1
|
Freitas-Ribeiro S, Diogo GS, Oliveira C, Martins A, Silva TH, Jarnalo M, Horta R, Reis RL, Pirraco RP. Growth Factor-Free Vascularization of Marine-Origin Collagen Sponges Using Cryopreserved Stromal Vascular Fractions from Human Adipose Tissue. Mar Drugs 2022; 20:md20100623. [PMID: 36286447 PMCID: PMC9604698 DOI: 10.3390/md20100623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/19/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
The successful integration of transplanted three-dimensional tissue engineering (TE) constructs depends greatly on their rapid vascularization. Therefore, it is essential to address this vascularization issue in the initial design of constructs for perfused tissues. Two of the most important variables in this regard are scaffold composition and cell sourcing. Collagens with marine origins overcome some issues associated with mammal-derived collagen while maintaining their advantages in terms of biocompatibility. Concurrently, the freshly isolated stromal vascular fraction (SVF) of adipose tissue has been proposed as an advantageous cell fraction for vascularization purposes due to its highly angiogenic properties, allowing extrinsic angiogenic growth factor-free vascularization strategies for TE applications. In this study, we aimed at understanding whether marine collagen 3D matrices could support cryopreserved human SVF in maintaining intrinsic angiogenic properties observed for fresh SVF. For this, cryopreserved human SVF was seeded on blue shark collagen sponges and cultured up to 7 days in a basal medium. The secretome profile of several angiogenesis-related factors was studied throughout culture times and correlated with the expression pattern of CD31 and CD146, which showed the formation of a prevascular network. Upon in ovo implantation, increased vessel recruitment was observed in prevascularized sponges when compared with sponges without SVF cells. Immunohistochemistry for CD31 demonstrated the improved integration of prevascularized sponges within chick chorioalantoic membrane (CAM) tissues, while in situ hybridization showed human cells lining blood vessels. These results demonstrate the potential of using cryopreserved SVF combined with marine collagen as a streamlined approach to improve the vascularization of TE constructs.
Collapse
Affiliation(s)
- Sara Freitas-Ribeiro
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| | - Gabriela S. Diogo
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| | - Catarina Oliveira
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| | - Albino Martins
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| | - Tiago H. Silva
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| | - Mariana Jarnalo
- Department of Plastic and Reconstructive Surgery, and Burn Unity, Centro Hospitalar de São João, 4200-319 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Ricardo Horta
- Department of Plastic and Reconstructive Surgery, and Burn Unity, Centro Hospitalar de São João, 4200-319 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| | - Rogério P. Pirraco
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
- Correspondence:
| |
Collapse
|
2
|
Pediatric Sleep Apnea Syndrome: An Update. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2016; 4:852-61. [PMID: 27372597 DOI: 10.1016/j.jaip.2016.02.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/17/2016] [Accepted: 02/26/2016] [Indexed: 01/04/2023]
Abstract
Obstructive sleep apnea syndrome (OSAS) may be central neurologic (<5%) or obstructive (>95%) in origin and is a relatively prevalent condition in children. It affects 1%-5% of children aged 2-8 years and is caused by a variety of different pathophysiologic abnormalities. Cardiovascular, metabolic, and neurocognitive comorbidities can occur in both children and adults when left untreated. It also can cause severe behavioral problems in children. The American Academy of Pediatrics recommends that all children be screened with an appropriate history and physical examination for symptoms and signs suggestive of OSAS. The diagnosis is primarily made clinically and confirmed by polysomnographic findings. Treatment depends on the child's age, underlying medical problems, polysomnography findings, and whether or not there is upper airway obstruction usually secondary to enlarged adenoids and/or tonsils, allergic and nonallergic rhinitis, acute and chronic sinusitis, and other upper airway pathology. If enlarged adenoid or tonsils or both conditions exist, an adenoidectomy, tonsillectomy, or adenotonsillectomy remains the treatment of choice. Pharmacotherapy of OSAS has shown some effect in children with mild symptoms. This paper reviews the prevalence, pathophysiology, clinical presentation, diagnosis, and treatment of OSAS.
Collapse
|
3
|
Markiewicz M, Panneerselvam K, Marks N. Role of Klotho in migration and proliferation of human dermal microvascular endothelial cells. Microvasc Res 2016; 107:76-82. [PMID: 27260080 DOI: 10.1016/j.mvr.2016.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 05/27/2016] [Accepted: 05/27/2016] [Indexed: 01/15/2023]
Abstract
PURPOSE To examine the possible role of Klotho (Kl) in human microvasculature. METHODS The expression level of Kl in primary human dermal microvascular endothelial cells (HDMECs) and primary human dermal fibroblasts (HFb) was detected by real-time polymerase chain reaction amplification (qRT-PCR), Western blot analyses and immunohistochemistry. Migration of HDMECs and HFb was examined in monolayer wound healing "scratch assay" and Transwell assay. Proliferation of these cells was examined using Cell Proliferation BrdU incorporation assay. RESULTS Our results have shown that downregulation of Kl abrogated HDMECs migration after 48h. On the other hand, migration of HFb significantly increased after blocking Kl. Lack of Kl decreased expression of genes involved in the activation of endothelial cells and enhanced expression of genes involved in extracellular matrix remodeling and organization of connective tissue. CONCLUSIONS This study for the first time provides the evidence that Kl is expressed in HDMECs and HFb. Additionally, we have demonstrated that Kl is implicated in the process of angiogenesis of human dermal microvasculature.
Collapse
Affiliation(s)
- Margaret Markiewicz
- Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, SC 29425, United States.
| | - Kavin Panneerselvam
- Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Natalia Marks
- NYP - Columbia University Medical Center, New York, NY 10032, United States
| |
Collapse
|
4
|
Keglowich LF, Borger P. The Three A's in Asthma - Airway Smooth Muscle, Airway Remodeling & Angiogenesis. Open Respir Med J 2015; 9:70-80. [PMID: 26106455 PMCID: PMC4475688 DOI: 10.2174/1874306401509010070] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 12/04/2022] Open
Abstract
Asthma affects more than 300 million people worldwide and its prevalence is still rising. Acute asthma attacks are characterized by severe symptoms such as breathlessness, wheezing, tightness of the chest, and coughing, which may lead to hospitalization or death. Besides the acute symptoms, asthma is characterized by persistent airway inflammation and airway wall remodeling. The term airway wall remodeling summarizes the structural changes in the airway wall: epithelial cell shedding, goblet cell hyperplasia, hyperplasia and hypertrophy of the airway smooth muscle (ASM) bundles, basement membrane thickening and increased vascular density. Airway wall remodeling starts early in the pathogenesis of asthma and today it is suggested that remodeling is a prerequisite for other asthma pathologies. The beneficial effect of bronchial thermoplasty in reducing asthma symptoms, together with the increased potential of ASM cells of asthmatics to produce inflammatory and angiogenic factors, indicate that the ASM cell is a major effector cell in the pathology of asthma. In the present review we discuss the ASM cell and its role in airway wall remodeling and angiogenesis.
Collapse
Affiliation(s)
- L F Keglowich
- Department of Biomedicine, University Hospital Basel, Switzerland
| | - P Borger
- Department of Biomedicine, University Hospital Basel, Switzerland
| |
Collapse
|
5
|
Harkness LM, Ashton AW, Burgess JK. Asthma is not only an airway disease, but also a vascular disease. Pharmacol Ther 2014; 148:17-33. [PMID: 25460035 DOI: 10.1016/j.pharmthera.2014.11.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 07/29/2014] [Indexed: 12/24/2022]
Abstract
Multiple studies have identified an expansion and morphological dysregulation of the bronchial vascular network in the airways of asthmatics. Increased number, size and density of blood vessels, as well as vascular leakage and plasma engorgement, have been reported in the airways of patients with all grades of asthma from mild to fatal. This neovascularisation is an increasingly commonly reported feature of airway remodelling; however, the pathophysiological impact of the increased vasculature in the bronchial wall and its significance to pulmonary function in asthma are unrecognised at this time. Multiple factors capable of influencing the development and persistence of the vascular network exist within asthmatic airway tissue. These include structural components of the altered extracellular matrix (ECM), imbalance of proteases and their endogenous inhibitors, release of active matrikines and the dysregulated levels of both soluble and matrix sequestered growth factors. This review will explore the features of the asthmatic airway which influence the development and persistence of the increased vascular network, as well as the effect of enhanced tissue perfusion on chronic inflammation and airway dynamics. The response of cells of the airways to the altered vascular profile and the subsequent influence on the features of airway remodelling will also be highlighted. We will explore the failure of current asthma therapeutics in "normalising" this vascular remodelling. Finally, we will summarize the outcomes of recent clinical trials which provide hope that anti-angiogenic therapies may be a potent asthma-resolving class of drugs and provide a new approach to asthma management in the future.
