1
|
Li K, Jan YN. Experimental tools and emerging principles of organellar mechanotransduction. Trends Cell Biol 2025:S0962-8924(24)00279-4. [PMID: 39828483 DOI: 10.1016/j.tcb.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/21/2024] [Accepted: 12/24/2024] [Indexed: 01/22/2025]
Abstract
Mechanotransduction is the process by which cells detect mechanical forces and convert them into biochemical or electrical signals. This process occurs across various cellular compartments, including the plasma membrane, cytoskeleton, and intracellular organelles. While research has focused mainly on force sensing at the plasma membrane, the mechanisms and significance of intracellular mechanotransduction are just beginning to be understood. This review summarizes current techniques for studying organellar mechanobiology, and highlights advances in our understanding of the mechanosensitive events occurring in organelles such as the endoplasmic reticulum (ER), Golgi apparatus, and endolysosomes. Additionally, some open questions and promising directions are identified for future research.
Collapse
Affiliation(s)
- Kai Li
- Institute for Medical Physiology, Chinese Institutes for Medical Research, Beijing, 100069, China; School of Basic Medicine, Capital Medical University, Beijing, 100069, China
| | - Yuh Nung Jan
- Department of Physiology, University of California at San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
2
|
Rosato BE, D'Onofrio V, Marra R, Nostroso A, Esposito FM, Iscaro A, Lasorsa VA, Capasso M, Iolascon A, Russo R, Andolfo I. RAS signaling pathway is essential in regulating PIEZO1-mediated hepatic iron overload in dehydrated hereditary stomatocytosis. Am J Hematol 2025; 100:52-65. [PMID: 39558179 PMCID: PMC11625994 DOI: 10.1002/ajh.27523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/20/2024]
Abstract
PIEZO1 encodes a mechanoreceptor, a cation channel activated by mechanical stimuli. Gain-of-function (GoF) variants in PIEZO1 cause dehydrated hereditary stomatocytosis (DHS), or xerocytosis, a pleiotropic syndrome characterized by anemia and iron overload. DHS patients develop hepatic iron overload independent of the degree of anemia and transfusion regimen. PIEZO1-GoF variants suppress hepcidin expression in both hepatic cellular model and constitutive/macrophage-specific Piezo1-GoF mice model. Therefore, PIEZO1-GoF variants regulate hepcidin expression by a crosstalk between hepatocytes (HCs) and macrophages with a still unknown mechanism. Transcriptomic and proteomics analysis in the human hepatic Hep3B cells engineered for the PIEZO1-R2456H variant (PIEZO1-KI) revealed alterations in the actin cytoskeleton regulation, MAPK cascade, and RAS signaling. These changes mainly occur through a novel key regulator, RRAS, whose protein and mRNA levels are regulated by PIEZO1 activation and inhibition. This regulation was further confirmed in C57BL/6 mouse primary HCs treated with Yoda-1 and/or GsMTx-4. Indeed, PIEZO1-KI cells exhibited hyper-activated RAS-GTPase activity that is rescued by PIEZO1 inhibition, restoring expression of the hepcidin gene HAMP. A negative correlation between RAS signaling and HAMP regulation was confirmed by inhibiting RAS-GTPase and MEK1-2 activity. Conversely, rescued HAMP gene expression requires downregulation of RRAS, confirming negative feedback between RAS-MAPK and BMP/SMADs pathways in HAMP regulation. We demonstrated that PIEZO1-GoF variants influence the actin cytoskeleton organization by activating the hepatic RAS signaling system. Understanding the role of RAS signaling in regulating iron metabolism could pave the way for new therapeutic strategies in DHS and other conditions characterized by iron overload.
Collapse
Affiliation(s)
- Barbara Eleni Rosato
- Department of Molecular Medicine and Medical Biotechnologies“Federico II” University of NaplesNaplesItaly
- CEINGE, Biotecnologie Avanzate, Franco SalvatoreNaplesItaly
| | - Vanessa D'Onofrio
- Department of Molecular Medicine and Medical Biotechnologies“Federico II” University of NaplesNaplesItaly
- CEINGE, Biotecnologie Avanzate, Franco SalvatoreNaplesItaly
| | - Roberta Marra
- Department of Molecular Medicine and Medical Biotechnologies“Federico II” University of NaplesNaplesItaly
- CEINGE, Biotecnologie Avanzate, Franco SalvatoreNaplesItaly
| | - Antonella Nostroso
- Department of Molecular Medicine and Medical Biotechnologies“Federico II” University of NaplesNaplesItaly
- CEINGE, Biotecnologie Avanzate, Franco SalvatoreNaplesItaly
| | - Federica Maria Esposito
- Department of Molecular Medicine and Medical Biotechnologies“Federico II” University of NaplesNaplesItaly
- CEINGE, Biotecnologie Avanzate, Franco SalvatoreNaplesItaly
| | - Anthony Iscaro
- Department of Molecular Medicine and Medical Biotechnologies“Federico II” University of NaplesNaplesItaly
- CEINGE, Biotecnologie Avanzate, Franco SalvatoreNaplesItaly
| | - Vito Alessandro Lasorsa
- Department of Molecular Medicine and Medical Biotechnologies“Federico II” University of NaplesNaplesItaly
- CEINGE, Biotecnologie Avanzate, Franco SalvatoreNaplesItaly
| | - Mario Capasso
- Department of Molecular Medicine and Medical Biotechnologies“Federico II” University of NaplesNaplesItaly
- CEINGE, Biotecnologie Avanzate, Franco SalvatoreNaplesItaly
| | - Achille Iolascon
- Department of Molecular Medicine and Medical Biotechnologies“Federico II” University of NaplesNaplesItaly
- CEINGE, Biotecnologie Avanzate, Franco SalvatoreNaplesItaly
| | - Roberta Russo
- Department of Molecular Medicine and Medical Biotechnologies“Federico II” University of NaplesNaplesItaly
- CEINGE, Biotecnologie Avanzate, Franco SalvatoreNaplesItaly
| | - Immacolata Andolfo
- Department of Molecular Medicine and Medical Biotechnologies“Federico II” University of NaplesNaplesItaly
- CEINGE, Biotecnologie Avanzate, Franco SalvatoreNaplesItaly
| |
Collapse
|
3
|
Moneme C, Olutoye OO, Sobstel MF, Zhang Y, Zhou X, Kaminer JL, Hsu BA, Shen C, Mandal A, Li H, Yu L, Balaji S, Keswani SG, Cheng LS. Activation of mechanoreceptor Piezo1 inhibits enteric neuronal growth and migration in vitro. Front Mol Neurosci 2024; 17:1474025. [PMID: 39759870 PMCID: PMC11695422 DOI: 10.3389/fnmol.2024.1474025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/30/2024] [Indexed: 01/07/2025] Open
Abstract
Introduction Dysfunction of the enteric nervous system (ENS) is linked to a myriad of gastrointestinal (GI) disorders. Piezo1 is a mechanosensitive ion channel found throughout the GI tract, but its role in the ENS is largely unknown. We hypothesize that Piezo1 plays an important role in the growth and development of the ENS. Methods Enteric neural crest-derived progenitor cells (ENPC) were isolated from adult mouse intestine and propagated in culture as neurospheres. ENPC-derived neurons were then subject to in vitro stretch in the presence or absence of Piezo1 antagonist (GsMTx4). Transcriptomes of stretched and unstretched ENPC-derived cells were compared using bulk RNA sequencing. Enteric neurons were also cultured under static conditions in the presence of Piezo1 agonist (Yoda1) or antagonist. Neuronal phenotype, migration, and recovery from injury were compared between groups. Results Though stretch did not cause upregulation of Piezo1 expression in enteric neurons, both stretch and Piezo1 activation produced similar alterations in neuronal morphology. Compared to control, neurite length was significantly shorter when stretched and in the presence of Piezo1 activation. Piezo1 inhibition prevented a significant reduction in neurite length in stretched neurons. Piezo1 inhibition also led to significantly increased neuronal migration, whereas Piezo1 activation resulted in significantly decreased neuronal migration and slower neuronal recovery from injury. Conclusion Mechanotransduction plays an important role in regulating normal GI function. Our results suggest that the Piezo1 mechanoreceptor may play an important role in the ENS as its activation leads to decreased neuronal growth and migration. Piezo1 could be an important target for diseases of ENS dysfunction and development.
Collapse
Affiliation(s)
- Chioma Moneme
- Department of Surgery, University of Virginia, Charlottesville, VA, United States
| | - Oluyinka O. Olutoye
- Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Michał F. Sobstel
- Department of Surgery, University of Virginia, Charlottesville, VA, United States
| | - Yuwen Zhang
- Department of Surgery, University of Virginia, Charlottesville, VA, United States
| | - Xinyu Zhou
- Department of Surgery, University of Virginia, Charlottesville, VA, United States
| | - Jacob L. Kaminer
- Department of Surgery, University of Virginia, Charlottesville, VA, United States
| | - Britney A. Hsu
- Department of Pediatric Surgery, Texas Children's Hospital, Houston, TX, United States
| | - Chengli Shen
- Department of Surgery, University of Virginia, Charlottesville, VA, United States
| | - Arabinda Mandal
- Department of Surgery, University of Virginia, Charlottesville, VA, United States
| | - Hui Li
- Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Department of Pediatric Surgery, Texas Children's Hospital, Houston, TX, United States
| | - Ling Yu
- Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Department of Pediatric Surgery, Texas Children's Hospital, Houston, TX, United States
| | - Swathi Balaji
- Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Department of Pediatric Surgery, Texas Children's Hospital, Houston, TX, United States
| | - Sundeep G. Keswani
- Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Department of Pediatric Surgery, Texas Children's Hospital, Houston, TX, United States
| | - Lily S. Cheng
- Department of Surgery, University of Virginia, Charlottesville, VA, United States
- Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Department of Pediatric Surgery, Texas Children's Hospital, Houston, TX, United States
| |
Collapse
|
4
|
Xu Y, Wang Y, Yang Y, Fang X, Wu L, Hu J, Li J, Mei S. Piezo1: the key regulators in central nervous system diseases. Front Cell Neurosci 2024; 18:1441806. [PMID: 39539343 PMCID: PMC11557416 DOI: 10.3389/fncel.2024.1441806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
The occurrence and development of central nervous system (CNS) diseases is a multi-factor and multi-gene pathological process, and their diagnosis and treatment have always posed a serious challenge in the medical field. Therefore, exploring the relevant factors in the pathogenesis of CNS and improving the diagnosis and treatment rates has become an urgent problem. Piezo1 is a recently discovered mechanosensitive ion channel that opens in response to mechanical stimuli. A number of previous studies have shown that the Piezo channel family plays a crucial role in CNS physiology and pathology, especially in diseases related to CNS development and mechanical stimulation. This article comprehensively describes the biological properties of Piezo1, focuses on the potential association between Piezo1 and CNS disorders, and explores the pharmacological roles of Piezo1 agonists and inhibitors in treating CNS disorders.
Collapse
Affiliation(s)
- Yi Xu
- The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yuheng Wang
- The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yanling Yang
- The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiaowei Fang
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Lidong Wu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jialing Hu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jin Li
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Shuchong Mei
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
5
|
Miao N, Cao D, Jin J, Ma G, Yu H, Qu J, Li G, Gao C, Dong D, Xia F, Li W. Tumor cell-intrinsic Piezo2 drives radioresistance by impairing CD8+ T cell stemness maintenance. J Exp Med 2024; 221:e20231486. [PMID: 39167075 PMCID: PMC11338319 DOI: 10.1084/jem.20231486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 05/20/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Changes in mechanosensitive ion channels following radiation have seldom been linked to therapeutic sensitivity or specific factors involved in antitumor immunity. Here, in this study, we found that the mechanical force sensor, Piezo2, was significantly upregulated in tumor cells after radiation, and Piezo2 knockout in tumor cells enhanced tumor growth suppression by radiotherapy. Specifically, loss of Piezo2 in tumor cells induced their IL-15 expression via unleashing JAK2/STAT1/IRF-1 axis after radiation. This increase in IL-15 activates IL-15Rα on tumor-infiltrating CD8+ T cells, thereby leading to their augmented effector and stem cell-like properties, along with reduced terminal exhausted feature. Importantly, Piezo2 expression was negatively correlated with CD8 infiltration, as well as with radiosensitivity of patients with rectum adenocarcinoma receiving radiotherapy treatment. Together, our findings reveal that tumor cell-intrinsic Piezo2 induces radioresistance by dampening the IRF-1/IL-15 axis, thus leading to impaired CD8+ T cell-dependent antitumor responses, providing insights into the further development of combination strategies to treat radioresistant cancers.
Collapse
Affiliation(s)
- Naijun Miao
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongqing Cao
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingsi Jin
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guizhi Ma
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haihui Yu
- School of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Junwen Qu
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guiping Li
- Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Caixia Gao
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Dong Dong
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Xia
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Wenwen Li
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Mistriotis P, Wisniewski EO, Si BR, Kalab P, Konstantopoulos K. Coordinated in confined migration: crosstalk between the nucleus and ion channel-mediated mechanosensation. Trends Cell Biol 2024; 34:809-825. [PMID: 38290913 PMCID: PMC11284253 DOI: 10.1016/j.tcb.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/22/2023] [Accepted: 01/05/2024] [Indexed: 02/01/2024]
Abstract
Cell surface and intracellular mechanosensors enable cells to perceive different geometric, topographical, and physical cues. Mechanosensitive ion channels (MICs) localized at the cell surface and on the nuclear envelope (NE) are among the first to sense and transduce these signals. Beyond compartmentalizing the genome of the cell and its transcription, the nucleus also serves as a mechanical gauge of different physical and topographical features of the tissue microenvironment. In this review, we delve into the intricate mechanisms by which the nucleus and different ion channels regulate cell migration in confinement. We review evidence suggesting an interplay between macromolecular nuclear-cytoplasmic transport (NCT) and ionic transport across the cell membrane during confined migration. We also discuss the roles of the nucleus and ion channel-mediated mechanosensation, whether acting independently or in tandem, in orchestrating migratory mechanoresponses. Understanding nuclear and ion channel sensing, and their crosstalk, is critical to advancing our knowledge of cell migration in health and disease.
