1
|
Xue Y, Zhou Y, Cepko CL. Txnip deletions and missense alleles prolong the survival of cones in a retinitis pigmentosa mouse model. eLife 2024; 12:RP90749. [PMID: 38727583 PMCID: PMC11087050 DOI: 10.7554/elife.90749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024] Open
Abstract
Retinitis pigmentosa (RP) is an inherited retinal disease in which there is a loss of cone-mediated daylight vision. As there are >100 disease genes, our goal is to preserve cone vision in a disease gene-agnostic manner. Previously we showed that overexpressing TXNIP, an α-arrestin protein, prolonged cone vision in RP mouse models, using an AAV to express it only in cones. Here, we expressed different alleles of Txnip in the retinal pigmented epithelium (RPE), a support layer for cones. Our goal was to learn more of TXNIP's structure-function relationships for cone survival, as well as determine the optimal cell type expression pattern for cone survival. The C-terminal half of TXNIP was found to be sufficient to remove GLUT1 from the cell surface, and improved RP cone survival, when expressed in the RPE, but not in cones. Knock-down of HSP90AB1, a TXNIP-interactor which regulates metabolism, improved the survival of cones alone and was additive for cone survival when combined with TXNIP. From these and other results, it is likely that TXNIP interacts with several proteins in the RPE to indirectly support cone survival, with some of these interactions different from those that lead to cone survival when expressed only in cones.
Collapse
Affiliation(s)
- Yunlu Xue
- Departments of Genetics and Ophthalmology, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
- Lingang LaboratoryShanghaiChina
| | - Yimin Zhou
- Lingang LaboratoryShanghaiChina
- School of Life Science and Technology, ShanghaiTech UniversityShanghaiChina
| | - Constance L Cepko
- Departments of Genetics and Ophthalmology, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
- Howard Hughes Medical InstituteBostonUnited States
| |
Collapse
|
2
|
Paliwal D, Rabiey M, Mauchline TH, Hassani-Pak K, Nauen R, Wagstaff C, Andrews S, Bass C, Jackson RW. Multiple toxins and a protease contribute to the aphid-killing ability of Pseudomonas fluorescens PpR24. Environ Microbiol 2024; 26:e16604. [PMID: 38561900 DOI: 10.1111/1462-2920.16604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/23/2024] [Indexed: 04/04/2024]
Abstract
Aphids are globally important pests causing damage to a broad range of crops. Due to insecticide resistance, there is an urgent need to develop alternative control strategies. In our previous work, we found Pseudomonas fluorescens PpR24 can orally infect and kill the insecticide-resistant green-peach aphid (Myzus persicae). However, the genetic basis of the insecticidal capability of PpR24 remains unclear. Genome sequencing of PpR24 confirmed the presence of various insecticidal toxins such as Tc (toxin complexes), Rhs (rearrangement hotspot) elements, and other insect-killing proteases. Upon aphids infection with PpR24, RNA-Seq analysis revealed 193 aphid genes were differentially expressed with down-regulation of 16 detoxification genes. In addition, 1325 PpR24 genes (542 were upregulated and 783 downregulated) were subject to differential expression, including genes responsible for secondary metabolite biosynthesis, the iron-restriction response, oxidative stress resistance, and virulence factors. Single and double deletion of candidate virulence genes encoding a secreted protease (AprX) and four toxin components (two TcA-like; one TcB-like; one TcC-like insecticidal toxins) showed that all five genes contribute significantly to aphid killing, particularly AprX. This comprehensive host-pathogen transcriptomic analysis provides novel insight into the molecular basis of bacteria-mediated aphid mortality and the potential of PpR24 as an effective biocontrol agent.
Collapse
Affiliation(s)
- Deepa Paliwal
- School of Biological Sciences, University of Reading, Reading, UK
| | - Mojgan Rabiey
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Tim H Mauchline
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, UK
| | | | | | - Carol Wagstaff
- School of Chemistry, Food and Pharmacy, University of Reading, Reading, UK
| | - Simon Andrews
- School of Biological Sciences, University of Reading, Reading, UK
| | | | - Robert W Jackson
- School of Biological Sciences, University of Reading, Reading, UK
- School of Biosciences and Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK
| |
Collapse
|
3
|
Xue Y, Zhou Y, Cepko CL. Txnip deletions and missense alleles prolong the survival of cones in a retinitis pigmentosa mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.03.551766. [PMID: 38370727 PMCID: PMC10871187 DOI: 10.1101/2023.08.03.551766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Retinitis pigmentosa (RP) is a prevalent inherited retinal degenerative disease worldwide, affecting 1 in 4,000 people. The disease is characterized by an initial loss of night vision followed by a loss of daylight and color vision. Many of the RP disease genes are expressed in the rod photoreceptors, the cell type that initiates dim light vision. Following loss of rods, the cone photoreceptors, which initiate daylight vision, also are affected and can die leading to total loss of vision. The reasons for loss of cone vision are not entirely clear, but appear to be due to loss of the rods. Previously we showed that overexpressing Txnip, an α-arrestin protein, in mouse models of RP using AAV gene therapy prolonged the survival of RP cones (Xue et al., 2021). At least part of the mechanism for cone survival was a switch in the fuel source, from glucose to lactate. In addition, the mitochondria of cones were both morphologically and functionally improved by delivery of Txnip. We have gone on to test several alleles of Txnip for the ability to prolong cone survival in rd1, a mouse model of RP. In addition, proteins that bind to Txnip and/or have homology to Txnip were tested. Five different deletion alleles of Txnip were expressed in cones or the retinal pigmented epithelium (RPE). Here we show that the C-terminal half of Txnip (149-397aa) is sufficient to remove GLUT1 from the RPE cell surface, and improved rd1 cone survival when expressed specifically in the RPE. Overexpressing Arrdc4, an α-arrestin that shares 60% similar protein sequence to Txnip, reduced rd1 cone survival. Reduction of the expression of HSP90AB1, a protein that interacts with Txnip and regulates metabolism, improved the survival of rd1 cones alone and was additive for cone survival when combined with Txnip. However, full length Txnip with a single amino acid change, C247S, as we tested in our original study, remains the most highly efficacious form of the gene for cone rescue. The above observations suggest that only a subset of the hypothesized and known activities of Txnip play a role in promoting RP cone survival, and that the activities of Txnip in the RPE differ from those in cone photoreceptors.
Collapse
Affiliation(s)
- Yunlu Xue
- Departments of Genetics and Ophthalmology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
- Lingang Laboratory, Shanghai, China, 200031
| | - Yimin Zhou
- Lingang Laboratory, Shanghai, China, 200031
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China, 201210
| | - Constance L. Cepko
- Departments of Genetics and Ophthalmology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
- Howard Hughes Medical Institute, Boston, MA 02115
| |
Collapse
|
4
|
La Marca JE, Aubrey BJ, Yang B, Chang C, Wang Z, Kueh A, Tai L, Wilcox S, Milla L, Heinzel S, Vremec D, Whelan L, König C, Kaloni D, Voss AK, Strasser A, Diepstraten ST, Herold MJ, Kelly GL. Genome-wide CRISPR screening identifies a role for ARRDC3 in TRP53-mediated responses. Cell Death Differ 2024; 31:150-158. [PMID: 38097622 PMCID: PMC10850147 DOI: 10.1038/s41418-023-01249-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/09/2023] [Accepted: 11/23/2023] [Indexed: 02/09/2024] Open
Abstract
Whole-genome screens using CRISPR technologies are powerful tools to identify novel tumour suppressors as well as factors that impact responses of malignant cells to anti-cancer agents. Applying this methodology to lymphoma cells, we conducted a genome-wide screen to identify novel inhibitors of tumour expansion that are induced by the tumour suppressor TRP53. We discovered that the absence of Arrestin domain containing 3 (ARRDC3) increases the survival and long-term competitiveness of MYC-driven lymphoma cells when treated with anti-cancer agents that activate TRP53. Deleting Arrdc3 in mice caused perinatal lethality due to various developmental abnormalities, including cardiac defects. Notably, the absence of ARRDC3 markedly accelerated MYC-driven lymphoma development. Thus, ARRDC3 is a new mediator of TRP53-mediated suppression of tumour expansion, and this discovery may open new avenues to harness this process for cancer therapy.
Collapse
Affiliation(s)
- John E La Marca
- The Walter and Eliza Hall Institute, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- Genome Engineering and Cancer Modelling Program, Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
| | - Brandon J Aubrey
- The Walter and Eliza Hall Institute, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- Department of Medicine, Massachusetts General Hospital, Boston, USA
| | - Bruce Yang
- The Walter and Eliza Hall Institute, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Catherine Chang
- The Walter and Eliza Hall Institute, Parkville, Victoria, Australia
| | - Zilu Wang
- The Walter and Eliza Hall Institute, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Andrew Kueh
- The Walter and Eliza Hall Institute, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- Genome Engineering and Cancer Modelling Program, Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
| | - Lin Tai
- The Walter and Eliza Hall Institute, Parkville, Victoria, Australia
- Genome Engineering and Cancer Modelling Program, Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
| | - Stephen Wilcox
- The Walter and Eliza Hall Institute, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Liz Milla
- The Walter and Eliza Hall Institute, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- Environomics Future Science Platform, Centre for Australian National Biodiversity Research, CSIRO, Canberra, Australia
| | - Susanne Heinzel
- The Walter and Eliza Hall Institute, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - David Vremec
- The Walter and Eliza Hall Institute, Parkville, Victoria, Australia
| | - Lauren Whelan
- The Walter and Eliza Hall Institute, Parkville, Victoria, Australia
| | - Christina König
- The Walter and Eliza Hall Institute, Parkville, Victoria, Australia
- Genome Engineering and Cancer Modelling Program, Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
| | - Deeksha Kaloni
- The Walter and Eliza Hall Institute, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Anne K Voss
- The Walter and Eliza Hall Institute, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Sarah T Diepstraten
- The Walter and Eliza Hall Institute, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Marco J Herold
- The Walter and Eliza Hall Institute, Parkville, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.
- Genome Engineering and Cancer Modelling Program, Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia.
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia.