Collapse
Affiliation(s)
- Louise M Harkness
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia; Discipline of Pharmacology, The University of Sydney, Sydney, NSW, Australia
| | - Anthony W Ashton
- Division of Perinatal Research, Kolling Institute, Sydney, NSW, Australia
| | - Janette K Burgess
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia; Discipline of Pharmacology, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
6
|
Fiaturi N, Castellot JJ, Nielsen HC. Neuregulin-ErbB4 signaling in the developing lung alveolus: a brief review. J Cell Commun Signal 2014; 8:105-11. [PMID: 24878836 DOI: 10.1007/s12079-014-0233-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 05/16/2014] [Indexed: 11/26/2022] Open
Abstract
Lung immaturity is the major cause of morbidity and mortality in premature infants, especially those born <28 weeks gestation. Proper lung development from 23-28 weeks requires coordinated cell proliferation and differentiation. Infants born at this age are at high risk for respiratory distress syndrome (RDS), a lung disease characterized by insufficient surfactant production due to immaturity of the alveoli and its constituent cells in the lung. The ErbB4 receptor and its stimulation by neuregulin (NRG) plays a critical role in surfactant synthesis by alveolar type II epithelial cells. In this review, we first provide an introduction to normal human alveolar development, followed by a discussion of the neuregulin and ErbB4-mediated mechanisms regulating alveolar development and surfactant production.
Collapse
Affiliation(s)
- Najla Fiaturi
- Program in Pharmacology and Experimental Therapeutics, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA,
| | | | | |
Collapse
|
7
|
Effects of dried longan seed (Euphoria longana Lam.) extract on VEGF secretion and expression in colon cancer cells and angiogenesis in human umbilical vein endothelial cells. J Funct Foods 2013. [DOI: 10.1016/j.jff.2013.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
8
|
Physical break-down of the classical view on cancer cell invasion and metastasis. Eur J Cell Biol 2013; 92:89-104. [PMID: 23391781 DOI: 10.1016/j.ejcb.2012.12.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 12/12/2012] [Accepted: 12/23/2012] [Indexed: 11/23/2022] Open
Abstract
Eight classical hallmarks of cancer have been proposed and are well-defined by using biochemical or molecular genetic methods, but are not yet precisely defined by cellular biophysical processes. To define the malignant transformation of neoplasms and finally reveal the functional pathway, which enables cancer cells to promote cancer progression, these classical hallmarks of cancer require the inclusion of specific biomechanical properties of cancer cells and their microenvironment such as the extracellular matrix and embedded cells such as fibroblasts, macrophages or endothelial cells. Nonetheless a main novel ninth hallmark of cancer is still elusive in classical tumor biological reviews, which is the aspect of physics in cancer disease by the natural selection of an aggressive (highly invasive) subtype of cancer cells. The physical aspects can be analyzed by using state-of-the-art biophysical methods. Thus, this review will present current cancer research in a different light and will focus on novel physical methods to investigate the aggressiveness of cancer cells from a biophysicist's point of view. This may lead to novel insights into cancer disease and will overcome classical views on cancer. In addition, this review will discuss how physics of cancer can help to reveal whether cancer cells will invade connective tissue and metastasize. In particular, this review will point out how physics can improve, break-down or support classical approaches to examine tumor growth even across primary tumor boundaries, the invasion of single or collective cancer cells, transendothelial migration of cancer cells and metastasis in targeted organs. Finally, this review will show how physical measurements can be integrated into classical tumor biological analysis approaches. The insights into physical interactions between cancer cells, the primary tumor and the microenvironment may help to solve some "old" questions in cancer disease progression and may finally lead to novel approaches for development and improvement of cancer diagnostics and therapies.
Collapse
|
9
|
|
10
|
Giricz O, Lauer JL, Fields GB. Comparison of metalloproteinase protein and activity profiling. Anal Biochem 2011; 409:37-45. [PMID: 20920458 PMCID: PMC3298814 DOI: 10.1016/j.ab.2010.09.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 09/02/2010] [Accepted: 09/25/2010] [Indexed: 12/23/2022]
Abstract
Proteolytic enzymes play fundamental roles in many biological processes. Members of the matrix metalloproteinase (MMP) family have been shown to take part in processes crucial in disease progression. The current study used the ExcelArray Human MMP/TIMP Array to quantify MMP and tissue inhibitor of metalloproteinase (TIMP) production in the lysates and media of 14 cancer cell lines and 1 normal cell line. The overall patterns were very similar in terms of which MMPs and TIMPs were secreted in the media versus associated with the cells in the individual samples. However, more MMP was found in the media (in both amount and variety). TIMP-1 was produced in all cell lines. MMP activity assays with three different fluorescence resonance energy transfer (FRET) substrates were then used to determine whether protein production correlated with function for the WM-266-4 and BJ cell lines. Metalloproteinase activity was observed for both cell lines with a general MMP substrate (Knight SSP), consistent with protein production data. However, although both cell lines promoted the hydrolysis of a more selective MMP substrate (NFF-3), metalloproteinase activity was confirmed only in the BJ cell line. The use of inhibitors to confirm metalloproteinase activities pointed to the strengths and weaknesses of in situ FRET substrate assays.
Collapse
Affiliation(s)
- Orsi Giricz
- Department of Chemistry & Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
| | - Janelle L. Lauer
- Department of Biochemistry, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229
- Department of Molecular Therapeutics, Scripps Florida, 130 Scripps Way, 2A2, Jupiter, FL 33458
| | - Gregg B. Fields
- Department of Biochemistry, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229
| |
Collapse
|
11
|
Harijith A, Choo-Wing R, Cataltepe S, Yasumatsu R, Aghai ZH, Janér J, Andersson S, Homer RJ, Bhandari V. A role for matrix metalloproteinase 9 in IFNγ-mediated injury in developing lungs: relevance to bronchopulmonary dysplasia. Am J Respir Cell Mol Biol 2011; 44:621-30. [PMID: 21216975 DOI: 10.1165/rcmb.2010-0058oc] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We noted a marked increase in IFNγ mRNA in newborn (NB) murine lungs after exposure to hyperoxia. We sought to evaluate the role of IFNγ in lung injury in newborns. Using a unique triple-transgenic (TTG), IFNγ-overexpressing, lung-targeted, externally regulatable NB murine model, we describe a lung phenotype of impaired alveolarization, resembling human bronchopulmonary dysplasia (BPD). IFNγ-mediated abnormal lung architecture was associated with increased cell death and the upregulation of cell death pathway mediators caspases 3, 6, 8, and 9, and angiopoietin 2. Moreover, an increase was evident in cathepsins B, H, K, L, and S, and in matrix metalloproteinases (MMPs) 2, 9, 12, and 14. The IFNγ-mediated abnormal lung architecture was found to be MMP9-dependent, as indicated by the rescue of the IFNγ-induced pulmonary phenotype and survival during hyperoxia with a concomitant partial deficiency of MMP9. This result was concomitant with a decrease in caspases 3, 6, 8, and 9 and angiopoietin 2, but an increase in the expression of angiopoietin 1. In addition, NB IFNγ TTG mice exhibited significantly decreased survival during hyperoxia, compared with littermate controls. Furthermore, as evidence of clinical relevance, we show increased concentrations of the downstream targets of IFNγ chemokine (C-X-C motif) ligands (CXCL10 and CXCL11) in baboon and human lungs with BPD. IFNγ and its downstream targets may contribute significantly to the final common pathway of hyperoxia-induced injury in the developing lung and in human BPD.
Collapse
Affiliation(s)
- Anantha Harijith
- Division of Perinatal Medicine, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520-8064, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Logie JJ, Ali S, Marshall KM, Heck MMS, Walker BR, Hadoke PWF. Glucocorticoid-mediated inhibition of angiogenic changes in human endothelial cells is not caused by reductions in cell proliferation or migration. PLoS One 2010; 5:e14476. [PMID: 21217824 PMCID: PMC3013101 DOI: 10.1371/journal.pone.0014476] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 11/10/2010] [Indexed: 11/18/2022] Open
Abstract
Background Glucocorticoid-mediated inhibition of angiogenesis is important in physiology, pathophysiology and therapy. However, the mechanisms through which glucocorticoids inhibit growth of new blood vessels have not been established. This study addresses the hypothesis that physiological levels of glucocorticoids inhibit angiogenesis by directly preventing tube formation by endothelial cells. Methodology/Principal Findings Cultured human umbilical vein (HUVEC) and aortic (HAoEC) endothelial cells were used to determine the influence of glucocorticoids on tube-like structure (TLS) formation, and on cellular proliferation (5-bromo-2′-deoxyuridine (BrdU) incorporation), viability (ATP production) and migration (Boyden chambers). Dexamethasone or cortisol (at physiological concentrations) inhibited both basal and prostaglandin F2α (PGF2α)-induced and vascular endothelial growth factor (VEGF) stimulated TLS formation in endothelial cells (ECs) cultured on Matrigel, effects which were blocked with the glucocorticoid receptor antagonist RU38486. Glucocorticoids had no effect on EC viability, migration or proliferation. Time-lapse imaging showed that cortisol blocked VEGF-stimulated cytoskeletal reorganisation and initialisation of tube formation. Real time PCR suggested that increased expression of thrombospodin-1 contributed to glucocorticoid-mediated inhibition of TLS formation. Conclusions/Significance We conclude that glucocorticoids interact directly with glucocorticoid receptors on vascular ECs to inhibit TLS formation. This action, which was conserved in ECs from two distinct vascular territories, was due to alterations in cell morphology rather than inhibition of EC viability, migration or proliferation and may be mediated in part by induction of thrombospodin-1. These findings provide important insights into the anti-angiogenic action of endogenous glucocorticoids in health and disease.