Collapse
Affiliation(s)
| | - Emily O Wisniewski
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Bishwa R Si
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Petr Kalab
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Oncology, The Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
7
|
Konishi T, Kamiyama K, Osato T, Yoshimoto T, Aoki T, Anzai T, Tanaka S. Increased Piezo1 expression in myofibroblasts in patients with symptomatic carotid atherosclerotic plaques undergoing carotid endarterectomy: A pilot study. Vascular 2024; 32:1063-1069. [PMID: 37499697 DOI: 10.1177/17085381231192380] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
OBJECTIVES We aimed to investigate Piezo1 expression in myofibroblasts in symptomatic and asymptomatic patients undergoing carotid endarterectomy and its relationship with atherosclerotic plaque formation. METHODS This cross-sectional study analyzed carotid plaques of 17 randomly selected patients who underwent carotid endarterectomy from May 2015 to August 2017. In total, 51 sections (the most stenotic lesion, and the sections 5-mm proximal and distal) stained with hematoxylin-eosin and elastica-Masson were examined. Immunohistochemistry was performed using antibodies to Piezo1. The Piezo1 score of a section was calculated semiquantitatively, averaged across 30 randomly selected myofibroblasts in the fibrous cap of the plaque. RESULTS Of 17 patients (mean age: 74.2 ± 7.1 years), 15 were men, 9 had diabetes mellitus, and 13 had hypertension. Symptomatic patients had higher mean Piezo1 score than asymptomatic patients (1.78 ± 0.23 vs 1.34 ± 0.17, p < .001). Univariate linear regression analyses suggested an association between plaque rupture, thin-cap fibroatheroma and microcalcifications and the Piezo1 score (p = .001, .008, and 0.003, respectively). CONCLUSIONS Increased Piezo1 expression of myofibroblasts may be associated with atherosclerotic carotid plaque instability. Further study is warranted to support this finding.
Collapse
Affiliation(s)
- Takao Konishi
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kenji Kamiyama
- Department of Neurosurgery, Nakamura Memorial Hospital, Sapporo, Japan
| | - Toshiaki Osato
- Department of Neurosurgery, Nakamura Memorial Hospital, Sapporo, Japan
| | - Tetsuyuki Yoshimoto
- Department of Neurosurgery, Hokkaido Neurosurgical Memorial Hospital, Sapporo, Japan
| | - Takeshi Aoki
- Department of Neurosurgery, Hokkaido Neurosurgical Memorial Hospital, Sapporo, Japan
| | - Toshihisa Anzai
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| |
Collapse
|
8
|
Simon-Chica A, Klesen A, Emig R, Chan A, Greiner J, Grün D, Lother A, Hilgendorf I, Rog-Zielinska EA, Ravens U, Kohl P, Schneider-Warme F, Peyronnet R. Piezo1 stretch-activated channel activity differs between murine bone marrow-derived and cardiac tissue-resident macrophages. J Physiol 2024; 602:4437-4456. [PMID: 38642051 DOI: 10.1113/jp284805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 03/14/2024] [Indexed: 04/22/2024] Open
Abstract
Macrophages (MΦ) play pivotal roles in tissue homeostasis and repair. Their mechanical environment has been identified as a key modulator of various cell functions, and MΦ mechanosensitivity is likely to be critical - in particular in a rhythmically contracting organ such as the heart. Cultured MΦ, differentiated in vitro from bone marrow (MΦBM), form a popular research model. This study explores the activity of mechanosensitive ion channels (MSC) in murine MΦBM and compares it to MSC activity in MΦ enzymatically isolated from cardiac tissue (tissue-resident MΦ; MΦTR). We show that MΦBM and MΦTR have stretch-induced currents, indicating the presence of functional MSC in their plasma membrane. The current profiles in MΦBM and in MΦTR show characteristics of cation non-selective MSC such as Piezo1 or transient receptor potential channels. While Piezo1 ion channel activity is detectable in the plasma membrane of MΦBM using the patch-clamp technique, or by measuring cytosolic calcium concentration upon perfusion with the Piezo1 channel agonist Yoda1, no Piezo1 channel activity was observed in MΦTR. The selective transient receptor potential vanilloid 4 (TRPV4) channel agonist GSK1016790A induces calcium entry in MΦTR and in MΦBM. In MΦ isolated from left-ventricular scar tissue 28 days after cryoablation, stretch-induced current characteristics are not significantly different compared to non-injured control tissue, even though scarred ventricular tissue is expected to be mechanically remodelled and to contain an altered composition of pre-existing cardiac and circulation-recruited MΦ. Our data suggest that the in vitro differentiation protocols used to obtain MΦBM generate cells that differ from MΦ recruited from the circulation during tissue repair in vivo. Further investigations are needed to explore MSC identity in lineage-traced MΦ in scar tissue, and to compare mechanosensitivity of circulating monocytes with that of MΦBM. KEY POINTS: Bone marrow-derived (MΦBM) and tissue resident (MΦTR) macrophages have stretch-induced currents, indicating expression of functional mechanosensitive channels (MSC) in their plasma membrane. Stretch-activated current profiles show characteristics of cation non-selective MSC; and mRNA coding for MSC, including Piezo1 and TRPV4, is expressed in murine MΦBM and in MΦTR. Calcium entry upon pharmacological activation of TRPV4 confirms functionality of the channel in MΦTR and in MΦBM. Piezo1 ion channel activity is detected in the plasma membrane of MΦBM but not in MΦTR, suggesting that MΦBM may not be a good model to study the mechanotransduction of MΦTR. Stretch-induced currents, Piezo1 mRNA expression and response to pharmacological activation are not significantly changed in cardiac MΦ 28 days after cryoinjury compared to sham operated mice.
Collapse
Affiliation(s)
- Ana Simon-Chica
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Medical Center - University of Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Alexander Klesen
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Medical Center - University of Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Congenital Heart Defects and Paediatric Cardiology, University Heart Center Freiburg - Bad Krozingen, Medical Center - University of Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ramona Emig
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Medical Center - University of Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Integrative Biological Signalling Studies (CIBSS), Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Andy Chan
- Würzburg Institute of Systems Immunology, Max Planck Research Group at Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Joachim Greiner
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Medical Center - University of Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Integrative Biological Signalling Studies (CIBSS), Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Dominic Grün
- Würzburg Institute of Systems Immunology, Max Planck Research Group at Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Achim Lother
- Interdisciplinary Medical Intensive Care, Medical Center - University of Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ingo Hilgendorf
- Department of Cardiology and Angiology, University Heart Center Freiburg - Bad Krozingen, Medical Center - University of Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Eva A Rog-Zielinska
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Medical Center - University of Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ursula Ravens
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Medical Center - University of Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Medical Center - University of Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Integrative Biological Signalling Studies (CIBSS), Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Franziska Schneider-Warme
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Medical Center - University of Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Integrative Biological Signalling Studies (CIBSS), Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Rémi Peyronnet
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Medical Center - University of Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
Martín-Sanz R, Rodrigues-Françoso A, García-Mesa Y, García-Alonso FJ, Gómez-Muñoz MA, Malmierca-González S, Salazar-Blázquez R, García-Suárez O, Feito J. Prognostic Evaluation of Piezo2 Channels in Mammary Gland Carcinoma. Cancers (Basel) 2024; 16:2413. [PMID: 39001475 PMCID: PMC11240440 DOI: 10.3390/cancers16132413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
In the last decade, a group of Ca2+ channels called Piezo were discovered, demonstrating a decisive role in the cellular response to mechanical stimuli and being essential in the biological behavior of cells regarding the extracellular compartment. Several investigations have suggested a potential role in carcinogenesis, with a tumor suppressor role in some cases but increased expression in several high-grade neoplasms. Regarding Piezo2 expression in mammary gland neoplasms, a protective role for Piezo2 was initially suggested, but a subsequent study demonstrated a relationship between Piezo2 expression and the highly aggressive triple-negative phenotype of breast carcinoma. A cohort of 125 patients with clinical follow-up was chosen to study Piezo2 expression and clarify its clinical implications using the same immunohistochemical evaluation performed for other breast carcinoma parameters. Fisher's exact test was chosen to identify potential relationships between the different variables. A significant association was found with the Ki67 proliferation index, but not with mitoses. The tendency of most proliferative tumors was to have an increased score for Piezo2. A similar association was found between Piezo2 expression and perineural invasion.
Collapse
Affiliation(s)
- Raquel Martín-Sanz
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (R.M.-S.); (S.M.-G.)
- Servicio de Oftalmología, Complejo Asistencial de Zamora, 49022 Zamora, Spain
| | | | - Yolanda García-Mesa
- Grupo SINPOS, Department of Cell Biology and Morphology, University of Oviedo, 33003 Oviedo, Spain; (Y.G.-M.); (O.G.-S.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | | | - María Asunción Gómez-Muñoz
- Servicio de Anatomía Patológica, Complejo Asistencial Universitario de Salamanca, 37007 Salamanca, Spain; (M.A.G.-M.); (R.S.-B.)
| | - Sandra Malmierca-González
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (R.M.-S.); (S.M.-G.)
- Servicio de Anatomía Patológica, Complejo Asistencial Universitario de Salamanca, 37007 Salamanca, Spain; (M.A.G.-M.); (R.S.-B.)
| | - Rocío Salazar-Blázquez
- Servicio de Anatomía Patológica, Complejo Asistencial Universitario de Salamanca, 37007 Salamanca, Spain; (M.A.G.-M.); (R.S.-B.)
| | - Olivia García-Suárez
- Grupo SINPOS, Department of Cell Biology and Morphology, University of Oviedo, 33003 Oviedo, Spain; (Y.G.-M.); (O.G.-S.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Jorge Feito
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (R.M.-S.); (S.M.-G.)
- Servicio de Anatomía Patológica, Complejo Asistencial Universitario de Salamanca, 37007 Salamanca, Spain; (M.A.G.-M.); (R.S.-B.)
| |
Collapse
|
10
|
Pak S, Ryu H, Lim S, Nguyen TL, Yang S, Kang S, Yu YG, Woo J, Kim C, Fenollar-Ferrer C, Wood JN, Lee MO, Hong GS, Han K, Kim TS, Oh U. Tentonin 3 is a pore-forming subunit of a slow inactivation mechanosensitive channel. Cell Rep 2024; 43:114334. [PMID: 38850532 PMCID: PMC11310380 DOI: 10.1016/j.celrep.2024.114334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/25/2024] [Accepted: 05/23/2024] [Indexed: 06/10/2024] Open
Abstract
Mechanically activating (MA) channels transduce numerous physiological functions. Tentonin 3/TMEM150C (TTN3) confers MA currents with slow inactivation kinetics in somato- and barosensory neurons. However, questions were raised about its role as a Piezo1 regulator and its potential as a channel pore. Here, we demonstrate that purified TTN3 proteins incorporated into the lipid bilayer displayed spontaneous and pressure-sensitive channel currents. These MA currents were conserved across vertebrates and differ from Piezo1 in activation threshold and pharmacological response. Deep neural network structure prediction programs coupled with mutagenetic analysis predicted a rectangular-shaped, tetrameric structure with six transmembrane helices and a pore at the inter-subunit center. The putative pore aligned with two helices of each subunit and had constriction sites whose mutations changed the MA currents. These findings suggest that TTN3 is a pore-forming subunit of a distinct slow inactivation MA channel, potentially possessing a tetrameric structure.
Collapse
Affiliation(s)
- Sungmin Pak
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Hyunil Ryu
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Sujin Lim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea
| | - Thien-Luan Nguyen
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Sungwook Yang
- Artificial Intelligence and Robotics Institute, KIST, Seoul 02792, Korea
| | - Sumin Kang
- Department of Chemistry, Kookmin University, Seoul 02707, Korea
| | - Yeon Gyu Yu
- Department of Chemistry, Kookmin University, Seoul 02707, Korea
| | - Junhyuk Woo
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Chanjin Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Cristina Fenollar-Ferrer
- Stiles-Nicholson Brain Institute at Florida Atlantic University, Jupiter, FL 33458, USA; Laboratory of Molecular Genetics, NIDCD, NIH, Bethesda, MD 20892, USA
| | - John N Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Mi-Ock Lee
- College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Gyu-Sang Hong
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea.
| | - Kyungreem Han
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Korea.
| | - Tae Song Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.
| | - Uhtaek Oh
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
11
|
Lei L, Wen Z, Cao M, Zhang H, Ling SKK, Fu BSC, Qin L, Xu J, Yung PSH. The emerging role of Piezo1 in the musculoskeletal system and disease. Theranostics 2024; 14:3963-3983. [PMID: 38994033 PMCID: PMC11234281 DOI: 10.7150/thno.96959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/15/2024] [Indexed: 07/13/2024] Open
Abstract
Piezo1, a mechanosensitive ion channel, has emerged as a key player in translating mechanical stimuli into biological signaling. Its involvement extends beyond physiological and pathological processes such as lymphatic vessel development, axon growth, vascular development, immunoregulation, and blood pressure regulation. The musculoskeletal system, responsible for structural support, movement, and homeostasis, has recently attracted attention regarding the significance of Piezo1. This review aims to provide a comprehensive summary of the current research on Piezo1 in the musculoskeletal system, highlighting its impact on bone formation, myogenesis, chondrogenesis, intervertebral disc homeostasis, tendon matrix cross-linking, and physical activity. Additionally, we explore the potential of targeting Piezo1 as a therapeutic approach for musculoskeletal disorders, including osteoporosis, muscle atrophy, intervertebral disc degeneration, and osteoarthritis.
