1
|
Valentine Y, Nikolajczyk BS. T cells in obesity-associated inflammation: The devil is in the details. Immunol Rev 2024; 324:25-41. [PMID: 38767210 PMCID: PMC11694249 DOI: 10.1111/imr.13354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Obesity presents a significant health challenge, affecting 41% of adults and 19.7% of children in the United States. One of the associated health challenges of obesity is chronic low-grade inflammation. In both mice and humans, T cells in circulation and in the adipose tissue play a pivotal role in obesity-associated inflammation. Changes in the numbers and frequency of specific CD4+ Th subsets and their contribution to inflammation through cytokine production indicate declining metabolic health, that is, insulin resistance and T2D. While some Th subset alterations are consistent between mice and humans with obesity, some changes mainly characterize male mice, whereas female mice often resist obesity and inflammation. However, protection from obesity and inflammation is not observed in human females, who can develop obesity-related T-cell inflammation akin to males. The decline in female sex hormones after menopause is also implicated in promoting obesity and inflammation. Age is a second underappreciated factor for defining and regulating obesity-associated inflammation toward translating basic science findings to the clinic. Weight loss in mice and humans, in parallel with these other factors, does not resolve obesity-associated inflammation. Instead, inflammation persists amid modest changes in CD4+ T cell frequencies, highlighting the need for further research into resolving changes in T-cell function after weight loss. How lingering inflammation after weight loss affecting the common struggle to maintain lower weight is unknown. Semaglutide, a newly popular pharmaceutical used for treating T2D and reversing obesity, holds promise for alleviating obesity-associated health complications, yet its impact on T-cell-mediated inflammation remains unexplored. Further work in this area could significantly contribute to the scientific understanding of the impacts of weight loss and sex/hormones in obesity and obesity-associated metabolic decline.
Collapse
Affiliation(s)
- Yolander Valentine
- Department of Pharmacology and Nutritional Science, University of Kentucky, Lexington, Kentucky, USA
| | - Barbara S. Nikolajczyk
- Department of Pharmacology and Nutritional Science, University of Kentucky, Lexington, Kentucky, USA
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
- Barnstable Brown Diabetes and Obesity Research Center, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
2
|
Erol ÖD, Şenocak Ş, Aerts-Kaya F. The Role of Rab GTPases in the development of genetic and malignant diseases. Mol Cell Biochem 2024; 479:255-281. [PMID: 37060515 DOI: 10.1007/s11010-023-04727-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/01/2023] [Indexed: 04/16/2023]
Abstract
Small GTPases have been shown to play an important role in several cellular functions, including cytoskeletal remodeling, cell polarity, intracellular trafficking, cell-cycle, progression and lipid transformation. The Ras-associated binding (Rab) family of GTPases constitutes the largest family of GTPases and consists of almost 70 known members of small GTPases in humans, which are known to play an important role in the regulation of intracellular membrane trafficking, membrane identity, vesicle budding, uncoating, motility and fusion of membranes. Mutations in Rab genes can cause a wide range of inherited genetic diseases, ranging from neurodegenerative diseases, such as Parkinson's disease (PD) and Alzheimer's disease (AD) to immune dysregulation/deficiency syndromes, like Griscelli Syndrome Type II (GS-II) and hemophagocytic lymphohistiocytosis (HLH), as well as a variety of cancers. Here, we provide an extended overview of human Rabs, discussing their function and diseases related to Rabs and Rab effectors, as well as focusing on effects of (aberrant) Rab expression. We aim to underline their importance in health and the development of genetic and malignant diseases by assessing their role in cellular structure, regulation, function and biology and discuss the possible use of stem cell gene therapy, as well as targeting of Rabs in order to treat malignancies, but also to monitor recurrence of cancer and metastasis through the use of Rabs as biomarkers. Future research should shed further light on the roles of Rabs in the development of multifactorial diseases, such as diabetes and assess Rabs as a possible treatment target.
Collapse
Affiliation(s)
- Özgür Doğuş Erol
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100, Ankara, Turkey
- Hacettepe University Center for Stem Cell Research and Development, 06100, Ankara, Turkey
| | - Şimal Şenocak
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100, Ankara, Turkey
- Hacettepe University Center for Stem Cell Research and Development, 06100, Ankara, Turkey
| | - Fatima Aerts-Kaya
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100, Ankara, Turkey.
- Hacettepe University Center for Stem Cell Research and Development, 06100, Ankara, Turkey.
| |
Collapse
|
3
|
Li Y, Wang W, Lim HY. Drosophila transmembrane protein 214 (dTMEM214) regulates midgut glucose uptake and systemic glucose homeostasis. Dev Biol 2023; 495:92-103. [PMID: 36657508 PMCID: PMC9905329 DOI: 10.1016/j.ydbio.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023]
Abstract
The availability of glucose transporter in the small intestine critically determines the capacity for glucose uptake and consequently systemic glucose homeostasis. Hence a better understanding of the physiological regulation of intestinal glucose transporter is pertinent. However, the molecular mechanisms that regulate sodium-glucose linked transporter 1 (SGLT1), the primary glucose transporter in the small intestine, remain incompletely understood. Recently, the Drosophila SLC5A5 (dSLC5A5) has been found to exhibit properties consistent with a dietary glucose transporter in the Drosophila midgut, the equivalence of the mammalian small intestine. Hence, the fly midgut could serve as a suitable model system for the study of the in vivo molecular underpinnings of SGLT1 function. Here, we report the identification, through a genetic screen, of Drosophila transmembrane protein 214 (dTMEM214) that acts in the midgut enterocytes to regulate systemic glucose homeostasis and glucose uptake. We show that dTMEM214 resides in the apical membrane and cytoplasm of the midgut enterocytes, and that the proper subcellular distribution of dTMEM214 in the enterocytes is regulated by the Rab4 GTPase. As a corollary, Rab4 loss-of-function phenocopies dTMEM214 loss-of-function in the midgut as shown by a decrease in enterocyte glucose uptake and an alteration in systemic glucose homeostasis. We further show that dTMEM214 regulates the apical membrane localization of dSLC5A5 in the enterocytes, thereby revealing dTMEM214 as a molecular regulator of glucose transporter in the midgut.
Collapse
Affiliation(s)
- Yue Li
- Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Weidong Wang
- Department of Medicine, Section of Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Hui-Ying Lim
- Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA.
| |
Collapse
|
4
|
Rawat S, Chatterjee D, Marwaha R, Charak G, Kumar G, Shaw S, Khatter D, Sharma S, de Heus C, Liv N, Klumperman J, Tuli A, Sharma M. RUFY1 binds Arl8b and mediates endosome-to-TGN CI-M6PR retrieval for cargo sorting to lysosomes. J Cell Biol 2023; 222:e202108001. [PMID: 36282215 PMCID: PMC9597352 DOI: 10.1083/jcb.202108001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/26/2022] [Accepted: 09/29/2022] [Indexed: 11/22/2022] Open
Abstract
Arl8b, an Arf-like GTP-binding protein, regulates cargo trafficking and positioning of lysosomes. However, it is unknown whether Arl8b regulates lysosomal cargo sorting. Here, we report that Arl8b binds to the Rab4 and Rab14 interaction partner, RUN and FYVE domain-containing protein (RUFY) 1, a known regulator of cargo sorting from recycling endosomes. Arl8b determines RUFY1 endosomal localization through regulating its interaction with Rab14. RUFY1 depletion led to a delay in CI-M6PR retrieval from endosomes to the TGN, resulting in impaired delivery of newly synthesized hydrolases to lysosomes. We identified the dynein-dynactin complex as an RUFY1 interaction partner, and similar to a subset of activating dynein adaptors, the coiled-coil region of RUFY1 was required for interaction with dynein and the ability to mediate dynein-dependent organelle clustering. Our findings suggest that Arl8b and RUFY1 play a novel role on recycling endosomes, from where this machinery regulates endosomes to TGN retrieval of CI-M6PR and, consequently, lysosomal cargo sorting.
Collapse
Affiliation(s)
- Shalini Rawat
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali (IISERM), Punjab, India
| | - Dhruba Chatterjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali (IISERM), Punjab, India
| | - Rituraj Marwaha
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali (IISERM), Punjab, India
| | - Gitanjali Charak
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali (IISERM), Punjab, India
| | - Gaurav Kumar
- Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Shrestha Shaw
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali (IISERM), Punjab, India
| | - Divya Khatter
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali (IISERM), Punjab, India
| | - Sheetal Sharma
- Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Cecilia de Heus
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Nalan Liv
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Judith Klumperman
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Amit Tuli
- Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Mahak Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali (IISERM), Punjab, India
| |
Collapse
|
5
|
Abstract
The global prevalences of obesity and type 2 diabetes mellitus have reached epidemic status, presenting a heavy burden on society. It is therefore essential to find novel mechanisms and targets that could be utilized in potential treatment strategies and, as such, intracellular membrane trafficking has re-emerged as a regulatory tool for controlling metabolic homeostasis. Membrane trafficking is an essential physiological process that is responsible for the sorting and distribution of signalling receptors, membrane transporters and hormones or other ligands between different intracellular compartments and the plasma membrane. Dysregulation of intracellular transport is associated with many human diseases, including cancer, neurodegeneration, immune deficiencies and metabolic diseases, such as type 2 diabetes mellitus and its associated complications. This Review focuses on the latest advances on the role of endosomal membrane trafficking in metabolic physiology and pathology in vivo, highlighting the importance of this research field in targeting metabolic diseases.
