1
|
Garg R, Williamson M. The metastasis-promoting P1597L mutation in PlexinB1 enhances Ras activity. BMC Cancer 2024; 24:1004. [PMID: 39138404 PMCID: PMC11321201 DOI: 10.1186/s12885-024-12762-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Metastatic prostate cancer is a leading cause of cancer-related morbidity and mortality in men, yet the underlying molecular mechanisms are poorly understood. Plexins are transmembrane receptors for semaphorins with divergent roles in many forms of cancer. We recently found that a single clinically relevant specific amino acid change (Proline1597Leucine, (P1597L)), found in metastatic deposits of prostate cancer patients, converts PlexinB1 from a metastasis suppressor to a gene that drives prostate cancer metastasis in vivo. However, the mechanism by which PlexinB1(P1597L) promotes metastasis is not known. METHODS Pull down assays using GST-RalGDS or -GSTRaf1-RBD were used to reveal the effect of mutant or wild-type PlexinB1 expression on Rap and Ras activity respectively. Protein-protein interactions were assessed in GST pulldown assays, Akt/ERK phosphorylation by immunoblotting and protein stability by treatment with cycloheximide. Rho/ROCK activity was monitored by measuring MLC2 phosphorylation and actin stress fiber formation. PlexinB1 function was measured using cell-collapse assays. RESULTS We show here that the single clinically relevant P1597L amino acid change converts PlexinB1 from a repressor of Ras to a Ras activator. The PlexinB1(P1597L) mutation inhibits the RapGAP activity of PlexinB1, promoting a significant increase in Ras activity. The P1597L mutation also blocks PlexinB1-mediated reduction in Rho/ROCK activity, restraining the decrease in MLC2 phosphorylation and actin stress fiber formation induced by overexpression of wild-type PlexinB1. PlexinB1(P1597L) has little effect on the interaction of PlexinB1 with small GTPases or receptor tyrosine kinases and does not inhibit PlexinB1-stimulated Akt or ERK phosphorylation. These results indicate that the mutation affects Rho signalling via the Rap/Ras pathway. The PlexinB1(P1597L) mutation inhibits morphological cell collapse induced by wild-type PlexinB1 expression, suggesting that the mutation induces a loss of an inhibitory tumour suppressor function. CONCLUSION These results suggest that the clinically relevant P1597L mutation in PlexinB1 may transform PlexinB1 from a suppressor to a driver of metastasis in mouse models of prostate cancer by reducing the RapGAP activity of PlexinB1, leading to Ras activation. These findings highlight the PlexinB1-Rap-Ras pathway for therapeutic intervention in prostate cancer.
Collapse
Affiliation(s)
- Ritu Garg
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, Room 2.34B, New Hunts House, London, SE1 1UL, UK
| | - Magali Williamson
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, Room 2.34B, New Hunts House, London, SE1 1UL, UK.
| |
Collapse
|
2
|
Marchena M, Lambert E, Bogdanović B, Quadir F, Neri-Cruz CE, Luo J, Nadal C, Migliorini E, Gautrot JE. BMP-Binding Polysulfonate Brushes to Control Growth Factor Presentation and Regulate Matrix Remodelling. ACS APPLIED MATERIALS & INTERFACES 2024; 16:40455-40468. [PMID: 39072446 PMCID: PMC11310902 DOI: 10.1021/acsami.4c05139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024]
Abstract
Bone morphogenetic proteins (BMPs) are important targets to incorporate in biomaterial scaffolds to orchestrate tissue repair. Glycosaminoglycans (GAGs) such as heparin allow the capture of BMPs and their retention at the surface of biomaterials at safe concentrations. Although heparin has strong affinities for BMP2 and BMP4, two important types of growth factors regulating bone and tissue repair, it remains difficult to embed stably at the surface of a broad range of biomaterials and degrades rapidly in vitro and in vivo. In this report, biomimetic poly(sulfopropyl methacrylate) (PSPMA) brushes are proposed as sulfated GAG mimetic interfaces for the stable capture of BMPs. The growth of PSPMA brushes via a surface-initiated activator regenerated by electron transfer polymerization is investigated via ellipsometry, prior to characterization of swelling and surface chemistry via X-ray photoelectron spectroscopy and Fourier transform infrared. The capacity of PSPMA brushes to bind BMP2 and BMP4 is then characterized via surface plasmon resonance. BMP2 is found to anchor particularly stably and at high density at the surface of PSPMA brushes, and a strong impact of the brush architecture on binding capacity is observed. These results are further confirmed using a quartz crystal microbalance with dissipation monitoring, providing some insights into the mode of adsorption of BMPs at the surface of PSPMA brushes. Primary adsorption of BMP2, with relatively little infiltration, is observed on thick dense brushes, implying that this growth factor should be accessible for further binding of corresponding cell membrane receptors. Finally, to demonstrate the impact of PSPMA brushes for BMP2 capture, dermal fibroblasts were then cultured at the surface of functionalized PSPMA brushes. The presence of BMP2 and the architecture of the brush are found to have a significant impact on matrix deposition at the corresponding interfaces. Therefore, PSPMA brushes emerge as attractive coatings for scaffold engineering and stable capture of BMP2 for regenerative medicine applications.
Collapse
Affiliation(s)
- Metzli
Hernandez Marchena
- School
of Engineering and Materials Science, Queen
Mary University of London, Mile End Road, London E1 4NS, U.K.
| | - Elisa Lambert
- University
Grenoble Alpes, INSERM, CEA, CNRS, U1292 Biosanté, EMR 5000, 17 Av des Martyrs, Grenoble 38000, France
| | - Bojana Bogdanović
- University
Grenoble Alpes, INSERM, CEA, CNRS, U1292 Biosanté, EMR 5000, 17 Av des Martyrs, Grenoble 38000, France
| | - Fauzia Quadir
- School
of Engineering and Materials Science, Queen
Mary University of London, Mile End Road, London E1 4NS, U.K.
| | - Carlos E. Neri-Cruz
- School
of Engineering and Materials Science, Queen
Mary University of London, Mile End Road, London E1 4NS, U.K.
| | - Jiajun Luo
- School
of Engineering and Materials Science, Queen
Mary University of London, Mile End Road, London E1 4NS, U.K.
| | - Clemence Nadal
- School
of Engineering and Materials Science, Queen
Mary University of London, Mile End Road, London E1 4NS, U.K.
| | - Elisa Migliorini
- University
Grenoble Alpes, INSERM, CEA, CNRS, U1292 Biosanté, EMR 5000, 17 Av des Martyrs, Grenoble 38000, France
| | - Julien E. Gautrot
- School
of Engineering and Materials Science, Queen
Mary University of London, Mile End Road, London E1 4NS, U.K.
| |
Collapse
|
3
|
Howes AM, Dea NC, Ghosh D, Krishna K, Wang Y, Li Y, Morrison B, Toussaint KC, Dawson MR. Fibroblast senescence-associated extracellular matrix promotes heterogeneous lung niche. APL Bioeng 2024; 8:026119. [PMID: 38855444 PMCID: PMC11161856 DOI: 10.1063/5.0204393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024] Open
Abstract
Senescent cell accumulation in the pulmonary niche is associated with heightened susceptibility to age-related disease, tissue alterations, and ultimately a decline in lung function. Our current knowledge of senescent cell-extracellular matrix (ECM) dynamics is limited, and our understanding of how senescent cells influence spatial ECM architecture changes over time is incomplete. Herein is the design of an in vitro model of senescence-associated extracellular matrix (SA-ECM) remodeling using a senescent lung fibroblast-derived matrix that captures the spatiotemporal dynamics of an evolving senescent ECM architecture. Multiphoton second-harmonic generation microscopy was utilized to examine the spatial and temporal dynamics of fibroblast SA-ECM remodeling, which revealed a biphasic process that established a disordered and heterogeneous architecture. Additionally, we observed that inhibition of transforming growth factor-β signaling during SA-ECM remodeling led to improved local collagen fiber organization. Finally, we examined patient samples diagnosed with pulmonary fibrosis to further tie our results of the in vitro model to clinical outcomes. Moreover, we observed that the senescence marker p16 is correlated with local collagen fiber disorder. By elucidating the temporal dynamics of SA-ECM remodeling, we provide further insight on the role of senescent cells and their contributions to pathological ECM remodeling.
Collapse
Affiliation(s)
| | - Nova C. Dea
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 029012, USA
| | - Deepraj Ghosh
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 029012, USA
| | - Krishangi Krishna
- School of Engineering, Brown University, Providence, Rhode Island 02912, USA
| | - Yihong Wang
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912, USA
| | - Yanxi Li
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 029012, USA
| | - Braxton Morrison
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 029012, USA
| | - Kimani C. Toussaint
- School of Engineering, Brown University, Providence, Rhode Island 02912, USA
| | - Michelle R. Dawson
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 029012, USA
| |
Collapse
|
4
|
Guerrero-Barberà G, Burday N, Costell M. Shaping Oncogenic Microenvironments: Contribution of Fibronectin. Front Cell Dev Biol 2024; 12:1363004. [PMID: 38660622 PMCID: PMC11039881 DOI: 10.3389/fcell.2024.1363004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
The extracellular matrix (ECM) is a complex network of proteins and glycans, dynamically remodeled and specifically tailored to the structure/function of each organ. The malignant transformation of cancer cells is determined by both cell intrinsic properties, such as mutations, and extrinsic variables, such as the mixture of surrounding cells in the tumor microenvironment and the biophysics of the ECM. During cancer progression, the ECM undergoes extensive remodeling, characterized by disruption of the basal lamina, vascular endothelial cell invasion, and development of fibrosis in and around the tumor cells resulting in increased tissue stiffness. This enhanced rigidity leads to aberrant mechanotransduction and further malignant transformation potentiating the de-differentiation, proliferation and invasion of tumor cells. Interestingly, this fibrotic microenvironment is primarily secreted and assembled by non-cancerous cells. Among them, the cancer-associated fibroblasts (CAFs) play a central role. CAFs massively produce fibronectin together with type I collagen. This review delves into the primary interactions and signaling pathways through which fibronectin can support tumorigenesis and metastasis, aiming to provide critical molecular insights for better therapy response prediction.
Collapse
Affiliation(s)
| | | | - Mercedes Costell
- Departament of Biochemistry and Molecular Biology, Institut Universitari de Biotecnologia i Biomedicina, Universitat de València, Valencia, Spain
| |
Collapse
|
5
|
Zaltron E, Vianello F, Ruzza A, Palazzo A, Brillo V, Celotti I, Scavezzon M, Rossin F, Leanza L, Severin F. The Role of Transglutaminase 2 in Cancer: An Update. Int J Mol Sci 2024; 25:2797. [PMID: 38474044 DOI: 10.3390/ijms25052797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Transglutaminase type 2 (TG2) is the most ubiquitously expressed and well characterized member of the transglutaminase family. It is a ubiquitous multifunctional enzyme implicated in the regulation of several cellular pathways that support the survival, death, and general homeostasis of eukaryotic cells. Due to its multiple localizations both inside and outside the cell, TG2 participates in the regulation of many crucial intracellular signaling cascades in a tissue- and cell-specific manner, making this enzyme an important player in disease development and progression. Moreover, TG2 is capable of modulating the tumor microenvironment, a process of dynamic tissue remodeling and biomechanical events, resulting in changes which influence tumor initiation, growth, and metastasis. Even if generally related to the Ca2+-dependent post-translational modification of proteins, a number of different biological functions have been ascribed to TG2, like those of a peptide isomerase, protein kinase, guanine nucleotide binder, and cytosolic-nuclear translocator. With respect to cancer, TG2's role is controversial and highly debated; it has been described both as an anti- and pro-apoptotic factor and is linked to all the processes of tumorigenesis. However, numerous pieces of evidence support a tissue-specific role of TG2 so that it can assume both oncogenic and tumor-suppressive roles.
Collapse
Affiliation(s)
| | | | - Alessia Ruzza
- Department of Biology, University of Padua, 35131 Padua, Italy
| | - Alberta Palazzo
- Department of Biology, University of Padua, 35131 Padua, Italy
| | | | - Ilaria Celotti
- Department of Biology, University of Padua, 35131 Padua, Italy
| | | | - Federica Rossin
- Department of Biology, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Luigi Leanza
- Department of Biology, University of Padua, 35131 Padua, Italy
| | - Filippo Severin
- Department of Biology, University of Padua, 35131 Padua, Italy
| |
Collapse
|
6
|
Bauer L, Edwards J, Heil A, Dewitt S, Biebermann H, Aeschlimann D, Knäuper V. Mesenchymal Transglutaminase 2 Activates Epithelial ADAM17: Link to G-Protein-Coupled Receptor 56 (ADGRG1) Signalling. Int J Mol Sci 2024; 25:2329. [PMID: 38397010 PMCID: PMC10889368 DOI: 10.3390/ijms25042329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
A wound healing model was developed to elucidate the role of mesenchymal-matrix-associated transglutaminase 2 (TG2) in keratinocyte re-epithelialisation. TG2 drives keratinocyte migratory responses by activation of disintegrin and metalloproteinase 17 (ADAM17). We demonstrate that epidermal growth factor (EGF) receptor ligand shedding leads to EGFR-transactivation and subsequent rapid keratinocyte migration on TG2-positive ECM. In contrast, keratinocyte migration was impaired in TG2 null conditions. We show that keratinocytes express the adhesion G-protein-coupled receptor, ADGRG1 (GPR56), which has been proposed as a TG2 receptor. Using ADAM17 activation as a readout and luciferase reporter assays, we demonstrate that TG2 activates GPR56. GPR56 activation by TG2 reached the same level as observed with an agonistic N-GPR56 antibody. The N-terminal GPR56 domain is required for TG2-regulated signalling response, as the constitutively active C-GPR56 receptor was not activated by TG2. Signalling required the C-terminal TG2 β-barrel domains and involved RhoA-associated protein kinase (ROCK) and ADAM17 activation, which was blocked by specific inhibitors. Cell surface binding of TG2 to the N-terminal GPR56 domain is rapid and is associated with TG2 and GPR56 endocytosis. TG2 and GPR56 represent a ligand receptor pair causing RhoA and EGFR transactivation. Furthermore, we determined a binding constant for the interaction of human TG2 with N-GPR56 and show for the first time that only the calcium-enabled "open" TG2 conformation associates with N-GPR56.