Collapse
Affiliation(s)
- James J. Logie
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Sadaf Ali
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Kathryn M. Marshall
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Margarete M. S. Heck
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Brian R. Walker
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Patrick W. F. Hadoke
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
13
|
Hamsa TP, Kuttan G. Anti-angiogenic activity of Ipomoea obscura extract and Ipobscurine-A. Immunopharmacol Immunotoxicol 2010; 33:488-97. [PMID: 21058930 DOI: 10.3109/08923973.2010.531277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Ipomoea obscura (L.) Ker-Gawl, is a medicinal herb with indole alkaloids as an active constituent. In this study, we investigated the anti-angiogenic activity of I. obscura extract and one of its major compounds Ipobscurine-A (IPO-A). METHODS In vivo angiogenesis was induced by injecting B16F10 melanoma cells intradermally on the shaven ventral skin of C57BL/6 mice. In vitro experiments were conducted using human umbilical vein endothelial cells. RESULTS I. obscura and IPO-A significantly inhibited endothelial cell proliferation, migration, invasion, and tube formation in vitro. Vascular endothelial growth factor (VEGF)-induced sprouting of endothelial cells from rat aorta ex vivo was also inhibited. A marked decrease in the production of matrix metalloproteinases (MMPs) and the expressions of VEGF, cyclooxygenase-2, and nitric oxide synthase by B16F10 cells were observed after the treatment with the extract or IPO-A. Intraperitoneal administration of the extract significantly inhibited B16F10 melanoma cell line-induced neo-vessel formation in C57BL/6 mice in vivo. Analysis of serum cytokine profile clearly showed that extract significantly reduced the elevated levels of pro-inflammatory cytokines such as interleukins (IL)-1β, IL-6, tumor necrosis factor-α, and granulocyte-monocyte colony stimulating factor and the most potent angiogenic factor VEGF in animals. Serum NO level was also found to be significantly lowered by the administration of the extract. Anti-angiogenic factors such as TIMP-1 and IL-2 level were elevated in the extract-treated animals. CONCLUSION These data clearly demonstrate that I. obscura extract and IPO-A inhibit the tumor-specific angiogenesis by downregulating pro-angiogenic factors such as MMP, VEGF, and pro-inflammatory mediators and upregulating anti-angiogenic factors such as IL-2 and TIMP-1.
Collapse
Affiliation(s)
- T P Hamsa
- Department of Immunology, Amala Cancer Research Centre, Thrissur, Kerala, India
| | | |
Collapse
|
14
|
Zhu M, Bi X, Jia Q, Shangguan S. The possible mechanism for impaired angiogenesis after transient focal ischemia in type 2 diabetic GK rats: Different expressions of angiostatin and vascular endothelial growth factor. Biomed Pharmacother 2010; 64:208-13. [DOI: 10.1016/j.biopha.2009.08.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 08/24/2009] [Indexed: 01/22/2023] Open
|
15
|
Bennuru S, Nutman TB. Lymphangiogenesis and lymphatic remodeling induced by filarial parasites: implications for pathogenesis. PLoS Pathog 2009; 5:e1000688. [PMID: 20011114 PMCID: PMC2781552 DOI: 10.1371/journal.ppat.1000688] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Accepted: 11/11/2009] [Indexed: 01/01/2023] Open
Abstract
Even in the absence of an adaptive immune system in murine models, lymphatic dilatation and dysfunction occur in filarial infections, although severe irreversible lymphedema and elephantiasis appears to require an intact adaptive immune response in human infections. To address how filarial parasites and their antigens influence the lymphatics directly, human lymphatic endothelial cells were exposed to filarial antigens, live parasites, or infected patient serum. Live filarial parasites or filarial antigens induced both significant LEC proliferation and differentiation into tube-like structures in vitro. Moreover, serum from patently infected (microfilaria positive) patients and those with longstanding chronic lymphatic obstruction induced significantly increased LEC proliferation compared to sera from uninfected individuals. Differentiation of LEC into tube-like networks was found to be associated with significantly increased levels of matrix metalloproteases and inhibition of their TIMP inhibitors (Tissue inhibitors of matrix metalloproteases). Comparison of global gene expression induced by live parasites in LEC to parasite-unexposed LEC demonstrated that filarial parasites altered the expression of those genes involved in cellular organization and development as well as those associated with junction adherence pathways that in turn decreased trans-endothelial transport as assessed by FITC-Dextran. The data suggest that filarial parasites directly induce lymphangiogenesis and lymphatic differentiation and provide insight into the mechanisms underlying the pathology seen in lymphatic filariasis. The nematode parasites Brugia malayi and Wuchereria bancrofti are the major organisms responsible for lymphatic filariasis. Lymphatic filariasis is characterized by the dysfunction of the lymphatics that can lead to severe (and often) irreversible lymphedema and elephantiasis. Current advances in distinguishing blood vascular from lymphatic endothelial cells have allowed the direct study of the interaction between live filarial parasites and their lymphatic niche. In the quest towards understanding parasite-lymphatic endothelium interactions, we observed that the filarial antigens have a specific but differential stimulatory capacity towards the lymphatics and cause them to differentiate into tube-like vascular networks in vitro that resemble the formation of collateral lymphatics in vivo. This was a lymphatic-specific phenomenon, as the filarial parasites or antigen did not exhibit similar effects on the human umbilical vein endothelial cells. The differentiation of the lymphatic endothelial monolayers into vascular networks was not dependent on typical markers of lymphangiogenesis but rather involves the matrix metalloproteases and their inhibitors that suggest lymphatic matrix remodeling rather than rendering of the lymphatics hyper-permeable as has been postulated previously.
Collapse
Affiliation(s)
- Sasisekhar Bennuru
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| | | |
Collapse
|
16
|
Makrilia N, Lappa T, Xyla V, Nikolaidis I, Syrigos K. The role of angiogenesis in solid tumours: an overview. Eur J Intern Med 2009; 20:663-71. [PMID: 19818284 DOI: 10.1016/j.ejim.2009.07.009] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 07/12/2009] [Accepted: 07/20/2009] [Indexed: 02/08/2023]
Abstract
Angiogenesis is the physiological process of the formation of new blood vessels from pre-existing ones. Multiple molecules regulate angiogenesis, such as the vascular endothelial growth factor, angiopoietins, the fibroblast growth factor, the platelet-derived growth factor and the transforming growth factor-beta. Angiogenesis plays an important role in the growth, progression and metastasis of a tumour. Inhibiting the angiogenic process or targeting existing tumour vessels can be used for treatment of tumours as an alternative or in parallel with conventional chemotherapy. Many anti-angiogenic factors are under investigation and some are already being used in clinical practice with various results.
Collapse
Affiliation(s)
- Nektaria Makrilia
- 3rd Department of Medicine, Sotiria General Hospital, Athens School of Medicine, Greece.
| | | | | | | | | |
Collapse
|
17
|
Duffy GP, Ahsan T, O'Brien T, Barry F, Nerem RM. Bone marrow-derived mesenchymal stem cells promote angiogenic processes in a time- and dose-dependent manner in vitro. Tissue Eng Part A 2009; 15:2459-70. [PMID: 19327020 DOI: 10.1089/ten.tea.2008.0341] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cells (MSCs) have received much attention as a potential treatment for myocardial infarction because of their potential to integrate into the host myocardium and repair the injured heart. The mode of action of stem cell-mediated cardiac repair is still somewhat unclear, including the potential role of MSCs in neovascularization. The objective of this study was to determine the in vitro effect of MSCs on angiogenesis-related endothelial cell (EC) behavior, including migration, monolayer permeability, and vessel formation and stabilization. In a noncontact coculture system, we found that MSCs increase EC proliferation and migration, promoting early events of angiogenesis, while also decreasing EC monolayer permeability. Further, in a time- and dose-dependent manner, MSCs in direct coculture with ECs on Matrigel can increase the persistence of preexisting vessels by greater than threefold, with complex vessels remaining stable for more than 10 days. The results demonstrate that MSCs play an active role in the cellular processes involved in the formation, stabilization, and maturation of newly formed vessels. Further, these outcomes are not governed solely by either paracrine or direct contact effects and are both time and dose dependent.
Collapse
Affiliation(s)
- Garry P Duffy
- Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | | | | | | | | |
Collapse
|
18
|
Fukunaga S, Ichiyama T, Maeba S, Okuda M, Nakata M, Sugino N, Furukawa S. MMP-9 and TIMP-1 in the cord blood of premature infants developing BPD. Pediatr Pulmonol 2009; 44:267-72. [PMID: 19205055 DOI: 10.1002/ppul.20993] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We investigated matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of metalloproteinase 1 (TIMP-1) levels in the cord blood of 29 premature infants who were <30 weeks gestation. One, 8, and 14 infants developed severe, moderate and mild bronchopulmonary dysplasia (BPD), respectively, and 6 did not. MMP-9 and TIMP-1 levels in the cord blood were determined by ELISA. MMP-9/TIMP-1 ratios in the cord blood of infants who developed severe or moderate BPD (n = 9) were significantly higher than those who developed mild BPD or did not develop BPD (n = 20; P = 0.015). Multivariate linear regressions demonstrated that MMP-9 levels and MMP-9/TIMP-1 ratios in the cord blood of the premature infants correlated with the oxygen supplementation period (r = 0.58, P = 0.003 and r = 0.41, P = 0.030, respectively). The MMP-9 levels and MMP-9/TIMP-1 ratios correlated with the severity of maternal chorioamnionitis (both trend P = 0.006). The MMP-9 levels and MMP-9/TIMP-1 ratios in the cord blood may be related to the pathogenesis and severity of BPD and maternal chorioamnionitis.
