1
|
Ren J, Zhang M, Guo X, Zhou X, Ding N, Lei C, Jia C, Wang Y, Zhao J, Dong Z, Lu D. Furfural tolerance of mutant Saccharomyces cerevisiae selected via ionizing radiation combined with adaptive laboratory evolution. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:117. [PMID: 39175057 PMCID: PMC11342514 DOI: 10.1186/s13068-024-02562-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Lignocellulose is a renewable and sustainable resource used to produce second-generation biofuel ethanol to cope with the resource and energy crisis. Furfural is the most toxic inhibitor of Saccharomyces cerevisiae cells produced during lignocellulose treatment, and can reduce the ability of S. cerevisiae to utilize lignocellulose, resulting in low bioethanol yield. In this study, multiple rounds of progressive ionizing radiation was combined with adaptive laboratory evolution to improve the furfural tolerance of S. cerevisiae and increase the yield of ethanol. RESULTS In this study, the strategy of multiple rounds of progressive X-ray radiation combined with adaptive laboratory evolution significantly improved the furfural tolerance of brewing yeast. After four rounds of experiments, four mutant strains resistant to high concentrations of furfural were obtained (SCF-R1, SCF-R2, SCF-R3, and SCF-R4), with furfural tolerance concentrations of 4.0, 4.2, 4.4, and 4.5 g/L, respectively. Among them, the mutant strain SCF-R4 obtained in the fourth round of radiation had a cellular malondialdehyde content of 49.11 nmol/mg after 3 h of furfural stress, a weakening trend in mitochondrial membrane potential collapse, a decrease in accumulated reactive oxygen species, and a cell death rate of 12.60%, showing better cell membrane integrity, stable mitochondrial function, and an improved ability to limit reactive oxygen species production compared to the other mutant strains and the wild-type strain. In a fermentation medium containing 3.5 g/L furfural, the growth lag phase of the SCF-R4 mutant strain was shortened, and its growth ability significantly improved. After 96 h of fermentation, the ethanol production of the mutant strain SCF-R4 was 1.86 times that of the wild-type, indicating that with an increase in the number of irradiation rounds, the furfural tolerance of the mutant strain SCF-R4 was effectively enhanced. In addition, through genome-transcriptome analysis, potential sites related to furfural detoxification were identified, including GAL7, MAE1, PDC6, HXT1, AUS1, and TPK3. CONCLUSIONS These results indicate that multiple rounds of progressive X-ray radiation combined with adaptive laboratory evolution is an effective mutagenic strategy for obtaining furfural-tolerant mutants and that it has the potential to tap genes related to the furfural detoxification mechanism.
Collapse
Affiliation(s)
- Junle Ren
- Institute of Modern Physics, Chinese Academy of Sciences, No. 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Miaomiao Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, No. 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaopeng Guo
- School of Life Science and Engineering, Lanzhou University of Technology, No. 36 Peng Jiaping, Lanzhou, 730050, Gansu, China.
| | - Xiang Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, No. 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nan Ding
- Institute of Modern Physics, Chinese Academy of Sciences, No. 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cairong Lei
- Institute of Modern Physics, Chinese Academy of Sciences, No. 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenglin Jia
- Institute of Modern Physics, Chinese Academy of Sciences, No. 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yajuan Wang
- Institute of Modern Physics, Chinese Academy of Sciences, No. 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingru Zhao
- Institute of Modern Physics, Chinese Academy of Sciences, No. 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ziyi Dong
- Institute of Modern Physics, Chinese Academy of Sciences, No. 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dong Lu
- Institute of Modern Physics, Chinese Academy of Sciences, No. 509 Nanchang Road, Lanzhou, 730000, Gansu, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Muñoz F, Fex M, Moritz T, Mulder H, Cataldo LR. Unique features of β-cell metabolism are lost in type 2 diabetes. Acta Physiol (Oxf) 2024; 240:e14148. [PMID: 38656044 DOI: 10.1111/apha.14148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/28/2024] [Accepted: 04/05/2024] [Indexed: 04/26/2024]
Abstract
Pancreatic β cells play an essential role in the control of systemic glucose homeostasis as they sense blood glucose levels and respond by secreting insulin. Upon stimulating glucose uptake in insulin-sensitive tissues post-prandially, this anabolic hormone restores blood glucose levels to pre-prandial levels. Maintaining physiological glucose levels thus relies on proper β-cell function. To fulfill this highly specialized nutrient sensor role, β cells have evolved a unique genetic program that shapes its distinct cellular metabolism. In this review, the unique genetic and metabolic features of β cells will be outlined, including their alterations in type 2 diabetes (T2D). β cells selectively express a set of genes in a cell type-specific manner; for instance, the glucose activating hexokinase IV enzyme or Glucokinase (GCK), whereas other genes are selectively "disallowed", including lactate dehydrogenase A (LDHA) and monocarboxylate transporter 1 (MCT1). This selective gene program equips β cells with a unique metabolic apparatus to ensure that nutrient metabolism is coupled to appropriate insulin secretion, thereby avoiding hyperglycemia, as well as life-threatening hypoglycemia. Unlike most cell types, β cells exhibit specialized bioenergetic features, including supply-driven rather than demand-driven metabolism and a high basal mitochondrial proton leak respiration. The understanding of these unique genetically programmed metabolic features and their alterations that lead to β-cell dysfunction is crucial for a comprehensive understanding of T2D pathophysiology and the development of innovative therapeutic approaches for T2D patients.
Collapse
Affiliation(s)
- Felipe Muñoz
- Clinical Research Center, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund, Sweden
| | - Malin Fex
- Clinical Research Center, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund, Sweden
| | - Thomas Moritz
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hindrik Mulder
- Clinical Research Center, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund, Sweden
| | - Luis Rodrigo Cataldo
- Clinical Research Center, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund, Sweden
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Saha D, Animireddy S, Bartholomew B. The SWI/SNF ATP-dependent chromatin remodeling complex in cell lineage priming and early development. Biochem Soc Trans 2024; 52:603-616. [PMID: 38572912 PMCID: PMC11088921 DOI: 10.1042/bst20230416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
ATP dependent chromatin remodelers have pivotal roles in transcription, DNA replication and repair, and maintaining genome integrity. SWI/SNF remodelers were first discovered in yeast genetic screens for factors involved in mating type switching or for using alternative energy sources therefore termed SWI/SNF complex (short for SWItch/Sucrose NonFermentable). The SWI/SNF complexes utilize energy from ATP hydrolysis to disrupt histone-DNA interactions and shift, eject, or reposition nucleosomes making the underlying DNA more accessible to specific transcription factors and other regulatory proteins. In development, SWI/SNF orchestrates the precise activation and repression of genes at different stages, safe guards the formation of specific cell lineages and tissues. Dysregulation of SWI/SNF have been implicated in diseases such as cancer, where they can drive uncontrolled cell proliferation and tumor metastasis. Additionally, SWI/SNF defects are associated with neurodevelopmental disorders, leading to disruption of neural development and function. This review offers insights into recent developments regarding the roles of the SWI/SNF complex in pluripotency and cell lineage primining and the approaches that have helped delineate its importance. Understanding these molecular mechanisms is crucial for unraveling the intricate processes governing embryonic stem cell biology and developmental transitions and may potentially apply to human diseases linked to mutations in the SWI/SNF complex.
Collapse
Affiliation(s)
- Dhurjhoti Saha
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77054, U.S.A
| | - Srinivas Animireddy
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77054, U.S.A
| | - Blaine Bartholomew
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77054, U.S.A
| |
Collapse
|
4
|
Agarwala S, Dhabal S, Mitra K. Significance of quantitative analyses of the impact of heterogeneity in mitochondrial content and shape on cell differentiation. Open Biol 2024; 14:230279. [PMID: 38228170 PMCID: PMC10791538 DOI: 10.1098/rsob.230279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/15/2023] [Indexed: 01/18/2024] Open
Abstract
Mitochondria, classically known as the powerhouse of cells, are unique double membrane-bound multifaceted organelles carrying a genome. Mitochondrial content varies between cell types and precisely doubles within cells during each proliferating cycle. Mitochondrial content also increases to a variable degree during cell differentiation triggered after exit from the proliferating cycle. The mitochondrial content is primarily maintained by the regulation of mitochondrial biogenesis, while damaged mitochondria are eliminated from the cells by mitophagy. In any cell with a given mitochondrial content, the steady-state mitochondrial number and shape are determined by a balance between mitochondrial fission and fusion processes. The increase in mitochondrial content and alteration in mitochondrial fission and fusion are causatively linked with the process of differentiation. Here, we critically review the quantitative aspects in the detection methods of mitochondrial content and shape. Thereafter, we quantitatively link these mitochondrial properties in differentiating cells and highlight the implications of such quantitative link on stem cell functionality. Finally, we discuss an example of cell size regulation predicted from quantitative analysis of mitochondrial shape and content. To highlight the significance of quantitative analyses of these mitochondrial properties, we propose three independent rationale based hypotheses and the relevant experimental designs to test them.
Collapse
Affiliation(s)
- Swati Agarwala
- Department of Biology, Ashoka University, Delhi (NCR), India
| | - Sukhamoy Dhabal
- Department of Biology, Ashoka University, Delhi (NCR), India
| | - Kasturi Mitra
- Department of Biology, Ashoka University, Delhi (NCR), India
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
5
|
Burov AV, Rodin AA, Karpov VL, Morozov AV. The Role of Ubiquitin-Proteasome System in the Biology of Stem Cells. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:2043-2053. [PMID: 38462448 DOI: 10.1134/s0006297923120076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 03/12/2024]
Abstract
Selective degradation of cellular proteins by the ubiquitin-proteasome system (UPS) is one of the key regulatory mechanisms in eukaryotic cells. A growing body of evidence indicates that UPS is involved in the regulation of fundamental processes in mammalian stem cells, including proliferation, differentiation, cell migration, aging, and programmed cell death, via proteolytic degradation of key transcription factors and cell signaling proteins and post-translational modification of target proteins with ubiquitin. Studying molecular mechanisms of proteostasis in stem cells is of great importance for the development of new therapeutic approaches aimed at the treatment of autoimmune and neurodegenerative diseases, cancer, and other socially significant pathologies. This review discusses current data on the UPS functions in stem cells.
Collapse
Affiliation(s)
- Alexander V Burov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Andrey A Rodin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Vadim L Karpov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Alexey V Morozov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
6
|
Prateeksha P, Naidu P, Das M, Barthels D, Das H. KLF2 Regulates Neural Differentiation of Dental Pulp-derived Stem Cells by Modulating Autophagy and Mitophagy. Stem Cell Rev Rep 2023; 19:2886-2900. [PMID: 37642902 DOI: 10.1007/s12015-023-10607-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Transplantation of stem cells for treating neurodegenerative disorders is a promising future therapeutic approach. However, the molecular mechanism underlying the neuronal differentiation of dental pulp-derived stem cells (DPSC) remains inadequately explored. The current study aims to define the regulatory role of KLF2 (Kruppel-like factor 2) during the neural differentiation (ND) of DPSC. METHODS We first investigated the transcriptional and translational expression of KLF2, autophagy, and mitophagy-associated markers during the ND of DPSC by using quantitative RT-PCR and western blot methods. After that, we applied the chemical-mediated loss- and gain-of-function approaches using KLF2 inhibitor, GGPP (geranylgeranyl pyrophosphate), and KLF2 activator, GGTI-298 (geranylgeranyl transferase inhibitor-298) to delineate the role of KLF2 during ND of DPSC. The western blot, qRT-PCR, and immunocytochemistry were performed to determine the molecular changes during ND after KLF2 deficiency and KLF2 sufficiency. We also analyzed the oxygen consumption rate (OCR) and the extracellular acidification rate (ECAR) using the Seahorse XFe24 analyzer. RESULTS Our study demonstrated that the expression level of KLF2, autophagy, and mitophagy-associated markers were significantly elevated during the ND of DPSC. Next, we found that the KLF2 inhibitor, GGPP significantly reduced the ND of DPSC. Inversely, KLF2 overexpression accelerated the molecular phenomenon of DPSC's commitment towards ND, indicating the crucial role of KLF2 in neurogenesis. Moreover, we found that the KLF2 positively regulated autophagy, mitophagy, and the Wnt5a signaling pathway during neurogenesis. Seahorse XFe24 analysis revealed that the ECAR and OCR parameters were significantly increased during ND, and inhibition of KLF2 marginally reversed them towards DPSC's cellular bioenergetics. However, KLF2 overexpression shifted the cellular energy metabolism toward the quiescent stage. CONCLUSION Collectively, our findings provide the first evidence that the KLF2 critically regulates the neurogenesis of DPSC by inducing autophagy and mitophagy.