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute, Parkville, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
5
|
Lee KT, Pranoto IKA, Kim SY, Choi HJ, To NB, Chae H, Lee JY, Kim JE, Kwon YV, Nam JW. Comparative interactome analysis of α-arrestin families in human and Drosophila. eLife 2024; 12:RP88328. [PMID: 38270169 PMCID: PMC10945707 DOI: 10.7554/elife.88328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
The α-arrestins form a large family of evolutionally conserved modulators that control diverse signaling pathways, including both G-protein-coupled receptor (GPCR)-mediated and non-GPCR-mediated pathways, across eukaryotes. However, unlike β-arrestins, only a few α-arrestin targets and functions have been characterized. Here, using affinity purification and mass spectrometry, we constructed interactomes for 6 human and 12 Drosophila α-arrestins. The resulting high-confidence interactomes comprised 307 and 467 prey proteins in human and Drosophila, respectively. A comparative analysis of these interactomes predicted not only conserved binding partners, such as motor proteins, proteases, ubiquitin ligases, RNA splicing factors, and GTPase-activating proteins, but also those specific to mammals, such as histone modifiers and the subunits of V-type ATPase. Given the manifestation of the interaction between the human α-arrestin, TXNIP, and the histone-modifying enzymes, including HDAC2, we undertook a global analysis of transcription signals and chromatin structures that were affected by TXNIP knockdown. We found that TXNIP activated targets by blocking HDAC2 recruitment to targets, a result that was validated by chromatin immunoprecipitation assays. Additionally, the interactome for an uncharacterized human α-arrestin ARRDC5 uncovered multiple components in the V-type ATPase, which plays a key role in bone resorption by osteoclasts. Our study presents conserved and species-specific protein-protein interaction maps for α-arrestins, which provide a valuable resource for interrogating their cellular functions for both basic and clinical research.
Collapse
Affiliation(s)
- Kyung-Tae Lee
- Department of Life Science, College of Natural Sciences, Hanyang UniversitySeoulRepublic of Korea
- Hanyang Institute of Advanced BioConvergence, Hanyang UniversitySeoulRepublic of Korea
| | - Inez KA Pranoto
- Department of Biochemistry, University of WashingtonSeattleUnited States
| | - Soon-Young Kim
- Department of Molecular Medicine, Cell and Matrix Research Institute, School of Medicine, Kyungpook National UniversityDaeguRepublic of Korea
| | - Hee-Joo Choi
- Bio-BigData Center, Hanyang Institute for Bioscience and Biotechnology, Hanyang UniversitySeoulRepublic of Korea
- Department of Pathology, College of Medicine, Hanyang UniversitySeoulRepublic of Korea
- Hanyang Biomedical Research Institute, Hanyang UniversitySeoulRepublic of Korea
| | - Ngoc Bao To
- Department of Life Science, College of Natural Sciences, Hanyang UniversitySeoulRepublic of Korea
| | - Hansong Chae
- Department of Life Science, College of Natural Sciences, Hanyang UniversitySeoulRepublic of Korea
| | - Jeong-Yeon Lee
- Bio-BigData Center, Hanyang Institute for Bioscience and Biotechnology, Hanyang UniversitySeoulRepublic of Korea
- Department of Pathology, College of Medicine, Hanyang UniversitySeoulRepublic of Korea
| | - Jung-Eun Kim
- Department of Molecular Medicine, Cell and Matrix Research Institute, School of Medicine, Kyungpook National UniversityDaeguRepublic of Korea
| | - Young V Kwon
- Department of Biochemistry, University of WashingtonSeattleUnited States
| | - Jin-Wu Nam
- Department of Life Science, College of Natural Sciences, Hanyang UniversitySeoulRepublic of Korea
- Hanyang Institute of Advanced BioConvergence, Hanyang UniversitySeoulRepublic of Korea
- Bio-BigData Center, Hanyang Institute for Bioscience and Biotechnology, Hanyang UniversitySeoulRepublic of Korea
| |
Collapse
|
6
|
Lewis M, Ono K, Qin Z, Johnsen RC, Baillie DL, Ono S. The α-arrestin SUP-13/ARRD-15 promotes isoform turnover of actin-interacting protein 1 in Caenorhabditis elegans striated muscle. PNAS NEXUS 2023; 2:pgad330. [PMID: 37869480 PMCID: PMC10590129 DOI: 10.1093/pnasnexus/pgad330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/02/2023] [Indexed: 10/24/2023]
Abstract
Precise arrangement of actin, myosin, and other regulatory components in a sarcomeric pattern is critical for producing contractile forces in striated muscles. Actin-interacting protein 1 (AIP1), also known as WD-repeat protein 1 (WDR1), is one of essential factors that regulate sarcomeric assembly of actin filaments. In the nematode Caenorhabditis elegans, mutation in unc-78, encoding one of the two AIP1 isoforms, causes severe disorganization of sarcomeric actin filaments and near paralysis, but mutation in sup-13 suppresses the unc-78-mutant phenotypes to restore nearly normal sarcomeric actin organization and worm motility. Here, we identified that sup-13 is a nonsense allele of arrd-15 encoding an α-arrestin. The sup-13/arrd-15 mutation suppressed the phenotypes of unc-78 null mutant but required aipl-1 that encodes a second AIP1 isoform. aipl-1 was normally expressed highly in embryos and downregulated in mature muscle. However, in the sup-13/arrd-15 mutant, the AIPL-1 protein was maintained at high levels in adult muscle to compensate for the absence of the UNC-78 protein. The sup-13/arrd-15 mutation caused accumulation of ubiquitinated AIPL-1 protein, suggesting that a normal function of sup-13/arrd-15 is to enhance degradation of ubiquitinated AIPL-1, thereby promoting transition of AIP1 isoforms from AIPL-1 to UNC-78 in developing muscle. These results suggest that α-arrestin is a novel factor to promote isoform turnover by enhancing protein degradation.
Collapse
Affiliation(s)
- Mario Lewis
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kanako Ono
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zhaozhao Qin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Robert C Johnsen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - David L Baillie
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Shoichiro Ono
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
7
|
Dagdeviren S, Hoang MF, Sarikhani M, Meier V, Benoit JC, Okawa MC, Melnik VY, Ricci-Blair EM, Foot N, Friedline RH, Hu X, Tauer LA, Srinivasan A, Prigozhin MB, Shenoy SK, Kumar S, Kim JK, Lee RT. An insulin-regulated arrestin domain protein controls hepatic glucagon action. J Biol Chem 2023; 299:105045. [PMID: 37451484 PMCID: PMC10413355 DOI: 10.1016/j.jbc.2023.105045] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 06/16/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
Glucagon signaling is essential for maintaining normoglycemia in mammals. The arrestin fold superfamily of proteins controls the trafficking, turnover, and signaling of transmembrane receptors as well as other intracellular signaling functions. Further investigation is needed to understand the in vivo functions of the arrestin domain-containing 4 (ARRDC4) protein family member and whether it is involved in mammalian glucose metabolism. Here, we show that mice with a global deletion of the ARRDC4 protein have impaired glucagon responses and gluconeogenesis at a systemic and molecular level. Mice lacking ARRDC4 exhibited lower glucose levels after fasting and could not suppress gluconeogenesis at the refed state. We also show that ARRDC4 coimmunoprecipitates with the glucagon receptor, and ARRDC4 expression is suppressed by insulin. These results define ARRDC4 as a critical regulator of glucagon signaling and glucose homeostasis and reveal a novel intersection of insulin and glucagon pathways in the liver.
Collapse
Affiliation(s)
- Sezin Dagdeviren
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Megan F Hoang
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Mohsen Sarikhani
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Vanessa Meier
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Jake C Benoit
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Marinna C Okawa
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Veronika Y Melnik
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Elisabeth M Ricci-Blair
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Natalie Foot
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Randall H Friedline
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Xiaodi Hu
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Lauren A Tauer
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Arvind Srinivasan
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Maxim B Prigozhin
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Sudha K Shenoy
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA; Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Jason K Kim
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA; Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
| | - Richard T Lee
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA.
| |
Collapse
|
8
|
The Possible Role of Chronic Infection in the Etiopathogenesis of a Case of 5q-Syndrome Associated with Tuberculosis and Abnormality of the X Chromosome. Mediterr J Hematol Infect Dis 2022; 14:e2022079. [PMID: 36425150 PMCID: PMC9652017 DOI: 10.4084/mjhid.2022.079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/16/2022] [Indexed: 01/21/2023] Open
|
9
|
Nakayama Y, Mukai N, Kreitzer G, Patwari P, Yoshioka J. Interaction of ARRDC4 With GLUT1 Mediates Metabolic Stress in the Ischemic Heart. Circ Res 2022; 131:510-527. [PMID: 35950500 PMCID: PMC9444972 DOI: 10.1161/circresaha.122.321351] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/01/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND An ancient family of arrestin-fold proteins, termed alpha-arrestins, may have conserved roles in regulating nutrient transporter trafficking and cellular metabolism as adaptor proteins. One alpha-arrestin, TXNIP (thioredoxin-interacting protein), is known to regulate myocardial glucose uptake. However, the in vivo role of the related alpha-arrestin, ARRDC4 (arrestin domain-containing protein 4), is unknown. METHODS We first tested whether interaction with GLUTs (glucose transporters) is a conserved function of the mammalian alpha-arrestins. To define the in vivo function of ARRDC4, we generated and characterized a novel Arrdc4 knockout (KO) mouse model. We then analyzed the molecular interaction between arrestin domains and the basal GLUT1. RESULTS ARRDC4 binds to GLUT1, induces its endocytosis, and blocks cellular glucose uptake in cardiomyocytes. Despite the closely shared protein structure, ARRDC4 and its homologue TXNIP operate by distinct molecular pathways. Unlike TXNIP, ARRDC4 does not increase oxidative stress. Instead, ARRDC4 uniquely mediates cardiomyocyte death through its effects on glucose deprivation and endoplasmic reticulum stress. At baseline, Arrdc4-KO mice have mild fasting hypoglycemia. Arrdc4-KO hearts exhibit a robust increase in myocardial glucose uptake and glycogen storage. Accordingly, deletion of Arrdc4 improves energy homeostasis during ischemia and protects cardiomyocytes against myocardial infarction. Furthermore, structure-function analyses of the interaction of ARRDC4 with GLUT1 using both scanning mutagenesis and deep-learning Artificial Intelligence identify specific residues in the C-terminal arrestin-fold domain as the interaction interface that regulates GLUT1 function, revealing a new molecular target for potential therapeutic intervention against myocardial ischemia. CONCLUSIONS These results uncover a new mechanism of ischemic injury in which ARRDC4 drives glucose deprivation-induced endoplasmic reticulum stress leading to cardiomyocyte death. Our findings establish ARRDC4 as a new scaffold protein for GLUT1 that regulates cardiac metabolism in response to ischemia and provide insight into the therapeutic strategy for ischemic heart disease.