Collapse
Affiliation(s)
- Lea Bauer
- College of Biomedical and Life Sciences, School of Dentistry, Cardiff University, Cardiff CF14 4XY, UK (S.D.)
| | - Jessica Edwards
- College of Biomedical and Life Sciences, School of Dentistry, Cardiff University, Cardiff CF14 4XY, UK (S.D.)
| | - Andreas Heil
- College of Biomedical and Life Sciences, School of Dentistry, Cardiff University, Cardiff CF14 4XY, UK (S.D.)
| | - Sharon Dewitt
- College of Biomedical and Life Sciences, School of Dentistry, Cardiff University, Cardiff CF14 4XY, UK (S.D.)
| | - Heike Biebermann
- Institute of Experimental Pediatric Endocrinology, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Daniel Aeschlimann
- College of Biomedical and Life Sciences, School of Dentistry, Cardiff University, Cardiff CF14 4XY, UK (S.D.)
| | - Vera Knäuper
- College of Biomedical and Life Sciences, School of Dentistry, Cardiff University, Cardiff CF14 4XY, UK (S.D.)
| |
Collapse
|
7
|
Niemelä O, Bloigu A, Bloigu R, Nivukoski U, Kultti J, Pohjasniemi H. Patterns of IgA Autoantibody Generation, Inflammatory Responses and Extracellular Matrix Metabolism in Patients with Alcohol Use Disorder. Int J Mol Sci 2023; 24:13124. [PMID: 37685930 PMCID: PMC10487441 DOI: 10.3390/ijms241713124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Recent data have emphasized the role of inflammation and intestinal immunoglobulin A (IgA) responses in the pathogenesis of alcoholic liver disease (ALD). In order to further explore such associations, we compared IgA titers against antigens targeted to ethanol metabolites and tissue transglutaminase with pro- and anti-inflammatory mediators of inflammation, markers of liver status, transferrin protein desialylation and extracellular matrix metabolism in alcohol-dependent patients with or without liver disease and in healthy controls. Serum IgAs against protein adducts with acetaldehyde (HbAch-IgA), the first metabolite of ethanol, and tissue transglutaminase (tTG-IgA), desialylated transferrin (CDT), pro- and anti-inflammatory cytokines, markers of liver status (GT, ALP) and extracellular matrix metabolism (PIIINP, PINP, hyaluronic acid, ICTP and CTx) were measured in alcohol-dependent patients with (n = 83) or without (n = 105) liver disease and 88 healthy controls representing either moderate drinkers or abstainers. In ALD patients, both tTG-IgA and HbAch-IgA titers were significantly higher than those in the alcoholics without liver disease (p < 0.0005 for tTG-IgA, p = 0.006 for Hb-Ach-IgA) or in healthy controls (p < 0.0005 for both comparisons). The HbAch-IgA levels in the alcoholics without liver disease also exceeded those found in healthy controls (p = 0.0008). In ROC analyses, anti-tTG-antibodies showed an excellent discriminative value in differentiating between ALD patients and healthy controls (AUC = 0.95, p < 0.0005). Significant correlations emerged between tTG-IgAs and HbAch-IgAs (rs = 0.462, p < 0.0005), CDT (rs = 0.413, p < 0.0001), GT (rs = 0.487, p < 0.0001), alkaline phosphatase (rs = 0.466, p < 0.0001), serum markers of fibrogenesis: PIIINP (rs = 0.634, p < 0.0001), hyaluronic acid (rs = 0.575, p < 0.0001), ICTP (rs = 0.482, p < 0.0001), pro-inflammatory cytokines IL-6 (rs = 0.581, p < 0.0001), IL-8 (rs = 0.535, p < 0.0001) and TNF-α (rs = 0.591, p < 0.0001), whereas significant inverse correlations were observed with serum TGF-β (rs = -0.366, p < 0.0001) and CTx, a marker of collagen degradation (rs = -0.495, p < 0.0001). The data indicate that the induction of IgA immune responses toward ethanol metabolites and tissue transglutaminaseis a characteristic feature of patients with AUD and coincides with the activation of inflammation, extracellular matrix remodeling and the generation of aberrantly glycosylated proteins. These processes appear to work in concert in the sequence of events leading from heavy drinking to ALD.
Collapse
Affiliation(s)
- Onni Niemelä
- Department of Laboratory Medicine and Medical Research Unit, Seinäjoki Central Hospital, 60220 Seinäjoki, Finland; (U.N.); (J.K.); (H.P.)
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
| | - Aini Bloigu
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, 90220 Oulu, Finland;
| | - Risto Bloigu
- Infrastructure of Population Studies, Faculty of Medicine, University of Oulu, 90220 Oulu, Finland;
| | - Ulla Nivukoski
- Department of Laboratory Medicine and Medical Research Unit, Seinäjoki Central Hospital, 60220 Seinäjoki, Finland; (U.N.); (J.K.); (H.P.)
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
| | - Johanna Kultti
- Department of Laboratory Medicine and Medical Research Unit, Seinäjoki Central Hospital, 60220 Seinäjoki, Finland; (U.N.); (J.K.); (H.P.)
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
| | - Heidi Pohjasniemi
- Department of Laboratory Medicine and Medical Research Unit, Seinäjoki Central Hospital, 60220 Seinäjoki, Finland; (U.N.); (J.K.); (H.P.)
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
| |
Collapse
|
8
|
Valdivia A, Vagadia PP, Guo G, O'Brien E, Matei D, Schiltz GE. Discovery and Characterization of PROTACs Targeting Tissue Transglutaminase (TG2). J Med Chem 2023. [PMID: 37449845 PMCID: PMC10388319 DOI: 10.1021/acs.jmedchem.2c01859] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Tissue transglutaminase (TG2) is a multifunctional enzyme involved in the cross-linking of extracellular matrix proteins, formation of complexes with fibronectin (FN) and integrins, and GTP hydrolysis. TG2 is activated in several pathological conditions, including cancer. We recently described a novel series of ligands that bind to TG2 and inhibit its interaction with FN. Because TG2 acts via multiple mechanisms, we set out to pursue a targeted protein degradation strategy to abolish TG2's myriad functions. Here, we report the synthesis and characterization of a series of VHL-based degraders that reduce TG2 in ovarian cancer cells in a proteasome-dependent manner. Degradation of TG2 resulted in significantly reduced cancer cell adhesion and migration in vitro in scratch-wound and migration assays. These results strongly indicate that further development of more potent and in vivo efficient TG2 degraders could be a new strategy for reducing the dissemination of ovarian and other cancers.
Collapse
Affiliation(s)
- Andres Valdivia
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Purav P Vagadia
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Guangxu Guo
- WuXi AppTec, Shanghai 200131, People's Republic of China
| | - Eilidh O'Brien
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Daniela Matei
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Jesse Brown VA Medical Center, Chicago, Illinois 60612, United States
| | - Gary E Schiltz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| |
Collapse
|
9
|
Yiu TW, Holman SR, Kaidonis X, Graham RM, Iismaa SE. Transglutaminase 2 Facilitates Murine Wound Healing in a Strain-Dependent Manner. Int J Mol Sci 2023; 24:11475. [PMID: 37511238 PMCID: PMC10380275 DOI: 10.3390/ijms241411475] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Transglutaminase 2 (TG2) plays a role in cellular processes that are relevant to wound healing, but to date no studies of wound healing in TG2 knockout mice have been reported. Here, using 129T2/SvEmsJ (129)- or C57BL/6 (B6)-backcrossed TG2 knockout mice, we show that TG2 facilitates murine wound healing in a strain-dependent manner. Early healing of in vivo cutaneous wounds and closure of in vitro scratch wounds in murine embryonic fibroblast (MEF) monolayers were delayed in 129, but not B6, TG2 knockouts, relative to their wild-type counterparts, with wound closure in 129 being faster than in B6 wild-types. A single dose of exogenous recombinant wild-type TG2 to 129 TG2-/- mice or MEFs immediately post-wounding accelerated wound closure. Neutrophil and monocyte recruitment to 129 cutaneous wounds was not affected by Tgm2 deletion up to 5 days post-wounding. Tgm2 mRNA and TG2 protein abundance were higher in 129 than in B6 wild-types and increased in abundance following cutaneous and scratch wounding. Tgm1 and factor XIIA (F13A) mRNA abundance increased post-wounding, but there was no compensation by TG family members in TG2-/- relative to TG2+/+ mice in either strain before or after wounding. 129 TG2+/+ MEF adhesion was greater and spreading was faster than that of B6 TG2+/+ MEFs, and was dependent on syndecan binding in the presence, but not absence, of RGD inhibition of integrin binding. Adhesion and spreading of 129, but not B6, TG2-/- MEFs was impaired relative to their wild-type counterparts and was accelerated by exogenous addition or transfection of TG2 protein or cDNA, respectively, and was independent of the transamidase or GTP-binding activity of TG2. Rho-family GTPase activation, central to cytoskeletal organization, was altered in 129 TG2-/- MEFs, with delayed RhoA and earlier Rac1 activation than in TG2+/+ MEFs. These findings indicate that the rate of wound healing is different between 129 and B6 mouse strains, correlating with TG2 abundance, and although not essential for wound healing, TG2 facilitates integrin- and syndecan-mediated RhoA- and Rac1-activation in fibroblasts to promote efficient wound contraction.
Collapse
Affiliation(s)
- Ting W. Yiu
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; (T.W.Y.); (S.R.H.); (X.K.)
| | - Sara R. Holman
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; (T.W.Y.); (S.R.H.); (X.K.)
| | - Xenia Kaidonis
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; (T.W.Y.); (S.R.H.); (X.K.)
| | - Robert M. Graham
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; (T.W.Y.); (S.R.H.); (X.K.)
- School of Clinical Medicine, UNSW Medicine and Health, University of New South Wales Sydney, Kensington, NSW 2052, Australia
| | - Siiri E. Iismaa
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; (T.W.Y.); (S.R.H.); (X.K.)
- School of Clinical Medicine, UNSW Medicine and Health, University of New South Wales Sydney, Kensington, NSW 2052, Australia
| |
Collapse
|
10
|
Barathi VA, Ho CEH, Tong L. Molecular Basis of Transglutaminase-2 and Muscarinic Cholinergic Receptors in Experimental Myopia: A Target for Myopia Treatment. Biomolecules 2023; 13:1045. [PMID: 37509081 PMCID: PMC10377462 DOI: 10.3390/biom13071045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Myopia, a prevalent refractive error disorder worldwide, is characterized by the elongation of the eye, leading to visual abnormalities. Understanding the genetic factors involved in myopia is crucial for developing therapeutic and preventive measures. Unfortunately, only a limited number of genes with well-defined functionality have been associated with myopia. In this study, we found that the homozygous TGM2-deleted gene in mice protected against the development of myopia by slowing down the elongation of the eye. The effectiveness of gene knockdown was confirmed by achieving a 60 percent reduction in TGM-2 transcript levels through the use of TGM-2-specific small interfering RNA (siRNA) in human scleral fibroblasts (SFs). Furthermore, treating normal mouse SFs with various transglutaminase inhibitors led to the down-regulation of TGM-2 expression, with the most significant reduction observed with specific TGM-2 inhibitors. Additionally, the study found that the pharmacological blockade of muscarinic receptors also slowed the progression of myopia in mice, and this effect was accompanied by a decrease in TGM-2 enzyme expression. Specifically, mice with homozygous mAChR5, mAChR1, and/or mAChR4 and knockout mice exhibited higher levels of TGM-2 mRNA compared to mice with homozygous mAChR2 and three knockout mice (fold changes of 5.8, 2.9, 2.4, -2.2, and -4.7, respectively; p < 0.05). These findings strongly suggest that both TGM-2 and muscarinic receptors play central roles in the development of myopia, and blocking these factors could potentially be useful in interfering with the progression of this condition. In conclusion, targeting TGM-2 may have a beneficial effect regarding myopia, and this may also be at least partially be the mechanism of anti-muscarinic drugs in myopia. Further studies should investigate the interaction between TGM-2 and muscarinic receptors, as well as the changes in other extracellular matrix genes associated with growth during the development of myopia.
