1
|
Horikawa M, Hayase J, Kamakura S, Kohda A, Nakamura M, Sumimoto H. The scaffold protein IQGAP1 promotes reorientation of epithelial cell polarity at the two-cell stage for cystogenesis. Genes Cells 2024. [PMID: 39377417 DOI: 10.1111/gtc.13169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/09/2024]
Abstract
A single epithelial cell embedded in extracellular matrix (ECM) can proliferate to form an apical lumen-harboring cyst, whose formation is a fundamental step in epithelial organ development. At an early two-cell stage after cell division, the cell doublet typically displays "inverted" polarity, with apical and basolateral proteins being located to the ECM-facing and cell-cell-contacting plasma membranes, respectively. Correct cystogenesis requires polarity reorientation, a process containing apical protein endocytosis from the ECM-abutting periphery and subsequent apical vesicle delivery to a cell-cell contact site for lumen formation. Here, we show that downstream of the ECM-signal-transducer β1-integrin, Rac1, and its effector IQGAP1 promote apical protein endocytosis, contributing to polarity reorientation of mammalian epithelial Madin-Darby canine kidney (MDCK) cells at a later two-cell stage in three-dimensional culture. Rac1-GTP facilitates IQGAP1 interaction with the Rac-specific activator Tiam1, which also contributes to the endocytosis and enhances the effect of IQGAP1. These findings suggest that Tiam1 and IQGAP1 form a positive feedback loop to activate Rac1. With Rac1-GTP, IQGAP1 also binds to AP2α, an adaptor protein subunit for clathrin-mediated endocytosis; depletion of the AP2 complex impairs apical protein endocytosis in MDCK doublets. Thus, Rac1 likely participates in polarity reorientation at the two-cell stage via its interaction with IQGAP1.
Collapse
Affiliation(s)
- Michihiro Horikawa
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Junya Hayase
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Sachiko Kamakura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Akira Kohda
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Hideki Sumimoto
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| |
Collapse
|
2
|
Hu B, Pinzour J, Patel A, Rooney F, Zerwic A, Gao Y, Nguyen NT, Xie H, Ye D, Lin F. Gα13 controls pharyngeal endoderm convergence by regulating E-cadherin expression and RhoA activation. Development 2024; 151:dev202597. [PMID: 39258889 PMCID: PMC11463957 DOI: 10.1242/dev.202597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 08/28/2024] [Indexed: 09/12/2024]
Abstract
Pharyngeal endoderm cells undergo convergence and extension (C&E), which is essential for endoderm pouch formation and craniofacial development. Our previous work implicates Gα13/RhoA-mediated signaling in regulating this process, but the underlying mechanisms remain unclear. Here, we have used endoderm-specific transgenic and Gα13 mutant zebrafish to demonstrate that Gα13 plays a crucial role in pharyngeal endoderm C&E by regulating RhoA activation and E-cadherin expression. We showed that during C&E, endodermal cells gradually establish stable cell-cell contacts, acquire apical-basal polarity and undergo actomyosin-driven apical constriction, which are processes that require Gα13. Additionally, we found that Gα13-deficient embryos exhibit reduced E-cadherin expression, partially contributing to endoderm C&E defects. Notably, interfering with RhoA function disrupts spatial actomyosin activation without affecting E-cadherin expression. Collectively, our findings identify crucial cellular processes for pharyngeal endoderm C&E and reveal that Gα13 controls this through two independent pathways - modulating RhoA activation and regulating E-cadherin expression - thus unveiling intricate mechanisms governing pharyngeal endoderm morphogenesis.
Collapse
Affiliation(s)
- Bo Hu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Joshua Pinzour
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Asmi Patel
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Faith Rooney
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Amie Zerwic
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Yuanyuan Gao
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Nhan T. Nguyen
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Huaping Xie
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Ding Ye
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Fang Lin
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
3
|
Pasquier N, Jaulin F, Peglion F. Inverted apicobasal polarity in health and disease. J Cell Sci 2024; 137:jcs261659. [PMID: 38465512 PMCID: PMC10984280 DOI: 10.1242/jcs.261659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
Apicobasal epithelial polarity controls the functional properties of most organs. Thus, there has been extensive research on the molecular intricacies governing the establishment and maintenance of cell polarity. Whereas loss of apicobasal polarity is a well-documented phenomenon associated with multiple diseases, less is known regarding another type of apicobasal polarity alteration - the inversion of polarity. In this Review, we provide a unifying definition of inverted polarity and discuss multiple scenarios in mammalian systems and human health and disease in which apical and basolateral membrane domains are interchanged. This includes mammalian embryo implantation, monogenic diseases and dissemination of cancer cell clusters. For each example, the functional consequences of polarity inversion are assessed, revealing shared outcomes, including modifications in immune surveillance, altered drug sensitivity and changes in adhesions to neighboring cells. Finally, we highlight the molecular alterations associated with inverted apicobasal polarity and provide a molecular framework to connect these changes with the core cell polarity machinery and to explain roles of polarity inversion in health and disease. Based on the current state of the field, failure to respond to extracellular matrix (ECM) cues, increased cellular contractility and membrane trafficking defects are likely to account for most cases of inverted apicobasal polarity.
Collapse
Affiliation(s)
- Nicolas Pasquier
- Collective Invasion Team, Inserm U-1279, Gustave Roussy, Villejuif F-94805, France
- Cell Adhesion and Cancer lab, University of Turku, FI-20520 Turku, Finland
| | - Fanny Jaulin
- Collective Invasion Team, Inserm U-1279, Gustave Roussy, Villejuif F-94805, France
| | - Florent Peglion
- Collective Invasion Team, Inserm U-1279, Gustave Roussy, Villejuif F-94805, France
| |
Collapse
|
4
|
Chen YP, Shao Y, Chen PC, Li K, Li JY, Meng J, Lv CL, Liu HY, Lv C, Feng XQ, Li B. Substrate nesting guides cyst morphogenesis of human pluripotent stem cells without 3D extracellular matrix overlay. Acta Biomater 2023; 170:519-531. [PMID: 37659729 DOI: 10.1016/j.actbio.2023.08.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 08/20/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
Understanding the principles underlying the self-organization of stem cells into tissues is fundamental for deciphering human embryo development. Here, we report that, without three-dimensional (3D) extracellular matrix (ECM) overlay, human pluripotent stem cells (hPSCs) cultured on two-dimensional soft elastic substrates can self-organize into 3D cysts resembling the human epiblast sac in a stiffness-dependent manner. Our theoretical modeling predicts that this cyst organization is facilitated and guided by the spontaneous nesting of the soft substrate, which results from the adhesion-dependent mechanical interaction between cells and substrate. Such substrate nesting is sufficient for the 3D assembly and polarization of hPSCs required for cyst organization, even without 3D ECM overlay. Furthermore, we identify that the reversible substrate nesting and cyst morphogenesis also require appropriate activation of ROCK-Myosin II pathway. This indicates a unique set of tissue morphomechanical signaling mechanisms that clearly differ from the canonical cystogenic mechanism previously reported in 3D ECM. Our findings highlight an unanticipated synergy between mechanical microenvironment and mechanotransduction in controlling tissue morphogenesis and suggest a mechanics-based strategy for generation of hPSCs-derived models for early human embryogenesis. STATEMENT OF SIGNIFICANCE: Soft substrates can induce the self-organization of human pluripotent stem cells (hPSCs) into cysts without three-dimensional (3D) extracellular matrix (ECM) overlay. However, the underlying mechanisms by which soft substrate guides cystogenesis are largely unknown. This study shows that substrate nesting, resulting from cell-substrate interaction, plays an important role in cyst organization, including 3D assembly and apical-basal polarization. Additionally, actomyosin contractility mediated by the ROCK-Myosin II pathway also contributes to the substrate deformation and cyst morphology. These findings demonstrate the interplay between the mechanical microenvironment and cells in tissue morphogenesis, suggesting a mechanics-based strategy in building hPSC-derived models for early human embryo development.
Collapse
Affiliation(s)
- Yun-Ping Chen
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Yue Shao
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Peng-Cheng Chen
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Kun Li
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Jing-Yi Li
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Jie Meng
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Cheng-Lin Lv
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Hao-Yu Liu
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Cunjing Lv
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.
| | - Bo Li
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
5
|
Gredler ML, Zallen JA. Multicellular rosettes link mesenchymal-epithelial transition to radial intercalation in the mouse axial mesoderm. Dev Cell 2023:S1534-5807(23)00134-X. [PMID: 37080203 DOI: 10.1016/j.devcel.2023.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 01/25/2023] [Accepted: 03/24/2023] [Indexed: 04/22/2023]
Abstract
Mesenchymal-epithelial transitions are fundamental drivers of development and disease, but how these behaviors generate epithelial structure is not well understood. Here, we show that mesenchymal-epithelial transitions promote epithelial organization in the mouse node and notochordal plate through the assembly and radial intercalation of three-dimensional rosettes. Axial mesoderm rosettes acquire junctional and apical polarity, develop a central lumen, and dynamically expand, coalesce, and radially intercalate into the surface epithelium, converting mesenchymal-epithelial transitions into higher-order tissue structure. In mouse Par3 mutants, axial mesoderm rosettes establish central tight junction polarity but fail to form an expanded apical domain and lumen. These defects are associated with altered rosette dynamics, delayed radial intercalation, and formation of a small, fragmented surface epithelial structure. These results demonstrate that three-dimensional rosette behaviors translate mesenchymal-epithelial transitions into collective radial intercalation and epithelial formation, providing a strategy for building epithelial sheets from individual self-organizing units in the mammalian embryo.
Collapse
Affiliation(s)
- Marissa L Gredler
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Jennifer A Zallen
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA.
| |
Collapse
|
6
|
Ascione F, Caserta S, Esposito S, Villella VR, Maiuri L, Nejad MR, Doostmohammadi A, Yeomans JM, Guido S. Collective rotational motion of freely expanding T84 epithelial cell colonies. J R Soc Interface 2023; 20:20220719. [PMID: 36872917 PMCID: PMC9943890 DOI: 10.1098/rsif.2022.0719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/23/2023] [Indexed: 02/25/2023] Open
Abstract
Coordinated rotational motion is an intriguing, yet still elusive mode of collective cell migration, which is relevant in pathological and morphogenetic processes. Most of the studies on this topic have been carried out on epithelial cells plated on micropatterned substrates, where cell motion is confined in regions of well-defined shapes coated with extracellular matrix adhesive proteins. The driver of collective rotation in such conditions has not been clearly elucidated, although it has been speculated that spatial confinement can play an essential role in triggering cell rotation. Here, we study the growth of epithelial cell colonies freely expanding (i.e. with no physical constraints) on the surface of cell culture plates and focus on collective cell rotation in such conditions, a case which has received scarce attention in the literature. One of the main findings of our work is that coordinated cell rotation spontaneously occurs in cell clusters in the free growth regime, thus implying that cell confinement is not necessary to elicit collective rotation as previously suggested. The extent of collective rotation was size and shape dependent: a highly coordinated disc-like rotation was found in small cell clusters with a round shape, while collective rotation was suppressed in large irregular cell clusters generated by merging of different clusters in the course of their growth. The angular motion was persistent in the same direction, although clockwise and anticlockwise rotations were equally likely to occur among different cell clusters. Radial cell velocity was quite low as compared to the angular velocity, in agreement with the free expansion regime where cluster growth is essentially governed by cell proliferation. A clear difference in morphology was observed between cells at the periphery and the ones in the core of the clusters, the former being more elongated and spread out as compared to the latter. Overall, our results, to our knowledge, provide the first quantitative and systematic evidence that coordinated cell rotation does not require a spatial confinement and occurs spontaneously in freely expanding epithelial cell colonies, possibly as a mechanism for the system.