Collapse
Affiliation(s)
- Jerome Gilleron
- Université Côte d'Azur, Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1065 C3M, Team Cellular and Molecular Pathophysiology of Obesity, Nice, France.
| | - Anja Zeigerer
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
6
|
Redpath G, Deo N. Serotonin: an overlooked regulator of endocytosis and endosomal sorting? Biol Open 2022; 11:bio059057. [PMID: 35076063 PMCID: PMC8801889 DOI: 10.1242/bio.059057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/09/2021] [Indexed: 12/23/2022] Open
Abstract
Serotonin is a neurotransmitter and a hormone that is typically associated with regulating our mood. However, the serotonin transporter and receptors are expressed throughout the body, highlighting the much broader, systemic role of serotonin in regulating human physiology. A substantial body of data strongly implicates serotonin as a fundamental regulator of endocytosis and endocytic sorting. Serotonin has the potential to enhance endocytosis through three distinct mechanisms - serotonin signalling, serotonylation and insertion into the plasma membrane - although the interplay and relationship between these mechanisms has not yet been explored. Endocytosis is central to the cellular response to the extracellular environment, controlling receptor distribution on the plasma membrane to modulate signalling, neurotransmitter release and uptake, circulating protein and lipid cargo uptake, and amino acid internalisation for cell proliferation. Uncovering the range of cellular and physiological circumstances in which serotonin regulates endocytosis is of great interest for our understanding of how serotonin regulates mood, and also the fundamental understanding of endocytosis and its regulation throughout the body. This article has an associated Future Leader to Watch interview with the first author of the paper.
Collapse
Affiliation(s)
- Gregory Redpath
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences and the ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney 2052, Australia
| | - Nikita Deo
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
7
|
Zhang J, Jiang Z, Shi A. Rab GTPases: The principal players in crafting the regulatory landscape of endosomal trafficking. Comput Struct Biotechnol J 2022; 20:4464-4472. [PMID: 36051867 PMCID: PMC9418685 DOI: 10.1016/j.csbj.2022.08.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
After endocytosis, diverse cargos are sorted into endosomes and directed to various destinations, including extracellular macromolecules, membrane lipids, and membrane proteins. Some cargos are returned to the plasma membrane via endocytic recycling. In contrast, others are delivered to the Golgi apparatus through the retrograde pathway, while the rest are transported to late endosomes and eventually to lysosomes for degradation. Rab GTPases are major regulators that ensure cargos are delivered to their proper destinations. Rabs are localized to distinct endosomes and play predominant roles in membrane budding, vesicle formation and motility, vesicle tethering, and vesicle fusion by recruiting effectors. The cascades between Rabs via shared effectors or the recruitment of Rab activators provide an additional layer of spatiotemporal regulation of endocytic trafficking. Notably, several recent studies have indicated that disorders of Rab-mediated endocytic transports are closely associated with diseases such as immunodeficiency, cancer, and neurological disorders.
Collapse
|
8
|
Albuquerque A, Óvilo C, Núñez Y, Benítez R, López-Garcia A, García F, Félix MDR, Laranjo M, Charneca R, Martins JM. Transcriptomic Profiling of Skeletal Muscle Reveals Candidate Genes Influencing Muscle Growth and Associated Lipid Composition in Portuguese Local Pig Breeds. Animals (Basel) 2021; 11:ani11051423. [PMID: 34065673 PMCID: PMC8156922 DOI: 10.3390/ani11051423] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Screening and interpretation of differentially expressed genes and associated biological pathways was conducted among experimental groups with divergent phenotypes providing valuable information about the metabolic events occurring and identification of candidate genes with major regulation roles. This comparative transcriptomic analysis includes the first RNA-seq analysis of the Longissimus lumborum muscle tissue from two Portuguese autochthonous pig breeds with different genetic backgrounds, Alentejano and Bísaro. Moreover, a complementary candidate gene approach was employed to analyse, by real time qPCR, the expression profile of relevant genes involved in lipid metabolism, and therefore with potential impacts on meat composition. This study contributes to explaining the biological basis of phenotypical differences occurring between breeds, particularly the ones related to meat quality traits that affect consumer interest. Abstract Gene expression is one of the main factors to influence meat quality by modulating fatty acid metabolism, composition, and deposition rates in muscle tissue. This study aimed to explore the transcriptomics of the Longissimus lumborum muscle in two local pig breeds with distinct genetic background using next-generation sequencing technology and Real-Time qPCR. RNA-seq yielded 49 differentially expressed genes between breeds, 34 overexpressed in the Alentejano (AL) and 15 in the Bísaro (BI) breed. Specific slow type myosin heavy chain components were associated with AL (MYH7) and BI (MYH3) pigs, while an overexpression of MAP3K14 in AL may be associated with their lower loin proportion, induced insulin resistance, and increased inflammatory response via NFkB activation. Overexpression of RUFY1 in AL pigs may explain the higher intramuscular (IMF) content via higher GLUT4 recruitment and consequently higher glucose uptake that can be stored as fat. Several candidate genes for lipid metabolism, excluded in the RNA-seq analysis due to low counts, such as ACLY, ADIPOQ, ELOVL6, LEP and ME1 were identified by qPCR as main gene factors defining the processes that influence meat composition and quality. These results agree with the fatter profile of the AL pig breed and adiponectin resistance can be postulated as responsible for the overexpression of MAP3K14′s coding product NIK, failing to restore insulin sensitivity.
Collapse
Affiliation(s)
- André Albuquerque
- MED-Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada & Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal;
- Correspondence: (A.A.); (J.M.M.)
| | - Cristina Óvilo
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain; (C.Ó.); (Y.N.); (R.B.); (A.L.-G.); (F.G.)
| | - Yolanda Núñez
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain; (C.Ó.); (Y.N.); (R.B.); (A.L.-G.); (F.G.)
| | - Rita Benítez
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain; (C.Ó.); (Y.N.); (R.B.); (A.L.-G.); (F.G.)
| | - Adrián López-Garcia
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain; (C.Ó.); (Y.N.); (R.B.); (A.L.-G.); (F.G.)
| | - Fabián García
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain; (C.Ó.); (Y.N.); (R.B.); (A.L.-G.); (F.G.)
| | - Maria do Rosário Félix
- MED & Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal;
| | - Marta Laranjo
- MED-Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada & Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal;
| | - Rui Charneca
- MED & Departamento de Medicina Veterinária, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal;
| | - José Manuel Martins
- MED & Departamento de Zootecnia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
- Correspondence: (A.A.); (J.M.M.)
| |
Collapse
|
9
|
Li F, Du W, Wang H, Zhao S, Zhu L, Hao J. Activation of AMPK pathway compromises Rab11 downregulation-mediated inhibition of Schwann cell proliferation in a Glut1 and Glut3-dependent manner. Neurosci Lett 2020; 720:134762. [PMID: 31954765 DOI: 10.1016/j.neulet.2020.134762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/26/2019] [Accepted: 01/14/2020] [Indexed: 12/17/2022]
Abstract
Rab11, a small GTPase, is an important protein in the regulation of intracellular plasma membrane trafficking. Schwann cells are the main cells of peripheral nerves and knockdown of Rab11 in these cells inhibits the formation of functional tunneling nanotubes (TNTs). However, the role of Rab11 in the functioning of Schwann cells remains elusive. Herein, using cell viability analysis, live/dead cell staining, BrdU assay, and western blot analysis with an AMPK antibody, we observed that the knockdown of Rab11 significantly inhibited the proliferation of RSC96 cells. Further investigations showed that the AMPK pathway was activated by the knockdown of Rab11, as indicated by the enhanced levels of phosphorylated AMPK. Moreover, suppression of AMPK pathway with Compound C aggravated Rab11 knockdown-induced inhibition of cell proliferation. In contrast, activation of the AMPK pathway with AICAR ameliorated the Rab11 knockdown-mediated inhibition of cell proliferation. Furthermore, the levels of Glut1 and Glut3 were decreased in the RSC96 cells upon Rab11 knockdown. Additionally, the knockdown of Glut1 and Glut3 led to the activation of the AMPK pathway in RSC96 cells. We conclude that the knockdown of Rab11 suppresses the proliferation of RSC96 cells, and as a compensatory mechanism, the activation of AMPK pathway, in a Glut1 and Glut3-dependent manner, improves RSC96 cell proliferation.