Collapse
Affiliation(s)
- Prateeksha Prateeksha
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, ARB Suite 2116, 1406 South Coulter Street, Amarillo, TX, 79106, USA
| | - Prathyusha Naidu
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, ARB Suite 2116, 1406 South Coulter Street, Amarillo, TX, 79106, USA
| | - Manjusri Das
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, ARB Suite 2116, 1406 South Coulter Street, Amarillo, TX, 79106, USA
| | - Derek Barthels
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, ARB Suite 2116, 1406 South Coulter Street, Amarillo, TX, 79106, USA
| | - Hiranmoy Das
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, ARB Suite 2116, 1406 South Coulter Street, Amarillo, TX, 79106, USA.
| |
Collapse
|
7
|
Fielder E, Wan T, Alimohammadiha G, Ishaq A, Low E, Weigand BM, Kelly G, Parker C, Griffin B, Jurk D, Korolchuk VI, von Zglinicki T, Miwa S. Short senolytic or senostatic interventions rescue progression of radiation-induced frailty and premature ageing in mice. eLife 2022; 11:75492. [PMID: 35507395 PMCID: PMC9154747 DOI: 10.7554/elife.75492] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 05/03/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer survivors suffer from progressive frailty, multimorbidity, and premature morbidity. We hypothesise that therapy-induced senescence and senescence progression via bystander effects are significant causes of this premature ageing phenotype. Accordingly, the study addresses the question whether a short anti-senescence intervention is able to block progression of radiation-induced frailty and disability in a pre-clinical setting. Male mice were sublethally irradiated at 5 months of age and treated (or not) with either a senolytic drug (Navitoclax or dasatinib + quercetin) for 10 days or with the senostatic metformin for 10 weeks. Follow-up was for 1 year. Treatments commencing within a month after irradiation effectively reduced frailty progression (p<0.05) and improved muscle (p<0.01) and liver (p<0.05) function as well as short-term memory (p<0.05) until advanced age with no need for repeated interventions. Senolytic interventions that started late, after radiation-induced premature frailty was manifest, still had beneficial effects on frailty (p<0.05) and short-term memory (p<0.05). Metformin was similarly effective as senolytics. At therapeutically achievable concentrations, metformin acted as a senostatic neither via inhibition of mitochondrial complex I, nor via improvement of mitophagy or mitochondrial function, but by reducing non-mitochondrial reactive oxygen species production via NADPH oxidase 4 inhibition in senescent cells. Our study suggests that the progression of adverse long-term health and quality-of-life effects of radiation exposure, as experienced by cancer survivors, might be rescued by short-term adjuvant anti-senescence interventions.
Collapse
Affiliation(s)
- Edward Fielder
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, Newcastle, United Kingdom
| | - Tengfei Wan
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, Newcastle, United Kingdom
| | - Ghazaleh Alimohammadiha
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, Newcastle, United Kingdom
| | - Abbas Ishaq
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, Newcastle, United Kingdom
| | - Evon Low
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, Newcastle, United Kingdom
| | - B Melanie Weigand
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, Newcastle, United Kingdom
| | - George Kelly
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, Newcastle, United Kingdom
| | - Craig Parker
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, Newcastle, United Kingdom
| | - Brigid Griffin
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, Newcastle, United Kingdom
| | - Diana Jurk
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, Newcastle, United Kingdom
| | - Viktor I Korolchuk
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, Newcastle, United Kingdom
| | - Thomas von Zglinicki
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, Newcastle, United Kingdom
| | - Satomi Miwa
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, Newcastle, United Kingdom
| |
Collapse
|
8
|
Unbiased Millivolts Assay of Mitochondrial Membrane Potential in Intact Cells. Methods Mol Biol 2022; 2497:11-61. [PMID: 35771433 PMCID: PMC9377305 DOI: 10.1007/978-1-0716-2309-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The mitochondrial membrane potential (ΔψM) is the major component of the bioenergetic driving force responsible for most cellular ATP produced, and it controls a host of biological processes. In intact cells, assay readouts with commonly used fluorescence ΔψM probes are distorted by factors other than ΔψM. Here, we describe a protocol to calculate both ΔψM and plasma membrane potential (ΔψP) in absolute millivolts in intact single cells, or in populations of adherent, cultured cells. Our approach generates unbiased data that allows comparison of ΔψM between cell types with different geometry and ΔψP, and to follow ΔψM in time when ΔψP fluctuates. The experimental paradigm results in fluorescence microscopy time courses using a pair of cationic and anionic probes with internal calibration points that are subsequently computationally converted to millivolts on an absolute scale. The assay is compatible with wide field, confocal or two-photon microscopy. The method given here is optimized for a multiplexed, partial 96-well microplate format to record ΔψP and ΔψM responses for three consecutive treatment additions.
Collapse
|
9
|
Liu W, Chen G. Regulation of energy metabolism in human pluripotent stem cells. Cell Mol Life Sci 2021; 78:8097-8108. [PMID: 34773132 PMCID: PMC11071932 DOI: 10.1007/s00018-021-04016-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023]
Abstract
All living organisms need energy to carry out their essential functions. The importance of energy metabolism is increasingly recognized in human pluripotent stem cells. Energy production is not only essential for cell survival and proliferation, but also critical for pluripotency and cell fate determination. Thus, energy metabolism is an important target in cellular regulation and stem cell applications. In this review, we will discuss key factors that influence energy metabolism and their association with stem cell functions.
Collapse
Affiliation(s)
- Weiwei Liu
- Faculty of Health Sciences, Centre of Reproduction, Development and Aging, University of Macau, Taipa, Macau SAR, China
- Bioimaging and Stem Cell Core Facility, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Guokai Chen
- Faculty of Health Sciences, Centre of Reproduction, Development and Aging, University of Macau, Taipa, Macau SAR, China.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, China.
| |
Collapse
|
10
|
Cai W, Ji Y, Han L, Zhang J, Ni Y, Cheng Y, Zhang Y. METTL3-Dependent Glycolysis Regulates Dental Pulp Stem Cell Differentiation. J Dent Res 2021; 101:580-589. [PMID: 34796755 DOI: 10.1177/00220345211051594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
N6-methyladenosine (m6A) is a eukaryotic messenger RNA modification catalyzed by methyltransferase-like 3 (METTL3), which is involved in various developmental and disease processes. However, the connection between the epigenetic modification of m6A and glucose metabolism during osteogenesis is still unclear. Here, we show that interference with METTL3 in dental pulp stem cells (DPSCs) inhibits cell proliferation and osteogenic differentiation. Moreover, transcriptome sequencing and metabolic testing were used to explore the mechanism between glucose metabolism and m6A modification in METTL3-knockdown DPSCs. Methylated RNA immunoprecipitation-quantitative polymerase chain reaction and RNA stability assays were used to determine the target genes of METTL3. Mechanistically, METTL3 directly interacts with ATP citrate lyase (ACLY) and a mitochondrial citrate transporter (SLC25A1) and then further affects the glycolytic pathway. M6A-mediated ACLY and SLC25A1 stability depends on the m6A readers IGF2BP2 and IGF2BP2/3, respectively. Our experiments uncovered the potential molecular mechanism of epigenetic modification in osteogenic differentiation, providing new ideas for the clinical application of stem cells and the intervention of metabolic bone diseases.
Collapse
Affiliation(s)
- W Cai
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Y Ji
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - L Han
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - J Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Y Ni
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Y Cheng
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Y Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
11
|
Mostafavi S, Balafkan N, Pettersen IKN, Nido GS, Siller R, Tzoulis C, Sullivan GJ, Bindoff LA. Distinct Mitochondrial Remodeling During Mesoderm Differentiation in a Human-Based Stem Cell Model. Front Cell Dev Biol 2021; 9:744777. [PMID: 34722525 PMCID: PMC8553110 DOI: 10.3389/fcell.2021.744777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/21/2021] [Indexed: 12/17/2022] Open
Abstract
Given the considerable interest in using stem cells for modeling and treating disease, it is essential to understand what regulates self-renewal and differentiation. Remodeling of mitochondria and metabolism, with the shift from glycolysis to oxidative phosphorylation (OXPHOS), plays a fundamental role in maintaining pluripotency and stem cell fate. It has been suggested that the metabolic “switch” from glycolysis to OXPHOS is germ layer-specific as glycolysis remains active during early ectoderm commitment but is downregulated during the transition to mesoderm and endoderm lineages. How mitochondria adapt during these metabolic changes and whether mitochondria remodeling is tissue specific remain unclear. Here, we address the question of mitochondrial adaptation by examining the differentiation of human pluripotent stem cells to cardiac progenitors and further to differentiated mesodermal derivatives, including functional cardiomyocytes. In contrast to recent findings in neuronal differentiation, we found that mitochondrial content decreases continuously during mesoderm differentiation, despite increased mitochondrial activity and higher levels of ATP-linked respiration. Thus, our work highlights similarities in mitochondrial remodeling during the transition from pluripotent to multipotent state in ectodermal and mesodermal lineages, while at the same time demonstrating cell-lineage-specific adaptations upon further differentiation. Our results improve the understanding of how mitochondrial remodeling and the metabolism interact during mesoderm differentiation and show that it is erroneous to assume that increased OXPHOS activity during differentiation requires a simultaneous expansion of mitochondrial content.
Collapse
Affiliation(s)
- Sepideh Mostafavi
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Novin Balafkan
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Division of Psychiatry, Haukeland University Hospital, Bergen, Norway.,Norwegian Centre for Mental Disorders Research (NORMENT)-Centre of Excellence, Haukeland University Hospital, Bergen, Norway
| | | | - Gonzalo S Nido
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Neuro-SysMed, Center of Excellence for Clinical Research in Neurological Diseases, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Richard Siller
- Stem Cell Epigenetics Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Charalampos Tzoulis
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Neuro-SysMed, Center of Excellence for Clinical Research in Neurological Diseases, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Gareth J Sullivan
- Stem Cell Epigenetics Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Norwegian Center for Stem Cell Research, Oslo University Hospital and the University of Oslo, Oslo, Norway.,Institute of Immunology, Oslo University Hospital, Oslo, Norway.,Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
| | - Laurence A Bindoff
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Neuro-SysMed, Center of Excellence for Clinical Research in Neurological Diseases, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
12
|
McKeegan PJ, Boardman SF, Wanless AA, Boyd G, Warwick LJ, Lu J, Gnanaprabha K, Picton HM. Intracellular oxygen metabolism during bovine oocyte and preimplantation embryo development. Sci Rep 2021; 11:21245. [PMID: 34711892 PMCID: PMC8553752 DOI: 10.1038/s41598-021-99512-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/24/2021] [Indexed: 11/11/2022] Open
Abstract
We report a novel method to profile intrcellular oxygen concentration (icO2) during in vitro mammalian oocyte and preimplantation embryo development using a commercially available multimodal phosphorescent nanosensor (MM2). Abattoir-derived bovine oocytes and embryos were incubated with MM2 in vitro. A series of inhibitors were applied during live-cell multiphoton imaging to record changes in icO2 associated with mitochondrial processes. The uncoupler carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) uncouples mitochondrial oxygen consumption to its maximum, while antimycin inhibits complex III to ablate mitochondrial oxygen consumption. Increasing oxygen consumption was expected to reduce icO2 and decreasing oxygen consumption to increase icO2. Use of these inhibitors quantifies how much oxygen is consumed at basal in comparison to the upper and lower limits of mitochondrial function. icO2 measurements were compared to mitochondrial DNA copy number analysed by qPCR. Antimycin treatment increased icO2 for all stages tested, suggesting significant mitochondrial oxygen consumption at basal. icO2 of oocytes and preimplantation embryos were unaffected by FCCP treatment. Inner cell mass icO2 was lower than trophectoderm, perhaps reflecting limitations of diffusion. Mitochondrial DNA copy numbers were similar between stages in the range 0.9-4 × 106 copies and did not correlate with icO2. These results validate the MM2 probe as a sensitive, non-toxic probe of intracellular oxygen concentration in mammalian oocytes and preimplantation embryos.
Collapse
Affiliation(s)
- Paul J McKeegan
- Reproduction and Early Development Research Group, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Clarendon Way, Leeds, LS2 9JT, UK.
