia marker genes 5 although there is no axon loss or demyelination. Inhibiting this macrophage recruitment in diabetic mice by genetically or pharmacologically blocking CCR2 signaling results in a more severe heat hypoalgesia and accelerated skin denervation. These findings reveal a novel neuroprotective recruitment of macrophages into peripheral nerves of diabetic mice that delays the onset of terminal axonal degeneration, thereby reducing sensory loss. Potentiating and sustaining this early neuroprotective immune response in patients represents, therefore, a potential means to reduce or prevent DPN.
Collapse
|
8
|
Silsby M, Feldman EL, Dortch RD, Roth A, Haroutounian S, Rajabally YA, Vucic S, Shy ME, Oaklander AL, Simon NG. Advances in diagnosis and management of distal sensory polyneuropathies. J Neurol Neurosurg Psychiatry 2023; 94:1025-1039. [PMID: 36997315 PMCID: PMC10544692 DOI: 10.1136/jnnp-2021-328489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/23/2023] [Indexed: 04/01/2023]
Abstract
Distal sensory polyneuropathy (DSP) is characterised by length-dependent, sensory-predominant symptoms and signs, including potentially disabling symmetric chronic pain, tingling and poor balance. Some patients also have or develop dysautonomia or motor involvement depending on whether large myelinated or small fibres are predominantly affected. Although highly prevalent, diagnosis and management can be challenging. While classic diabetes and toxic causes are well-recognised, there are increasingly diverse associations, including with dysimmune, rheumatological and neurodegenerative conditions. Approximately half of cases are initially considered idiopathic despite thorough evaluation, but often, the causes emerge later as new symptoms develop or testing advances, for instance with genetic approaches. Improving and standardising DSP metrics, as already accomplished for motor neuropathies, would permit in-clinic longitudinal tracking of natural history and treatment responses. Standardising phenotyping could advance research and facilitate trials of potential therapies, which lag so far. This review updates on recent advances and summarises current evidence for specific treatments.
Collapse
Affiliation(s)
- Matthew Silsby
- Neurology, Westmead Hospital, Westmead, New South Wales, Australia
- Brain and Nerve Research Centre, Sydney Medical School, The University of Sydney, New South Wales, Australia
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Richard D Dortch
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, Arizona, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Institute of Imaging Science, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University Institute of Imaging Science, Nashville, Tennessee, USA
| | - Alison Roth
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Simon Haroutounian
- Department of Anesthesiology, Washington University School of Medicine in Saint Louis, St Louis, Missouri, USA
| | - Yusuf A Rajabally
- Inflammatory Neuropathy Clinic, Department of Neurology, University Hospitals Birmingham, Aston Medical School, Aston University, Birmingham, UK
| | - Steve Vucic
- Brain and Nerve Research Centre, Sydney Medical School, The University of Sydney, New South Wales, Australia
| | - Michael E Shy
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Anne Louise Oaklander
- Nerve Unit, Departments of Neurology and Pathology (Neuropathology), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Neil G Simon
- Northern Beaches Clinical School, Macquarie University, Frenchs Forest, New South Wales, Australia
| |
Collapse
|
9
|
Yako H, Niimi N, Takaku S, Sango K. Advantages of omics approaches for elucidating metabolic changes in diabetic peripheral neuropathy. Front Endocrinol (Lausanne) 2023; 14:1208441. [PMID: 38089620 PMCID: PMC10715313 DOI: 10.3389/fendo.2023.1208441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
Various animal and cell culture models of diabetes mellitus (DM) have been established and utilized to study diabetic peripheral neuropathy (DPN). The divergence of metabolic abnormalities among these models makes their etiology complicated despite some similarities regarding the pathological and neurological features of DPN. Thus, this study aimed to review the omics approaches toward DPN, especially on the metabolic states in diabetic rats and mice induced by chemicals (streptozotocin and alloxan) as type 1 DM models and by genetic mutations (MKR, db/db and ob/ob) and high-fat diet as type 2 DM models. Omics approaches revealed that the pathways associated with lipid metabolism and inflammation in dorsal root ganglia and sciatic nerves were enriched and controlled in the levels of gene expression among these animal models. Additionally, these pathways were conserved in human DPN, indicating the pivotal pathogeneses of DPN. Omics approaches are beneficial tools to better understand the association of metabolic changes with morphological and functional abnormalities in DPN.
Collapse
Affiliation(s)
- Hideji Yako
- Diabetic Neuropathy Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | | | | |
Collapse
|
10
|
Elzinga SE, Eid SA, McGregor BA, Jang DG, Hinder LM, Dauch JR, Hayes JM, Zhang H, Guo K, Pennathur S, Kretzler M, Brosius FC, Koubek EJ, Feldman EL, Hur J. Transcriptomic analysis of diabetic kidney disease and neuropathy in mouse models of type 1 and type 2 diabetes. Dis Model Mech 2023; 16:dmm050080. [PMID: 37791586 PMCID: PMC10565109 DOI: 10.1242/dmm.050080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/26/2023] [Indexed: 10/05/2023] Open
Abstract
Diabetic kidney disease (DKD) and diabetic peripheral neuropathy (DPN) are common complications of type 1 (T1D) and type 2 (T2D) diabetes. However, the mechanisms underlying pathogenesis of these complications are unclear. In this study, we optimized a streptozotocin-induced db/+ murine model of T1D and compared it to our established db/db T2D mouse model of the same C57BLKS/J background. Glomeruli and sciatic nerve transcriptomic data from T1D and T2D mice were analyzed by self-organizing map and differential gene expression analysis. Consistent with prior literature, pathways related to immune function and inflammation were dysregulated in both complications in T1D and T2D mice. Gene-level analysis identified a high degree of concordance in shared differentially expressed genes (DEGs) in both complications and across diabetes type when using mice from the same cohort and genetic background. As we have previously shown a low concordance of shared DEGs in DPN when using mice from different cohorts and genetic backgrounds, this suggests that genetic background may influence diabetic complications. Collectively, these findings support the role of inflammation and indicate that genetic background is important in complications of both T1D and T2D.
Collapse
Affiliation(s)
- Sarah E. Elzinga
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stephanie A. Eid
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brett A. McGregor
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| | - Dae-Gyu Jang
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lucy M. Hinder
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - John M. Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hongyu Zhang
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kai Guo
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Frank C. Brosius
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Medicine, University of Arizona, Tucson, AZ 85721, USA
| | - Emily J. Koubek
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| |
Collapse
|
11
|
Mishra G, Townsend KL. The metabolic and functional roles of sensory nerves in adipose tissues. Nat Metab 2023; 5:1461-1474. [PMID: 37709960 DOI: 10.1038/s42255-023-00868-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 07/18/2023] [Indexed: 09/16/2023]
Abstract
Homeostatic regulation of adipose tissue is critical for the maintenance of energy balance and whole-body metabolism. The peripheral nervous system provides bidirectional neural communication between the brain and adipose tissue, thereby providing homeostatic control. Most research on adipose innervation and nerve functions has been limited to the sympathetic nerves and their neurotransmitter norepinephrine. In recent years, more work has focused on adipose sensory nerves, but the contributions of subsets of sensory nerves to metabolism and the specific roles contributed by sensory neuropeptides are still understudied. Advances in imaging of adipose innervation and newer tissue denervation techniques have confirmed that sensory nerves contribute to the regulation of adipose functions, including lipolysis and browning. Here, we summarize the historical and latest findings on the regulation, function and plasticity of adipose tissue sensory nerves that contribute to metabolically important processes such as lipolysis, vascular control and sympathetic axis cross-talk.
Collapse
Affiliation(s)
- Gargi Mishra
- Department of Neurological Surgery, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Kristy L Townsend
- Department of Neurological Surgery, College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
12
|
Eid SA, O’Brien PD, Kretzler KH, Jang DG, Mendelson FE, Hayes JM, Carter A, Zhang H, Pennathur S, Brosius FC, Koubek EJ, Feldman EL. Dietary interventions improve diabetic kidney disease, but not peripheral neuropathy, in a db/db mouse model of type 2 diabetes. FASEB J 2023; 37:e23115. [PMID: 37490006 PMCID: PMC10372884 DOI: 10.1096/fj.202300354r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/05/2023] [Accepted: 07/13/2023] [Indexed: 07/26/2023]
Abstract
Patients with type 2 diabetes often develop the microvascular complications of diabetic kidney disease (DKD) and diabetic peripheral neuropathy (DPN), which decrease quality of life and increase mortality. Unfortunately, treatment options for DKD and DPN are limited. Lifestyle interventions, such as changes to diet, have been proposed as non-pharmacological treatment options for preventing or improving DKD and DPN. However, there are no reported studies simultaneously evaluating the therapeutic efficacy of varying dietary interventions in a type 2 diabetes mouse model of both DKD and DPN. Therefore, we compared the efficacy of a 12-week regimen of three dietary interventions, low carbohydrate, caloric restriction, and alternate day fasting, for preventing complications in a db/db type 2 diabetes mouse model by performing metabolic, DKD, and DPN phenotyping. All three dietary interventions promoted weight loss, ameliorated glycemic status, and improved DKD, but did not impact percent fat mass and DPN. Multiple regression analysis identified a negative correlation between fat mass and motor nerve conduction velocity. Collectively, our data indicate that these three dietary interventions improved weight and glycemic status and alleviated DKD but not DPN. Moreover, diets that decrease fat mass may be a promising non-pharmacological approach to improve DPN in type 2 diabetes given the negative correlation between fat mass and motor nerve conduction velocity.