Collapse
Affiliation(s)
- Yoshinobu Nakayama
- Department of Molecular, Cellular & Biomedical Sciences, City University of New York School of Medicine, City College of New York, New York, New York
| | - Nobuhiro Mukai
- Department of Molecular, Cellular & Biomedical Sciences, City University of New York School of Medicine, City College of New York, New York, New York
| | - Geri Kreitzer
- Department of Molecular, Cellular & Biomedical Sciences, City University of New York School of Medicine, City College of New York, New York, New York
| | - Parth Patwari
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jun Yoshioka
- Department of Molecular, Cellular & Biomedical Sciences, City University of New York School of Medicine, City College of New York, New York, New York
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
10
|
Jiang N, Liu J, Guan C, Ma C, An J, Tang X. Thioredoxin-interacting protein: A new therapeutic target in bone metabolism disorders? Front Immunol 2022; 13:955128. [PMID: 36059548 PMCID: PMC9428757 DOI: 10.3389/fimmu.2022.955128] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/28/2022] [Indexed: 12/05/2022] Open
Abstract
Target identification is essential for developing novel therapeutic strategies in diseases. Thioredoxin-interacting protein (TXNIP), also known as thioredoxin-binding protein-2, is a member of the α-arrestin protein family and is regulated by several cellular stress factors. TXNIP overexpression coupled with thioredoxin inhibits its antioxidant functions, thereby increasing oxidative stress. TXNIP is directly involved in inflammatory activation by interacting with Nod-like receptor protein 3 inflammasome. Bone metabolic disorders are associated with aging, oxidative stress, and inflammation. They are characterized by an imbalance between bone formation involving osteoblasts and bone resorption by osteoclasts, and by chondrocyte destruction. The role of TXNIP in bone metabolic diseases has been extensively investigated. Here, we discuss the roles of TXNIP in the regulatory mechanisms of transcription and protein levels and summarize its involvement in bone metabolic disorders such as osteoporosis, osteoarthritis, and rheumatoid arthritis. TXNIP is expressed in osteoblasts, osteoclasts, and chondrocytes and affects the differentiation and functioning of skeletal cells through both redox-dependent and -independent regulatory mechanisms. Therefore, TXNIP is a potential regulatory and functional factor in bone metabolism and a possible new target for the treatment of bone metabolism-related diseases.
Collapse
Affiliation(s)
- Na Jiang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Jinjin Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Conghui Guan
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Chengxu Ma
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Jinyang An
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xulei Tang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, China
- *Correspondence: Xulei Tang,
| |
Collapse
|
11
|
Bosch DE, Jeck WR, Siderovski DP. Self-activating G protein α subunits engage seven-transmembrane Regulator of G protein Signaling (RGS) proteins and a Rho guanine nucleotide exchange factor effector in the amoeba Naegleria fowleri. J Biol Chem 2022; 298:102167. [PMID: 35738399 PMCID: PMC9283941 DOI: 10.1016/j.jbc.2022.102167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
The free-living amoeba Naegleria fowleri is a causative agent of primary amoebic meningoencephalitis and is highly resistant to current therapies, resulting in mortality rates >97%. As many therapeutics target G protein-centered signal transduction pathways, further understanding the functional significance of G protein signaling within N. fowleri should aid future drug discovery against this pathogen. Here, we report that the N. fowleri genome encodes numerous transcribed G protein signaling components, including G protein-coupled receptors (GPCRs), heterotrimeric G protein subunits, Regulator of G protein Signaling (RGS) proteins, and candidate Gα effector proteins. We found N. fowleri Gα subunits have diverse nucleotide cycling kinetics; Nf Gα5 and Gα7 exhibit more rapid nucleotide exchange than GTP hydrolysis (i.e. "self-activating" behavior). A crystal structure of Nf Gα7 highlights the stability of its nucleotide-free state, consistent with its rapid nucleotide exchange. Variations in the phosphate binding loop (P-loop) also contribute to nucleotide cycling differences among Gα subunits. Similar to plant G protein signaling pathways, N. fowleri Gα subunits selectively engage members of a large seven-transmembrane RGS protein family, resulting in acceleration of GTP hydrolysis. We show Nf Gα2 and Gα3 directly interact with a candidate Gα effector protein, RGS-RhoGEF, similar to mammalian Gα12/13 signaling pathways. We demonstrate Nf Gα2 and Gα3 each engage RGS-RhoGEF through a canonical Gα/RGS domain interface, suggesting a shared evolutionary origin with G protein signaling in the enteric pathogen Entamoeba histolytica. These findings further illuminate the evolution of G protein signaling and identify potential targets of pharmacological manipulation in Naegleria fowleri.
Collapse
Affiliation(s)
- Dustin E Bosch
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.
| | - William R Jeck
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| | - David P Siderovski
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| |
Collapse
|
12
|
Farooq AU, Gembus K, Sandow JJ, Webb A, Mathivanan S, Manning JA, Shah SS, Foot NJ, Kumar S. K-29 linked ubiquitination of Arrdc4 regulates its function in extracellular vesicle biogenesis. J Extracell Vesicles 2022; 11:e12188. [PMID: 35106941 PMCID: PMC8807422 DOI: 10.1002/jev2.12188] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 12/14/2021] [Accepted: 01/02/2022] [Indexed: 12/04/2022] Open
Abstract
Extracellular vesicles (EVs) are important mediators of intercellular communication. However, EV biogenesis remains poorly understood. We previously defined a role for Arrdc4 (Arrestin domain containing protein 4), an adaptor for Nedd4 family ubiquitin ligases, in the biogenesis of EVs. Here we report that ubiquitination of Arrdc4 is critical for its role in EV secretion. We identified five potential ubiquitinated lysine residues in Arrdc4 using mass spectrometry. By analysing Arrdc4 lysine mutants we discovered that lysine 270 (K270) is critical for Arrdc4 function in EV biogenesis. Arrdc4K270R mutation caused a decrease in the number of EVs released by cells compared to Arrdc4WT , and a reduction in trafficking of divalent metal transporter (DMT1) into EVs. Furthermore, we also observed a decrease in DMT1 activity and an increase in its intracellular degradation in the presence of Arrdc4K270R . K270 was found to be ubiquitinated with K-29 polyubiquitin chains by the ubiquitin ligase Nedd4-2. Thus, our results uncover a novel role of K-29 polyubiquitin chains in Arrdc4-mediated EV biogenesis and protein trafficking.
Collapse
Affiliation(s)
- Ammara Usman Farooq
- Centre for Cancer BiologyUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Kelly Gembus
- Centre for Cancer BiologyUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | | | - Andrew Webb
- Walter and Eliza Hall InstituteParkvilleVictoriaAustralia
| | - Suresh Mathivanan
- La Trobe Institute for Molecular ScienceLa Trobe UniversityVictoriaAustralia
| | - Jantina A. Manning
- Centre for Cancer BiologyUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Sonia S. Shah
- Centre for Cancer BiologyUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Natalie J. Foot
- Centre for Cancer BiologyUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Sharad Kumar
- Centre for Cancer BiologyUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| |
Collapse
|
13
|
Lino CA, Barreto-Chaves ML. Beta-arrestins in the context of cardiovascular diseases: Focusing on type 1 angiotensin II receptor (AT1R). Cell Signal 2022; 92:110253. [DOI: 10.1016/j.cellsig.2022.110253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/16/2022]
|
14
|
Murani E, Trakooljul N, Hadlich F, Ponsuksili S, Wimmers K. Brain Transcriptome Responses to Dexamethasone Depending on Dose and Sex Reveal Factors Contributing to Sex-Specific Vulnerability to Stress-Induced Disorders. Neuroendocrinology 2022; 112:235-251. [PMID: 33853082 PMCID: PMC8985051 DOI: 10.1159/000516500] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/06/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Glucocorticoid (GC) receptor (GR) signaling in the hypothalamus (Hyp) and in the superordinate limbic structures, such as the hippocampus (Hip), conveys feedback regulation of the neuroendocrine stress response and acts upon other neurobiological functions that ultimately influence mental health. These responses are strongly influenced by sex, but the molecular causes are still largely unexplored. METHODS To investigate GR targets and their GC sensitivity in the Hyp and Hip, we treated juvenile male and female piglets with 10 (D10) or 60 (D60) µg/kg dexamethasone (DEX), a selective GR agonist, and analyzed transcriptome responses compared to a saline control group using RNA sequencing. RESULTS Both doses influenced similar biological functions, including cellular response to lipid and immune cell-related functions, but the transcriptional response to D10 was considerably weaker, particularly in the Hip. Weighted Gene Co-expression Network Analysis revealed a network of genes coordinately regulated by DEX in both structures, among which the alpha-arrestin ARRDC2 takes a central position. Distinct functional groups of genes were differentially regulated by DEX between sexes depending on the dose; at D10, these included particularly mitochondrial genes, whereas at D60 interferon signaling and lipid homeostasis genes were enriched. The general and sex-specific transcriptional responses to DEX highlight microglia as the prominent target. Several key marker genes of disease-associated microglia were regulated by DEX depending on sex, such as TREM2 and LPL. CONCLUSION The discovered expression signatures suggest that DEX induced a dysfunctional state of microglia in males, while in females microglia were primed, which could entail predisposition for different mental disorders.
Collapse
|
15
|
Juvinao-Quintero DL, Cardenas A, Perron P, Bouchard L, Lutz SM, Hivert MF. Associations between an integrated component of maternal glycemic regulation in pregnancy and cord blood DNA methylation. Epigenomics 2021; 13:1459-1472. [PMID: 34596421 DOI: 10.2217/epi-2021-0220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: Previous studies suggest that fetal programming to hyperglycemia in pregnancy is due to modulation of DNA methylation (DNAm), but they have been limited in their maternal glycemic characterization. Methods: In the Gen3G study, we used a principal component analysis to integrate multiple glucose and insulin values measured during the second trimester oral glucose tolerance test. We investigated associations between principal components and cord blood DNAm levels in an epigenome-wide analysis among 430 mother-child pairs. Results: The first principal component was robustly associated with lower DNAm at cg26974062 (TXNIP; p = 9.9 × 10-9) in cord blood. TXNIP is a well-known DNAm marker for type 2 diabetes in adults. Conclusion: We hypothesize that abnormal glucose metabolism in pregnancy may program dysregulation of TXNIP across the life course.