Collapse
Affiliation(s)
- Veluchamy Amutha Barathi
- Translational Preclinical Model Platform, Singapore Eye Research Institute, 20 College Road, Singapore 169856, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, National University Hospital System, 10 Medical Dr, Singapore 117597, Singapore
- Eye-Academic Clinical Program, DUKE-National University of Singapore Gr Medical School, 8 College Road, Singapore 169857, Singapore
| | - Candice E H Ho
- Translational Preclinical Model Platform, Singapore Eye Research Institute, 20 College Road, Singapore 169856, Singapore
| | - Louis Tong
- Eye-Academic Clinical Program, DUKE-National University of Singapore Gr Medical School, 8 College Road, Singapore 169857, Singapore
- Corneal and External Eye Disease, Singapore National Eye Centre, 11 Third Hospital Avenue, Singapore 168751, Singapore
- Ocular Surface Research Group, Singapore Eye Research Institute, 20 College Road, Singapore 169856, Singapore
| |
Collapse
|
11
|
Dzobo K, Dandara C. The Extracellular Matrix: Its Composition, Function, Remodeling, and Role in Tumorigenesis. Biomimetics (Basel) 2023; 8:146. [PMID: 37092398 PMCID: PMC10123695 DOI: 10.3390/biomimetics8020146] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/25/2023] Open
Abstract
The extracellular matrix (ECM) is a ubiquitous member of the body and is key to the maintenance of tissue and organ integrity. Initially thought to be a bystander in many cellular processes, the extracellular matrix has been shown to have diverse components that regulate and activate many cellular processes and ultimately influence cell phenotype. Importantly, the ECM's composition, architecture, and stiffness/elasticity influence cellular phenotypes. Under normal conditions and during development, the synthesized ECM constantly undergoes degradation and remodeling processes via the action of matrix proteases that maintain tissue homeostasis. In many pathological conditions including fibrosis and cancer, ECM synthesis, remodeling, and degradation is dysregulated, causing its integrity to be altered. Both physical and chemical cues from the ECM are sensed via receptors including integrins and play key roles in driving cellular proliferation and differentiation and in the progression of various diseases such as cancers. Advances in 'omics' technologies have seen an increase in studies focusing on bidirectional cell-matrix interactions, and here, we highlight the emerging knowledge on the role played by the ECM during normal development and in pathological conditions. This review summarizes current ECM-targeted therapies that can modify ECM tumors to overcome drug resistance and better cancer treatment.
Collapse
Affiliation(s)
- Kevin Dzobo
- Medical Research Council, SA Wound Healing Unit, Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, Groote Schuur Hospital, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa
| | - Collet Dandara
- Division of Human Genetics and Institute of Infectious Disease and Molecular Medicine, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa
- The South African Medical Research Council-UCT Platform for Pharmacogenomics Research and Translation, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa
| |
Collapse
|
12
|
Al-U’datt DGF, Tranchant CC, Al-Husein B, Hiram R, Al-Dwairi A, AlQudah M, Al-shboul O, Jaradat S, Alqbelat J, Almajwal A. Involvement and possible role of transglutaminases 1 and 2 in mediating fibrotic signalling, collagen cross-linking and cell proliferation in neonatal rat ventricular fibroblasts. PLoS One 2023; 18:e0281320. [PMID: 36848364 PMCID: PMC9970086 DOI: 10.1371/journal.pone.0281320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/19/2023] [Indexed: 03/01/2023] Open
Abstract
Transglutaminase (TG) isoforms control diverse normal and pathophysiologic processes through their capacity to cross-link extracellular matrix (ECM) proteins. Their functional and signalling roles in cardiac fibrosis remain poorly understood, despite some evidence of TG2 involvement in abnormal ECM remodelling in heart diseases. In this study, we investigated the role of TG1 and TG2 in mediating fibrotic signalling, collagen cross-linking, and cell proliferation in healthy fibroblasts by siRNA-mediated knockdown. siRNA for TG1, TG2 or negative control was transfected into cultured neonatal rat ventricular fibroblasts and cardiomyocytes. mRNA expression of TGs and profibrotic, proliferation and apoptotic markers was assessed by qPCR. Cell proliferation and soluble and insoluble collagen were determined by ELISA and LC-MS/MS, respectively. TG1 and TG2 were both expressed in neonatal rat cardiomyocytes and fibroblasts before transfection. Other TGs were not detected before and after transfection. TG2 was predominantly expressed and more effectively silenced than TG1. Knocking down TG1 or TG2 significantly modified profibrotic markers mRNA expression in fibroblasts, decreasing connective tissue growth factor (CTGF) and increasing transforming growth factor-β1 compared to the negative siRNA control. Reduced expression of collagen 3A1 was found upon TG1 knockdown, while TG2 knockdown raised α-smooth muscle actin expression. TG2 knockdown further increased fibroblast proliferation and the expression of proliferation marker cyclin D1. Lower insoluble collagen content and collagen cross-linking were evidenced upon silencing TG1 or TG2. Transcript levels of collagen 1A1, fibronectin 1, matrix metalloproteinase-2, cyclin E2, and BCL-2-associated X protein/B-cell lymphoma 2 ratio were strongly correlated with TG1 mRNA expression, whereas TG2 expression correlated strongly with CTGF mRNA abundance. These findings support a functional and signalling role for TG1 and TG2 from fibroblasts in regulating key processes underlying myocardial ECM homeostasis and dysregulation, suggesting that these isoforms could be potential and promising targets for the development of cardiac fibrosis therapies.
Collapse
Affiliation(s)
- Doa’a G. F. Al-U’datt
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Carole C. Tranchant
- School of Food Science, Nutrition and Family Studies, Faculty of Health Sciences and Community Services, Université de Moncton, New Brunswick, Canada
| | - Belal Al-Husein
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Roddy Hiram
- Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Ahmed Al-Dwairi
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohammad AlQudah
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
- Physiology Department, Arabian Gulf University, Manama, Bahrain
| | - Othman Al-shboul
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Saied Jaradat
- Princess Haya Biotechnology Center, Jordan University of Science and Technology, Irbid, Jordan
| | - Jenan Alqbelat
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Resolution of Eczema with Multivalent Peptides. JID INNOVATIONS 2022; 2:100142. [PMID: 36039327 PMCID: PMC9418603 DOI: 10.1016/j.xjidi.2022.100142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/24/2022] Open
|
14
|
Jones CFE, Di Cio S, Connelly JT, Gautrot JE. Design of an Integrated Microvascularized Human Skin-on-a-Chip Tissue Equivalent Model. Front Bioeng Biotechnol 2022; 10:915702. [PMID: 35928950 PMCID: PMC9343775 DOI: 10.3389/fbioe.2022.915702] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Tissue-engineered skin constructs have been under development since the 1980s as a replacement for human skin tissues and animal models for therapeutics and cosmetic testing. These have evolved from simple single-cell assays to increasingly complex models with integrated dermal equivalents and multiple cell types including a dermis, epidermis, and vasculature. The development of micro-engineered platforms and biomaterials has enabled scientists to better recreate and capture the tissue microenvironment in vitro, including the vascularization of tissue models and their integration into microfluidic chips. However, to date, microvascularized human skin equivalents in a microfluidic context have not been reported. Here, we present the design of a novel skin-on-a-chip model integrating human-derived primary and immortalized cells in a full-thickness skin equivalent. The model is housed in a microfluidic device, in which a microvasculature was previously established. We characterize the impact of our chip design on the quality of the microvascular networks formed and evidence that this enables the formation of more homogenous networks. We developed a methodology to harvest tissues from embedded chips, after 14 days of culture, and characterize the impact of culture conditions and vascularization (including with pericyte co-cultures) on the stratification of the epidermis in the resulting skin equivalents. Our results indicate that vascularization enhances stratification and differentiation (thickness, architecture, and expression of terminal differentiation markers such as involucrin and transglutaminase 1), allowing the formation of more mature skin equivalents in microfluidic chips. The skin-on-a-chip tissue equivalents developed, because of their realistic microvasculature, may find applications for testing efficacy and safety of therapeutics delivered systemically, in a human context.
Collapse
Affiliation(s)
- Christian F. E. Jones
- Institute of Bioengineering, Queen Mary University of London, London, United Kingdom
- School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Stefania Di Cio
- Institute of Bioengineering, Queen Mary University of London, London, United Kingdom
- School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - John T. Connelly
- The Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Julien E. Gautrot
- Institute of Bioengineering, Queen Mary University of London, London, United Kingdom
- School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
15
|
Guo T, He C, Venado A, Zhou Y. Extracellular Matrix Stiffness in Lung Health and Disease. Compr Physiol 2022; 12:3523-3558. [PMID: 35766837 PMCID: PMC10088466 DOI: 10.1002/cphy.c210032] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The extracellular matrix (ECM) provides structural support and imparts a wide variety of environmental cues to cells. In the past decade, a growing body of work revealed that the mechanical properties of the ECM, commonly known as matrix stiffness, regulate the fundamental cellular processes of the lung. There is growing appreciation that mechanical interplays between cells and associated ECM are essential to maintain lung homeostasis. Dysregulation of ECM-derived mechanical signaling via altered mechanosensing and mechanotransduction pathways is associated with many common lung diseases. Matrix stiffening is a hallmark of lung fibrosis. The stiffened ECM is not merely a sequelae of lung fibrosis but can actively drive the progression of fibrotic lung disease. In this article, we provide a comprehensive view on the role of matrix stiffness in lung health and disease. We begin by summarizing the effects of matrix stiffness on the function and behavior of various lung cell types and on regulation of biomolecule activity and key physiological processes, including host immune response and cellular metabolism. We discuss the potential mechanisms by which cells probe matrix stiffness and convert mechanical signals to regulate gene expression. We highlight the factors that govern matrix stiffness and outline the role of matrix stiffness in lung development and the pathogenesis of pulmonary fibrosis, pulmonary hypertension, asthma, chronic obstructive pulmonary disease (COPD), and lung cancer. We envision targeting of deleterious matrix mechanical cues for treatment of fibrotic lung disease. Advances in technologies for matrix stiffness measurements and design of stiffness-tunable matrix substrates are also explored. © 2022 American Physiological Society. Compr Physiol 12:3523-3558, 2022.
Collapse
Affiliation(s)
- Ting Guo
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Alabama, USA.,Department of Respiratory Medicine, the Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Chao He
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Alabama, USA
| | - Aida Venado
- Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Yong Zhou
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Alabama, USA
| |
Collapse
|
16
|
Tonoli E, Verduci I, Gabrielli M, Prada I, Forcaia G, Coveney C, Savoca MP, Boocock DJ, Sancini G, Mazzanti M, Verderio C, Verderio EAM. Extracellular transglutaminase-2, nude or associated with astrocytic extracellular vesicles, modulates neuronal calcium homeostasis. Prog Neurobiol 2022; 216:102313. [PMID: 35760142 DOI: 10.1016/j.pneurobio.2022.102313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 01/12/2023]
Abstract
We have uncovered a novel role for astrocytes-derived extracellular vesicles (EVs) in controlling intraneuronal Ca2+ concentration ([Ca2+]i) and identified transglutaminase-2 (TG2) as a surface-cargo of astrocytes-derived EVs. Incubation of hippocampal neurons with primed astrocyte-derived EVs have led to an increase in [Ca2+]i, unlike EVs from TG2-knockout astrocytes. Exposure of neurons or brain slices to extracellular TG2 promoted a [Ca2+]i rise, which was reversible upon TG2 removal and was dependent on Ca2+ influx through the plasma membrane. Patch-clamp and calcium imaging recordings revealed TG2-dependent neuronal membrane depolarization and activation of inward currents, due to the Na+/Ca2+-exchanger (NCX) operating in the reverse mode and indirect activation of L-type VOCCs, as indicated by VOCCs/NCX pharmacological inhibitors. A subunit of Na+/K+-ATPase was selected by comparative proteomics and identified as being functionally inhibited by extracellular TG2, implicating Na+/K+-ATPase inhibition in NCX reverse mode-switching leading to Ca2+ influx and higher basal [Ca2+]i. These data suggest that reactive astrocytes control intraneuronal [Ca2+]i through release of EVs with TG2 as responsible cargo, which could have a significant impact on synaptic activity in brain inflammation.
Collapse
Affiliation(s)
- Elisa Tonoli
- School of Science and Technology, Centre for Health, Ageing and Understanding of Disease, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom
| | - Ivan Verduci
- Department of Bioscience, University of Milan, Milano 20133, Italy
| | | | - Ilaria Prada
- CNR Institute of Neuroscience, Vedano al Lambro 20854, Italy
| | - Greta Forcaia
- Human Physiology Lab., School of Medicine and Surgery, University of Milano-Bicocca, Monza 20900, Italy
| | - Clare Coveney
- School of Science and Technology, The John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom
| | - Maria Pia Savoca
- School of Science and Technology, Centre for Health, Ageing and Understanding of Disease, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom
| | - David J Boocock
- School of Science and Technology, The John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom
| | - Giulio Sancini
- Human Physiology Lab., School of Medicine and Surgery, University of Milano-Bicocca, Monza 20900, Italy; NeuroMI (Milan Center for Neuroscience), School of Medicine and Surgery, University of Milano-Bicocca, Monza 20900, Italy
| | - Michele Mazzanti
- Department of Bioscience, University of Milan, Milano 20133, Italy
| | - Claudia Verderio
- CNR Institute of Neuroscience, Vedano al Lambro 20854, Italy; NeuroMI (Milan Center for Neuroscience), School of Medicine and Surgery, University of Milano-Bicocca, Monza 20900, Italy.
| | - Elisabetta A M Verderio
- School of Science and Technology, Centre for Health, Ageing and Understanding of Disease, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom; Biological Sciences Department (BiGeA), University of Bologna, Bologna 40126, Italy.
| |
Collapse
|
17
|
Sima LE, Matei D, Condello S. The Outside-In Journey of Tissue Transglutaminase in Cancer. Cells 2022; 11:cells11111779. [PMID: 35681474 PMCID: PMC9179582 DOI: 10.3390/cells11111779] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
Tissue transglutaminase (TG2) is a member of the transglutaminase family that catalyzes Ca2+-dependent protein crosslinks and hydrolyzes guanosine 5′-triphosphate (GTP). The conformation and functions of TG2 are regulated by Ca2+ and GTP levels; the TG2 enzymatically active open conformation is modulated by high Ca2+ concentrations, while high intracellular GTP promotes the closed conformation, with inhibition of the TG-ase activity. TG2’s unique characteristics and its ubiquitous distribution in the intracellular compartment, coupled with its secretion in the extracellular matrix, contribute to modulate the functions of the protein. Its aberrant expression has been observed in several cancer types where it was linked to metastatic progression, resistance to chemotherapy, stemness, and worse clinical outcomes. The N-terminal domain of TG2 binds to the 42 kDa gelatin-binding domain of fibronectin with high affinity, facilitating the formation of a complex with β-integrins, essential for cellular adhesion to the matrix. This mechanism allows TG2 to interact with key matrix proteins and to regulate epithelial to mesenchymal transition and stemness. Here, we highlight the current knowledge on TG2 involvement in cancer, focusing on its roles translating extracellular cues into activation of oncogenic programs. Improved understanding of these mechanisms could lead to new therapeutic strategies targeting this multi-functional protein.