Collapse
Affiliation(s)
- Stephanie A. Eid
- Department of Neurology, University of Michigan, Ann Arbor, MI 48103, USA
| | | | | | - Dae-Gyu Jang
- Department of Neurology, University of Michigan, Ann Arbor, MI 48103, USA
| | - Faye E. Mendelson
- Department of Neurology, University of Michigan, Ann Arbor, MI 48103, USA
| | - John M. Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI 48103, USA
| | - Andrew Carter
- Department of Neurology, University of Michigan, Ann Arbor, MI 48103, USA
| | - Hongyu Zhang
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48103, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48103, USA
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48103, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48103, USA
| | - Frank C. Brosius
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48103, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48103, USA
- Department of Medicine, University of Arizona, Tucson, AZ, 85721 USA
| | - Emily J. Koubek
- Department of Neurology, University of Michigan, Ann Arbor, MI 48103, USA
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48103, USA
| |
Collapse
|
13
|
Eid SA, Noureldein M, Kim B, Hinder LM, Mendelson FE, Hayes JM, Hur J, Feldman EL. Single-cell RNA-seq uncovers novel metabolic functions of Schwann cells beyond myelination. J Neurochem 2023; 166:367-388. [PMID: 37328915 PMCID: PMC11141588 DOI: 10.1111/jnc.15877] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/04/2023] [Accepted: 05/30/2023] [Indexed: 06/18/2023]
Abstract
Schwann cells (SCs) support peripheral nerves under homeostatic conditions, independent of myelination, and contribute to damage in prediabetic peripheral neuropathy (PN). Here, we used single-cell RNA sequencing to characterize the transcriptional profiles and intercellular communication of SCs in the nerve microenvironment using the high-fat diet-fed mouse, which mimics human prediabetes and neuropathy. We identified four major SC clusters, myelinating, nonmyelinating, immature, and repair in healthy and neuropathic nerves, in addition to a distinct cluster of nerve macrophages. Myelinating SCs acquired a unique transcriptional profile, beyond myelination, in response to metabolic stress. Mapping SC intercellular communication identified a shift in communication, centered on immune response and trophic support pathways, which primarily impacted nonmyelinating SCs. Validation analyses revealed that neuropathic SCs become pro-inflammatory and insulin resistant under prediabetic conditions. Overall, our study offers a unique resource for interrogating SC function, communication, and signaling in nerve pathophysiology to help inform SC-specific therapies.
Collapse
Affiliation(s)
- Stéphanie A. Eid
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mohamed Noureldein
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Bhumsoo Kim
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Lucy M. Hinder
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Faye E. Mendelson
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - John M. Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Junguk Hur
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
14
|
Yang Y, Wang Q. Three genes expressed in relation to lipid metabolism considered as potential biomarkers for the diagnosis and treatment of diabetic peripheral neuropathy. Sci Rep 2023; 13:8679. [PMID: 37248406 PMCID: PMC10227002 DOI: 10.1038/s41598-023-35908-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/25/2023] [Indexed: 05/31/2023] Open
Abstract
Diabetic neuropathy is one of the most common chronic complications and is present in approximately 50% of diabetic patients. A bioinformatic approach was used to analyze candidate genes involved in diabetic distal symmetric polyneuropathy and their potential mechanisms. GSE95849 was downloaded from the Gene Expression Omnibus database for differential analysis, together with the identified diabetic peripheral neuropathy-associated genes and the three major metabolism-associated genes in the CTD database to obtain overlapping Differentially Expressed Genes (DEGs). Gene Set Enrichment Analysis and Functional Enrichment Analysis were performed. Protein-Protein Interaction and hub gene networks were constructed using the STRING database and Cytoscape software. The expression levels of target genes were evaluated using GSE24290 samples, followed by Receiver operating characteristic, curve analysis. And Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed on the target genes. Finally, mRNA-miRNA networks were constructed. A total of 442 co-expressed DEGs were obtained through differential analysis, of which 353 expressed up-regulated genes and 89 expressed down-regulated genes. The up-regulated DEGs were involved in 742 GOs and 10 KEGG enrichment results, mainly associated with lipid metabolism-related pathways, TGF-β receptor signaling pathway, lipid transport, and PPAR signaling pathway. A total of 4 target genes (CREBBP, EP300, ME1, CD36) were identified. Analysis of subject operating characteristic curves indicated that CREBBP (AUC = 1), EP300 (AUC = 0.917), ME1 (AUC = 0.944) and CD36 (AUC = 1) may be candidate serum biomarkers for DPN. Conclusion: Diabetic peripheral neuropathy pathogenesis and progression is caused by multiple pathways, which also provides clinicians with potential therapeutic tools.
Collapse
Affiliation(s)
- Ye Yang
- Department of Geriatrics and Cadre Ward, Second Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830063, Xinjiang, China
| | - Qin Wang
- Department of Geriatrics and Cadre Ward, Second Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830063, Xinjiang, China.
| |
Collapse
|
15
|
Elzinga SE, Koubek EJ, Hayes JM, Carter A, Mendelson FE, Webber-Davis I, Lentz SI, Feldman EL. Modeling the innate inflammatory cGAS/STING pathway: sexually dimorphic effects on microglia and cognition in obesity and prediabetes. Front Cell Neurosci 2023; 17:1167688. [PMID: 37206668 PMCID: PMC10188944 DOI: 10.3389/fncel.2023.1167688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/06/2023] [Indexed: 05/21/2023] Open
Abstract
Introduction The prevalence of obesity, prediabetes, and diabetes continues to grow worldwide. These metabolic dysfunctions predispose individuals to neurodegenerative diseases and cognitive impairment, including dementias such as Alzheimer's disease and Alzheimer's disease related dementias (AD/ADRD). The innate inflammatory cGAS/STING pathway plays a pivotal role in metabolic dysfunction and is an emerging target of interest in multiple neurodegenerative diseases, including AD/ADRD. Therefore, our goal was to establish a murine model to specifically target the cGAS/STING pathway to study obesity- and prediabetes-induced cognitive impairment. Methods We performed two pilot studies in cGAS knockout (cGAS-/-) male and female mice designed to characterize basic metabolic and inflammatory phenotypes and examine the impact of high-fat diet (HFD) on metabolic, inflammatory, and cognitive parameters. Results cGAS-/- mice displayed normal metabolic profiles and retained the ability to respond to inflammatory stimuli, as indicated by an increase in plasma inflammatory cytokine production in response to lipopolysaccharide injection. HFD feeding caused expected increases in body weight and decreases in glucose tolerance, although onset was accelerated in females versus males. While HFD did not increase plasma or hippocampal inflammatory cytokine production, it did alter microglial morphology to a state indicative of activation, particularly in female cGAS-/- mice. However, HFD negatively impacted cognitive outcomes in male, but not female animals. Discussion Collectively, these results suggest that cGAS-/- mice display sexually dimorphic responses to HFD, possibly based on differences in microglial morphology and cognition.
Collapse
Affiliation(s)
- Sarah E. Elzinga
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Emily J. Koubek
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - John M. Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - A. Carter
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Faye E. Mendelson
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Ian Webber-Davis
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Stephen I. Lentz
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
16
|
Guo K, Figueroa-Romero C, Noureldein M, Hinder LM, Sakowski SA, Rumora AE, Petit H, Savelieff MG, Hur J, Feldman EL. Gut microbiota in a mouse model of obesity and peripheral neuropathy associated with plasma and nerve lipidomics and nerve transcriptomics. MICROBIOME 2023; 11:52. [PMID: 36922895 PMCID: PMC10015923 DOI: 10.1186/s40168-022-01436-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 11/25/2022] [Indexed: 06/18/2023]
Abstract
BACKGROUND Peripheral neuropathy (PN) is a common complication in obesity, prediabetes, and type 2 diabetes, though its pathogenesis remains incompletely understood. In a murine high-fat diet (HFD) obesity model of PN, dietary reversal (HFD-R) to a low-fat standard diet (SD) restores nerve function and the nerve lipidome to normal. As the gut microbiome represents a potential link between dietary fat intake and nerve health, the current study assessed shifts in microbiome community structure by 16S rRNA profiling during the paradigm of dietary reversal (HFD-R) in various gut niches. Dietary fat content (HFD versus SD) was also correlated to gut flora and metabolic and PN phenotypes. Finally, PN-associated microbial taxa that correlated with the plasma and sciatic nerve lipidome and nerve transcriptome were used to identify lipid species and genes intimately related to PN phenotypes. RESULTS Microbiome structure was altered in HFD relative to SD but rapidly reversed with HFD-R. Specific taxa variants correlating positively with metabolic health associated inversely with PN, while specific taxa negatively linked to metabolic health positively associated with PN. In HFD, PN-associated taxa variants, including Lactobacillus, Lachnoclostridium, and Anaerotruncus, also positively correlated with several lipid species, especially elevated plasma sphingomyelins and sciatic nerve triglycerides. Negative correlations were additionally present with other taxa variants. Moreover, relationships that emerged between specific PN-associated taxa variants and the sciatic nerve transcriptome were related to inflammation, lipid metabolism, and antioxidant defense pathways, which are all established in PN pathogenesis. CONCLUSIONS The current results indicate that microbiome structure is altered with HFD, and that certain taxa variants correlate with metabolic health and PN. Apparent links between PN-associated taxa and certain lipid species and nerve transcriptome-related pathways additionally provide insight into new targets for microbiota and the associated underlying mechanisms of action in PN. Thus, these findings strengthen the possibility of a gut-microbiome-peripheral nervous system signature in PN and support continuing studies focused on defining the connection between the gut microbiome and nerve health to inform mechanistic insight and therapeutic opportunities. Video Abstract.