Collapse
Affiliation(s)
- Fan Li
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| | - Wei Du
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| | - Hui Wang
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| | - Song Zhao
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| | - Lin Zhu
- Department of Electromyogram, the Third Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Jun Hao
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
10
|
Gilleron J, Bouget G, Ivanov S, Meziat C, Ceppo F, Vergoni B, Djedaini M, Soprani A, Dumas K, Jacquel A, Yvan-Charvet L, Venteclef N, Tanti JF, Cormont M. Rab4b Deficiency in T Cells Promotes Adipose Treg/Th17 Imbalance, Adipose Tissue Dysfunction, and Insulin Resistance. Cell Rep 2019; 25:3329-3341.e5. [PMID: 30566860 DOI: 10.1016/j.celrep.2018.11.083] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 09/04/2018] [Accepted: 11/21/2018] [Indexed: 12/18/2022] Open
Abstract
Obesity modifies T cell populations in adipose tissue, thereby contributing to adipose tissue inflammation and insulin resistance. Here, we show that Rab4b, a small GTPase governing endocytic trafficking, is pivotal in T cells for the development of these pathological events. Rab4b expression is decreased in adipose T cells from mice and patients with obesity. The specific depletion of Rab4b in T cells causes adipocyte hypertrophy and insulin resistance in chow-fed mice and worsens insulin resistance in obese mice. This phenotype is driven by an increase in adipose Th17 and a decrease in adipose Treg due to a cell-autonomous skew of differentiation toward Th17. The Th17/Treg imbalance initiates adipose tissue inflammation and reduces adipogenesis, leading to lipid deposition in liver and muscles. Therefore, we propose that the obesity-induced loss of Rab4b in adipose T cells may contribute to maladaptive white adipose tissue remodeling and insulin resistance by altering adipose T cell fate.
Collapse
Affiliation(s)
- Jérôme Gilleron
- INSERM UMR1065, Mediterranean Center of Molecular Medicine C3M, Team "Cellular and Molecular Physiopathology of Obesity and Diabetes," Nice, France; Université Côte d'Azur, Nice, France
| | - Gwennaëlle Bouget
- INSERM UMR1065, Mediterranean Center of Molecular Medicine C3M, Team "Cellular and Molecular Physiopathology of Obesity and Diabetes," Nice, France; Université Côte d'Azur, Nice, France
| | - Stoyan Ivanov
- Université Côte d'Azur, Nice, France; INSERM U1065, Centre Méditerranéen de Médecine Moléculaire C3M, Team "Metabolism and Cancer," Nice, France
| | - Cindy Meziat
- INSERM UMR1065, Mediterranean Center of Molecular Medicine C3M, Team "Cellular and Molecular Physiopathology of Obesity and Diabetes," Nice, France; Université Côte d'Azur, Nice, France
| | - Franck Ceppo
- INSERM UMR1065, Mediterranean Center of Molecular Medicine C3M, Team "Cellular and Molecular Physiopathology of Obesity and Diabetes," Nice, France; Université Côte d'Azur, Nice, France
| | - Bastien Vergoni
- INSERM UMR1065, Mediterranean Center of Molecular Medicine C3M, Team "Cellular and Molecular Physiopathology of Obesity and Diabetes," Nice, France; Université Côte d'Azur, Nice, France
| | - Mansour Djedaini
- INSERM UMR1065, Mediterranean Center of Molecular Medicine C3M, Team "Cellular and Molecular Physiopathology of Obesity and Diabetes," Nice, France; Université Côte d'Azur, Nice, France
| | - Antoine Soprani
- Sorbonne Université, Université Pierre et Marie Curie, INSERM, UMR S_1138 Cordeliers Research Center, Paris, France; Clinique Geoffroy Saint-Hilaire, Ramsey Générale de Santé, Paris, France
| | - Karine Dumas
- INSERM UMR1065, Mediterranean Center of Molecular Medicine C3M, Team "Cellular and Molecular Physiopathology of Obesity and Diabetes," Nice, France; Université Côte d'Azur, Nice, France
| | - Arnaud Jacquel
- Université Côte d'Azur, Nice, France; INSERM U1065, Centre Méditerranéen de Médecine Moléculaire C3M, Team "Cell Death, Differentiation, and Cancer," Nice, France
| | - Laurent Yvan-Charvet
- Université Côte d'Azur, Nice, France; INSERM U1065, Centre Méditerranéen de Médecine Moléculaire C3M, Team "Metabolism and Cancer," Nice, France
| | - Nicolas Venteclef
- Sorbonne Université, Université Pierre et Marie Curie, INSERM, UMR S_1138 Cordeliers Research Center, Paris, France
| | - Jean-François Tanti
- INSERM UMR1065, Mediterranean Center of Molecular Medicine C3M, Team "Cellular and Molecular Physiopathology of Obesity and Diabetes," Nice, France; Université Côte d'Azur, Nice, France
| | - Mireille Cormont
- INSERM UMR1065, Mediterranean Center of Molecular Medicine C3M, Team "Cellular and Molecular Physiopathology of Obesity and Diabetes," Nice, France; Université Côte d'Azur, Nice, France.
| |
Collapse
|
11
|
Abstract
Macroautophagy is an intracellular pathway used for targeting of cellular components to the lysosome for their degradation and involves sequestration of cytoplasmic material into autophagosomes formed from a double membrane structure called the phagophore. The nucleation and elongation of the phagophore is tightly regulated by several autophagy-related (ATG) proteins, but also involves vesicular trafficking from different subcellular compartments to the forming autophagosome. Such trafficking must be tightly regulated by various intra- and extracellular signals to respond to different cellular stressors and metabolic states, as well as the nature of the cargo to become degraded. We are only starting to understand the interconnections between different membrane trafficking pathways and macroautophagy. This review will focus on the membrane trafficking machinery found to be involved in delivery of membrane, lipids, and proteins to the forming autophagosome and in the subsequent autophagosome fusion with endolysosomal membranes. The role of RAB proteins and their regulators, as well as coat proteins, vesicle tethers, and SNARE proteins in autophagosome biogenesis and maturation will be discussed.
Collapse
|
12
|
Vergoni B, Cornejo PJ, Gilleron J, Djedaini M, Ceppo F, Jacquel A, Bouget G, Ginet C, Gonzalez T, Maillet J, Dhennin V, Verbanck M, Auberger P, Froguel P, Tanti JF, Cormont M. DNA Damage and the Activation of the p53 Pathway Mediate Alterations in Metabolic and Secretory Functions of Adipocytes. Diabetes 2016; 65:3062-74. [PMID: 27388216 DOI: 10.2337/db16-0014] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 07/01/2016] [Indexed: 11/13/2022]
Abstract
Activation of the p53 pathway in adipose tissue contributes to insulin resistance associated with obesity. However, the mechanisms of p53 activation and the effect on adipocyte functions are still elusive. Here we found a higher level of DNA oxidation and a reduction in telomere length in adipose tissue of mice fed a high-fat diet and an increase in DNA damage and activation of the p53 pathway in adipocytes. Interestingly, hallmarks of chronic DNA damage are visible at the onset of obesity. Furthermore, injection of lean mice with doxorubicin, a DNA damage-inducing drug, increased the expression of chemokines in adipose tissue and promoted its infiltration by proinflammatory macrophages and neutrophils together with adipocyte insulin resistance. In vitro, DNA damage in adipocytes increased the expression of chemokines and triggered the production of chemotactic factors for macrophages and neutrophils. Insulin signaling and effect on glucose uptake and Glut4 translocation were decreased, and lipolysis was increased. These events were prevented by p53 inhibition, whereas its activation by nutlin-3 reproduced the DNA damage-induced adverse effects. This study reveals that DNA damage in obese adipocytes could trigger p53-dependent signals involved in alteration of adipocyte metabolism and secretory function leading to adipose tissue inflammation, adipocyte dysfunction, and insulin resistance.