Collapse
Affiliation(s)
- Livia Elena Sima
- Department of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, 060031 Bucharest, Romania;
| | - Daniela Matei
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
- Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Salvatore Condello
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Correspondence:
| |
Collapse
|
18
|
Al-U'datt DGF, Tranchant CC, Al-Dwairi A, AlQudah M, Al-Shboul O, Hiram R, Allen BG, Jaradat S, Alqbelat J, Abu-Zaiton AS. Implications of enigmatic transglutaminase 2 (TG2) in cardiac diseases and therapeutic developments. Biochem Pharmacol 2022; 201:115104. [PMID: 35617996 DOI: 10.1016/j.bcp.2022.115104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 01/07/2023]
Abstract
Cardiac diseases are the leading cause of mortality and morbidity worldwide. Mounting evidence suggests that transglutaminases (TGs), tissue TG (TG2) in particular, are involved in numerous molecular responses underlying the pathogenesis of cardiac diseases. The TG family has several intra- and extracellular functions in the human body, including collagen cross-linking, angiogenesis, cell growth, differentiation, migration, adhesion as well as survival. TGs are thiol- and calcium-dependent acyl transferases that catalyze the formation of a covalent bond between the γ-carboxamide group of a glutamine residue and an amine group, thus increasing the stability, rigidity, and stiffness of the myocardial extracellular matrix (ECM). Excessive accumulation of cross-linked collagen leads to increase myocardial stiffness and fibrosis. Beyond TG2 extracellular protein cross-linking action, mounting evidence suggests that this pleiotropic TG isozyme may also promote fibrotic diseases through cell survival and profibrotic pathway activation at the signaling, transcriptional and translational levels. Due to its multiple functions and localizations, TG2 fulfils critical yet incompletely understood roles in myocardial fibrosis and associated heart diseases, such as cardiac hypertrophy, heart failure, and age-related myocardial stiffness under several conditions. This review summarizes current knowledge and existing gaps regarding the ECM-dependent and ECM-independent roles of TG2 and highlights the therapeutic prospects of targeting TG2 to treat cardiac diseases.
Collapse
Affiliation(s)
- Doa'a G F Al-U'datt
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan.
| | - Carole C Tranchant
- School of Food Science, Nutrition and Family Studies, Faculty of Health Sciences and Community Services, Université de Moncton, New Brunswick, Canada
| | - Ahmed Al-Dwairi
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Mohammad AlQudah
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Othman Al-Shboul
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Roddy Hiram
- Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada; Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Bruce G Allen
- Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada; Department of Medicine, Université de Montréal, Montreal, Quebec, Canada; Department of Pharmacology and Physiology, Université de Montréal, Montreal, Quebec, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Saied Jaradat
- Princess Haya Biotechnology Center, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Jenan Alqbelat
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Ahmed S Abu-Zaiton
- Department of Biological Sciences, Al al-bayt University, Al-Mafraq, Jordan
| |
Collapse
|
19
|
Hoober JK, Eggink LL. The Discovery and Function of Filaggrin. Int J Mol Sci 2022; 23:ijms23031455. [PMID: 35163390 PMCID: PMC8835998 DOI: 10.3390/ijms23031455] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/17/2022] [Accepted: 01/26/2022] [Indexed: 12/11/2022] Open
Abstract
Keratohyalin granules were discovered in the mid-19th century in cells that terminally differentiate to form the outer, cornified layer of the epidermis. The first indications of the composition of these structures emerged in the 1960s from a histochemical stain for histidine, followed by radioautographic evidence of a high incidence of histidine incorporation into newly synthesized proteins in cells containing the granules. Research during the next three decades revealed the structure and function of a major protein in these granules, which was initially called the ‘histidine-rich protein’. Steinert and Dale named the protein ‘filaggrin’ in 1981 because of its ability to aggregate keratin intermediate filaments. The human gene for the precursor, ‘profilaggrin,’ was reported in 1991 to encode 10, 11 or 12 nearly identical repeats. Remarkably, the mouse and rat genes encode up to 20 repeats. The lifetime of filaggrin is the time required for keratinocytes in the granular layer to move into the inner cornified layer. During this transition, filaggrin facilitates the collapse of corneocytes into ‘building blocks’ that become an impermeable surface barrier. The subsequent degradation of filaggrin is as remarkable as its synthesis, and the end-products aid in maintaining moisture in the cornified layer. It was apparent that ichthyosis vulgaris and atopic dermatitis were associated with the absence of this protein. McLean’s team in 2006 identified the cause of these diseases by discovering loss-of-function mutations in the profilaggrin gene, which led to dysfunction of the surface barrier. This story illustrates the complexity in maintaining a healthy, functional epidermis.
Collapse
|
20
|
Sima LE, Chen S, Cardenas H, Zhao G, Wang Y, Ivan C, Huang H, Zhang B, Matei D. Loss of host tissue transglutaminase boosts antitumor T cell immunity by altering STAT1/STAT3 phosphorylation in ovarian cancer. J Immunother Cancer 2021; 9:jitc-2021-002682. [PMID: 34593619 PMCID: PMC8487211 DOI: 10.1136/jitc-2021-002682] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Tissue transglutaminase (TG2), an enzyme overexpressed in cancer cells, promotes metastasis and resistance to chemotherapy. Its distinct effects in cancer versus the host compartments have not been elucidated. METHODS Here, by using a TG2-/- syngeneic ovarian cancer mouse model, we assessed the effects of TG2 deficiency in the host tissues on antitumor immunity and tumor progression. Multicolor flow cytometry was used to phenotype immune cell populations in the peritoneal environment. Cancer cells recovered from malignant ascites were characterized by RNA sequencing, proliferation, and apoptosis assays. RESULTS We observed that host TG2 loss delayed tumor growth and ascites accumulation and caused increased infiltration of CD8+ T cells and decreased numbers of myeloid cells in the peritoneal fluid. Tumor antigen-specific CD8+ T cell cytotoxic responses were enhanced in ascites from TG2-/- versus TG2+/+ mice and CD8+ T cell depletion caused accelerated ascites accumulation in TG2-/- mice. CD8+ T cells from tumor-bearing TG2-/- mice displayed an effector T cell phenotype, differentiated toward effector memory (Tem). Mechanistically, absence of TG2 augmented signals promoting T cell activation, such as increased cytokine-induced STAT1 and attenuated STAT3 phosphorylation in T cells. Additionally, immune-suppressive myeloid cell populations were reduced in the peritoneal milieu of TG2-/- tumor-bearing mice. In response to the more robust immune response caused by loss of TG2, cancer cells growing intraperitoneally exhibited an interferon-γ(IFN-γ) responsive gene signature and underwent apoptosis. In human specimens, stromal, not tumor, TG2 expression correlated indirectly with numbers of tumor-infiltrating lymphocytes. CONCLUSIONS Collectively, our data demonstrate decreased tumor burden, increased activation and effector function of T cells, and loss of immunosuppressive signals in the tumor microenvironment of TG2-/- mice. We propose that TG2 acts as an attenuator of antitumor T cell immunity and is a new immunomodulatory target.
Collapse
Affiliation(s)
- Livia Elena Sima
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Department of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Siqi Chen
- Department of Medicine; Hematology/Oncology Division, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Horacio Cardenas
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Guangyuan Zhao
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yinu Wang
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Cristina Ivan
- Department of Experimental Therapeutics, Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hao Huang
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bin Zhang
- Department of Medicine; Hematology/Oncology Division, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA .,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Daniela Matei
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA .,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| |
Collapse
|
21
|
Platelet-Released Growth Factors Induce Genes Involved in Extracellular Matrix Formation in Human Fibroblasts. Int J Mol Sci 2021; 22:ijms221910536. [PMID: 34638874 PMCID: PMC8508971 DOI: 10.3390/ijms221910536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023] Open
Abstract
Platelet concentrate products are increasingly used in many medical disciplines due to their regenerative properties. As they contain a variety of chemokines, cytokines, and growth factors, they are used to support the healing of chronic or complicated wounds. To date, underlying cellular mechanisms have been insufficiently investigated. Therefore, we analyzed the influence of Platelet-Released Growth Factors (PRGF) on human dermal fibroblasts. Whole transcriptome sequencing and gene ontology (GO) enrichment analysis of PRGF-treated fibroblasts revealed an induction of several genes involved in the formation of the extracellular matrix (ECM). Real-time PCR analyses of PRGF-treated fibroblasts and skin explants confirmed the induction of ECM-related genes, in particular transforming growth factor beta-induced protein (TGFBI), fibronectin 1 (FN1), matrix metalloproteinase-9 (MMP-9), transglutaminase 2 (TGM2), fermitin family member 1 (FERMT1), collagen type I alpha 1 (COL1A1), a disintegrin and metalloproteinase 19 (ADAM19), serpin family E member 1 (SERPINE1) and lysyl oxidase-like 3 (LOXL3). The induction of these genes was time-dependent and in part influenced by the epidermal growth factor receptor (EGFR). Moreover, PRGF induced migration and proliferation of the fibroblasts. Taken together, the observed effects of PRGF on human fibroblasts may contribute to the underlying mechanisms that support the beneficial wound-healing effects of thrombocyte concentrate products.
Collapse
|
22
|
Takeuchi T, Tatsukawa H, Shinoda Y, Kuwata K, Nishiga M, Takahashi H, Hase N, Hitomi K. Spatially Resolved Identification of Transglutaminase Substrates by Proteomics in Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2021; 65:319-330. [PMID: 34264172 DOI: 10.1165/rcmb.2021-0012oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by the invariably progressive deposition of fibrotic tissue in the lungs and overall poor prognosis. Transglutaminase 2 (TG2) is an enzyme that crosslinks glutamine and lysine residues and is involved in IPF pathogenesis. Despite the accumulating evidence implicating TG2 as a critical enzyme, the causative function and direct target of TG2 relating to this pathogenesis remain unelucidated. Here, we clarified the distributions of TG2 protein/activity and conducted quantitative proteomics analyses of possible substrates crosslinked by TG2 on unfixed lung sections in a mouse pulmonary fibrosis model. We identified 126 possible substrates as markedly increased TG2-dependently in fibrotic lung. Gene ontology analysis revealed that these identified proteins were mostly enriched in the lipid metabolic process, immune system process, and protein transport. In addition, these proteins enriched in the 21 pathways including phagosome, lipid metabolism, several immune responses, and protein processing in endoplasmic reticulum. Furthermore, the network analyses screened out the 6 clusters and top 20 hub proteins with higher scores, which are related to ER stress and peroxisome proliferator-activated receptor signals. Several enriched pathways and categories were identified, and some of which were the same terms based on transcription analysis in IPF. Our results provide novel pathological molecular networks driven by protein crosslinking via TG2, which can lead to the development of new therapeutic targets for IPF.
Collapse
Affiliation(s)
- Taishu Takeuchi
- Tokai National Higher Education and Research System, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Hideki Tatsukawa
- Tokai National Higher Education and Research System, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan;
| | - Yoshiki Shinoda
- Tokai National Higher Education and Research System, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Keiko Kuwata
- Tokai National Higher Education and Research System, Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya, Japan
| | | | | | | | - Kiyotaka Hitomi
- Tokai National Higher Education and Research System, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
23
|
Tempest R, Guarnerio S, Maani R, Cooper J, Peake N. The Biological and Biomechanical Role of Transglutaminase-2 in the Tumour Microenvironment. Cancers (Basel) 2021; 13:cancers13112788. [PMID: 34205140 PMCID: PMC8199963 DOI: 10.3390/cancers13112788] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/17/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
Transglutaminase-2 (TG2) is the most highly and ubiquitously expressed member of the transglutaminase enzyme family and is primarily involved in protein cross-linking. TG2 has been implicated in the development and progression of numerous cancers, with a direct role in multiple cellular processes and pathways linked to apoptosis, chemoresistance, epithelial-mesenchymal transition, and stem cell phenotype. The tumour microenvironment (TME) is critical in the formation, progression, and eventual metastasis of cancer, and increasing evidence points to a role for TG2 in matrix remodelling, modulation of biomechanical properties, cell adhesion, motility, and invasion. There is growing interest in targeting the TME therapeutically in response to advances in the understanding of its critical role in disease progression, and a number of approaches targeting biophysical properties and biomechanical signalling are beginning to show clinical promise. In this review we aim to highlight the wide array of processes in which TG2 influences the TME, focussing on its potential role in the dynamic tissue remodelling and biomechanical events increasingly linked to invasive and aggressive behaviour. Drug development efforts have yielded a range of TG2 inhibitors, and ongoing clinical trials may inform strategies for targeting the biomolecular and biomechanical function of TG2 in the TME.