Collapse
Affiliation(s)
- Kai Guo
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109 USA
| | | | - Mohamed Noureldein
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Lucy M. Hinder
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109 USA
- Reata Pharmaceuticals, Irving, TX 75063 USA
| | - Stacey A. Sakowski
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Amy E. Rumora
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109 USA
- Department of Neurology, Columbia University, New York, NY 10032 USA
| | - Hayley Petit
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Masha G. Savelieff
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Junguk Hur
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202 USA
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
17
|
Yang C, Zhao X, An X, Zhang Y, Sun W, Zhang Y, Duan Y, Kang X, Sun Y, Jiang L, Lian F. Axonal transport deficits in the pathogenesis of diabetic peripheral neuropathy. Front Endocrinol (Lausanne) 2023; 14:1136796. [PMID: 37056668 PMCID: PMC10086245 DOI: 10.3389/fendo.2023.1136796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a chronic and prevalent metabolic disease that gravely endangers human health and seriously affects the quality of life of hyperglycemic patients. More seriously, it can lead to amputation and neuropathic pain, imposing a severe financial burden on patients and the healthcare system. Even with strict glycemic control or pancreas transplantation, peripheral nerve damage is difficult to reverse. Most current treatment options for DPN can only treat the symptoms but not the underlying mechanism. Patients with long-term diabetes mellitus (DM) develop axonal transport dysfunction, which could be an important factor in causing or exacerbating DPN. This review explores the underlying mechanisms that may be related to axonal transport impairment and cytoskeletal changes caused by DM, and the relevance of the latter with the occurrence and progression of DPN, including nerve fiber loss, diminished nerve conduction velocity, and impaired nerve regeneration, and also predicts possible therapeutic strategies. Understanding the mechanisms of diabetic neuronal injury is essential to prevent the deterioration of DPN and to develop new therapeutic strategies. Timely and effective improvement of axonal transport impairment is particularly critical for the treatment of peripheral neuropathies.
Collapse
|
18
|
Chen H, Liao C, Yang X, Zhou H, Wu Y, Sun Q, Li S, Zhang W. Multi-omics analysis revealed the role of CYP1A2 in the induction of mechanical allodynia in type 1 diabetes. Front Genet 2023; 14:1151340. [PMID: 37035728 PMCID: PMC10076588 DOI: 10.3389/fgene.2023.1151340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
Background: Mechanical allodynia (MA) is one of the leading clinical symptoms of painful diabetic peripheral neuropathy (PDPN), which is a primary reason for non-traumatic amputations, foot ulceration, and gait abnormalities in patients with diabetes. However, the pathogenic mechanisms of MA have not yet been fully elucidated, and there is no effective treatment. This study aims to study the potential pathogenetic mechanisms of MA and to provide targets for the therapy of MA. Methods: A single intraperitoneal injection of streptozotocin induced type 1 diabetes in rat models. Subsequently, rats were divided into the control group, the diabetic group without MA, and the diabetic group with MA based on weekly behavioral assays. The differentially expressed lipids in the sciatic nerve of each group were detected using untargeted lipidomics, and the differentially expressed genes in the sciatic nerve of each group were detected by transcriptomics. The pathogenesis of MA was predicted using integrated analysis and validated by immunofluorescence staining and transmission electron microscopy. Results: Untargeted lipidomics revealed the accumulation of a more severe lipid in MA rats. Transcriptomics results suggested that differentially expressed genes in MA rats were primarily related to lipid droplets and myelin sheath. Integrated analysis results indicated that the downregulation of Cytochrome P450 1A2 (CYP1A2) expression was closely linked to lipid metabolism disorders. Immunofluorescence staining demonstrated that down-regulation of CYP1A2 expression occurred in MA rats. Transmission electron microscopy results showed that more severe lipid droplet accumulation and myelin sheath degeneration occurred in MA rats. Conclusion: Our findings imply that the downregulation of CYP1A2 expression leads to disorders of lipid metabolism and further leads to lipid droplet accumulation and myelin sheath degeneration, which might ultimately lead to the development of MA. Therefore, our study contributes to promoting the understanding of the molecular mechanisms of MA and providing potential targets for the clinical treatment of MA.
Collapse
|
19
|
Doty M, Yun S, Wang Y, Hu M, Cassidy M, Hall B, Kulkarni AB. Integrative multiomic analyses of dorsal root ganglia in diabetic neuropathic pain using proteomics, phospho-proteomics, and metabolomics. Sci Rep 2022; 12:17012. [PMID: 36220867 PMCID: PMC9553906 DOI: 10.1038/s41598-022-21394-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/27/2022] [Indexed: 12/29/2022] Open
Abstract
Diabetic peripheral neuropathy (DPN) is characterized by spontaneous pain in the extremities. Incidence of DPN continues to rise with the global diabetes epidemic. However, there remains a lack of safe, effective analgesics to control this chronic painful condition. Dorsal root ganglia (DRG) contain soma of sensory neurons and modulate sensory signal transduction into the central nervous system. In this study, we aimed to gain a deeper understanding of changes in molecular pathways in the DRG of DPN patients with chronic pain. We recently reported transcriptomic changes in the DRG with DPN. Here, we expand upon those results with integrated metabolomic, proteomic, and phospho-proteomic analyses to compare the molecular profiles of DRG from DPN donors and DRG from control donors without diabetes or chronic pain. Our analyses identified decreases of select amino acids and phospholipid metabolites in the DRG from DPN donors, which are important for cellular maintenance. Additionally, our analyses revealed changes suggestive of extracellular matrix (ECM) remodeling and altered mRNA processing. These results reveal new insights into changes in the molecular profiles associated with DPN.
Collapse
Affiliation(s)
- Megan Doty
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sijung Yun
- Predictiv Care, Inc, Mountain View, CA, 94040, USA
| | - Yan Wang
- Mass Spectrometry Facility, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Minghan Hu
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Margaret Cassidy
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bradford Hall
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ashok B Kulkarni
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
20
|
Afshinnia F, Reynolds EL, Rajendiran TM, Soni T, Byun J, Savelieff MG, Looker HC, Nelson RG, Michailidis G, Callaghan BC, Pennathur S, Feldman EL. Serum lipidomic determinants of human diabetic neuropathy in type 2 diabetes. Ann Clin Transl Neurol 2022; 9:1392-1404. [PMID: 35923113 PMCID: PMC9463947 DOI: 10.1002/acn3.51639] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE The serum lipidomic profile associated with neuropathy in type 2 diabetes is not well understood. Obesity and dyslipidemia are known neuropathy risk factors, suggesting lipid profiles early during type 2 diabetes may identify individuals who develop neuropathy later in the disease course. This retrospective cohort study examined lipidomic profiles 10 years prior to type 2 diabetic neuropathy assessment. METHODS Participants comprised members of the Gila River Indian community with type 2 diabetes (n = 69) with available stored serum samples and neuropathy assessment 10 years later using the combined Michigan Neuropathy Screening Instrument (MNSI) examination and questionnaire scores. A combined MNSI index was calculated from examination and questionnaire scores. Serum lipids (435 species from 18 classes) were quantified by mass spectrometry. RESULTS The cohort included 17 males and 52 females with a mean age of 45 years (SD = 9 years). Participants were stratified as with (high MNSI index score > 2.5407) versus without neuropathy (low MNSI index score ≤ 2.5407). Significantly decreased medium-chain acylcarnitines and increased total free fatty acids, independent of chain length and saturation, in serum at baseline associated with incident peripheral neuropathy at follow-up, that is, participants had high MNSI index scores, independent of covariates. Participants with neuropathy also had decreased phosphatidylcholines and increased lysophosphatidylcholines at baseline, independent of chain length and saturation. The abundance of other lipid classes did not differ significantly by neuropathy status. INTERPRETATION Abundance differences in circulating acylcarnitines, free fatty acids, phosphatidylcholines, and lysophosphatidylcholines 10 years prior to neuropathy assessment are associated with neuropathy status in type 2 diabetes.