Collapse
Affiliation(s)
- Flora Ascione
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale (DICMAPI), Università di Napoli Federico II, P.le Tecchio 80, 80125 Napoli, Italy
| | - Sergio Caserta
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale (DICMAPI), Università di Napoli Federico II, P.le Tecchio 80, 80125 Napoli, Italy
- CEINGE Biotecnologie Avanzate, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Speranza Esposito
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale (DICMAPI), Università di Napoli Federico II, P.le Tecchio 80, 80125 Napoli, Italy
- European Institute for Research in Cystic Fibrosis, San Raffaele Scientific Institute, Milan, Italy
| | - Valeria Rachela Villella
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale (DICMAPI), Università di Napoli Federico II, P.le Tecchio 80, 80125 Napoli, Italy
- European Institute for Research in Cystic Fibrosis, San Raffaele Scientific Institute, Milan, Italy
| | - Luigi Maiuri
- European Institute for Research in Cystic Fibrosis, San Raffaele Scientific Institute, Milan, Italy
| | - Mehrana R. Nejad
- The Rudolf Peierls Centre for Theoretical Physics, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | | | - Julia M. Yeomans
- The Rudolf Peierls Centre for Theoretical Physics, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | - Stefano Guido
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale (DICMAPI), Università di Napoli Federico II, P.le Tecchio 80, 80125 Napoli, Italy
- CEINGE Biotecnologie Avanzate, Via Sergio Pansini 5, 80131 Naples, Italy
| |
Collapse
|
7
|
Chen J, St Johnston D. De novo apical domain formation inside the Drosophila adult midgut epithelium. eLife 2022; 11:e76366. [PMID: 36169289 PMCID: PMC9545526 DOI: 10.7554/elife.76366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
In the adult Drosophila midgut, basal intestinal stem cells give rise to enteroblasts that integrate into the epithelium as they differentiate into enterocytes. Integrating enteroblasts must generate a new apical domain and break through the septate junctions between neighbouring enterocytes, while maintaining barrier function. We observe that enteroblasts form an apical membrane initiation site (AMIS) when they reach the septate junction between the enterocytes. Cadherin clears from the apical surface and an apical space appears between above the enteroblast. New septate junctions then form laterally with the enterocytes and the AMIS develops into an apical domain below the enterocyte septate junction. The enteroblast therefore forms a pre-assembled apical compartment before it has a free apical surface in contact with the gut lumen. Finally, the enterocyte septate junction disassembles and the enteroblast/pre-enterocyte reaches the gut lumen with a fully formed brush border. The process of enteroblast integration resembles lumen formation in mammalian epithelial cysts, highlighting the similarities between the fly midgut and mammalian epithelia.
Collapse
Affiliation(s)
- Jia Chen
- The Gurdon Institute, University of CambridgeCambridgeUnited Kingdom
| | | |
Collapse
|
8
|
Canet-Jourdan C, Pagès DL, Nguyen-Vigouroux C, Cartry J, Zajac O, Desterke C, Lopez JB, Gutierrez-Mateyron E, Signolle N, Adam J, Raingeaud J, Polrot M, Gonin P, Mathieu JRR, Souquere S, Pierron G, Gelli M, Dartigues P, Ducreux M, Barresi V, Jaulin F. Patient-derived organoids identify an apico-basolateral polarity switch associated with survival in colorectal cancer. J Cell Sci 2022; 135:276070. [PMID: 35703098 DOI: 10.1242/jcs.259256] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 05/23/2022] [Indexed: 11/20/2022] Open
Abstract
The metastatic progression of cancer remains a major issue in patient treatment. Yet, the molecular and cellular mechanisms underlying this process remains unclear. Here, we use primary explants and organoids from patients harboring mucinous colorectal carcinoma (MUC CRC), a poor prognosis histological form of digestive cancers, to study the architecture, invasive behavior and chemoresistance of tumor cell intermediates. We report that these tumors maintain a robust apico-basolateral polarity as they spread in the peritumoral stroma or organotypic collagen-I gels. We identified two distinct topologies: MUC CRCs either display a conventional "apical-in" polarity or, more frequently, harbor an inverted "apical-out" topology. Transcriptomic analyses combined with interference experiments on organoids showed that TGFb and focal adhesion signaling pathways are the main drivers of polarity orientation. Finally, this apical-out topology is associated with increased resistance to chemotherapeutic treatments in organoids and decreased patient survival in the clinic. Thus, patient-derived organoids have the potential to bridge histological, cellular and molecular analyses to decrypt onco-morphogenic programs and stratify cancer patients.
Collapse
Affiliation(s)
| | | | | | - Jérôme Cartry
- INSERM U-1279, Gustave Roussy, Villejuif, F-94805, France
| | - Olivier Zajac
- Institut Curie, PSL Research University, CNRS UMR 144, F-75005 Paris, France
| | | | | | | | - Nicolas Signolle
- INSERM Unit U981, Experimental Pathology, Gustave Roussy, 94805 Villejuif, France
| | - Julien Adam
- INSERM Unit U981, Experimental Pathology, Gustave Roussy, 94805 Villejuif, France
| | - Joel Raingeaud
- INSERM U-1279, Gustave Roussy, Villejuif, F-94805, France
| | - Mélanie Polrot
- Plateforme d'Evaluation Préclinique, AMMICA UMS 3655/ US 23, Gustave Roussy, Villejuif, F-94805, France
| | - Patrick Gonin
- Plateforme d'Evaluation Préclinique, AMMICA UMS 3655/ US 23, Gustave Roussy, Villejuif, F-94805, France
| | | | | | | | - Maximiliano Gelli
- Department of Medical Oncology, Gustave Roussy, Villejuif, F-94805, France
| | - Peggy Dartigues
- Pathology Department, Gustave Roussy, Villejuif, F-94805, France
| | - Michel Ducreux
- Department of Medical Oncology, Gustave Roussy, Villejuif, F-94805, France.,Paris-Saclay University, Saint-Aubin, F-91190, France
| | - Valeria Barresi
- Department of Diagnostics and Public Health, University of Verona, Verona 37129, Italia
| | - Fanny Jaulin
- INSERM U-1279, Gustave Roussy, Villejuif, F-94805, France
| |
Collapse
|
9
|
Zieger E, Schwaha T, Burger K, Bergheim I, Wanninger A, Calcino AD. Midbody-Localized Aquaporin Mediates Intercellular Lumen Expansion During Early Cleavage of an Invasive Freshwater Bivalve. Front Cell Dev Biol 2022; 10:894434. [PMID: 35774230 PMCID: PMC9237387 DOI: 10.3389/fcell.2022.894434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/24/2022] [Indexed: 11/18/2022] Open
Abstract
Intercellular lumen formation is a crucial aspect of animal development and physiology that involves a complex interplay between the molecular and physical properties of the constituent cells. Embryos of the invasive freshwater mussel Dreissena rostriformis are ideal models for studying this process due to the large intercellular cavities that readily form during blastomere cleavage. Using this system, we show that recruitment of the transmembrane water channel protein aquaporin exclusively to the midbody of intercellular cytokinetic bridges is critical for lumenogenesis. The positioning of aquaporin-positive midbodies thereby influences the direction of cleavage cavity expansion. Notably, disrupting cytokinetic bridge microtubules impairs not only lumenogenesis but also cellular osmoregulation. Our findings reveal a simple mechanism that provides tight spatial and temporal control over the formation of luminal structures and likely plays an important role in water homeostasis during early cleavage stages of a freshwater invertebrate species.
Collapse
Affiliation(s)
- Elisabeth Zieger
- Integrative Zoology, Department of Evolutionary Biology, University of Vienna, Vienna, Austria
- *Correspondence: Andreas Wanninger, ; Andrew D. Calcino, ; Elisabeth Zieger,
| | - Thomas Schwaha
- Integrative Zoology, Department of Evolutionary Biology, University of Vienna, Vienna, Austria
| | - Katharina Burger
- Molecular Nutritional Science, Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - Ina Bergheim
- Molecular Nutritional Science, Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - Andreas Wanninger
- Integrative Zoology, Department of Evolutionary Biology, University of Vienna, Vienna, Austria
- *Correspondence: Andreas Wanninger, ; Andrew D. Calcino, ; Elisabeth Zieger,
| | - Andrew D. Calcino
- Integrative Zoology, Department of Evolutionary Biology, University of Vienna, Vienna, Austria
- *Correspondence: Andreas Wanninger, ; Andrew D. Calcino, ; Elisabeth Zieger,
| |
Collapse
|
10
|
Camacho-Gómez D, García-Aznar JM, Gómez-Benito MJ. A 3D multi-agent-based model for lumen morphogenesis: the role of the biophysical properties of the extracellular matrix. ENGINEERING WITH COMPUTERS 2022; 38:4135-4149. [PMID: 36397878 PMCID: PMC9653332 DOI: 10.1007/s00366-022-01654-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/25/2022] [Indexed: 06/16/2023]
Abstract
UNLABELLED The correct function of many organs depends on proper lumen morphogenesis, which requires the orchestration of both biological and mechanical aspects. However, how these factors coordinate is not yet fully understood. Here, we focus on the development of a mechanistic model for computationally simulating lumen morphogenesis. In particular, we consider the hydrostatic pressure generated by the cells' fluid secretion as the driving force and the density of the extracellular matrix as regulators of the process. For this purpose, we develop a 3D agent-based-model for lumen morphogenesis that includes cells' fluid secretion and the density of the extracellular matrix. Moreover, this computer-based model considers the variation in the biological behavior of cells in response to the mechanical forces that they sense. Then, we study the formation of the lumen under different-mechanical scenarios and conclude that an increase in the matrix density reduces the lumen volume and hinders lumen morphogenesis. Finally, we show that the model successfully predicts normal lumen morphogenesis when the matrix density is physiological and aberrant multilumen formation when the matrix density is excessive. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s00366-022-01654-1.