Collapse
Affiliation(s)
- Lei Lei
- Musculoskeletal Research Laboratory and Centre of Musculoskeletal Aging and Regeneration, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhenkang Wen
- Musculoskeletal Research Laboratory and Centre of Musculoskeletal Aging and Regeneration, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Mingde Cao
- Musculoskeletal Research Laboratory and Centre of Musculoskeletal Aging and Regeneration, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Haozhi Zhang
- Musculoskeletal Research Laboratory and Centre of Musculoskeletal Aging and Regeneration, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Samuel Ka-Kin Ling
- Musculoskeletal Research Laboratory and Centre of Musculoskeletal Aging and Regeneration, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Bruma Sai-Chuen Fu
- Musculoskeletal Research Laboratory and Centre of Musculoskeletal Aging and Regeneration, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ling Qin
- Musculoskeletal Research Laboratory and Centre of Musculoskeletal Aging and Regeneration, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Sir Yue-Kong Pao Cancer Centre, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory and Centre of Musculoskeletal Aging and Regeneration, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Sir Yue-Kong Pao Cancer Centre, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Patrick Shu-Hang Yung
- Musculoskeletal Research Laboratory and Centre of Musculoskeletal Aging and Regeneration, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
12
|
Tong X, Wang Y, Zhang H, Liu P, Wang C, Liu H, Zou R, Niu L. Role of YAP in Odontoblast Damage Repair in a Dentin Hypersensitivity Model. Int Dent J 2024; 74:597-606. [PMID: 38184457 PMCID: PMC11123538 DOI: 10.1016/j.identj.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 01/08/2024] Open
Abstract
OBJECTIVES The aim of this study was to investigate the molecular mechanism underlying odontoblast damage repair in dentin hypersensitivity (DH) and the role of Yes-associated protein (YAP) in this process. METHODS The DH model was constructed in Sprague-Dawley (SD) rats, and the in vivo expression of Piezo1, Integrin αvβ3, YAP, and dentin sialophosphoprotein (DSPP) was detected by immunohistochemistry. COMSOL Multiphysics software was used to simulate the dentinal tubule fluid flow velocity and corresponding fluid shear stress (FSS) on the odontoblast processes. MDPC-23 cells were cultured in vitro and loaded with a peristaltic pump for 1 hour at FSS values of 0.1, 0.3, 0.5, and 0.7 dyne/cm2. The expression of Piezo1, Integrin αvβ3, and YAP was detected by immunofluorescence. Verteporfin (a YAP-specific inhibitor) was utilised to confirm the effect of YAP on the expression of dentineogenesis-related protein under FSS. RESULTS The level and duration of external mechanical stimuli have an effect on the functional expression of odontoblasts. In DH, the harder the food that is chewed, the faster the flow of the dentinal tubule fluid and the greater the FSS on the odontoblast processes. The expression of Piezo1, Integrin αvβ3, and YAP can be promoted when the FSS is less than 0.3 dyne/cm2. After YAP inhibition, the DSPP protein expression level was reduced at 0.3 dyne/cm2 FSS. CONCLUSIONS These results suggest that appropriate FSS can enhance the expression of odontoblast-related factors in odontoblasts via the Piezo1-Integrin αvβ3-YAP mechanotransduction pathway and the YAP appears to play an essential role in the response of odontoblasts to external mechanical stimuli.
Collapse
Affiliation(s)
- Xiangyao Tong
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; College of Stomatology, Xi'an Jiaotong University, Xi'an, China; Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yijie Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; College of Stomatology, Xi'an Jiaotong University, Xi'an, China; Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Hui Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; College of Stomatology, Xi'an Jiaotong University, Xi'an, China; Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an, China
| | - Peiqi Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; College of Stomatology, Xi'an Jiaotong University, Xi'an, China; Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Chenxu Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; College of Stomatology, Xi'an Jiaotong University, Xi'an, China; Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Huizhe Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; College of Stomatology, Xi'an Jiaotong University, Xi'an, China; Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Rui Zou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; College of Stomatology, Xi'an Jiaotong University, Xi'an, China; Xi'an Jiaotong University Health Science Center, Xi'an, China.
| | - Lin Niu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; College of Stomatology, Xi'an Jiaotong University, Xi'an, China; Xi'an Jiaotong University Health Science Center, Xi'an, China.
| |
Collapse
|
13
|
Van Schoor K, Bruet E, Jones EAV, Migeotte I. Origin and flow-mediated remodeling of the murine and human extraembryonic circulation systems. Front Physiol 2024; 15:1395006. [PMID: 38818524 PMCID: PMC11137303 DOI: 10.3389/fphys.2024.1395006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/16/2024] [Indexed: 06/01/2024] Open
Abstract
The transduction of mechanical stimuli produced by blood flow is an important regulator of vascular development. The vitelline and umbilico-placental circulations are extraembryonic vascular systems that are required for proper embryonic development in mammalian embryos. The morphogenesis of the extraembryonic vasculature and the cardiovascular system of the embryo are hemodynamically and molecularly connected. Here we provide an overview of the establishment of the murine and human vitelline and umbilico-placental vascular systems and how blood flow influences various steps in their development. A deeper comprehension of extraembryonic vessel development may aid the establishment of stem-cell based embryo models and provide novel insights to understanding pregnancy complications related to the umbilical cord and placenta.
Collapse
Affiliation(s)
- Kristof Van Schoor
- Institut de Recherche Interdisciplinaire Jacques E. Dumont, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Emmanuel Bruet
- Institut de Recherche Interdisciplinaire Jacques E. Dumont, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Elizabeth Anne Vincent Jones
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
- Department of Cardiology CARIM School for Cardiovascular Diseases Maastricht University, Maastricht, Netherlands
| | - Isabelle Migeotte
- Institut de Recherche Interdisciplinaire Jacques E. Dumont, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
14
|
Karkempetzaki AI, Ravid K. Piezo1 and Its Function in Different Blood Cell Lineages. Cells 2024; 13:482. [PMID: 38534326 PMCID: PMC10969519 DOI: 10.3390/cells13060482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
Mechanosensation is a fundamental function through which cells sense mechanical stimuli by initiating intracellular ion currents. Ion channels play a pivotal role in this process by orchestrating a cascade of events leading to the activation of downstream signaling pathways in response to particular stimuli. Piezo1 is a cation channel that reacts with Ca2+ influx in response to pressure sensation evoked by tension on the cell lipid membrane, originating from cell-cell, cell-matrix, or hydrostatic pressure forces, such as laminar flow and shear stress. The application of such forces takes place in normal physiological processes of the cell, but also in the context of different diseases, where microenvironment stiffness or excessive/irregular hydrostatic pressure dysregulates the normal expression and/or activation of Piezo1. Since Piezo1 is expressed in several blood cell lineages and mutations of the channel have been associated with blood cell disorders, studies have focused on its role in the development and function of blood cells. Here, we review the function of Piezo1 in different blood cell lineages and related diseases, with a focus on megakaryocytes and platelets.
Collapse
Affiliation(s)
- Anastasia Iris Karkempetzaki
- Department of Medicine, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA;
- Whitaker Cardiovascular Institute, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
- School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Katya Ravid
- Department of Medicine, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA;
- Whitaker Cardiovascular Institute, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| |
Collapse
|
15
|
Swiatlowska P, Tipping W, Marhuenda E, Severi P, Fomin V, Yang Z, Xiao Q, Graham D, Shanahan C, Iskratsch T. Hypertensive Pressure Mechanosensing Alone Triggers Lipid Droplet Accumulation and Transdifferentiation of Vascular Smooth Muscle Cells to Foam Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308686. [PMID: 38145971 PMCID: PMC10916670 DOI: 10.1002/advs.202308686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Indexed: 12/27/2023]
Abstract
Arterial Vascular smooth muscle cells (VSMCs) play a central role in the onset and progression of atherosclerosis. Upon exposure to pathological stimuli, they can take on alternative phenotypes that, among others, have been described as macrophage like, or foam cells. VSMC foam cells make up >50% of all arterial foam cells and have been suggested to retain an even higher proportion of the cell stored lipid droplets, further leading to apoptosis, secondary necrosis, and an inflammatory response. However, the mechanism of VSMC foam cell formation is still unclear. Here, it is identified that mechanical stimulation through hypertensive pressure alone is sufficient for the phenotypic switch. Hyperspectral stimulated Raman scattering imaging demonstrates rapid lipid droplet formation and changes to lipid metabolism and changes are confirmed in ABCA1, KLF4, LDLR, and CD68 expression, cell proliferation, and migration. Further, a mechanosignaling route is identified involving Piezo1, phospholipid, and arachidonic acid signaling, as well as epigenetic regulation, whereby CUT&Tag epigenomic analysis confirms changes in the cells (lipid) metabolism and atherosclerotic pathways. Overall, the results show for the first time that VSMC foam cell formation can be triggered by mechanical stimulation alone, suggesting modulation of mechanosignaling can be harnessed as potential therapeutic strategy.
Collapse
Affiliation(s)
- Pamela Swiatlowska
- School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
| | - William Tipping
- Department of Pure and Applied ChemistryUniversity of StrathclydeGlasgowG1 1QAUK
| | - Emilie Marhuenda
- School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
| | - Paolo Severi
- School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
- Department of Translational MedicineLaboratory for Technologies of Advanced Therapies (LTTA)University of FerraraFerrara44121Italy
| | | | - Zhisheng Yang
- William Harvey Research InstituteQueen Mary University of LondonLondonEC1M 6BQUK
| | - Qingzhong Xiao
- William Harvey Research InstituteQueen Mary University of LondonLondonEC1M 6BQUK
| | - Duncan Graham
- Department of Pure and Applied ChemistryUniversity of StrathclydeGlasgowG1 1QAUK
| | - Cathy Shanahan
- School of Cardiovascular Medicine and SciencesKing's College LondonLondonSE5 9NUUK
| | - Thomas Iskratsch
- School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
| |
Collapse
|
16
|
Liu CSC, Mandal T, Biswas P, Hoque MA, Bandopadhyay P, Sinha BP, Sarif J, D'Rozario R, Sinha DK, Sinha B, Ganguly D. Piezo1 mechanosensing regulates integrin-dependent chemotactic migration in human T cells. eLife 2024; 12:RP91903. [PMID: 38393325 PMCID: PMC10942591 DOI: 10.7554/elife.91903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024] Open
Abstract
T cells are crucial for efficient antigen-specific immune responses and thus their migration within the body, to inflamed tissues from circulating blood or to secondary lymphoid organs, plays a very critical role. T cell extravasation in inflamed tissues depends on chemotactic cues and interaction between endothelial adhesion molecules and cellular integrins. A migrating T cell is expected to sense diverse external and membrane-intrinsic mechano-physical cues, but molecular mechanisms of such mechanosensing in cell migration are not established. We explored if the professional mechanosensor Piezo1 plays any role during integrin-dependent chemotaxis of human T cells. We found that deficiency of Piezo1 in human T cells interfered with integrin-dependent cellular motility on ICAM-1-coated surface. Piezo1 recruitment at the leading edge of moving T cells is dependent on and follows focal adhesion formation at the leading edge and local increase in membrane tension upon chemokine receptor activation. Piezo1 recruitment and activation, followed by calcium influx and calpain activation, in turn, are crucial for the integrin LFA1 (CD11a/CD18) recruitment at the leading edge of the chemotactic human T cells. Thus, we find that Piezo1 activation in response to local mechanical cues constitutes a membrane-intrinsic component of the 'outside-in' signaling in human T cells, migrating in response to chemokines, that mediates integrin recruitment to the leading edge.
Collapse
Affiliation(s)
- Chinky Shiu Chen Liu
- IICB-Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical BiologyKolkataIndia
| | - Tithi Mandal
- Department of Biological Sciences, Indian Institute of Science Education and ResearchKolkataIndia
| | - Parijat Biswas
- Department of Biological Sciences, Indian Association for Cultivation of ScienceKolkataIndia
| | - Md Asmaul Hoque
- IICB-Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical BiologyKolkataIndia
- Academy of Scientific and Innovative ResearchGhaziabadIndia
| | - Purbita Bandopadhyay
- IICB-Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical BiologyKolkataIndia
- Academy of Scientific and Innovative ResearchGhaziabadIndia
| | - Bishnu Prasad Sinha
- IICB-Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical BiologyKolkataIndia
- Academy of Scientific and Innovative ResearchGhaziabadIndia
| | - Jafar Sarif
- IICB-Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical BiologyKolkataIndia
- Academy of Scientific and Innovative ResearchGhaziabadIndia
| | - Ranit D'Rozario
- IICB-Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical BiologyKolkataIndia
- Academy of Scientific and Innovative ResearchGhaziabadIndia
| | - Deepak Kumar Sinha
- Department of Biological Sciences, Indian Association for Cultivation of ScienceKolkataIndia
| | - Bidisha Sinha
- Department of Biological Sciences, Indian Institute of Science Education and ResearchKolkataIndia
| | - Dipyaman Ganguly
- IICB-Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical BiologyKolkataIndia
| |
Collapse
|
17
|
Xu X, Guo Y, Liu P, Zhang H, Wang Y, Li Z, Mei Y, Niu L, Liu R. Piezo Mediates the Mechanosensation and Injury-Repair of Pulpo-Dentinal Complex. Int Dent J 2024; 74:71-80. [PMID: 37833209 PMCID: PMC10829354 DOI: 10.1016/j.identj.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 10/15/2023] Open
Abstract
OBJECTIVES The aim of this research was to investigate the functions of Piezo channels in dentin defect, including mechanical signalling and odontoblast responses. METHODS Rat dentin-defect models were constructed, and spatiotemporal expression of Piezo proteins was detected in the pulpo-dentinal complex. Real-time polymerase chain reaction (rtPCR) was used to investigate the functional expression pattern of Piezo channels in odontoblasts. Moreover, RNA interference technology was employed to uncover the underlying mechanisms of the Piezo-driven inflammatory response and repair under fluid shear stress (FSS) conditions in vitro. RESULTS Piezo1 and Piezo2 were found to be widely expressed in the odontoblast layer and dental pulp in the rat dentin-defect model during the end stage of reparative dentin formation. The expression levels of the Piezo1 and Piezo2 genes in MDPC-23 cells were high in the initial stage under FSS loading and then decreased over time. Moreover, the expression trends of inflammatory, odontogenic, and mineralisation genes were generally contrary to those of Piezo1 and Piezo2 over time. After silencing of Piezo1/Piezo2, FSS stimulation resulted in significantly higher expression of inflammatory, odontogenesis, and mineralisation genes in MDPC-23 cells. Finally, the expression of genes involved in the integrin β1/ERK1 and Wnt5b/β-catenin signalling pathways was changed in response to RNA silencing of Piezo1 and Piezo2. CONCLUSIONS Piezo1 and Piezo2 may be involved in regulating the expression of inflammatory and odontogenic genes in odontoblasts stimulated by FSS.