Collapse
Affiliation(s)
- Shinnosuke Fukunaga
- Department of Pediatrics, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | | | | | | | | | | | | |
Collapse
|
19
|
Chetty A, Cao GJ, Severgnini M, Simon A, Warburton R, Nielsen HC. Role of matrix metalloprotease-9 in hyperoxic injury in developing lung. Am J Physiol Lung Cell Mol Physiol 2008; 295:L584-92. [PMID: 18658276 DOI: 10.1152/ajplung.00441.2007] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Matrix metalloprotease-9 (MMP-9) is increased in lung injury following hyperoxia exposure in neonatal mice, in association with impaired alveolar development. We studied the role of MMP-9 in the mechanism of hyperoxia-induced functional and histological changes in neonatal mouse lung. Reduced alveolarization with remodeling of ECM is a major morbidity component of oxidant injury in developing lung. MMP-9 mediates oxidant injury in developing lung causing altered lung remodeling. Five-day-old neonatal wild-type (WT) and MMP-9 (-/-) mice were exposed to hyperoxia for 8 days. The lungs were inflation fixed, and sections were examined for morphometry. The mean linear intercept and alveolar counts were evaluated. Immunohistochemistry for MMP-9 and elastin was performed. MMP-2, MMP-9, type I collagen, and tropoelastin were measured by Western blot analysis. Lung quasistatic compliance was studied in anaesthetized mice. MMP-2 and MMP-9 were significantly increased in lungs of WT mice exposed to hyperoxia compared with controls. Immunohistochemistry showed an increase in MMP-9 in mesenchyme and alveolar epithelium of hyperoxic lungs. The lungs of hyperoxia-exposed WT mice had less gas exchange surface area and were less compliant compared with room air-exposed WT and hyperoxia-exposed MMP-9 (-/-) mice. Type I collagen and tropoelastin were increased in hyperoxia-exposed WT with aberrant elastin staining. These changes were ameliorated in hyperoxia-exposed MMP-9 (-/-) mice. MMP-9 plays an important role in the structural changes consequent to oxygen-induced lung injury. Blocking MMP-9 activity may lead to novel therapeutic approaches in preventing bronchopulmonary dysplasia.
Collapse
Affiliation(s)
- Anne Chetty
- Dept. of Pediatrics, Tufts Medical Center, Boston, MA 02111, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Grisanti S, Tatar O. The role of vascular endothelial growth factor and other endogenous interplayers in age-related macular degeneration. Prog Retin Eye Res 2008; 27:372-90. [PMID: 18621565 DOI: 10.1016/j.preteyeres.2008.05.002] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Age-related macular degeneration (AMD) is a multifaceted disease characterized by early subclinical changes at the choroidea-retinal pigment epithelium interface. Both the causal and formal pathogenesis of the disease is still puzzling. Similarly, the reason for progression into two distinct late forms which are "geographic atrophy" and "choroidal neovascularization" remains enigmatic. Late changes are usually responsible for the dramatic loss in central function that has a devastating effect on quality of life. In industrialized countries the disease is a major cause for visual disability among persons over 60 years of age. Due to demographic right-shift and increased life expectancy, AMD is not only a medical problem but will have a pronounced socio-economic effect. Neovascular AMD with the development of choroidal neovascularization in the macular area accounts for 80% of the severe loss of visual acuity due to AMD. In the last decades, treatment modes were merely based on the destruction or surgical removal of the neovascular complex. In the present, however, the philosophical approach to treat the disease is changing to a pathology modifying manner. Intelligent targeting of the involved relevant factors and pathways should stop disease progression, reduce complications and improve vision. The first step into this new era has been accomplished with the introduction of antiangiogenic agents. The new agents act either directly on vascular endothelial growth factor (VEGF) or indirectly on its functional cascade. VEGF makes a fundamental contribution to neovascular processes but it also acts in physiological pathways. The main purpose of this review is to summarize its physiological role especially within the eye, the role in the development of AMD and to understand and foresee both the benefits and potential side-effects of the anti-VEGF-based therapy.
Collapse
Affiliation(s)
- Salvatore Grisanti
- Department of Ophthalmology at the University of Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany.
| | | |
Collapse
|
21
|
Miura SI, Matsuo Y, Saku K. Jun N-terminal kinase inhibitor blocks angiogenesis by blocking VEGF secretion and an MMP pathway. J Atheroscler Thromb 2008; 15:69-74. [PMID: 18385538 DOI: 10.5551/jat.e496] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM The excessive proliferation and migration of vascular smooth muscle cells (SMCs) and angiogenesis of endothelial cells (ECs) participate in the growth and instability of atherosclerotic plaques. It is unclear whether Jun N-terminal kinase (JNK) is pro-or anti-atherogenic. METHODS We examined the direct effect of JNK inhibitor (JNK-I) on the proliferation and formation of tubes by human coronary SMCs and human coronary ECs. RESULTS Culture medium from JNK-I-treated SMCs prevented ECs from forming tubes in an in vitro model of angiogenesis indirectly by reducing the amount of vascular endothelial growth factor (VEGF) released from SMCs. In addition, JNK-I attenuated the expression of pro-matrix metalloproteinase-2 in ECs. When added back to the medium of SMCs treated with JNK-I, VEGF blocked the inhibitory effect on the formation of tubes. CONCLUSION Our results indicate JNK-I to have a direct anti-atherogenic effect in SMCs and ECs.
Collapse
Affiliation(s)
- Shin-ichiro Miura
- Department of Cardiology, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, Japan.
| | | | | |
Collapse
|
22
|
Greenberg Y, King M, Kiosses WB, Ewalt K, Yang X, Schimmel P, Reader JS, Tzima E. The novel fragment of tyrosyl tRNA synthetase, mini-TyrRS, is secreted to induce an angiogenic response in endothelial cells. FASEB J 2007; 22:1597-605. [PMID: 18165356 DOI: 10.1096/fj.07-9973com] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Aminoacyl tRNA synthetases--enzymes that catalyze the first step of protein synthesis--in mammalian cells are now known to have expanded functions, including activities in signal transduction pathways, such as those for angiogenesis and inflammation. The native synthetases themselves are procytokines, having no signal transduction activities. After alternative splicing or natural proteolysis, specific fragments that are potent cytokines and that interact with specific receptors on cell surfaces are released. In this manner, a natural fragment of human tyrosyl tRNA synthetase (TyrRS), mini-TyrRS, has been shown to act as a proangiogenic cytokine. The mechanistic basis for the action of mini-TyrRS in angiogenesis has yet to be established. Here, we show that mini-TyrRS is exported from endothelial cells when they are treated with tumor necrosis factor-alpha. Mini-TyrRS binds to vascular endothelial cells and activates an array of angiogenic signal transduction pathways. Mini-TyrRS-induced angiogenesis requires the activation of vascular endothelial growth factor receptor-2 (VEGFR2/Flk-1/KDR). Mini-TyrRS stimulates VEGFR2 phosphorylation in a VEGF-independent manner, suggesting VEGFR2 transactivation. Transactivation of VEGFR2 and downstream angiogenesis require an intact Glu-Leu-Arg (ELR) motif in mini-TyrRS, which is important for its cytokine activity. These studies therefore suggest a mechanism by which mini-TyrRS induces angiogenesis in endothelial cells and provide further insight into the role of mini-TyrRS as a link between translation and angiogenesis.
Collapse
Affiliation(s)
- Y Greenberg
- Department of Cell and Molecular Physiology, University of North Carolina, Chapel Hill, 103 Mason Farm Rd., Chapel Hill, NC 27599-7545, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Gesierich S, Berezovskiy I, Ryschich E, Zöller M. Systemic induction of the angiogenesis switch by the tetraspanin D6.1A/CO-029. Cancer Res 2006; 66:7083-94. [PMID: 16849554 DOI: 10.1158/0008-5472.can-06-0391] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Expression of the tetraspanin CO-029 is associated with poor prognosis in patients with gastrointestinal cancer. In a pancreatic tumor line, overexpression of the rat homologue, D6.1A, induces lethally disseminated intravascular coagulation, suggesting D6.1A engagement in angiogenesis. D6.1A-overexpressing tumor cells induce the greatest amount of angiogenesis in vivo, and tumor cells as well as exosomes derived thereof strikingly increase endothelial cell branching in vitro. Tumor cell-derived D6.1A stimulates angiogenic factor transcription, which includes increased matrix metalloproteinase and urokinase-type plasminogen activator secretion, pronounced vascular endothelial growth factor expression in fibroblasts, vascular endothelial growth factor receptor expression, and strong D6.1A up-regulation in sprouting endothelium. Thus, D6.1A initiates an angiogenic loop that, probably due to the abundance of D6.1A in tumor-derived exosomes, reaches organs distant from the tumor. Most importantly, because of the strong D6.1A up-regulation on sprouting capillaries, angiogenesis could be completely inhibited by a D6.1A-specific antibody, irrespective of whether or not the tumor expresses D6.1A. Tetraspanins have been suggested to be involved in morphogenesis. This is the first report that a tetraspanin, CO-029/D6.1A, promotes tumor growth by its capacity to induce systemic angiogenesis that can effectively, and with high selectivity for sprouting endothelium, be blocked by a D6.1A-specific antibody.