Collapse
Affiliation(s)
- Farsad Afshinnia
- Department of Internal Medicine‐NephrologyUniversity of MichiganAnn ArborMichiganUSA
| | - Evan L. Reynolds
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichiganUSA
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
| | - Thekkelnaycke M. Rajendiran
- University of Michigan, Michigan Regional Comprehensive Metabolomics Resource CoreAnn ArborMichiganUSA
- Department of PathologyUniversity of MichiganAnn ArborMichiganUSA
| | - Tanu Soni
- University of Michigan, Michigan Regional Comprehensive Metabolomics Resource CoreAnn ArborMichiganUSA
| | - Jaeman Byun
- Department of Internal Medicine‐NephrologyUniversity of MichiganAnn ArborMichiganUSA
| | - Masha G. Savelieff
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichiganUSA
| | - Helen C. Looker
- Chronic Kidney Disease SectionNational Institute of Diabetes and Digestive and Kidney DiseasesPhoenixArizonaUSA
| | - Robert G. Nelson
- Chronic Kidney Disease SectionNational Institute of Diabetes and Digestive and Kidney DiseasesPhoenixArizonaUSA
| | - George Michailidis
- Department of Statistics and the Informatics InstituteUniversity of FloridaGainesvilleFloridaUSA
| | - Brian C. Callaghan
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichiganUSA
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
| | - Subramaniam Pennathur
- Department of Internal Medicine‐NephrologyUniversity of MichiganAnn ArborMichiganUSA
- University of Michigan, Michigan Regional Comprehensive Metabolomics Resource CoreAnn ArborMichiganUSA
- Department of Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Eva L. Feldman
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichiganUSA
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
21
|
Rumora AE, Guo K, Hinder LM, O’Brien PD, Hayes JM, Hur J, Feldman EL. A High-Fat Diet Disrupts Nerve Lipids and Mitochondrial Function in Murine Models of Neuropathy. Front Physiol 2022; 13:921942. [PMID: 36072849 PMCID: PMC9441493 DOI: 10.3389/fphys.2022.921942] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
As the prevalence of prediabetes and type 2 diabetes (T2D) continues to increase worldwide, accompanying complications are also on the rise. The most prevalent complication, peripheral neuropathy (PN), is a complex process which remains incompletely understood. Dyslipidemia is an emerging risk factor for PN in both prediabetes and T2D, suggesting that excess lipids damage peripheral nerves; however, the precise lipid changes that contribute to PN are unknown. To identify specific lipid changes associated with PN, we conducted an untargeted lipidomics analysis comparing the effect of high-fat diet (HFD) feeding on lipids in the plasma, liver, and peripheral nerve from three strains of mice (BL6, BTBR, and BKS). HFD feeding triggered distinct strain- and tissue-specific lipid changes, which correlated with PN in BL6 mice versus less robust murine models of metabolic dysfunction and PN (BTBR and BKS mice). The BL6 mice showed significant changes in neutral lipids, phospholipids, lysophospholipids, and plasmalogens within the nerve. Sphingomyelin (SM) and lysophosphatidylethanolamine (LPE) were two lipid species that were unique to HFD BL6 sciatic nerve compared to other strains (BTBR and BKS). Plasma and liver lipids were significantly altered in all murine strains fed a HFD independent of PN status, suggesting that nerve-specific lipid changes contribute to PN pathogenesis. Many of the identified lipids affect mitochondrial function and mitochondrial bioenergetics, which were significantly impaired in ex vivo sural nerve and dorsal root ganglion sensory neurons. Collectively, our data show that consuming a HFD dysregulates the nerve lipidome and mitochondrial function, which may contribute to PN in prediabetes.
Collapse
Affiliation(s)
- Amy E. Rumora
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- Department of Neurology, Columbia University, New York, NY, United States
| | - Kai Guo
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Lucy M. Hinder
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Phillipe D. O’Brien
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - John M. Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Junguk Hur
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
22
|
Elshareif N, Gavini CK, Mansuy-Aubert V. LXR agonist modifies neuronal lipid homeostasis and decreases PGD2 in the dorsal root ganglia in western diet-fed mice. Sci Rep 2022; 12:10754. [PMID: 35750708 PMCID: PMC9232502 DOI: 10.1038/s41598-022-14604-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/09/2022] [Indexed: 11/09/2022] Open
Abstract
The prevalence of peripheral neuropathy is high in diabetic and overweight populations. Chronic neuropathic pain, a symptom of peripheral neuropathy, is a major disabling symptom that leads to a poor quality of life. Glucose management for diabetic and prediabetic individuals often fail to reduce or improve pain symptoms, therefore, exploring other mechanisms is necessary to identify effective treatments. A large body of evidence suggest that lipid signaling may be a viable target for management of peripheral neuropathy in obese individuals. The nuclear transcription factors, Liver X Receptors (LXR), are known regulators of lipid homeostasis, phospholipid remodeling, and inflammation. Notably, the activation of LXR using the synthetic agonist GW3965, delayed western diet (WD)-induced allodynia in rodents. To further understand the neurobiology underlying the effect of LXR, we used translating ribosome affinity purification and evaluated translatomic changes in the sensory neurons of WD-fed mice treated with the LXR agonist GW3965. We also observed that GW3965 decreased prostaglandin levels and decreased free fatty acid content, while increasing lysophosphatidylcholine, phosphatidylcholine, and cholesterol ester species in the sensory neurons of the dorsal root ganglia (DRG). These data suggest novel downstream interplaying mechanisms that modifies DRG neuronal lipid following GW3965 treatment.
Collapse
Affiliation(s)
- Nadia Elshareif
- Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Chaitanya K Gavini
- Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Virginie Mansuy-Aubert
- Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA.
| |
Collapse
|
23
|
Izundegui DG, Nayor M. Metabolomics of Type 1 and Type 2 Diabetes: Insights into Risk Prediction and Mechanisms. Curr Diab Rep 2022; 22:65-76. [PMID: 35113332 PMCID: PMC8934149 DOI: 10.1007/s11892-022-01449-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Metabolomics enables rapid interrogation of widespread metabolic processes making it well suited for studying diabetes. Here, we review the current status of metabolomic investigation in diabetes, highlighting its applications for improving risk prediction and mechanistic understanding. RECENT FINDINGS Findings of metabolite associations with type 2 diabetes risk have confirmed experimental observations (e.g., branched-chain amino acids) and also pinpointed novel pathways of diabetes risk (e.g., dimethylguanidino valeric acid). In type 1 diabetes, abnormal metabolite patterns are observed prior to the development of autoantibodies and hyperglycemia. Diabetes complications display specific metabolite signatures that are distinct from the metabolic derangements of diabetes and differ across vascular beds. Lastly, metabolites respond acutely to pharmacologic treatment, providing opportunities to understand inter-individual treatment responses. Metabolomic studies have elucidated biological mechanisms underlying diabetes development, complications, and therapeutic response. While not yet ready for clinical translation, metabolomics is a powerful and promising precision medicine tool.
Collapse
Affiliation(s)
| | - Matthew Nayor
- Sections of Cardiology and Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, 72 E Concord Street, Suite L-516, Boston, MA, 02118, USA.
| |
Collapse
|
24
|
Yang J, Wang M, Yang D, Yan H, Wang Z, Yan D, Guo N. Integrated lipids biomarker of the prediabetes and type 2 diabetes mellitus Chinese patients. Front Endocrinol (Lausanne) 2022; 13:1065665. [PMID: 36743922 PMCID: PMC9897314 DOI: 10.3389/fendo.2022.1065665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/30/2022] [Indexed: 01/22/2023] Open
Abstract
INTRODUCTION Dyslipidemia is a hallmark of T2DM, and as such, analyses of lipid metabolic profiles in affected patients have the potential to permit the development of an integrated lipid metabolite-based biomarker model that can facilitate early patient diagnosis and treatment. METHODS Untargeted and targeted lipidomics approaches were used to analyze serum samples from newly diagnosed 93 Chinese participants in discovery cohort and 440 in validation cohort via UHPLC-MS and UHPLC-MS/MS first. The acid sphingomyelinase protein expression was analyzed by Western blot. RESULTS AND DISCUSSION Through these analyses, we developed a novel integrated biomarker signature composed of LPC 22:6, PC(16:0/20:4), PE(22:6/16:0), Cer(d18:1/24:0)/SM(d18:1/19:0), Cer(d18:1/24:0)/SM(d18:0/16:0), TG(18:1/18:2/18:2), TG(16:0/16:0/20:3), and TG(18:0/16:0/18:2). The area under the curve (AUC) values for this integrated biomarker signature for prediabetes and T2DM patients were 0.841 (cutoff: 0.565) and 0.894 (cutoff: 0.633), respectively. Furthermore, theresults of western blot analysis of frozen adipose tissue from 3 week (prediabetes) and 12 week (T2DM) Goto-Kakizaki (GK) rats also confirmed that acid sphingomyelinase is responsible for significant disruptions in ceramide and sphingomyelin homeostasis. Network analyses of the biomarkers associated with this biosignature suggested that the most profoundly affected lipid metabolism pathways in the context of diabetes include de novo ceramide synthesis, sphingomyelin metabolism, and additional pathways associated with phosphatidylcholine synthesis. Together, these results offer new biological insights regarding the role of serum lipids in the context of insidious T2DM development, and may offer new avenues for future diagnostic and/or therapeutic research.
Collapse
Affiliation(s)
- Jiaying Yang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- College of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Heilongjiang, China
| | - Mei Wang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dawei Yang
- Zhong Yuan Academy of Biological Medicine, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Han Yan
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhigang Wang
- College of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Heilongjiang, China
- *Correspondence: Zhigang Wang, ; Dan Yan, ; Na Guo,
| | - Dan Yan
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- *Correspondence: Zhigang Wang, ; Dan Yan, ; Na Guo,
| | - Na Guo
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Zhigang Wang, ; Dan Yan, ; Na Guo,
| |
Collapse
|
25
|
Savelieff MG, Noureldein MH, Feldman EL. Systems Biology to Address Unmet Medical Needs in Neurological Disorders. Methods Mol Biol 2022; 2486:247-276. [PMID: 35437727 PMCID: PMC9446424 DOI: 10.1007/978-1-0716-2265-0_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Neurological diseases are highly prevalent and constitute a significant cause of mortality and disability. Neurological disorders encompass a heterogeneous group of neurodegenerative conditions, broadly characterized by injury to the peripheral and/or central nervous system. Although the etiology of neurological diseases varies greatly, they share several characteristics, such as heterogeneity of clinical presentation, non-cell autonomous nature, and diversity of cellular, subcellular, and molecular pathways. Systems biology has emerged as a valuable platform for addressing the challenges of studying heterogeneous neurological diseases. Systems biology has manifold applications to address unmet medical needs for neurological illness, including integrating and correlating different large datasets covering the transcriptome, epigenome, proteome, and metabolome associated with a specific condition. This is particularly useful for disentangling the heterogeneity and complexity of neurological conditions. Hence, systems biology can help in uncovering pathophysiology to develop novel therapeutic targets and assessing the impact of known treatments on disease progression. Additionally, systems biology can identify early diagnostic biomarkers, to help diagnose neurological disease preceded by a long subclinical phase, as well as define the exposome, the collection of environmental toxicants that increase risk of certain neurological diseases. In addition to these current applications, there are numerous potential emergent uses, such as precision medicine.