Collapse
Affiliation(s)
- Daniel Camacho-Gómez
- Department of Mechanical Engineering, Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | - José Manuel García-Aznar
- Department of Mechanical Engineering, Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | - María José Gómez-Benito
- Department of Mechanical Engineering, Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
11
|
Bugda Gwilt K, Thiagarajah JR. Membrane Lipids in Epithelial Polarity: Sorting out the PIPs. Front Cell Dev Biol 2022; 10:893960. [PMID: 35712665 PMCID: PMC9197455 DOI: 10.3389/fcell.2022.893960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
The development of cell polarity in epithelia, is critical for tissue morphogenesis and vectorial transport between the environment and the underlying tissue. Epithelial polarity is defined by the development of distinct plasma membrane domains: the apical membrane interfacing with the exterior lumen compartment, and the basolateral membrane directly contacting the underlying tissue. The de novo generation of polarity is a tightly regulated process, both spatially and temporally, involving changes in the distribution of plasma membrane lipids, localization of apical and basolateral membrane proteins, and vesicular trafficking. Historically, the process of epithelial polarity has been primarily described in relation to the localization and function of protein 'polarity complexes.' However, a critical and foundational role is emerging for plasma membrane lipids, and in particular phosphoinositide species. Here, we broadly review the evidence for a primary role for membrane lipids in the generation of epithelial polarity and highlight key areas requiring further research. We discuss the complex interchange that exists between lipid species and briefly examine how major membrane lipid constituents are generated and intersect with vesicular trafficking to be preferentially localized to different membrane domains with a focus on some of the key protein-enzyme complexes involved in these processes.
Collapse
Affiliation(s)
- Katlynn Bugda Gwilt
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Jay R Thiagarajah
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
12
|
Vasquez CG, Vachharajani VT, Garzon-Coral C, Dunn AR. Physical basis for the determination of lumen shape in a simple epithelium. Nat Commun 2021; 12:5608. [PMID: 34556639 PMCID: PMC8460836 DOI: 10.1038/s41467-021-25050-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/24/2021] [Indexed: 12/24/2022] Open
Abstract
The formation of a hollow lumen in a formerly solid mass of cells is a key developmental process whose dysregulation leads to diseases of the kidney and other organs. Hydrostatic pressure has been proposed to drive lumen expansion, a view that is supported by experiments in the mouse blastocyst. However, lumens formed in other tissues adopt irregular shapes with cell apical faces that are bowed inward, suggesting that pressure may not be the dominant contributor to lumen shape in all cases. Here we use live-cell imaging to study the physical mechanism of lumen formation in Madin-Darby Canine Kidney cell spheroids, a canonical cell-culture model for lumenogenesis. We find that in this system, lumen shape reflects basic geometrical considerations tied to the establishment of apico-basal polarity. A physical model incorporating both cell geometry and intraluminal pressure can account for our observations as well as cases in which pressure plays a dominant role.
Collapse
Affiliation(s)
| | | | | | - Alexander R Dunn
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
13
|
Sigismund S, Lanzetti L, Scita G, Di Fiore PP. Endocytosis in the context-dependent regulation of individual and collective cell properties. Nat Rev Mol Cell Biol 2021; 22:625-643. [PMID: 34075221 DOI: 10.1038/s41580-021-00375-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 02/07/2023]
Abstract
Endocytosis allows cells to transport particles and molecules across the plasma membrane. In addition, it is involved in the termination of signalling through receptor downmodulation and degradation. This traditional outlook has been substantially modified in recent years by discoveries that endocytosis and subsequent trafficking routes have a profound impact on the positive regulation and propagation of signals, being key for the spatiotemporal regulation of signal transmission in cells. Accordingly, endocytosis and membrane trafficking regulate virtually every aspect of cell physiology and are frequently subverted in pathological conditions. Two key aspects of endocytic control over signalling are coming into focus: context-dependency and long-range effects. First, endocytic-regulated outputs are not stereotyped but heavily dependent on the cell-specific regulation of endocytic networks. Second, endocytic regulation has an impact not only on individual cells but also on the behaviour of cellular collectives. Herein, we will discuss recent advancements in these areas, highlighting how endocytic trafficking impacts complex cell properties, including cell polarity and collective cell migration, and the relevance of these mechanisms to disease, in particular cancer.
Collapse
Affiliation(s)
- Sara Sigismund
- IEO, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Haemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Letizia Lanzetti
- Department of Oncology, University of Torino Medical School, Torino, Italy.,Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
| | - Giorgio Scita
- Department of Oncology and Haemato-Oncology, Università degli Studi di Milano, Milan, Italy.,IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Pier Paolo Di Fiore
- IEO, European Institute of Oncology IRCCS, Milan, Italy. .,Department of Oncology and Haemato-Oncology, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
14
|
Abe-Fukasawa N, Watanabe R, Gen Y, Nishino T, Itasaki N. A liquid culture cancer spheroid model reveals low PI3K/Akt pathway activity and low adhesiveness to the extracellular matrix. FEBS J 2021; 288:5650-5667. [PMID: 33837641 DOI: 10.1111/febs.15867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/16/2021] [Accepted: 03/29/2021] [Indexed: 01/13/2023]
Abstract
Three-dimensional (3D) cultures of cancer cells in liquid without extracellular matrix (ECM) offer in vitro models for metastasising conditions such as those in vessels and effusion. However, liquid culturing is often hindered by cell adhesiveness, which causes large cell clumps. We previously described a liquid culture material, LA717, which prevents nonclonal cell adhesion and subsequent clumping, thus allowing clonal growth of spheroids in an anchorage-independent manner. Here, we examined such liquid culture cancer spheroids for the acquisition of apical-basal polarity, sensitivity to an Akt inhibitor (anticancer drug MK-2206) and interaction with ECM. The spheroids present apical plasma membrane on the surface, which originated from the failure of polarisation at the single-cell stage and subsequent defects in phosphorylated ezrin accumulation at the cell boundary during the first cleavage, failing internal lumen formation. At the multicellular stage, liquid culture spheroids presented bleb-like protrusion on the surface, which was enhanced by the activation of the PI3K/Akt pathway and reduced by PI3K/Akt inhibitors. Liquid culture spheroids exhibited slow proliferation speed and low endogenous pAkt levels compared with gel-cultured spheroids and 2D-cultured cells, explaining the susceptibility to the Akt-inhibiting anticancer drug. Subcutaneous xenografting and in vitro analysis demonstrated low viability and adhesive property of liquid culture spheroids to ECM, while migratory and invasive capacities were comparable with gel-cultured spheroids. These features agree with the low efficacy of circulating tumour spheroids in the settling step of metastasis. This study demonstrates the feature of anchorage-independent spheroids and validates liquid cultures as a useful method in cancer spheroid research.
Collapse
Affiliation(s)
| | - Rina Watanabe
- Biological Research Laboratories, Nissan Chemical Corporation, Saitama, Japan
| | - Yuki Gen
- Faculty of Health Sciences, University of Bristol, UK
| | - Taito Nishino
- Biological Research Laboratories, Nissan Chemical Corporation, Saitama, Japan
| | - Nobue Itasaki
- Faculty of Health Sciences, University of Bristol, UK
| |
Collapse
|
15
|
Weijts B, Shaked I, Ginsberg M, Kleinfeld D, Robin C, Traver D. Endothelial struts enable the generation of large lumenized blood vessels de novo. Nat Cell Biol 2021; 23:322-329. [PMID: 33837285 PMCID: PMC8500358 DOI: 10.1038/s41556-021-00664-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 03/05/2021] [Indexed: 02/01/2023]
Abstract
De novo blood vessel formation occurs through coalescence of endothelial cells (ECs) into a cord-like structure, followed by lumenization either through cell-1-3 or cord-hollowing4-7. Vessels generated in this manner are restricted in diameter to one or two ECs, and these models fail to explain how vasculogenesis can form large-diameter vessels. Here, we describe a model for large vessel formation that does not require a cord-like structure or a hollowing step. In this model, ECs coalesce into a network of struts in the future lumen of the vessel, a process dependent upon bone morphogenetic protein signalling. The vessel wall forms around this network and consists initially of only a few patches of ECs. To withstand external forces and to maintain the shape of the vessel, strut formation traps erythrocytes into compartments to form a rigid structure. Struts gradually prune and ECs from struts migrate into and become part of the vessel wall. Experimental severing of struts resulted in vessel collapse, disturbed blood flow and remodelling defects, demonstrating that struts enable the patency of large vessels during their formation.
Collapse
Affiliation(s)
- Bart Weijts
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California-San Diego, La Jolla, CA 92093, USA,Hubrecht Institute-KNAW & University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands,Correspondence to: ;
| | - Iftach Shaked
- Department of Physics, University of California at San Diego, La Jolla, CA 92093, USA; Section of Neurobiology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Mark Ginsberg
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - David Kleinfeld
- Department of Physics, University of California at San Diego, La Jolla, CA 92093, USA; Section of Neurobiology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Catherine Robin
- Hubrecht Institute-KNAW & University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands,Regenerative Medicine Center, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands
| | - David Traver
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California-San Diego, La Jolla, CA 92093, USA,Correspondence to: ;
| |
Collapse
|
16
|
Hof L, Moreth T, Koch M, Liebisch T, Kurtz M, Tarnick J, Lissek SM, Verstegen MMA, van der Laan LJW, Huch M, Matthäus F, Stelzer EHK, Pampaloni F. Long-term live imaging and multiscale analysis identify heterogeneity and core principles of epithelial organoid morphogenesis. BMC Biol 2021; 19:37. [PMID: 33627108 PMCID: PMC7903752 DOI: 10.1186/s12915-021-00958-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/12/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Organoids are morphologically heterogeneous three-dimensional cell culture systems and serve as an ideal model for understanding the principles of collective cell behaviour in mammalian organs during development, homeostasis, regeneration, and pathogenesis. To investigate the underlying cell organisation principles of organoids, we imaged hundreds of pancreas and cholangiocarcinoma organoids in parallel using light sheet and bright-field microscopy for up to 7 days. RESULTS We quantified organoid behaviour at single-cell (microscale), individual-organoid (mesoscale), and entire-culture (macroscale) levels. At single-cell resolution, we monitored formation, monolayer polarisation, and degeneration and identified diverse behaviours, including lumen expansion and decline (size oscillation), migration, rotation, and multi-organoid fusion. Detailed individual organoid quantifications lead to a mechanical 3D agent-based model. A derived scaling law and simulations support the hypotheses that size oscillations depend on organoid properties and cell division dynamics, which is confirmed by bright-field microscopy analysis of entire cultures. CONCLUSION Our multiscale analysis provides a systematic picture of the diversity of cell organisation in organoids by identifying and quantifying the core regulatory principles of organoid morphogenesis.