Collapse
Affiliation(s)
- Diana L Juvinao-Quintero
- Division of Chronic Disease Research Across the Life Course, Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Andres Cardenas
- Division of Environmental Health Sciences, School of Public Health & Center for Computational Biology, University of California, Berkeley, CA 94720-7360, USA
| | - Patrice Perron
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, J1H 5N4, Canada.,Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, J1H 5N4, Canada
| | - Luigi Bouchard
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, J1H 5N4, Canada.,Department of Medical Biology, Centre Intégré Universitaire en Santé et Services Sociaux Saguenay-Lac-Saint-Jean, Hôpital Universitaire de Chicoutimi, Saguenay, QC, G7H 5H6, Canada.,Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Sharon M Lutz
- Division of Chronic Disease Research Across the Life Course, Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, MA 02215, USA.,Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA 02215, USA
| | - Marie-France Hivert
- Division of Chronic Disease Research Across the Life Course, Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, MA 02215, USA.,Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, J1H 5N4, Canada.,Diabetes Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
16
|
Miszta P, Pasznik P, Niewieczerzał S, Jakowiecki J, Filipek S. GPCRsignal: webserver for analysis of the interface between G-protein-coupled receptors and their effector proteins by dynamics and mutations. Nucleic Acids Res 2021; 49:W247-W256. [PMID: 34060630 PMCID: PMC8262697 DOI: 10.1093/nar/gkab434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/20/2021] [Accepted: 05/07/2021] [Indexed: 01/04/2023] Open
Abstract
GPCRsignal (https://gpcrsignal.biomodellab.eu/) is a webserver devoted to signaling complexes of G-protein–coupled receptors (GPCRs). The recent improvement in cryo-electron microscopy resulted in the determination of a large number of high-resolution structures of GPCRs bound to their effector proteins: G proteins or arrestins. Analyzing the interfaces between receptor and an effector protein is of high importance since a selection of proper G protein or specific conformation of arrestin leads to changes of signaling that can significantly affect action of drugs. GPCRsignal provides a possibility of running molecular dynamics simulations of all currently available GPCR-effector protein complexes for curated structures: wild-type, with crystal/cryo-EM mutations, or with mutations introduced by the user. The simulations are performed in an implicit water-membrane environment, so they are rather fast. User can run several simulations to obtain statistically valid results. The simulations can be analyzed separately using dynamic FlarePlots for particular types of interactions. One can also compare groups of simulations in Interaction frequency analysis as HeatMaps and also in interaction frequency difference analysis as sticks, linking the interacting residues, of different color and size proportional to differences in contact frequencies.
Collapse
Affiliation(s)
- Przemysław Miszta
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-093 Warsaw, Poland
| | - Paweł Pasznik
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-093 Warsaw, Poland
| | - Szymon Niewieczerzał
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-093 Warsaw, Poland
| | - Jakub Jakowiecki
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-093 Warsaw, Poland
| | - Sławomir Filipek
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-093 Warsaw, Poland
| |
Collapse
|
17
|
Toyoda Y, Soejima S, Masuda F, Saitoh S. TORC2 inhibition of α-arrestin Aly3 mediates cell surface persistence of S. pombe Ght5 glucose transporter in low glucose. J Cell Sci 2021; 134:268339. [PMID: 34028542 DOI: 10.1242/jcs.257485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/14/2021] [Indexed: 01/04/2023] Open
Abstract
In the fission yeast, Schizosaccharomyces pombe, the high-affinity hexose transporter, Ght5, must be transcriptionally upregulated and localized to the cell surface for cell division under limited glucose. Although cell-surface localization of Ght5 depends on Target of rapamycin complex 2 (TORC2), the molecular mechanisms by which TORC2 ensures proper localization of Ght5 remain unknown. We performed genetic screening for gene mutations that restore Ght5 localization on the cell surface in TORC2-deficient mutant cells, and identified a gene encoding an uncharacterized α-arrestin-like protein, Aly3/SPCC584.15c. α-arrestins are thought to recruit a ubiquitin ligase to membrane-associated proteins. Consistently, Ght5 is ubiquitylated in TORC2-deficient cells, and this ubiquitylation is dependent on Aly3. TORC2 supposedly enables cell-surface localization of Ght5 by preventing Aly3-dependent ubiquitylation and subsequent ubiquitylation-dependent translocation of Ght5 to vacuoles. Surprisingly, nitrogen starvation, but not glucose depletion, triggers Aly3-dependent transport of Ght5 to vacuoles in S. pombe, unlike budding yeast hexose transporters, vacuolar transport of which is initiated upon changes in hexose concentration. This study provides new insights into the molecular mechanisms controlling the subcellular localization of hexose transporters in response to extracellular stimuli.
Collapse
Affiliation(s)
- Yusuke Toyoda
- Department of Cell Biology, Institute of Life Science, Kurume University, Asahi-machi 67, Kurume, Fukuoka 830-0011, Japan
| | - Saeko Soejima
- Department of Cell Biology, Institute of Life Science, Kurume University, Asahi-machi 67, Kurume, Fukuoka 830-0011, Japan
| | - Fumie Masuda
- Department of Cell Biology, Institute of Life Science, Kurume University, Asahi-machi 67, Kurume, Fukuoka 830-0011, Japan
| | - Shigeaki Saitoh
- Department of Cell Biology, Institute of Life Science, Kurume University, Asahi-machi 67, Kurume, Fukuoka 830-0011, Japan
| |
Collapse
|
18
|
Xue Y, Wang SK, Rana P, West ER, Hong CM, Feng H, Wu DM, Cepko CL. AAV-Txnip prolongs cone survival and vision in mouse models of retinitis pigmentosa. eLife 2021; 10:e66240. [PMID: 33847261 PMCID: PMC8081528 DOI: 10.7554/elife.66240] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/30/2021] [Indexed: 01/14/2023] Open
Abstract
Retinitis pigmentosa (RP) is an inherited retinal disease affecting >20 million people worldwide. Loss of daylight vision typically occurs due to the dysfunction/loss of cone photoreceptors, the cell type that initiates our color and high-acuity vision. Currently, there is no effective treatment for RP, other than gene therapy for a limited number of specific disease genes. To develop a disease gene-agnostic therapy, we screened 20 genes for their ability to prolong cone photoreceptor survival in vivo. Here, we report an adeno-associated virus vector expressing Txnip, which prolongs the survival of cone photoreceptors and improves visual acuity in RP mouse models. A Txnip allele, C247S, which blocks the association of Txnip with thioredoxin, provides an even greater benefit. Additionally, the rescue effect of Txnip depends on lactate dehydrogenase b (Ldhb) and correlates with the presence of healthier mitochondria, suggesting that Txnip saves RP cones by enhancing their lactate catabolism.
Collapse
Affiliation(s)
- Yunlu Xue
- Department of Genetics, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
- Department of Ophthalmology, Harvard Medical SchoolBostonUnited States
| | - Sean K Wang
- Department of Genetics, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
- Department of Ophthalmology, Harvard Medical SchoolBostonUnited States
- Howard Hughs Medical InstituteChevy ChaseUnited States
| | - Parimal Rana
- Department of Genetics, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
| | - Emma R West
- Department of Genetics, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
- Howard Hughs Medical InstituteChevy ChaseUnited States
| | - Christin M Hong
- Department of Genetics, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
- Howard Hughs Medical InstituteChevy ChaseUnited States
| | - Helian Feng
- Department of Biostatistics, Harvard T.H. Chan School of Public HealthBostonUnited States
| | - David M Wu
- Department of Genetics, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
- Department of Ophthalmology, Harvard Medical SchoolBostonUnited States
- Retina Service, Massachusetts Eye and Ear Infirmary, Harvard Medical SchoolBostonUnited States
| | - Constance L Cepko
- Department of Genetics, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
- Department of Ophthalmology, Harvard Medical SchoolBostonUnited States
- Howard Hughs Medical InstituteChevy ChaseUnited States
| |
Collapse
|
19
|
Kahlhofer J, Leon S, Teis D, Schmidt O. The α-arrestin family of ubiquitin ligase adaptors links metabolism with selective endocytosis. Biol Cell 2021; 113:183-219. [PMID: 33314196 DOI: 10.1111/boc.202000137] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022]
Abstract
The regulation of nutrient uptake into cells is important, as it allows to either increase biomass for cell growth or to preserve homoeostasis. A key strategy to adjust cellular nutrient uptake is the reconfiguration of the nutrient transporter repertoire at the plasma membrane by the addition of nutrient transporters through the secretory pathway and by their endocytic removal. In this review, we focus on the mechanisms that regulate selective nutrient transporter endocytosis, which is mediated by the α-arrestin protein family. In the budding yeast Saccharomyces cerevisiae, 14 different α-arrestins (also named arrestin-related trafficking adaptors, ARTs) function as adaptors for the ubiquitin ligase Rsp5. They instruct Rsp5 to ubiquitinate subsets of nutrient transporters to orchestrate their endocytosis. The ART proteins are under multilevel control of the major nutrient sensing systems, including amino acid sensing by the general amino acid control and target of rapamycin pathways, and energy sensing by 5'-adenosine-monophosphate-dependent kinase. The function of the six human α-arrestins is comparably under-characterised. Here, we summarise the current knowledge about the function, regulation and substrates of yeast ARTs and human α-arrestins, and highlight emerging communalities and general principles.
Collapse
Affiliation(s)
- Jennifer Kahlhofer
- Institute for Cell Biology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Sebastien Leon
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - David Teis
- Institute for Cell Biology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Oliver Schmidt
- Institute for Cell Biology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
20
|
Adaptors as the regulators of HECT ubiquitin ligases. Cell Death Differ 2021; 28:455-472. [PMID: 33402750 DOI: 10.1038/s41418-020-00707-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022] Open
Abstract
The HECT (homologous to E6AP C-terminus) ubiquitin ligases (E3s) are a small family of highly conserved enzymes involved in diverse cellular functions and pathological conditions. Characterised by a C-terminal HECT domain that accepts ubiquitin from E2 ubiquitin conjugating enzymes, these E3s regulate key signalling pathways. The activity and functional regulation of HECT E3s are controlled by several factors including post-translational modifications, inter- and intramolecular interactions and binding of co-activators and adaptor proteins. In this review, we focus on the regulation of HECT E3s by accessory proteins or adaptors and discuss various ways by which adaptors mediate their regulatory roles to affect physiological outcomes. We discuss common features that are conserved from yeast to mammals, regardless of the type of E3s as well as shed light on recent discoveries explaining some existing enigmas in the field.
Collapse
|
21
|
Sardana R, Emr SD. Membrane Protein Quality Control Mechanisms in the Endo-Lysosome System. Trends Cell Biol 2021; 31:269-283. [PMID: 33414051 DOI: 10.1016/j.tcb.2020.11.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 01/12/2023]
Abstract
Protein quality control (PQC) machineries play a critical role in selective identification and removal of mistargeted, misfolded, and aberrant proteins. This task is extremely complicated due to the enormous diversity of the proteome. It also requires nuanced and careful differentiation between 'normal' and 'folding intermediates' from 'abnormal' and 'misfolded' protein states. Multiple genetic and proteomic approaches have started to delineate the molecular underpinnings of how these machineries recognize their target and how their activity is regulated. In this review, we summarize our understanding of the various E3 ubiquitin ligases and associated machinery that mediate PQC in the endo-lysosome system in yeast and humans, how they are regulated, and mechanisms of target selection, with the intent of guiding future research in this area.