- Centre for Anatomical and Human Sciences, Hull York Medical School, University of Hull, Hull, HU6 7RX, UK.
| | - Selina F Boardman
- Reproduction and Early Development Research Group, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Clarendon Way, Leeds, LS2 9JT, UK
- CARE Fertility, Manchester, England, UK
| | - Amy A Wanless
- Reproduction and Early Development Research Group, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Clarendon Way, Leeds, LS2 9JT, UK
- Assisted Conception Unit, Ninewells Hospital, Dundee, Scotland, UK
| | - Grace Boyd
- Reproduction and Early Development Research Group, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Clarendon Way, Leeds, LS2 9JT, UK
- Department of Biological Sciences, University of York, Wentworth Way, York, YO10 5DD, England, UK
| | - Laura J Warwick
- Reproduction and Early Development Research Group, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Clarendon Way, Leeds, LS2 9JT, UK
- St James's University Hospital, Beckett Street, Leeds, LS9 7TF, England, UK
| | - Jianping Lu
- Reproduction and Early Development Research Group, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Clarendon Way, Leeds, LS2 9JT, UK
| | - Keerthi Gnanaprabha
- Reproduction and Early Development Research Group, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Clarendon Way, Leeds, LS2 9JT, UK
- GCRM Fertility, 21 Fifty Pitches Way, Glasgow, G51 4FD, Scotland, UK
| | - Helen M Picton
- Reproduction and Early Development Research Group, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Clarendon Way, Leeds, LS2 9JT, UK
| |
Collapse
|
13
|
Bayona-Bafaluy MP, Garrido-Pérez N, Meade P, Iglesias E, Jiménez-Salvador I, Montoya J, Martínez-Cué C, Ruiz-Pesini E. Down syndrome is an oxidative phosphorylation disorder. Redox Biol 2021; 41:101871. [PMID: 33540295 PMCID: PMC7859316 DOI: 10.1016/j.redox.2021.101871] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/29/2020] [Accepted: 01/13/2021] [Indexed: 02/07/2023] Open
Abstract
Down syndrome is the most common genomic disorder of intellectual disability and is caused by trisomy of chromosome 21. Several genes in this chromosome repress mitochondrial biogenesis. The goal of this study was to evaluate whether early overexpression of these genes may cause a prenatal impairment of oxidative phosphorylation negatively affecting neurogenesis. Reduction in the mitochondrial energy production and a lower mitochondrial function have been reported in diverse tissues or cell types, and also at any age, including early fetuses, suggesting that a defect in oxidative phosphorylation is an early and general event in Down syndrome individuals. Moreover, many of the medical conditions associated with Down syndrome are also frequently found in patients with oxidative phosphorylation disease. Several drugs that enhance mitochondrial biogenesis are nowadays available and some of them have been already tested in mouse models of Down syndrome restoring neurogenesis and cognitive defects. Because neurogenesis relies on a correct mitochondrial function and critical periods of brain development occur mainly in the prenatal and early neonatal stages, therapeutic approaches intended to improve oxidative phosphorylation should be provided in these periods.
Collapse
Affiliation(s)
- M Pilar Bayona-Bafaluy
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/ Miguel Servet, 177. 50013, Zaragoza, Spain and C/ Pedro Cerbuna, 12, 50009, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, Av. San Juan Bosco, 13, 50009, Zaragoza, Spain; Centro de Investigaciones Biomédicas en Rd de Enfermedades Raras (CIBERER), Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza. C/ Mariano Esquillor (Edificio I+D), 50018, Zaragoza, Spain.
| | - Nuria Garrido-Pérez
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/ Miguel Servet, 177. 50013, Zaragoza, Spain and C/ Pedro Cerbuna, 12, 50009, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, Av. San Juan Bosco, 13, 50009, Zaragoza, Spain; Centro de Investigaciones Biomédicas en Rd de Enfermedades Raras (CIBERER), Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza. C/ Mariano Esquillor (Edificio I+D), 50018, Zaragoza, Spain.
| | - Patricia Meade
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/ Miguel Servet, 177. 50013, Zaragoza, Spain and C/ Pedro Cerbuna, 12, 50009, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, Av. San Juan Bosco, 13, 50009, Zaragoza, Spain; Centro de Investigaciones Biomédicas en Rd de Enfermedades Raras (CIBERER), Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza. C/ Mariano Esquillor (Edificio I+D), 50018, Zaragoza, Spain.
| | - Eldris Iglesias
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/ Miguel Servet, 177. 50013, Zaragoza, Spain and C/ Pedro Cerbuna, 12, 50009, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, Av. San Juan Bosco, 13, 50009, Zaragoza, Spain.
| | - Irene Jiménez-Salvador
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/ Miguel Servet, 177. 50013, Zaragoza, Spain and C/ Pedro Cerbuna, 12, 50009, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, Av. San Juan Bosco, 13, 50009, Zaragoza, Spain.
| | - Julio Montoya
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/ Miguel Servet, 177. 50013, Zaragoza, Spain and C/ Pedro Cerbuna, 12, 50009, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, Av. San Juan Bosco, 13, 50009, Zaragoza, Spain; Centro de Investigaciones Biomédicas en Rd de Enfermedades Raras (CIBERER), Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain.
| | - Carmen Martínez-Cué
- Departamento de Fisiología y Farmacología. Facultad de Medicina, Universidad de Cantabria. Av. Herrera Oría, 39011, Santander, Spain.
| | - Eduardo Ruiz-Pesini
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/ Miguel Servet, 177. 50013, Zaragoza, Spain and C/ Pedro Cerbuna, 12, 50009, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, Av. San Juan Bosco, 13, 50009, Zaragoza, Spain; Centro de Investigaciones Biomédicas en Rd de Enfermedades Raras (CIBERER), Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain.
| |
Collapse
|
14
|
Xu X, Du Y, Ma L, Zhang S, Shi L, Chen Z, Zhou Z, Hui Y, Liu Y, Fang Y, Fan B, Liu Z, Li N, Zhou S, Jiang C, Liu L, Zhang X. Mapping germ-layer specification preventing genes in hPSCs via genome-scale CRISPR screening. iScience 2021; 24:101926. [PMID: 33385119 PMCID: PMC7772566 DOI: 10.1016/j.isci.2020.101926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 08/17/2020] [Accepted: 12/07/2020] [Indexed: 12/21/2022] Open
Abstract
Understanding the biological processes that determine the entry of three germ layers of human pluripotent stem cells (hPSCs) is a central question in developmental and stem cell biology. Here, we genetically engineered hPSCs with the germ layer reporter and inducible CRISPR/Cas9 knockout system, and a genome-scale screening was performed to define pathways restricting germ layer specification. Genes clustered in the key biological processes, including embryonic development, mRNA processing, metabolism, and epigenetic regulation, were centered in the governance of pluripotency and lineage development. Other than typical pluripotent transcription factors and signaling molecules, loss of function of mesendodermal specifiers resulted in advanced neuroectodermal differentiation, given their inter-germ layer antagonizing effect. Regarding the epigenetic superfamily, microRNAs enriched in hPSCs showed clear germ layer-targeting specificity. The cholesterol synthesis pathway maintained hPSCs via retardation of neuroectoderm specification. Thus, in this study, we identified a full landscape of genetic wiring and biological processes that control hPSC self-renewal and trilineage specification.
Collapse
Affiliation(s)
- Xiangjie Xu
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Yanhua Du
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lin Ma
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China
| | - Shuwei Zhang
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Lei Shi
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Zhenyu Chen
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Zhongshu Zhou
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Yi Hui
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Yang Liu
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Yujiang Fang
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China
| | - Beibei Fan
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Zhongliang Liu
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Nan Li
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Shanshan Zhou
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Cizhong Jiang
- The School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Ling Liu
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
- Brain and Spinal Cord Clinical Research Center, Tongji University School of Medicine, Shanghai 200092, China
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China
| | - Xiaoqing Zhang
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Key Laboratory of Reconstruction and Regeneration of Spine and Spinal Cord Injury, Ministry of Education, Shanghai 200065, China
- Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai 200092, China
- Tsingtao Advanced Research Institute, Tongji University, Qingdao 266071, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
- Brain and Spinal Cord Clinical Research Center, Tongji University School of Medicine, Shanghai 200092, China
| |
Collapse
|
15
|
Ren Z, Zhong H, Song C, Deng C, Hsieh HT, Liu W, Chen G. Insulin Promotes Mitochondrial Respiration and Survival through PI3K/AKT/GSK3 Pathway in Human Embryonic Stem Cells. Stem Cell Reports 2020; 15:1362-1376. [PMID: 33186539 PMCID: PMC7724469 DOI: 10.1016/j.stemcr.2020.10.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/17/2020] [Accepted: 10/18/2020] [Indexed: 02/06/2023] Open
Abstract
Insulin is an essential growth factor for the survival and self-renewal of human embryonic stem cells (hESCs). Although it is best known as the principal hormone promoting glycolysis in somatic cells, insulin's roles in hESC energy metabolism remain unclear. In this report, we demonstrate that insulin is essential to sustain hESC mitochondrial respiration that is rapidly decreased upon insulin removal. Insulin-dependent mitochondrial respiration is stem cell specific, and mainly relies on pyruvate and glutamine, while glucose suppresses excessive oxidative phosphorylation. Pharmacologic and genetic manipulations reveal that continuous insulin signal sustains mitochondrial respiration through PI3K/AKT activation and downstream GSK3 inhibition. We further show that insulin acts through GSK3 inhibition to suppress caspase activation and rescue cell survival. This study uncovers a critical role of the AKT/GSK3 pathway in the regulation of mitochondrial respiration and cell survival, highlighting insulin as an essential factor for accurate assessment of mitochondrial respiration in hESCs. Insulin is continuously required to sustain mitochondrial respiration in hESCs Insulin-dependent mitochondrial respiration is substrate specific GSK3 is a major regulator of insulin-dependent respiration and cell survival Insulin is essential for accurate assessment of mitochondrial respiration in hESCs
Collapse
Affiliation(s)
- Zhili Ren
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China; Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Hui Zhong
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China; Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Chengcheng Song
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China; Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Chunhao Deng
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China; Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Hsun-Ting Hsieh
- Bioimaging and Stem Cell Core Facility, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Weiwei Liu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China; Bioimaging and Stem Cell Core Facility, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Guokai Chen
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China; Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China.
| |
Collapse
|
16
|
Lopes C, Tang Y, Anjo SI, Manadas B, Onofre I, de Almeida LP, Daley GQ, Schlaeger TM, Rego ACC. Mitochondrial and Redox Modifications in Huntington Disease Induced Pluripotent Stem Cells Rescued by CRISPR/Cas9 CAGs Targeting. Front Cell Dev Biol 2020; 8:576592. [PMID: 33072759 PMCID: PMC7536317 DOI: 10.3389/fcell.2020.576592] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/27/2020] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial deregulation has gained increasing support as a pathological mechanism in Huntington’s disease (HD), a genetic-based neurodegenerative disorder caused by CAG expansion in the HTT gene. In this study, we thoroughly investigated mitochondrial-based mechanisms in HD patient-derived iPSC (HD-iPSC) and differentiated neural stem cells (NSC) versus control cells, as well as in cells subjected to CRISPR/Cas9-CAG repeat deletion. We analyzed mitochondrial morphology, function and biogenesis, linked to exosomal release of mitochondrial components, glycolytic flux, ATP generation and cellular redox status. Mitochondria in HD cells exhibited round shape and fragmented morphology. Functionally, HD-iPSC and HD-NSC displayed lower mitochondrial respiration, exosomal release of cytochrome c, decreased ATP/ADP, reduced PGC-1α and complex III subunit expression and activity, and were highly dependent on glycolysis, supported by pyruvate dehydrogenase (PDH) inactivation. HD-iPSC and HD-NSC mitochondria showed ATP synthase reversal and increased calcium retention. Enhanced mitochondrial reactive oxygen species (ROS) were also observed in HD-iPSC and HD-NSC, along with decreased UCP2 mRNA levels. CRISPR/Cas9-CAG repeat deletion in HD-iPSC and derived HD-NSC ameliorated mitochondrial phenotypes. Data attests for intricate metabolic and mitochondrial dysfunction linked to transcriptional deregulation as early events in HD pathogenesis, which are alleviated following CAG deletion.