Collapse
Affiliation(s)
- Masha G Savelieff
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, USA
| | - Mohamed H Noureldein
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, USA
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Eva L Feldman
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, USA.
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
26
|
Callaghan BC, Reynolds EL, Banerjee M, Akinci G, Chant E, Villegas-Umana E, Rothberg AE, Burant CF, Feldman EL. Dietary weight loss in people with severe obesity stabilizes neuropathy and improves symptomatology. Obesity (Silver Spring) 2021; 29:2108-2118. [PMID: 34747574 PMCID: PMC8612943 DOI: 10.1002/oby.23246] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/05/2021] [Accepted: 05/30/2021] [Indexed: 01/21/2023]
Abstract
OBJECTIVE The aim of this study was to determine the effect of dietary weight loss on neuropathy outcomes in people with severe obesity. METHODS A prospective cohort study of participants attending a medical weight-management program was followed. Weight loss was achieved with meal replacement of 800 kcal/d for 12 weeks and then transitioning to 1,200 to 1,500 kcal/d. The coprimary outcomes were changes in intraepidermal nerve fiber density (IENFD) at the distal leg and proximal thigh. Secondary outcomes included nerve conduction studies, Michigan Neuropathy Screening Instrument questionnaire and exam, Quality of Life in Neurological Disorders, and quantitative sensory testing. RESULTS Among 131 baseline participants, 72 (mean [SD] age: 50.1 [10.5] years, 51.4% female) completed 2 years of follow-up. Participants lost 12.4 (11.8) kg. All metabolic syndrome components improved with the exception of blood pressure. IENFD in the distal leg (0.4 [3.3], p = 0.29), and proximal thigh (0.3 [6.3], p = 0.74) did not significantly change. Improvements were observed on the Michigan Neuropathy Screening Instrument questionnaire, two Quality of Life in Neurological Disorders subdomains, and quantitative sensory testing cold threshold. CONCLUSIONS Dietary weight loss was associated with improvements in all metabolic parameters except blood pressure, and both IENFD outcomes remained stable after 2 years. Given that natural history studies reveal decreases in IENFD over time, dietary weight loss may halt this progression, but randomized controlled trials are needed.
Collapse
Affiliation(s)
- Brian C Callaghan
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Evan L Reynolds
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Mousumi Banerjee
- School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Gulcin Akinci
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
- Division of Pediatric Neurology, Dr. Behcet Uz Children's Hospital, Izmir, Turkey
| | - Ericka Chant
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Amy E Rothberg
- Division of Metabolism, Endocrinology, and Diabetes, Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Charles F Burant
- Division of Metabolism, Endocrinology, and Diabetes, Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
27
|
Hooper KM. What lies beyond 100 years of insulin. Dis Model Mech 2021; 14:dmm049361. [PMID: 34752619 PMCID: PMC8592014 DOI: 10.1242/dmm.049361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has been 100 years since the discovery of insulin. This revolutionary treatment saves the lives of millions of people living with diabetes, but much remains to be understood of its mechanisms and roles in homeostasis and disease. To celebrate this centenary, we explore areas of ongoing insulin research in diabetes, metabolic syndrome and beyond. Disease Models & Mechanisms aims to publish high-quality basic and pre-clinical research that advances our understanding of these conditions to facilitate clinical and public health impact.
Collapse
Affiliation(s)
- Kirsty M. Hooper
- The Company of Biologists, Bidder Building, Station Road, Cambridge CB24 9LF, UK
| |
Collapse
|
28
|
Eid SA, Feldman EL. Advances in diet-induced rodent models of metabolically acquired peripheral neuropathy. Dis Model Mech 2021; 14:273425. [PMID: 34762126 PMCID: PMC8592018 DOI: 10.1242/dmm.049337] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Peripheral neuropathy (PN) is a severe complication that affects over 30% of prediabetic and 60% of type 2 diabetic (T2D) patients. The metabolic syndrome is increasingly recognized as a major driver of PN. However, basic and translational research is needed to understand the mechanisms that contribute to nerve damage. Rodent models of diet-induced obesity, prediabetes, T2D and PN closely resemble the human disease and have proven to be instrumental for the study of PN mechanisms. In this Perspective article, we focus on the development, neurological characterization and dietary fat considerations of diet-induced rodent models of PN. We highlight the importance of investigating sex differences and discuss some of the challenges in translation from bench to bedside, including recapitulating the progressive nature of human PN and modeling neuropathic pain. We emphasize that future research should overcome these challenges in the quest to better mimic human PN in animal models.
Collapse
Affiliation(s)
- Stéphanie A Eid
- Department of Neurology, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eva L Feldman
- Department of Neurology, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
29
|
Fort PE, Rajendiran TM, Soni T, Byun J, Shan Y, Looker HC, Nelson RG, Kretzler M, Michailidis G, Roger JE, Gardner TW, Abcouwer SF, Pennathur S, Afshinnia F. Diminished retinal complex lipid synthesis and impaired fatty acid β-oxidation associated with human diabetic retinopathy. JCI Insight 2021; 6:e152109. [PMID: 34437304 PMCID: PMC8525591 DOI: 10.1172/jci.insight.152109] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/25/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND This study systematically investigated circulating and retinal tissue lipid determinants of human diabetic retinopathy (DR) to identify underlying lipid alterations associated with severity of DR. METHODS Retinal tissues were retrieved from postmortem human eyes, including 19 individuals without diabetes, 20 with diabetes but without DR, and 20 with diabetes and DR, for lipidomic study. In a parallel study, serum samples from 28 American Indians with type 2 diabetes from the Gila River Indian Community, including 12 without DR, 7 with mild nonproliferative DR (NPDR), and 9 with moderate NPDR, were selected. A mass-spectrometry–based lipidomic platform was used to measure serum and tissue lipids. RESULTS In the postmortem retinas, we found a graded decrease of long-chain acylcarnitines and longer-chain fatty acid ester of hydroxyl fatty acids, diacylglycerols, triacylglycerols, phosphatidylcholines, and ceramide(NS) in central retina from individuals with no diabetes to those with diabetes with DR. The American Indians’ sera also exhibited a graded decrease in circulating long-chain acylcarnitines and a graded increase in the intermediate-length saturated and monounsaturated triacylglycerols from no DR to moderate NPDR. CONCLUSION These findings suggest diminished synthesis of complex lipids and impaired mitochondrial β-oxidation of fatty acids in retinal DR, with parallel changes in circulating lipids. TRIAL REGISTRATION ClinicalTrials.gov NCT00340678. FUNDING This work was supported by NIH grants R24 DK082841, K08DK106523, R03DK121941, P30DK089503, P30DK081943, P30DK020572, P30 EY007003; The Thomas Beatson Foundation; and JDRF Center for Excellence (5-COE-2019-861-S-B).
Collapse
Affiliation(s)
- Patrice E Fort
- Department of Ophthalmology and Visual Sciences.,Department of Molecular and Integrative Physiology
| | | | | | - Jaeman Byun
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Yang Shan
- Department of Ophthalmology and Visual Sciences
| | - Helen C Looker
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Phoenix, Arizona, USA
| | - Robert G Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Phoenix, Arizona, USA
| | - Matthias Kretzler
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - George Michailidis
- Department of Statistics and the Informatics Institute, University of Florida, Gainesville, Florida, USA
| | - Jerome E Roger
- Paris-Saclay Institute of Neuroscience, CERTO-Retina France, CNRS, Université Paris-Saclay, Orsay, France
| | - Thomas W Gardner
- Department of Ophthalmology and Visual Sciences.,Department of Molecular and Integrative Physiology.,Department of Internal Medicine-Metabolism, Endocrinology and Diabetes, and
| | | | - Subramaniam Pennathur
- Department of Molecular and Integrative Physiology.,Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, Michigan, USA.,Michigan Regional Comprehensive Metabolomics Resource Core, University of Michigan, Ann Arbor, Michigan, USA
| | - Farsad Afshinnia
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
30
|
Eid SA, Hinder LM, Zhang H, Eksi R, Nair V, Eddy S, Eichinger F, Park M, Saha J, Berthier CC, Jagadish HV, Guan Y, Pennathur S, Hur J, Kretzler M, Feldman EL, Brosius FC. Gene expression profiles of diabetic kidney disease and neuropathy in eNOS knockout mice: Predictors of pathology and RAS blockade effects. FASEB J 2021; 35:e21467. [PMID: 33788970 DOI: 10.1096/fj.202002387r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/31/2022]
Abstract
Diabetic kidney disease (DKD) and diabetic peripheral neuropathy (DPN) are two common diabetic complications. However, their pathogenesis remains elusive and current therapies are only modestly effective. We evaluated genome-wide expression to identify pathways involved in DKD and DPN progression in db/db eNOS-/- mice receiving renin-angiotensin-aldosterone system (RAS)-blocking drugs to mimic the current standard of care for DKD patients. Diabetes and eNOS deletion worsened DKD, which improved with RAS treatment. Diabetes also induced DPN, which was not affected by eNOS deletion or RAS blockade. Given the multiple factors affecting DKD and the graded differences in disease severity across mouse groups, an automatic data analysis method, SOM, or self-organizing map was used to elucidate glomerular transcriptional changes associated with DKD, whereas pairwise bioinformatic analysis was used for DPN. These analyses revealed that enhanced gene expression in several pro-inflammatory networks and reduced expression of development genes correlated with worsening DKD. Although RAS treatment ameliorated the nephropathy phenotype, it did not alter the more abnormal gene expression changes in kidney. Moreover, RAS exacerbated expression of genes related to inflammation and oxidant generation in peripheral nerves. The graded increase in inflammatory gene expression and decrease in development gene expression with DKD progression underline the potentially important role of these pathways in DKD pathogenesis. Since RAS blockers worsened this gene expression pattern in both DKD and DPN, it may partly explain the inadequate therapeutic efficacy of such blockers.