Collapse
|
24
|
Orr AN, Thompson JM, Lyttle JM, Watts SW. Transglutaminases Are Active in Perivascular Adipose Tissue. Int J Mol Sci 2021; 22:ijms22052649. [PMID: 33808023 PMCID: PMC7961980 DOI: 10.3390/ijms22052649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/27/2021] [Accepted: 03/03/2021] [Indexed: 11/16/2022] Open
Abstract
Transglutaminases (TGs) are crosslinking enzymes best known for their vascular remodeling in hypertension. They require calcium to form an isopeptide bond, connecting a glutamine to a protein bound lysine residue or a free amine donor such as norepinephrine (NE) or serotonin (5-HT). We discovered that perivascular adipose tissue (PVAT) contains significant amounts of these amines, making PVAT an ideal model to test interactions of amines and TGs. We hypothesized that transglutaminases are active in PVAT. Real time RT-PCR determined that Sprague Dawley rat aortic, superior mesenteric artery (SMA), and mesenteric resistance vessel (MR) PVATs express TG2 and blood coagulation Factor-XIII (FXIII) mRNA. Consistent with this, immunohistochemical analyses support that these PVATs all express TG2 and FXIII protein. The activity of TG2 and FXIII was investigated in tissue sections using substrate peptides that label active TGs when in a catalyzing calcium solution. Both TG2 and FXIII were active in rat aortic PVAT, SMAPVAT, and MRPVAT. Western blot analysis determined that the known TG inhibitor cystamine reduced incorporation of experimentally added amine donor 5-(biotinamido)pentylamine (BAP) into MRPVAT. Finally, experimentally added NE competitively inhibited incorporation of BAP into MRPVAT adipocytes. Further studies to determine the identity of amidated proteins will give insight into how these enzymes contribute to functions of PVAT and, ultimately, blood pressure.
Collapse
|
25
|
Rosas M, Slatter DA, Obaji SG, Webber JP, Alvarez-Jarreta J, Thomas CP, Aldrovandi M, Tyrrell VJ, Jenkins PV, O’Donnell VB, Collins PW. The procoagulant activity of tissue factor expressed on fibroblasts is increased by tissue factor-negative extracellular vesicles. PLoS One 2020; 15:e0240189. [PMID: 33031441 PMCID: PMC7544082 DOI: 10.1371/journal.pone.0240189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Tissue factor (TF) is critical for the activation of blood coagulation. TF function is regulated by the amount of externalised phosphatidylserine (PS) and phosphatidylethanolamine (PE) on the surface of the cell in which it is expressed. We investigated the role PS and PE in fibroblast TF function. Fibroblasts expressed 6-9 x 104 TF molecules/cell but had low specific activity for FXa generation. We confirmed that this was associated with minimal externalized PS and PE and characterised for the first time the molecular species of PS/PE demonstrating that these differed from those found in platelets. Mechanical damage of fibroblasts, used to simulate vascular injury, increased externalized PS/PE and led to a 7-fold increase in FXa generation that was inhibited by annexin V and an anti-TF antibody. Platelet-derived extracellular vesicles (EVs), that did not express TF, supported minimal FVIIa-dependent FXa generation but substantially increased fibroblast TF activity. This enhancement in fibroblast TF activity could also be achieved using synthetic liposomes comprising 10% PS without TF. In conclusion, despite high levels of surface TF expression, healthy fibroblasts express low levels of external-facing PS and PE limiting their ability to generate FXa. Addition of platelet-derived TF-negative EVs or artificial liposomes enhanced fibroblast TF activity in a PS dependent manner. These findings contribute information about the mechanisms that control TF function in the fibroblast membrane.
Collapse
Affiliation(s)
- Marcela Rosas
- Institute of Infection and Immunity, and Systems Immunity Research Institute, School of Medicine Cardiff University, Cardiff, United Kingdom
| | - David A. Slatter
- Institute of Infection and Immunity, and Systems Immunity Research Institute, School of Medicine Cardiff University, Cardiff, United Kingdom
| | - Samya G. Obaji
- Institute of Infection and Immunity, and Systems Immunity Research Institute, School of Medicine Cardiff University, Cardiff, United Kingdom
| | - Jason P. Webber
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Jorge Alvarez-Jarreta
- Institute of Infection and Immunity, and Systems Immunity Research Institute, School of Medicine Cardiff University, Cardiff, United Kingdom
| | - Christopher P. Thomas
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | - Maceler Aldrovandi
- Institute of Infection and Immunity, and Systems Immunity Research Institute, School of Medicine Cardiff University, Cardiff, United Kingdom
| | - Victoria J. Tyrrell
- Institute of Infection and Immunity, and Systems Immunity Research Institute, School of Medicine Cardiff University, Cardiff, United Kingdom
| | - Peter V. Jenkins
- Institute of Infection and Immunity, and Systems Immunity Research Institute, School of Medicine Cardiff University, Cardiff, United Kingdom
| | - Valerie B. O’Donnell
- Institute of Infection and Immunity, and Systems Immunity Research Institute, School of Medicine Cardiff University, Cardiff, United Kingdom
| | - Peter W. Collins
- Institute of Infection and Immunity, and Systems Immunity Research Institute, School of Medicine Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
26
|
Colak B, Wu L, Cozens EJ, Gautrot JE. Modulation of Thiol-Ene Coupling by the Molecular Environment of Polymer Backbones for Hydrogel Formation and Cell Encapsulation. ACS APPLIED BIO MATERIALS 2020; 3:6497-6509. [PMID: 35021781 DOI: 10.1021/acsabm.0c00908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Thiol-ene radical coupling is increasingly used for the biofunctionalization of biomaterials and the formation of 3D hydrogels enabling cell encapsulation. Indeed, thiol-ene chemistry presents interesting features that are particularly attractive for platforms requiring specific reactions of peptides or proteins, in particular in situ, during cell culture or encapsulation: thiol-ene coupling occurs specifically between a thiol and a nonactivated alkene (unlike Michael addition); it is relatively tolerant to the presence of oxygen; and it can be triggered by light. Despite such interest, little is known about the factors impacting polymer thiol-ene chemistry in situ. Here, we explore some of the molecular parameters controlling photoinitiated thiol-ene coupling (with UV and visible-light irradiation), with a series of alkene-functionalized polymer backbones. 1H NMR spectroscopy is used to quantify the efficiency of couplings, whereas photorheology allows correlation to gelation and mechanical properties of the resulting materials. We identify the impact of weak electrolytes in regulating coupling efficiency, presumably via thiol deprotonation and regulation of local diffusion. The conformation of associated polymer chains, regulated by the pH, is also proposed to play an important role in the modulation of both thiol-ene coupling and cross-linking efficiencies. Ultimately, suitable conditions for cell encapsulations are identified for a range of polymer backbones and their impact on cytocompatibility is investigated for cell encapsulation and tissue engineering applications. Overall, our work demonstrates the importance of polymer backbone design to regulate thiol-ene coupling and in situ hydrogel formation.
Collapse
|
27
|
Evaluation of Dental Pulp Stem Cell Heterogeneity and Behaviour in 3D Type I Collagen Gels. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3034727. [PMID: 32964026 PMCID: PMC7501571 DOI: 10.1155/2020/3034727] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/27/2020] [Accepted: 09/03/2020] [Indexed: 01/09/2023]
Abstract
Dental pulp stem cells (DPSCs) are increasingly being advocated for regenerative medicine-based therapies. However, significant heterogeneity in the genotypic/phenotypic properties of DPSC subpopulations exist, influencing their therapeutic potentials. As most studies have established DPSC heterogeneity using 2D culture approaches, we investigated whether heterogeneous DPSC proliferative and contraction/remodelling capabilities were further evident within 3D type I collagen gels in vitro. DPSC subpopulations were isolated from human third molars and identified as high/low proliferative and multipotent/unipotent, following in vitro culture expansion and population doubling (PD) analysis. High proliferative/multipotent DPSCs, such as A3 (30 PDs and 80 PDs), and low proliferative/unipotent DPSCs, such as A1 (17 PDs), were cultured in collagen gels for 12 days, either attached or detached from the surrounding culture plastic. Collagen architecture and high proliferative/multipotent DPSC morphologies were visualised by Scanning Electron Microscopy and FITC-phalloidin/Fluorescence Microscopy. DPSC proliferation (cell counts), contraction (% diameter reductions), and remodelling (MMP-2/MMP-9 gelatin zymography) of collagen gels were also evaluated. Unexpectedly, no proliferation differences existed between DPSCs, A3 (30 PDs) and A1 (17 PDs), although A3 (80 PDs) responses were significantly reduced. Despite rapid detached collagen gel contraction with A3 (30 PDs), similar contraction rates were determined with A1 (17 PDs), although A3 (80 PDs) contraction was significantly impaired. Gel contraction correlated to distinct gelatinase profiles. A3 (30 PDs) possessed superior MMP-9 and comparable MMP-2 activities to A1 (17 PDs), whereas A3 (80 PDs) had significantly reduced MMP-2/MMP-9. High proliferative/multipotent DPSCs, A3 (30 PDs), further exhibited fibroblast-like morphologies becoming polygonal within attached gels, whilst losing cytoskeletal organization and fibroblastic morphologies in detached gels. This study demonstrates that heterogeneity exists in the gel contraction and MMP expression/activity capabilities of DPSCs, potentially reflecting differences in their abilities to degrade biomaterial scaffolds and regulate cellular functions in 3D environments and their regenerative properties overall. Thus, such findings enhance our understanding of the molecular and phenotypic characteristics associated with high proliferative/multipotent DPSCs.
Collapse
|
28
|
Platelet-Released Growth Factors and Platelet-Rich Fibrin Induce Expression of Factors Involved in Extracellular Matrix Organization in Human Keratinocytes. Int J Mol Sci 2020; 21:ijms21124404. [PMID: 32575800 PMCID: PMC7378768 DOI: 10.3390/ijms21124404] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023] Open
Abstract
Platelet-released growth factor (PRGF) is a thrombocyte concentrate lysate which, like its clinically equivalent variations (e.g., Vivostat PRF® (platelet-rich fibrin)), is known to support the healing of chronic and hard-to-heal wounds. However, studies on the effect of PRGF on keratinocytes remain scarce. This study aims to identify genes in keratinocytes that are significantly influenced by PRGF. Therefore, we performed a whole transcriptome and gene ontology (GO) enrichment analysis of PRGF-stimulated human primary keratinocytes. This revealed an increased expression of genes involved in extracellular matrix (ECM) organization. Real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA) analysis confirmed the PRGF-mediated induction of selected ECM-related factors such as transforming growth factor beta-induced protein, fibronectin 1, matrix metalloproteinase-9, transglutaminase 2, fermitin family member 1, collagen type I alpha 1 and collagen type XXII alpha 1. PRGF-induced expression of the above factors was influenced by blockade of the epidermal growth factor receptor (EGFR), a receptor playing a crucial role in wound healing. A differential induction of the investigated factors was also detected in skin explants exposed to PRGF and in experimentally generated in vivo wounds treated with Vivostat PRF®. Together, our study indicates that the induction of ECM-related factors may contribute to the beneficial wound-healing effects of PRGF-based formulations.
Collapse
|
29
|
Bordeleau F, Wang W, Simmons A, Antonyak MA, Cerione RA, Reinhart-King CA. Tissue transglutaminase 2 regulates tumor cell tensional homeostasis by increasing contractility. J Cell Sci 2020; 133:jcs.231134. [PMID: 31822629 DOI: 10.1242/jcs.231134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 12/01/2019] [Indexed: 12/21/2022] Open
Abstract
Abnormal tensional cellular homeostasis is now considered a hallmark of cancer. Despite this, the origin of this abnormality remains unclear. In this work, we investigated the role of tissue transglutaminase 2 (TG2, also known as TGM2), a protein associated with poor prognosis and increased metastatic potential, and its relationship to the EGF receptor in the regulation of the mechanical state of tumor cells. Remarkably, we observed a TG2-mediated modulation of focal adhesion composition as well as stiffness-induced FAK activation, which was linked with a distinctive increase in cell contractility, in experiments using both pharmacological and shRNA-based approaches. Additionally, the increased contractility could be reproduced in non-malignant cells upon TG2 expression. Moreover, the increased cell contractility mediated by TG2 was largely due to the loss of EGFR-mediated inhibition of cell contractility. These findings establish intracellular TG2 as a regulator of cellular tensional homeostasis and suggest the existence of signaling switches that control the contribution of growth factor receptors in determining the mechanical state of a cell.