Collapse
Affiliation(s)
- Sabine Gesierich
- Department of Tumor Progression and Immune Defence, German Cancer Research Centre, Heidelberg, Germany
| | | | | | | |
Collapse
|
24
|
Hamner MA, Vernon RB, Gooden MD, Koike T, Reed MJ. Elongation and secretion of tissue inhibitor of metalloproteinases 1 by human microvascular endothelial cells cultured in collagen gels is stimulated by mitomycin c. ACTA ACUST UNITED AC 2005; 12:97-101. [PMID: 16291511 DOI: 10.1080/10623320500189764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
During angiogenesis, interactions between endothelial cells (ECs) and the surrounding extracellular matrix are influenced by matrix metalloproteinases (MMPs) and their cognate inhibitors, the TIMPs. The authors discovered that the secretion of TIMP-1 by human microvascular ECs (hmECs) cultured within gels of native, fibrillar collagen was increased robustly by mitomycin C (MMC), an inhibitor of cell proliferation. In contrast, hmECs cultured on plastic coated with gelatin or with native fibrillar collagen exhibited nil (on gelatin) or very modest (on native collagen) increases in TIMP-1 upon exposure to MMC. Notably, none of the cultures altered the secretion of TIMP-2, or MMP-1 and -2, in response to MMC. hmECs cultured within collagen gels elongated significantly after exposure to MMC, a response the authors concluded was mediated by TIMP-1, because elongation could be inhibited completely with a function-blocking antibody to TIMP-1. Moreover, substitution of purified human TIMP-1 for MMC induced a similar elongation by hmECs. hmECs cultured within collagen gels did not proliferate under the conditions used in this study; therefore, inhibited proliferation was not a factor in the altered cell shape and TIMP-1 secretion elicited by MMC. These results illustrate that antiproliferative compounds should be used with caution in studies of MMP regulation by ECs.
Collapse
Affiliation(s)
- Margaret A Hamner
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104-2499, USA
| | | | | | | | | |
Collapse
|
25
|
Nordell VL, Lewis DK, Bake S, Sohrabji F. The neurotrophin receptor p75NTR mediates early anti-inflammatory effects of estrogen in the forebrain of young adult rats. BMC Neurosci 2005; 6:58. [PMID: 16156894 PMCID: PMC1239918 DOI: 10.1186/1471-2202-6-58] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Accepted: 09/12/2005] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Estrogen suppresses microglial activation and extravasation of circulating monocytes in young animals, supporting an anti-inflammatory role for this hormone. However, the mechanisms underlying estrogen's anti-inflammatory effects, especially in vivo, are not well understood. The present study tests the hypothesis that anti-inflammatory effects of estrogen are mediated by the pan-neurotrophin receptor p75NTR. Previously, we reported that estrogen attenuated local increases of interleukin(IL)-1beta in the NMDA-lesioned olfactory bulb, while further increasing NGF expression. RESULTS The present studies show that this lesion enhances expression of the neurotrophin receptor p75NTR at the lesion site, and p75NTR expression is further enhanced by estrogen treatment to lesioned animals. Specifically, estrogen stimulates p75NTR expression in cells of microvessels adjacent to the lesion site. To determine the role of this receptor in mediating estrogen's anti-inflammatory effects, a p75NTR neutralizing antibody was administered at the same time the lesion was created (by stereotaxic injections of NMDA) and specific markers of the inflammatory cascade were measured. Olfactory bulb injections of NMDA+vehicle (preimmune serum) increased IL-1beta and activated the signaling molecule c-jun terminal kinase (JNK)-2 at 6 h. At 24 h, the lesion significantly increased matrix metalloproteinase (MMP)-9 and prostaglandin (PG)E2, a COX-2 mediated metabolite of arachadonic acid. All of these markers were significantly attenuated by estrogen in a time-dependent manner. However, estrogen's effects on all these markers were abolished in animals that received anti-p75NTR. CONCLUSION These data support the hypothesis that estrogen's anti-inflammatory effects may be, in part, mediated by this neurotrophin receptor. In view of the novel estrogen-dependent expression of p75NTR in cells associated with microvessels, these data also suggest that the blood brain barrier is a critical locus of estrogen's neuro-immune effects.
Collapse
Affiliation(s)
- Vanessa L Nordell
- Department of Human Anatomy and Medical Neurobiology, Texas A&M University System Health Science Center College of Medicine, College Station, TX, 77843 USA
| | - Danielle K Lewis
- Department of Human Anatomy and Medical Neurobiology, Texas A&M University System Health Science Center College of Medicine, College Station, TX, 77843 USA
| | - Shameena Bake
- Department of Human Anatomy and Medical Neurobiology, Texas A&M University System Health Science Center College of Medicine, College Station, TX, 77843 USA
| | - Farida Sohrabji
- Department of Human Anatomy and Medical Neurobiology, Texas A&M University System Health Science Center College of Medicine, College Station, TX, 77843 USA
| |
Collapse
|
26
|
Park SG, Kim HJ, Min YH, Choi EC, Shin YK, Park BJ, Lee SW, Kim S. Human lysyl-tRNA synthetase is secreted to trigger proinflammatory response. Proc Natl Acad Sci U S A 2005; 102:6356-61. [PMID: 15851690 PMCID: PMC1088368 DOI: 10.1073/pnas.0500226102] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Indexed: 01/09/2023] Open
Abstract
Although aminoacyl-tRNA synthetases (ARSs) are essential for protein synthesis, they also function as regulators and signaling molecules in diverse biological processes. Here, we screened 11 different human ARSs to identify the enzyme that is secreted as a signaling molecule. Among them, we found that lysyl-tRNA synthetase (KRS) was secreted from intact human cells, and its secretion was induced by TNF-alpha. The secreted KRS bound to macrophages and peripheral blood mononuclear cells to enhance the TNF-alpha production and their migration. The mitogen-activated protein kinases, extracellular signal-regulated kinase and p38 mitogen-activated protein kinase, and Galphai were determined to be involved in the signal transduction triggered by KRS. All of these activities demonstrate that human KRS may work as a previously uncharacterized signaling molecule, inducing immune response through the activation of monocyte/macrophages.
Collapse
Affiliation(s)
- Sang Gyu Park
- National Creative Research Initiatives Center for ARS Network, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Seval Y, Akkoyunlu G, Demir R, Asar M. Distribution patterns of matrix metalloproteinase (MMP)-2 and -9 and their inhibitors (TIMP-1 and TIMP-2) in the human decidua during early pregnancy. Acta Histochem 2005; 106:353-62. [PMID: 15530550 DOI: 10.1016/j.acthis.2004.07.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2004] [Revised: 06/08/2004] [Accepted: 07/02/2004] [Indexed: 11/21/2022]
Abstract
Early human trophoblast shows dramatic invasive properties during early pregnancy. A tightly-regulated activation of matrix metalloproteinases (MMPs) is considered to be of critical importance for the control of trophoblast invasion. The aim of the present study was to determine MMP-2, MMP-9, TIMP-1 and TIMP-2 protein expression in decidual endometrium during the first trimester of pregnancy (22-42 days post coitus) with special attention to their expression patterns in endometrial compartments. Cytokeratin staining applied to adjacent sections was used to identify epithelial and trophoblast cells. We observed that MMP-2, particularly in the fourth week, appeared to be expressed more strongly in extravillous trophoblasts (EVTs) and vascular endothelial cells in the first trimester of pregnancy. Therefore, MMP-2 is likely to be the primary mediator in invasion of the trophoblast into the decidual endometrium, as well as in vascular remodeling and angiogenesis in the first trimester of pregnancy. The high expression of TIMP-1 and TIMP-2 in EVTs and glandular epithelium suggests that a restricted and balanced expression of these molecules is important for matrix remodeling and controlled trophoblast invasion during placentation. We conclude that (1) MMP-2 and MMP-9 and their inhibitors TIMP-1, and TIMP-2 determine the invasive behavior of trophoblast into the endometrium, and in particular, (2) MMP-2 may be the key regulator of trophoblast invasion in early human pregnancy.
Collapse
Affiliation(s)
- Yasemin Seval
- Department of Histology and Embryology, University of Akdeniz, Faculty of Medicine, Antalya 07070, Turkey
| | | | | | | |
Collapse
|
28
|
Miura SI, Emoto M, Matsuo Y, Kawarabayashi T, Saku K. The combination of Jun N-terminal kinase inhibitor and TNP-470 blocks carcinosarcoma-induced endothelial cell tube formation in a synergistic manner. Cancer Lett 2005; 220:49-55. [PMID: 15737687 DOI: 10.1016/j.canlet.2004.06.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2004] [Revised: 06/21/2004] [Accepted: 06/25/2004] [Indexed: 11/24/2022]
Abstract
We assessed the usefulness of Jun N-terminal kinase inhibitor (JNK-I) as an anti-angiogenic agent against a human uterine carcinosarcoma cell line (FU-MMT-1). JNK-I blocked FU-MMT-1-induced human arterial endothelial cell (HAEC) tube formation in an in vitro co-culture model. Cell proliferation of FU-MMT-1 or HAEC was inhibited by JNK-I. In addition, JNK-I blocked matrix metalloproteinase production but not vascular endothelial growth factor (VEGF) secretion in HAECs. Although low concentrations of JNK-I or TNP-470, an anti-cancer agent, did not separately block FU-MMT-1-induced tube formation, such tube formation was blocked by the combination of low concentrations of JNK-I and TNP-470 because TNP-470 blocked VEGF production, suggesting that JNK-I and TNP-470 had a synergistic effect and might be effective in patients with carcinosarcoma.