Collapse
Affiliation(s)
- Carla Lopes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Yang Tang
- Division of Pediatric Hematology/Oncology, Children's Hospital Boston, Boston, MA, United States.,Harvard Stem Cell Institute, Boston, MA, United States
| | - Sandra I Anjo
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Bruno Manadas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Isabel Onofre
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Luís P de Almeida
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - George Q Daley
- Division of Pediatric Hematology/Oncology, Children's Hospital Boston, Boston, MA, United States.,Harvard Stem Cell Institute, Boston, MA, United States.,Howard Hughes Medical Institute, Boston, MA, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
| | - Thorsten M Schlaeger
- Division of Pediatric Hematology/Oncology, Children's Hospital Boston, Boston, MA, United States.,Harvard Stem Cell Institute, Boston, MA, United States
| | - Ana Cristina Carvalho Rego
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
17
|
Maity J, Deb M, Greene C, Das H. KLF2 regulates dental pulp-derived stem cell differentiation through the induction of mitophagy and altering mitochondrial metabolism. Redox Biol 2020; 36:101622. [PMID: 32777717 PMCID: PMC7417940 DOI: 10.1016/j.redox.2020.101622] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022] Open
Abstract
To define the regulatory role of Kruppel-like factor 2 (KLF2) during osteoblast (OB) differentiation of dental pulp-derived stem cell (DPSC)s, herein, we show that the levels of KLF2 and autophagy-related molecules were significantly increased in differentiated cells. Gain-of-function and loss-of-function approaches of KLF2 confirmed that KLF2 modulated autophagic and OB differentiation-related molecules. In addition, knockdown of the autophagic molecule (ATG7 or BECN1) in DPSCs resulted in reduced levels of KLF2 and OB differentiation-related molecules. Conversely, the induction of autophagy increased levels of KLF2 and OB differentiation-related molecules. Moreover, OB differentiation induced mitophagy and mitochondrial membrane potential-related molecules. In addition, OB differentiation reduced the generation of total and mitochondrial ROS productions and induced intracellular Ca2+ production. Measurements of glycolysis and oxidative phosphorylation simultaneously in live cells revealed that OB differentiation decreased the oxygen consumption rate, which is an indicator of mitochondrial respiration and reduced the level of ATP production. Furthermore, flux analysis also revealed that OB differentiation increased the extracellular acidification rate (ECAR) in the non-glycolytic acidification, and the glycolytic capacity conditions, increasing the lactate production and reducing the metabolic activity of the cells. Thus, a metabolic shift from mitochondrial respiration to the glycolytic pathway was observed during OB differentiation. Finally, chromatin immunoprecipitation (ChIP) analysis confirmed that the KLF2 and active epigenetic marks (H3K27Ac and H3K4me3) were upregulated in the promoter region of ATG7 during OB differentiation. These results provide evidence that the mitophagy process is important during OB differentiation, and KLF2 critically regulates it.
Collapse
Affiliation(s)
- Jyotirindra Maity
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Moonmoon Deb
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Carl Greene
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Hiranmoy Das
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA.
| |
Collapse
|
18
|
Hepatogenic Potential and Liver Regeneration Effect of Human Liver-derived Mesenchymal-Like Stem Cells. Cells 2020; 9:cells9061521. [PMID: 32580448 PMCID: PMC7348751 DOI: 10.3390/cells9061521] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/18/2020] [Accepted: 06/20/2020] [Indexed: 12/22/2022] Open
Abstract
Human liver-derived stem cells (hLD-SCs) have been proposed as a possible resource for stem cell therapy in patients with irreversible liver diseases. However, it is not known whether liver resident hLD-SCs can differentiate toward a hepatic fate better than mesenchymal stem cells (MSCs) obtained from other origins. In this study, we compared the differentiation ability and regeneration potency of hLD-SCs with those of human umbilical cord matrix-derived stem cells (hUC-MSCs) by inducing hepatic differentiation. Undifferentiated hLD-SCs expressed relatively high levels of endoderm-related markers (GATA4 and FOXA1). During directed hepatic differentiation supported by two small molecules (Fasudil and 5-azacytidine), hLD-SCs presented more advanced mitochondrial respiration compared to hUC-MSCs. Moreover, hLD-SCs featured higher numbers of hepatic progenitor cell markers on day 14 of differentiation (CPM and CD133) and matured into hepatocyte-like cells by day 7 through 21 with increased hepatocyte markers (ALB, HNF4A, and AFP). During in vivo cell transplantation, hLD-SCs migrated into the liver of ischemia-reperfusion injury-induced mice within 2 h and relieved liver injury. In the thioacetamide (TAA)-induced liver injury mouse model, transplanted hLD-SCs trafficked into the liver and spontaneously matured into hepatocyte-like cells within 14 days. These results collectively suggest that hLD-SCs hold greater hepatogenic potential, and hepatic differentiation-induced hLD-SCs may be a promising source of stem cells for liver regeneration.
Collapse
|
19
|
McColloch A, Liebman C, Liu H, Cho M. Alterted Adipogenesis of Human Mesenchymal Stem Cells by Photobiomodulation Using 1064 nm Laser Light. Lasers Surg Med 2020; 53:263-274. [PMID: 32495397 DOI: 10.1002/lsm.23278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/27/2020] [Accepted: 05/23/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND OBJECTIVES Photobiomodulation (PBM) describes the influence of light irradiation on biological tissues. Laser light in the near-infrared (NIR) spectrum has been shown to mitigate pain, reduce inflammation, and promote wound healing. The cellular mechanism that mediates PBM's effects is generally accepted to be at the site of the mitochondria, leading to an increased flux through the electron transport chain and adenosine triphosphate (ATP) production. Moreover, PBM has been demonstrated to reduce oxidative stress through an increased production of reactive oxygen species (ROS)-sequestering enzymes. The aim of the study is to determine whether these PBM-induced effects expedite or interfere with the intended stem cell differentiation to the adipogenic lineage. STUDY DESIGN/MATERIALS AND METHODS To determine the effects of 1064 nm laser irradiation (fluence of 8.8-26.4 J/cm2 ) on human mesenchymal stem cells (hMSCs) undergoing adipogenic differentiation, the ATP and ROS levels, and adipogenic markers were quantitatively measured. RESULTS At a low fluence (8.8 J/cm2 ) the ATP increase was essentially negligible, whereas a higher fluence induced a significant increase. In the laser-stimulated cells, PBM over time decreased the ROS level compared with the non-treated control group and significantly reduced the extent of adipogenesis. A reduction in the ROS level was correlated with a diminished lipid accumulation, reduced production of adipose-specific genetic markers, and delayed the chemically intended adipogenesis. CONCLUSION We characterized the use of NIR light exposure to modulate adipogenesis. Both the ATP and ROS levels in hMSCs responded to different energy densities. The current study is expected to contribute significantly to the growing field of PBM as well as stem cell tissue engineering by demonstrating the wavelength-dependent responses of hMSC differentiation. Lasers Surg. Med. © 2020 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Andrew McColloch
- Department of Bioengineering, The University of Texas at Arlington, Arlington, Texas, 76019
| | - Caleb Liebman
- Department of Bioengineering, The University of Texas at Arlington, Arlington, Texas, 76019
| | - Hanli Liu
- Department of Bioengineering, The University of Texas at Arlington, Arlington, Texas, 76019
| | - Michael Cho
- Department of Bioengineering, The University of Texas at Arlington, Arlington, Texas, 76019
| |
Collapse
|
20
|
Solis MA, Wei YH, Chang CH, Yu CH, Huang LLH. Hyaluronan Induces a Mitochondrial Functional Switch in Fast-Proliferating Human Mesenchymal Stem. Int J Stem Cells 2020; 13:151-162. [PMID: 31910510 PMCID: PMC7119204 DOI: 10.15283/ijsc19004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/23/2019] [Accepted: 04/21/2019] [Indexed: 11/09/2022] Open
Abstract
Background and Objectives Hyaluronan preserves the proliferation and differentiation potential of mesenchymal stem cells. Supplementation of low-concentration hyaluronan (SHA) in stem cells culture medium increases its proliferative rate, whereas coated-surface hyaluronan (CHA) maintains cells in a slow-proliferating mode. We have previously demonstrated that in CHA, the metabolic proliferative state of stem cells was influenced by upregulating mitochondrial biogenesis and function. However, the effect of SHA on stem cells' energetic status remains unknown. In this study, we demonstrate the effect that low-concentration SHA at 0.001 mg/ml (SHA0.001) and high-concentration SHA at 5 mg/ml (SHA5) exert on stem cells' mitochondrial function compared with CHA and noncoated tissue culture surface (control). Methods and Results Fast-proliferating human placenta-derived mesenchymal stem cells (PDMSCs) cultured on SHA0.001 exhibited reduced mitochondrial mass, lower mitochondrial DNA copy number, and lower oxygen consumption rate compared with slow-proliferating PDMSCs cultured on CHA at 5.0 (CHA5) or 30 μg/cm2 (CHA30). The reduced mitochondrial biogenesis observed in SHA0.001 was accompanied by a 2-fold increased ATP content and lactate production, suggesting that hyaluronan-induced fast-proliferating PDMSCs may rely less on mitochondrial function as an energy source and induce a mitochondrial functional switch to glycolysis. Conclusions PDMSCs cultured on both CHA and SHA exhibited a reduction in reactive oxygen species levels. The results from this study clarify our understandings on the effect of hyaluronan on stem cells and provide important insights into the effect of distinct supplementation methods used during cell therapies.
Collapse
Affiliation(s)
- Mairim Alexandra Solis
- Gorgas Memorial Institute for Health Studies, Panama, Panama.,Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yau-Huei Wei
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan.,Department of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Chiung-Hsin Chang
- Department of Obstetrics and Gynecology, National Cheng Kung University, Tainan, Taiwan
| | - Chen-Hsiang Yu
- Department of Obstetrics and Gynecology, National Cheng Kung University, Tainan, Taiwan
| | - Lynn L H Huang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan.,Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Research Center of Excellence in Regenerative Medicine, National Cheng Kung University, Tainan, Taiwan.,International Research Center of Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
21
|
Prieto J, Ponsoda X, Izpisua Belmonte JC, Torres J. Mitochondrial dynamics and metabolism in induced pluripotency. Exp Gerontol 2020; 133:110870. [PMID: 32045634 DOI: 10.1016/j.exger.2020.110870] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/20/2019] [Accepted: 02/05/2020] [Indexed: 12/15/2022]
Abstract
Somatic cells can be reprogrammed to pluripotency by either ectopic expression of defined factors or exposure to chemical cocktails. During reprogramming, somatic cells undergo dramatic changes in a wide range of cellular processes, such as metabolism, mitochondrial morphology and function, cell signaling pathways or immortalization. Regulation of these processes during cell reprograming lead to the acquisition of a pluripotent state, which enables indefinite propagation by symmetrical self-renewal without losing the ability of reprogrammed cells to differentiate into all cell types of the adult. In this review, recent data from different laboratories showing how these processes are controlled during the phenotypic transformation of a somatic cell into a pluripotent stem cell will be discussed.
Collapse
Affiliation(s)
- Javier Prieto
- Departamento Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Calle Dr. Moliner 50, 46100 Burjassot, Spain; Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Xavier Ponsoda
- Departamento Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Calle Dr. Moliner 50, 46100 Burjassot, Spain; Instituto de Investigación Sanitaria (INCLIVA), Avenida de Menéndez y Pelayo 4, 46010, Valencia, Spain
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Josema Torres
- Departamento Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Calle Dr. Moliner 50, 46100 Burjassot, Spain; Instituto de Investigación Sanitaria (INCLIVA), Avenida de Menéndez y Pelayo 4, 46010, Valencia, Spain.
| |
Collapse
|
22
|
Lees JG, Gardner DK, Harvey AJ. Nicotinamide adenine dinucleotide induces a bivalent metabolism and maintains pluripotency in human embryonic stem cells. Stem Cells 2020; 38:624-638. [PMID: 32003519 DOI: 10.1002/stem.3152] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 12/27/2019] [Indexed: 12/19/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD+ ) and its precursor metabolites are emerging as important regulators of both cell metabolism and cell state. Interestingly, the role of NAD+ in human embryonic stem cell (hESC) metabolism and the regulation of pluripotent cell state is unresolved. Here we show that NAD+ simultaneously increases hESC mitochondrial oxidative metabolism and partially suppresses glycolysis and stimulates amino acid turnover, doubling the consumption of glutamine. Concurrent with this metabolic remodeling, NAD+ increases hESC pluripotent marker expression and proliferation, inhibits BMP4-induced differentiation and reduces global histone 3 lysine 27 trimethylation, plausibly inducing an intermediate naïve-to-primed bivalent metabolism and pluripotent state. Furthermore, maintenance of NAD+ recycling via malate aspartate shuttle activity is identified as an absolute requirement for hESC self-renewal, responsible for 80% of the oxidative capacity of hESC mitochondria. Our findings implicate NAD+ in the regulation of cell state, suggesting that the hESC pluripotent state is dependent upon cellular NAD+ .