Collapse
Affiliation(s)
- Stephanie A Eid
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lucy M Hinder
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Hongyu Zhang
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ridvan Eksi
- Department of Computational Medicine and Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Viji Nair
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sean Eddy
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Felix Eichinger
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Meeyoung Park
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jharna Saha
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Celine C Berthier
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Hosagrahar V Jagadish
- Department of Computational Medicine and Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yuanfang Guan
- Department of Computational Medicine and Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Subramaniam Pennathur
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Matthias Kretzler
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Computational Medicine and Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Frank C Brosius
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
31
|
Rumora AE, Guo K, Alakwaa FM, Andersen ST, Reynolds EL, Jørgensen ME, Witte DR, Tankisi H, Charles M, Savelieff MG, Callaghan BC, Jensen TS, Feldman EL. Plasma lipid metabolites associate with diabetic polyneuropathy in a cohort with type 2 diabetes. Ann Clin Transl Neurol 2021; 8:1292-1307. [PMID: 33955722 PMCID: PMC8164865 DOI: 10.1002/acn3.51367] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE The global rise in type 2 diabetes is associated with a concomitant increase in diabetic complications. Diabetic polyneuropathy is the most frequent type 2 diabetes complication and is associated with poor outcomes. The metabolic syndrome has emerged as a major risk factor for diabetic polyneuropathy; however, the metabolites associated with the metabolic syndrome that correlate with diabetic polyneuropathy are unknown. METHODS We conducted a global metabolomics analysis on plasma samples from a subcohort of participants from the Danish arm of Anglo-Danish-Dutch study of Intensive Treatment of Diabetes in Primary Care (ADDITION-Denmark) with and without diabetic polyneuropathy versus lean control participants. RESULTS Compared to lean controls, type 2 diabetes participants had significantly higher HbA1c (p = 0.0028), BMI (p = 0.0004), and waist circumference (p = 0.0001), but lower total cholesterol (p = 0.0001). Out of 991 total metabolites, we identified 15 plasma metabolites that differed in type 2 diabetes participants by diabetic polyneuropathy status, including metabolites belonging to energy, lipid, and xenobiotic pathways, among others. Additionally, these metabolites correlated with alterations in plasma lipid metabolites in type 2 diabetes participants based on neuropathy status. Further evaluating all plasma lipid metabolites identified a shift in abundance, chain length, and saturation of free fatty acids in type 2 diabetes participants. Importantly, the presence of diabetic polyneuropathy impacted the abundance of plasma complex lipids, including acylcarnitines and sphingolipids. INTERPRETATION Our explorative study suggests that diabetic polyneuropathy in type 2 diabetes is associated with novel alterations in plasma metabolites related to lipid metabolism.
Collapse
Affiliation(s)
- Amy E. Rumora
- Department of NeurologyUniversity of MichiganAnn ArborMichigan
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichigan
| | - Kai Guo
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichigan
- Department of Biomedical SciencesUniversity of North DakotaGrand ForksNorth Dakota
| | - Fadhl M. Alakwaa
- Department of NeurologyUniversity of MichiganAnn ArborMichigan
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichigan
| | | | - Evan L. Reynolds
- Department of NeurologyUniversity of MichiganAnn ArborMichigan
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichigan
| | - Marit E. Jørgensen
- Steno Diabetes Center CopenhagenGentofteDenmark
- University of Southern DenmarkOdenseDenmark
| | - Daniel R. Witte
- Department of Public HealthAarhus UniversityAarhusDenmark
- Danish Diabetes AcademyOdenseDenmark
| | - Hatice Tankisi
- Department of Clinical NeurophysiologyAarhus UniversityAarhusDenmark
| | - Morten Charles
- Department of Public HealthAarhus UniversityAarhusDenmark
| | - Masha G. Savelieff
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichigan
| | - Brian C. Callaghan
- Department of NeurologyUniversity of MichiganAnn ArborMichigan
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichigan
| | - Troels S. Jensen
- Danish Pain Research CenterDepartment of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Eva L. Feldman
- Department of NeurologyUniversity of MichiganAnn ArborMichigan
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichigan
| |
Collapse
|
32
|
Sajic M, Rumora AE, Kanhai AA, Dentoni G, Varatharajah S, Casey C, Brown RDR, Peters F, Hinder LM, Savelieff MG, Feldman EL, Smith KJ. High Dietary Fat Consumption Impairs Axonal Mitochondrial Function In Vivo. J Neurosci 2021; 41:4321-4334. [PMID: 33785643 PMCID: PMC8143198 DOI: 10.1523/jneurosci.1852-20.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 02/11/2021] [Accepted: 03/15/2021] [Indexed: 01/25/2023] Open
Abstract
Peripheral neuropathy (PN) is the most common complication of prediabetes and diabetes. PN causes severe morbidity for Type 2 diabetes (T2D) and prediabetes patients, including limb pain followed by numbness resulting from peripheral nerve damage. PN in T2D and prediabetes is associated with dyslipidemia and elevated circulating lipids; however, the molecular mechanisms underlying PN development in prediabetes and T2D are unknown. Peripheral nerve sensory neurons rely on axonal mitochondria to provide energy for nerve impulse conduction under homeostatic conditions. Models of dyslipidemia in vitro demonstrate mitochondrial dysfunction in sensory neurons exposed to elevated levels of exogenous fatty acids. Herein, we evaluated the effect of dyslipidemia on mitochondrial function and dynamics in sensory axons of the saphenous nerve of a male high-fat diet (HFD)-fed murine model of prediabetes to identify mitochondrial alterations that correlate with PN pathogenesis in vivo We found that the HFD decreased mitochondrial membrane potential (MMP) in axonal mitochondria and reduced the ability of sensory neurons to conduct at physiological frequencies. Unlike mitochondria in control axons, which dissipated their MMP in response to increased impulse frequency (from 1 to 50 Hz), HFD mitochondria dissipated less MMP in response to axonal energy demand, suggesting a lack of reserve capacity. The HFD also decreased sensory axonal Ca2+ levels and increased mitochondrial lengthening and expression of PGC1α, a master regulator of mitochondrial biogenesis. Together, these results suggest that mitochondrial dysfunction underlies an imbalance of axonal energy and Ca2+ levels and impairs impulse conduction within the saphenous nerve in prediabetic PN.SIGNIFICANCE STATEMENT Diabetes and prediabetes are leading causes of peripheral neuropathy (PN) worldwide. PN has no cure, but development in diabetes and prediabetes is associated with dyslipidemia, including elevated levels of saturated fatty acids. Saturated fatty acids impair mitochondrial dynamics and function in cultured neurons, indicating a role for mitochondrial dysfunction in PN progression; however, the effect of elevated circulating fatty acids on the peripheral nervous system in vivo is unknown. In this study, we identify early pathogenic events in sensory nerve axons of mice with high-fat diet-induced PN, including alterations in mitochondrial function, axonal conduction, and intra-axonal calcium, that provide important insight into potential PN mechanisms associated with prediabetes and dyslipidemia in vivo.