Collapse
Affiliation(s)
- Francois Bordeleau
- CHU de Québec-Université Laval Research Center (Oncology division), Université Laval Cancer Research Center and Faculty of Medecine, Université Laval, Québec G1R 3S3, Canada .,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA
| | - Wenjun Wang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA
| | - Alysha Simmons
- Pathobiology Graduate Program, Brown University, Providence, RI 02912, USA
| | - Marc A Antonyak
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Richard A Cerione
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
30
|
Shi W, Que Y, Lv D, Bi S, Xu Z, Wang D, Zhang Z. Overexpression of TG2 enhances the differentiation of ectomesenchymal stem cells into neuron‑like cells and promotes functional recovery in adult rats following spinal cord injury. Mol Med Rep 2019; 20:2763-2773. [PMID: 31322240 PMCID: PMC6691247 DOI: 10.3892/mmr.2019.10502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 05/31/2019] [Indexed: 12/15/2022] Open
Abstract
Ectomesenchymal stem cells (EMSCs) represent a type of adult stem cells derived from the cranial neural crest. These cells are capable of self-renewal and have the potential for multidirectional differentiation. Tissue transglutaminase type 2 (TG2) is a ubiquitously expressed member of the transglutaminase family of Ca2+-dependent crosslinking enzymes. However, the effect of TG2 on neural differentiation and proliferation of EMSCs remains unknown. To determine whether TG2 improves EMSC proliferation and neurogenesis, a stable TG2-overexpressing EMSC cell line (TG2-EMSCs) was established by using an adenovirus system. Immunofluorescence staining and western blot analyses demonstrated that TG2 overexpression had beneficial effects on the rate of EMSC neurogenesis, and that the proliferative capacity of TG2-EMSCs was higher than that of controls. Furthermore, the results of western blotting revealed that extracellular matrix (ECM) and neurotrophic factors were upregulated during the differentiation of TG2-EMSCs. Notably, TG2-EMSC transplantation in an animal model of spinal cord injury (SCI), TG2-EMSCs differentiated into neuron-like cells and enhanced the repair of SCI. Taken together, these results demonstrated that TG2 gene transfection may offer a novel strategy to enhance EMSC proliferation and neurogenesis in vivo and in vitro, which may ultimately facilitate EMSC-based transplantation therapy in patients with SCI.
Collapse
Affiliation(s)
- Wentao Shi
- Department of Orthopedics, Gaochun People's Hospital of Nanjing, Nanjing, Jiangsu 211300, P.R. China
| | - Yunduan Que
- Department of Orthopedics, Gaochun People's Hospital of Nanjing, Nanjing, Jiangsu 211300, P.R. China
| | - Demin Lv
- Department of Embryology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Shiqi Bi
- Department of Embryology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Zhonghua Xu
- Department of Orthopedics, Gaochun People's Hospital of Nanjing, Nanjing, Jiangsu 211300, P.R. China
| | - Dongmin Wang
- Department of Orthopedics, Gaochun People's Hospital of Nanjing, Nanjing, Jiangsu 211300, P.R. China
| | - Zhijian Zhang
- Department of Embryology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| |
Collapse
|
31
|
Kim JY, Wee YM, Choi MY, Jung HR, Choi JY, Kwon HW, Jung JH, Cho YM, Go H, Han M, Kim YH, Han DJ, Shin S. Urinary transglutaminase 2 as a potent biomarker to predict interstitial fibrosis and tubular atrophy of kidney allograft during early posttransplant period in deceased donor kidney transplantation. Ann Surg Treat Res 2019; 97:27-35. [PMID: 31297350 PMCID: PMC6609414 DOI: 10.4174/astr.2019.97.1.27] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/26/2019] [Accepted: 05/14/2019] [Indexed: 11/30/2022] Open
Abstract
Purpose Transglutaminase type 2 (TG2) is an extracellular matrix crosslinking enzyme with a pivotal role in kidney fibrosis. We tested whether quantification of urinary TG2 may represent a noninvasive method to estimate the severity of kidney allograft fibrosis. Methods We prospectively collected urine specimens from 18 deceased donor kidney transplant recipients at 1-day, 7-day, 1-month, 3-month, and 6-month posttransplant. In addition, kidney allograft tissue specimens at 0-day and 6-month posttransplant were sampled to analyze the correlation of urinary TG2 and kidney allograft fibrosis. Results Thirteen recipients had increased interstitial fibrosis and tubular atrophy (IFTA) scores at the 6-month protocol biopsy (IFTA group). The mean level of urinary TG2 in the IFTA group was higher compared to that of 5 other recipients without IFTA (no IFTA group). Conversely, the mean level of urinary syndecan-4 in the IFTA group was lower than levels in patients without IFTA. In the IFTA group, double immunofluorescent staining revealed that TG2 intensity was significantly upregulated and colocalizations of TG2/heparin sulfate proteoglycan and nuclear syndecan-4 were prominent, usually around tubular structures. Conclusion Urinary TG2 in early posttransplant periods is a potent biomarker for kidney allograft inflammation or fibrosis.
Collapse
Affiliation(s)
- Jee Yeon Kim
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yu-Mee Wee
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Monica Young Choi
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hey Rim Jung
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ji Yoon Choi
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyun Wook Kwon
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Joo Hee Jung
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yong Mee Cho
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Heounjeong Go
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Minkyu Han
- Department of Clinical Epidemiology and Biostatistics, Asan Medical Center, Seoul, Korea
| | - Young Hoon Kim
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Duck Jong Han
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sung Shin
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
32
|
Furini G, Verderio EAM. Spotlight on the Transglutaminase 2-Heparan Sulfate Interaction. Med Sci (Basel) 2019; 7:E5. [PMID: 30621228 PMCID: PMC6359630 DOI: 10.3390/medsci7010005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 02/07/2023] Open
Abstract
Heparan sulfate proteoglycans (HSPGs), syndecan-4 (Sdc4) especially, have been suggested as potential partners of transglutaminase-2 (TG2) in kidney and cardiac fibrosis, metastatic cancer, neurodegeneration and coeliac disease. The proposed role for HSPGs in the trafficking of TG2 at the cell surface and in the extracellular matrix (ECM) has been linked to the fibrogenic action of TG2 in experimental models of kidney fibrosis. As the TG2-HSPG interaction is largely mediated by the heparan sulfate (HS) chains of proteoglycans, in the past few years a number of studies have investigated the affinity of TG2 for HS, and the TG2 heparin binding site has been mapped with alternative outlooks. In this review, we aim to provide a compendium of the main literature available on the interaction of TG2 with HS, with reference to the pathological processes in which extracellular TG2 plays a role.
Collapse
Affiliation(s)
- Giulia Furini
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK.
| | - Elisabetta A M Verderio
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK.
- BiGeA, University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
33
|
Wee YM, Lee HW, Choi MY, Jung HR, Choi JY, Kwon HW, Jung JH, Kim YH, Han DJ, Shin S. A composite of urinary biomarkers for differentiating between tubulointerstitial inflammation and interstitial fibrosis/tubular atrophy in kidney allografts. Ann Hepatobiliary Pancreat Surg 2018; 22:310-320. [PMID: 30588521 PMCID: PMC6295379 DOI: 10.14701/ahbps.2018.22.4.310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 10/20/2018] [Accepted: 10/20/2018] [Indexed: 01/28/2023] Open
Abstract
Backgrounds/Aims Compared with a single urinary biomarker, a composite of multiple urinary biomarkers may be more helpful for differentiating tubulointerstitial inflammation from interstitial fibrosis/tubular atrophy (IFTA) in kidney allografts. Methods In this cross-sectional cohort study, we collected urine samples from 115 patients with for-cause biopsy, 53 patients with stable allografts, and 50 living kidney donors. We measured the urinary levels of transglutaminase 2 (TG2), syndecan-4 (SDC4), alpha 1 microglobulin (A1M), interferon-inducible protein 10 (IP-10), interleukin 6 (IL-6), and monocyte chemoattractant protein-1 (MCP-1). Results The for-cause biopsy group showed significantly higher levels of logeTG2/Cr, logeA1M/Cr, logeIL-6/Cr, and logeMCP-1/Cr compared with other groups. In the for-cause biopsy group, logeTG2/Cr level was positively correlated with the severity of IFTA. After adjusting for age, sex, body mass index, diabetes, hypertension, cardiovascular disease, and the interval between kidney transplant and biopsy, TG2 and the interval between transplant and biopsy were significantly correlated variables for the severity of IFTA. Regarding tubulointerstitial inflammation, Body mass index, TG2, SDC4, and IP-10 were positively-correlated variables, and MCP-1 and the interval between transplant and biopsy were negatively-correlated variables. Conclusions Our results show that post-transplant urinary levels of TG2, SDC4, MCP-1 and IP-10 may be a useful biomarker for tubulointerstitial inflammation and IFTA.
Collapse
Affiliation(s)
- Yu-Mee Wee
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hae-Won Lee
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Monica Young Choi
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hey Rim Jung
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ji Yoon Choi
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyun Wook Kwon
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Joo Hee Jung
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Young Hoon Kim
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Duck Jong Han
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sung Shin
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
34
|
Min B, Chung KC. New insight into transglutaminase 2 and link to neurodegenerative diseases. BMB Rep 2018; 51:5-13. [PMID: 29187283 PMCID: PMC5796628 DOI: 10.5483/bmbrep.2018.51.1.227] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Indexed: 12/13/2022] Open
Abstract
Formation of toxic protein aggregates is a common feature and mainly contributes to the pathogenesis of neurodegenerative diseases (NDDs), which include amyotrophic lateral sclerosis (ALS), Alzheimer’s, Parkinson’s, Huntington’s, and prion diseases. The transglutaminase 2 (TG2) gene encodes a multifunctional enzyme, displaying four types of activity, such as transamidation, GTPase, protein disulfide isomerase, and protein kinase activities. Many studies demonstrated that the calcium-dependent transamidation activity of TG2 affects the formation of insoluble and toxic amyloid aggregates that mainly consisted of NDD-related proteins. So far, many important and NDD-related substrates of TG2 have been identified, including amlyoid-β, tau, α-synuclein, mutant huntingtin, and ALS-linked trans-activation response (TAR) DNA-binding protein 43. Recently, the formation of toxic inclusions mediated by several TG2 substrates were efficiently inhibited by TG2 inhibitors. Therefore, the development of highly specific TG2 inhibitors would be an important tool in alleviating the progression of TG2-related brain disorders. In this review, the authors discuss recent advances in TG2 biochemistry, several mechanisms of molecular regulation and pleotropic signaling functions, and the presumed role of TG2 in the progression of many NDDs.
Collapse
Affiliation(s)
- Boram Min
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Kwang Chul Chung
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
35
|
Wujak L, Schnieder J, Schaefer L, Wygrecka M. LRP1: A chameleon receptor of lung inflammation and repair. Matrix Biol 2017; 68-69:366-381. [PMID: 29262309 DOI: 10.1016/j.matbio.2017.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 12/17/2022]
Abstract
The lung displays a remarkable capability to regenerate following injury. Considerable effort has been made thus far to understand the cardinal processes underpinning inflammation and reconstruction of lung tissue. However, the factors determining the resolution or persistence of inflammation and efficient wound healing or aberrant remodeling remain largely unknown. Low density lipoprotein receptor-related protein 1 (LRP1) is an endocytic/signaling cell surface receptor which controls cellular and molecular mechanisms driving the physiological and pathological inflammatory reactions and tissue remodeling in several organs. In this review, we will discuss the impact of LRP1 on the consecutive steps of the inflammatory response and its role in the balanced tissue repair and aberrant remodeling in the lung.
Collapse
Affiliation(s)
- Lukasz Wujak
- Department of Biochemistry, Justus Liebig University, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Jennifer Schnieder
- Department of Biochemistry, Justus Liebig University, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Liliana Schaefer
- Goethe University School of Medicine, University Hospital, Theodor-Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Malgorzata Wygrecka
- Department of Biochemistry, Justus Liebig University, Friedrichstrasse 24, 35392 Giessen, Germany; Member of the German Center for Lung Research (DZL), Germany.
| |
Collapse
|
36
|
Godwin JW, Debuque R, Salimova E, Rosenthal NA. Heart regeneration in the salamander relies on macrophage-mediated control of fibroblast activation and the extracellular landscape. NPJ Regen Med 2017; 2. [PMID: 29201433 PMCID: PMC5677961 DOI: 10.1038/s41536-017-0027-y] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In dramatic contrast to the poor repair outcomes for humans and rodent models such as mice, salamanders and some fish species are able to completely regenerate heart tissue following tissue injury, at any life stage. This capacity for complete cardiac repair provides a template for understanding the process of regeneration and for developing strategies to improve human cardiac repair outcomes. Using a cardiac cryo-injury model we show that heart regeneration is dependent on the innate immune system, as macrophage depletion during early time points post-injury results in regeneration failure. In contrast to the transient extracellular matrix that normally accompanies regeneration, this intervention resulted in a permanent, highly cross-linked extracellular matrix scar derived from alternative fibroblast activation and lysyl-oxidase enzyme synthesis. The activation of cardiomyocyte proliferation was not affected by macrophage depletion, indicating that cardiomyocyte replacement is an independent feature of the regenerative process, and is not sufficient to prevent fibrotic progression. These findings highlight the interplay between macrophages and fibroblasts as an important component of cardiac regeneration, and the prevention of fibrosis as a key therapeutic target in the promotion of cardiac repair in mammals. Heart regeneration in salamanders is dependent on the activation of immune cells. James Godwin of The Jackson Laboratory and MDI Biological Laboratory in the US and colleagues depleted all major organs of a group of Mexican salamanders of macrophages, an immune cell responsible for removing cellular debris. They then injured the salamanders’ heart wall with a liquid nitrogen-cooled probe. Unlike adult mammals, zebrafish and salamanders can normally regenerate their hearts after injury. The team found that macrophage-depleted salamanders were unable to regenerate their hearts compared to a control group. Macrophage depletion led to the formation of a permanent fibrotic extracellular matrix scar. But it did not affect the proliferation of heart muscle cells, indicating that their function is not sufficient to prevent the progression of injury toward fibrosis instead of regeneration.