Collapse
Affiliation(s)
- Richa Sardana
- Weill Institute of Cell and Molecular Biology, Cornell University, Ithaca, NY, USA; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Scott D Emr
- Weill Institute of Cell and Molecular Biology, Cornell University, Ithaca, NY, USA; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
22
|
López-Hernández T, Haucke V, Maritzen T. Endocytosis in the adaptation to cellular stress. Cell Stress 2020; 4:230-247. [PMID: 33024932 PMCID: PMC7520666 DOI: 10.15698/cst2020.10.232] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022] Open
Abstract
Cellular life is challenged by a multitude of stress conditions, triggered for example by alterations in osmolarity, oxygen or nutrient supply. Hence, cells have developed sophisticated stress responses to cope with these challenges. Some of these stress programs such as the heat shock response are understood in great detail, while other aspects remain largely elusive including potential stress-dependent adaptations of the plasma membrane proteome. The plasma membrane is not only the first point of encounter for many types of environmental stress, but given the diversity of receptor proteins and their associated molecules also represents the site at which many cellular signal cascades originate. Since these signaling pathways affect virtually all aspects of cellular life, changes in the plasma membrane proteome appear ideally suited to contribute to the cellular adaptation to stress. The most rapid means to alter the cell surface proteome in response to stress is by alterations in endocytosis. Changes in the overall endocytic flux or in the endocytic regulation of select proteins conceivably can help to counteract adverse environmental conditions. In this review we summarize recent data regarding stress-induced changes in endocytosis and discuss how these changes might contribute to the cellular adaptation to stress in different systems. Future studies will be needed to uncover the underlying mechanisms in detail and to arrive at a coherent picture.
Collapse
Affiliation(s)
- Tania López-Hernández
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
- Freie Universität Berlin, Faculty of Biology, Chemistry, Pharmacy, 14195 Berlin, Germany
| | - Tanja Maritzen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| |
Collapse
|
23
|
Abstract
To survive under unpredictable conditions, all organisms must adapt to stressors by regulating adaptive cellular responses. Arrestin proteins are conserved regulators of adaptive cellular responses in eukaryotes. Studies that have been limited to mammals and model fungi have demonstrated that the disruption of arrestin-regulated pathways is detrimental for viability. The human fungal pathogen Cryptococcus neoformans causes more than 180,000 infection-related deaths annually, especially among immunocompromised patients. In addition to being genetically tractable, C. neoformans has a small arrestin family of four members, lending itself to a comprehensive characterization of its arrestin family. This study serves as a functional analysis of arrestins in a pathogen, particularly in the context of fungal fitness and virulence. We investigate the functions of one arrestin protein, Ali1, and define its novel contributions to cytokinesis. We additionally explore the virulence contributions of the C. neoformans arrestin family and find that they contribute to disease establishment and progression. Arrestins, a structurally specialized and functionally diverse group of proteins, are central regulators of adaptive cellular responses in eukaryotes. Previous studies on fungal arrestins have demonstrated their capacity to modulate diverse cellular processes through their adaptor functions, facilitating the localization and function of other proteins. However, the mechanisms by which arrestin-regulated processes are involved in fungal virulence remain unexplored. We have identified a small family of four arrestins, Ali1, Ali2, Ali3, and Ali4, in the human fungal pathogen Cryptococcus neoformans. Using complementary microscopy, proteomic, and reverse genetics techniques, we have defined a role for Ali1 as a novel contributor to cytokinesis, a fundamental cell cycle-associated process. We observed that Ali1 strongly interacts with proteins involved in lipid synthesis, and that ali1Δ mutant phenotypes are rescued by supplementation with lipid precursors that are used to build cellular membranes. From these data, we hypothesize that Ali1 contributes to cytokinesis by serving as an adaptor protein, facilitating the localization of enzymes that modify the plasma membrane during cell division, specifically the fatty acid synthases Fas1 and Fas2. Finally, we assessed the contributions of the C. neoformans arrestin family to virulence to better understand the mechanisms by which arrestin-regulated adaptive cellular responses influence fungal infection. We observed that the C. neoformans arrestin family contributes to virulence, and that the individual arrestin proteins likely fulfill distinct functions that are important for disease progression.
Collapse
|
24
|
Endocytic Adaptor Proteins in Health and Disease: Lessons from Model Organisms and Human Mutations. Cells 2019; 8:cells8111345. [PMID: 31671891 PMCID: PMC6912373 DOI: 10.3390/cells8111345] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/11/2022] Open
Abstract
Cells need to exchange material and information with their environment. This is largely achieved via cell-surface receptors which mediate processes ranging from nutrient uptake to signaling responses. Consequently, their surface levels have to be dynamically controlled. Endocytosis constitutes a powerful mechanism to regulate the surface proteome and to recycle vesicular transmembrane proteins that strand at the plasma membrane after exocytosis. For efficient internalization, the cargo proteins need to be linked to the endocytic machinery via adaptor proteins such as the heterotetrameric endocytic adaptor complex AP-2 and a variety of mostly monomeric endocytic adaptors. In line with the importance of endocytosis for nutrient uptake, cell signaling and neurotransmission, animal models and human mutations have revealed that defects in these adaptors are associated with several diseases ranging from metabolic disorders to encephalopathies. This review will discuss the physiological functions of the so far known adaptor proteins and will provide a comprehensive overview of their links to human diseases.
Collapse
|
25
|
Gordon BS, Rossetti ML, Eroshkin AM. Arrdc2 and Arrdc3 elicit divergent changes in gene expression in skeletal muscle following anabolic and catabolic stimuli. Physiol Genomics 2019; 51:208-217. [DOI: 10.1152/physiolgenomics.00007.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Skeletal muscle is a highly plastic organ regulating various processes in the body. As such, loss of skeletal muscle underlies the increased morbidity and mortality risk that is associated with numerous conditions. However, no therapies are available to combat the loss of muscle mass during atrophic conditions, which is due in part to the incomplete understanding of the molecular networks altered by anabolic and catabolic stimuli. Thus, the current objective was to identify novel gene networks modulated by such stimuli. For this, total RNA from the tibialis anterior muscle of mice that were fasted overnight or fasted overnight and refed the next morning was subjected to microarray analysis. The refeeding stimulus altered the expression of genes associated with signal transduction. Specifically, expression of alpha arrestin domain containing 2 (Arrdc2) and alpha arrestin domain containing 3 (Arrdc3) was significantly lowered 70–85% by refeeding. Subsequent analysis showed that expression of these genes was also lowered 50–75% by mechanical overload, with the combination of nutrients and mechanical overload acting synergistically to lower Arrdc2 and Arrdc3 expression. On the converse, stimuli that suppress growth such as testosterone depletion or acute aerobic exercise increased Arrdc2 and Arrdc3 expression in skeletal muscle. While Arrdc2 and Arrdc3 exhibited divergent changes in expression following anabolic or catabolic stimuli, no other member of the Arrdc family of genes exhibited the consistent change in expression across the analyzed conditions. Thus, Arrdc2 and Arrdc3 are a novel set of genes that may be implicated in the regulation of skeletal muscle mass.
Collapse
Affiliation(s)
- Bradley S. Gordon
- Department of Nutrition, Food & Exercise Sciences, Florida State University, Tallahassee, Florida
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, Florida
| | - Michael L. Rossetti
- Department of Nutrition, Food & Exercise Sciences, Florida State University, Tallahassee, Florida
| | - Alexey M. Eroshkin
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
- Rancho BioSciences, San Diego, California
| |
Collapse
|
26
|
Katsu-Jiménez Y, Vázquez-Calvo C, Maffezzini C, Halldin M, Peng X, Freyer C, Wredenberg A, Giménez-Cassina A, Wedell A, Arnér ESJ. Absence of TXNIP in Humans Leads to Lactic Acidosis and Low Serum Methionine Linked to Deficient Respiration on Pyruvate. Diabetes 2019; 68:709-723. [PMID: 30755400 DOI: 10.2337/db18-0557] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 01/21/2019] [Indexed: 11/13/2022]
Abstract
Thioredoxin-interacting protein (TXNIP) is an α-arrestin that can bind to and inhibit the antioxidant protein thioredoxin (TXN). TXNIP expression is induced by glucose and promotes β-cell apoptosis in the pancreas, and deletion of its gene in mouse models protects against diabetes. TXNIP is currently studied as a potential new target for antidiabetic drug therapy. In this study, we describe a family with a mutation in the TXNIP gene leading to nondetectable expression of TXNIP protein. Symptoms of affected family members include lactic acidosis and low serum methionine levels. Using patient-derived TXNIP-deficient fibroblasts and myoblasts, we show that oxidative phosphorylation is impaired in these cells when given glucose and pyruvate but normalized with malate. Isolated mitochondria from these cells appear to have normal respiratory function. The cells also display a transcriptional pattern suggestive of a high basal activation of the Nrf2 transcription factor. We conclude that a complete lack of TXNIP in human is nonlethal and leads to specific metabolic distortions that are, at least in part, linked to a deficient respiration on pyruvate. The results give important insights into the impact of TXNIP in humans and thus help to further advance the development of antidiabetic drugs targeting this protein.