Collapse
Affiliation(s)
- Marija Sajic
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, WC1N 3BG, United Kingdom
| | - Amy E Rumora
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109
| | - Anish A Kanhai
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, WC1N 3BG, United Kingdom
| | - Giacomo Dentoni
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, WC1N 3BG, United Kingdom
| | - Sharlini Varatharajah
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, WC1N 3BG, United Kingdom
| | - Caroline Casey
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, WC1N 3BG, United Kingdom
| | - Ryan D R Brown
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, WC1N 3BG, United Kingdom
| | - Fabian Peters
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, WC1N 3BG, United Kingdom
| | - Lucy M Hinder
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109
| | - Masha G Savelieff
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, Michigan 48109
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109
| | - Kenneth J Smith
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, WC1N 3BG, United Kingdom
| |
Collapse
|
33
|
Elzinga SE, Savelieff MG, O'Brien PD, Mendelson FE, Hayes JM, Feldman EL. Sex differences in insulin resistance, but not peripheral neuropathy, in a diet-induced prediabetes mouse model. Dis Model Mech 2021; 14:dmm048909. [PMID: 33692086 PMCID: PMC8077554 DOI: 10.1242/dmm.048909] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/02/2021] [Indexed: 12/25/2022] Open
Abstract
Peripheral neuropathy (PN) is a common complication of prediabetes and diabetes and is an increasing problem worldwide. Existing PN treatments rely solely on glycemic control, which is effective in type 1 but not type 2 diabetes. Sex differences in response to anti-diabetic drugs further complicate the identification of effective PN therapies. Preclinical research has been primarily carried out in males, highlighting the need for increased sex consideration in PN models. We previously reported PN sex dimorphism in obese leptin-deficient ob/ob mice. This genetic model is inherently limited, however, owing to leptin's role in metabolism. Therefore, the current study goal was to examine PN and insulin resistance in male and female C57BL6/J mice fed a high-fat diet (HFD), an established murine model of human prediabetes lacking genetic mutations. HFD mice of both sexes underwent longitudinal phenotyping and exhibited expected metabolic and PN dysfunction compared to standard diet (SD)-fed animals. Hindpaw thermal latencies to heat were shorter in HFD females versus HFD males, as well as SD females versus males. Compared to HFD males, female HFD mice exhibited delayed insulin resistance, yet still developed the same trajectory of nerve conduction deficits and intraepidermal nerve fiber density loss. Subtle differences in adipokine levels were also noted by sex and obesity status. Collectively, our results indicate that although females retain early insulin sensitivity upon HFD challenge, this does not protect them from developing the same degree of PN as their male counterparts. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Sarah E. Elzinga
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Masha G. Savelieff
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Phillipe D. O'Brien
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Faye E. Mendelson
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - John M. Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
34
|
Ziegler D, Strom A, Straßburger K, Knebel B, Bönhof GJ, Kotzka J, Szendroedi J, Roden M. Association of cardiac autonomic dysfunction with higher levels of plasma lipid metabolites in recent-onset type 2 diabetes. Diabetologia 2021; 64:458-468. [PMID: 33084971 PMCID: PMC7801358 DOI: 10.1007/s00125-020-05310-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022]
Abstract
AIMS/HYPOTHESIS Emerging evidence suggests that in addition to hyperglycaemia, dyslipidaemia could represent a contributing pathogenetic factor to diabetic neuropathy, while obesity and insulin resistance play a role in the development of diabetic cardiac autonomic neuropathy (CAN) characterised by reduced heart rate variability (HRV), particularly in type 2 diabetes. We hypothesised that distinct lipid metabolites are associated with diminished HRV in recent-onset type 2 diabetes rather than type 1 diabetes. METHODS We analysed 127 plasma lipid metabolites (11 acylcarnitines, 39 NEFA, 12 sphingomyelins (SMs), 56 phosphatidylcholines and nine lysophosphatidylcholines) using MS in participants from the German Diabetes Study baseline cohort recently diagnosed with type 1 (n = 100) and type 2 diabetes (n = 206). Four time-domain HRV indices (number of normal-to-normal (NN) intervals >50 ms divided by the number of all NN intervals [pNN50]; root mean square of successive differences [RMSSD]; SD of NN intervals [SDNN]; and SD of differences between adjacent NN intervals) and three frequency-domain HRV indices (very-low-frequency [VLF], low-frequency [LF] and high-frequency [HF] power spectrum) were computed from NN intervals recorded during a 3 h hyperinsulinaemic-euglycaemic clamp at baseline and in subsets of participants with type 1 (n = 60) and type 2 diabetes (n = 95) after 5 years. RESULTS In participants with type 2 diabetes, after Bonferroni correction and rigorous adjustment, SDNN was inversely associated with higher levels of diacyl-phosphatidylcholine (PCaa) C32:0, PCaa C34:1, acyl-alkyl-phosphatidylcholine (PCae) C36:0, SM C16:0 and SM C16:1. SD of differences between NN intervals was inversely associated with PCaa C32:0, PCaa C34:1, PCaa C34:2, PCae C36:0 and SM C16:1, and RMSSD with PCae C36:0. For VLF power, inverse associations were found with PCaa C30:0, PCaa C32:0, PCaa C32:1, PCaa C34:2 and SM C16:1, and for LF power inverse associations were found with PCaa C32:0 and SM C16:1 (r = -0.242 to r = -0.349; p ≤ 0.0005 for all correlations). In contrast, no associations of lipid metabolites with measures of cardiac autonomic function were noted in participants recently diagnosed with type 1 diabetes. After 5 years, HRV declined due to ageing rather than diabetes, whereby prediction analyses for lipid metabolites were hampered. CONCLUSIONS/INTERPRETATION Higher plasma levels of specific lipid metabolites are closely linked to cardiac autonomic dysfunction in recent-onset type 2 diabetes but not type 1 diabetes, suggesting a role for perturbed lipid metabolism in the early development of CAN in type 2 diabetes. Graphical abstract.
Collapse
Affiliation(s)
- Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany.
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
| | - Alexander Strom
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Klaus Straßburger
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Birgit Knebel
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Gidon J Bönhof
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jörg Kotzka
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Julia Szendroedi
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | | |
Collapse
|
35
|
Leonardi BF, Gosmann G, Zimmer AR. Modeling Diet-Induced Metabolic Syndrome in Rodents. Mol Nutr Food Res 2020; 64:e2000249. [PMID: 32978870 DOI: 10.1002/mnfr.202000249] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 08/24/2020] [Indexed: 12/17/2022]
Abstract
Standardized animal models represent one of the most valuable tools available to understand the mechanism underlying the metabolic syndrome (MetS) and to seek for new therapeutic strategies. However, there is considerable variability in the studies conducted with this essential purpose. This review presents an updated discussion of the most recent studies using diverse experimental conditions to induce MetS in rodents with unbalanced diets, discusses the key findings in metabolic outcomes, and critically evaluates what we have been learned from them and how to advance in the field. The study includes scientific reports sourced from the Web of Science and PubMed databases, published between January 2013 and June 2020, which used hypercaloric diets to induce metabolic disorders, and address the impact of the diet on metabolic parameters. The collected data are used as support to discuss variables such as sex, species, and age of the animals, the most favorable type of diet, and the ideal diet length to generate metabolic changes. The experimental characteristics propose herein improve the performance of a preclinical model that resembles the human MetS and will guide researchers to investigate new therapeutic alternatives with confidence and higher translational validity.
Collapse
Affiliation(s)
- Bianca F Leonardi
- Phytochemistry and Organic Synthesis Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), 2752 Ipiranga avenue, Porto Alegre, RS, 90610-000, Brazil
| | - Grace Gosmann
- Phytochemistry and Organic Synthesis Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), 2752 Ipiranga avenue, Porto Alegre, RS, 90610-000, Brazil
| | - Aline R Zimmer
- Phytochemistry and Organic Synthesis Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), 2752 Ipiranga avenue, Porto Alegre, RS, 90610-000, Brazil
| |
Collapse
|
36
|
Hossain MJ, Kendig MD, Wild BM, Issar T, Krishnan AV, Morris MJ, Arnold R. Evidence of Altered Peripheral Nerve Function in a Rodent Model of Diet-Induced Prediabetes. Biomedicines 2020; 8:biomedicines8090313. [PMID: 32872256 PMCID: PMC7555926 DOI: 10.3390/biomedicines8090313] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Peripheral neuropathy (PN) is a debilitating complication of diabetes that affects >50% of patients. Recent evidence suggests that obesity and metabolic disease, which often precede diabetes diagnosis, may influence PN onset and severity. We examined this in a translationally relevant model of prediabetes induced by a cafeteria (CAF) diet in Sprague–Dawley rats (n = 15 CAF versus n = 15 control). Neuropathy phenotyping included nerve conduction, tactile sensitivity, intraepidermal nerve fiber density (IENFD) and nerve excitability testing, an in vivo measure of ion channel function and membrane potential. Metabolic phenotyping included body composition, blood glucose and lipids, plasma hormones and inflammatory cytokines. After 13 weeks diet, CAF-fed rats demonstrated prediabetes with significantly elevated fasting blood glucose, insulin and impaired glucose tolerance as well as obesity and dyslipidemia. Nerve conduction, tactile sensitivity and IENFD did not differ; however, superexcitability was significantly increased in CAF-fed rats. Mathematical modeling demonstrated this was consistent with a reduction in sodium–potassium pump current. Moreover, superexcitability correlated positively with insulin resistance and adiposity, and negatively with fasting high-density lipoprotein cholesterol. In conclusion, prediabetic rats over-consuming processed, palatable foods demonstrated altered nerve function that preceded overt PN. This work provides a relevant model for pathophysiological investigation of diabetic complications.
Collapse
Affiliation(s)
- Md Jakir Hossain
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia; (M.J.H.); (M.D.K.); (B.M.W.); (M.J.M.)
| | - Michael D. Kendig
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia; (M.J.H.); (M.D.K.); (B.M.W.); (M.J.M.)
| | - Brandon M. Wild
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia; (M.J.H.); (M.D.K.); (B.M.W.); (M.J.M.)
| | - Tushar Issar
- Prince of Wales Clinical School, UNSW Sydney, Sydney, NSW 2052, Australia; (T.I.); (A.V.K.)
| | - Arun V. Krishnan
- Prince of Wales Clinical School, UNSW Sydney, Sydney, NSW 2052, Australia; (T.I.); (A.V.K.)
| | - Margaret J. Morris
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia; (M.J.H.); (M.D.K.); (B.M.W.); (M.J.M.)
| | - Ria Arnold
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia; (M.J.H.); (M.D.K.); (B.M.W.); (M.J.M.)
- Correspondence: ; Tel.: +61-293858709
| |
Collapse
|
37
|
Puchałowicz K, Rać ME. The Multifunctionality of CD36 in Diabetes Mellitus and Its Complications-Update in Pathogenesis, Treatment and Monitoring. Cells 2020; 9:cells9081877. [PMID: 32796572 PMCID: PMC7465275 DOI: 10.3390/cells9081877] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/04/2020] [Accepted: 08/09/2020] [Indexed: 02/08/2023] Open
Abstract
CD36 is a multiligand receptor contributing to glucose and lipid metabolism, immune response, inflammation, thrombosis, and fibrosis. A wide range of tissue expression includes cells sensitive to metabolic abnormalities associated with metabolic syndrome and diabetes mellitus (DM), such as monocytes and macrophages, epithelial cells, adipocytes, hepatocytes, skeletal and cardiac myocytes, pancreatic β-cells, kidney glomeruli and tubules cells, pericytes and pigment epithelium cells of the retina, and Schwann cells. These features make CD36 an important component of the pathogenesis of DM and its complications, but also a promising target in the treatment of these disorders. The detrimental effects of CD36 signaling are mediated by the uptake of fatty acids and modified lipoproteins, deposition of lipids and their lipotoxicity, alterations in insulin response and the utilization of energy substrates, oxidative stress, inflammation, apoptosis, and fibrosis leading to the progressive, often irreversible organ dysfunction. This review summarizes the extensive knowledge of the contribution of CD36 to DM and its complications, including nephropathy, retinopathy, peripheral neuropathy, and cardiomyopathy.