Collapse
Affiliation(s)
- Shin-ichiro Miura
- Department of Cardiology, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-Ku, Fukuoka, 814-0180, Japan.
| | | | | | | | | |
Collapse
|
29
|
Lambert E, Dassé E, Haye B, Petitfrère E. TIMPs as multifacial proteins. Crit Rev Oncol Hematol 2004; 49:187-98. [PMID: 15036259 DOI: 10.1016/j.critrevonc.2003.09.008] [Citation(s) in RCA: 361] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2003] [Indexed: 12/29/2022] Open
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) are natural inhibitors of matrix metalloproteinases (MMPs) found in most tissues and body fluids. By inhibiting MMPs activities, they participate in tissue remodeling of the extracellular matrix (ECM). The balance between MMPs and TIMPs activities is involved in both normal and pathological events such as wound healing, tissue remodeling, angiogenesis, invasion, tumorigenesis and metastasis. The intracellular signalling controlling both TIMPs and MMPs expression begins to be elucidated and gaining insights into the molecular mechanisms regulated by TIMPs and MMPs could represent a new approach in the development of potential therapeutics. Numerous investigations have pointed out that TIMPs exhibit multifunctional activities distinct from MMP inhibition. In this review, we detailed the multiple activities of TIMPs in vivo and in vitro and we reported their implication in physiological and pathological processes. Further, we documented recent studies of their role in hematopoiesis and we itemized the different signalling pathways they induced.
Collapse
Affiliation(s)
- Elise Lambert
- Laboratoire de Biochimie, CNRS FRE 2534, UFR Sciences Exactes et Naturelles de Reims, IFR 53, Moulin de la Housse, BP1039, 51687 Reims Cedex 2, France
| | | | | | | |
Collapse
|
30
|
Girolamo F, Virgintino D, Errede M, Capobianco C, Bernardini N, Bertossi M, Roncali L. Involvement of metalloprotease-2 in the development of human brain microvessels. Histochem Cell Biol 2004; 122:261-70. [PMID: 15375663 DOI: 10.1007/s00418-004-0705-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2004] [Indexed: 01/13/2023]
Abstract
The involvement of the metalloprotease-2 (MMP-2) in vessel development was investigated in the human telencephalon by double immunoreactions with antibodies to the enzyme, latent (proMMP-2) and active (aMMP-2) forms, and an antibody against collagen type IV, a constitutive component of the extracellular matrix (ECM) of the vessel basal lamina. MMP-2 is expressed in both 12- and 18-week telencephalic vessels, the proenzyme being mainly localised in endothelial cells and the active form prevailing in alpha-actin-reactive periendothelial cells identified as pericytes. Endothelial cells intensely positive for aMMP-2 were revealed in some microvessels and appeared locally associated with discontinuities of the collagen basal lamina. No detectable expression of MMP-2 was observed in perivascular glial processes revealed by vimentin/glial fibrillary acidic protein immunostainings. Double immunoreactions performed to further investigate telencephalon angiogenesis have demonstrated that both the endothelial cells and pericytes strongly express vascular endothelial growth factor (VEGF). Taken together, the results indicate that MMP-2 is largely involved in human brain angiogenesis and suggest that endothelial cells and pericytes tightly interplay in both angiogenesis mechanisms, by ECM proteolysis, and angiogenesis regulation, by local (autocrine/juxtacrine) VEGF action.
Collapse
Affiliation(s)
- Francesco Girolamo
- Department of Human Anatomy and Histology, University of Bari School of Medicine, Italy
| | | | | | | | | | | | | |
Collapse
|
31
|
Gabison EE, Hoang-Xuan T, Mauviel A, Menashi S. [Metalloproteinases and angiogenesis]. PATHOLOGIE-BIOLOGIE 2003; 51:161-6. [PMID: 12781798 DOI: 10.1016/s0369-8114(03)00018-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Metalloproteinases (MMPs) are essential regulators during various phases of the angiogenic process. These include the degradation of the basement membrane and the extracellular matrix, the mobilisation and activation of growth factors and the production of fragments with pro- or anti-angiogenic activity. In addition to their role in migration and invasion, MMPs can influence endothelial cell proliferation and survival by modifying the balance between angiogenic and anti-angiogenic molecules.
Collapse
Affiliation(s)
- E E Gabison
- Unité 532 Inserm, Institut de recherche sur la peau, hôpital Saint-Louis, 1, avenue Claude-Vellefaux, 75010 Paris, France
| | | | | | | |
Collapse
|
32
|
Curley AE, Sweet DG, Thornton CM, O'Hara MD, Chesshyre E, Pizzotti J, Wilbourn MS, Halliday HL, Warner JA. Chorioamnionitis and increased neonatal lung lavage fluid matrix metalloproteinase-9 levels: implications for antenatal origins of chronic lung disease. Am J Obstet Gynecol 2003; 188:871-5. [PMID: 12712078 DOI: 10.1067/mob.2003.215] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Matrix metalloproteinase-9 (MMP-9) degrades type IV collagen, the major constituent of lung basement membrane. We studied the effects of chorioamnionitis and antenatal corticosteroids on bronchoalveolar lavage (BAL) fluid levels of MMP-9, and its inhibitor, TIMP-1 in preterm infants. STUDY DESIGN A prospective study was performed on serial BAL samples from 79 ventilated preterm infants at less than 33 weeks' gestation, 18 of whom were from pregnancies complicated by chorioamnionitis. MMP-9 levels were measured by gelatin zymography and TIMP-1 by enzyme-linked immunosorbent assay, and the median value for each infant was calculated. The presence and severity of chorioamnionitis were defined histologically. RESULTS BAL fluid MMP-9 levels were higher in preterm infants in the chorioamnionitis group (86 [29-518] vs 13 [3-43] ng/mL, P =.001), and levels increased stepwise with the increasing severity of chorioamnionitis. Antenatal corticosteroids had no effect on median MMP-9 levels. Infants in the chorioamnionitis group were more likely to have chronic lung disease (CLD) develop (55% vs 28%, P <.05). TIMP-1 levels were no different between groups. CONCLUSION Chorioamnionitis is associated with increased lung type IV collagenase levels in the ventilated preterm infant. Antenatal lung inflammation with up-regulation of MMP-9 may be important in the pathogenesis of CLD.
Collapse
Affiliation(s)
- Anna E Curley
- Department of Child Health, Queen's University of Belfast, Institute of Clinical Science, Belfast, Northern Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kang JA, Kim JT, Song HS, Bae MK, Yi EY, Kim KW, Kim YJ. Anti-angiogenic and anti-tumor invasive activities of tissue inhibitor of metalloproteinase-3 from shark, Scyliorhinus torazame. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1620:59-64. [PMID: 12595074 DOI: 10.1016/s0304-4165(02)00508-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In order to investigate the anti-angiogenic activity of shark TIMP-3 (sTIMP-3) in endothelial cells, angiogenic assays including in vitro invasion assay, migration assay, zymogram assay and tube formation assay were performed. We observed that the overexpression of sTIMP-3 decreased the invasive capacity by about 70%, the migratory activity by about 50% and the production of gelatinase A in bovine aortic endothelial cells (BAECs). In addition, the overexpression of sTIMP-3 interfered with the formation of capillary-like network in endothelial cells. We also examined whether sTIMP-3 shows the anti-invasive activity in cancer cells. We found that the overexpression of sTIMP-3 diminished the invasive ability of the human fibrosarcoma HT1080 cells by about 40%. Also, the production of specific gelatinases was suppressed in the cancer cells. Therefore, we propose that sTIMP-3 acts as the inhibitor of angiogenesis in endothelial cells and the suppressor of tumor invasion in human fibrosarcoma HT1080 cells.
Collapse
Affiliation(s)
- Jung A Kang
- Department of Molecular Biology, Pusan National University, South Korea
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Historically, there has been much debate on the nature of infantile hemangiomas as either congenital malformations or benign neoplasms. Some vascular lesions that are present at birth and evidence no proliferative growth are considered to be congenital malformations; other post-natal vascular tumors pursue aggressive and possibly lethal clinical courses. The literature of the last two decades has been reviewed with a hope of clarifying the pathogenesis and underlying molecular lesions of this diverse set of lesions. Genetic investigations of two diseases associated with vascular tumors and abnormalities, von Hippel-Lindau disease, and Hereditary Hemorrhagic Telangiectasia have greatly added to our knowledge of vascular proliferation and provided a tantalizing clue to the pathogenesis of hemangioblastomas. Mutations have also been described in infantile hemangiomas. All of the entities considered, vascular neoplasms as well as malformations, have been examined for the expression of vascular growth factors, their receptors, and factors that appear to promote cell proliferation. Similarly, factors that either block or promote apoptosis have also been examined in various vascular lesions. These studies have in large confirmed our expectations about proliferating tumors that show upregulation of growth promoting factors and inhibition of those that promote apoptosis. In conclusion, although much has been learned about vascular physiology and the control of endothelial proliferation, and while understanding about the molecular pathogenesis of the two inherited diseases mentioned above is detailed but not yet complete, understanding of the pathogenesis of benign and malignant endothelial tumors remains vague.