Collapse
Affiliation(s)
- Jarmon G Lees
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia.,O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,Department of Medicine at St Vincent's Hospital, Melbourne Medical School, The University of Melbourne, Fitzroy, Victoria, Australia
| | - David K Gardner
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Alexandra J Harvey
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
23
|
Perumal PO, Mhlanga P, Somboro AM, Amoako DG, Khumalo HM, Khan RM. Cytoproliferative and Anti-Oxidant Effects Induced by Tannic Acid in Human Embryonic Kidney (Hek-293) Cells. Biomolecules 2019; 9:E767. [PMID: 31766707 PMCID: PMC6995534 DOI: 10.3390/biom9120767] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 12/14/2022] Open
Abstract
Tannic acid (TA) portrays a myriad of beneficial properties and has forthwith achieved incessant significance for its cytoprotective qualities in traditional and modern-day medicine. However, TA displays an ambiguous nature demonstrating anti-oxidant and pro-oxidant traits, beckoning further research. Although vast literature on the anti-proliferative effects of TA on cancer cell lines exist, the effects on normal cells remain unchartered. Herein, the cytoproliferative and anti-oxidant effects induced by TA in human embryonic kidney (Hek-293) cells were investigated. Data obtained from the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay demonstrated that TA increased the cell viability and cellular proliferation rate at higher concentrations. Hoechst assay, examining proliferation marker Ki67 supported these findings. DNA fragmentation and oxidative stress-inducers were specifically noted at IC25 and IC50 treatments via biochemical assays. This alluded to TA's pro-oxidant characteristics. However, the countervailing anti-oxidant defence mechanisms as the endogenous anti-oxidants and phase2 detoxification enzymes were significantly upregulated. Luminometry fortified the anti-oxidant capacity of TA, whereby executioner caspase-3/7 were not activated subservient to the activation of initiator caspases-8 and -9. Thus, proving that TA has anti-apoptotic traits, inter alia. Therefore, TA proved to harbour anti-oxidant, anti-apoptotic, and proliferative effects in Hek-293 cells with its partial cytotoxic responses being outweighed by its cytoprotective mechanisms.
Collapse
Affiliation(s)
- Pearl O. Perumal
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (P.O.P.); (P.M.); (H.M.K.)
| | - Priscilla Mhlanga
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (P.O.P.); (P.M.); (H.M.K.)
| | - Anou M. Somboro
- Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa;
| | - Daniel G. Amoako
- Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa;
| | - Hezekiel M. Khumalo
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (P.O.P.); (P.M.); (H.M.K.)
| | - Rene M. Khan
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (P.O.P.); (P.M.); (H.M.K.)
| |
Collapse
|
24
|
Mei H, Mei D, Yu H, Sun S, Chen Y, Zhang Y, Chai R, Li H. Increased mitochondrial DNA copy number protects hair cells and HEI‑OC1 cells against drug‑induced apoptosis. Mol Med Rep 2019; 21:338-346. [PMID: 31939628 PMCID: PMC6896317 DOI: 10.3892/mmr.2019.10838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/23/2019] [Indexed: 02/03/2023] Open
Abstract
Several factors trigger apoptosis in cochlear hair cells. Previous studies have shown that mitochondria play key roles in apoptosis, but the role of mitochondrial deoxyribonucleic acid (mtDNA) copy number in the pathogenesis of hair cell apoptosis remains largely unknown. We used mouse cochlear hair cells and House Ear Institute-Organ of Corti 1 (HEI-OC1) cells to explore the relationship between mtDNA copy number and cell apoptosis. We found that the mtDNA copy number of hair cells was reduced relative to mitochondrial mass and hypothesized that increasing it might have a protective effect. We then increased the mtDNA copy number of the hair and HEI-OC1 cells by transfecting them with an adeno-associated virus (AAV) vector containing mitochondrial transcription factor A (TFAM). We found that the apoptosis rates decreased upon inducing apoptosis with neomycin or cisplatin (DDP). To elucidate the mechanisms, we analyzed the mitochondrial-membrane permeability and mitochondrial function of HEI-OC1 cells. Our results suggested that the increase in mtDNA copy number could protect hair cells and HEI-OC1 cells against drug-induced apoptosis by stabilizing the permeability of the mitochondrial membrane and mitochondrial function.
Collapse
Affiliation(s)
- Honglin Mei
- ENT Institute and Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200031, P.R. China
| | - Dongmei Mei
- Department of Stomatology, Key Laboratory of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, College of Stomatology, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Huiqian Yu
- ENT Institute and Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200031, P.R. China
| | - Shan Sun
- ENT Institute and Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200031, P.R. China
| | - Yan Chen
- ENT Institute and Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200031, P.R. China
| | - Yanping Zhang
- ENT Institute and Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200031, P.R. China
| | - Renjie Chai
- Co‑Innovation Center of Neuroregeneration, Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, Jiangsu 210096, P.R. China
| | - Huawei Li
- ENT Institute and Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200031, P.R. China
| |
Collapse
|
25
|
Uridine Prevents Negative Effects of OXPHOS Xenobiotics on Dopaminergic Neuronal Differentiation. Cells 2019; 8:cells8111407. [PMID: 31717322 PMCID: PMC6912777 DOI: 10.3390/cells8111407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/25/2022] Open
Abstract
Neuronal differentiation appears to be dependent on oxidative phosphorylation capacity. Several drugs inhibit oxidative phosphorylation and might be detrimental for neuronal differentiation. Some pregnant women take these medications during their first weeks of gestation when fetal nervous system is being developed. These treatments might have later negative consequences on the offspring's health. To analyze a potential negative effect of three widely used medications, we studied in vitro dopaminergic neuronal differentiation of cells exposed to pharmacologic concentrations of azidothymidine for acquired immune deficiency syndrome; linezolid for multidrug-resistant tuberculosis; and atovaquone for malaria. We also analyzed the dopaminergic neuronal differentiation in brains of fetuses from pregnant mice exposed to linezolid. The drugs reduced the in vitro oxidative phosphorylation capacity and dopaminergic neuronal differentiation. This differentiation process does not appear to be affected in the prenatally exposed fetus brain. Nevertheless, the global DNA methylation in fetal brain was significantly altered, perhaps linking an early exposure to a negative effect in older life. Uridine was able to prevent the negative effects on in vitro dopaminergic neuronal differentiation and on in vivo global DNA methylation. Uridine could be used as a protective agent against oxidative phosphorylation-inhibiting pharmaceuticals provided during pregnancy when dopaminergic neuronal differentiation is taking place.
Collapse
|
26
|
McKeown CR, Cline HT. Nutrient restriction causes reversible G2 arrest in Xenopus neural progenitors. Development 2019; 146:146/20/dev178871. [PMID: 31649012 DOI: 10.1242/dev.178871] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/05/2019] [Indexed: 01/23/2023]
Abstract
Nutrient status affects brain development; however, the effects of nutrient availability on neural progenitor cell proliferation in vivo are poorly understood. Without food, Xenopus laevis tadpoles enter a period of stasis during which neural progenitor proliferation is drastically reduced, but resumes when food becomes available. Here, we investigate how neural progenitors halt cell division in response to nutrient restriction and subsequently re-enter the cell cycle upon feeding. We demonstrate that nutrient restriction causes neural progenitors to arrest in G2 of the cell cycle with increased DNA content, and that nutrient availability triggers progenitors to re-enter the cell cycle at M phase. Initiation of the nutrient restriction-induced G2 arrest is rapamycin insensitive, but cell cycle re-entry requires mTOR. Finally, we show that activation of insulin receptor signaling is sufficient to increase neural progenitor cell proliferation in the absence of food. A G2 arrest mechanism provides an adaptive strategy to control brain development in response to nutrient availability by triggering a synchronous burst of cell proliferation when nutrients become available. This may be a general cellular mechanism that allows developmental flexibility during times of limited resources.
Collapse
Affiliation(s)
| | - Hollis T Cline
- Department of Neuroscience, Scripps Research, La Jolla, CA 92037, USA
| |
Collapse
|
27
|
Nawa N, Hirata K, Kawatani K, Nambara T, Omori S, Banno K, Kokubu C, Takeda J, Nishimura K, Ohtaka M, Nakanishi M, Okuzaki D, Taniguchi H, Arahori H, Wada K, Kitabatake Y, Ozono K. Elimination of protein aggregates prevents premature senescence in human trisomy 21 fibroblasts. PLoS One 2019; 14:e0219592. [PMID: 31356639 PMCID: PMC6663065 DOI: 10.1371/journal.pone.0219592] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 06/27/2019] [Indexed: 12/12/2022] Open
Abstract
Chromosome abnormalities induces profound alterations in gene expression, leading to various disease phenotypes. Recent studies on yeast and mammalian cells have demonstrated that aneuploidy exerts detrimental effects on organismal growth and development, regardless of the karyotype, suggesting that aneuploidy-associated stress plays an important role in disease pathogenesis. However, whether and how this effect alters cellular homeostasis and long-term features of human disease are not fully understood. Here, we aimed to investigate cellular stress responses in human trisomy syndromes, using fibroblasts and induced pluripotent stem cells (iPSCs). Dermal fibroblasts derived from patients with trisomy 21, 18 and 13 showed a severe impairment of cell proliferation and enhanced premature senescence. These phenomena were accompanied by perturbation of protein homeostasis, leading to the accumulation of protein aggregates. We found that treatment with sodium 4-phenylbutyrate (4-PBA), a chemical chaperone, decreased the protein aggregates in trisomy fibroblasts. Notably, 4-PBA treatment successfully prevented the progression of premature senescence in secondary fibroblasts derived from trisomy 21 iPSCs. Our study reveals aneuploidy-associated stress as a potential therapeutic target for human trisomies, including Down syndrome.
Collapse
Affiliation(s)
- Nobutoshi Nawa
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Katsuya Hirata
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Neonatal Medicine, Osaka Women’s and Children’s Hospital, Izumi, Osaka, Japan
| | - Keiji Kawatani
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Toshihiko Nambara
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Sayaka Omori
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kimihiko Banno
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Chikara Kokubu
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Junji Takeda
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Ken Nishimura
- Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Manami Ohtaka
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Mahito Nakanishi
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Hidetoshi Taniguchi
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hitomi Arahori
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kazuko Wada
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Neonatal Medicine, Osaka Women’s and Children’s Hospital, Izumi, Osaka, Japan
| | - Yasuji Kitabatake
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- * E-mail:
| | - Keiichi Ozono
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
28
|
Kang PJ, Zheng J, Lee G, Son D, Kim IY, Song G, Park G, You S. Glycine decarboxylase regulates the maintenance and induction of pluripotency via metabolic control. Metab Eng 2019; 53:35-47. [DOI: 10.1016/j.ymben.2019.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/26/2019] [Accepted: 02/11/2019] [Indexed: 01/07/2023]
|
29
|
Abstract
Mitochondria are customarily acknowledged as the powerhouse of the cell by virtue of their indispensable role in cellular energy production. In addition, it plays an important role in pluripotency, differentiation, and reprogramming. This review describes variation in the stem cells and their mitochondrial heterogeneity. The mitochondrial variation can be described in terms of structure, function, and subcellular distribution. The mitochondria cristae development status and their localization patterns determine the oxygen consumption rate and ATP production which is a central controller of stem cell maintenance and differentiation. Generally, stem cells show spherical, immature mitochondria with perinuclear distribution. Such mitochondria are metabolically less energetic and low polarized. Moreover, mostly glycolytic energy production is found in pluripotent stem cells with a variation in naïve stem cells which perform oxidative phosphorylation (OXPHOS). This article also describes the structural and functional journey of mitochondria during development. Future insight into underlying mechanisms associated with such alternation in mitochondria of stem cells during embryonic stages could uncover mitochondrial adaptability on cellular demands. Moreover, investigating the importance of mitochondria in pluripotency maintenance might unravel the cause of mitochondrial diseases, aging, and regenerative therapies.
Collapse
|
30
|
Minerval (2-hydroxyoleic acid) causes cancer cell selective toxicity by uncoupling oxidative phosphorylation and compromising bioenergetic compensation capacity. Biosci Rep 2019; 39:BSR20181661. [PMID: 30602451 PMCID: PMC6340956 DOI: 10.1042/bsr20181661] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/27/2018] [Accepted: 12/07/2018] [Indexed: 12/12/2022] Open
Abstract
This work tests bioenergetic and cell-biological implications of the synthetic fatty acid Minerval (2-hydroxyoleic acid), previously demonstrated to act by activation of sphingomyelin synthase in the plasma membrane (PM) and lowering of phosphatidylethanolamine (PE) and phosphatidylcholine (PC) and their carcinogenic signaling. We show here that Minerval also acts, selectively in cancer cell lines, as an ATP depleting uncoupler of mitochondrial oxidative phosphorylation (OxPhos). As a function of its exposure time, Minerval compromised the capacity of glioblastoma U87-MG cells to compensate for aberrant respiration by up-modulation of glycolysis. This effect was not exposure time-dependent in the lung carcinoma A549 cell line, which was more sensitive to Minerval. Compared with OxPhos inhibitors FCCP (uncoupler), rotenone (electron transfer inhibitor), and oligomycin (F1F0-ATPase inhibitor), Minerval action was similar only to that of FCCP. This similarity was manifested by mitochondrial membrane potential (MMP) depolarization, facilitation of oxygen consumption rate (OCR), restriction of mitochondrial and cellular reactive oxygen species (ROS) generation and mitochondrial fragmentation. Additionally, compared with other OxPhos inhibitors, Minerval uniquely induced ER stress in cancer cell lines. These new modes of action for Minerval, capitalizing on the high fatty acid requirements of cancer cells, can potentially enhance its cancer-selective toxicity and improve its therapeutic capacity.