Collapse
Affiliation(s)
- Yurika Katsu-Jiménez
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Carmela Vázquez-Calvo
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Camilla Maffezzini
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Maria Halldin
- Department of Women's and Children's Health, Akademiska University Hospital, Uppsala, Sweden
| | - Xiaoxiao Peng
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Christoph Freyer
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Anna Wredenberg
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Alfredo Giménez-Cassina
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Department of Molecular Biology, Centro de Biología Molecular "Severo Ochoa," Universidad Autónoma de Madrid, Madrid, Spain
| | - Anna Wedell
- Department of Molecular Medicine and Surgery, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
27
|
Kamm K, Schierwater B, DeSalle R. Innate immunity in the simplest animals - placozoans. BMC Genomics 2019; 20:5. [PMID: 30611207 PMCID: PMC6321704 DOI: 10.1186/s12864-018-5377-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/16/2018] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Innate immunity provides the core recognition system in animals for preventing infection, but also plays an important role in managing the relationship between an animal host and its symbiont. Most of our knowledge about innate immunity stems from a few animal model systems, but substantial variation between metazoan phyla has been revealed by comparative genomic studies. The exploration of more taxa is still needed to better understand the evolution of immunity related mechanisms. Placozoans are morphologically the simplest organized metazoans and the association between these enigmatic animals and their rickettsial endosymbionts has recently been elucidated. Our analyses of the novel placozoan nuclear genome of Trichoplax sp. H2 and its associated rickettsial endosymbiont genome clearly pointed to a mutualistic and co-evolutionary relationship. This discovery raises the question of how the placozoan holobiont manages symbiosis and, conversely, how it defends against harmful microorganisms. In this study, we examined the annotated genome of Trichoplax sp. H2 for the presence of genes involved in innate immune recognition and downstream signaling. RESULTS A rich repertoire of genes belonging to the Toll-like and NOD-like receptor pathways, to scavenger receptors and to secreted fibrinogen-related domain genes was identified in the genome of Trichoplax sp. H2. Nevertheless, the innate immunity related pathways in placozoans deviate in several instances from well investigated vertebrates and invertebrates. While true Toll- and NOD-like receptors are absent, the presence of many genes of the downstream signaling cascade suggests at least primordial Toll-like receptor signaling in Placozoa. An abundance of scavenger receptors, fibrinogen-related domain genes and Apaf-1 genes clearly constitutes an expansion of the immunity related gene repertoire specific to Placozoa. CONCLUSIONS The found wealth of immunity related genes present in Placozoa is surprising and quite striking in light of the extremely simple placozoan body plan and their sparse cell type makeup. Research is warranted to reveal how Placozoa utilize this immune repertoire to manage and maintain their associated microbiota as well as to fend-off pathogens.
Collapse
Affiliation(s)
- Kai Kamm
- ITZ Ecology and Evolution, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17d, D-30559 Hannover, Germany
| | - Bernd Schierwater
- ITZ Ecology and Evolution, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17d, D-30559 Hannover, Germany
- Sackler Institute for Comparative Genomics and Division of Invertebrate Zoology, American Museum of Natural History, New York, NY USA
- Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520 USA
| | - Rob DeSalle
- Sackler Institute for Comparative Genomics and Division of Invertebrate Zoology, American Museum of Natural History, New York, NY USA
| |
Collapse
|
28
|
Kohno H, Kubo T. mKast is dispensable for normal development and sexual maturation of the male European honeybee. Sci Rep 2018; 8:11877. [PMID: 30131569 PMCID: PMC6104065 DOI: 10.1038/s41598-018-30380-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 07/23/2018] [Indexed: 11/09/2022] Open
Abstract
The European honeybee (Apis mellifera L.) exhibits various social behaviors. The molecular and neural mechanisms underlying these behaviors have long been explored, but causal relations between genes or neurons and behaviors remain to be elucidated because effective gene manipulation methods in the honeybee have not been available until recently. We recently established a basic technology to produce mutant honeybee drones using CRISPR/Cas9. Here we produced mutant drones using CRISPR/Cas9 targeting mKast, which is preferentially expressed in a certain subtype of class I Kenyon cells that comprise the mushroom bodies in the honeybee brain. By immunoblot analysis, we showed that mKast protein expression was completely lost in the mutant drone heads. In addition, during the production process of homozygous mutant workers, we demonstrated that heterozygous mutant workers could be produced by artificial insemination of wild-type queens with the sperm of mutant drones, indicating that mKast mutant drones were sexually mature. These results demonstrate that mKast is dispensable for normal development and sexual maturation in drone honeybees, and allow us to proceed with the production of homozygous mutant workers for the analysis of a particular gene by gene knockout in the future.
Collapse
Affiliation(s)
- Hiroki Kohno
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
29
|
Covic L, Kuliopulos A. Protease-Activated Receptor 1 as Therapeutic Target in Breast, Lung, and Ovarian Cancer: Pepducin Approach. Int J Mol Sci 2018; 19:ijms19082237. [PMID: 30065181 PMCID: PMC6121574 DOI: 10.3390/ijms19082237] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/19/2018] [Accepted: 07/25/2018] [Indexed: 12/20/2022] Open
Abstract
The G-protein coupled receptors (GPCRs) belong to a large family of diverse receptors that are well recognized as pharmacological targets. However, very few of these receptors have been pursued as oncology drug targets. The Protease-activated receptor 1 (PAR1), which is a G-protein coupled receptor, has been shown to act as an oncogene and is an emerging anti-cancer drug target. In this paper, we provide an overview of PAR1’s biased signaling role in metastatic cancers of the breast, lungs, and ovaries and describe the development of PAR1 inhibitors that are currently in clinical use to treat acute coronary syndromes. PAR1 inhibitor PZ-128 is in a Phase II clinical trial and is being developed to prevent ischemic and thrombotic complication of patients undergoing cardiac catheterization. PZ-128 belongs to a new class of cell-penetrating, membrane-tethered peptides named pepducins that are based on the intracellular loops of receptors targeting the receptor G-protein interface. Application of PZ-128 as an anti-metastatic and anti-angiogenic therapeutic agent in breast, lung, and ovarian cancer is being reviewed.
Collapse
Affiliation(s)
- Lidija Covic
- Division of Hematology/Oncology, Tufts Medical Center, Boston, MA 02111, USA.
- Department of Medicine, Tufts Medical Center, Boston, MA 02111, USA.
- Center for Hemostasis and Thrombosis Research, Tufts Medical Center, Boston, MA 02111, USA.
| | - Athan Kuliopulos
- Division of Hematology/Oncology, Tufts Medical Center, Boston, MA 02111, USA.
- Department of Medicine, Tufts Medical Center, Boston, MA 02111, USA.
- Center for Hemostasis and Thrombosis Research, Tufts Medical Center, Boston, MA 02111, USA.
| |
Collapse
|
30
|
Intrathymic Notch3 and CXCR4 combinatorial interplay facilitates T-cell leukemia propagation. Oncogene 2018; 37:6285-6298. [PMID: 30038265 PMCID: PMC6284016 DOI: 10.1038/s41388-018-0401-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 05/20/2018] [Accepted: 06/10/2018] [Indexed: 12/27/2022]
Abstract
Notch hyperactivation dominates T-cell acute lymphoblastic leukemia development, but the mechanisms underlying “pre-leukemic” cell dissemination are still unclear. Here we describe how deregulated Notch3 signaling enhances CXCR4 cell-surface expression and migratory ability of CD4+CD8+ thymocytes, possibly contributing to “pre-leukemic” cell propagation, early in disease progression. In transgenic mice overexpressing the constitutively active Notch3 intracellular domain, we detect the progressive increase in circulating blood and bone marrow of CD4+CD8+ cells, characterized by high and combined surface expression of Notch3 and CXCR4. We report for the first time that transplantation of such CD4+CD8+ cells reveals their competence in infiltrating spleen and bone marrow of immunocompromised recipient mice. We also show that CXCR4 surface expression is central to the migratory ability of CD4+CD8+ cells and such an expression is regulated by Notch3 through β-arrestin in human leukemia cells. De novo, we propose that hyperactive Notch3 signaling by boosting CXCR4-dependent migration promotes anomalous egression of CD4+CD8+ cells from the thymus in early leukemia stages. In fact, in vivo CXCR4 antagonism prevents bone marrow colonization by such CD4+CD8+ cells in young Notch3 transgenic mice. Therefore, our data suggest that combined therapies precociously counteracting intrathymic Notch3/CXCR4 crosstalk may prevent dissemination of “pre-leukemic” CD4+CD8+ cells, by a “thymus-autonomous” mechanism.
Collapse
|
31
|
Arakaki AKS, Pan WA, Trejo J. GPCRs in Cancer: Protease-Activated Receptors, Endocytic Adaptors and Signaling. Int J Mol Sci 2018; 19:ijms19071886. [PMID: 29954076 PMCID: PMC6073120 DOI: 10.3390/ijms19071886] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 01/06/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are a large diverse family of cell surface signaling receptors implicated in various types of cancers. Several studies indicate that GPCRs control many aspects of cancer progression including tumor growth, invasion, migration, survival and metastasis. While it is known that GPCR activity can be altered in cancer through aberrant overexpression, gain-of-function activating mutations, and increased production and secretion of agonists, the precise mechanisms of how GPCRs contribute to cancer progression remains elusive. Protease-activated receptors (PARs) are a unique class of GPCRs implicated in cancer. PARs are a subfamily of GPCRs comprised of four members that are irreversibly activated by proteolytic cleavage induced by various proteases generated in the tumor microenvironment. Given the unusual proteolytic irreversible activation of PARs, expression of receptors at the cell surface is a key feature that influences signaling responses and is exquisitely controlled by endocytic adaptor proteins. Here, we discuss new survey data from the Cancer Genome Atlas and the Genotype-Tissue Expression projects analysis of expression of all PAR family member expression in human tumor samples as well as the role and function of the endocytic sorting machinery that controls PAR expression and signaling of PARs in normal cells and in cancer.
Collapse
Affiliation(s)
- Aleena K S Arakaki
- Biomedical Sciences Graduate Program, School of Medicine, University of California, La Jolla, San Diego, CA 92093, USA.
- Department of Pharmacology, School of Medicine, University of California, La Jolla, San Diego, CA 92093, USA.
| | - Wen-An Pan
- Department of Pharmacology, School of Medicine, University of California, La Jolla, San Diego, CA 92093, USA.
| | - JoAnn Trejo
- Department of Pharmacology, School of Medicine, University of California, La Jolla, San Diego, CA 92093, USA.
| |
Collapse
|
32
|
Alhawiti NM, Al Mahri S, Aziz MA, Malik SS, Mohammad S. TXNIP in Metabolic Regulation: Physiological Role and Therapeutic Outlook. Curr Drug Targets 2018; 18:1095-1103. [PMID: 28137209 PMCID: PMC5543564 DOI: 10.2174/1389450118666170130145514] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/04/2017] [Accepted: 01/25/2017] [Indexed: 12/20/2022]
Abstract
Background & Objective: Thioredoxin-interacting protein (TXNIP) also known as thioredoxin binding protein-2 is a ubiquitously expressed protein that interacts and negatively regulates expression and function of Thioredoxin (TXN). Over the last few years, TXNIP has attracted considerable attention due to its wide-ranging functions impacting several aspects of energy metabolism. TXNIP acts as an important regulator of glucose and lipid metabolism through pleiotropic actions including regulation of β-cell function, hepatic glucose production, peripheral glucose uptake, adipogenesis, and substrate utilization. Overexpression of TXNIP in animal models has been shown to induce apoptosis of pancreatic β-cells, reduce insulin sensitivity in peripheral tissues like skeletal muscle and adipose, and decrease energy expenditure. On the contrary, TXNIP deficient animals are protected from diet induced insulin resistance and type 2 diabetes. Summary: Consequently, targeting TXNIP is thought to offer novel therapeutic opportunity and TXNIP inhibitors have the potential to become a powerful therapeutic tool for the treatment of diabetes mellitus. Here we summarize the current state of our understanding of TXNIP biology, highlight its role in metabolic regulation and raise critical questions that could help future research to exploit TXNIP as a therapeutic target.