Collapse
Affiliation(s)
- Lotta Hof
- Physical Biology Group, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Till Moreth
- Physical Biology Group, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Michael Koch
- Physical Biology Group, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Tim Liebisch
- Frankfurt Institute for Advanced Studies and Faculty of Biological Sciences, Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Marina Kurtz
- Department of Physics, Goethe Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Julia Tarnick
- Deanery of Biomedical Science, University of Edinburgh, Edinburgh, UK
| | - Susanna M Lissek
- Experimental Medicine and Therapy Research, University of Regensburg, Regensburg, Germany
| | - Monique M A Verstegen
- Department of Surgery, Erasmus MC - University Medical Center, Rotterdam, The Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC - University Medical Center, Rotterdam, The Netherlands
| | - Meritxell Huch
- The Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, UK
- Present address: Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Franziska Matthäus
- Frankfurt Institute for Advanced Studies and Faculty of Biological Sciences, Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Ernst H K Stelzer
- Physical Biology Group, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Francesco Pampaloni
- Physical Biology Group, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany.
| |
Collapse
|
17
|
Cells into tubes: Molecular and physical principles underlying lumen formation in tubular organs. Curr Top Dev Biol 2020; 143:37-74. [PMID: 33820625 DOI: 10.1016/bs.ctdb.2020.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tubular networks, such as the vascular and respiratory systems, transport liquids and gases in multicellular organisms. The basic units of these organs are tubes formed by single or multiple cells enclosing a luminal cavity. The formation and maintenance of correctly sized and shaped lumina are fundamental steps in organogenesis and are essential for organismal homeostasis. Therefore, understanding how cells generate, shape and maintain lumina is crucial for understanding normal organogenesis as well as the basis of pathological conditions. Lumen formation involves polarized membrane trafficking, cytoskeletal dynamics, and the influence of intracellular as well as extracellular mechanical forces, such as cortical tension, luminal pressure or blood flow. Various tissue culture and in vivo model systems, ranging from MDCK cell spheroids to tubular organs in worms, flies, fish, and mice, have provided many insights into the molecular and cellular mechanisms underlying lumenogenesis and revealed key factors that regulate the size and shape of cellular tubes. Moreover, the development of new experimental and imaging approaches enabled quantitative analyses of intracellular dynamics and allowed to assess the roles of cellular and tissue mechanics during tubulogenesis. However, how intracellular processes are coordinated and regulated across scales of biological organization to generate properly sized and shaped tubes is only beginning to be understood. Here, we review recent insights into the molecular, cellular and physical mechanisms underlying lumen formation during organogenesis. We discuss how these mechanisms control lumen formation in various model systems, with a special focus on the morphogenesis of tubular organs in Drosophila.
Collapse
|
18
|
Lohmann S, Giampietro C, Pramotton FM, Al‐Nuaimi D, Poli A, Maiuri P, Poulikakos D, Ferrari A. The Role of Tricellulin in Epithelial Jamming and Unjamming via Segmentation of Tricellular Junctions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001213. [PMID: 32775171 PMCID: PMC7404176 DOI: 10.1002/advs.202001213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Collective cellular behavior in confluent monolayers supports physiological and pathological processes of epithelial development, regeneration, and carcinogenesis. Here, the attainment of a mature and static tissue configuration or the local reactivation of cell motility involve a dynamic regulation of the junctions established between neighboring cells. Tricellular junctions (tTJs), established at vertexes where three cells meet, are ideally located to control cellular shape and coordinate multicellular movements. However, their function in epithelial tissue dynamic remains poorly defined. To investigate the role of tTJs establishment and maturation in the jamming and unjamming transitions of epithelial monolayers, a semi-automatic image-processing pipeline is developed and validated enabling the unbiased and spatially resolved determination of the tTJ maturity state based on the localization of fluorescent reporters. The software resolves the variation of tTJ maturity accompanying collective transitions during tissue maturation, wound healing, and upon the adaptation to osmolarity changes. Altogether, this work establishes junctional maturity at tricellular contacts as a novel biological descriptor of collective responses in epithelial monolayers.
Collapse
Affiliation(s)
- Sophie Lohmann
- Laboratory of Thermodynamics in Emerging TechnologiesETH ZurichZurich8092Switzerland
| | - Costanza Giampietro
- EMPASwiss Federal Laboratories for Materials Science and TechnologyExperimental Continuum MechanicsDübendorf8600Switzerland
| | | | - Dunja Al‐Nuaimi
- Laboratory of Thermodynamics in Emerging TechnologiesETH ZurichZurich8092Switzerland
| | - Alessandro Poli
- IFOM‐ The FIRC Institute of Molecular OncologySpatiotemporal organization of the nucleus UnitMilan20139Italy
| | - Paolo Maiuri
- IFOM‐ The FIRC Institute of Molecular OncologySpatiotemporal organization of the nucleus UnitMilan20139Italy
| | - Dimos Poulikakos
- Laboratory of Thermodynamics in Emerging TechnologiesETH ZurichZurich8092Switzerland
| | - Aldo Ferrari
- Laboratory of Thermodynamics in Emerging TechnologiesETH ZurichZurich8092Switzerland
- EMPASwiss Federal Laboratories for Materials Science and TechnologyExperimental Continuum MechanicsDübendorf8600Switzerland
- Institute for Mechanical SystemsETH ZurichZürich8092Switzerland
| |
Collapse
|
19
|
Mathew R, Rios-Barrera LD, Machado P, Schwab Y, Leptin M. Transcytosis via the late endocytic pathway as a cell morphogenetic mechanism. EMBO J 2020; 39:e105332. [PMID: 32657472 PMCID: PMC7429744 DOI: 10.15252/embj.2020105332] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022] Open
Abstract
Plasma membranes fulfil many physiological functions. In polarized cells, different membrane compartments take on specialized roles, each being allocated correct amounts of membrane. The Drosophila tracheal system, an established tubulogenesis model, contains branched terminal cells with subcellular tubes formed by apical plasma membrane invagination. We show that apical endocytosis and late endosome‐mediated trafficking are required for membrane allocation to the apical and basal membrane domains. Basal plasma membrane growth stops if endocytosis is blocked, whereas the apical membrane grows excessively. Plasma membrane is initially delivered apically and then continuously endocytosed, together with apical and basal cargo. We describe an organelle carrying markers of late endosomes and multivesicular bodies (MVBs) that is abolished by inhibiting endocytosis and which we suggest acts as transit station for membrane destined to be redistributed both apically and basally. This is based on the observation that disrupting MVB formation prevents growth of both compartments.
Collapse
Affiliation(s)
- Renjith Mathew
- Directors' Research Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - L Daniel Rios-Barrera
- Directors' Research Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Pedro Machado
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Yannick Schwab
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Maria Leptin
- Directors' Research Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Institute of Genetics, University of Cologne, Cologne, Germany
| |
Collapse
|
20
|
Temporal Coordination of Collective Migration and Lumen Formation by Antagonism between Two Nuclear Receptors. iScience 2020; 23:101335. [PMID: 32682323 PMCID: PMC7366032 DOI: 10.1016/j.isci.2020.101335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/13/2020] [Accepted: 06/26/2020] [Indexed: 02/01/2023] Open
Abstract
During development, cells undergo multiple, distinct morphogenetic processes to form a tissue or organ, but how their temporal order and time interval are determined remain poorly understood. Here we show that the nuclear receptors E75 and DHR3 regulate the temporal order and time interval between the collective migration and lumen formation of a coherent group of cells named border cells during Drosophila oogenesis. We show that E75, in response to ecdysone signaling, antagonizes the activity of DHR3 during border cell migration, and DHR3 is necessary and sufficient for the subsequent lumen formation that is critical for micropyle morphogenesis. DHR3's lumen-inducing function is mainly mediated through βFtz-f1, another nuclear receptor and transcription factor. Furthermore, both DHR3 and βFtz-f1 are required for chitin secretion into the lumen, whereas DHR3 is sufficient for chitin secretion. Lastly, DHR3 and βFtz-f1 suppress JNK signaling in the border cells to downregulate cell adhesion during lumen formation. E75 antagonizes DHR3's function in inducing lumen formation of border cells (BCs) E75 and DHR3 temporally coordinate collective migration and lumen formation of BCs DHR3 is required and sufficient for chitin secretion into the lumen DHR3 and βFtz-f1 downregulate JNK signaling and cell adhesion in the BCs
Collapse
|
21
|
Schlueter J, Mikawa T. Body Cavity Development Is Guided by Morphogen Transfer between Germ Layers. Cell Rep 2020; 24:1456-1463. [PMID: 30089257 PMCID: PMC6162999 DOI: 10.1016/j.celrep.2018.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/16/2018] [Accepted: 07/03/2018] [Indexed: 01/05/2023] Open
Abstract
The body cavity is a space where internal organs develop and are placed. Despite the importance of this internal space, how the body cavity forms specifically within the mesoderm remains largely unknown. Here, we report that upon the onset of dorsal mesodermal cell polarization and initial lumen formation, mesodermal cells form filamentous projections that are directed toward the ectoderm. This cell behavior enables the dorsal population of mesodermal cells to receive BMP7 that is expressed by the ectoderm. Suppression of ectodermal BMP7 diminishes mesodermal cell projection and results in the loss of body cavity development. The data reveal that body cavity induction depends on signaling factor transfer from ectoderm to mesoderm.