Collapse
Affiliation(s)
- Cecil David Bell
- Division of Anatomical Pathology, St. Michael's Hospital, Toronto M5B 1W8, Canada.
| |
Collapse
|
35
|
Gutierrez-Lopez MD, Ovalle S, Yanez-Mo M, Sanchez-Sanchez N, Rubinstein E, Olmo N, Lizarbe MA, Sanchez-Madrid F, Cabanas C. A functionally relevant conformational epitope on the CD9 tetraspanin depends on the association with activated beta1 integrin. J Biol Chem 2003; 278:208-18. [PMID: 12411441 DOI: 10.1074/jbc.m207805200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tetraspanins associate on the cell membrane with several transmembrane proteins, including members of the integrin superfamily. The tetraspanin CD9 has been implicated in cell motility, metastasis, and sperm-egg fusion. In this study we characterize the first CD9 conformation-dependent epitope (detected by monoclonal antibody (mAb) PAINS-13) whose expression depends on changes in the activation state of associated beta(1) integrins. MAb PAINS-13 precipitates CD9 under conditions that preserve the association of this tetraspanin with integrins, but not under conditions that disrupt these interactions. Induction of activation of beta(1) integrins by temperature, divalent cation Mn(2+), or mAb TS2/16 correlated with enhanced expression of the PAINS-13 epitope on a variety of cells. Through the use of different K562 myeloid leukemia transfectant cells expressing specific members of the beta(1) integrin subfamily we show that the expression of the PAINS-13 epitope depends on CD9 association with alpha(6)beta(1) integrin. The mAb PAINS-13 reactivity has been mapped to the CD9 region comprising residues 112-154 in the NH(2) half of the large extracellular loop. Also, we show that the CD9 conformation recognized by mAb PAINS-13 is functionally relevant in beta(1) integrin-mediated cellular processes including wound healing migration, tubular morphogenesis, cell adhesion and spreading and in signal transduction involving phosphatidylinositol 3-kinase activation.
Collapse
Affiliation(s)
- Maria Dolores Gutierrez-Lopez
- Instituto de Farmacologia y Toxicologia CSIC-UCM, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Arkell J, Jackson CJ. Constitutive secretion of MMP9 by early-passage cultured human endothelial cells. Cell Biochem Funct 2003; 21:381-6. [PMID: 14624478 DOI: 10.1002/cbf.1037] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Matrix metalloproteinase-9 (MMP9) plays an important role during angiogenesis. It is an inducible enzyme which is known to be secreted from human endothelial cells in response to phorbol myristate acetate (PMA), but thought not to be constitutively expressed. We examined the secretion of MMP9 by primary culture (P0), passage 1 (P1) and passage 2 (P2) human umbilical vein endothelial cells (HUVE). Whereas there was no detectable MMP9 in P2 cells under basal conditions, P0 HUVE secreted MMP9, as detected by zymography and ELISA. RT-PCR and cycloheximide inhibition studies confirmed that MMP was synthesized by P0 HUVE. MMP9 secretion was passage-dependent, decreasing rapidly as the cells were passaged in culture and was not detected at P2. The decrease was largely due to the population doubling of cells as they are cultured. This is the first report to show that cultured HUVE constitutively express MMP9 and that this secretion is restricted to very early-passage cells. These findings may be relevant to the angiogenic potential of human endothelial cells as they age.
Collapse
Affiliation(s)
- Jacky Arkell
- Sutton Arthritis Research Laboratories, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| | | |
Collapse
|
37
|
Abstract
Angiogenesis, the formation of new blood vessels, has become a broad subject and is a very active area for current research. This paper describes the main biological events involved in angiogenesis and their importance in cancer progression. In the first section, a fundamental overview of tumour biology is presented. In the second section, the biology of healthy blood vessels is described and, in the third section, the mechanisms of cell migration and proliferation, which are crucial to angiogenesis, are discussed. In the fourth section, a detailed account of tumour-induced angiogenesis is given, whilst the pro- and anti-angiogenic factors involved are reviewed in the fifth section. Finally, the processes of tumour invasion and metastasis are examined in the sixth section.
Collapse
Affiliation(s)
- M. J. Plank
- School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| | - B. D. Sleeman
- School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
38
|
Park SG, Kang YS, Ahn YH, Lee SH, Kim KR, Kim KW, Koh GY, Ko YG, Kim S. Dose-dependent biphasic activity of tRNA synthetase-associating factor, p43, in angiogenesis. J Biol Chem 2002; 277:45243-8. [PMID: 12237313 DOI: 10.1074/jbc.m207934200] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian aminoacyl tRNA synthetases form a macromolecular protein complex with three non-enzymatic cofactors. Among these factors, p43 is also secreted to work as a cytokine on endothelial as well as immune cells. Here we investigated the activity of p43 in angiogenesis and determined the related mediators. It promoted the migration of endothelial cells at low dose but induced their apoptosis at high dose. p43 at low concentration activated extracellular signal-regulating kinase, which resulted in the induction and activation of matrix metalloproteinase 9. In contrast, p43 at high concentration activated Jun N-terminal kinase, which mediated apoptosis of endothelial cells. These results suggest that p43 is a novel cytokine playing a dose-dependent biphasic role in angiogenesis.
Collapse
Affiliation(s)
- Sang Gyu Park
- National Creative Research Initiatives Center for ARS Network, College of Pharmacy, Seoul National University, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kurzen H, Manns S, Dandekar G, Schmidt T, Prätzel S, Kräling BM. Tightening of endothelial cell contacts: a physiologic response to cocultures with smooth-muscle-like 10T1/2 cells. J Invest Dermatol 2002; 119:143-53. [PMID: 12164937 DOI: 10.1046/j.1523-1747.2002.01792.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tightening of endothelial cell-to-cell contacts is an important event at the end of angiogenesis in order to achieve controlled transfer of solutes between the blood stream and solid tissues. We found that tightening of endothelial cell-to-cell contacts and the formation of a permeability barrier can be induced in vitro by dibutyryl cAMP and hydrocortisone. This process is accompanied by increased junctional localization and cytoskeletal association of the adherens junctional plakoglobin and the tight junction associated proteins ZO-1, ZO-2, and occludin. Based on these findings, we proceeded to investigate whether smooth-muscle-like mesenchymal cells would influence endothelial junctional differentiation. For this purpose, human umbilical chord vein endothelial cells and murine smooth-muscle-like 10T1/2 cells were cocultivated and compared with their respective monocultures. Immunofluorescence on cells and Western blot analyses were performed for marker proteins of adherens and tight junctions. Functional permeability assays were performed for the tracer molecule biotin-dextran. The results indicated that 10T1/2 cells induced the tightening of endothelial cell-to-cell contacts. Plakoglobin, ZO-1, ZO-2, and occludin showed increased junctional localization when 10T1/2 cells were present. Cocultures also displayed a significantly higher permeability barrier for the tracer molecule biotin-dextran. In conclusion, mural cells such as smooth muscle cells and pericytes may be important for stabilizing endothelial cell-to-cell contacts and may influence vessel-type specific differences of the endothelial phenotype.
Collapse
Affiliation(s)
- Hjalmar Kurzen
- German Cancer Research Center, Division of Cell Biology/A0100, University of Heidelberg, 69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Wang S, Shiva S, Poczatek MH, Darley-Usmar V, Murphy-Ullrich JE. Nitric oxide and cGMP-dependent protein kinase regulation of glucose-mediated thrombospondin 1-dependent transforming growth factor-beta activation in mesangial cells. J Biol Chem 2002; 277:9880-8. [PMID: 11784717 DOI: 10.1074/jbc.m108360200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Excessive transforming growth factor-beta (TGF-beta) activity in hyperglycemia contributes to the development of diabetic nephropathy. Glucose stimulation of TGF-beta activity and matrix synthesis are dependent on autocrine thrombospondin 1 (TSP1) to convert latent TGF-beta to its biologically active form. The mechanisms by which glucose regulates TSP1 are not known. High glucose inhibits nitric oxide (NO) bioavailability and decreased NO increases TGF-beta activity and extracellular matrix accumulation. Yet, the impact of NO signaling on TSP1 activation of TGF-beta is unknown. We tested the role of NO signaling in the regulation of TSP1 expression and TSP1-dependent TGF-beta activity in rat mesangial cells exposed to high glucose. On exposure to 30 mm glucose, NO accumulation in the conditioned media and intracellular cGMP levels were significantly decreased. The addition of an NO donor prevented the glucose-dependent increase in TSP1 mRNA, protein, and TGF-beta bioactivity. The effects of the NO donor were blocked by ODQ (a soluble guanylate cyclase inhibitor) or Rp-8-pCPT-cGMPS (an inhibitor of cGMP-dependent protein kinase). These effects of high glucose were also reversed by the nitric-oxide synthase cofactor tetrahyrobiopterin (BH(4)). These results show that high glucose mediates increases in TSP1 expression and TSP1-dependent TGF-beta bioactivity through down-modulation of NO-cGMP-dependent protein kinase signaling.