Collapse
Affiliation(s)
- Naif Mohammad Alhawiti
- Experimental Medicine, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Saeed Al Mahri
- Experimental Medicine, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Mohammad Azhar Aziz
- Colorectal Cancer Research Program, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Shuja Shafi Malik
- Experimental Medicine, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Sameer Mohammad
- Experimental Medicine, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia
| |
Collapse
|
33
|
Arakaki AKS, Pan WA, Lin H, Trejo J. The α-arrestin ARRDC3 suppresses breast carcinoma invasion by regulating G protein-coupled receptor lysosomal sorting and signaling. J Biol Chem 2018; 293:3350-3362. [PMID: 29348172 DOI: 10.1074/jbc.ra117.001516] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 01/16/2018] [Indexed: 12/17/2022] Open
Abstract
Aberrant G protein-coupled receptor (GPCR) expression and activation has been linked to tumor initiation, progression, invasion, and metastasis. However, compared with other cancer drivers, the exploitation of GPCRs as potential therapeutic targets has been largely ignored, despite the fact that GPCRs are highly druggable. Therefore, to advance the potential status of GPCRs as therapeutic targets, it is important to understand how GPCRs function together with other cancer drivers during tumor progression. We now report that the α-arrestin domain-containing protein-3 (ARRDC3) acts as a tumor suppressor in part by controlling signaling and trafficking of the GPCR, protease-activated receptor-1 (PAR1). In a series of highly invasive basal-like breast carcinomas, we found that expression of ARRDC3 is suppressed whereas PAR1 is aberrantly overexpressed because of defective lysosomal sorting that results in persistent signaling. Using a lentiviral doxycycline-inducible system, we demonstrate that re-expression of ARRDC3 in invasive breast carcinoma is sufficient to restore normal PAR1 trafficking through the ALG-interacting protein X (ALIX)-dependent lysosomal degradative pathway. We also show that ARRDC3 re-expression attenuates PAR1-stimulated persistent signaling of c-Jun N-terminal kinase (JNK) in invasive breast cancer. Remarkably, restoration of ARRDC3 expression significantly reduced activated PAR1-induced breast carcinoma invasion, which was also dependent on JNK signaling. These findings are the first to identify a critical link between the tumor suppressor ARRDC3 and regulation of GPCR trafficking and signaling in breast cancer.
Collapse
Affiliation(s)
- Aleena K S Arakaki
- From the Biomedical Sciences Graduate Program and.,Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Wen-An Pan
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Huilan Lin
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093
| | - JoAnn Trejo
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093
| |
Collapse
|
34
|
Park S, Jung Y, An SWA, Son HG, Hwang W, Lee D, Artan M, Park HEH, Jeong DE, Lee Y, Lee SJV. RNAi targeting Caenorhabditis elegans α-arrestins has little effect on lifespan. F1000Res 2017; 6:1515. [PMID: 29123644 PMCID: PMC5657022 DOI: 10.12688/f1000research.12337.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/06/2017] [Indexed: 01/01/2023] Open
Abstract
Background: α-arrestins are a family of proteins that are implicated in multiple biological processes, including metabolism and receptor desensitization. Methods: Here, we sought to examine the roles of α-arrestins in the longevity of
Caenorhabditis elegans through an RNA interference screen. Results: We found that feeding worms with bacteria expressing double-stranded RNA against each of 24 out of total 29
C. elegans α-arrestins had little effect on lifespan. Thus, individual
C. elegans α-arrestins may have minor effects on longevity. Conclusions: This study will provide useful information for future research on the functional role of α-arrestins in aging and longevity.
Collapse
Affiliation(s)
- Sangsoon Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Korea, South
| | - Yoonji Jung
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Korea, South
| | - Seon Woo A An
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Korea, South
| | - Heehwa G Son
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Korea, South
| | - Wooseon Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Korea, South
| | - Dongyeop Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Korea, South
| | - Murat Artan
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Korea, South
| | - Hae-Eun H Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Korea, South
| | - Dae-Eun Jeong
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Korea, South
| | - Yujin Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Korea, South
| | - Seung-Jae V Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Korea, South.,School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Korea, South
| |
Collapse
|
35
|
Yamane A, Kohno H, Ikeda T, Kaneko K, Ugajin A, Fujita T, Kunieda T, Kubo T. Gene expression and immunohistochemical analyses of mKast suggest its late pupal and adult-specific functions in the honeybee brain. PLoS One 2017; 12:e0176809. [PMID: 28472083 PMCID: PMC5417555 DOI: 10.1371/journal.pone.0176809] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/18/2017] [Indexed: 01/04/2023] Open
Abstract
In insect brains, the mushroom bodies (MBs, a higher center) comprise intrinsic neurons, termed Kenyon cells (KCs). We previously showed that the honeybee (Apis mellifera L.) MBs comprise four types of KCs, in addition to the previously known three types of KCs: class I large-type KCs (lKCs), class I small-type KCs (sKCs) and class II KCs, novel class I 'middle-type' KCs (mKCs), which are characterized by the preferential expression of a gene, termed mKast. Although mKast was originally discovered during the search for genes whose expression is enriched in the optic lobes (OLs) in the worker brain, subsequent analysis revealed that the gene is expressed in an mKC-preferential manner in the MBs. To gain more insights into the function of mKast in the honeybee brain, we here performed expression analysis of mKast and immunohistochemistry of the mKast protein. Prominent mKast expression was first detected in the brain after the P7 pupal stage. In addition, mKast was expressed almost selectively in the brain, suggesting its late pupal and adult specific functions in the brain. Immunohistochemistry revealed that mKast-like immunoreactivity is detected in several regions in the worker brain: inside and around the MB calyces, at the outer edges of the OL lobula, at the outer surface of and posterior to the antennal lobes (ALs), along the dorsal midline of the anterior brain and at the outer surface of the subesophageal ganglions (SOG). mKast-like immunoreactivities in the MBs, OLs, ALs and SOG were due to the corresponding neurons, while mKast-like immunoreactivities beneath/between the MB calyces were assumed to most likely correspond to the lateral/medial neurosecretory cells.
Collapse
Affiliation(s)
- Atsuhiro Yamane
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroki Kohno
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tsubomi Ikeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kumi Kaneko
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Atsushi Ugajin
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Toshiyuki Fujita
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takekazu Kunieda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
36
|
Abstract
Newly synthesized transmembrane proteins undergo a series of steps to ensure that only the required amount of correctly folded protein is localized to the membrane. The regulation of protein quality and its abundance at the membrane are often controlled by ubiquitination, a multistep enzymatic process that results in the attachment of ubiquitin, or chains of ubiquitin to the target protein. Protein ubiquitination acts as a signal for sorting, trafficking, and the removal of membrane proteins via endocytosis, a process through which multiple ubiquitin ligases are known to specifically regulate the functions of a number of ion channels, transporters, and signaling receptors. Endocytic removal of these proteins through ubiquitin-dependent endocytosis provides a way to rapidly downregulate the physiological outcomes, and defects in such controls are directly linked to human pathologies. Recent evidence suggests that ubiquitination is also involved in the shedding of membranes and associated proteins as extracellular vesicles, thereby not only controlling the cell surface levels of some membrane proteins, but also their potential transport to neighboring cells. In this review, we summarize the mechanisms and functions of ubiquitination of membrane proteins and provide specific examples of ubiquitin-dependent regulation of membrane proteins.
Collapse
Affiliation(s)
- Natalie Foot
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Tanya Henshall
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| |
Collapse
|
37
|
Lally CCM, Bauer B, Selent J, Sommer ME. C-edge loops of arrestin function as a membrane anchor. Nat Commun 2017; 8:14258. [PMID: 28220785 PMCID: PMC5321764 DOI: 10.1038/ncomms14258] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 12/13/2016] [Indexed: 01/14/2023] Open
Abstract
G-protein-coupled receptors are membrane proteins that are regulated by a small family of arrestin proteins. During formation of the arrestin-receptor complex, arrestin first interacts with the phosphorylated receptor C terminus in a pre-complex, which activates arrestin for tight receptor binding. Currently, little is known about the structure of the pre-complex and its transition to a high-affinity complex. Here we present molecular dynamics simulations and site-directed fluorescence experiments on arrestin-1 interactions with rhodopsin, showing that loops within the C-edge of arrestin function as a membrane anchor. Activation of arrestin by receptor-attached phosphates is necessary for C-edge engagement of the membrane, and we show that these interactions are distinct in the pre-complex and high-affinity complex in regard to their conformation and orientation. Our results expand current knowledge of C-edge structure and further illuminate the conformational transitions that occur in arrestin along the pathway to tight receptor binding.
Collapse
Affiliation(s)
- Ciara C M. Lally
- Institute of Medical Physics and Biophysics (CC2), Charité Medical University, Charitéplatz 1, Berlin 10117, Germany
| | - Brian Bauer
- Institute of Medical Physics and Biophysics (CC2), Charité Medical University, Charitéplatz 1, Berlin 10117, Germany
| | - Jana Selent
- Research Programme on Biomedical Informatics, Department of Experimental and Health Sciences, Pompeu Fabra University, Hospital del Mar Medical Research Institute, Carrer del Dr. Aiguader, 88, Barcelona 08003, Spain
| | - Martha E Sommer
- Institute of Medical Physics and Biophysics (CC2), Charité Medical University, Charitéplatz 1, Berlin 10117, Germany
| |
Collapse
|
38
|
Désert C, Merlot E, Zerjal T, Bed'hom B, Härtle S, Le Cam A, Roux PF, Baeza E, Gondret F, Duclos MJ, Lagarrigue S. Transcriptomes of whole blood and PBMC in chickens. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2016; 20:1-9. [PMID: 27442111 DOI: 10.1016/j.cbd.2016.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 05/16/2016] [Accepted: 06/22/2016] [Indexed: 10/21/2022]
Abstract
Global transcriptome analysis of chicken whole blood to discover biomarkers of different phenotypes or physiological disorders has never been investigated so far. Whole blood provides significant advantages, allowing large scale and non-invasive sampling. However, generation of gene expression data from the blood of non-mammalian species remains a challenge, notably due to the nucleated red blood cells, hindering the use of well-established protocols. The aim of this study was to analyze the relevance of using whole blood cells (WB) to find biomarkers, instead of Peripheral Blood Mononuclear Cells (PBMC), usually chosen for immune challenges. RNA sources from WB and PBMC was characterized by microarray analysis. Our results show that the quality and quantity of RNA obtained from WB was suitable for further analyses, although the quality was lower than that from PBMC. The transcriptome profiling comparison revealed that the majority of genes were expressed in both WB and PBMC. Hemoglobin subunits were the major transcripts in WB, whereas the most enriched biological process was related to protein catabolic process. Most of the over-represented transcripts in PBMC were implicated in functions specific to thrombocytes, like coagulation and platelet activation, probably due to the large proportion of this nucleated cell type in chicken PBMC. Functions related to B and T cells and to other immune functions were also enriched in the PBMC subset. We conclude that WB is more suitable for large scale immunity oriented studies and other biological processes that have been poorly investigated so far.