Collapse
Affiliation(s)
- Jan Schlueter
- University of California San Francisco, School of Medicine, Cardiovascular Research Institute, 555 Mission Bay Blvd South, San Francisco, CA 94158, USA
| | - Takashi Mikawa
- University of California San Francisco, School of Medicine, Cardiovascular Research Institute, 555 Mission Bay Blvd South, San Francisco, CA 94158, USA.
| |
Collapse
|
22
|
Ryan AQ, Chan CJ, Graner F, Hiiragi T. Lumen Expansion Facilitates Epiblast-Primitive Endoderm Fate Specification during Mouse Blastocyst Formation. Dev Cell 2019; 51:684-697.e4. [PMID: 31735667 PMCID: PMC6912163 DOI: 10.1016/j.devcel.2019.10.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/29/2019] [Accepted: 10/14/2019] [Indexed: 12/21/2022]
Abstract
Epithelial tissues typically form lumina. In mammalian blastocysts, in which the first embryonic lumen forms, many studies have investigated how the cell lineages are specified through genetics and signaling, whereas potential roles of the fluid lumen have yet to be investigated. We discover that in mouse pre-implantation embryos at the onset of lumen formation, cytoplasmic vesicles are secreted into intercellular space. The segregation of epiblast and primitive endoderm directly follows lumen coalescence. Notably, pharmacological and biophysical perturbation of lumen expansion impairs the specification and spatial segregation of primitive endoderm cells within the blastocyst. Luminal deposition of FGF4 expedites fate specification and partially rescues the reduced specification in blastocysts with smaller cavities. Combined, our results suggest that blastocyst lumen expansion plays a critical role in guiding cell fate specification and positioning, possibly mediated by luminally deposited FGF4. Lumen expansion may provide a general mechanism for tissue pattern formation. Lumenogenesis coincides with cytoplasmic vesicle release into intercellular space Mouse blastocyst epiblast-primitive endoderm segregation follows lumen expansion Reduced lumen expansion impairs cell fate specification and segregation Luminally deposited FGF4 expedites epiblast-primitive endoderm specification
Collapse
Affiliation(s)
- Allyson Quinn Ryan
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Laboratoire Matière et Systèmes Complexes, Université Denis Diderot, Paris 7, CNRS UMR 7057, Condorcet Building 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France
| | - Chii Jou Chan
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - François Graner
- Laboratoire Matière et Systèmes Complexes, Université Denis Diderot, Paris 7, CNRS UMR 7057, Condorcet Building 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France
| | - Takashi Hiiragi
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan.
| |
Collapse
|
23
|
Duclut C, Sarkar N, Prost J, Jülicher F. Fluid pumping and active flexoelectricity can promote lumen nucleation in cell assemblies. Proc Natl Acad Sci U S A 2019; 116:19264-19273. [PMID: 31492815 PMCID: PMC6765252 DOI: 10.1073/pnas.1908481116] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We discuss the physical mechanisms that promote or suppress the nucleation of a fluid-filled lumen inside a cell assembly or a tissue. We discuss lumen formation in a continuum theory of tissue material properties in which the tissue is described as a 2-fluid system to account for its permeation by the interstitial fluid, and we include fluid pumping as well as active electric effects. Considering a spherical geometry and a polarized tissue, our work shows that fluid pumping and tissue flexoelectricity play a crucial role in lumen formation. We furthermore explore the large variety of long-time states that are accessible for the cell aggregate and its lumen. Our work reveals a role of the coupling of mechanical, electrical, and hydraulic phenomena in tissue lumen formation.
Collapse
Affiliation(s)
- Charlie Duclut
- Max-Planck-Institut für Physik komplexer Systeme, 01187 Dresden, Germany
| | - Niladri Sarkar
- Laboratoire Physico Chimie Curie, UMR 168, Institut Curie, PSL Research University, CNRS, Sorbonne Université, 75005 Paris, France
- Instituut-Lorentz, Universiteit Leiden, 2300 RA Leiden, Netherlands
| | - Jacques Prost
- Laboratoire Physico Chimie Curie, UMR 168, Institut Curie, PSL Research University, CNRS, Sorbonne Université, 75005 Paris, France
- Mechanobiology Institute, National University of Singapore, 117411 Singapore
| | - Frank Jülicher
- Max-Planck-Institut für Physik komplexer Systeme, 01187 Dresden, Germany;
- Center for Systems Biology Dresden, 01307 Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
24
|
Pramotton FM, Robotti F, Giampietro C, Lendenmann T, Poulikakos D, Ferrari A. Optimized Topological and Topographical Expansion of Epithelia. ACS Biomater Sci Eng 2019; 5:3922-3934. [DOI: 10.1021/acsbiomaterials.8b01346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Francesca Michela Pramotton
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich CH-8092, Switzerland
| | - Francesco Robotti
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich CH-8092, Switzerland
| | - Costanza Giampietro
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich CH-8092, Switzerland
- EMPA, Swiss Federal Laboratories for Material Science and Technologies, Überlandstrasse 129, Dübendorf 8600, Switzerland
| | - Tobias Lendenmann
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich CH-8092, Switzerland
| | - Dimos Poulikakos
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich CH-8092, Switzerland
| | - Aldo Ferrari
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich CH-8092, Switzerland
- EMPA, Swiss Federal Laboratories for Material Science and Technologies, Überlandstrasse 129, Dübendorf 8600, Switzerland
- Institute for Mechanical Systems, ETH Zurich, Leonhardstrasse 21, Zurich CH-8092, Switzerland
| |
Collapse
|
25
|
Román-Fernández Á, Roignot J, Sandilands E, Nacke M, Mansour MA, McGarry L, Shanks E, Mostov KE, Bryant DM. The phospholipid PI(3,4)P 2 is an apical identity determinant. Nat Commun 2018; 9:5041. [PMID: 30487552 PMCID: PMC6262019 DOI: 10.1038/s41467-018-07464-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/22/2018] [Indexed: 12/17/2022] Open
Abstract
Apical-basal polarization is essential for epithelial tissue formation, segregating cortical domains to perform distinct physiological functions. Cortical lipid asymmetry has emerged as a determinant of cell polarization. We report a network of phosphatidylinositol phosphate (PIP)-modifying enzymes, some of which are transcriptionally induced upon embedding epithelial cells in extracellular matrix, and that are essential for apical-basal polarization. Unexpectedly, we find that PI(3,4)P2 localization and function is distinct from the basolateral determinant PI(3,4,5)P3. PI(3,4)P2 localizes to the apical surface, and Rab11a-positive apical recycling endosomes. PI(3,4)P2 is produced by the 5-phosphatase SHIP1 and Class-II PI3-Kinases to recruit the endocytic regulatory protein SNX9 to basolateral domains that are being remodeled into apical surfaces. Perturbing PI(3,4)P2 levels results in defective polarization through subcortical retention of apically destined vesicles at apical membrane initiation sites. We conclude that PI(3,4)P2 is a determinant of apical membrane identity.
Collapse
Affiliation(s)
- Álvaro Román-Fernández
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
- The CRUK Beatson Institute, Glasgow, G61 1BD, UK
| | - Julie Roignot
- Department of Anatomy, University of California, San Francisco, CA, 94158-2140, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, 94158-2140, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Emma Sandilands
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
- The CRUK Beatson Institute, Glasgow, G61 1BD, UK
| | - Marisa Nacke
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
- The CRUK Beatson Institute, Glasgow, G61 1BD, UK
| | - Mohammed A Mansour
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Lynn McGarry
- The CRUK Beatson Institute, Glasgow, G61 1BD, UK
| | - Emma Shanks
- The CRUK Beatson Institute, Glasgow, G61 1BD, UK
| | - Keith E Mostov
- Department of Anatomy, University of California, San Francisco, CA, 94158-2140, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, 94158-2140, USA
| | - David M Bryant
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK.
- The CRUK Beatson Institute, Glasgow, G61 1BD, UK.
| |
Collapse
|
26
|
Jewett CE, Prekeris R. Insane in the apical membrane: Trafficking events mediating apicobasal epithelial polarity during tube morphogenesis. Traffic 2018; 19:10.1111/tra.12579. [PMID: 29766620 PMCID: PMC6239989 DOI: 10.1111/tra.12579] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 12/13/2022]
Abstract
The creation of cellular tubes is one of the most vital developmental processes, resulting in the formation of most organ types. Cells have co-opted a number of different mechanisms for tube morphogenesis that vary among tissues and organisms; however, generation and maintenance of cell polarity is fundamental for successful lumenogenesis. Polarized membrane transport has emerged as a key driver not only for establishing individual epithelial cell polarity, but also for coordination of epithelial polarization during apical lumen formation and tissue morphogenesis. In recent years, much work has been dedicated to identifying membrane trafficking regulators required for lumenogenesis. In this review we will summarize the findings from the past couple of decades in defining the molecular machinery governing lumenogenesis both in 3D tissue culture models and during organ development in vivo.
Collapse
Affiliation(s)
- Cayla E. Jewett
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
27
|
Kreitzer G, Myat MM. Microtubule Motors in Establishment of Epithelial Cell Polarity. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a027896. [PMID: 28264820 DOI: 10.1101/cshperspect.a027896] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Epithelial cells play a key role in insuring physiological homeostasis by acting as a barrier between the outside environment and internal organs. They are also responsible for the vectorial transport of ions and fluid essential to the function of many organs. To accomplish these tasks, epithelial cells must generate an asymmetrically organized plasma membrane comprised of structurally and functionally distinct apical and basolateral membranes. Adherent and occluding junctions, respectively, anchor cells within a layer and prevent lateral diffusion of proteins in the outer leaflet of the plasma membrane and restrict passage of proteins and solutes through intercellular spaces. At a fundamental level, the establishment and maintenance of epithelial polarity requires that signals initiated at cell-substratum and cell-cell adhesions are transmitted appropriately and dynamically to the cytoskeleton, to the membrane-trafficking machinery, and to the regulation of occluding and adherent junctions. Rigorous descriptive and mechanistic studies published over the last 50 years have provided great detail to our understanding of epithelial polarization. Yet still, critical early steps in morphogenesis are not yet fully appreciated. In this review, we discuss how cytoskeletal motor proteins, primarily kinesins, contribute to coordinated modification of microtubule and actin arrays, formation and remodeling of cell adhesions to targeted membrane trafficking, and to initiating the formation and expansion of an apical lumen.
Collapse
Affiliation(s)
- Geri Kreitzer
- Department of Pathobiology, Sophie Davis School of Biomedical Education, City College of New York, The City University of New York School of Medicine, New York, New York 10031
| | - Monn Monn Myat
- Department of Biology, Medgar Evers College, Brooklyn, New York 11225.,The Graduate Center, The City University of New York, New York, New York 10016
| |
Collapse
|
28
|
Rosa JB, Metzstein MM, Ghabrial AS. An Ichor-dependent apical extracellular matrix regulates seamless tube shape and integrity. PLoS Genet 2018; 14:e1007146. [PMID: 29309404 PMCID: PMC5774827 DOI: 10.1371/journal.pgen.1007146] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/19/2018] [Accepted: 12/09/2017] [Indexed: 01/25/2023] Open
Abstract
During sprouting angiogenesis in the vertebrate vascular system, and primary branching in the Drosophila tracheal system, specialized tip cells direct branch outgrowth and network formation. When tip cells lumenize, they form subcellular (seamless) tubes. How these seamless tubes are made, shaped and maintained remains poorly understood. Here we characterize a Drosophila mutant called ichor (ich), and show that ich is essential for the integrity and shape of seamless tubes in tracheal terminal cells. We find that Ich regulates seamless tubulogenesis via its role in promoting the formation of a mature apical extracellular matrix (aECM) lining the lumen of the seamless tubes. We determined that ich encodes a zinc finger protein (CG11966) that acts, as a transcriptional activator required for the expression of multiple aECM factors, including a novel membrane-anchored trypsin protease (CG8213). Thus, the integrity and shape of seamless tubes are regulated by the aECM that lines their lumens.