Collapse
Affiliation(s)
- Xiaoqiao Xu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi' an, China
| | - Yi Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi' an, China
| | - Peiqi Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi' an, China
| | - Hui Zhang
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Yijie Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi' an, China
| | - Zhen Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi' an, China
| | - Yukun Mei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi' an, China
| | - Lin Niu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi' an, China; Department of Prosthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.
| | - Ruirui Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi' an, China; Department of Prosthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
18
|
Luo M, Gu R, Wang C, Guo J, Zhang X, Ni K, Liu L, Pan Y, Li J, Deng L. High Stretch Associated with Mechanical Ventilation Promotes Piezo1-Mediated Migration of Airway Smooth Muscle Cells. Int J Mol Sci 2024; 25:1748. [PMID: 38339025 PMCID: PMC10855813 DOI: 10.3390/ijms25031748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/22/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Ventilator-induced lung injury (VILI) during mechanical ventilation (MV) has been attributed to airway remodeling involving increased airway smooth muscle cells (ASMCs), but the underlying mechanism is not fully understood. Thus, we aimed to investigate whether MV-associated high stretch (>10% strain) could modulate mechanosensitive Piezo1 expression and thereby alter cell migration of ASMCs as a potential pathway to increased ASMCs in VILI. C57BL/6 mice and ASMCs were subjected to MV at high tidal volume (VT, 18 mL/kg, 3 h) and high stretch (13% strain, 0.5 Hz, 72 h), respectively. Subsequently, the mice or cells were evaluated for Piezo1 and integrin mRNA expression by immunohistochemical staining and quantitative PCR (qPCR), and cell migration and adhesion by transwell and cell adhesion assays. Cells were either treated or not with Piezo1 siRNA, Piezo1-eGFP, Piezo1 knockin, Y27632, or blebbistatin to regulate Piezo1 mRNA expression or inhibit Rho-associated kinase (ROCK) signaling prior to migration or adhesion assessment. We found that expression of Piezo1 in in situ lung tissue, mRNA expression of Piezo1 and integrin αVβ1 and cell adhesion of ASMCs isolated from mice with MV were all reduced but the cell migration of primary ASMCs (pASMCs) isolated from mice with MV was greatly enhanced. Similarly, cell line mouse ASMCs (mASMCs) cultured in vitro with high stretch showed that mRNA expression of Piezo1 and integrin αVβ1 and cell adhesion were all reduced but cell migration was greatly enhanced. Interestingly, such effects of MV or high stretch on ASMCs could be either induced or abolished/reversed by down/up-regulation of Piezo1 mRNA expression and inhibition of ROCK signaling. High stretch associated with MV appears to be a mechanical modulator of Piezo1 mRNA expression and can, thus, promote cell migration of ASMCs during therapeutic MV. This may be a novel mechanism of detrimental airway remodeling associated with MV, and, therefore, a potential intervention target to treat VILI.
Collapse
Affiliation(s)
- Mingzhi Luo
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China
| | - Rong Gu
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China
| | - Chunhong Wang
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China
| | - Jia Guo
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China
| | - Xiangrong Zhang
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China
| | - Kai Ni
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China
| | - Lei Liu
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China
| | - Yan Pan
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China
| | - Jingjing Li
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China
| | - Linhong Deng
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
19
|
Xia K, Chen X, Wang W, Liu Q, Zhao M, Ma J, Jia H. Roles of mechanosensitive ion channels in immune cells. Heliyon 2024; 10:e23318. [PMID: 38148826 PMCID: PMC10750075 DOI: 10.1016/j.heliyon.2023.e23318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 12/28/2023] Open
Abstract
Mechanosensitive ion channels are a class of membrane-integrated proteins that convert externalmechanical forces, including stretching, pressure, gravity, and osmotic pressure changes, some of which can be caused by pathogen invasion, into electrical and chemical signals transmitted to the cytoplasm. In recent years, with the identification of many of these channels, their roles in the initiation and progression of many diseases have been gradually revealed. Multiple studies have shown that mechanosensitive ion channels regulate the proliferation, activation, and inflammatory responses of immune cells by being expressed on the surface of immune cells and further responding to mechanical forces. Nonetheless, further clarification is required regarding the signaling pathways of immune-cell pattern-recognition receptors and on the impact of microenvironmental changes and mechanical forces on immune cells. This review summarizes the roles of mechanosensitive ion channels in immune cells.
Collapse
Affiliation(s)
- Kexin Xia
- Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Xiaolin Chen
- Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Wenyan Wang
- Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Qianwen Liu
- Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Mai Zhao
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Haining Road 100, Shanghai, 200080, China
| | - Jiacheng Ma
- The Department of Information Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| | - Hao Jia
- Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
20
|
Vanderroost J, Parpaite T, Avalosse N, Henriet P, Pierreux CE, Lorent JH, Gailly P, Tyteca D. Piezo1 Is Required for Myoblast Migration and Involves Polarized Clustering in Association with Cholesterol and GM1 Ganglioside. Cells 2023; 12:2784. [PMID: 38132106 PMCID: PMC10741634 DOI: 10.3390/cells12242784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
A specific plasma membrane distribution of the mechanosensitive ion channel Piezo1 is required for cell migration, but the mechanism remains elusive. Here, we addressed this question using WT and Piezo1-silenced C2C12 mouse myoblasts and WT and Piezo1-KO human kidney HEK293T cells. We showed that cell migration in a cell-free area and through a porous membrane decreased upon Piezo1 silencing or deletion, but increased upon Piezo1 activation by Yoda1, whereas migration towards a chemoattractant gradient was reduced by Yoda1. Piezo1 organized into clusters, which were preferentially enriched at the front. This polarization was stimulated by Yoda1, accompanied by Ca2+ polarization, and abrogated by partial cholesterol depletion. Piezo1 clusters partially colocalized with cholesterol- and GM1 ganglioside-enriched domains, the proportion of which was increased by Yoda1. Mechanistically, Piezo1 activation induced a differential mobile fraction of GM1 associated with domains and the bulk membrane. Conversely, cholesterol depletion abrogated the differential mobile fraction of Piezo1 associated with clusters and the bulk membrane. In conclusion, we revealed, for the first time, the differential implication of Piezo1 depending on the migration mode and the interplay between GM1/cholesterol-enriched domains at the front during migration in a cell-free area. These domains could provide the optimal biophysical properties for Piezo1 activity and/or spatial dissociation from the PMCA calcium efflux pump.
Collapse
Affiliation(s)
- Juliette Vanderroost
- de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (J.V.); (N.A.); (P.H.); (C.E.P.)
| | - Thibaud Parpaite
- Institute of Neuroscience, UCLouvain, 1200 Brussels, Belgium; (T.P.); (P.G.)
| | - Noémie Avalosse
- de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (J.V.); (N.A.); (P.H.); (C.E.P.)
| | - Patrick Henriet
- de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (J.V.); (N.A.); (P.H.); (C.E.P.)
| | | | - Joseph H. Lorent
- Louvain Drug Research Institute, UCLouvain, 1200 Brussels, Belgium;
| | - Philippe Gailly
- Institute of Neuroscience, UCLouvain, 1200 Brussels, Belgium; (T.P.); (P.G.)
| | - Donatienne Tyteca
- de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (J.V.); (N.A.); (P.H.); (C.E.P.)
| |
Collapse
|
21
|
Phuyal S, Romani P, Dupont S, Farhan H. Mechanobiology of organelles: illuminating their roles in mechanosensing and mechanotransduction. Trends Cell Biol 2023; 33:1049-1061. [PMID: 37236902 DOI: 10.1016/j.tcb.2023.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023]
Abstract
Mechanobiology studies the mechanisms by which cells sense and respond to physical forces, and the role of these forces in shaping cells and tissues themselves. Mechanosensing can occur at the plasma membrane, which is directly exposed to external forces, but also in the cell's interior, for example, through deformation of the nucleus. Less is known on how the function and morphology of organelles are influenced by alterations in their own mechanical properties, or by external forces. Here, we discuss recent advances on the mechanosensing and mechanotransduction of organelles, including the endoplasmic reticulum (ER), the Golgi apparatus, the endo-lysosmal system, and the mitochondria. We highlight open questions that need to be addressed to gain a broader understanding of the role of organelle mechanobiology.
Collapse
Affiliation(s)
- Santosh Phuyal
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Patrizia Romani
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Sirio Dupont
- Department of Molecular Medicine, University of Padua, Padua, Italy.
| | - Hesso Farhan
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Institute of Pathophysiology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
22
|
Sugimoto A, Iwata K, Kurogoushi R, Tanaka M, Nakashima Y, Yamakawa Y, Oishi A, Yoshizaki K, Fukumoto S, Yamamoto A, Ishimaru N, Iwamoto T. C-terminus of PIEZO1 governs Ca 2+ influx and intracellular ERK1/2 signaling pathway in mechanotransduction. Biochem Biophys Res Commun 2023; 682:39-45. [PMID: 37801988 DOI: 10.1016/j.bbrc.2023.09.080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/25/2023] [Indexed: 10/08/2023]
Abstract
Cells sense and respond to extracellular mechanical stress through mechanotransduction receptors and ion channels, which regulate cellular behaviors such as cell proliferation and differentiation. Among them, PIEZO1, piezo-type mechanosensitive ion channel component 1, has recently been highlighted as a mechanosensitive ion channel in various cell types including mesenchymal stem cells. We previously reported that PIEZO1 is essential for ERK1/2 phosphorylation and osteoblast differentiation in bone marrow-derived mesenchymal stem cells (BMSCs), induced by hydrostatic pressure loading and treatment with the PIEZO1-specific activator Yoda1. However, the molecular mechanism underlying how PIEZO1 induces mechanotransduction remains unclear. In this study, we investigated that the role of the C-terminus in regulating extracellular Ca2+ influx and activating the ERK1/2 signaling pathway. We observed the activation of Fluo-4 AM in the Yoda1-stimulated human BMSC line UE7T-13, but not in a calcium-depleted cell culture medium. Similarly, Western blotting analysis revealed that Yoda1 treatment induced ERK1/2 phosphorylation, but this induction was not observed in calcium-depleted cell culture medium. To investigate the functional role of the C-terminus of PIEZO1, we generated HEK293 cells stably expressing the full-length mouse PIEZO1 (PIEZO1-FL) and a deletion-type PIEZO1 lacking the C-terminal intracellular region containing the R-Ras-binding domain (PIEZO1-ΔR-Ras). We found that Yoda1 treatment predominantly activated Flou-4 AM and ERK1/2 in PIEZO1-FL-trasfected cells but neither in PIEZO1-ΔR-Ras-transfected cells nor control cells. Our results indicate that the C-terminus of PIEZO1, which contains the R-Ras binding domain, plays an essential role in Ca2+ influx and activation of the ERK1/2 signaling pathway, suggesting that this domain is crucial for the mechanotransduction of osteoblastic differentiation in BMSCs.
Collapse
Affiliation(s)
- Asuna Sugimoto
- Department of Pediatric Dentistry / Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8549, Japan; Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8504, Japan
| | - Kokoro Iwata
- Department of Pediatric Dentistry / Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8549, Japan
| | - Rika Kurogoushi
- Department of Pediatric Dentistry / Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8549, Japan
| | - Manami Tanaka
- Department of Pediatric Dentistry / Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8549, Japan
| | - Yumiko Nakashima
- Department of Pediatric Dentistry / Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8549, Japan
| | - Yoshihito Yamakawa
- Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8504, Japan
| | - Atsushi Oishi
- Department of Pediatric Dentistry / Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8549, Japan
| | - Keigo Yoshizaki
- Orthodontics and Dentofacial Orthopedics Section, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, 812-8582, Japan
| | - Satoshi Fukumoto
- Pediatric Dentistry Section, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, 812-8582, Japan
| | - Akihito Yamamoto
- Department of Tissue Regeneration, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8504, Japan
| | - Naozumi Ishimaru
- Department of Oral Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8504, Japan
| | - Tsutomu Iwamoto
- Department of Pediatric Dentistry / Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8549, Japan.
| |
Collapse
|
23
|
Cheng D, Wang J, Yao M, Cox CD. Joining forces: crosstalk between mechanosensitive PIEZO1 ion channels and integrin-mediated focal adhesions. Biochem Soc Trans 2023; 51:1897-1906. [PMID: 37772664 DOI: 10.1042/bst20230042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/30/2023]
Abstract
Both integrin-mediated focal adhesions (FAs) and mechanosensitive ion channels such as PIEZO1 are critical in mechanotransduction processes that influence cell differentiation, development, and cancer. Ample evidence now exists for regulatory crosstalk between FAs and PIEZO1 channels with the molecular mechanisms underlying this process remaining unclear. However, an emerging picture is developing based on spatial crosstalk between FAs and PIEZO1 revealing a synergistic model involving the cytoskeleton, extracellular matrix (ECM) and calcium-dependent signaling. Already cell type, cell contractility, integrin subtypes and ECM composition have been shown to regulate this crosstalk, implying a highly fine-tuned relationship between these two major mechanosensing systems. In this review, we summarize the latest advances in this area, highlight the physiological implications of this crosstalk and identify gaps in our knowledge that will improve our understanding of cellular mechanosensing.
Collapse
Affiliation(s)
- Delfine Cheng
- The Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Kensington, NSW 2052, Australia
| | - Junfan Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen 518055, China
| | - Mingxi Yao
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen 518055, China
| | - Charles D Cox
- The Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
- School of Biomedical Sciences, Faculty of Medicine & Health, University of New South Wales, Kensington, NSW 2052, Australia
| |
Collapse
|
24
|
Xiao R, Liu J, Xu XZS. Mechanosensitive GPCRs and ion channels in shear stress sensing. Curr Opin Cell Biol 2023; 84:102216. [PMID: 37595342 PMCID: PMC10528224 DOI: 10.1016/j.ceb.2023.102216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 08/20/2023]
Abstract
As a universal mechanical cue, shear stress plays essential roles in many physiological processes, ranging from vascular morphogenesis and remodeling to renal transport and airway barrier function. Disrupted shear stress is commonly regarded as a major contributor to various human diseases such as atherosclerosis, hypertension, and chronic kidney disease. Despite the importance of shear stress in physiology and pathophysiology, our current understanding of mechanosensors that sense shear stress is far from complete. An increasing number of candidate mechanosensors have been proposed to mediate shear stress sensing in distinct cell types, including G protein-coupled receptors (GPCRs), G proteins, receptor tyrosine kinases, ion channels, glycocalyx proteins, and junctional proteins. Although multiple types of mechanosensors might be able to convert shear stress into downstream biochemical signaling events, in this review, we will focus on discussing the mechanosensitive GPCRs (angiotensin II type 1 receptor, GPR68, histamine H1 receptor, adhesion GPCRs) and ion channels (Piezo, TRP) that have been reported to be directly activated by shear stress.