Collapse
Affiliation(s)
- Bastien Vergoni
- INSERM, UMR 1065, C3M, Team 7 Molecular and Cellular Physiopathology of Obesity and Diabetes, Nice, France Université Côte d'Azur, C3M, Nice, France
| | - Pierre-Jean Cornejo
- INSERM, UMR 1065, C3M, Team 7 Molecular and Cellular Physiopathology of Obesity and Diabetes, Nice, France Université Côte d'Azur, C3M, Nice, France
| | - Jérôme Gilleron
- INSERM, UMR 1065, C3M, Team 7 Molecular and Cellular Physiopathology of Obesity and Diabetes, Nice, France Université Côte d'Azur, C3M, Nice, France
| | - Mansour Djedaini
- INSERM, UMR 1065, C3M, Team 7 Molecular and Cellular Physiopathology of Obesity and Diabetes, Nice, France Université Côte d'Azur, C3M, Nice, France
| | - Franck Ceppo
- INSERM, UMR 1065, C3M, Team 7 Molecular and Cellular Physiopathology of Obesity and Diabetes, Nice, France Université Côte d'Azur, C3M, Nice, France
| | - Arnaud Jacquel
- Université Côte d'Azur, C3M, Nice, France INSERM, UMR 1065, C3M, Team 2 Cell Death, Differentiation and Cancer, Nice, France
| | - Gwennaelle Bouget
- INSERM, UMR 1065, C3M, Team 7 Molecular and Cellular Physiopathology of Obesity and Diabetes, Nice, France Université Côte d'Azur, C3M, Nice, France
| | - Clémence Ginet
- INSERM, UMR 1065, C3M, Team 7 Molecular and Cellular Physiopathology of Obesity and Diabetes, Nice, France Université Côte d'Azur, C3M, Nice, France
| | - Teresa Gonzalez
- INSERM, UMR 1065, C3M, Team 7 Molecular and Cellular Physiopathology of Obesity and Diabetes, Nice, France Université Côte d'Azur, C3M, Nice, France INSERM, UMR 1062, Nutrition, Obesity and Risk of Thrombosis, Marseille, France
| | - Julie Maillet
- CNRS, UMR 8199, Lille Pasteur Institute, Lille, France Lille University, Lille, France European Genomic Institute for Diabetes, Lille, France
| | - Véronique Dhennin
- CNRS, UMR 8199, Lille Pasteur Institute, Lille, France Lille University, Lille, France European Genomic Institute for Diabetes, Lille, France
| | - Marie Verbanck
- CNRS, UMR 8199, Lille Pasteur Institute, Lille, France Lille University, Lille, France European Genomic Institute for Diabetes, Lille, France
| | - Patrick Auberger
- Université Côte d'Azur, C3M, Nice, France INSERM, UMR 1065, C3M, Team 2 Cell Death, Differentiation and Cancer, Nice, France
| | - Philippe Froguel
- CNRS, UMR 8199, Lille Pasteur Institute, Lille, France Lille University, Lille, France European Genomic Institute for Diabetes, Lille, France Department of Genomics of Common Disease, School of Public Health, Imperial College London, Hammersmith Hospital, London, U.K
| | - Jean-François Tanti
- INSERM, UMR 1065, C3M, Team 7 Molecular and Cellular Physiopathology of Obesity and Diabetes, Nice, France Université Côte d'Azur, C3M, Nice, France
| | - Mireille Cormont
- INSERM, UMR 1065, C3M, Team 7 Molecular and Cellular Physiopathology of Obesity and Diabetes, Nice, France Université Côte d'Azur, C3M, Nice, France
| |
Collapse
|
13
|
Rab14 limits the sorting of Glut4 from endosomes into insulin-sensitive regulated secretory compartments in adipocytes. Biochem J 2016; 473:1315-27. [PMID: 26936971 DOI: 10.1042/bcj20160020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/01/2016] [Indexed: 12/31/2022]
Abstract
Insulin increases glucose uptake by increasing the rate of exocytosis of the facilitative glucose transporter isoform 4 (Glut4) relative to its endocytosis. Insulin also releases Glut4 from highly insulin-regulated secretory compartments (GSVs or Glut4 storage vesicles) into constitutively cycling endosomes. Previously it was shown that both overexpression and knockdown of the small GTP-binding protein Rab14 decreased Glut4 translocation to the plasma membrane (PM). To determine the mechanism of this perturbation, we measured the effects of Rab14 knockdown on the trafficking kinetics of Glut4 relative to two proteins that partially co-localize with Glut4, the transferrin (Tf) receptor and low-density-lipoprotein-receptor-related protein 1 (LRP1). Our data support the hypothesis that Rab14 limits sorting of proteins from sorting (or 'early') endosomes into the specialized GSV pathway, possibly through regulation of endosomal maturation. This hypothesis is consistent with known Rab14 effectors. Interestingly, the insulin-sensitive Rab GTPase-activating protein Akt substrate of 160 kDa (AS160) affects both sorting into and exocytosis from GSVs. It has previously been shown that exocytosis of GSVs is rate-limited by Rab10, and both Rab10 and Rab14 are in vitro substrates of AS160. Regulation of both entry into and exit from GSVs by AS160 through sequential Rab substrates would provide a mechanism for the finely tuned 'quantal' increases in cycling Glut4 observed in response to increasing concentrations of insulin.
Collapse
|
14
|
Takeuchi H, Takada A, Kuboniwa M, Amano A. Intracellular periodontal pathogen exploits recycling pathway to exit from infected cells. Cell Microbiol 2016; 18:928-48. [PMID: 26617273 DOI: 10.1111/cmi.12551] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/09/2015] [Accepted: 11/23/2015] [Indexed: 01/09/2023]
Abstract
Although human gingival epithelium prevents intrusions by periodontal bacteria, Porphyromonas gingivalis, the most well-known periodontal pathogen, is able to invade gingival epithelial cells and pass through the epithelial barrier into deeper tissues. We previously reported that intracellular P. gingivalis exits from gingival epithelial cells via a recycling pathway. However, the underlying molecular process remains unknown. In the present study, we found that the pathogen localized in early endosomes recruits VAMP2 and Rab4A. VAMP2 was found to be specifically localized in early endosomes, although its localization remained unclear in mammalian cells. A single transmembrane domain of VAMP2 was found to be necessary and sufficient for localizing in early endosomes containing P. gingivalis in gingival epithelial cells. VAMP2 forms a complex with EXOC2/Sec5 and EXOC3/Sec6, whereas Rab4A mediates dissociation of the EXOC complex followed by recruitment of RUFY1/Rabip4, Rab4A effector, and Rab14. Depletion of VAMP2 or Rab4A resulted in accumulation of bacteria in early endosomes and disturbed bacterial exit from infected cells. It is suggested that these novel dynamics allow P. gingivalis to exploit fast recycling pathways promoting further bacterial penetration of gingival tissues.
Collapse
Affiliation(s)
- Hiroki Takeuchi
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Suita-Osaka, 565-0871, Japan
| | - Akihiko Takada
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Suita-Osaka, 565-0871, Japan
| | - Masae Kuboniwa
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Suita-Osaka, 565-0871, Japan
| | - Atsuo Amano
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Suita-Osaka, 565-0871, Japan
| |
Collapse
|
15
|
PAK1 regulates RUFY3-mediated gastric cancer cell migration and invasion. Cell Death Dis 2015; 6:e1682. [PMID: 25766321 PMCID: PMC4385928 DOI: 10.1038/cddis.2015.50] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 01/21/2015] [Accepted: 01/28/2015] [Indexed: 01/01/2023]
Abstract
Actin protrusion at the cell periphery is central to the formation of invadopodia during tumor cell migration and invasion. Although RUFY3 (RUN and FYVE domain containing 3)/SINGAR1 (single axon-related1)/RIPX (Rap2 interacting protein X) has an important role in neuronal development, its pathophysiologic role and relevance to cancer are still largely unknown. The purpose of this study was to elucidate the molecular mechanisms by which RUFY3 involves in gastric cancer cell migration and invasion. Here, our data show that overexpression of RUFY3 leads to the formation of F-actin-enriched protrusive structures at the cell periphery and induces gastric cancer cell migration. Furthermore, P21-activated kinase-1 (PAK1) interacts with RUFY3, and promotes RUFY3 expression and RUFY3-induced gastric cancer cell migration; inhibition of PAK1 attenuates RUFY3-induced SGC-7901 cell migration and invasion. Importantly, we found that the inhibitory effect of cell migration and invasion is significantly enhanced by knockdown of both PAK1 and RUFY3 compared with knockdown of RUFY3 alone or PAK1 alone. Strikingly, we found significant upregulation of RUFY3 in gastric cancer samples with invasive carcinoma at pathologic TNM III and TNM IV stages, compared with their non-tumor counterparts. Moreover, an obvious positive correlation was observed between the protein expression of RUFY3 and PAK1 in 40 pairs of gastric cancer samples. Therefore, these findings provide important evidence that PAK1 can positively regulate RUFY3 expression, which contribute to the metastatic potential of gastric cancer cells, maybe blocking PAK1-RUFY3 signaling would become a potential metastasis therapeutic strategy for gastric cancer.
Collapse
|
16
|
Ceppo F, Jager J, Berthou F, Giorgetti-Peraldi S, Cormont M, Bost F, Tanti JF. [Implication of MAP kinases in obesity-induced inflammation and insulin resistance]. Biol Aujourdhui 2014; 208:97-107. [PMID: 25190570 DOI: 10.1051/jbio/2014014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Indexed: 12/16/2022]
Abstract
Insulin resistance is often associated with obesity and is a major risk factor for development of type 2 diabetes as well as cardiovascular and hepatic diseases. Insulin resistance may also increase the incidence or the aggressiveness of some cancers. Insulin resistance occurs owing to defects in insulin signaling in target tissues of this hormone. During the last ten years, it became evident that the chronic low-grade inflammatory state that develops during obesity plays an important role in insulin resistance development. Indeed, inflammatory cytokines activate several signaling pathways that impinge on the insulin signaling pathway. Among them, this review will focus on the implication of the MAP kinases JNK and ERK1/2 signaling in the development of insulin signaling alterations and will discuss the possibility to target these pathways in order to fight insulin resistance.