Collapse
Affiliation(s)
- Jeffrey B. Rosa
- Department of Cell & Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Mark M. Metzstein
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Amin S. Ghabrial
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States of America
| |
Collapse
|
29
|
Nishimura R, Kato K, Fujiwara S, Ohashi K, Mizuno K. Solo and Keratin Filaments Regulate Epithelial Tubule Morphology. Cell Struct Funct 2018; 43:95-105. [DOI: 10.1247/csf.18010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Ryosuke Nishimura
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University
- Department of Cell Biology, Graduate School of Medical Sciences, Tokushima University
| | - Kagayaki Kato
- Bioimage Informatics Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences (NINS)
- Department of Imaging Science, Center for Novel Science Initiatives (CNSI), National Institutes of Natural Sciences (NINS)
- Division of Evolutionary Biology Biodiversity, National Institute for Basic Biology (NIBB)
| | - Sachiko Fujiwara
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University
| | - Kazumasa Ohashi
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University
| | - Kensaku Mizuno
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University
| |
Collapse
|
30
|
Abstract
Epithelial tubes are crucial to the function of organ systems including the excretory, gastrointestinal, cardiovascular, and pulmonary. Studies in the last two decades using in vitro organotypic systems and a variety of animal models have substantiated a large number of the morphogenetic mechanisms required to form epithelial tubes in development and regeneration. Many of these mechanisms modulate the differentiation and proliferation events necessary for generating the cell movements and changes in cell shape to delineate the wide variety of epithelial tube sizes, lengths, and conformations. For instance, when coupled with oriented cell division, proliferation itself plays a role in changes in tube shape and their directed expansion. Most of these processes are regulated in response to signaling inputs from adjacent cells or soluble factors from the environment. Despite the great deal of recent investigation in this direction, the knowledge we have about the signaling pathways associated with all epithelial tubulogenesis in development and regeneration is still very limited.
Collapse
|
31
|
Milanini J, Fayad R, Partisani M, Lecine P, Borg JP, Franco M, Luton F. EFA6 regulates lumen formation through alpha-actinin 1. J Cell Sci 2017; 131:jcs.209361. [DOI: 10.1242/jcs.209361] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 12/11/2017] [Indexed: 01/07/2023] Open
Abstract
A key step of epithelial morphogenesis is the creation of the lumen. Luminogenesis by hollowing proceeds through the fusion of apical vesicles at cell-cell contact. The small nascent lumens grow through extension, coalescence and enlargement coordinated with cell division to give rise to a single central lumen. Here, using MDCK cells grown in 3D-culture, we show that EFA6A participates in luminogenesis. EFA6A recruits α-actinin 1 (ACTN1) through direct binding. In polarized cells, ACTN1 was found to be enriched at the tight junction where it acts as a primary effector of EFA6A for normal luminogenesis. Both proteins are essential for the lumen extension and enlargement, where they mediate their effect by regulating the cortical acto-myosin contractility. Finally, ACTN1 was also found to act as an effector for the isoform EFA6B in the human mammary tumoral MCF7 cell line. EFA6B restored the glandular morphology of this tumoral cell line in an ACTN1-dependent manner. Thus, we identified new regulators of cyst luminogenesis essential for the proper maturation of a newly-formed lumen into a single central lumen.
Collapse
Affiliation(s)
- Julie Milanini
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Racha Fayad
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Mariagrazia Partisani
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Patrick Lecine
- Centre de Recherche en Cancérologie de Marseille (CRCM), "Cell Polarity, Cell Signalling and Cancer", Equipe Labellisée Ligue Contre le Cancer, Inserm U1068, Marseille, F-13009, France; CNRS, UMR7258, Marseille, F-13009, France; Institut Paoli-Calmettes, Marseille, F-13009, France; Aix-Marseille University, UM105, Marseille, F-13284, France
- present address: BIOASTER, Lyon, France
| | - Jean-Paul Borg
- Centre de Recherche en Cancérologie de Marseille (CRCM), "Cell Polarity, Cell Signalling and Cancer", Equipe Labellisée Ligue Contre le Cancer, Inserm U1068, Marseille, F-13009, France; CNRS, UMR7258, Marseille, F-13009, France; Institut Paoli-Calmettes, Marseille, F-13009, France; Aix-Marseille University, UM105, Marseille, F-13284, France
| | - Michel Franco
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Frédéric Luton
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| |
Collapse
|
32
|
Marciano DK. A holey pursuit: lumen formation in the developing kidney. Pediatr Nephrol 2017; 32:7-20. [PMID: 26902755 PMCID: PMC5495142 DOI: 10.1007/s00467-016-3326-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 12/23/2015] [Accepted: 01/12/2016] [Indexed: 02/07/2023]
Abstract
The formation of polarized epithelial tubules is a hallmark of kidney development. One of the fundamental principles in tubulogenesis is that epithelia coordinate the polarity of individual cells with the surrounding cells and matrix. A central feature in this process is the segregation of membranes into spatially and functionally distinct apical and basolateral domains, and the generation of a luminal space at the apical surface. This review examines our current understanding of the cellular and molecular mechanisms that underlie the establishment of apical-basal polarity and lumen formation in developing renal epithelia, including the roles of cell-cell and cell-matrix interactions and polarity complexes. We highlight growing evidence from animal models, and correlate these findings with models of tubulogenesis from other organ systems, and from in vitro studies.
Collapse
Affiliation(s)
- Denise K. Marciano
- Department of Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd. H5.102, Dallas, TX 75390-8856
| |
Collapse
|
33
|
Yin Q, Xia Y, Wang G. Sinomenine alleviates high glucose-induced renal glomerular endothelial hyperpermeability by inhibiting the activation of RhoA/ROCK signaling pathway. Biochem Biophys Res Commun 2016; 477:881-886. [DOI: 10.1016/j.bbrc.2016.06.152] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 06/29/2016] [Indexed: 12/01/2022]
|
34
|
Yang Z, Zimmerman SE, Tsunezumi J, Braitsch C, Trent C, Bryant DM, Cleaver O, González-Manchón C, Marciano DK. Role of CD34 family members in lumen formation in the developing kidney. Dev Biol 2016; 418:66-74. [PMID: 27542690 DOI: 10.1016/j.ydbio.2016.08.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/04/2016] [Accepted: 08/09/2016] [Indexed: 11/25/2022]
Abstract
Previous studies have shown CD34 family member Podocalyxin is required for epithelial lumen formation in vitro. We demonstrate that Endoglycan, a CD34 family member with homology to Podocalyxin, is produced prior to lumen formation in developing nephrons. Endoglycan localizes to Rab11-containing vesicles in nephron progenitors, and then relocalizes to the apical surface as progenitors epithelialize. Once an apical/luminal surface is formed, Endoglycan (and the actin-binding protein Ezrin) localize to large, intraluminal structures that may be vesicles/exosomes. We generated mice lacking Endoglycan and found mutants had timely initiation of lumen formation and continuous lumens, similar to controls. Mice with conditional deletion of both Endoglycan and Podocalyxin in developing nephrons also had normal tubular lumens. Despite this, Endoglycan/Podocalyxin is required for apical recruitment of the adaptor protein NHERF1, but not Ezrin, in podocyte precursors, a subset of the epithelia. In summary, while CD34 family members appear dispensable for lumen formation, our data identify Endoglycan as a novel pre-luminal marker and suggest lumen formation occurs via vesicular trafficking of apical cargo that includes Endoglycan.
Collapse
Affiliation(s)
- Zhufeng Yang
- Department of Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Susan E Zimmerman
- Department of Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jun Tsunezumi
- Department of Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Caitlin Braitsch
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cary Trent
- Department of Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David M Bryant
- Cancer Research UK (CRUK) Beatson Institute, and Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Ondine Cleaver
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Consuelo González-Manchón
- Centre of Biological Research, CIB-CSIC, Madrid, Spain; CIBER of Rare Diseases, ISCIII, Madrid, Spain
| | - Denise K Marciano
- Department of Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
35
|
Román-Fernández A, Bryant DM. Complex Polarity: Building Multicellular Tissues Through Apical Membrane Traffic. Traffic 2016; 17:1244-1261. [PMID: 27281121 DOI: 10.1111/tra.12417] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/06/2016] [Accepted: 06/06/2016] [Indexed: 12/20/2022]
Abstract
The formation of distinct subdomains of the cell surface is crucial for multicellular organism development. The most striking example of this is apical-basal polarization. What is much less appreciated is that underpinning an asymmetric cell surface is an equally dramatic intracellular endosome rearrangement. Here, we review the interplay between classical cell polarity proteins and membrane trafficking pathways, and discuss how this marriage gives rise to cell polarization. We focus on those mechanisms that regulate apical polarization, as this is providing a number of insights into how membrane traffic and polarity are regulated at the tissue level.
Collapse
Affiliation(s)
- Alvaro Román-Fernández
- Cancer Research UK Beatson Institute, Switchback Road, Glasgow, G61 1BD, UK.,Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - David M Bryant
- Cancer Research UK Beatson Institute, Switchback Road, Glasgow, G61 1BD, UK.,Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| |
Collapse
|
36
|
Rab35 GTPase couples cell division with initiation of epithelial apico-basal polarity and lumen opening. Nat Commun 2016; 7:11166. [PMID: 27040773 PMCID: PMC4822036 DOI: 10.1038/ncomms11166] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 02/25/2016] [Indexed: 02/08/2023] Open
Abstract
Establishment and maintenance of apico-basal polarity in epithelial organs must be tightly coupled with cell division, but the underlying molecular mechanisms are largely unknown. Using 3D cultures of renal MDCK cells (cysts), we found that the Rab35 GTPase plays a crucial role in polarity initiation and apical lumen positioning during the first cell division of cyst development. At the molecular level, Rab35 physically couples cytokinesis with the initiation of apico-basal polarity by tethering intracellular vesicles containing key apical determinants at the cleavage site. These vesicles transport aPKC, Cdc42, Crumbs3 and the lumen-promoting factor Podocalyxin, and are tethered through a direct interaction between Rab35 and the cytoplasmic tail of Podocalyxin. Consequently, Rab35 inactivation leads to complete inversion of apico-basal polarity in 3D cysts. This novel and unconventional mode of Rab-dependent vesicle targeting provides a simple mechanism for triggering both initiation of apico-basal polarity and lumen opening at the centre of cysts. Establishment and maintenance of apico-basal polarity in epithelial organs needs to be tightly coupled with cell division. Here the authors show that the Rab35 GTPase tethers intracellular vesicles containing key apical determinants at the cleavage site, connecting cytokinesis to apico-basal polarity.