Collapse
Affiliation(s)
- Rui Xiao
- Department of Physiology and Aging, Institute on Aging, Center for Smell and Taste, College of Medicine, University of Florida, Gainesville, FL, USA.
| | - Jie Liu
- Neuroscience Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - X Z Shawn Xu
- Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
25
|
Pardo-Pastor C, Rosenblatt J. Piezo1 activates noncanonical EGFR endocytosis and signaling. SCIENCE ADVANCES 2023; 9:eadi1328. [PMID: 37756411 PMCID: PMC10530101 DOI: 10.1126/sciadv.adi1328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
EGFR-ERK signaling controls cell cycle progression during development, homeostasis, and disease. While EGF ligand and mechanical inputs can activate EGFR-ERK signaling, the molecules linking mechanical force to this axis have remained mysterious. We previously found that stretch promotes mitosis via the stretch-activated ion channel Piezo1 and ERK signaling. Here, we show that Piezo1 provides the missing link between mechanical signals and EGFR-ERK activation. While both EGF- and Piezo1-dependent activation trigger clathrin-mediated EGFR endocytosis and ERK activation, EGF relies on canonical tyrosine autophosphorylation, whereas Piezo1 involves Src-p38 kinase-dependent serine phosphorylation. In addition, unlike EGF, ex vivo lung slices treated with Piezo1 agonist promoted cell cycle re-entry via nuclear ERK, AP-1 (FOS and JUN), and YAP accumulation, typical of regenerative and malignant signaling. Our results suggest that mechanical activation via Piezo1, Src, and p38 may be more relevant to controlling repair, regeneration, and cancer growth than tyrosine kinase signaling via canonical EGF signaling, suggesting an alternative therapeutic approach.
Collapse
Affiliation(s)
- Carlos Pardo-Pastor
- Randall Centre for Cell & Molecular Biophysics, New Hunt’s House, School of Basic & Medical Sciences, Faculty of Life Sciences & Medicine, King’s College London, SE1 1UL London, UK
| | - Jody Rosenblatt
- Randall Centre for Cell & Molecular Biophysics, New Hunt’s House, School of Basic & Medical Sciences, Faculty of Life Sciences & Medicine, King’s College London, SE1 1UL London, UK
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King’s College London, SE1 1UL London, UK
| |
Collapse
|
26
|
Zheng Q, Liu H, Yu W, Dong Y, Zhou L, Deng W, Hua F. Mechanical properties of the brain: Focus on the essential role of Piezo1-mediated mechanotransduction in the CNS. Brain Behav 2023; 13:e3136. [PMID: 37366640 PMCID: PMC10498085 DOI: 10.1002/brb3.3136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/24/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND The brain is a highly mechanosensitive organ, and changes in the mechanical properties of brain tissue influence many physiological and pathological processes. Piezo type mechanosensitive ion channel component 1 (Piezo1), a protein found in metazoans, is highly expressed in the brain and involved in sensing changes of the mechanical microenvironment. Numerous studies have shown that Piezo1-mediated mechanotransduction is closely related to glial cell activation and neuronal function. However, the precise role of Piezo1 in the brain requires further elucidation. OBJECTIVE This review first discusses the roles of Piezo1-mediated mechanotransduction in regulating the functions of a variety of brain cells, and then briefly assesses the impact of Piezo1-mediated mechanotransduction on the progression of brain dysfunctional disorders. CONCLUSIONS Mechanical signaling contributes significantly to brain function. Piezo1-mediated mechanotransduction regulates processes such as neuronal differentiation, cell migration, axon guidance, neural regeneration, and oligodendrocyte axon myelination. Additionally, Piezo1-mediated mechanotransduction plays significant roles in normal aging and brain injury, as well as the development of various brain diseases, including demyelinating diseases, Alzheimer's disease, and brain tumors. Investigating the pathophysiological mechanisms through which Piezo1-mediated mechanotransduction affects brain function will give us a novel entry point for the diagnosis and treatment of numerous brain diseases.
Collapse
Affiliation(s)
- Qingcui Zheng
- Department of Anesthesiologythe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
- Key Laboratory of Anesthesiology of Jiangxi ProvinceThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
- Jiangxi Province Key Laboratory of Molecular MedicineThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
| | - Hailin Liu
- Department of Anesthesiologythe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
- Key Laboratory of Anesthesiology of Jiangxi ProvinceThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
- Jiangxi Province Key Laboratory of Molecular MedicineThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
| | - Wen Yu
- Department of Anesthesiologythe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
- Key Laboratory of Anesthesiology of Jiangxi ProvinceThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
| | - Yao Dong
- Department of Anesthesiologythe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
- Key Laboratory of Anesthesiology of Jiangxi ProvinceThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
- Jiangxi Province Key Laboratory of Molecular MedicineThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
| | - Lanqian Zhou
- Department of Anesthesiologythe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
- Key Laboratory of Anesthesiology of Jiangxi ProvinceThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
- Jiangxi Province Key Laboratory of Molecular MedicineThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
| | - Wenze Deng
- Department of Anesthesiologythe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
- Key Laboratory of Anesthesiology of Jiangxi ProvinceThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
| | - Fuzhou Hua
- Department of Anesthesiologythe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
- Key Laboratory of Anesthesiology of Jiangxi ProvinceThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
| |
Collapse
|
27
|
Yaganoglu S, Kalyviotis K, Vagena-Pantoula C, Jülich D, Gaub BM, Welling M, Lopes T, Lachowski D, Tang SS, Del Rio Hernandez A, Salem V, Müller DJ, Holley SA, Vermot J, Shi J, Helassa N, Török K, Pantazis P. Highly specific and non-invasive imaging of Piezo1-dependent activity across scales using GenEPi. Nat Commun 2023; 14:4352. [PMID: 37468521 PMCID: PMC10356793 DOI: 10.1038/s41467-023-40134-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 07/11/2023] [Indexed: 07/21/2023] Open
Abstract
Mechanosensing is a ubiquitous process to translate external mechanical stimuli into biological responses. Piezo1 ion channels are directly gated by mechanical forces and play an essential role in cellular mechanotransduction. However, readouts of Piezo1 activity are mainly examined by invasive or indirect techniques, such as electrophysiological analyses and cytosolic calcium imaging. Here, we introduce GenEPi, a genetically-encoded fluorescent reporter for non-invasive optical monitoring of Piezo1-dependent activity. We demonstrate that GenEPi has high spatiotemporal resolution for Piezo1-dependent stimuli from the single-cell level to that of the entire organism. GenEPi reveals transient, local mechanical stimuli in the plasma membrane of single cells, resolves repetitive contraction-triggered stimulation of beating cardiomyocytes within microtissues, and allows for robust and reliable monitoring of Piezo1-dependent activity in vivo. GenEPi will enable non-invasive optical monitoring of Piezo1 activity in mechanochemical feedback loops during development, homeostatic regulation, and disease.
Collapse
Affiliation(s)
- Sine Yaganoglu
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Basel, Switzerland
| | | | | | - Dörthe Jülich
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Benjamin M Gaub
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Basel, Switzerland
| | - Maaike Welling
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Basel, Switzerland
- Department of Bioengineering, Imperial College London, London, UK
| | - Tatiana Lopes
- Section of Investigative Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, UK
| | | | - See Swee Tang
- Department of Bioengineering, Imperial College London, London, UK
| | | | - Victoria Salem
- Department of Bioengineering, Imperial College London, London, UK
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Basel, Switzerland
| | - Scott A Holley
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Julien Vermot
- Department of Bioengineering, Imperial College London, London, UK
| | - Jian Shi
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, University of Leeds, Leeds, UK
| | - Nordine Helassa
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Katalin Török
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
| | - Periklis Pantazis
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Basel, Switzerland.
- Department of Bioengineering, Imperial College London, London, UK.
| |
Collapse
|
28
|
Jetta D, Shireen T, Hua SZ. Epithelial cells sense local stiffness via Piezo1 mediated cytoskeletal reorganization. Front Cell Dev Biol 2023; 11:1198109. [PMID: 37293127 PMCID: PMC10244755 DOI: 10.3389/fcell.2023.1198109] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/10/2023] [Indexed: 06/10/2023] Open
Abstract
Local substrate stiffness is one of the major mechanical inputs for tissue organization during its development and remodeling. It is widely recognized that adherent cells use transmembrane proteins (integrins) at focal adhesions to translate ECM mechanical cues into intracellular bioprocess. Here we show that epithelial cells respond to substrate stiffening primarily via actin cytoskeleton organization, that requires activation of mechanosensitive Piezo1 channels. Piezo1 Knockdown cells eliminated the actin stress fibers that formed on stiff substrates, while it had minimal effect on cell morphology and spreading area. Inhibition of Piezo1 channels with GsMTx4 also significantly reduced stiffness-induced F-actin reorganization, suggesting Piezo1 mediated cation current plays a role. Activation of Piezo1 channels with specific agonist (Yoda1) resulted in thickening of F-actin fibers and enlargement of FAs on stiffer substrates, whereas it did not affect the formation of nascent FAs that facilitate spreading on the soft substrates. These results demonstrate that Piezo1 functions as a force sensor that couples with actin cytoskeleton to distinguish the substrate stiffness and facilitate epithelial adaptive remodeling.
Collapse
Affiliation(s)
- Deekshitha Jetta
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY, United States
| | - Tasnim Shireen
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY, United States
| | - Susan Z. Hua
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY, United States
- Department of Physiology and Biophysics, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
29
|
Alhazmi W, Qurban A, Alrashidi E. Case report of generalized lymphatic dysplasia with PIEZO1 mutation and review of the literature. Respir Med Case Rep 2023; 44:101872. [PMID: 37274623 PMCID: PMC10238584 DOI: 10.1016/j.rmcr.2023.101872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 05/11/2023] [Indexed: 06/06/2023] Open
Abstract
Background The newborn malformation of primary lymphatic dysplasia (PLD), developed primarily due to PIEZO1 gene autosomal recessive mutation, is known to hinder with the lymphatic system action, causing chyle or lymph effusion into the peritoneal cavity or pleura. Case presentation A 4-years-old male subject presented with a recurrent chylothorax and bilateral lower limb edema that started at age of 6 months. Lymphoscintigraphy showed lymphangiectasia with chylothorax. The whole exome sequence consisted of Pathogenic variants in PIEZO1 gene associated with lymphatic malformation type 6 (LMPHM6). Conclusion This is the first reported pediatric case of PIEZO1 gene mutation in Saudi Arabia. This case highlighted the wide differential diagnosis of recurrent chylothorax and lower limb edema, as well as the relative literature on the molecular foundation, clinical scale, pathophysiology, and lymphatic malformation treatment. patients can be improved via application of standardized chylothorax and lymphedema therapies. Overall, awareness of the diseases related to the thoracic lymphatic circulation should be observed as its prognosis may highly promote better approaches for its management.
Collapse
Affiliation(s)
- Wedad Alhazmi
- Department of Pediatric, Maternity and Children Hospital in Makkah, Saudi Arabia
| | - Afnan Qurban
- Department of Pediatric, Maternity and Children Hospital in Makkah, Saudi Arabia
| | - Essa Alrashidi
- Department of Pediatric, King Saud Medical City in Riyadh, Saudi Arabia
| |
Collapse
|
30
|
Chuntharpursat-Bon E, Povstyan OV, Ludlow MJ, Carrier DJ, Debant M, Shi J, Gaunt HJ, Bauer CC, Curd A, Simon Futers T, Baxter PD, Peckham M, Muench SP, Adamson A, Humphreys N, Tumova S, Bon RS, Cubbon R, Lichtenstein L, Beech DJ. PIEZO1 and PECAM1 interact at cell-cell junctions and partner in endothelial force sensing. Commun Biol 2023; 6:358. [PMID: 37005489 PMCID: PMC10067937 DOI: 10.1038/s42003-023-04706-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 03/14/2023] [Indexed: 04/04/2023] Open
Abstract
Two prominent concepts for the sensing of shear stress by endothelium are the PIEZO1 channel as a mediator of mechanically activated calcium ion entry and the PECAM1 cell adhesion molecule as the apex of a triad with CDH5 and VGFR2. Here, we investigated if there is a relationship. By inserting a non-disruptive tag in native PIEZO1 of mice, we reveal in situ overlap of PIEZO1 with PECAM1. Through reconstitution and high resolution microscopy studies we show that PECAM1 interacts with PIEZO1 and directs it to cell-cell junctions. PECAM1 extracellular N-terminus is critical in this, but a C-terminal intracellular domain linked to shear stress also contributes. CDH5 similarly drives PIEZO1 to junctions but unlike PECAM1 its interaction with PIEZO1 is dynamic, increasing with shear stress. PIEZO1 does not interact with VGFR2. PIEZO1 is required in Ca2+-dependent formation of adherens junctions and associated cytoskeleton, consistent with it conferring force-dependent Ca2+ entry for junctional remodelling. The data suggest a pool of PIEZO1 at cell junctions, the coming together of PIEZO1 and PECAM1 mechanisms and intimate cooperation of PIEZO1 and adhesion molecules in tailoring junctional structure to mechanical requirement.