Collapse
Affiliation(s)
- Shuxia Wang
- Department of Pathology, Division of Molecular and Cellular Pathology, The Cell Adhesion and Matrix Research Center, University of Alabama, Birmingham 35294-0019, USA
| | | | | | | | | |
Collapse
|
41
|
Pepper MS. Role of the matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis. Arterioscler Thromb Vasc Biol 2001; 21:1104-17. [PMID: 11451738 DOI: 10.1161/hq0701.093685] [Citation(s) in RCA: 522] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Extracellular proteolysis is an absolute requirement for new blood vessel formation (angiogenesis). This review examines the role of the matrix metalloproteinase (MMP) and plasminogen activator (PA)-plasmin systems during angiogenesis. Specifically, a role for gelatinases (MMP-2, MMP-9), membrane-type 1 MMP (MMP-14), the urokinase-type PA receptor, and PA inhibitor 1 has been clearly defined in a number of model systems. The MMP and PA-plasmin systems have also been implicated in experimental vascular tumor formation, and their role during this process will be examined. Antiproteolysis, particularly in the context of angiogenesis, has become a key target in therapeutic strategies aimed at inhibiting tumor growth and other diseases associated with neovascularization.
Collapse
Affiliation(s)
- M S Pepper
- Department of Morphology, University Medical Center, Geneva, Switzerland.
| |
Collapse
|
42
|
|
43
|
Guedez L, McMarlin AJ, Kingma DW, Bennett TA, Stetler-Stevenson M, Stetler-Stevenson WG. Tissue inhibitor of metalloproteinase-1 alters the tumorigenicity of Burkitt's lymphoma via divergent effects on tumor growth and angiogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 158:1207-15. [PMID: 11290537 PMCID: PMC1891911 DOI: 10.1016/s0002-9440(10)64070-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Epstein-Barr virus (EBV)-positive Burkitt's lymphoma cells and EBV-infected B cells elicit humoral factors that inhibit tumor-induced angiogenesis, resulting in tumor necrosis and regression. Of the chemokine factors identified in association with this growth behavior, none have induced complete tumor regression. We have previously identified tissue inhibitors of metalloproteinase (TIMP)-1 in various B cell lymphoma cell lines. Here we show that induction of TIMP-1 expression in an EBV-negative Burkitt's lymphoma cell line results in a biphasic, in vivo tumor growth pattern in the nude mouse that is essentially identical to EBV-positive Burkitt's lymphoma cell lines. The initial effect of TIMP-1 is to enhance tumor growth, consistent with the reported anti-apoptotic effect of TIMP-1 on B cell growth. Tumor necrosis and regression then follow the initial period of rapid, increased tumor growth. Only microscopic foci of residual, proliferating tumor cells are observed on biopsy of the tumor site. This latter effect is mediated by TIMP-1 inhibition of an angiogenic response within the developing tumor mass, as demonstrated by immunostaining and microvessel counts. These findings suggest that TIMP-1 is an important mediator of the in vivo growth properties of EBV-positive Burkitt's lymphoma.
Collapse
Affiliation(s)
- L Guedez
- National Institutes of Health, National Cancer Institute, Extracellular Matrix Section, Laboratory of Pathology, Division of Clinical Sciences, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
The matrix metalloproteinases (MMPs) constitute a multigene family of over 25 secreted and cell surface enzymes that process or degrade numerous pericellular substrates. Their targets include other proteinases, proteinase inhibitors, clotting factors, chemotactic molecules, latent growth factors, growth factor-binding proteins, cell surface receptors, cell-cell adhesion molecules, and virtually all structural extracellular matrix proteins. Thus MMPs are able to regulate many biologic processes and are closely regulated themselves. We review recent advances that help to explain how MMPs work, how they are controlled, and how they influence biologic behavior. These advances shed light on how the structure and function of the MMPs are related and on how their transcription, secretion, activation, inhibition, localization, and clearance are controlled. MMPs participate in numerous normal and abnormal processes, and there are new insights into the key substrates and mechanisms responsible for regulating some of these processes in vivo. Our knowledge in the field of MMP biology is rapidly expanding, yet we still do not fully understand how these enzymes regulate most processes of development, homeostasis, and disease.
Collapse
Affiliation(s)
- Mark D. Sternlicht
- Department of Anatomy, University of California, San Francisco, California 94143-0452
| | - Zena Werb
- Department of Anatomy, University of California, San Francisco, California 94143-0452
| |
Collapse
|
45
|
Paradis H, Gendron RL. LIF transduces contradictory signals on capillary outgrowth through induction of stat3 and (P41/43)MAP kinase. J Cell Sci 2000; 113 Pt 23:4331-9. [PMID: 11069777 DOI: 10.1242/jcs.113.23.4331] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The signaling pathways regulating blood vessel growth and development are not well understood. In the present report, an in vitro model was used to identify signaling pathways regulating capillary formation in embryonic endothelial cells. Basic fibroblast growth factor (bFGF) plus leukemia inhibitory factor (LIF) optimally stimulate the formation of capillary-like structures of the embryonic endothelial cell line IEM. LIF stimulation of IEM cells leads to activation of the Stat3 as well as the (P41/43)mitogen-activated protein kinase ((P41/43)MAPK) cascade, while bFGF does not activate Stat3 but does induce the (P41/43)MAPK cascade. Inhibition of Stat3 DNA-binding activity by expression of a dominant inhibitory Stat3 mutant increases the capillary outgrowth of the IEM cells induced by LIF. Increased Stat3 activity by overexpression of the wild-type Stat3 greatly reduced capillary outgrowth. In contrast, inhibition of the (P41/43)MAPK cascade using a MEK-1 inhibitor dramatically inhibits the LIF-induced capillary outgrowth. Moreover, the increased formation of capillary-like structures of the IEM cells mediated by Stat3 inhibition does not overcome the requirement for activation of the (P41/43)MAPK pathway for capillary outgrowth. Stat3 activity correlates with the LIF-induced expression of the negative feedback regulators of the Janus (JAK) family of tyrosine kinases, SOCS-1 and SOCS-3. These results provide evidence that Stat3 acts as a negative regulator of capillary outgrowth, possibly by increasing SOCS-1 or SOCS-3 expression. The contradictory signals stimulated by LIF could be necessary to control the intensity of the response leading to capillary outgrowth in vivo.
Collapse
Affiliation(s)
- H Paradis
- Division of Hematology/Oncology, Children's Hospital Research Foundation, Cincinnati, OH 45229-3039, USA.
| | | |
Collapse
|
46
|
Abstract
Human placental development involves co-ordinated angiogenesis and trophoblast outgrowth that are compromised in intrauterine growth restriction. Adaptive angiogenesis in IUGR placental villi is a result of an imbalance in the orderly progression of the expression profile of vascular endothelial growth factor, placenta growth factor and angiopoietin during placental development. VEGF receptors and the angiopoietin receptor Tie-2 are expressed on trophoblast, and their activation leads to trophoblast proliferation, migration and production of nitric oxide. Thus, these vascular factors act as autocrine regulators of trophoblast behaviour in the development of the utero-/feto-placental circulation, an action independent of their well-established roles in vascular endothelium.
Collapse
Affiliation(s)
- A Ahmed
- Department of Reproductive and Vascular Biology, The Medical School, Birmingham, Edgbaston, B15 2TT, UK
| | | |
Collapse
|
47
|
Genersch E, Hayess K, Neuenfeld Y, Haller H. Sustained ERK phosphorylation is necessary but not sufficient for MMP-9 regulation in endothelial cells: involvement of Ras-dependent and -independent pathways. J Cell Sci 2000; 113 Pt 23:4319-30. [PMID: 11069776 DOI: 10.1242/jcs.113.23.4319] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Endothelial expression of matrix metalloproteinase-9 (MMP-9), which degrades native type IV collagen, was implicated as a prerequisite for angiogenesis. Therefore, the aim of this study was to determine signaling requirements that regulate MMP-9 expression in endothelial cells. Both, primary and permanent human umbilical vein endothelial cells (HUVEC and ECV304, respectively) were stimulated with phorbol 12-myristate 13-acetate (PMA) and the cytokine tumor necrosis factor-(alpha) (TNF(alpha)) to induce MMP-9 expression. While both cell types responded to PMA at the protein, mRNA and promoter level by induction of MMP-9, TNF(alpha) caused this response only in ECV304. Inhibitors specific for mitogen-activated protein/ERK kinase 1/2 (MEK1/2), protein kinase C (PKC), and Ras and co-transfections of wild-type and mutant Raf were used to elucidate the signaling cascades involved. Thus, we could show that the Raf/MEK/ERK cascade is mainly responsible for MMP-9 induction in endothelial cells and that this cascade is regulated independently of PKC and Ras subsequent to TNF(alpha) stimulation and in a PKC-dependent manner as a result of PMA treatment. In addition, PMA triggers a Ras-dependent signal transduction pathway bypassing the phosphorylation of ERK. Finally, we provide evidence that sustained phosphorylation of ERK1/2 is necessary but not sufficient for expression of MMP-9.
Collapse
Affiliation(s)
- E Genersch
- Franz Volhard Clinic at the Max Delbrück Center for Molecular Medicine, Medical Faculty of the Charité, Humboldt University of Berlin, Wiltberg Strasse 50, Germany.
| | | | | | | |
Collapse
|
48
|
Affiliation(s)
- T H Vu
- Department of Medicine and Lung Biology Center, University of California, San Francisco, California 94143, USA.
| | | |
Collapse
|
49
|
Reed M, Corsa A, Kudravi S, McCormick R, Arthur W. A deficit in collagenase activity contributes to impaired migration of aged microvascular endothelial cells. J Cell Biochem 2000. [DOI: 10.1002/(sici)1097-4644(20000401)77:1<116::aid-jcb12>3.0.co;2-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|