Collapse
Affiliation(s)
- Franck Ceppo
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Route de Saint-Antoine de Ginestière, 06204 Nice Cedex 3, France
| | - Jennifer Jager
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Route de Saint-Antoine de Ginestière, 06204 Nice Cedex 3, France - Adresse actuelle : Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, PA 19104, Philadelphia, USA
| | - Flavien Berthou
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Route de Saint-Antoine de Ginestière, 06204 Nice Cedex 3, France
| | - Sophie Giorgetti-Peraldi
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Route de Saint-Antoine de Ginestière, 06204 Nice Cedex 3, France
| | - Mireille Cormont
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Route de Saint-Antoine de Ginestière, 06204 Nice Cedex 3, France
| | - Fréderic Bost
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Route de Saint-Antoine de Ginestière, 06204 Nice Cedex 3, France
| | - Jean-François Tanti
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Route de Saint-Antoine de Ginestière, 06204 Nice Cedex 3, France
| |
Collapse
|
17
|
Talaber G, Miklossy G, Oaks Z, Liu Y, Tooze SA, Chudakov DM, Banki K, Perl A. HRES-1/Rab4 promotes the formation of LC3(+) autophagosomes and the accumulation of mitochondria during autophagy. PLoS One 2014; 9:e84392. [PMID: 24404161 PMCID: PMC3880286 DOI: 10.1371/journal.pone.0084392] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 11/22/2013] [Indexed: 02/07/2023] Open
Abstract
HRES-1/Rab4 is a small GTPase that regulates endocytic recycling. It has been colocalized to mitochondria and the mechanistic target of rapamycin (mTOR), a suppressor of autophagy. Since the autophagosomal membrane component microtubule-associated protein light chain 3 (LC3) is derived from mitochondria, we investigated the impact of HRES-1/Rab4 on the formation of LC3(+) autophagosomes, their colocalization with HRES-1/Rab4 and mitochondria, and the retention of mitochondria during autophagy induced by starvation and rapamycin. HRES-1/Rab4 exhibited minimal baseline colocalization with LC3, which was enhanced 22-fold upon starvation or 6-fold upon rapamycin treatment. Colocalization of HRES-1/Rab4 with mitochondria was increased >2-fold by starvation or rapamycin. HRES-1/Rab4 overexpression promoted the colocalization of mitochondria with LC3 upon starvation or rapamycin treatment. A dominant-negative mutant, HRES-1/Rab4(S27N) had reduced colocalization with LC3 and mitochondria upon starvation but not rapamycin treatment. A constitutively active mutant, HRES-1/Rab4(Q72L) showed diminished colocalization with LC3 but promoted the partitioning of mitochondria with LC3 upon starvation or rapamycin treatment. Phosphorylation-resistant mutant HRES-1/Rab4(S204Q) showed diminished colocalization with LC3 but increased partitioning to mitochondria. A newly discovered C-terminally truncated native isoform, HRES-1/Rab4(1-121), showed enhanced localization to LC3 and mitochondria without starvation or rapamycin treatment. HRES-1/Rab4(1-121) increased the formation of LC3(+) autophagosomes in resting cells, while other isoforms promoted autophagosome formation upon starvation. HRES-1/Rab4, HRES-1/Rab4(1-121), HRES-1/Rab4(Q72L) and HRES-1/Rab4(S204Q) promoted the accumulation of mitochondria during starvation. The specificity of HRES-1/Rab4-mediated mitochondrial accumulation is indicated by its abrogation by dominant-negative HRES-1/Rab4(S27N) mutation. The formation of interconnected mitochondrial tubular networks was markedly enhanced by HRES-1/Rab4(Q72L) upon starvation, which may contribute to the retention of mitochondria during autophagy. The present study thus indicates that HRES-1/Rab4 regulates autophagy through promoting the formation of LC3(+) autophagosomes and the preservation of mitochondria.
Collapse
Affiliation(s)
- Gergely Talaber
- Departments of Medicine, State University of New York, Upstate Medical University, Syracuse, New York, United States of America
| | - Gabriella Miklossy
- Departments of Medicine, State University of New York, Upstate Medical University, Syracuse, New York, United States of America
| | - Zachary Oaks
- Departments of Medicine, State University of New York, Upstate Medical University, Syracuse, New York, United States of America
- Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Syracuse, New York, United States of America
| | - Yuxin Liu
- Departments of Medicine, State University of New York, Upstate Medical University, Syracuse, New York, United States of America
| | - Sharon A. Tooze
- Cancer Research UK London Research Institute, London, England, United Kingdom
| | - Dmitriy M. Chudakov
- Shemiakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
| | - Katalin Banki
- Department of Pathology, State University of New York, Upstate Medical University, Syracuse, New York, United States of America
| | - Andras Perl
- Departments of Medicine, State University of New York, Upstate Medical University, Syracuse, New York, United States of America
- Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Syracuse, New York, United States of America
- Microbiology and Immunology, State University of New York, Upstate Medical University, Syracuse, New York, United States of America
| |
Collapse
|
18
|
Perrin L, Laura P, Lacas-Gervais S, Sandra LG, Gilleron J, Jérôme G, Ceppo F, Franck C, Prodon F, François P, Benmerah A, Alexandre B, Tanti JF, Jean-François T, Cormont M, Mireille C. Rab4b controls an early endosome sorting event by interacting with the γ-subunit of the clathrin adaptor complex 1. J Cell Sci 2013; 126:4950-62. [PMID: 24006255 DOI: 10.1242/jcs.130575] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The endocytic pathway is essential for cell homeostasis and numerous small Rab GTPases are involved in its control. The endocytic trafficking step controlled by Rab4b has not been elucidated, although recent data suggested it could be important for glucose homeostasis, synaptic homeostasis or adaptive immunity. Here, we show that Rab4b is required for early endosome sorting of transferrin receptors (TfRs) to the recycling endosomes, and we identified the AP1γ subunit of the clathrin adaptor AP-1 as a Rab4b effector and key component of the machinery of early endosome sorting. We show that internalised transferrin (Tf) does not reach Vamp3/Rab11 recycling endosomes in the absence of Rab4b, whereas it is rapidly recycled back to the plasma membrane. By contrast, overexpression of Rab4b leads to the accumulation of internalised Tf within AP-1- and clathrin-coated vesicles. These vesicles are poor in early and recycling endocytic markers except for TfR and require AP1γ for their formation. Furthermore, the targeted overexpression of the Rab4b-binding domain of AP1γ to early endosome upon its fusion with FYVE domains inhibited the interaction between Rab4b and endogenous AP1γ, and perturbed Tf traffic. We thus proposed that the interaction between early endocytic Rab4b and AP1γ could allow the budding of clathrin-coated vesicles for subsequent traffic to recycling endosomes. The data also uncover a novel type of endosomes, characterised by low abundance of either early or recycling endocytic markers, which could potentially be generated in cell types that naturally express high level of Rab4b.
Collapse
Affiliation(s)
| | - Perrin Laura
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire C3M, Nice, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kitagishi Y, Matsuda S. RUFY, Rab and Rap Family Proteins Involved in a Regulation of Cell Polarity and Membrane Trafficking. Int J Mol Sci 2013; 14:6487-98. [PMID: 23519112 PMCID: PMC3634510 DOI: 10.3390/ijms14036487] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 03/11/2013] [Accepted: 03/15/2013] [Indexed: 12/15/2022] Open
Abstract
Cell survival, homeostasis and cell polarity rely on the control of membrane trafficking pathways. The RUN domain (comprised of the RPIP8, UNC-14, and NESCA proteins) has been suggested to be implicated in small GTPase-mediated membrane trafficking and cell polarity. Accumulating evidence supports the hypothesis that the RUN domain-containing proteins might be responsible for an interaction with a filamentous network linked to actin cytoskeleton and/or microtubules. In addition, several downstream molecules of PI3K are involved in regulation of the membrane trafficking by interacting with vesicle-associated RUN proteins such as RUFY family proteins. In this review, we summarize the background of RUN domain research with an emphasis on the interaction between RUN domain proteins including RUFY proteins (designated as RUN and FYVE domain-containing proteins) and several small GTPases with respect to the regulation of cell polarity and membrane trafficking on filamentous network.