Collapse
Affiliation(s)
| | | | | | - David J Carrier
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
- School of Biomedical Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | | | - Jian Shi
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Hannah J Gaunt
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | | | - Alistair Curd
- School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - T Simon Futers
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Paul D Baxter
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Michelle Peckham
- School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Stephen P Muench
- School of Biomedical Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Antony Adamson
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Manchester, M13 9PT, UK
| | - Neil Humphreys
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Manchester, M13 9PT, UK
| | - Sarka Tumova
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Robin S Bon
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Richard Cubbon
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | | | - David J Beech
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
31
|
Malko P, Jia X, Wood I, Jiang LH. Piezo1 channel-mediated Ca 2+ signaling inhibits lipopolysaccharide-induced activation of the NF-κB inflammatory signaling pathway and generation of TNF-α and IL-6 in microglial cells. Glia 2023; 71:848-865. [PMID: 36447422 DOI: 10.1002/glia.24311] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/20/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022]
Abstract
Microglial cells are crucial in maintaining central nervous system (CNS) homeostasis and mediating CNS disease pathogenesis. Increasing evidence supports that alterations in the mechanical properties of CNS microenvironments influence glial cell phenotypes, but the mechanisms regulating microglial cell function remain elusive. Here, we examined the mechanosensitive Piezo1 channel in microglial cells, particularly, how Piezo1 channel activation regulates pro-inflammatory activation and production of pro-inflammatory cytokines, using BV2 and primary microglial cells. Piezo1 expression in microglial cells was detected both at mRNA and protein levels. Application of Piezo1 channel activator Yoda1 induced Ca2+ flux to increase intracellular Ca2+ concentration that was reduced by treatment with ruthenium red, a Piezo1 inhibitor, or Piezo1-specific siRNA, supporting that Piezo1 functions as a cell surface Ca2+ -permeable channel. Priming with lipopolysaccharide (LPS) induced microglial cell activation and production of TNF-α and IL-6, which were inhibited by treatment with Yoda1. Furthermore, LPS priming induced the activation of ERK, p38 MAPKs, and NF-κB. LPS-induced activation of NF-κB, but not ERK and p38, was inhibited by treatment with Yoda1. Yoda1-induced inhibition was blunted by siRNA-mediated depletion of Piezo1 expression and, furthermore, treatment with BAPTA-AM to prevent intracellular Ca2+ increase. Collectively, our results support that Piezo1 channel activation downregulates the pro-inflammatory function of microglial cells, especially production of TNF-α and IL-6, by initiating intracellular Ca2+ signaling to inhibit the NF-κB inflammatory signaling pathway. These findings reveal Piezo1 channel activation as a previously unrecognized mechanism regulating microglial cell function, raising an interesting perspective on targeting this molecular mechanism to alleviate neuroinflammation and associated CNS pathologies.
Collapse
Affiliation(s)
- Philippa Malko
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Xiaoling Jia
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK.,Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Ian Wood
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Lin-Hua Jiang
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK.,Department of Physiology and Pathophysiology, and Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Xinxiang Medical University, Xinxiang, China.,A4245-Transplantation, Immunology and Inflammation, Faculty of Medicine, University of Tours, Tours, France
| |
Collapse
|
32
|
PIEZO1-Related Physiological and Pathological Processes in CNS: Focus on the Gliomas. Cancers (Basel) 2023; 15:cancers15030883. [PMID: 36765838 PMCID: PMC9913778 DOI: 10.3390/cancers15030883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
PIEZO1 is ubiquitously expressed in cells in different kinds of tissues throughout the body, which can sense physical or mechanical stimuli and translate them into intracellular electrochemical signals to regulate organism functions. In particular, PIEZO1 appears in complex interactive regulatory networks as a central node, governing normal and pathological functions in the body. However, the effect and mechanism of the activation or expression of PIEZO1 in diseases of the central nervous system (CNS) remain unclear. On one hand, in CNS diseases, pathophysiological processes in neurons and glial are often accompanied by variations in the mechanical properties of the cellular and extracellular matrix stiffness. The expression of PIEZO1 can therefore be upregulated, in responding to mechanical stimulation, to drive the biological process in cells, which in turns indirectly affects the cellular microenvironment, resulting in alterations of the cellular status. On the other hand, it may have contradictory effects with the change of active patterns and/or subcellular location. This review highlights the biological processes involved with PIEZO1 in CNS cells, with special emphasis on its multiple roles in glioma-associated phenotypes. In conclusion, PIEZO1 can be used as an indicator to assess the malignancy and prognosis of patients with gliomas, as well as a therapeutic target for clinical application following fully exploring the potential mechanism of PIEZO1 in CNS diseases.
Collapse
|
33
|
Karska J, Kowalski S, Saczko J, Moisescu MG, Kulbacka J. Mechanosensitive Ion Channels and Their Role in Cancer Cells. MEMBRANES 2023; 13:167. [PMID: 36837670 PMCID: PMC9965697 DOI: 10.3390/membranes13020167] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Mechanical forces are an inherent element in the world around us. The effects of their action can be observed both on the macro and molecular levels. They can also play a prominent role in the tissues and cells of animals due to the presence of mechanosensitive ion channels (MIChs) such as the Piezo and TRP families. They are essential in many physiological processes in the human body. However, their role in pathology has also been observed. Recent discoveries have highlighted the relationship between these channels and the development of malignant tumors. Multiple studies have shown that MIChs mediate the proliferation, migration, and invasion of various cancer cells via various mechanisms. This could show MIChs as new potential biomarkers in cancer detection and prognosis and interesting therapeutic targets in modern oncology. Our paper is a review of the latest literature on the role of the Piezo1 and TRP families in the molecular mechanisms of carcinogenesis in different types of cancer.
Collapse
Affiliation(s)
- Julia Karska
- Faculty of Medicine, Wroclaw Medical University, 50-345 Wroclaw, Poland
| | - Szymon Kowalski
- Faculty of Medicine, Wroclaw Medical University, 50-345 Wroclaw, Poland
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Mihaela G. Moisescu
- Department of Biophysics and Cellular Biotechnology, Research Center of Excellence in Biophysics and Cellular Biotechnology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania
| |
Collapse
|
34
|
Piezo mechanosensory channels regulate centrosome integrity and mitotic entry. Proc Natl Acad Sci U S A 2023; 120:e2213846120. [PMID: 36574677 PMCID: PMC9910506 DOI: 10.1073/pnas.2213846120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Piezo1 and 2 are evolutionarily conserved mechanosensory cation channels known to function on the cell surface by responding to external pressure and transducing a mechanically activated Ca2+ current. Here we show that both Piezo1 and 2 also exhibit concentrated intracellular localization at centrosomes. Both Piezo1 and 2 loss-of-function and Piezo1 activation by the small molecule Yoda1 result in supernumerary centrosomes, premature centriole disengagement, multi-polar spindles, and mitotic delay. By using a GFP, Calmodulin and M13 Protein fusion (GCaMP) Ca2+-sensitive reporter, we show that perturbations in Piezo modulate Ca2+ flux at centrosomes. Moreover, the inhibition of Polo-like-kinase 1 eliminates Yoda1-induced centriole disengagement. Because previous studies have implicated force generation by microtubules as essential for maintaining centrosomal integrity, we propose that mechanotransduction by Piezo maintains pericentrosomal Ca2+ within a defined range, possibly through sensing cell intrinsic forces from microtubules.
Collapse
|
35
|
Immunoregulatory Role of the Mechanosensitive Ion Channel Piezo1 in Inflammation and Cancer. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010213. [PMID: 36615408 PMCID: PMC9822220 DOI: 10.3390/molecules28010213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/22/2022] [Accepted: 12/25/2022] [Indexed: 12/28/2022]
Abstract
Piezo1 was originally identified as a mechanically activated, nonselective cation ion channel, with significant permeability to calcium ions, is evolutionally conserved, and is involved in the proliferation and development of various types of cells, in the context of various types of mechanical or innate stimuli. Recently, our study and work by others have reported that Piezo1 from all kinds of immune cells is involved in regulating many diseases, including infectious inflammation and cancer. This review summarizes the recent progress made in understanding the immunoregulatory role and mechanisms of the mechanical receptor Piezo1 in inflammation and cancer and provides new insight into the biological significance of Piezo1 in regulating immunity and tumors.
Collapse
|
36
|
Zeng Y, Riquelme MA, Hua R, Zhang J, Acosta FM, Gu S, Jiang JX. Mechanosensitive piezo1 calcium channel activates connexin 43 hemichannels through PI3K signaling pathway in bone. Cell Biosci 2022; 12:191. [PMID: 36457052 PMCID: PMC9716748 DOI: 10.1186/s13578-022-00929-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/11/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Mechanical loading promotes bone formation and osteocytes are a major mechanosensory cell in the bone. Both Piezo1 channels and connexin 43 hemichannels (Cx43 HCs) in osteocytes are important players in mechanotransduction and anabolic function by mechanical loading. However, the mechanism underlying mechanotransduction involving Piezo1 channels and Cx43 HCs in osteocytes and bone remains unknown. RESULTS We showed that, like mechanical loading, Piezo1 specific agonist Yoda1 was able to increase intracellular Ca2+ signaling and activate Cx43 HCs, while Yoda1 antagonist Dooku1 inhibited Ca2+ and Cx43 HC activation induced by both mechanical loading and Yoda1. Moreover, the intracellular Ca2+ signal activated by Yoda1 was reduced by the inhibition of Cx43 HCs and pannexin1 (Panx1) channels, as well as ATP-P2X receptor signaling. Piezo1 and Cx43 HCs were co-localized on the osteocyte cell surface, and Yoda1-activated PI3K-Akt signaling regulated the opening of Cx43 HCs. Furthermore, Cx43 HCs opening by mechanical loading on tibias was ablated by inhibition of Piezo1 activation in vivo. CONCLUSION We demonstrated that upon mechanical stress, increased intracellular Ca2+ activated by Piezo1 regulates the opening of HCs through PI3K-Akt and opened Cx43 HCs, along with Panx1 channels, and ATP-P2X signaling sustain the intracellular Ca2+ signal, leading to bone anabolic function.
Collapse
Affiliation(s)
- Yan Zeng
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
- The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Manuel A Riquelme
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Rui Hua
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Jingruo Zhang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Francisca M Acosta
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Sumin Gu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA.
| |
Collapse
|
37
|
Pituitary-Gland-Based Genes Participates in Intrauterine Growth Restriction in Piglets. Genes (Basel) 2022; 13:genes13112141. [DOI: 10.3390/genes13112141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Intrauterine growth restriction (IUGR) is a major problem associated with piglet growth performance. The incidence of IUGR is widespread in Rongchang pigs. The pituitary gland is important for regulating growth and metabolism, and research has identified genes associated with growth and development. The pituitary gland of newborn piglets with normal birth weight (NBW group, n = 3) and (IUGR group, n = 3) was collected for transcriptome analysis. A total of 323 differentially expression genes (DEGs) were identified (|log2(fold-change)| > 1 and q value < 0.05), of which 223 were upregulated and 100 were downregulated. Gene Ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses showed that the DEGs were mainly related to the extracellular matrix, regulation of the multicellular organismal process, tissue development and angiogenesis, which participate in the growth and immune response in IUGR piglets. Moreover, 7 DEGs including IGF2, THBS1, ITGA1, ITGA8, EPSTI1, FOSB, and UCP2 were associated with growth and immune response. Furthermore, based on the interaction network analysis of the DEGs, two genes, IGF2 and THBS1, participated in cell proliferation, embryonic development and angiogenesis. IGF2 and THBS1 were also the main genes participating in the IUGR. This study identified the core genes involved in IUGR in piglets and provided a reference for exploring the effect of the pituitary gland on piglet growth.
Collapse
|
38
|
Yao M, Tijore A, Cheng D, Li JV, Hariharan A, Martinac B, Tran Van Nhieu G, Cox CD, Sheetz M. Force- and cell state-dependent recruitment of Piezo1 drives focal adhesion dynamics and calcium entry. SCIENCE ADVANCES 2022; 8:eabo1461. [PMID: 36351022 PMCID: PMC9645726 DOI: 10.1126/sciadv.abo1461] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 09/21/2022] [Indexed: 11/11/2022]
Abstract
Mechanosensing is an integral part of many physiological processes including stem cell differentiation, fibrosis, and cancer progression. Two major mechanosensing systems-focal adhesions and mechanosensitive ion channels-can convert mechanical features of the microenvironment into biochemical signals. We report here unexpectedly that the mechanosensitive calcium-permeable channel Piezo1, previously perceived to be diffusive on plasma membranes, binds to matrix adhesions in a force-dependent manner, promoting cell spreading, adhesion dynamics, and calcium entry in normal but not in most cancer cells tested except some glioblastoma lines. A linker domain in Piezo1 is needed for binding to adhesions, and overexpression of the domain blocks Piezo1 binding to adhesions, decreasing adhesion size and cell spread area. Thus, we suggest that Piezo1 is a previously unidentified component of focal adhesions in nontransformed cells that catalyzes adhesion maturation and growth through force-dependent calcium signaling, but this function is absent in most cancer cells.
Collapse
Affiliation(s)
- Mingxi Yao
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen 518055, China
- Mechanobiology Institute, National University of Singapore, Singapore 117411
- Corresponding author. (M.Y); (C.C.); (M.S.)
| | - Ajay Tijore
- Mechanobiology Institute, National University of Singapore, Singapore 117411
- Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Delfine Cheng
- Victor Chang Cardiac Research Institute, Sydney NSW 2010, Australia
| | - Jinyuan Vero Li
- Victor Chang Cardiac Research Institute, Sydney NSW 2010, Australia
| | - Anushya Hariharan
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Boris Martinac
- Victor Chang Cardiac Research Institute, Sydney NSW 2010, Australia
| | - Guy Tran Van Nhieu
- Ecole Normale Supérieure Paris-Saclay Gif-sur-Yvette, France
- Team Ca Signaling and Microbial Infections, Institute for Integrative Biology of the Cell–CNRS UMR9198–Inserm U1280, 1, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Charles D. Cox
- Victor Chang Cardiac Research Institute, Sydney NSW 2010, Australia
- Corresponding author. (M.Y); (C.C.); (M.S.)
| | - Michael Sheetz
- Mechanobiology Institute, National University of Singapore, Singapore 117411
- Department of Biological Sciences, National University of Singapore, Singapore 117558
- Molecular MechanoMedicine Program, Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
- Corresponding author. (M.Y); (C.C.); (M.S.)
| |
Collapse
|
39
|
Wang M, Shen S, Hou F, Yan Y. Pathophysiological roles of integrins in gliomas from the perspective of glioma stem cells. Front Cell Dev Biol 2022; 10:962481. [PMID: 36187469 PMCID: PMC9523240 DOI: 10.3389/fcell.2022.962481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma is the most common primary intracranial tumor and is also one of the most malignant central nervous system tumors. Its characteristics, such as high malignancy, abundant tumor vasculature, drug resistance, and recurrence-prone nature, cause great suffering to glioma patients. Furthermore, glioma stem cells are the primordial cells of the glioma and play a central role in the development of glioma. Integrins—heterodimers composed of noncovalently bound a and ß subunits—are highly expressed in glioma stem cells and play an essential role in the self-renewal, differentiation, high drug resistance, and chemo-radiotherapy resistance of glioma stem cells through cell adhesion and signaling. However, there are various types of integrins, and their mechanisms of function on glioma stem cells are complex. Therefore, this article reviews the feasibility of treating gliomas by targeting integrins on glioma stem cells.