Collapse
Affiliation(s)
- J W Godwin
- The Jackson laboratory, Bar Harbor, ME 04609, USA.,Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia.,MDI Biological Laboratory, ME 04609, USA
| | - R Debuque
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - E Salimova
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - N A Rosenthal
- The Jackson laboratory, Bar Harbor, ME 04609, USA.,Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia.,National Heart and Lung Institute, Imperial College London, UK
| |
Collapse
|
37
|
Tomos IP, Tzouvelekis A, Aidinis V, Manali ED, Bouros E, Bouros D, Papiris SA. Extracellular matrix remodeling in idiopathic pulmonary fibrosis. It is the 'bed' that counts and not 'the sleepers'. Expert Rev Respir Med 2017; 11:299-309. [PMID: 28274188 DOI: 10.1080/17476348.2017.1300533] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease characterized by irreversible fibrosis. Current disease pathogenesis assumes an aberrant wound healing process in response to repetitive injurious stimuli leading to apoptosis of epithelial cells, activation of fibroblasts and accumulation of extracellular matrix (ECM). Particularly, lung ECM is a highly dynamic structure that lies at the core of several physiological and developmental pathways. The scope of this review article is to summarize current knowledge on the role of ECM in the pathogenesis of IPF, unravel novel mechanistic data and identify future more effective therapeutic targets. Areas covered: The exact mechanisms through which lung microenvironment activates fibroblasts and inflammatory cells, regulates profibrotic signaling cascades through growth factors, integrins and degradation enzymes ultimately leading to excessive matrix deposition are discussed. Furthermore, the potential therapeutic usefulness of specific inhibitors of matrix deposition or activators of matrix degradation pathways are also presented. Expert commentary: With a gradually increasing worldwide incidence IPF still present a major challenge in clinical research due to its unknown etiopathogenesis and current ineffective treatment approaches. Today, there is an amenable need for more effective therapeutic targets and ECM components may represent one.
Collapse
Affiliation(s)
- Ioannis P Tomos
- a Respiratory Medicine Department , 'Attikon' University Hospital, Athens Medical School, National and Kapodistrian University of Athens , Athens , Greece
| | - Argyrios Tzouvelekis
- b Division of Immunology , Biomedical Sciences Research Center 'Alexander Fleming,' , Athens , Greece
| | - Vassilis Aidinis
- b Division of Immunology , Biomedical Sciences Research Center 'Alexander Fleming,' , Athens , Greece
| | - Effrosyni D Manali
- a Respiratory Medicine Department , 'Attikon' University Hospital, Athens Medical School, National and Kapodistrian University of Athens , Athens , Greece
| | - Evangelos Bouros
- c First Academic Department of Pneumonology, Hospital for Diseases of the Chest, 'Sotiria,' Medical School , National and Kapodistrian University of Athens , Athens , Greece
| | - Demosthenes Bouros
- c First Academic Department of Pneumonology, Hospital for Diseases of the Chest, 'Sotiria,' Medical School , National and Kapodistrian University of Athens , Athens , Greece
| | - Spyros A Papiris
- a Respiratory Medicine Department , 'Attikon' University Hospital, Athens Medical School, National and Kapodistrian University of Athens , Athens , Greece
| |
Collapse
|
38
|
Adamczyk M. Transglutaminase 2 in cartilage homoeostasis: novel links with inflammatory osteoarthritis. Amino Acids 2017; 49:625-633. [PMID: 27510997 PMCID: PMC5332500 DOI: 10.1007/s00726-016-2305-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/28/2016] [Indexed: 12/26/2022]
Abstract
Transglutaminase 2 (TG2) is highly expressed during chondrocyte maturation and contributes to the formation of a mineralised scaffold by introducing crosslinks between extracellular matrix (ECM) proteins. In healthy cartilage, TG2 stabilises integrity of ECM and likely influences cartilage stiffness and mechanistic properties. At the same time, the abnormal accumulation of TG2 in the ECM promotes chondrocyte hypertrophy and cartilage calcification, which might be an important aspect of osteoarthritis (OA) initiation. Although excessive joint loading and injuries are one of the main causes leading to OA development, it is now being recognised that the presence of inflammatory mediators accelerates OA progression. Inflammatory signalling is known to stimulate the extracellular TG2 activity in cartilage and promote TG2-catalysed crosslinking of molecules that promote chondrocyte osteoarthritic differentiation. It is, however, unclear whether TG2 activity aims to resolve or aggravate damages within the arthritic joint. Better understanding of the complex signalling pathways linking inflammation with TG2 activities is needed to identify the role of TG2 in OA and to define possible avenues for therapeutic interventions.
Collapse
Affiliation(s)
- M Adamczyk
- Matrix Biology and Tissue Repair Research Unit, Oral and Biomedical Sciences, College of Biomedical and Life Sciences, School of Dentistry, Cardiff University, Heath Park, Cardiff, CF14 4XY, UK.
- Academic Unit of Bone Biology, Department of Oncology and Metabolism, Mellanby Centre For Bone Research, Medical School, The University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK.
| |
Collapse
|
39
|
Steppan J, Bergman Y, Viegas K, Armstrong D, Tan S, Wang H, Melucci S, Hori D, Park SY, Barreto SF, Isak A, Jandu S, Flavahan N, Butlin M, An SS, Avolio A, Berkowitz DE, Halushka MK, Santhanam L. Tissue Transglutaminase Modulates Vascular Stiffness and Function Through Crosslinking-Dependent and Crosslinking-Independent Functions. J Am Heart Assoc 2017; 6:JAHA.116.004161. [PMID: 28159817 PMCID: PMC5523743 DOI: 10.1161/jaha.116.004161] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background The structural elements of the vascular wall, namely, extracellular matrix and smooth muscle cells (SMCs), contribute to the overall stiffness of the vessel. In this study, we examined the crosslinking‐dependent and crosslinking‐independent roles of tissue transglutaminase (TG2) in vascular function and stiffness. Methods and Results SMCs were isolated from the aortae of TG2−/− and wild‐type (WT) mice. Cell adhesion was examined by using electrical cell–substrate impedance sensing and PicoGreen assay. Cell motility was examined using a Boyden chamber assay. Cell proliferation was examined by electrical cell–substrate impedance sensing and EdU incorporation assays. Cell micromechanics were studied using magnetic torsion cytometry and spontaneous nanobead tracer motions. Aortic mechanics were examined by tensile testing. Vasoreactivity was studied by wire myography. SMCs from TG2−/− mice had delayed adhesion, reduced motility, and accelerated de‐adhesion and proliferation rates compared with those from WT. TG2−/− SMCs were stiffer and displayed fewer cytoskeletal remodeling events than WT. Collagen assembly was delayed in TG2−/− SMCs and recovered with adenoviral transduction of TG2. Aortic rings from TG2−/− mice were less stiff than those from WT; stiffness was partly recovered by incubation with guinea pig liver TG2 independent of crosslinking function. TG2−/− rings showed augmented response to phenylephrine‐mediated vasoconstriction when compared with WT. In human coronary arteries, vascular media and plaque, high abundance of fibronectin expression, and colocalization with TG2 were observed. Conclusions TG2 modulates vascular function/tone by altering SMC contractility independent of its crosslinking function and contributes to vascular stiffness by regulating SMC proliferation and matrix remodeling.
Collapse
Affiliation(s)
- Jochen Steppan
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University, Baltimore, MD
| | - Yehudit Bergman
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University, Baltimore, MD
| | - Kayla Viegas
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Dinani Armstrong
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University, Baltimore, MD
| | - Siqi Tan
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Huilei Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD
| | - Sean Melucci
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Daijiro Hori
- Department of Surgery, Johns Hopkins University, Baltimore, MD
| | - Sung Yong Park
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University, Baltimore, MD.,Department of Anesthesiology, Yonsei University, Seoul, Korea
| | - Sebastian F Barreto
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University, Baltimore, MD
| | - Abraham Isak
- Department of Environmental Health Sciences, Johns Hopkins University, Baltimore, MD
| | - Sandeep Jandu
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University, Baltimore, MD
| | - Nicholas Flavahan
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University, Baltimore, MD
| | - Mark Butlin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Steven S An
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD.,Department of Environmental Health Sciences, Johns Hopkins University, Baltimore, MD
| | - Alberto Avolio
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Dan E Berkowitz
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University, Baltimore, MD.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD
| | - Marc K Halushka
- Department of Pathology, Johns Hopkins University, Baltimore, MD
| | - Lakshmi Santhanam
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University, Baltimore, MD .,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
40
|
Marré ML, Piganelli JD. Environmental Factors Contribute to β Cell Endoplasmic Reticulum Stress and Neo-Antigen Formation in Type 1 Diabetes. Front Endocrinol (Lausanne) 2017; 8:262. [PMID: 29033899 PMCID: PMC5626851 DOI: 10.3389/fendo.2017.00262] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/20/2017] [Indexed: 12/16/2022] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease in which immune-mediated targeting and destruction of insulin-producing pancreatic islet β cells leads to chronic hyperglycemia. There are many β cell proteins that are targeted by autoreactive T cells in their native state. However, recent studies have demonstrated that many β cell proteins are recognized as neo-antigens following posttranslational modification (PTM). Although modified neo-antigens are well-established targets of pathology in other autoimmune diseases, the effects of neo-antigens in T1D progression and the mechanisms by which they are generated are not well understood. We have demonstrated that PTM occurs during endoplasmic reticulum (ER) stress, a process to which β cells are uniquely susceptible due to the high rate of insulin production in response to dynamic glucose sensing. In the context of genetic susceptibility to autoimmunity, presentation of these modified neo-antigens may activate autoreactive T cells and cause pathology. However, inherent β cell ER stress and protein PTM do not cause T1D in every genetically susceptible individual, suggesting the contribution of additional factors. Indeed, many environmental factors, such as viral infection, chemicals, or inflammatory cytokines, are associated with T1D onset, but the mechanisms by which these factors lead to disease onset remain unknown. Since these environmental factors also cause ER stress, exposure to these factors may enhance production of neo-antigens, therefore boosting β cell recognition by autoreactive T cells and exacerbating T1D pathogenesis. Therefore, the combined effects of physiological ER stress and the stress that is induced by environmental factors may lead to breaks in peripheral tolerance, contribute to antigen spread, and hasten disease onset. This Hypothesis and Theory article summarizes what is currently known about ER stress and protein PTM in autoimmune diseases including T1D and proposes a role for environmental factors in breaking immune tolerance to β cell antigens through neo-antigen formation.
Collapse
Affiliation(s)
- Meghan L Marré
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jon D Piganelli
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
41
|
Fernández-Aceñero MJ, Torres S, Garcia-Palmero I, Díaz Del Arco C, Casal JI. Prognostic role of tissue transglutaminase 2 in colon carcinoma. Virchows Arch 2016; 469:611-619. [PMID: 27620315 DOI: 10.1007/s00428-016-2020-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/14/2016] [Accepted: 09/02/2016] [Indexed: 12/17/2022]
Abstract
Tissue transglutaminase 2 (TG2) is involved in many biological processes, from wound healing to neurodegeneration. Recently, there has been an increasing interest in this enzyme as a potential prognostic marker or therapy target in human neoplasms. The aim of this study was to analyze expression of TG2 messenger RNA (mRNA) and protein in colon cancer samples and to evaluate the potential value of TG2 as prognostic marker. We investigated not only expression level but also location of the protein in a series of human tumors. In silico analysis using the GSE39582 dataset showed that TG2 mRNA expression is associated with earlier relapse. The results of qPCR in our cohort showed TG2 mRNA to be up-regulated in 25 out of 70 samples (34 %). Kaplan-Meier plots and log-rank test showed that patients with high TG2 mRNA expression have significantly worse prognosis in terms of overall survival (OS) and a trend to earlier recurrence. Immunohistochemical staining of tumor sections for TG2 revealed stromal staining in 152 cases (88 %) and epithelial cell staining in 105 cases (62 %). In stage II patients, stromal expression showed a significant association with disease-free survival (DFS). In patients with metastatic disease, TG2 expression was also associated with poor prognosis. Cox multivariate analysis showed that TG2 expression in epithelial cells is significantly and independently associated with OS, together with node involvement and presence of metastasis. Stromal TG2 expression was associated with DFS. In summary, in non-metastatic colorectal cancer patients, stromal TG2 expression is significantly associated with DFS and epithelial TG2 expression with OS, independently of node involvement and metastasis.
Collapse
Affiliation(s)
- María Jesús Fernández-Aceñero
- Department of Surgical Pathology, Hospital Clínico San Carlos, C/Prof. Martín Lagos s/n 28040, Madrid, Spain.