Collapse
|
37
|
Vasileiou T, Foresti D, Bayram A, Poulikakos D, Ferrari A. Toward Contactless Biology: Acoustophoretic DNA Transfection. Sci Rep 2016; 6:20023. [PMID: 26828312 PMCID: PMC4734324 DOI: 10.1038/srep20023] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/21/2015] [Indexed: 01/02/2023] Open
Abstract
Acoustophoresis revolutionized the field of container-less manipulation of liquids and solids by enabling mixing procedures which avoid contamination and loss of reagents due to the contact with the support. While its applications to chemistry and engineering are straightforward, additional developments are needed to obtain reliable biological protocols in a contactless environment. Here, we provide a first, fundamental step towards biological reactions in air by demonstrating the acoustophoretic DNA transfection of mammalian cells. We developed an original acoustophoretic design capable of levitating, moving and mixing biological suspensions of living mammalians cells and of DNA plasmids. The precise and sequential delivery of the mixed solutions into tissue culture plates is actuated by a novel mechanism based on the controlled actuation of the acoustophoretic force. The viability of the contactless procedure is tested using a cellular model sensitive to small perturbation of neuronal differentiation pathways. Additionally, the efficiency of the transfection procedure is compared to standard, container-based methods for both single and double DNA transfection and for different cell types including adherent growing HeLa cancer cells, and low adhesion neuron-like PC12 cells. In all, this work provides a proof of principle which paves the way to the development of high-throughput acoustophoretic biological reactors.
Collapse
Affiliation(s)
- Thomas Vasileiou
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092 Zurich, Switzerland
| | - Daniele Foresti
- Harvard University, School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Northwest Labs, B146.40, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Adem Bayram
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092 Zurich, Switzerland
| | - Dimos Poulikakos
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092 Zurich, Switzerland
| | - Aldo Ferrari
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092 Zurich, Switzerland
| |
Collapse
|
38
|
The cell surface mucin podocalyxin regulates collective breast tumor budding. Breast Cancer Res 2016; 18:11. [PMID: 26796961 PMCID: PMC4722710 DOI: 10.1186/s13058-015-0670-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 12/31/2015] [Indexed: 01/10/2023] Open
Abstract
Background Overexpression of the transmembrane sialomucin podocalyxin, which is known to play a role in lumen formation during polarized epithelial morphogenesis, is an independent indicator of poor prognosis in a number of epithelial cancers, including those that arise in the breast. Therefore, we set out to determine if podocalyxin plays a functional role in breast tumor progression. Methods MCF-7 breast cancer cells, which express little endogenous podocalyxin, were stably transfected with wild type podocalyxin for forced overexpression. 4T1 mammary tumor cells, which express considerable endogenous podocalyxin, were retrovirally transduced with a short hairpin ribonucleic acid (shRNA) targeting podocalyxin for stable knockdown. In vitro, the effects of podocalyxin on collective cellular migration and invasion were assessed in two-dimensional monolayer and three-dimensional basement membrane/collagen gel culture, respectively. In vivo, local invasion was assessed after orthotopic transplantation in immunocompromised mice. Results Forced overexpression of podocalyxin caused cohesive clusters of epithelial MCF-7 breast tumor cells to bud off from the primary tumor and collectively invade the stroma of the mouse mammary gland in vivo. This budding was not associated with any obvious changes in histoarchitecture, matrix deposition or proliferation in the primary tumour. In vitro, podocalyxin overexpression induced a collective migration of MCF-7 tumor cells in two-dimensional (2-D) monolayer culture that was dependent on the activity of the actin scaffolding protein ezrin, a cytoplasmic binding partner of podocalyxin. In three-dimensional (3-D) culture, podocalyxin overexpression induced a collective budding and invasion that was dependent on actomyosin contractility. Interestingly, the collectively invasive cell aggregates often contained expanded microlumens that were also observed in vivo. Conversely, when endogenous podocalyxin was removed from highly metastatic, but cohesive, 4T1 mammary tumor cells there was a decrease in collective invasion in three-dimensional culture. Conclusions Podocalyxin is a tumor cell-intrinsic regulator of experimental collective tumor cell invasion and tumor budding. Electronic supplementary material The online version of this article (doi:10.1186/s13058-015-0670-4) contains supplementary material, which is available to authorized users.
Collapse
|
39
|
Abstract
The ability to dictate cell fate decisions is critical during animal development. Moreover, faithful execution of this process ensures proper tissue homeostasis throughout adulthood, whereas defects in the molecular machinery involved may contribute to disease. Evolutionarily conserved protein complexes control cell fate decisions across diverse tissues. Maintaining proper daughter cell inheritance patterns of these determinants during mitosis is therefore a fundamental step of the cell fate decision-making process. In this review, we will discuss two key aspects of this fate determinant segregation activity, cortical cell polarity and mitotic spindle orientation, and how they operate together to produce oriented cell divisions that ultimately influence daughter cell fate. Our focus will be directed at the principal underlying molecular mechanisms and the specific cell fate decisions they have been shown to control.
Collapse
Affiliation(s)
| | | | - Christopher A. Johnston
- Author to whom correspondence should be addressed; ; Tel.: +1-505-277-1567; Fax: +1-505-277-0304
| |
Collapse
|
40
|
Blasky AJ, Mangan A, Prekeris R. Polarized protein transport and lumen formation during epithelial tissue morphogenesis. Annu Rev Cell Dev Biol 2015; 31:575-91. [PMID: 26359775 DOI: 10.1146/annurev-cellbio-100814-125323] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
One of the major challenges in biology is to explain how complex tissues and organs arise from the collective action of individual polarized cells. The best-studied model of this process is the cross talk between individual epithelial cells during their polarization to form the multicellular epithelial lumen during tissue morphogenesis. Multiple mechanisms of apical lumen formation have been proposed. Some epithelial lumens form from preexisting polarized epithelial structures. However, de novo lumen formation from nonpolarized cells has recently emerged as an important driver of epithelial tissue morphogenesis, especially during the formation of small epithelial tubule networks. In this review, we discuss the latest findings regarding the mechanisms and regulation of de novo lumen formation in vitro and in vivo.
Collapse
Affiliation(s)
- Alex J Blasky
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045;
| | - Anthony Mangan
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045;
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045;
| |
Collapse
|
41
|
Talin is required to position and expand the luminal domain of the Drosophila heart tube. Dev Biol 2015; 405:189-201. [DOI: 10.1016/j.ydbio.2015.04.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/25/2015] [Accepted: 04/28/2015] [Indexed: 12/22/2022]
|
42
|
Archibald A, Al-Masri M, Liew-Spilger A, McCaffrey L. Atypical protein kinase C induces cell transformation by disrupting Hippo/Yap signaling. Mol Biol Cell 2015; 26:3578-95. [PMID: 26269582 PMCID: PMC4603929 DOI: 10.1091/mbc.e15-05-0265] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/07/2015] [Indexed: 01/22/2023] Open
Abstract
Epithelial cells are major sites of malignant transformation. Atypical protein kinase C (aPKC) isoforms are overexpressed and activated in many cancer types. Using normal, highly polarized epithelial cells (MDCK and NMuMG), we report that aPKC gain of function overcomes contact inhibited growth and is sufficient for a transformed epithelial phenotype. In 2D cultures, aPKC induced cells to grow as stratified epithelia, whereas cells grew as solid spheres of nonpolarized cells in 3D culture. aPKC associated with Mst1/2, which uncoupled Mst1/2 from Lats1/2 and promoted nuclear accumulation of Yap1. Of importance, Yap1 was necessary for aPKC-mediated overgrowth but did not restore cell polarity defects, indicating that the two are separable events. In MDCK cells, Yap1 was sequestered to cell-cell junctions by Amot, and aPKC overexpression resulted in loss of Amot expression and a spindle-like cell phenotype. Reexpression of Amot was sufficient to restore an epithelial cobblestone appearance, Yap1 localization, and growth control. In contrast, the effect of aPKC on Hippo/Yap signaling and overgrowth in NMuMG cells was independent of Amot. Finally, increased expression of aPKC in human cancers strongly correlated with increased nuclear accumulation of Yap1, indicating that the effect of aPKC on transformed growth by deregulating Hippo/Yap1 signaling may be clinically relevant.
Collapse
Affiliation(s)
- Andrew Archibald
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada Division of Experimental Medicine, McGill University, Montreal, QC H3A 1A3, Canada
| | - Maia Al-Masri
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada Division of Experimental Medicine, McGill University, Montreal, QC H3A 1A3, Canada
| | - Alyson Liew-Spilger
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Luke McCaffrey
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada Division of Experimental Medicine, McGill University, Montreal, QC H3A 1A3, Canada Department of Oncology, McGill University, Montreal, QC H3A 1A3, Canada
| |
Collapse
|
43
|
Overeem AW, Bryant DM, van IJzendoorn SC. Mechanisms of apical–basal axis orientation and epithelial lumen positioning. Trends Cell Biol 2015; 25:476-85. [DOI: 10.1016/j.tcb.2015.04.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/24/2015] [Accepted: 04/06/2015] [Indexed: 12/17/2022]
|
44
|
Antonini S, Meucci S, Jacchetti E, Klingauf M, Beltram F, Poulikakos D, Cecchini M, Ferrari A. Sub-micron lateral topography affects endothelial migration by modulation of focal adhesion dynamics. ACTA ACUST UNITED AC 2015; 10:035010. [PMID: 26106866 DOI: 10.1088/1748-6041/10/3/035010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Through the interaction with topographical features, endothelial cells tune their ability to populate target substrates, both in vivo and in vitro. Basal textures interfere with the establishment and maturation of focal adhesions (FAs) thus inducing specific cell-polarization patterns and regulating a plethora of cell activities that govern the overall endothelial function. In this study, we analyze the effect of topographical features on FAs in primary human endothelial cells. Reported data demonstrate a functional link between FA dynamics and cell polarization and spreading on structured substrates presenting variable lateral feature size. Our results reveal that gratings with 2 µm lateral periodicity maximize contact guidance. The effect is linked to the dynamical state of FAs. We argue that these results are readily applicable to the rational design of active surfaces at the interface with the blood stream.