Collapse
|
31
|
Vlaski-Lafarge M, Loncaric D, Perez L, Labat V, Debeissat C, Brunet de la Grange P, Rossignol R, Ivanovic Z, Bœuf H. Bioenergetic Changes Underline Plasticity of Murine Embryonic Stem Cells. Stem Cells 2019; 37:463-475. [PMID: 30599083 DOI: 10.1002/stem.2965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/13/2018] [Accepted: 12/03/2018] [Indexed: 12/19/2022]
Abstract
Murine embryonic stem cells (mESCs) are endowed by a time-dependent window of plasticity during their early commitment steps. Indeed, while mESCs deprived of leukemia inhibitory factor (LIF) for 24 hours revert to their naive pluripotent state after subsequent LIF readdition, cells deprived of LIF for 48 hours are no longer efficient in reverting, upon LIF addition, and undergo irreversible differentiation. We investigated undisclosed bioenergetic profiles of early mESC-derived committed cells versus their undifferentiated states in order to reveal specific bioenergetic changes associated with mESC plasticity. Multiparametric bioenergetic analysis revealed that pluripotent (+LIF) and reversibly committed cells (-LIF24h) are energetically flexible, depending on both oxidative phosphorylation (OXPHOS) and glycolysis. They exhibit high mitochondrial respiration in the presence of the main energetic substrates and can also rely on glycolysis in the presence of OXPHOS inhibitor. Inhibition of the glycolysis or mitochondrial respiration does not change drastically the expression of pluripotency genes, which remain well expressed. In addition, cells treated with these inhibitors keep their capacity to differentiate efficiently upon embryoid bodies formation. Transition from metabolically active mESCs to irreversibly committed cells is associated with a clear change in mitochondrial network morphology, to an increase of adenosine triphosphate (ATP) produced from glycolysis and a decline of ATP turnover and of the mitochondrial activity without change in the mitochondrial mass. Our study pointed that plasticity window of mESCs is associated with the bivalent energetic metabolism and potency to shift to glycolysis or OXPHOS on demand. LIF removal provokes glycolytic metabolic orientation and consecutive loss of the LIF-dependent reversion of cells to the pluripotent state. Stem Cells 2019;37:463-475.
Collapse
Affiliation(s)
- Marija Vlaski-Lafarge
- R&D Department, Etablissement Français du Sang Nouvelle-Aquitaine, Bordeaux, France.,Inserm/U1035, University of Bordeaux
| | - Darija Loncaric
- R&D Department, Etablissement Français du Sang Nouvelle-Aquitaine, Bordeaux, France.,Inserm/U1035, University of Bordeaux
| | - Laura Perez
- R&D Department, Etablissement Français du Sang Nouvelle-Aquitaine, Bordeaux, France
| | - Véronique Labat
- R&D Department, Etablissement Français du Sang Nouvelle-Aquitaine, Bordeaux, France.,Inserm/U1035, University of Bordeaux
| | - Christelle Debeissat
- R&D Department, Etablissement Français du Sang Nouvelle-Aquitaine, Bordeaux, France.,Inserm/U1035, University of Bordeaux
| | - Philippe Brunet de la Grange
- R&D Department, Etablissement Français du Sang Nouvelle-Aquitaine, Bordeaux, France.,Inserm/U1035, University of Bordeaux
| | | | - Zoran Ivanovic
- R&D Department, Etablissement Français du Sang Nouvelle-Aquitaine, Bordeaux, France.,Inserm/U1035, University of Bordeaux
| | - Hélène Bœuf
- Inserm/U1026, University of Bordeaux, Bordeaux, France
| |
Collapse
|
32
|
He Y, Wang Y, Zhang B, Li Y, Diao L, Lu L, Yao J, Liu Z, Li D, He F. Revealing the metabolic characteristics of human embryonic stem cells by genome-scale metabolic modeling. FEBS Lett 2018; 592:3670-3682. [PMID: 30223296 DOI: 10.1002/1873-3468.13255] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/29/2018] [Accepted: 09/12/2018] [Indexed: 12/19/2022]
Abstract
Embryonic stem cells (ESCs) are characterized by a dual capacity, self-renewal and pluripotency, which can be regulated by metabolism. A better understanding of ESC metabolism and regulatory mechanisms is pivotal for research into development, ageing, and cancer treatment. However, a systematic and comprehensive delineation of human ESC metabolism is still lacking. Here, we reconstructed the first genome-scale metabolic model (GEM) of human ESCs (hESCs). By GEM simulation and analyses, hESC global metabolic characteristics including essential metabolites and network motifs were identified. Potential metabolic subsystems responsible for self-renewal and pluripotency were also identified by analyses and experiments. This first GEM of hESCs provides a novel view and resource for stem cell metabolism research and will contribute to the elucidation of their metabolic characteristics.
Collapse
Affiliation(s)
- Yangzhige He
- School of Life Sciences, Tsinghua University, Beijing, China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, China.,Central Research Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yan Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, China
| | - Boya Zhang
- School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yang Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, China
| | - Lihong Diao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, China
| | - Liang Lu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, China
| | - Jingwen Yao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, China
| | - Zhongyang Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, China
| | - Dong Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, China
| | - Fuchu He
- School of Life Sciences, Tsinghua University, Beijing, China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, China
| |
Collapse
|
33
|
Biochemical re-programming of human dermal stem cells to neurons by increasing mitochondrial membrane potential. Cell Death Differ 2018; 26:1048-1061. [PMID: 30154448 DOI: 10.1038/s41418-018-0182-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/15/2018] [Accepted: 07/22/2018] [Indexed: 01/07/2023] Open
Abstract
Stem cells are generally believed to contain a small number of mitochondria, thus accounting for their glycolytic phenotype. We demonstrate here, however, that despite an indispensable glucose dependency, human dermal stem cells (hDSCs) contain very numerous mitochondria. Interestingly, these stem cells segregate into two distinct subpopulations. One exhibits high, the other low-mitochondrial membrane potentials (Δψm). We have made the same observations with mouse neural stem cells (mNSCs) which serve here as a complementary model to hDSCs. Strikingly, pharmacologic inhibition of phosphoinositide 3-kinase (PI3K) increased the overall Δψm, decreased the dependency on glycolysis and led to formation of TUJ1 positive, electrophysiologically functional neuron-like cells in both mNSCs and hDSCs, even in the absence of any neuronal growth factors. Furthermore, of the two, it was the Δψm-high subpopulation which produced more mitochondrial reactive oxygen species (ROS) and showed an enhanced neuronal differentiation capacity as compared to the Δψm-low subpopulation. These data suggest that the Δψm-low stem cells may function as the dormant stem cell population to sustain future neuronal differentiation by avoiding excessive ROS production. Thus, chemical modulation of PI3K activity, switching the metabotype of hDSCs to neurons, may have potential as an autologous transplantation strategy for neurodegenerative diseases.
Collapse
|
34
|
Gerencser AA. Metabolic activation-driven mitochondrial hyperpolarization predicts insulin secretion in human pancreatic beta-cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:817-828. [PMID: 29886047 DOI: 10.1016/j.bbabio.2018.06.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/18/2018] [Accepted: 06/05/2018] [Indexed: 12/31/2022]
Abstract
Mitochondrial metabolism plays a central role in insulin secretion in pancreatic beta-cells. Generation of protonmotive force and ATP synthesis from glucose-originated pyruvate are critical steps in the canonical pathway of glucose-stimulated insulin secretion. Mitochondrial metabolism is intertwined with pathways that are thought to amplify insulin secretion with mechanisms distinct from the canonical pathway, and the relative importance of these two pathways is controversial. Here I show that glucose-induced mitochondrial membrane potential (MMP) hyperpolarization is necessary for, and predicts, the rate of insulin secretion in primary cultured human beta-cells. When glucose concentration is elevated, increased metabolism results in a substantial MMP hyperpolarization, as well as in increased rates of ATP synthesis and turnover marked by faster cell respiration. Using modular kinetic analysis I explored what properties of cellular energy metabolism enable a large glucose-induced change in MMP in human beta-cells. I found that an ATP-dependent pathway activates glucose or substrate oxidation, acting as a positive feedback in energy metabolism. This activation mechanism is essential for concomitant fast respiration and high MMP, and for a high magnitude glucose-induced MMP hyperpolarization and therefore for insulin secretion.
Collapse
Affiliation(s)
- Akos A Gerencser
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945, United States; Image Analyst Software, 43 Nova Lane, Novato, CA 94945, United States.
| |
Collapse
|
35
|
Martín-Jiménez R, Faccenda D, Allen E, Reichel HB, Arcos L, Ferraina C, Strobbe D, Russell C, Campanella M. Reduction of the ATPase inhibitory factor 1 (IF 1) leads to visual impairment in vertebrates. Cell Death Dis 2018; 9:669. [PMID: 29867190 PMCID: PMC5986772 DOI: 10.1038/s41419-018-0578-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 03/21/2018] [Accepted: 03/27/2018] [Indexed: 12/12/2022]
Abstract
In vertebrates, mitochondria are tightly preserved energy producing organelles, which sustain nervous system development and function. The understanding of proteins that regulate their homoeostasis in complex animals is therefore critical and doing so via means of systemic analysis pivotal to inform pathophysiological conditions associated with mitochondrial deficiency. With the goal to decipher the role of the ATPase inhibitory factor 1 (IF1) in brain development, we employed the zebrafish as elected model reporting that the Atpif1a-/- zebrafish mutant, pinotage (pnt tq209 ), which lacks one of the two IF1 paralogous, exhibits visual impairment alongside increased apoptotic bodies and neuroinflammation in both brain and retina. This associates with increased processing of the dynamin-like GTPase optic atrophy 1 (OPA1), whose ablation is a direct cause of inherited optic atrophy. Defects in vision associated with the processing of OPA1 are specular in Atpif1-/- mice thus confirming a regulatory axis, which interlinks IF1 and OPA1 in the definition of mitochondrial fitness and specialised brain functions. This study unveils a functional relay between IF1 and OPA1 in central nervous system besides representing an example of how the zebrafish model could be harnessed to infer the activity of mitochondrial proteins during development.
Collapse
Affiliation(s)
- Rebeca Martín-Jiménez
- Department of Comparative Biomedical Sciences, Royal Veterinary College, NW1 0TU, London, United Kingdom
| | - Danilo Faccenda
- Department of Comparative Biomedical Sciences, Royal Veterinary College, NW1 0TU, London, United Kingdom
- Department of Biology, University of Rome Tor Vergata, 00144, Rome, Italy
| | - Emma Allen
- Department of Comparative Biomedical Sciences, Royal Veterinary College, NW1 0TU, London, United Kingdom
| | - Holly Beatrice Reichel
- Department of Comparative Biomedical Sciences, Royal Veterinary College, NW1 0TU, London, United Kingdom
| | - Laura Arcos
- Department of Comparative Biomedical Sciences, Royal Veterinary College, NW1 0TU, London, United Kingdom
| | - Caterina Ferraina
- Department of Biology, University of Rome Tor Vergata, 00144, Rome, Italy
- IRCCS- Regina Elena, National Cancer Institute, 00133, Rome, Italy
| | - Daniela Strobbe
- Department of Biology, University of Rome Tor Vergata, 00144, Rome, Italy
| | - Claire Russell
- Department of Comparative Biomedical Sciences, Royal Veterinary College, NW1 0TU, London, United Kingdom
| | - Michelangelo Campanella
- Department of Comparative Biomedical Sciences, Royal Veterinary College, NW1 0TU, London, United Kingdom.
- IRCCS- Regina Elena, National Cancer Institute, 00133, Rome, Italy.