- Fundación Jiménez Díaz, Madrid, Spain.
| | - Sofía Torres
- Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB), Madrid, Spain
| | - Irene Garcia-Palmero
- Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB), Madrid, Spain
| | - Cristina Díaz Del Arco
- Department of Surgical Pathology, Hospital Clínico San Carlos, C/Prof. Martín Lagos s/n 28040, Madrid, Spain
| | - J Ignacio Casal
- Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB), Madrid, Spain.
| |
Collapse
|
42
|
Monteagudo A, Ji C, Akbar A, Keillor JW, Johnson GVW. Inhibition or ablation of transglutaminase 2 impairs astrocyte migration. Biochem Biophys Res Commun 2016; 482:942-947. [PMID: 27899316 DOI: 10.1016/j.bbrc.2016.11.137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 11/25/2016] [Indexed: 12/11/2022]
Abstract
Astrocytes play numerous complex roles that support and facilitate the function of neurons. Further, when there is an injury to the central nervous system (CNS) they can both facilitate or ameliorate functional recovery depending on the location and severity of the injury. When a CNS injury is relatively severe a glial scar is formed, which is primarily composed of astrocytes. The glial scar can be both beneficial, by limiting inflammation, and detrimental, by preventing neuronal projections, to functional recovery. Thus, understanding the processes and proteins that regulate astrocyte migration in response to injury is still of fundamental importance. One protein that is likely involved in astrocyte migration is transglutaminase 2 (TG2); a multifunctional protein expressed ubiquitously throughout the brain. Its functions include transamidation and GTPase activity, among others, and previous studies have implicated TG2 as a regulator of migration. Therefore, we examined the role of TG2 in primary astrocyte migration subsequent to injury. Using wild type or TG2-/- astrocytes, we manipulated the different functions and conformation of TG2 with novel irreversible inhibitors or mutant versions of the protein. Results showed that both inhibition and ablation of TG2 in primary astrocytes significantly inhibit migration. Additionally, we show that the deficiency in migration caused by deletion of TG2 can only be rescued with the native protein and not with mutants. Finally, the addition of TGFβ rescued the migration deficiency independent of TG2. Taken together, our study shows that transamidation and GTP/GDP-binding are necessary for inhibiting astrocyte migration and it is TGFβ independent.
Collapse
Affiliation(s)
- Alina Monteagudo
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA
| | - Changyi Ji
- Department of Anesthesiology, University of Rochester, Rochester, NY 14642, USA
| | - Abdullah Akbar
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Jeffrey W Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Gail V W Johnson
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA; Department of Anesthesiology, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
43
|
Pitolli C, Pietroni V, Marekov L, Terrinoni A, Yamanishi K, Mazzanti C, Melino G, Candi E. Characterization of TG2 and TG1-TG2 double knock-out mouse epidermis. Amino Acids 2016; 49:635-642. [PMID: 27864691 DOI: 10.1007/s00726-016-2356-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/19/2016] [Indexed: 11/30/2022]
Abstract
Transglutaminases (TGs) are a family of enzymes that catalyse the formation of isopeptide bonds between the γ-carboxamide groups of glutamine residues and the ε-amino groups of lysine residues leading to cross-linking reactions among proteins. Four members, TG1, TG2, TG3, and TG5, of the nine mammalian enzymes are expressed in the skin. TG1, TG3 and TG5 crosslinking properties are fundamental for cornified envelope assembly. In contrast, the role of TG2 in keratinization has never been studied at biochemical level in vivo. In this study, taking advantage of the TG2 knock-out (KO) and TG1 heterozygous mice, we generated and characterized the epidermis of TG1-TG2 double knock-out (DKO) mice. We performed morphological analysis of the epidermis and evaluation of the expression of differentiation markers. In addition, we performed analysis of the amino acid composition from isolated corneocytes. We found a significant change in amino acid composition in TG1KO cornified cell envelopes (CEs) while TG2KO amino acid composition was similar to wild-type CEs. Our results confirm a key role of TG1 in skin differentiation and CE assembly and demonstrate that TG2 is not essential for CE assembly and skin formation.
Collapse
Affiliation(s)
- Consuelo Pitolli
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Valentina Pietroni
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | | | | | - Kiyofumi Yamanishi
- Department of Dermatology, Hyogo College of Medicine, Nishinomiya, Hyogo, 663-8501, Japan
| | | | - Gerry Melino
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy.
- Biochemistry Laboratory, IDI-IRCCS, Rome, Italy.
| |
Collapse
|
44
|
Cardoso I, Østerlund EC, Stamnaes J, Iversen R, Andersen JT, Jørgensen TJD, Sollid LM. Dissecting the interaction between transglutaminase 2 and fibronectin. Amino Acids 2016; 49:489-500. [DOI: 10.1007/s00726-016-2296-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/04/2016] [Indexed: 02/07/2023]
|
45
|
Type VI Collagen Regulates Dermal Matrix Assembly and Fibroblast Motility. J Invest Dermatol 2016; 136:74-83. [DOI: 10.1038/jid.2015.352] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/16/2015] [Accepted: 08/17/2015] [Indexed: 11/08/2022]
|
46
|
Adamczyk M, Griffiths R, Dewitt S, Knäuper V, Aeschlimann D. P2X7 receptor activation regulates rapid unconventional export of transglutaminase-2. J Cell Sci 2015; 128:4615-28. [PMID: 26542019 PMCID: PMC4696497 DOI: 10.1242/jcs.175968] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/29/2015] [Indexed: 12/24/2022] Open
Abstract
Transglutaminases (denoted TG or TGM) are externalized from cells via an unknown unconventional secretory pathway. Here, we show for the first time that purinergic signaling regulates active secretion of TG2 (also known as TGM2), an enzyme with a pivotal role in stabilizing extracellular matrices and modulating cell–matrix interactions in tissue repair. Extracellular ATP promotes TG2 secretion by macrophages, and this can be blocked by a selective antagonist against the purinergic receptor P2X7 (P2X7R, also known as P2RX7). Introduction of functional P2X7R into HEK293 cells is sufficient to confer rapid, regulated TG2 export. By employing pharmacological agents, TG2 release could be separated from P2X7R-mediated microvesicle shedding. Neither Ca2+ signaling alone nor membrane depolarization triggered TG2 secretion, which occurred only upon receptor membrane pore formation and without pannexin channel involvement. A gain-of-function mutation in P2X7R associated with autoimmune disease caused enhanced TG2 externalization from cells, and this correlated with increased pore activity. These results provide a mechanistic explanation for a link between active TG2 secretion and inflammatory responses, and aberrant enhanced TG2 activity in certain autoimmune conditions. Summary: Purinergic signaling regulates unconventional secretion of transglutaminase-2 (TG2) and explains the link between aberrant protein modifications and inflammatory responses in TG2-dependent autoimmunity.
Collapse
Affiliation(s)
- Magdalena Adamczyk
- Matrix Biology & Tissue Repair Research Unit and Arthritis Research UK Biomechanics and Bioengineering Center of Excellence, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
| | - Rhiannon Griffiths
- Matrix Biology & Tissue Repair Research Unit and Arthritis Research UK Biomechanics and Bioengineering Center of Excellence, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
| | - Sharon Dewitt
- Matrix Biology & Tissue Repair Research Unit and Arthritis Research UK Biomechanics and Bioengineering Center of Excellence, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
| | - Vera Knäuper
- Matrix Biology & Tissue Repair Research Unit and Arthritis Research UK Biomechanics and Bioengineering Center of Excellence, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
| | - Daniel Aeschlimann
- Matrix Biology & Tissue Repair Research Unit and Arthritis Research UK Biomechanics and Bioengineering Center of Excellence, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
| |
Collapse
|
47
|
Marré ML, James EA, Piganelli JD. β cell ER stress and the implications for immunogenicity in type 1 diabetes. Front Cell Dev Biol 2015; 3:67. [PMID: 26579520 PMCID: PMC4621612 DOI: 10.3389/fcell.2015.00067] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/08/2015] [Indexed: 12/11/2022] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by hyperglycemia due to progressive immune-mediated destruction of insulin-producing pancreatic islet β cells. Although many elegant studies have identified β cell autoantigens that are targeted by the autoimmune response, the mechanisms by which these autoantigens are generated remain poorly understood. Normal β cell physiology includes a high demand for insulin production and secretion in response to dynamic glucose sensing. This secretory function predisposes β cells to significantly higher levels of endoplasmic reticulum (ER) stress compared to nonsecretory cells. In addition, many environmental triggers associated with T1D onset further augment this inherent ER stress in β cells. ER stress may increase abnormal post-translational modification (PTM) of endogenous β cell proteins. Indeed, in other autoimmune disorders such as celiac disease, systemic lupus erythematosus, multiple sclerosis, and rheumatoid arthritis, abnormally modified neo-antigens are presented by antigen presenting cells (APCs) in draining lymph nodes. In the context of genetic susceptibility to autoimmunity, presentation of neo-antigens activates auto-reactive T cells and pathology ensues. Therefore, the ER stress induced by normal β cell secretory physiology and environmental triggers may be sufficient to generate neo-antigens for the autoimmune response in T1D. This review summarizes what is currently known about ER stress and protein PTM in target organs of other autoimmune disease models, as well as the data supporting a role for ER stress-induced neo-antigen formation in β cells in T1D.
Collapse
Affiliation(s)
- Meghan L Marré
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Pittsburgh, PA, USA
| | - Eddie A James
- Benaroya Research Institute at Virginia Mason Seattle, WA, USA
| | - Jon D Piganelli
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Pittsburgh, PA, USA
| |
Collapse
|
48
|
Olsen KC, Epa AP, Kulkarni AA, Kottmann RM, McCarthy CE, Johnson GV, Thatcher TH, Phipps RP, Sime PJ. Inhibition of transglutaminase 2, a novel target for pulmonary fibrosis, by two small electrophilic molecules. Am J Respir Cell Mol Biol 2014; 50:737-47. [PMID: 24175906 DOI: 10.1165/rcmb.2013-0092oc] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by progressive fibrotic destruction of normal lung architecture. Due to a lack of effective treatment options, new treatment approaches are needed. We previously identified transglutaminase (TG)2, a multifunctional protein expressed by human lung fibroblasts (HLFs), as a positive driver of fibrosis. TG2 catalyzes crosslinking of extracellular matrix proteins, enhances cell binding to fibronectin and integrin, and promotes fibronectin expression. We investigated whether the small electrophilic molecules 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO) and 15-deoxy-delta-12,14-prostaglandin J2 (15d-PGJ2) inhibit the expression and profibrotic functions of TG2. CDDO and 15d-PGJ2 reduced expression of TG2 mRNA and protein in primary HLFs from control donors and donors with IPF. CDDO and 15d-PGJ2 also decreased the in vitro profibrotic effector functions of HLFs including collagen gel contraction and cell migration. The decrease in TG2 expression did not occur through activation of the peroxisome proliferator activated receptor γ or generation of reactive oxidative species. CDDO and 15d-PGJ2 inhibited the extracellular signal-regulated kinase pathway, resulting in the suppression of TG2 expression. This is the first study to show that small electrophilic compounds inhibit the expression and profibrotic effector functions of TG2, a key promoter of fibrosis. These studies identify new and important antifibrotic activities of these two small molecules, which could lead to new treatments for fibrotic lung disease.
Collapse
|
49
|
Eckert RL, Kaartinen MT, Nurminskaya M, Belkin AM, Colak G, Johnson GVW, Mehta K. Transglutaminase regulation of cell function. Physiol Rev 2014; 94:383-417. [PMID: 24692352 DOI: 10.1152/physrev.00019.2013] [Citation(s) in RCA: 312] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transglutaminases (TGs) are multifunctional proteins having enzymatic and scaffolding functions that participate in regulation of cell fate in a wide range of cellular systems and are implicated to have roles in development of disease. This review highlights the mechanism of action of these proteins with respect to their structure, impact on cell differentiation and survival, role in cancer development and progression, and function in signal transduction. We also discuss the mechanisms whereby TG level is controlled and how TGs control downstream targets. The studies described herein begin to clarify the physiological roles of TGs in both normal biology and disease states.
Collapse
|
50
|
Willis WL, Hariharan S, David JJ, Strauch AR. Transglutaminase-2 mediates calcium-regulated crosslinking of the Y-box 1 (YB-1) translation-regulatory protein in TGFβ1-activated myofibroblasts. J Cell Biochem 2014; 114:2753-69. [PMID: 23804301 DOI: 10.1002/jcb.24624] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 06/25/2013] [Indexed: 01/23/2023]
Abstract
Myofibroblast differentiation is required for wound healing and accompanied by activation of smooth muscle α-actin (SMαA) gene expression. The stress-response protein, Y-box binding protein-1 (YB-1) binds SMαA mRNA and regulates its translational activity. Activation of SMαA gene expression in human pulmonary myofibroblasts by TGFβ1 was associated with formation of denaturation-resistant YB-1 oligomers with selective affinity for a known translation-silencer sequence in SMαA mRNA. We have determined that YB-1 is a substrate for the protein-crosslinking enzyme transglutaminase 2 (TG2) that catalyzes calcium-dependent formation of covalent γ-glutamyl-isopeptide linkages in response to reactive oxygen signaling. TG2 transamidation reactions using intact cells, cell lysates, and recombinant YB-1 revealed covalent crosslinking of the 50 kDa YB-1 polypeptide into protein oligomers that were distributed during SDS-PAGE over a 75-250 kDa size range. In vitro YB-1 transamidation required nanomolar levels of calcium and was enhanced by the presence of SMαA mRNA. In human pulmonary fibroblasts, YB-1 crosslinking was inhibited by (a) anti-oxidant cystamine, (b) the reactive-oxygen antagonist, diphenyleneiodonium, (c) competitive inhibition of TG2 transamidation using the aminyl-surrogate substrate, monodansylcadaverine, and (d) transfection with small-interfering RNA specific for human TG2 mRNA. YB-1 crosslinking was partially reversible as a function of oligomer-substrate availability and TG2 enzyme concentration. Intracellular calcium accumulation and peroxidative stress in injury-activated myofibroblasts may govern SMαA mRNA translational activity during wound healing via TG2-mediated crosslinking of the YB-1 mRNA-binding protein.
Collapse
Affiliation(s)
- William L Willis
- Department of Physiology and Cell Biology, The Integrated Biomedical Sciences Graduate Program, and the Ohio State Biochemistry Program, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, 43210
| | | | | | | |
Collapse
|