Collapse
Affiliation(s)
- Yasuko Kitagishi
- Department of Environmental Health Science, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan.
| | | |
Collapse
|
20
|
Reed SE, Hodgson LR, Song S, May MT, Kelly EE, McCaffrey MW, Mastick CC, Verkade P, Tavaré JM. A role for Rab14 in the endocytic trafficking of GLUT4 in 3T3-L1 adipocytes. J Cell Sci 2013; 126:1931-41. [PMID: 23444368 DOI: 10.1242/jcs.104307] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Insulin enhances the uptake of glucose into adipocytes and muscle cells by promoting the redistribution of the glucose transporter isoform 4 (GLUT4) from intracellular compartments to the cell surface. Rab GTPases regulate the trafficking itinerary of GLUT4 and several have been found on immunopurified GLUT4 vesicles. Specifically, Rab14 has previously been implicated in GLUT4 trafficking in muscle although its role, if any, in adipocytes is poorly understood. Analysis of 3T3-L1 adipocytes using confocal microscopy demonstrated that endogenous GLUT4 and endogenous Rab14 exhibited a partial colocalisation. However, when wild-type Rab14 or a constitutively-active Rab14Q70L mutant were overexpressed in these cells, the colocalisation with both GLUT4 and IRAP became extensive. Interestingly, this colocalisation was restricted to enlarged 'ring-like' vesicular structures (mean diameter 1.3 µm), which were observed in the presence of overexpressed wild-type Rab14 and Rab14Q70L, but not an inactive Rab14S25N mutant. These enlarged vesicles contained markers of early endosomes and were rapidly filled by GLUT4 and transferrin undergoing endocytosis from the plasma membrane. The Rab14Q70L mutant reduced basal and insulin-stimulated cell surface GLUT4 levels, probably by retaining GLUT4 in an insulin-insensitive early endosomal compartment. Furthermore, shRNA-mediated depletion of Rab14 inhibited the transit of GLUT4 through early endosomal compartments towards vesicles and tubules in the perinuclear region. Given the previously reported role of Rab14 in trafficking between endosomes and the Golgi complex, we propose that the primary role of Rab14 in GLUT4 trafficking is to control the transit of internalised GLUT4 from early endosomes into the Golgi complex, rather than direct GLUT4 translocation to the plasma membrane.
Collapse
Affiliation(s)
- Sam E Reed
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Despite daily fasting and feeding, plasma glucose levels are normally maintained within a narrow range owing to the hormones insulin and glucagon. Insulin increases glucose uptake into fat and muscle cells through the regulated trafficking of vesicles that contain glucose transporter type 4 (GLUT4). New insights into insulin signalling reveal that phosphorylation events initiated by the insulin receptor regulate key GLUT4 trafficking proteins, including small GTPases, tethering complexes and the vesicle fusion machinery. These proteins, in turn, control GLUT4 movement through the endosomal system, formation and retention of specialized GLUT4 storage vesicles and targeted exocytosis of these vesicles. Understanding these processes may help to explain the development of insulin resistance in type 2 diabetes and provide new potential therapeutic targets.
Collapse
|
22
|
Mitra S, Cheng KW, Mills GB. Rab GTPases implicated in inherited and acquired disorders. Semin Cell Dev Biol 2010; 22:57-68. [PMID: 21147240 DOI: 10.1016/j.semcdb.2010.12.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 12/06/2010] [Accepted: 12/06/2010] [Indexed: 01/05/2023]
Abstract
The endocytotic machinery imports, transports and exports receptors and associated molecules between the plasma membrane and various cytoplasmic chambers resulting in selective recycling, degradation, or secretion of molecules and signaling complexes. Trafficking of receptors, growth factors, nutrients, cytokines, integrins as well as pathogens dictates the kinetics and magnitude of signal transduction cascades. Understandably, alterations in the 'fate' of such cargo complexes have profound physiologic and pathophysiologic implications. Rab GTPases regulate endocytosis by decorating intracellular vesicles and targeting these vesicles along with their cargoes to appropriate subcellular compartments. In the last decade, the number of genetic diseases driven by germline mutations in Rab GTPases or their interacting proteins, has increased and there is growing evidence of aberrant Rab GTPase function in acquired pathophysiologies such as immune deficiency, infection, obesity, diabetes and cancer.
Collapse
Affiliation(s)
- Shreya Mitra
- Department of Systems Biology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77054-1942, USA.
| | | | | |
Collapse
|
23
|
Yamamoto H, Koga H, Katoh Y, Takahashi S, Nakayama K, Shin HW. Functional cross-talk between Rab14 and Rab4 through a dual effector, RUFY1/Rabip4. Mol Biol Cell 2010; 21:2746-55. [PMID: 20534812 PMCID: PMC2912359 DOI: 10.1091/mbc.e10-01-0074] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Rab14 binds in a GTP-dependent manner to RUFY1/Rabip4, which had been originally identified as a Rab4 effector. We suggest that Rab14 and Rab4 act sequentially; Rab14 is required for recruitment of RUFY1 onto endosomes and subsequent RUFY1 interaction with Rab4 may allow endosomal tethering and fusion. The small GTPase Rab14 localizes to early endosomes and the trans-Golgi network, but its cellular functions on endosomes and its functional relationship with other endosomal Rab proteins are poorly understood. Here, we report that Rab14 binds in a GTP-dependent manner to RUFY1/Rabip4, which had been originally identified as a Rab4 effector. Rab14 colocalizes well with Rab4 on peripheral endosomes. Depletion of Rab14, but not Rab4, causes dissociation of RUFY1 from endosomal membranes. Coexpression of RUFY1 with either Rab14 or Rab4 induces clustering and enlargement of endosomes, whereas a RUFY1 mutant lacking the Rab4-binding region does not induce a significant morphological change in the endosomal structures even when coexpressed with Rab14 or Rab4. These findings suggest that Rab14 and Rab4 act sequentially, together with RUFY1; Rab14 is required for recruitment of RUFY1 onto endosomal membranes, and subsequent RUFY1 interaction with Rab4 may allow endosomal tethering and fusion. Depletion of Rab14 or RUFY1, as well as Rab4, inhibits efficient recycling of endocytosed transferrin, suggesting that Rab14 and Rab4 regulate endosomal functions through cooperative interactions with their dual effector, RUFY1.
Collapse
Affiliation(s)
- Hideaki Yamamoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Kaddai V, Gonzalez T, Keslair F, Grémeaux T, Bonnafous S, Gugenheim J, Tran A, Gual P, Le Marchand-Brustel Y, Cormont M. Rab4b is a small GTPase involved in the control of the glucose transporter GLUT4 localization in adipocyte. PLoS One 2009; 4:e5257. [PMID: 19590752 PMCID: PMC2707114 DOI: 10.1371/journal.pone.0005257] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 03/13/2009] [Indexed: 12/31/2022] Open
Abstract
Background Endosomal small GTPases of the Rab family, among them Rab4a, play an essential role in the control of the glucose transporter GLUT4 trafficking, which is essential for insulin-mediated glucose uptake. We found that adipocytes also expressed Rab4b and we observed a consistent decrease in the expression of Rab4b mRNA in human and mice adipose tissue in obese diabetic states. These results led us to study this poorly characterized Rab member and its potential role in glucose transport. Methodology/Principal Findings We used 3T3-L1 adipocytes to study by imaging approaches the localization of Rab4b and to determine the consequence of its down regulation on glucose uptake and endogenous GLUT4 location. We found that Rab4b was localized in endosomal structures in preadipocytes whereas in adipocytes it was localized in GLUT4 and in VAMP2-positive compartments, and also in endosomal compartments containing the transferrin receptor (TfR). When Rab4b expression was decreased with specific siRNAs by two fold, an extent similar to its decrease in obese diabetic subjects, we observed a small increase (25%) in basal deoxyglucose uptake and a more sustained increase (40%) in presence of submaximal and maximal insulin concentrations. This increase occurred without any change in GLUT4 and GLUT1 expression levels and in the insulin signaling pathways. Concomitantly, GLUT4 but not TfR amounts were increased at the plasma membrane of basal and insulin-stimulated adipocytes. GLUT4 seemed to be targeted towards its non-endosomal sequestration compartment. Conclusion/Significance Taken our results together, we conclude that Rab4b is a new important player in the control of GLUT4 trafficking in adipocytes and speculate that difference in its expression in obese diabetic states could act as a compensatory effect to minimize the glucose transport defect in their adipocytes.