- University College London Consortium for Mitochondrial Research, University College London, WC1 6BT, London, United Kingdom.
| |
Collapse
|
36
|
Guntur AR, Gerencser AA, Le PT, DeMambro VE, Bornstein SA, Mookerjee SA, Maridas DE, Clemmons DE, Brand MD, Rosen CJ. Osteoblast-like MC3T3-E1 Cells Prefer Glycolysis for ATP Production but Adipocyte-like 3T3-L1 Cells Prefer Oxidative Phosphorylation. J Bone Miner Res 2018; 33:1052-1065. [PMID: 29342317 PMCID: PMC6002892 DOI: 10.1002/jbmr.3390] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/28/2017] [Accepted: 01/07/2018] [Indexed: 12/14/2022]
Abstract
Mesenchymal stromal cells (MSCs) are early progenitors that can differentiate into osteoblasts, chondrocytes, and adipocytes. We hypothesized that osteoblasts and adipocytes utilize distinct bioenergetic pathways during MSC differentiation. To test this hypothesis, we compared the bioenergetic profiles of preosteoblast MC3T3-E1 cells and calvarial osteoblasts with preadipocyte 3T3L1 cells, before and after differentiation. Differentiated MC3T3-E1 osteoblasts met adenosine triphosphate (ATP) demand mainly by glycolysis with minimal reserve glycolytic capacity, whereas nondifferentiated cells generated ATP through oxidative phosphorylation. A marked Crabtree effect (acute suppression of respiration by addition of glucose, observed in both MC3T3-E1 and calvarial osteoblasts) and smaller mitochondrial membrane potential in the differentiated osteoblasts, particularly those incubated at high glucose concentrations, indicated a suppression of oxidative phosphorylation compared with nondifferentiated osteoblasts. In contrast, both nondifferentiated and differentiated 3T3-L1 adipocytes met ATP demand primarily by oxidative phosphorylation despite a large unused reserve glycolytic capacity. In sum, we show that nondifferentiated precursor cells prefer to use oxidative phosphorylation to generate ATP; when they differentiate to osteoblasts, they gain a strong preference for glycolytic ATP generation, but when they differentiate to adipocytes, they retain the strong preference for oxidative phosphorylation. Unique metabolic programming in mesenchymal progenitor cells may influence cell fate and ultimately determine the degree of bone formation and/or the development of marrow adiposity. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Anyonya R Guntur
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Akos A Gerencser
- Department of Biological and Pharmaceutical Sciences, Touro University California College of Pharmacy, Vallejo, CA, USA.,Buck Institute for Research on Aging, Novato, CA, USA
| | - Phuong T Le
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Victoria E DeMambro
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Sheila A Bornstein
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Shona A Mookerjee
- Department of Biological and Pharmaceutical Sciences, Touro University California College of Pharmacy, Vallejo, CA, USA.,Buck Institute for Research on Aging, Novato, CA, USA
| | - David E Maridas
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, ME, USA.,Harvard School of Dental Medicine, Boston, MA, USA
| | | | - Martin D Brand
- Department of Biological and Pharmaceutical Sciences, Touro University California College of Pharmacy, Vallejo, CA, USA.,Buck Institute for Research on Aging, Novato, CA, USA
| | - Clifford J Rosen
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, ME, USA
| |
Collapse
|
37
|
Control of pancreatic β-cell bioenergetics. Biochem Soc Trans 2018; 46:555-564. [PMID: 29666215 DOI: 10.1042/bst20170505] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/06/2018] [Accepted: 03/08/2018] [Indexed: 12/12/2022]
Abstract
The canonical model of glucose-stimulated insulin secretion (GSIS) by pancreatic β-cells predicts a glucose-induced rise in the cytosolic ATP/ADP ratio. Such bioenergetic sensitivity to metabolic fuel is unusual as it implies that ATP flux is governed, to a significant extent, by ATP supply, while it is predominantly demand-driven in other cell types. Metabolic control is generally shared between different processes, but potential control of ATP consumption over β-cell bioenergetics has been largely ignored to date. The present paper offers a brief overview of experimental evidence that demonstrates ATP flux control by glucose-fuelled oxidative phosphorylation. Based on old and new data, it is argued that ATP supply does not hold exclusive control over ATP flux, but shares it with ATP demand, and that the distribution of control is flexible. Quantification of the bioenergetic control distribution will be important from basic and clinical perspectives, but precise measurement of the cytosolic ATP/ADP ratio is complicated by adenine nucleotide compartmentalisation. Metabolic control analysis of β-cell bioenergetics will likely clarify the mechanisms by which glucose and fatty acids amplify and potentiate GSIS, respectively. Moreover, such analysis may offer hints as to how ATP flux control shifts from ATP supply to ATP demand during the development of type 2 diabetes, and why prolonged sulfonylurea treatment causes β-cell deterioration.
Collapse
|
38
|
Lees JG, Gardner DK, Harvey AJ. Mitochondrial and glycolytic remodeling during nascent neural differentiation of human pluripotent stem cells. Development 2018; 145:dev.168997. [DOI: 10.1242/dev.168997] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/18/2018] [Indexed: 12/29/2022]
Abstract
As human pluripotent stem cells (hPSC) exit pluripotency, they reportedly switch from glycolytic energy production to primarily mitochondrial metabolism. Here we show that upon ectoderm differentiation to neural precursor cells (NPC), hPSC increase glycolytic rate, ultimately producing more carbon as lactate than consumed as glucose. However, glucose, lactate, and pyruvate utilization decrease to half their PSC levels by the NPC stage, establishing a more quiescent metabolic state. Furthermore, we characterize a metabolic exit event within the first 24 hours of differentiation, plausibly necessary to transition hPSC out of the pluripotent state. Contrary to the current thinking, mitochondrial mass does not increase during NPC induction. Instead, mitochondrial DNA copies and mitochondrial activity decrease suggesting that mitochondrial metabolism either requires suppression, or is not required, for nascent ectoderm differentiation. Our work, therefore, contrasts with the dogma that the hPSC state is primarily glycolytic, transitioning to an oxidative metabolism upon the loss of the pluripotent state. Instead, we show that a heightened glycolytic metabolism is acquired, indicating that metabolic modulation of both glycolysis and mitochondrial metabolism occurs during exit from pluripotency in hPSC.
Collapse
Affiliation(s)
- Jarmon G. Lees
- School of BioSciences, University of Melbourne, Parkville 3010, Victoria, Australia
| | - David K. Gardner
- School of BioSciences, University of Melbourne, Parkville 3010, Victoria, Australia
| | - Alexandra J. Harvey
- School of BioSciences, University of Melbourne, Parkville 3010, Victoria, Australia
| |
Collapse
|
39
|
Metabolic Pathways of the Warburg Effect in Health and Disease: Perspectives of Choice, Chain or Chance. Int J Mol Sci 2017; 18:ijms18122755. [PMID: 29257069 PMCID: PMC5751354 DOI: 10.3390/ijms18122755] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 12/13/2022] Open
Abstract
Focus on the Warburg effect, initially descriptive of increased glycolysis in cancer cells, has served to illuminate mitochondrial function in many other pathologies. This review explores our current understanding of the Warburg effect’s role in cancer, diabetes and ageing. We highlight how it can be regulated through a chain of oncogenic events, as a chosen response to impaired glucose metabolism or by chance acquisition of genetic changes associated with ageing. Such chain, choice or chance perspectives can be extended to help understand neurodegeneration, such as Alzheimer’s disease, providing clues with scope for therapeutic intervention. It is anticipated that exploration of Warburg effect pathways in extreme conditions, such as deep space, will provide further insights crucial for comprehending complex metabolic diseases, a frontier for medicine that remains equally significant for humanity in space and on earth.
Collapse
|
40
|
Hall ME, Mohtaram NK, Willerth SM, Edwards R. Modeling the behavior of human induced pluripotent stem cells seeded on melt electrospun scaffolds. J Biol Eng 2017; 11:38. [PMID: 29075321 PMCID: PMC5651653 DOI: 10.1186/s13036-017-0080-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/20/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human induced pluripotent stem cells (hiPSCs) can form any tissue found in the body, making them attractive for regenerative medicine applications. Seeding hiPSC aggregates into biomaterial scaffolds can control their differentiation into specific tissue types. Here we develop and analyze a mathematical model of hiPSC aggregate behavior when seeded on melt electrospun scaffolds with defined topography. RESULTS We used ordinary differential equations to model the different cellular populations (stem, progenitor, differentiated) present in our scaffolds based on experimental results and published literature. Our model successfully captures qualitative features of the cellular dynamics observed experimentally. We determined the optimal parameter sets to maximize specific cellular populations experimentally, showing that a physiologic oxygen level (∼ 5%) increases the number of neural progenitors and differentiated neurons compared to atmospheric oxygen levels (∼ 21%) and a scaffold porosity of ∼ 63% maximizes aggregate size. CONCLUSIONS Our mathematical model determined the key factors controlling hiPSC behavior on melt electrospun scaffolds, enabling optimization of experimental parameters.
Collapse
Affiliation(s)
- Meghan E. Hall
- Department of Mathematics and Statistics, University of Victoria, Victoria, Canada
| | | | - Stephanie M. Willerth
- Department of Mechanical Engineering, University of Victoria, Victoria, Canada
- Division of Medical Sciences, University of Victoria, Victoria, Canada
- Department of Biochemistry, University of British Columbia, Vancouver, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada
- Centre for Biomedical Research, University of Victoria, Victoria, Canada
| | - Roderick Edwards
- Department of Mathematics and Statistics, University of Victoria, Victoria, Canada
- Centre for Biomedical Research, University of Victoria, Victoria, Canada
| |
Collapse
|
41
|
Pluripotent Stem Cell Metabolism and Mitochondria: Beyond ATP. Stem Cells Int 2017; 2017:2874283. [PMID: 28804500 PMCID: PMC5540363 DOI: 10.1155/2017/2874283] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/07/2017] [Indexed: 12/19/2022] Open
Abstract
Metabolism is central to embryonic stem cell (ESC) pluripotency and differentiation, with distinct profiles apparent under different nutrient milieu, and conditions that maintain alternate cell states. The significance of altered nutrient availability, particularly oxygen, and metabolic pathway activity has been highlighted by extensive studies of their impact on preimplantation embryo development, physiology, and viability. ESC similarly modulate their metabolism in response to altered metabolite levels, with changes in nutrient availability shown to have a lasting impact on derived cell identity through the regulation of the epigenetic landscape. Further, the preferential use of glucose and anaplerotic glutamine metabolism serves to not only support cell growth and proliferation but also minimise reactive oxygen species production. However, the perinuclear localisation of spherical, electron-poor mitochondria in ESC is proposed to sustain ESC nuclear-mitochondrial crosstalk and a mitochondrial-H2O2 presence, to facilitate signalling to support self-renewal through the stabilisation of HIFα, a process that may be favoured under physiological oxygen. The environment in which a cell is grown is therefore a critical regulator and determinant of cell fate, with metabolism, and particularly mitochondria, acting as an interface between the environment and the epigenome.
Collapse
|
42
|
Abstract
The pancreatic β-cell secretes insulin in response to elevated plasma glucose. This review applies an external bioenergetic critique to the central processes of glucose-stimulated insulin secretion, including glycolytic and mitochondrial metabolism, the cytosolic adenine nucleotide pool, and its interaction with plasma membrane ion channels. The control mechanisms responsible for the unique responsiveness of the cell to glucose availability are discussed from bioenergetic and metabolic control standpoints. The concept of coupling factor facilitation of secretion is critiqued, and an attempt is made to unravel the bioenergetic basis of the oscillatory mechanisms controlling secretion. The need to consider the physiological constraints operating in the intact cell is emphasized throughout. The aim is to provide a coherent pathway through an extensive, complex, and sometimes bewildering literature, particularly for those unfamiliar with the field.
Collapse
Affiliation(s)
- David G Nicholls
- Buck Institute for Research on Aging, Novato, California; and Department of Clinical Sciences, Unit of Molecular Metabolism, Lund University Diabetes Centre, Malmo, Sweden
| |
Collapse
|
43
|
Mitochondrial Dynamics: In Cell Reprogramming as It Is in Cancer. Stem Cells Int 2017; 2017:8073721. [PMID: 28484497 PMCID: PMC5412136 DOI: 10.1155/2017/8073721] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/19/2017] [Indexed: 12/29/2022] Open
Abstract
Somatic cells can be reprogrammed into a pluripotent cellular state similar to that of embryonic stem cells. Given the significant physiological differences between the somatic and pluripotent cells, cell reprogramming is associated with a profound reorganization of the somatic phenotype at all levels. The remodeling of mitochondrial morphology is one of these dramatic changes that somatic cells have to undertake during cell reprogramming. Somatic cells transform their tubular and interconnected mitochondrial network to the fragmented and isolated organelles found in pluripotent stem cells early during cell reprogramming. Accordingly, mitochondrial fission, the process whereby the mitochondria divide, plays an important role in the cell reprogramming process. Here, we present an overview of the importance of mitochondrial fission in both cell reprogramming and cellular transformation.