Collapse
Affiliation(s)
- S Antonini
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro, 12, I-56126 Pisa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Manninen A. Epithelial polarity – Generating and integrating signals from the ECM with integrins. Exp Cell Res 2015; 334:337-49. [DOI: 10.1016/j.yexcr.2015.01.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/08/2015] [Accepted: 01/09/2015] [Indexed: 01/20/2023]
|
46
|
Denker E, Sehring IM, Dong B, Audisso J, Mathiesen B, Jiang D. Regulation by a TGFβ-ROCK-actomyosin axis secures a non-linear lumen expansion that is essential for tubulogenesis. Development 2015; 142:1639-50. [PMID: 25834020 DOI: 10.1242/dev.117150] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 03/04/2015] [Indexed: 02/01/2023]
Abstract
Regulation of lumen growth is crucial to ensure the correct morphology, dimensions and function of a tubular structure. How this is controlled is still poorly understood. During Ciona intestinalis notochord tubulogenesis, single extracellular lumen pockets grow between pairs of cells and eventually fuse into a continuous tube. Here, we show that lumen growth exhibits a lag phase, during which the luminal membranes continue to grow but the expansion of the apical/lateral junction pauses for ∼30 min. Inhibition of non-muscle myosin II activity abolishes this lag phase and accelerates expansion of the junction, resulting in the formation of narrower lumen pockets partially fusing into a tube of reduced size. Disruption of actin dynamics, conversely, causes a reversal of apical/lateral junction expansion, leading to a dramatic conversion of extracellular lumen pockets to intracellular vacuoles and a tubulogenesis arrest. The onset of the lag phase is correlated with a de novo accumulation of actin that forms a contractile ring at the apical/lateral junctions. This actin ring actively restricts the opening of the lumen in the transverse plane, allowing sufficient time for lumen growth via an osmotic process along the longitudinal dimension. The dynamics of lumen formation is controlled by the TGFβ pathway and ROCK activity. Our findings reveal a TGFβ-ROCK-actomyosin contractility axis that coordinates lumen growth, which is powered by the dynamics of luminal osmolarity. The regulatory system may function like a sensor/checkpoint that responds to the change of luminal pressure and fine-tunes actomyosin contractility to effect proper tubulogenesis.
Collapse
Affiliation(s)
- Elsa Denker
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt. 55, Bergen N-5008, Norway
| | - Ivonne M Sehring
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt. 55, Bergen N-5008, Norway
| | - Bo Dong
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt. 55, Bergen N-5008, Norway College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China Institute of Evolution and Marine Biodiversity, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Julien Audisso
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt. 55, Bergen N-5008, Norway
| | - Birthe Mathiesen
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt. 55, Bergen N-5008, Norway
| | - Di Jiang
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt. 55, Bergen N-5008, Norway
| |
Collapse
|
47
|
Aue A, Hinze C, Walentin K, Ruffert J, Yurtdas Y, Werth M, Chen W, Rabien A, Kilic E, Schulzke JD, Schumann M, Schmidt-Ott KM. A Grainyhead-Like 2/Ovo-Like 2 Pathway Regulates Renal Epithelial Barrier Function and Lumen Expansion. J Am Soc Nephrol 2015; 26:2704-15. [PMID: 25788534 DOI: 10.1681/asn.2014080759] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 12/30/2014] [Indexed: 12/20/2022] Open
Abstract
Grainyhead transcription factors control epithelial barriers, tissue morphogenesis, and differentiation, but their role in the kidney is poorly understood. Here, we report that nephric duct, ureteric bud, and collecting duct epithelia express high levels of grainyhead-like homolog 2 (Grhl2) and that nephric duct lumen expansion is defective in Grhl2-deficient mice. In collecting duct epithelial cells, Grhl2 inactivation impaired epithelial barrier formation and inhibited lumen expansion. Molecular analyses showed that GRHL2 acts as a transcriptional activator and strongly associates with histone H3 lysine 4 trimethylation. Integrating genome-wide GRHL2 binding as well as H3 lysine 4 trimethylation chromatin immunoprecipitation sequencing and gene expression data allowed us to derive a high-confidence GRHL2 target set. GRHL2 transactivated a group of genes including Ovol2, encoding the ovo-like 2 zinc finger transcription factor, as well as E-cadherin, claudin 4 (Cldn4), and the small GTPase Rab25. Ovol2 induction alone was sufficient to bypass the requirement of Grhl2 for E-cadherin, Cldn4, and Rab25 expression. Re-expression of either Ovol2 or a combination of Cldn4 and Rab25 was sufficient to rescue lumen expansion and barrier formation in Grhl2-deficient collecting duct cells. Hence, we identified a Grhl2/Ovol2 network controlling Cldn4 and Rab25 expression that facilitates lumen expansion and barrier formation in subtypes of renal epithelia.
Collapse
Affiliation(s)
- Annekatrin Aue
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany; Experimental and Clinical Research Center, and
| | - Christian Hinze
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany; Departments of Nephrology
| | | | - Janett Ruffert
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Yesim Yurtdas
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany; Urology, Berlin Institute of Urologic Research, Berlin, Germany
| | - Max Werth
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Wei Chen
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Anja Rabien
- Urology, Berlin Institute of Urologic Research, Berlin, Germany
| | | | | | - Michael Schumann
- Gastroenterology, Charité Medical University, Berlin, Germany; and
| | - Kai M Schmidt-Ott
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany; Experimental and Clinical Research Center, and Departments of Nephrology,
| |
Collapse
|
48
|
Cetera M, Ramirez-San Juan GR, Oakes PW, Lewellyn L, Fairchild MJ, Tanentzapf G, Gardel ML, Horne-Badovinac S. Epithelial rotation promotes the global alignment of contractile actin bundles during Drosophila egg chamber elongation. Nat Commun 2014; 5:5511. [PMID: 25413675 PMCID: PMC4241503 DOI: 10.1038/ncomms6511] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/08/2014] [Indexed: 01/05/2023] Open
Abstract
Tissues use numerous mechanisms to change shape during development. The Drosophila egg chamber is an organ-like structure that elongates to form an elliptical egg. During elongation the follicular epithelial cells undergo a collective migration that causes the egg chamber to rotate within its surrounding basement membrane. Rotation coincides with the formation of a “molecular corset”, in which actin bundles in the epithelium and fibrils in the basement membrane are all aligned perpendicular to the elongation axis. Here we show that rotation plays a critical role in building the actin-based component of the corset. Rotation begins shortly after egg chamber formation and requires lamellipodial protrusions at each follicle cell’s leading edge. During early stages, rotation is necessary for tissue-level actin bundle alignment, but it becomes dispensable after the basement membrane is polarized. This work highlights how collective cell migration can be used to build a polarized tissue organization for organ morphogenesis.
Collapse
Affiliation(s)
- Maureen Cetera
- 1] Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA [2] Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA
| | - Guillermina R Ramirez-San Juan
- 1] Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA [2] Institute for Biophysical Dynamics, James Franck Institute and Department of Physics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Patrick W Oakes
- Institute for Biophysical Dynamics, James Franck Institute and Department of Physics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Lindsay Lewellyn
- 1] Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA [2] Department of Biological Sciences, Butler University, 4600 Sunset Boulevard, Indianapolis, Indiana 46208, USA
| | - Michael J Fairchild
- Life Sciences Centre, Department of Cellular and Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - Guy Tanentzapf
- Life Sciences Centre, Department of Cellular and Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - Margaret L Gardel
- Institute for Biophysical Dynamics, James Franck Institute and Department of Physics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Sally Horne-Badovinac
- 1] Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA [2] Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA
| |
Collapse
|
49
|
Sauteur L, Krudewig A, Herwig L, Ehrenfeuchter N, Lenard A, Affolter M, Belting HG. Cdh5/VE-cadherin promotes endothelial cell interface elongation via cortical actin polymerization during angiogenic sprouting. Cell Rep 2014; 9:504-13. [PMID: 25373898 DOI: 10.1016/j.celrep.2014.09.024] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 03/24/2014] [Accepted: 09/13/2014] [Indexed: 10/24/2022] Open
Abstract
Organ morphogenesis requires the coordination of cell behaviors. Here, we have analyzed dynamic endothelial cell behaviors underlying sprouting angiogenesis in vivo. Two different mechanisms contribute to sprout outgrowth: tip cells show strong migratory behavior, whereas extension of the stalk is dependent upon cell elongation. To investigate the function of Cdh5 in sprout outgrowth, we generated null mutations in the zebrafish cdh5 gene, and we found that junctional remodeling and cell elongation are impaired in mutant embryos. The defects are associated with a disorganization of the actin cytoskeleton and cannot be rescued by expression of a truncated version of Cdh5. Finally, the defects in junctional remodeling can be phenocopied by pharmacological inhibition of actin polymerization, but not by inhibiting actin-myosin contractility. Taken together, our results support a model in which Cdh5 organizes junctional and cortical actin cytoskeletons, as well as provides structural support for polymerizing F-actin cables during endothelial cell elongation.
Collapse
Affiliation(s)
- Loïc Sauteur
- Biozentrum der Universität Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Alice Krudewig
- Biozentrum der Universität Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Lukas Herwig
- Biozentrum der Universität Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | | | - Anna Lenard
- Biozentrum der Universität Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Markus Affolter
- Biozentrum der Universität Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland.
| | - Heinz-Georg Belting
- Biozentrum der Universität Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland.
| |
Collapse
|
50
|
Bryant DM, Roignot J, Datta A, Overeem AW, Kim M, Yu W, Peng X, Eastburn DJ, Ewald AJ, Werb Z, Mostov KE. A molecular switch for the orientation of epithelial cell polarization. Dev Cell 2014; 31:171-87. [PMID: 25307480 DOI: 10.1016/j.devcel.2014.08.027] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 06/30/2014] [Accepted: 08/28/2014] [Indexed: 11/27/2022]
Abstract
The formation of epithelial tissues containing lumens requires not only the apical-basolateral polarization of cells, but also the coordinated orientation of this polarity such that the apical surfaces of neighboring cells all point toward the central lumen. Defects in extracellular matrix (ECM) signaling lead to inverted polarity so that the apical surfaces face the surrounding ECM. We report a molecular switch mechanism controlling polarity orientation. ECM signals through a β1-integrin/FAK/p190RhoGAP complex to downregulate a RhoA/ROCK/Ezrin pathway at the ECM interface. PKCβII phosphorylates the apical identity-promoting Podocalyxin/NHERF1/Ezrin complex, removing Podocalyxin from the ECM-abutting cell surface and initiating its transcytosis to an apical membrane initiation site for lumen formation. Inhibition of this switch mechanism results in the retention of Podocalyxin at the ECM interface and the development instead of collective front-rear polarization and motility. Thus, ECM-derived signals control the morphogenesis of epithelial tissues by controlling the collective orientation of epithelial polarization.
Collapse
Affiliation(s)
- David M Bryant
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158-2140, USA
| | - Julie Roignot
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158-2140, USA
| | - Anirban Datta
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158-2140, USA
| | - Arend W Overeem
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158-2140, USA
| | - Minji Kim
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158-2140, USA
| | - Wei Yu
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158-2140, USA
| | - Xiao Peng
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158-2140, USA
| | - Dennis J Eastburn
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158-2140, USA
| | - Andrew J Ewald
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158-2140, USA
| | - Zena Werb
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158-2140, USA
| | - Keith E Mostov
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158-2140, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158-2140, USA.
| |
Collapse
|