Collapse
Affiliation(s)
- Vincent Kaddai
- INSERM U895, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 7, Cellular and Molecular Physiopathology of Obesity and Diabetes, Nice, France
- Faculty of Medicine, University of Nice/Sophia-Antipolis, Nice, France
| | - Teresa Gonzalez
- INSERM U895, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 7, Cellular and Molecular Physiopathology of Obesity and Diabetes, Nice, France
- Faculty of Medicine, University of Nice/Sophia-Antipolis, Nice, France
| | - Frédérique Keslair
- INSERM U895, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 7, Cellular and Molecular Physiopathology of Obesity and Diabetes, Nice, France
- Faculty of Medicine, University of Nice/Sophia-Antipolis, Nice, France
| | - Thierry Grémeaux
- INSERM U895, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 7, Cellular and Molecular Physiopathology of Obesity and Diabetes, Nice, France
- Faculty of Medicine, University of Nice/Sophia-Antipolis, Nice, France
| | - Stéphanie Bonnafous
- Faculty of Medicine, University of Nice/Sophia-Antipolis, Nice, France
- INSERM U895, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 8, Hepatic Complications in Obesity, Faculty of Medicine, University of Nice/Sophia-Antipolis, Nice, France
- CHU of Nice, Pôle Digestif, Hôpital Archet 2, Nice, France
| | - Jean Gugenheim
- Faculty of Medicine, University of Nice/Sophia-Antipolis, Nice, France
- INSERM U895, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 8, Hepatic Complications in Obesity, Faculty of Medicine, University of Nice/Sophia-Antipolis, Nice, France
- CHU of Nice, Pôle Digestif, Hôpital Archet 2, Nice, France
| | - Albert Tran
- Faculty of Medicine, University of Nice/Sophia-Antipolis, Nice, France
- INSERM U895, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 8, Hepatic Complications in Obesity, Faculty of Medicine, University of Nice/Sophia-Antipolis, Nice, France
- CHU of Nice, Pôle Digestif, Hôpital Archet 2, Nice, France
| | - Philippe Gual
- Faculty of Medicine, University of Nice/Sophia-Antipolis, Nice, France
- INSERM U895, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 8, Hepatic Complications in Obesity, Faculty of Medicine, University of Nice/Sophia-Antipolis, Nice, France
- CHU of Nice, Pôle Digestif, Hôpital Archet 2, Nice, France
| | - Yannick Le Marchand-Brustel
- INSERM U895, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 7, Cellular and Molecular Physiopathology of Obesity and Diabetes, Nice, France
- Faculty of Medicine, University of Nice/Sophia-Antipolis, Nice, France
- INSERM U895, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 8, Hepatic Complications in Obesity, Faculty of Medicine, University of Nice/Sophia-Antipolis, Nice, France
- CHU of Nice, Pôle Digestif, Hôpital Archet 2, Nice, France
| | - Mireille Cormont
- INSERM U895, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 7, Cellular and Molecular Physiopathology of Obesity and Diabetes, Nice, France
- Faculty of Medicine, University of Nice/Sophia-Antipolis, Nice, France
- * E-mail:
| |
Collapse
|
25
|
Kaddai V, Gonzalez T, Bolla M, Le Marchand-Brustel Y, Cormont M. The nitric oxide-donating derivative of acetylsalicylic acid, NCX 4016, stimulates glucose transport and glucose transporters translocation in 3T3-L1 adipocytes. Am J Physiol Endocrinol Metab 2008; 295:E162-9. [PMID: 18492771 DOI: 10.1152/ajpendo.00622.2007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
NCX 4016 is a nitric oxide (NO)-donating derivative of acetylsalicylic acid. NO and salicylate, in vivo metabolites of NCX 4016, were shown to be potential actors in controlling glucose homeostasis. In this study, we evaluated the action of NCX 4016 on the capacity of 3T3-L1 adipocytes to transport glucose in basal and insulin-stimulated conditions. NCX 4016 induced a twofold increase in glucose uptake in parallel with the translocation of the glucose transporters GLUT1 and GLUT4 to the plasma membrane, leaving unaffected their total expression levels. Importantly, NCX 4016 further increased glucose transport induced by a physiological concentration of insulin. The stimulatory effect of NCX 4016 on glucose uptake appears to be mediated by its NO moiety. Indeed, it is inhibited by a NO scavenger and treatment with acetylsalicylic or salicylic acid had no effect. Although NO is involved in the action of NCX 4016, it did not mainly depend on the soluble cGMP cyclase/protein kinase G pathway. Furthermore, NCX 4016-stimulated glucose transport did not involve the insulin-signaling cascade required to stimulate glucose transport. NCX 4016 induces a small activation of the mitogen-activated protein kinases p38 and c-Jun NH(2)-terminal kinase and no activation of other stress-activated signaling molecules, including extracellular signal-regulated kinase, inhibitory factor kappaB, or AMP-activated kinases. Interestingly, NCX 4016 modified the content of S-nitrosylated proteins in adipocytes. Taken together, our results indicate that NCX 4016 induced glucose transport in adipocytes through a novel mechanism possibly involving S-nitrosylation. NCX 4016 thus possesses interesting characteristics to be considered as a candidate molecule for the treatment of patients suffering from metabolic syndrome and type 2 diabetes.
Collapse
Affiliation(s)
- V Kaddai
- Institut National de la Santé et de la Recherche Médicale Unité 895, Cellular and Molecular Physiopathology of Obesity and Diabetes, Faculté de Médecine, University of Nice/Sophia-Antipolis, Nice, France
| | | | | | | | | |
Collapse
|
26
|
Abstract
The intracellular trafficking of numerous proteins requires a tight control to fulfil their physiological functions. It is the case of the adipocyte and muscle glucose transporter Glut4 that is retained intracellularly until insulin induces its recruitment to the plasma membrane. Rabs are evolutionarily conserved small GTPases that control intracellular traffic events from yeast to mammalian cells. In the past few decades, considerable progresses have been made in identifying the route of Glut4, the Rabs involved in controlling it, and more recently the connection between insulin signalling and Glut4 trafficking through Rab activity control.
Collapse
Affiliation(s)
- V Kaddai
- Institut National de la Santé et de la Recherche Médicale INSERM U568 Faculté de Médecine, Université de Nice-Sophia Antipolis, Nice Cedex, France
| | | | | |
Collapse
|
27
|
Welsh GI, Leney SE, Lloyd-Lewis B, Wherlock M, Lindsay AJ, McCaffrey MW, Tavaré JM. Rip11 is a Rab11- and AS160-RabGAP-binding protein required for insulin-stimulated glucose uptake in adipocytes. J Cell Sci 2007; 120:4197-208. [PMID: 18003705 DOI: 10.1242/jcs.007310] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The translocation of GLUT4 to the plasma membrane underlies the ability of insulin to stimulate glucose uptake, an event that involves the activation of protein kinase B, several members of the Rab family of GTP-binding proteins and the phosphorylation of the Rab GTPase-activating protein AS160. Here, we explored the regulation by insulin of the class I Rab11-interacting proteins Rip11, RCP and FIP2. We show that Rip11, but not RCP or FIP2, translocates to the plasma membrane of 3T3-L1 adipocytes in response to insulin. This unique response of Rip11 prompted us to explore the role of this protein in more detail. We found that Rip11 partially colocalises with GLUT4 in intracellular compartments. siRNA-mediated knockdown of Rip11 inhibits insulin-stimulated uptake of 2-deoxyglucose, and overexpression of Rip11 blocks insulin-stimulated insertion of translocated GLUT4 vesicles into the plasma membrane. We additionally show that Rip11 forms a complex with AS160 in a Rab11-independent manner and that insulin induces dissociation of AS160 from Rip11. We propose that Rip11 is an AS160- and Rab-binding protein that coordinates the protein kinase signalling and trafficking machinery required to stimulate glucose uptake in response to insulin.
Collapse
Affiliation(s)
- Gavin I Welsh
- Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol, BS8 ITD, UK
| | | | | | | | | | | | | |
Collapse
|
28
|
Hou JC, Pessin JE. Ins (endocytosis) and outs (exocytosis) of GLUT4 trafficking. Curr Opin Cell Biol 2007; 19:466-73. [PMID: 17644329 PMCID: PMC2041936 DOI: 10.1016/j.ceb.2007.04.018] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Accepted: 04/17/2007] [Indexed: 12/21/2022]
Abstract
Glucose transporter 4 (GLUT4) is the major insulin-regulated glucose transporter expressed mainly in muscle and adipose tissue. GLUT4 is stored in a poorly characterized intracellular vesicular compartment and translocates to the cell surface in response to insulin stimulation resulting in an increased glucose uptake. This process is essential for the maintenance of normal glucose homeostasis and involves a complex interplay of trafficking events and intracellular signaling cascades. Recent studies have identified sortilin as an essential element for the formation of GLUT4 storage vesicles during adipogenesis and Golgi-localized gamma-ear-containing Arf-binding protein (GGA) as a key coat adaptor for the entry of newly synthesized GLUT4 into the specialized compartment. Insulin-stimulated GLUT4 translocation from this compartment to the plasma membrane appears to require the Akt/protein kinase B substrate termed AS160 (Akt substrate of 160kDa). In addition, the VPS9 domain-containing protein Gapex-5 in complex with CIP4 appears to function as a Rab31 guanylnucleotide exchange factor that is necessary for insulin-stimulated GLUT4 translocation. Here, we attempt to summarize recent advances in GLUT4 vesicle biogenesis, intracellular trafficking and membrane fusion.
Collapse
Affiliation(s)
- June Chunqiu Hou
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA.
| | | |
Collapse
|
29
|
Bertola A, Bonnafous S, Cormont M, Anty R, Tanti JF, Tran A, Le Marchand-Brustel Y, Gual P. Hepatocyte growth factor induces glucose uptake in 3T3-L1 adipocytes through A Gab1/phosphatidylinositol 3-kinase/Glut4 pathway. J Biol Chem 2007; 282:10325-32. [PMID: 17284447 DOI: 10.1074/jbc.m611770200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Adipose tissue is a source of hepatocyte growth factor (HGF), and circulating HGF levels have been associated with elevated body mass index in human. However, the effects of HGF on adipocyte functions have not yet been investigated. We show here that in 3T3-L1 adipocytes HGF stimulates the phosphatidylinositol (PI) 3-kinase-dependent protein kinase B (PKB) activity, AS160 phosphorylation, Glut4 translocation, and consequently, glucose uptake. The initial steps involved in HGF- and insulin-induced glucose uptake are different. HGF enhanced the tyrosine phosphorylation of Gab1, leading to the recruitment of the p85-regulated subunit of PI 3-kinase, whereas p85 was exclusively recruited by IRS1 in response to insulin. In adipocytes rendered insulin-resistant by a long-lasting tumor necrosis factor alpha treatment, the protein level of Gab1 was strongly decreased, and HGF-stimulated PKB activation and glucose uptake were also altered. Moreover, treatment of 3T3-L1 adipocytes with thiazolidinedione, an anti-diabetic drug, enhanced the expression of both HGF and its receptor. These data provide the first evidence that in vitro HGF promotes glucose uptake through a Gab1/PI 3-kinase/PKB/AS160 pathway which was altered in tumor necrosis factor alpha-treated adipocytes.