Collapse
|
44
|
Kuo YC, Rajesh R. Nerve growth factor-loaded heparinized cationic solid lipid nanoparticles for regulating membrane charge of induced pluripotent stem cells during differentiation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:680-689. [PMID: 28532079 DOI: 10.1016/j.msec.2017.03.303] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 03/27/2017] [Accepted: 03/31/2017] [Indexed: 01/12/2023]
Abstract
Nerve growth factor (NGF)-loaded heparinized cationic solid lipid nanoparticles (NGF-loaded HCSLNs) were developed using heparin-stearic acid conjugate, cacao butter, cholesterol, stearylamine (SA), and esterquat 1 (EQ 1). The effect of cationic lipids and lipid matrix composition on the particle size, particle structure, surface molecular composition, chemical structure, electrophoretic mobility, and zeta potential of HCSLNs was investigated. The effect of HCSLNs on the membrane charge of induced pluripotent stem cells (iPSCs) was also studied. The results indicated that the average diameter of HCSLNs was 90-240nm and the particle size of HCSLNs with EQ 1 was smaller than that with SA. The zeta potential and electrophoresis analysis showed that HCSLNs with SA had a positively charged potential and HCSLNs with EQ 1 had a negatively charged potential at pH7.4. The high-resolution transmission electron microscope confirmed the loading of NGF on the surface of HCSLNs. Differentiation of iPSCs using NGF-loaded HCSLNs with EQ 1 exhibited higher absolute values of the electrophoretic mobility and zeta potential than differentiation using NGF-loaded HCSLNs with SA. The immunochemical staining of neuronal nuclei revealed that NGF-loaded HCSLNs can be used for differentiation of iPSCs into neurons. NGF-loaded HCSLNs with EQ 1 had higher viability of iPSCs than NGF-loaded HCSLNs with SA. NGF-loaded HCSLNs with EQ 1 may be promising formulation to regulate the membrane charge of iPSCs during neuronal differentiation.
Collapse
Affiliation(s)
- Yung-Chih Kuo
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan 62102, Republic of China.
| | - Rajendiran Rajesh
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan 62102, Republic of China
| |
Collapse
|
45
|
Mookerjee SA, Gerencser AA, Nicholls DG, Brand MD. Quantifying intracellular rates of glycolytic and oxidative ATP production and consumption using extracellular flux measurements. J Biol Chem 2017; 292:7189-7207. [PMID: 28270511 DOI: 10.1074/jbc.m116.774471] [Citation(s) in RCA: 300] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/25/2017] [Indexed: 11/06/2022] Open
Abstract
Partitioning of ATP generation between glycolysis and oxidative phosphorylation is central to cellular bioenergetics but cumbersome to measure. We describe here how rates of ATP generation by each pathway can be calculated from simultaneous measurements of extracellular acidification and oxygen consumption. We update theoretical maximum ATP yields by mitochondria and cells catabolizing different substrates. Mitochondrial P/O ratios (mol of ATP generated per mol of [O] consumed) are 2.73 for oxidation of pyruvate plus malate and 1.64 for oxidation of succinate. Complete oxidation of glucose by cells yields up to 33.45 ATP/glucose with a maximum P/O of 2.79. We introduce novel indices to quantify bioenergetic phenotypes. The glycolytic index reports the proportion of ATP production from glycolysis and identifies cells as primarily glycolytic (glycolytic index > 50%) or primarily oxidative. The Warburg effect is a chronic increase in glycolytic index, quantified by the Warburg index. Additional indices quantify the acute flexibility of ATP supply. The Crabtree index and Pasteur index quantify the responses of oxidative and glycolytic ATP production to alterations in glycolysis and oxidative reactions, respectively; the supply flexibility index quantifies overall flexibility of ATP supply; and the bioenergetic capacity quantifies the maximum rate of total ATP production. We illustrate the determination of these indices using C2C12 myoblasts. Measurement of ATP use revealed no significant preference for glycolytic or oxidative ATP by specific ATP consumers. Overall, we demonstrate how extracellular fluxes quantitatively reflect intracellular ATP turnover and cellular bioenergetics. We provide a simple spreadsheet to calculate glycolytic and oxidative ATP production rates from raw extracellular acidification and respiration data.
Collapse
Affiliation(s)
- Shona A Mookerjee
- From Touro University California College of Pharmacy, Vallejo, California 94592 and .,the Buck Institute for Research on Aging, Novato, California 94945
| | - Akos A Gerencser
- the Buck Institute for Research on Aging, Novato, California 94945
| | - David G Nicholls
- the Buck Institute for Research on Aging, Novato, California 94945
| | - Martin D Brand
- From Touro University California College of Pharmacy, Vallejo, California 94592 and.,the Buck Institute for Research on Aging, Novato, California 94945
| |
Collapse
|
46
|
Konze SA, Werneburg S, Oberbeck A, Olmer R, Kempf H, Jara-Avaca M, Pich A, Zweigerdt R, Buettner FFR. Proteomic Analysis of Human Pluripotent Stem Cell Cardiomyogenesis Revealed Altered Expression of Metabolic Enzymes and PDLIM5 Isoforms. J Proteome Res 2017; 16:1133-1149. [DOI: 10.1021/acs.jproteome.6b00534] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sarah A. Konze
- Institute
of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany
- REBIRTH
Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| | - Sebastian Werneburg
- Institute
of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany
- REBIRTH
Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| | - Astrid Oberbeck
- Institute
of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany
- REBIRTH
Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| | - Ruth Olmer
- Leibniz
Research Laboratories for Biotechnology and Artificial Organs, Department
of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
- REBIRTH
Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| | - Henning Kempf
- Leibniz
Research Laboratories for Biotechnology and Artificial Organs, Department
of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
- REBIRTH
Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| | - Monica Jara-Avaca
- Leibniz
Research Laboratories for Biotechnology and Artificial Organs, Department
of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
- REBIRTH
Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| | - Andreas Pich
- Institute
of Toxicology, Core Facility Proteomics, Hannover Medical School, 30625 Hannover, Germany
| | - Robert Zweigerdt
- Leibniz
Research Laboratories for Biotechnology and Artificial Organs, Department
of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
- REBIRTH
Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| | - Falk F. R. Buettner
- Institute
of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany
- REBIRTH
Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
47
|
Ghildiyal R, Sen E. Concerted action of histone methyltransferases G9a and PRMT-1 regulates PGC-1α-RIG-I axis in IFNγ treated glioma cells. Cytokine 2017; 89:185-193. [PMID: 26725954 DOI: 10.1016/j.cyto.2015.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/03/2015] [Accepted: 12/10/2015] [Indexed: 12/22/2022]
Abstract
IFNγ induced de-differentiation markers are negatively regulated by retinoic acid inducible gene (RIG-I) in glioma cells. In addition to RIG-I, IFNγ treatment increased H3K9me2; histone methyltransferases (HMTs) G9a and protein arginine methyltransferase-1 (PRMT-1) levels. While G9a inhibition further increased IFNγ induced RIG-I, PRMT-1 inhibition abrogated IFNγ elevated RIG-I levels. IFNγ induced Sp1 and NFκB served as negative regulators of RIG-I, with decreased occupancy of Sp1 and NFκB observed on the RIG-I promoter. A diminished H3K9Me2 enrichment was observed at the NFκB but not at Sp-1 binding site. IFNγ induced PPAR gamma coactivator-1 alpha (PGC-1α) positively regulated RIG-I; with PRMT-1 and G9a affecting PGC-1α in a counter-regulatory manner. These findings demonstrate how concerted action of HMTs aid PGC-1α driven RIG-I for the sustenance of glioma cells in a de-differentiated state.
Collapse
Affiliation(s)
- Ruchi Ghildiyal
- National Brain Research Centre, Manesar 122 051, Haryana, India
| | - Ellora Sen
- National Brain Research Centre, Manesar 122 051, Haryana, India.
| |
Collapse
|
48
|
Zhao ZR, Yu WD, Shi C, Liang R, Chen X, Feng X, Zhang X, Mu Q, Shen H, Guo JZ. Correlation between receptor-interacting protein 140 expression and directed differentiation of human embryonic stem cells into neural stem cells. Neural Regen Res 2017; 12:118-124. [PMID: 28250757 PMCID: PMC5319216 DOI: 10.4103/1673-5374.198997] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Overexpression of receptor-interacting protein 140 (RIP140) promotes neuronal differentiation of N2a cells via extracellular regulated kinase 1/2 (ERK1/2) signaling. However, involvement of RIP140 in human neural differentiation remains unclear. We found both RIP140 and ERK1/2 expression increased during neural differentiation of H1 human embryonic stem cells. Moreover, RIP140 negatively correlated with stem cell markers Oct4 and Sox2 during early stages of neural differentiation, and positively correlated with the neural stem cell marker Nestin during later stages. Thus, ERK1/2 signaling may provide the molecular mechanism by which RIP140 takes part in neural differentiation to eventually affect the number of neurons produced.
Collapse
Affiliation(s)
- Zhu-Ran Zhao
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
| | - Wei-Dong Yu
- Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China
| | - Cheng Shi
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China
| | - Rong Liang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China
| | - Xi Chen
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China
| | - Xiao Feng
- Department of Pediatrics, Peking University International Hospital, Beijing, China
| | - Xue Zhang
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
| | - Qing Mu
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
| | - Huan Shen
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China
| | - Jing-Zhu Guo
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
| |
Collapse
|
49
|
McKeown CR, Thompson CK, Cline HT. Reversible developmental stasis in response to nutrient availability in the Xenopus laevis central nervous system. ACTA ACUST UNITED AC 2016; 220:358-368. [PMID: 27875263 DOI: 10.1242/jeb.151043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/04/2016] [Indexed: 12/31/2022]
Abstract
Many organisms confront intermittent nutrient restriction (NR), but the mechanisms to cope with nutrient fluctuations during development are not well understood. This is particularly true of the brain, the development and function of which is energy intensive. Here we examine the effects of nutrient availability on visual system development in Xenopus laevis tadpoles. During the first week of development, tadpoles draw nutrients from maternally provided yolk. Upon yolk depletion, animals forage for food. By altering access to external nutrients after yolk depletion, we identified a period of reversible stasis during tadpole development. We demonstrate that NR results in developmental stasis characterized by a decrease in overall growth of the animals, a failure to progress through developmental stages, and a decrease in volume of the optic tectum. During NR, neural progenitors virtually cease proliferation, but tadpoles swim and behave normally. Introducing food after temporary NR increased neural progenitor cell proliferation more than 10-fold relative to NR tadpoles, and cell proliferation was comparable to that of fed counterparts 1 week after delayed feeding. Delayed feeding also rescued NR-induced body length and tectal volume deficits and partially rescued developmental progression defects. Tadpoles recover from developmental stasis if food is provided within the first 9 days of NR, after which access to food fails to increase cell proliferation. These results show that early stages of tadpole brain development are acutely sensitive to fluctuations in nutrient availability and that NR induces developmental stasis from which animals can recover if food becomes available within a critical window.
Collapse
Affiliation(s)
- C R McKeown
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - C K Thompson
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - H T Cline
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
50
|
Zhu L, Gomez-Duran A, Saretzki G, Jin S, Tilgner K, Melguizo-Sanchis D, Anyfantis G, Al-Aama J, Vallier L, Chinnery P, Lako M, Armstrong L. The mitochondrial protein CHCHD2 primes the differentiation potential of human induced pluripotent stem cells to neuroectodermal lineages. J Cell Biol 2016; 215:187-202. [PMID: 27810911 PMCID: PMC5084643 DOI: 10.1083/jcb.201601061] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 09/19/2016] [Indexed: 01/09/2023] Open
Abstract
Human induced pluripotent stem cell (hiPSC) utility is limited by variations in the ability of these cells to undergo lineage-specific differentiation. We have undertaken a transcriptional comparison of human embryonic stem cell (hESC) lines and hiPSC lines and have shown that hiPSCs are inferior in their ability to undergo neuroectodermal differentiation. Among the differentially expressed candidates between hESCs and hiPSCs, we identified a mitochondrial protein, CHCHD2, whose expression seems to correlate with neuroectodermal differentiation potential of pluripotent stem cells. We provide evidence that hiPSC variability with respect to CHCHD2 expression and differentiation potential is caused by clonal variation during the reprogramming process and that CHCHD2 primes neuroectodermal differentiation of hESCs and hiPSCs by binding and sequestering SMAD4 to the mitochondria, resulting in suppression of the activity of the TGFβ signaling pathway. Using CHCHD2 as a marker for assessing and comparing the hiPSC clonal and/or line differentiation potential provides a tool for large scale differentiation and hiPSC banking studies.
Collapse
Affiliation(s)
- Lili Zhu
- Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, England, UK
| | - Aurora Gomez-Duran
- Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, England, UK.,Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, England, UK
| | - Gabriele Saretzki
- Institute for Ageing and Health, Newcastle University, Newcastle NE1 3BZ, England, UK
| | - Shibo Jin
- Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, England, UK
| | - Katarzyna Tilgner
- Wellcome Trust-Medical Research Council Stem Cell Institute, Hinxton, Cambridge CB10 1SA, England, UK.,Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, England, UK
| | | | - Georgios Anyfantis
- Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, England, UK
| | - Jumana Al-Aama
- Princess Al Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ludovic Vallier
- Wellcome Trust-Medical Research Council Stem Cell Institute, Hinxton, Cambridge CB10 1SA, England, UK
| | - Patrick Chinnery
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, England, UK
| | - Majlinda Lako
- Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, England, UK
| | - Lyle Armstrong
- Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, England, UK
| |
Collapse
|