Collapse
Affiliation(s)
- Colette Désert
- INRA, UMR1348 Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'élevage, Saint-Gilles, France; Agrocampus-Ouest, UMR1348, Rennes, France.
| | - Elodie Merlot
- INRA, UMR1348 Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'élevage, Saint-Gilles, France; Agrocampus-Ouest, UMR1348, Rennes, France
| | - Tatiana Zerjal
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Bertrand Bed'hom
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Sonja Härtle
- Department of Veterinary Sciences, Ludwig Maximilian University, Munich, Germany
| | - Aurélie Le Cam
- INRA, UR1037 Laboratoire de Physiologie et Génomique des Poissons, Rennes, France
| | - Pierre-François Roux
- INRA, UMR1348 Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'élevage, Saint-Gilles, France; Agrocampus-Ouest, UMR1348, Rennes, France
| | | | - Florence Gondret
- INRA, UMR1348 Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'élevage, Saint-Gilles, France; Agrocampus-Ouest, UMR1348, Rennes, France
| | | | - Sandrine Lagarrigue
- INRA, UMR1348 Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'élevage, Saint-Gilles, France; Agrocampus-Ouest, UMR1348, Rennes, France
| |
Collapse
|
39
|
Rao SNR, Pearse DD. Regulating Axonal Responses to Injury: The Intersection between Signaling Pathways Involved in Axon Myelination and The Inhibition of Axon Regeneration. Front Mol Neurosci 2016; 9:33. [PMID: 27375427 PMCID: PMC4896923 DOI: 10.3389/fnmol.2016.00033] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/02/2016] [Indexed: 01/06/2023] Open
Abstract
Following spinal cord injury (SCI), a multitude of intrinsic and extrinsic factors adversely affect the gene programs that govern the expression of regeneration-associated genes (RAGs) and the production of a diversity of extracellular matrix molecules (ECM). Insufficient RAG expression in the injured neuron and the presence of inhibitory ECM at the lesion, leads to structural alterations in the axon that perturb the growth machinery, or form an extraneous barrier to axonal regeneration, respectively. Here, the role of myelin, both intact and debris, in antagonizing axon regeneration has been the focus of numerous investigations. These studies have employed antagonizing antibodies and knockout animals to examine how the growth cone of the re-growing axon responds to the presence of myelin and myelin-associated inhibitors (MAIs) within the lesion environment and caudal spinal cord. However, less attention has been placed on how the myelination of the axon after SCI, whether by endogenous glia or exogenously implanted glia, may alter axon regeneration. Here, we examine the intersection between intracellular signaling pathways in neurons and glia that are involved in axon myelination and axon growth, to provide greater insight into how interrogating this complex network of molecular interactions may lead to new therapeutics targeting SCI.
Collapse
Affiliation(s)
- Sudheendra N R Rao
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine Miami, FL, USA
| | - Damien D Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of MedicineMiami, FL, USA; The Department of Neurological Surgery, University of Miami Miller School of MedicineMiami, FL, USA; The Neuroscience Program, University of Miami Miller School of MedicineMiami, FL, USA; The Interdisciplinary Stem Cell Institute, University of Miami Miller School of MedicineMiami, FL, USA; Bruce W. Carter Department of Veterans Affairs Medical CenterMiami, FL, USA
| |
Collapse
|
40
|
Selwan EM, Finicle BT, Kim SM, Edinger AL. Attacking the supply wagons to starve cancer cells to death. FEBS Lett 2016; 590:885-907. [PMID: 26938658 DOI: 10.1002/1873-3468.12121] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/10/2016] [Accepted: 02/29/2016] [Indexed: 12/14/2022]
Abstract
The constitutive anabolism of cancer cells not only supports proliferation but also addicts tumor cells to a steady influx of exogenous nutrients. Limiting access to metabolic substrates could be an effective and selective means to block cancer growth. In this review, we define the pathways by which cancer cells acquire the raw materials for anabolism, highlight the actionable proteins in each pathway, and discuss the status of therapeutic interventions that disrupt nutrient acquisition. Critical open questions to be answered before apical metabolic inhibitors can be successfully and safely deployed in the clinic are also outlined. In summary, recent studies provide strong support that substrate limitation is a powerful therapeutic strategy to effectively, and safely, starve cancer cells to death.
Collapse
Affiliation(s)
- Elizabeth M Selwan
- Department of Developmental and Cell Biology, University of California Irvine, CA, USA
| | - Brendan T Finicle
- Department of Developmental and Cell Biology, University of California Irvine, CA, USA
| | - Seong M Kim
- Department of Developmental and Cell Biology, University of California Irvine, CA, USA
| | - Aimee L Edinger
- Department of Developmental and Cell Biology, University of California Irvine, CA, USA
| |
Collapse
|
41
|
Gaudet HM, Cheng SB, Christensen EM, Filardo EJ. The G-protein coupled estrogen receptor, GPER: The inside and inside-out story. Mol Cell Endocrinol 2015; 418 Pt 3:207-19. [PMID: 26190834 DOI: 10.1016/j.mce.2015.07.016] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 07/15/2015] [Accepted: 07/15/2015] [Indexed: 02/06/2023]
Abstract
GPER possesses structural and functional characteristics shared by members of the G-protein-coupled receptor (GPCR) superfamily, the largest class of plasma membrane receptors. This newly appreciated estrogen receptor is localized predominately within intracellular membranes in most, but not all, cell types and its surface expression is modulated by steroid hormones and during tissue injury. An intracellular staining pattern is not unique among GPCRs, which employ a diverse array of molecular mechanisms that restrict cell surface expression and effectively regulating receptor binding and activation. The finding that GPER displays an intracellular predisposition has created some confusion as the estrogen-inducible transcription factors, ERα and ERβ, also reside intracellularly, and has led to complex suggestions of receptor interaction. GPER undergoes constitutive retrograde trafficking from the plasma membrane to the endoplasmic reticulum and recent studies indicate its interaction with PDZ binding proteins that sort transmembrane receptors to synaptosomes and endosomes. Genetic targeting and selective ligand approaches as well as cell models that express GPER in the absence of ERs clearly supports GPER as a bonafide "stand alone" receptor. Here, the molecular details that regulate GPER action, its cell biological activities and its implicated roles in physiological and pathological processes are reviewed.
Collapse
Affiliation(s)
- H M Gaudet
- Wheaton College, Department of Chemistry, Norton, MA, 02766, USA
| | - S B Cheng
- Women & Infants Hospital, Brown University, Providence, RI, 02903, USA
| | - E M Christensen
- Wheaton College, Department of Chemistry, Norton, MA, 02766, USA
| | - E J Filardo
- Rhode Island Hospital, Brown University, Providence, RI, 02903, USA.
| |
Collapse
|
42
|
Dysregulated Inflammatory Signaling upon Charcot-Marie-Tooth Type 1C Mutation of SIMPLE Protein. Mol Cell Biol 2015; 35:2464-78. [PMID: 25963657 DOI: 10.1128/mcb.00300-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Endosomal trafficking is a key mechanism to modulate signal propagation and cross talk. Ubiquitin adaptors, along with endosomal sorting complex required for transport (ESCRT) complexes, are also integrated to terminate ligand-receptor activation in late endosomes and multivesicular bodies (MVBs). Within these pathways, we recently demonstrated that the protein SIMPLE is a novel player in MVB regulation. SIMPLE is also clinically important and its mutation accounts for the Charcot-Marie-Tooth type 1C (CMT1C) disease. MVB defects of mutation and deletion of SIMPLE, however, are distinct. Here, we show that MVB defects found in mutation but not deletion of SIMPLE lead to impaired turnover and accumulation of ESCRT-0 protein Hrs punctain late endosomes. We further uncover increased colocalization of ubiquitin ligase TRAF6 and Hrs in late endosomes. Upon stimulation with interkeukin-1 or transforming growth factor , prolonged activation of p38 kinase/JNK is detected, while nuclear accumulation of NF-κB and phosphorylation of SMAD2 is reduced with CMT1C mutation. The aberrant kinetics we observed in inflammatory signaling may contribute to increased tumor susceptibility and changes in the levels of chemokines/cytokines that result from CMT1C mutation. We propose that altered endosomal trafficking due to malformations of MVBs and subsequent atypical signaling kinetic may account for a toxic gain of function in CMT1C pathogenesis.
Collapse
|
43
|
Walther C, Ferguson SSG. Minireview: Role of intracellular scaffolding proteins in the regulation of endocrine G protein-coupled receptor signaling. Mol Endocrinol 2015; 29:814-30. [PMID: 25942107 DOI: 10.1210/me.2015-1091] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The majority of hormones stimulates and mediates their signal transduction via G protein-coupled receptors (GPCRs). The signal is transmitted into the cell due to the association of the GPCRs with heterotrimeric G proteins, which in turn activates an extensive array of signaling pathways to regulate cell physiology. However, GPCRs also function as scaffolds for the recruitment of a variety of cytoplasmic protein-interacting proteins that bind to both the intracellular face and protein interaction motifs encoded by GPCRs. The structural scaffolding of these proteins allows GPCRs to recruit large functional complexes that serve to modulate both G protein-dependent and -independent cellular signaling pathways and modulate GPCR intracellular trafficking. This review focuses on GPCR interacting PSD95-disc large-zona occludens domain containing scaffolds in the regulation of endocrine receptor signaling as well as their potential role as therapeutic targets for the treatment of endocrinopathies.
Collapse
Affiliation(s)
- Cornelia Walther
- J. Allyn Taylor Centre for Cell Biology (C.W., S.S.G.F.), Robarts Research Institute, and Department of Physiology and Pharmacology (S.S.G.F.), University of Western Ontario, London, Ontario, Canada N6A 5K8
| | - Stephen S G Ferguson
- J. Allyn Taylor Centre for Cell Biology (C.W., S.S.G.F.), Robarts Research Institute, and Department of Physiology and Pharmacology (S.S.G.F.), University of Western Ontario, London, Ontario, Canada N6A 5K8
| |
Collapse
|