Collapse
Affiliation(s)
- Adeline Bertola
- INSERM, U 568, F-06107 Nice, France, Université de Nice Sophia-Antipolis, Faculté de Médecine, F-06107, Nice, France
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Jager J, Grémeaux T, Cormont M, Le Marchand-Brustel Y, Tanti JF. Interleukin-1beta-induced insulin resistance in adipocytes through down-regulation of insulin receptor substrate-1 expression. Endocrinology 2007; 148:241-51. [PMID: 17038556 PMCID: PMC1971114 DOI: 10.1210/en.2006-0692] [Citation(s) in RCA: 498] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Inflammation is associated with obesity and insulin resistance. Proinflammatory cytokines produced by adipose tissue in obesity could alter insulin signaling and action. Recent studies have shown a relationship between IL-1beta level and metabolic syndrome or type 2 diabetes. However, the ability of IL-1beta to alter insulin signaling and action remains to be explored. We demonstrated that IL-1beta slightly increased Glut 1 translocation and basal glucose uptake in 3T3-L1 adipocytes. Importantly, we found that prolonged IL-1beta treatment reduced the insulin-induced glucose uptake, whereas an acute treatment had no effect. Chronic treatment with IL-1beta slightly decreased the expression of Glut 4 and markedly inhibited its translocation to the plasma membrane in response to insulin. This inhibitory effect was due to a decrease in the amount of insulin receptor substrate (IRS)-1 but not IRS-2 expression in both 3T3-L1 and human adipocytes. The decrease in IRS-1 amount resulted in a reduction in its tyrosine phosphorylation and the alteration of insulin-induced protein kinase B activation and AS160 phosphorylation. Pharmacological inhibition of ERK totally inhibited IL-1beta-induced down-regulation of IRS-1 mRNA. Moreover, IRS-1 protein expression and insulin-induced protein kinase B activation, AS160 phosphorylation, and Glut 4 translocation were partially recovered after treatment with the ERK inhibitor. These results demonstrate that IL-1beta reduces IRS-1 expression at a transcriptional level through a mechanism that is ERK dependent and at a posttranscriptional level independently of ERK activation. By targeting IRS-1, IL-1beta is capable of impairing insulin signaling and action, and could thus participate in concert with other cytokines, in the development of insulin resistance in adipocytes.
Collapse
|
31
|
Vukmirica J, Monzo P, Le Marchand-Brustel Y, Cormont M. The Rab4A effector protein Rabip4 is involved in migration of NIH 3T3 fibroblasts. J Biol Chem 2006; 281:36360-8. [PMID: 17001082 DOI: 10.1074/jbc.m602920200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The small GTP-binding protein Rab4 has been involved in the recycling of alphavbeta3 integrins in response to platelet-derived growth factor (PDGF) stimulation suggesting a role for Rab4 in cell adhesion and migration. In this study, we explored the role of Rabip4 and Rabip4', two Rab4 effector proteins, in migration of NIH 3T3 fibroblasts. In these cells, Rabip4 and Rabip4', collectively named Rabip4s, were partially co-localized with the early endosomal marker EEA1. PDGF treatment re-distributed endogenous Rabip4s toward the cell periphery where they colocalized with F-actin. In cells expressing green fluorescent protein (GFP)-Rabip4 or GFP-Rabip4', constitutive appearance of GFP-Rabip4s at the cell periphery was accompanied by local increase in cortical F-actin in membrane ruffles at the leading edge. The expression of GFP-Rabip4 induced an increased migration compared with control cells expressing GFP alone, even in the absence of PDGF stimulation. On the contrary, in cells expressing a mutated form of Rabip4s unable to interact with Rab4, lack of typical leading edge was observed. Furthermore, PDGF treatment did not stimulate the migration of these cells. Furthermore, down-regulation of the expression of Rabip4s inhibited PDGF-stimulated cell migration. Endogenous Rabip4s were localized with alphav integrins at the leading edge following PDGF treatment, whereas in cells expressing GFP-Rabip4s, alphav integrins, together with GFP-Rabip4s, were constitutively localized at the leading edge. In contrast, reduction in Rabip4s expression levels using small interfering RNA was associated with impaired PDGF-induced translocation of alphav integrins toward the leading edge. Taken together, our data provide evidence that Rabip4s, possibly via their interaction with Rab4, regulate integrin trafficking and are involved in the migration of NIH 3T3 fibroblasts.
Collapse
Affiliation(s)
- Jelena Vukmirica
- INSERM U568, UFR Médecine, 06107 Nice Cedex 02 and Université de Nice-Sophia-Antipolis, UFR Sciences, 06002 Nice, France
| | | | | | | |
Collapse
|
32
|
Barrès R, Grémeaux T, Gual P, Gonzalez T, Gugenheim J, Tran A, Le Marchand-Brustel Y, Tanti JF. Enigma interacts with adaptor protein with PH and SH2 domains to control insulin-induced actin cytoskeleton remodeling and glucose transporter 4 translocation. Mol Endocrinol 2006; 20:2864-75. [PMID: 16803868 PMCID: PMC1892539 DOI: 10.1210/me.2005-0455] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
APS (adaptor protein with PH and SH2 domains) initiates a phosphatidylinositol 3-kinase-independent pathway involved in insulin-stimulated glucose transport. We recently identified Enigma, a PDZ and LIM domain-containing protein, as a partner of APS and showed that APS-Enigma complex plays a critical role in actin cytoskeleton organization in fibroblastic cells. Because actin rearrangement is important for insulin-induced glucose transporter 4 (Glut 4) translocation, we studied the potential involvement of Enigma in insulin-induced glucose transport in 3T3-L1 adipocytes. Enigma mRNA was expressed in differentiated adipocytes and APS and Enigma were colocalized with cortical actin. Expression of an APS mutant unable to bind Enigma increased the insulin-induced Glut 4 translocation to the plasma membrane. By contrast, overexpression of Enigma inhibited insulin-stimulated glucose transport and Glut 4 translocation without alterations in proximal insulin signaling. This inhibitory effect was prevented with the deletion of the LIM domains of Enigma. Using time-lapse fluorescent microscopy of green fluorescent protein-actin, we demonstrated that the overexpression of Enigma altered insulin-induced actin rearrangements, whereas the expression of Enigma without its LIM domains was without effect. A physiological link between increased expression of Enigma and an alteration in insulin-induced glucose uptake was suggested by the increase in Enigma mRNA expression in adipose tissue of diabetic obese patients. Taken together, these data strongly suggest that the interaction between APS and Enigma is involved in insulin-induced Glut 4 translocation by regulating cortical actin remodeling and raise the possibility that modification of APS/Enigma ratio could participate in the alteration of insulin-induced glucose uptake in adipose tissue.
Collapse
Affiliation(s)
- Romain Barrès
- Signalisation moléculaire et obésité
INSERM : U568 IFR50Université de Nice Sophia-AntipolisFaculte de Medecine
Avenue de Valombrose
06107 NICE CEDEX 2,FR
| | - Thierry Grémeaux
- Signalisation moléculaire et obésité
INSERM : U568 IFR50Université de Nice Sophia-AntipolisFaculte de Medecine
Avenue de Valombrose
06107 NICE CEDEX 2,FR
| | - Philippe Gual
- Signalisation moléculaire et obésité
INSERM : U568 IFR50Université de Nice Sophia-AntipolisFaculte de Medecine
Avenue de Valombrose
06107 NICE CEDEX 2,FR
| | - Teresa Gonzalez
- Signalisation moléculaire et obésité
INSERM : U568 IFR50Université de Nice Sophia-AntipolisFaculte de Medecine
Avenue de Valombrose
06107 NICE CEDEX 2,FR
| | - Jean Gugenheim
- Service de Chirurgie Digestive et Centre de Transplantation Hépatique
CHU de NICE06107 Nice,FR
| | - Albert Tran
- Fédération d'Hépatologie
CHU Nice06107 Nice,FR
| | - Yannick Le Marchand-Brustel
- Signalisation moléculaire et obésité
INSERM : U568 IFR50Université de Nice Sophia-AntipolisFaculte de Medecine
Avenue de Valombrose
06107 NICE CEDEX 2,FR
| | - Jean-François Tanti
- Signalisation moléculaire et obésité
INSERM : U568 IFR50Université de Nice Sophia-AntipolisFaculte de Medecine
Avenue de Valombrose
06107 NICE CEDEX 2,FR
- * Correspondence should be adressed to: Jean-François Tanti
| |
Collapse
|