Collapse
|
40
|
Zechini L, Camilleri-Brennan J, Walsh J, Beaven R, Moran O, Hartley PS, Diaz M, Denholm B. Piezo buffers mechanical stress via modulation of intracellular Ca 2+ handling in the Drosophila heart. Front Physiol 2022; 13:1003999. [PMID: 36187790 PMCID: PMC9515499 DOI: 10.3389/fphys.2022.1003999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Throughout its lifetime the heart is buffeted continuously by dynamic mechanical forces resulting from contraction of the heart muscle itself and fluctuations in haemodynamic load and pressure. These forces are in flux on a beat-by-beat basis, resulting from changes in posture, physical activity or emotional state, and over longer timescales due to altered physiology (e.g. pregnancy) or as a consequence of ageing or disease (e.g. hypertension). It has been known for over a century of the heart's ability to sense differences in haemodynamic load and adjust contractile force accordingly (Frank, Z. biology, 1895, 32, 370-447; Anrep, J. Physiol., 1912, 45 (5), 307-317; Patterson and Starling, J. Physiol., 1914, 48 (5), 357-79; Starling, The law of the heart (Linacre Lecture, given at Cambridge, 1915), 1918). These adaptive behaviours are important for cardiovascular homeostasis, but the mechanism(s) underpinning them are incompletely understood. Here we present evidence that the mechanically-activated ion channel, Piezo, is an important component of the Drosophila heart's ability to adapt to mechanical force. We find Piezo is a sarcoplasmic reticulum (SR)-resident channel and is part of a mechanism that regulates Ca2+ handling in cardiomyocytes in response to mechanical stress. Our data support a simple model in which Drosophila Piezo transduces mechanical force such as stretch into a Ca2+ signal, originating from the SR, that modulates cardiomyocyte contraction. We show that Piezo mutant hearts fail to buffer mechanical stress, have altered Ca2+ handling, become prone to arrhythmias and undergo pathological remodelling.
Collapse
Affiliation(s)
- Luigi Zechini
- Deanery of Biomedical Sciences, Edinburgh Medical School, Edinburgh University, Edinburgh, United Kingtom
- Centre for Inflammation Research, Deanery of Clinical Sciences, Edinburgh Medical School, Edinburgh, United Kingtom
| | - Julian Camilleri-Brennan
- Deanery of Biomedical Sciences, Edinburgh Medical School, Edinburgh University, Edinburgh, United Kingtom
| | - Jonathan Walsh
- Deanery of Biomedical Sciences, Edinburgh Medical School, Edinburgh University, Edinburgh, United Kingtom
| | - Robin Beaven
- Deanery of Biomedical Sciences, Edinburgh Medical School, Edinburgh University, Edinburgh, United Kingtom
| | - Oscar Moran
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche- CNR, Genoa, Italy
| | - Paul S. Hartley
- Department of Life and Environmental Science, Faculty of Science and Technology, Bournemouth University, Poole, United Kingtom
| | - Mary Diaz
- Deanery of Biomedical Sciences, Edinburgh Medical School, Edinburgh University, Edinburgh, United Kingtom
| | - Barry Denholm
- Deanery of Biomedical Sciences, Edinburgh Medical School, Edinburgh University, Edinburgh, United Kingtom
| |
Collapse
|
41
|
Nourse JL, Leung VM, Abuwarda H, Evans EL, Izquierdo-Ortiz E, Ly AT, Truong N, Smith S, Bhavsar H, Bertaccini G, Monuki ES, Panicker MM, Pathak MM. Piezo1 regulates cholesterol biosynthesis to influence neural stem cell fate during brain development. J Gen Physiol 2022; 154:213449. [PMID: 36069933 PMCID: PMC9458470 DOI: 10.1085/jgp.202213084] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/28/2022] [Indexed: 02/02/2023] Open
Abstract
Mechanical forces and tissue mechanics influence the morphology of the developing brain, but the underlying molecular mechanisms have been elusive. Here, we examine the role of mechanotransduction in brain development by focusing on Piezo1, a mechanically activated ion channel. We find that Piezo1 deletion results in a thinner neuroepithelial layer, disrupts pseudostratification, and reduces neurogenesis in E10.5 mouse embryos. Proliferation and differentiation of Piezo1 knockout (KO) mouse neural stem cells (NSCs) isolated from E10.5 embryos are reduced in vitro compared to littermate WT NSCs. Transcriptome analysis of E10.5 Piezo1 KO brains reveals downregulation of the cholesterol biosynthesis superpathway, in which 16 genes, including Hmgcr, the gene encoding the rate-limiting enzyme of the cholesterol biosynthesis pathway, are downregulated by 1.5-fold or more. Consistent with this finding, membrane lipid composition is altered, and the cholesterol levels are reduced in Piezo1 KO NSCs. Cholesterol supplementation of Piezo1 KO NSCs partially rescues the phenotype in vitro. These findings demonstrate a role for Piezo1 in the neurodevelopmental process that modulates the quantity, quality, and organization of cells by influencing cellular cholesterol metabolism. Our study establishes a direct link in NSCs between PIEZO1, intracellular cholesterol levels, and neural development.
Collapse
Affiliation(s)
- Jamison L. Nourse
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA
| | - Vivian M. Leung
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA
| | - Hamid Abuwarda
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA
| | - Elizabeth L. Evans
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA
| | - Esmeralda Izquierdo-Ortiz
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA
| | - Alan T. Ly
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA
| | - Nguyen Truong
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA
| | - Samantha Smith
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA
| | - Harsh Bhavsar
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA
| | - Gabriella Bertaccini
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA
| | - Edwin S. Monuki
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA,Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA
| | - Mitradas M. Panicker
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA
| | - Medha M. Pathak
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA,Center for Complex Biological Systems, University of California, Irvine, Irvine, CA,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA,Correspondence to Medha M. Pathak:
| |
Collapse
|
42
|
Huang J, Zhang K, Du R, Liu W, Zhang H, Tian T, Wang Y, Wang G, Yin T. The Janus-faced role of Piezo1 in cardiovascular health under mechanical stimulation. Genes Dis 2022. [PMID: 37492728 PMCID: PMC10363580 DOI: 10.1016/j.gendis.2022.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
In recent years, cardiovascular health problems are becoming more and more serious. At the same time, mechanical stimulation closely relates to cardiovascular health. In this context, Piezo1, which is very sensitive to mechanical stimulation, has attracted our attention. Here, we review the critical significance of Piezo1 in mechanical stimulation of endothelial cells, NO production, lipid metabolism, DNA damage protection, the development of new blood vessels and maturation, narrowing of blood vessels, blood pressure regulation, vascular permeability, insulin sensitivity, and maintenance of red blood cell function. Besides, Piezo1 may participate in the occurrence and development of atherosclerosis, diabetes, hypertension, and other cardiovascular diseases. It is worth noting that Piezo1 has dual effects on maintaining cardiovascular health. On the one hand, the function of Piezo1 is necessary to maintain cardiovascular health; on the other hand, under some extreme mechanical stimulation, the overexpression of Piezo1 may bring adverse factors such as inflammation. Therefore, this review discusses the Janus-faced role of Piezo1 in maintaining cardiovascular health and puts forward new ideas to provide references for gene therapy or nanoagents targeting Piezo1.
Collapse
|
43
|
Chen J, Miao J, Zhou D, Liao J, Wang Z, Lin Z, Zhang C, Luo X, Li Y, Li X, Liu S, Xing Y, Zhang Z, Zhao M, Parmisano S, Chen Y, Yuan JXJ, Yang K, Sun D, Wang J. Upregulation of mechanosensitive channel Piezo1 involved in high shear stress-induced pulmonary hypertension. Thromb Res 2022; 218:52-63. [PMID: 35988445 DOI: 10.1016/j.thromres.2022.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/22/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
INTRODUCTION Piezo1 is an important mechanosensitive channel implicated in vascular remodeling. However, the role of Piezo1 in different types of vascular cells during the development of pulmonary hypertension (PH) induced by high shear stress is largely unknown. MATERIALS AND METHODS We used a rat PH model established by left pulmonary artery ligation (LPAL, for 2-5 weeks), which mimics the high flow and hemodynamic stress, to study Piezo1 contribution to pulmonary vascular remodeling. RESULTS Right ventricular systolic pressure (RVSP), a surrogate measure for pulmonary arterial systolic pressure, and right ventricular wall thickness, a measure for right ventricular hypertrophy, were significantly increased in LPAL rats compared with Sham-control (SHAM) rats. Rats in LPAL-5w groups developed remarkable pulmonary vascular remodeling, while phenylephrine-induced contraction and acetylcholine-induced relaxation were both significantly inhibited in these rats. Upregulation of Piezo1, in association with increase in cytosolic Ca2+ concentration ([Ca2+]cyt), was observed in pulmonary arterial smooth muscle cells (PASMCs) from LPAL-2w and LPAL-5w rats in comparison to the SHAM controls. Piezo1 upregulation in PASMCs from LPAL rats was directly related to Yes-associated protein (YAP)/ TEA domain transcription factor 4 (TEAD4). Piezo1 expression was also upregulated in the whole-lung tissue of LPAL rats. The endothelial upregulation of Piezo1 was related to transcriptional regulation by RELA (p65) and lung inflammation. CONCLUSION The upregulation of Piezo1 in both PASMCs and ECs coordinates with each other via different cell signaling pathways to cause pulmonary vascular remodeling in LPAL-PH rats, providing novel insights into the cell-type specific pathogenic roles of Piezo1 in shear stress-associated experimental PH.
Collapse
Affiliation(s)
- Jiyuan Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jinrui Miao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; Inner Mongolia People's Hospital Key Laboratory of National Health Commission for the Diagnosis & Treatment of COPD, Hohhot, Inner Mongolia, China
| | - Dansha Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jing Liao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ziyi Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ziying Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chenting Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaoyun Luo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yi Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; Inner Mongolia People's Hospital Key Laboratory of National Health Commission for the Diagnosis & Treatment of COPD, Hohhot, Inner Mongolia, China
| | - Xiang Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shiyun Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yue Xing
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zizhou Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Manjia Zhao
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Sophia Parmisano
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Yuqin Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jason X-J Yuan
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Kai Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Dejun Sun
- Inner Mongolia People's Hospital Key Laboratory of National Health Commission for the Diagnosis & Treatment of COPD, Hohhot, Inner Mongolia, China.
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
44
|
Song S, Zhang H, Wang X, Chen W, Cao W, Zhang Z, Shi C. The role of mechanosensitive Piezo1 channel in diseases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 172:39-49. [PMID: 35436566 DOI: 10.1016/j.pbiomolbio.2022.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Mechanotransduction is associated with organ development and homoeostasis. Piezo1 and Piezo2 are novel mechanosensitive ion channels (MSCs) in mammals. MSCs are membrane proteins that are critical for the mechanotransduction of living cells. Current studies have demonstrated that the Piezo protein family not only functions in volume regulation, cellular migration, proliferation, and apoptosis but is also important for human diseases of various systems. The complete loss of Piezo1 and Piezo2 function is fatal in the embryonic period. This review summarizes the role of Piezo1 in diseases of different systems and perspectives potential treatments related to Piezo1 for these diseases.
Collapse
Affiliation(s)
- Siqi Song
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Hong Zhang
- Department of Cardiac Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Xiaoya Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Wei Chen
- Department of Urology, The Affiliated Xinqiao Hospital, The Third Military Medical University, Chongqing, 400038, China
| | - Wenxuan Cao
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Zhe Zhang
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, Shandong Province, China.
| | - Chunying Shi
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China.
| |
Collapse
|
45
|
Piezo1 Channel Activation Reverses Pulmonary Artery Vasoconstriction in an Early Rat Model of Pulmonary Hypertension: The Role of Ca2+ Influx and Akt-eNOS Pathway. Cells 2022; 11:cells11152349. [PMID: 35954193 PMCID: PMC9367624 DOI: 10.3390/cells11152349] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 02/05/2023] Open
Abstract
In intrapulmonary arteries (IPAs), mechanical forces due to blood flow control vessel tone, and these forces change during pulmonary hypertension (PH). Piezo1, a stretch-activated calcium channel, is a sensor of mechanical stress present in both endothelial cells (ECs) and smooth muscle cells (SMCs). The present study investigated the role of Piezo1 on IPA in the chronic hypoxia model of PH. Rats were raised in chronically hypoxic conditions for 1 (1W-CH, early stage) or 3 weeks (3W-CH, late-stage) of PH or in normoxic conditions (Nx). Immunofluorescence labeling and patch-clamping revealed the presence of Piezo1 in both ECs and SMCs. The Piezo1 agonist, Yoda1, induced an IPA contraction in Nx and 3W-CH. Conversely, Yoda1 induced an endothelial nitric oxide (eNOS) dependent relaxation in 1W-CH. In ECs, the Yoda1-mediated intracellular calcium concentration ([Ca2+]i) increase was greater in 1W-CH as compared to Nx. Yoda1 induced an EC hyperpolarization in 1W-CH. The eNOS levels were increased in 1W-CH IPA compared to Nx or 3W-CH PH and Yoda1 activated phosphorylation of Akt (Ser473) and eNOS (Ser1177). Thus, we demonstrated that endothelial Piezo1 contributes to intrapulmonary vascular relaxation by controlling endothelial [Ca2+]i, endothelial-dependent hyperpolarization, and Akt-eNOS pathway activation in the early stage of PH.