Collapse
|
38
|
Stino AM, Rumora AE, Kim B, Feldman EL. Evolving concepts on the role of dyslipidemia, bioenergetics, and inflammation in the pathogenesis and treatment of diabetic peripheral neuropathy. J Peripher Nerv Syst 2020; 25:76-84. [PMID: 32412144 PMCID: PMC7375363 DOI: 10.1111/jns.12387] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022]
Abstract
Diabetic peripheral neuropathy (DPN) is one of the most widespread and disabling neurological conditions, accounting for half of all neuropathy cases worldwide. Despite its high prevalence, no approved disease modifying therapies exist. There is now a growing body of evidence that DPN secondary to type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) represents different disease processes, with T2DM DPN best understood within the context of metabolic syndrome rather than hyperglycemia. In this review, we highlight currently understood mechanisms of DPN, along with their corresponding potential therapeutic targets. We frame this discussion within a practical overview of how the field evolved from initial human observations to murine pathomechanistic and therapeutic models into ongoing and human clinical trials, with particular emphasis on T2DM DPN and metabolic syndrome.
Collapse
Affiliation(s)
- Amro Maher Stino
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, USA 48109
- Division of Neuromuscular Medicine, University of Michigan School of Medicine, Ann Arbor, MI, USA 48109
| | - Amy E. Rumora
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, USA 48109
| | - Bhumsoo Kim
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, USA 48109
| | - Eva L. Feldman
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, USA 48109
- Division of Neuromuscular Medicine, University of Michigan School of Medicine, Ann Arbor, MI, USA 48109
| |
Collapse
|
39
|
Savelieff MG, Callaghan BC, Feldman EL. The emerging role of dyslipidemia in diabetic microvascular complications. Curr Opin Endocrinol Diabetes Obes 2020; 27:115-123. [PMID: 32073426 PMCID: PMC11533224 DOI: 10.1097/med.0000000000000533] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW To summarize recent advancements in our understanding of the impact of dyslipidemia on microvascular complications in type 2 diabetes (T2D), with an emphasis on peripheral neuropathy and nephropathy. RECENT FINDINGS Mounting evidence suggests that rigorous glycemic control only mitigates certain microvascular complications in T2D patients. Particularly, well regulated blood glucose levels only marginally improve peripheral neuropathy in the T2D setting. Dyslipidemia, an abnormal lipid profile, is emerging as a key factor in peripheral neuropathy. Furthermore, although glycemic control may prevent or slow nephropathy, recent developments demonstrate that dyslipidemia can also affect kidney outcomes in normoglycemic patients. Transcriptomic, epigenomic, and lipidomic investigations, as well as integrative approaches, are shedding light on potential pathomechanisms. These molecular studies are identifying possible targets for therapeutic intervention. Complementing molecular research, lifestyle interventions are on-going to assess whether dietary choices and/or exercise, weight-loss, or surgical interventions, such as bariatric surgery, can ameliorate peripheral neuropathy and nephropathy in T2D patients. SUMMARY Dyslipidemia is an emerging mechanism in microvascular complications in T2D. Elucidating the molecular pathomechanisms may pinpoint potential lipid-centric treatments. Interventional studies of dietary changes, exercise, or weight-loss surgery may also positively impact these highly prevalent and morbid complications.
Collapse
Affiliation(s)
- Masha G Savelieff
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | |
Collapse
|
40
|
van Putten M, Hmeljak J, Aartsma-Rus A, Dowling JJ. Moving neuromuscular disorders research forward: from novel models to clinical studies. Dis Model Mech 2020; 13:dmm044370. [PMID: 32224497 PMCID: PMC7055363 DOI: 10.1242/dmm.044370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neuromuscular disorders (NMDs) encompass a diverse group of genetic diseases characterized by loss of muscle functionality. Despite extensive efforts to develop therapies, no curative treatment exists for any of the NMDs. For multiple disorders, however, therapeutic strategies are currently being tested in clinical settings, and the first successful treatments have now entered clinical practice (e.g. spinraza for spinal muscular atrophy). Successful clinical translation depends on the quality and translatability of preclinical findings and on the predictive value of the experimental models used in their initial development. This Special Issue of Disease Models & Mechanisms has a particular focus on translational research for NMDs. The collection includes original research focusing on advances in the development of novel in vitro and in vivo models, broader understanding of disease pathology and progression, and approaches to modify the disease course in these models. We also present a series of special articles and reviews that highlight our understanding of cellular mechanisms, biomarkers to tract disease pathology, the diversity of mouse models for NMDs, the importance of high-quality preclinical studies and data validation, and the pitfalls of successfully moving a potential therapeutic strategy to the clinic. In this Editorial, we summarize the highlights of these articles and place their findings in the broader context of the NMD research field.
Collapse
Affiliation(s)
- Maaike van Putten
- Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Julija Hmeljak
- Disease Models & Mechanisms, The Company of Biologists, Bidder Building, Station Road, Histon, Cambridge CB24 9LF, UK
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - James J Dowling
- Program for Genetics and Genome Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning (PGCRL), Bay St., 14th Floor, Toronto, ON M5G 0A4, Canada
- Departments of Paediatrics and Molecular Genetics, University of Toronto, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
41
|
First person – Phillipe O'Brien, Kai Guo, Stephanie Eid, Amy Rumora and Lucy Hinder. Dis Model Mech 2020. [PMCID: PMC6994929 DOI: 10.1242/dmm.043836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
First Person is a series of interviews with the first authors of a selection of papers published in Disease Models & Mechanisms (DMM), helping early-career researchers promote themselves alongside their papers. Phillipe O'Brien, Kai Guo, Stephanie Eid, Amy Rumora and Lucy Hinder are first authors on ‘Integrated lipidomic and transcriptomic analyses identify altered nerve triglycerides in mouse models of prediabetes and type 2 diabetes’, published in DMM. Phillipe, Stephanie, Amy and Lucy are all postdoctoral researchers in the lab of Eva L. Feldman at the University of Michigan, MI, USA, investigating the pathogenesis of peripheral neuropathy using mouse models of obesity and diabetes. Kai is a postdoctoral researcher in the lab of Junguk Hur at the University of North Dakota, Grand Forks, ND, USA, and uses high-throughput genomic data analysis to understand the development of neurological disorders.
Collapse
|
42
|
Andreasen LJ, Kirk RK, Fledelius C, Yorek MA, Lykkesfeldt J, Akerstrom T. Insulin Treatment Attenuates Small Nerve Fiber Damage in Rat Model of Type 2 Diabetes. J Diabetes Res 2020; 2020:9626398. [PMID: 32832565 PMCID: PMC7424504 DOI: 10.1155/2020/9626398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/06/2020] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Current clinical guidelines for management of diabetic peripheral neuropathy (DPN) emphasize good glycemic control. However, this has limited effect on prevention of DPN in type 2 diabetic (T2D) patients. This study investigates the effect of insulin treatment on development of DPN in a rat model of T2D to assess the underlying causes leading to DPN. METHODS Twelve-week-old male Sprague-Dawley rats were allocated to a normal chow diet or a 45% kcal high-fat diet. After eight weeks, the high-fat fed animals received a mild dose of streptozotocin to induce hyperglycemia. Four weeks after diabetes induction, the diabetic animals were allocated into three treatment groups receiving either no insulin or insulin-releasing implants in a high or low dose. During the 12-week treatment period, blood glucose and body weight were monitored weekly, whereas Hargreaves' test was performed four, eight, and 12 weeks after treatment initiation. At study termination, several blood parameters, body composition, and neuropathy endpoints were assessed. RESULTS Insulin treatment lowered blood glucose in a dose-dependent manner. In addition, both doses of insulin lowered lipids and increased body fat percentage. High-dose insulin treatment attenuated small nerve fiber damage assessed by Hargreaves' test and intraepidermal nerve fiber density compared to untreated diabetes and low-dose insulin; however, neuropathy was not completely prevented by tight glycemic control. Linear regression analysis revealed that glycemic status, circulating lipids, and sciatic nerve sorbitol level were all negatively associated with the small nerve fiber damage observed. CONCLUSION In summary, our data suggest that high-dose insulin treatment attenuates small nerve fiber damage. Furthermore, data also indicate that both poor glycemic control and dyslipidemia are associated with disease progression. Consequently, this rat model of T2D seems to fit well with progression of DPN in humans and could be a relevant preclinical model to use in relation to research investigating treatment opportunities for DPN.
Collapse
Affiliation(s)
- Laura J. Andreasen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
- Global Drug Discovery, Novo Nordisk A/S, 2760 Måløv, Denmark
| | - Rikke K. Kirk
- Global Drug Discovery, Novo Nordisk A/S, 2760 Måløv, Denmark
| | | | - Mark A. Yorek
- Department of Veterans Affairs Iowa City Health Care System, Iowa City, IA 52246, USA
| | - Jens Lykkesfeldt
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | | |
Collapse
|