Collapse
|
46
|
Braidotti N, Chen SN, Long CS, Cojoc D, Sbaizero O. Piezo1 Channel as a Potential Target for Hindering Cardiac Fibrotic Remodeling. Int J Mol Sci 2022; 23:8065. [PMID: 35897650 PMCID: PMC9330509 DOI: 10.3390/ijms23158065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023] Open
Abstract
Fibrotic tissues share many common features with neoplasms where there is an increased stiffness of the extracellular matrix (ECM). In this review, we present recent discoveries related to the role of the mechanosensitive ion channel Piezo1 in several diseases, especially in regulating tumor progression, and how this can be compared with cardiac mechanobiology. Based on recent findings, Piezo1 could be upregulated in cardiac fibroblasts as a consequence of the mechanical stress and pro-inflammatory stimuli that occurs after myocardial injury, and its increased activity could be responsible for a positive feedback loop that leads to fibrosis progression. The increased Piezo1-mediated calcium flow may play an important role in cytoskeleton reorganization since it induces actin stress fibers formation, a well-known characteristic of fibroblast transdifferentiation into the activated myofibroblast. Moreover, Piezo1 activity stimulates ECM and cytokines production, which in turn promotes the phenoconversion of adjacent fibroblasts into new myofibroblasts, enhancing the invasive character. Thus, by assuming the Piezo1 involvement in the activation of intrinsic fibroblasts, recruitment of new myofibroblasts, and uncontrolled excessive ECM production, a new approach to blocking the fibrotic progression can be predicted. Therefore, targeted therapies against Piezo1 could also be beneficial for cardiac fibrosis.
Collapse
Affiliation(s)
- Nicoletta Braidotti
- Department of Physics, University of Trieste, Via A. Valerio 2, 34127 Trieste, Italy;
- Institute of Materials, National Research Council of Italy (CNR-IOM), Area Science Park Basovizza, Strada Statale 14, Km 163,5, 34149 Trieste, Italy;
| | - Suet Nee Chen
- CU-Cardiovascular Institute, University of Colorado Anschutz Medical Campus, 12700 East 19th Ave., Aurora, CO 80045, USA;
| | - Carlin S. Long
- Center for the Prevention of Heart and Vascular Disease, University of California, 555 Mission Bay Blvd South, Rm 352K, San Francisco, CA 94143, USA;
| | - Dan Cojoc
- Institute of Materials, National Research Council of Italy (CNR-IOM), Area Science Park Basovizza, Strada Statale 14, Km 163,5, 34149 Trieste, Italy;
| | - Orfeo Sbaizero
- Department of Engineering and Architecture, University of Trieste, Via A. Valerio 6/A, 34127 Trieste, Italy
| |
Collapse
|
47
|
Choi D, Park E, Yu RP, Cooper MN, Cho IT, Choi J, Yu J, Zhao L, Yum JEI, Yu JS, Nakashima B, Lee S, Seong YJ, Jiao W, Koh CJ, Baluk P, McDonald DM, Saraswathy S, Lee JY, Jeon NL, Zhang Z, Huang AS, Zhou B, Wong AK, Hong YK. Piezo1-Regulated Mechanotransduction Controls Flow-Activated Lymphatic Expansion. Circ Res 2022; 131:e2-e21. [PMID: 35701867 PMCID: PMC9308715 DOI: 10.1161/circresaha.121.320565] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Mutations in PIEZO1 (Piezo type mechanosensitive ion channel component 1) cause human lymphatic malformations. We have previously uncovered an ORAI1 (ORAI calcium release-activated calcium modulator 1)-mediated mechanotransduction pathway that triggers lymphatic sprouting through Notch downregulation in response to fluid flow. However, the identity of its upstream mechanosensor remains unknown. This study aimed to identify and characterize the molecular sensor that translates the flow-mediated external signal to the Orai1-regulated lymphatic expansion. METHODS Various mutant mouse models, cellular, biochemical, and molecular biology tools, and a mouse tail lymphedema model were employed to elucidate the role of Piezo1 in flow-induced lymphatic growth and regeneration. RESULTS Piezo1 was found to be abundantly expressed in lymphatic endothelial cells. Piezo1 knockdown in cultured lymphatic endothelial cells inhibited the laminar flow-induced calcium influx and abrogated the flow-mediated regulation of the Orai1 downstream genes, such as KLF2 (Krüppel-like factor 2), DTX1 (Deltex E3 ubiquitin ligase 1), DTX3L (Deltex E3 ubiquitin ligase 3L,) and NOTCH1 (Notch receptor 1), which are involved in lymphatic sprouting. Conversely, stimulation of Piezo1 activated the Orai1-regulated mechanotransduction in the absence of fluid flow. Piezo1-mediated mechanotransduction was significantly blocked by Orai1 inhibition, establishing the epistatic relationship between Piezo1 and Orai1. Lymphatic-specific conditional Piezo1 knockout largely phenocopied sprouting defects shown in Orai1- or Klf2- knockout lymphatics during embryo development. Postnatal deletion of Piezo1 induced lymphatic regression in adults. Ectopic Dtx3L expression rescued the lymphatic defects caused by Piezo1 knockout, affirming that the Piezo1 promotes lymphatic sprouting through Notch downregulation. Consistently, transgenic Piezo1 expression or pharmacological Piezo1 activation enhanced lymphatic sprouting. Finally, we assessed a potential therapeutic value of Piezo1 activation in lymphatic regeneration and found that a Piezo1 agonist, Yoda1, effectively suppressed postsurgical lymphedema development. CONCLUSIONS Piezo1 is an upstream mechanosensor for the lymphatic mechanotransduction pathway and regulates lymphatic growth in response to external physical stimuli. Piezo1 activation presents a novel therapeutic opportunity for preventing postsurgical lymphedema. The Piezo1-regulated lymphangiogenesis mechanism offers a molecular basis for Piezo1-associated lymphatic malformation in humans.
Collapse
Affiliation(s)
- Dongwon Choi
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA,Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Eunkyung Park
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA,Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Roy P. Yu
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Michael N. Cooper
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Il-Taeg Cho
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA,Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Joshua Choi
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - James Yu
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Luping Zhao
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA,Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Ji-Eun Irene Yum
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA,Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jin Suh Yu
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA,Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Brandon Nakashima
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Sunju Lee
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA,Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Young Jin Seong
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA,Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Wan Jiao
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Chester J. Koh
- Division of Pediatric Urology, Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Peter Baluk
- Cardiovascular Research Institute, UCSF Helen Diller Family Comprehensive Cancer Center, and Department of Anatomy, University of California, San Francisco, San Francisco, California, USA
| | - Donald M. McDonald
- Cardiovascular Research Institute, UCSF Helen Diller Family Comprehensive Cancer Center, and Department of Anatomy, University of California, San Francisco, San Francisco, California, USA
| | - Sindhu Saraswathy
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jong Y. Lee
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Noo Li Jeon
- Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, Republic of Korea
| | - Zhenqian Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Alex S. Huang
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Bin Zhou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Alex K. Wong
- Division of Plastic Surgery, City of Hope National Medical Center, Duarte, California, USA
| | - Young-Kwon Hong
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA,Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
48
|
Chen Y, Su Y, Wang F. The Piezo1 ion channel in glaucoma: a new perspective on mechanical stress. Hum Cell 2022; 35:1307-1322. [PMID: 35767143 DOI: 10.1007/s13577-022-00738-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/13/2022] [Indexed: 11/26/2022]
Abstract
Glaucomatous optic nerve damage caused by pathological intraocular pressure elevation is irreversible, and its course is often difficult to control. This group of eye diseases is closely related to biomechanics, and the correlation between glaucoma pathogenesis and mechanical stimulation has been studied in recent decades. The nonselective cation channel Piezo1, the most important known mechanical stress sensor, is a transmembrane protein widely expressed in various cell types. Piezo1 has been detected throughout the eye, and the close relationship between Piezo1 and glaucoma is being confirmed. Pathological changes in glaucoma occur in both the anterior and posterior segments of the eye, and it is of great interest for researchers to determine whether Piezo1 plays a role in these changes and how it functions. The elucidation of the mechanisms of Piezo1 action in nonocular tissues and the reported roles of similar mechanically activated ion channels in glaucoma will provide an appropriate basis for further investigation. From a new perspective, this review provides a detailed description of the current progress in elucidating the role of Piezo1 in glaucoma, including relevant questions and assumptions, the remaining challenging research directions and mechanism-related therapeutic potential.
Collapse
Affiliation(s)
- Yidan Chen
- Department of Ophthalmology, Fourth Affiliated Hospital, Harbin Medical University, Yiyuan Road, Harbin, 150001, China
| | - Ying Su
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Yiman Road, Harbin, 150007, China.
| | - Feng Wang
- Department of Ophthalmology, Fourth Affiliated Hospital, Harbin Medical University, Yiyuan Road, Harbin, 150001, China.
| |
Collapse
|
49
|
García-Mesa Y, Martín-Sanz R, García-Piqueras J, Cobo R, Muñoz-Bravo S, García-Suárez O, Martín-Biedma B, Vega JA, Feito J. Merkel Cell Carcinoma Display PIEZO2 Immunoreactivity. J Pers Med 2022; 12:894. [PMID: 35743679 PMCID: PMC9224776 DOI: 10.3390/jpm12060894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
As an essential component of mechano-gated ion channels, critically required for mechanotransduction in mammalian cells, PIEZO2 is known to be characteristically expressed by Merkel cells in human skin. Here, we immunohistochemically investigated the occurrence of Piezo channels in a case series of Merkel cell carcinoma. A panel of antibodies was used to characterize Merkel cells, and to detect PIEZO2 expression. All analyzed tumors displayed PIEZO2 in nearly all cells, showing two patterns of immunostaining: membranous and perinuclear dot-like. PIEZO2 co-localized with cytokeratin 20, chromogranin A, synaptophysin and neurofilament. Moreover, neurofilament immunoreactive structures resembling nerve-Merkel cell contacts were occasionally found. PIEZO2 was also detected in cells of the sweat ducts. The role of PIEZO2 in Merkel cell carcinoma is still unknown, but it could be related with the mechanical regulation of the tumor biology or be a mere vestige of the Merkel cell derivation.
Collapse
Affiliation(s)
- Yolanda García-Mesa
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, 33003 Oviedo, Spain; (Y.G.-M.); (J.G.-P.); (R.C.); (O.G.-S.); (J.A.V.)
| | - Raquel Martín-Sanz
- Servicio de Oftalmología, IBSAL, Complejo Asistencial Universitario de Salamanca, 37007 Salamanca, Spain;
| | - Jorge García-Piqueras
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, 33003 Oviedo, Spain; (Y.G.-M.); (J.G.-P.); (R.C.); (O.G.-S.); (J.A.V.)
- Departamento de Anatomía e Histología, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Ramón Cobo
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, 33003 Oviedo, Spain; (Y.G.-M.); (J.G.-P.); (R.C.); (O.G.-S.); (J.A.V.)
| | - Saray Muñoz-Bravo
- Servicio de Anatomía Patológica, Instituto de Investigación Biomédica de Salamanca, Complejo Asistencial Universitario de Salamanca, 37007 Salamanca, Spain;
| | - Olivia García-Suárez
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, 33003 Oviedo, Spain; (Y.G.-M.); (J.G.-P.); (R.C.); (O.G.-S.); (J.A.V.)
| | - Benjamín Martín-Biedma
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - José Antonio Vega
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, 33003 Oviedo, Spain; (Y.G.-M.); (J.G.-P.); (R.C.); (O.G.-S.); (J.A.V.)
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, 7500912 Santiago, Chile
| | - Jorge Feito
- Servicio de Anatomía Patológica, Instituto de Investigación Biomédica de Salamanca, Complejo Asistencial Universitario de Salamanca, 37007 Salamanca, Spain;
| |
Collapse
|
50
|
Han S, Guo X, Wang X, Lin H, Yu Y, Shu J, Dong M, Yang L. A Novel Homozygous Missense Mutation of PIEZO1 Leading to Lymphatic Malformation-6 Identified in a Family With Three Adverse Pregnancy Outcomes due to Nonimmune Fetal Hydrops. Front Genet 2022; 13:856046. [PMID: 35646098 PMCID: PMC9136293 DOI: 10.3389/fgene.2022.856046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Lymphatic malformation-6 (LMPHM6) is a rarer form of nonimmune hydrops that often manifests as widespread lymphedema involving all segments of the body, namely, subcutaneous edema, intestinal/pulmonary lymphangiectasia, chylothoraces, and pleural/pericardial effusions. Here, we detected one rare and previously unobserved homozygous missense variant in PIEZO1 (c.5162C>G, p.Ser1721Trp) as a novel genetic cause of autosomal recessive LMPHM6, in a family with three adverse pregnancy outcomes due to nonimmune fetal hydrops. Although, the loss-of-function mutations such as those usually including nonsense, frameshift, splice site, and also fewer missense variants in PIEZO1 have been proved to lead to LMPHM6, among these, the biallelic homozygous mutations resulting in the loss of function of PIEZO1 have not been reported before. Here, we first strongly implicated impaired PIEZO1 function–associated LMPHM6 with a homozygous missense mutation in PIEZO1.
Collapse
Affiliation(s)
- Shuai Han
- Center for Reproductive Medicine, Department of Obstetrics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Xin Guo
- Center for Reproductive Medicine, Department of Obstetrics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Xiaogang Wang
- Cancer Center, Department of Hematology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Huijun Lin
- Center for Laboratory Medicine, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yiqi Yu
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Jing Shu
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Minyue Dong
- Department of Reproductive Genetics, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Liwei Yang
- Center for Reproductive Medicine, Department of Obstetrics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- *Correspondence: Liwei Yang,
| |
Collapse
|