1
|
Ramírez-Salinas G, Rosales-Hernandéz MC, Correa-Basurto J, Guerrero-González I, Hernández-Castro SS, Martinez-Archundia M. In silico study suggests potential drugs that target CD151 to treat breast cancer and glioblastoma. J Comput Chem 2024; 45:2666-2677. [PMID: 39082832 DOI: 10.1002/jcc.27439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/08/2024] [Accepted: 05/13/2024] [Indexed: 10/11/2024]
Abstract
Recently tetraspanin CD151 has been identified as an important biological target involved in metastatic processes which include cell adhesion, tumor progression processes, and so forth in different types of cancers, such as breast cancer and glioblastoma. This in Silico study considered 1603 compounds from the Food and Drug Administration database, after performing an ADMET analysis; we selected 853 ligands, which were used for docking analysis. The most promising ligands were selected from docking studies, based on two criteria: (a) showed lowest affinity to the CD151 protein and (b) they interact with the QRD motif, located in the second extracellular loop. Furthermore, we investigate the stability of the protein-ligand complexes through MD simulations as well as free energy MM-PBSA calculations. From these results, loperamide and glipizide were identified as the best evaluated drugs. We suggest an in vitro analysis is needed to confirm our in silico prediction studies.
Collapse
Affiliation(s)
- Gema Ramírez-Salinas
- Laboratory for the Design and Development of New Drugs and Biotechnological. Innovation, SEPI-Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Martha Cecilia Rosales-Hernandéz
- Laboratorio de Biofísica y Biocatálisis, Sección de estudios de Posgrado e Investigación Escuela superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - José Correa-Basurto
- Laboratory for the Design and Development of New Drugs and Biotechnological. Innovation, SEPI-Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Issac Guerrero-González
- Laboratorio de Biofísica y Biocatálisis, Sección de estudios de Posgrado e Investigación Escuela superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Selene Saraí Hernández-Castro
- Laboratory for the Design and Development of New Drugs and Biotechnological. Innovation, SEPI-Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Marlet Martinez-Archundia
- Laboratory for the Design and Development of New Drugs and Biotechnological. Innovation, SEPI-Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
2
|
Mangano K, Munoz-Valle JF, Palafox-Sánchez CA, Petralia MC, Leone GM, Fagone P, Nicoletti F. Tetraspanin32 (TSPAN32) is downregulated in rheumatoid arthritis: Evidence from animal models and patients. Scand J Immunol 2024; 100:e13410. [PMID: 39333050 DOI: 10.1111/sji.13410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 09/29/2024]
Abstract
This study aimed to investigate the role of TSPAN32, a member of the tetraspanin family, in rheumatoid arthritis (RA). The objective was to assess the expression levels of TSPAN32 in experimental RA models and in RA patient immune cells, exploring its potential as a regulatory factor in RA pathogenesis. The study employed adjuvant-induced arthritis in rats and collagen-induced arthritis (CIA) in mice as experimental models. Ex vivo analyses included evaluating TSPAN32 expression in immune cells at different stages of the disease. In silico data analysis involved examining transcriptomic datasets from drug-naïve and treated RA patients to correlate TSPAN32 expression with clinical parameters. TSPAN32 overexpression experiments in splenocytes from CIA mice aimed to demonstrate its functional impact on antigen-specific immune responses. The animal models revealed a significant downregulation of TSPAN32, particularly in synovial-infiltrating T cells. Also, TSPAN32 overexpression inhibited pro-inflammatory cytokine production in splenocytes. In RA patients, TSPAN32 was consistently downregulated in circulating and synovial-infiltrating T cells, as well as in CD8+ T cells, B cells and NK cells. Drug treatment did not significantly alter TSPAN32 levels. Negative correlations were observed between TSPAN32 expression and inflammatory markers (CRP, ESR) and clinical scores (SDAI) in RA patients. This study suggests that reduced TSPAN32 expression characterizes pathogenic T-cell populations in RA, highlighting its potential as biomarker for inflammation and disease activity. TSPAN32 may play a crucial role in shaping adaptive immune responses in RA, opening avenues for novel therapeutic strategies targeting this tetraspanin family member.
Collapse
Affiliation(s)
- Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Jose' Francisco Munoz-Valle
- University Center for Health Science, Department of Molecular Biology and Genomics, University of Guada-lajara, Guadalajara, Jalisco, Mexico
| | - Claudia Azucena Palafox-Sánchez
- University Center for Health Science, Department of Molecular Biology and Genomics, University of Guada-lajara, Guadalajara, Jalisco, Mexico
| | | | - Gian Marco Leone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
3
|
Mizgier ML, Nardocci G, Ramírez V, Bendek MJ, Hernández M, Rojas C, Herrera D, Kantarci A, Kemp MW, Illanes SE, Chaparro A. Proteomic Insights Into Gingival Crevicular Extracellular Vesicles in Periodontitis and Gestational Diabetes: An Exploratory Study. J Clin Periodontol 2024. [PMID: 39532703 DOI: 10.1111/jcpe.14083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 09/14/2024] [Indexed: 11/16/2024]
Abstract
AIM To characterize the gingival crevicular fluid (GCF) and plasma extracellular vesicles (EVs) and explore their proteomic cargo in healthy pregnant women compared to those with gestational diabetes mellitus (GDM) and periodontitis. METHODS One-hundred and four pregnant women were recruited at 24-30 gestation weeks. GDM was diagnosed by an oral glucose tolerance test. GCF and plasma samples were obtained to isolate EVs and characterized by nanoparticle tracking, immunoassays, electron microscopy and mass spectrometry. RESULTS Of the recruits,17.3% women were healthy, 50% had periodontitis and 32.7% had both GDM and periodontitis. Probing depth, clinical attachment loss and bleeding on probing were more severe in GDM and periodontitis pregnancies (p < 0.0001). Additionally, this group showed an increase concentration of total, small and large GCF-EVs (p = 0.0015, p = 0.0011 and p = 0.0008, respectively), with decreased expression of CD9, CD81 and CD81/CD63 ratio (p = 0.0461, p = 0.0164 and p = 0.0005, respectively). No differences were observed in plasmatic EVs concentration or markers expression. Proteomic analysis of GCF-EVs showed peptides of both host and bacterial origin. Gene ontology analysis revealed that proteins of GCF-EVs participate in immune inflammatory responses, glucose metabolism and insulin response mechanisms. CONCLUSION GCF-EVs were increased in both GDM and periodontitis, and their proteomic cargo suggest their involvement in immune inflammatory response, glucose metabolism and insulin pathways during pregnancy.
Collapse
Affiliation(s)
- María Luisa Mizgier
- Department of Oral Pathology and Conservative Dentistry, Periodontics, Faculty of Dentistry, Universidad de Los Andes, Santiago, Chile
- Center for Biomedical Research and Innovation (CIIB), Universidad de Los Andes, Santiago, Chile
| | - Gino Nardocci
- Center for Biomedical Research and Innovation (CIIB), Universidad de Los Andes, Santiago, Chile
- Faculty of Medicine, School of Medicine, Universidad de Los Andes, Santiago, Chile
| | - Valeria Ramírez
- Department of Statistics and Epidemiology, Faculty of Dentistry, Universidad de Los Andes, Santiago, Chile
| | - María José Bendek
- Department of Oral Pathology and Conservative Dentistry, Periodontics, Faculty of Dentistry, Universidad de Los Andes, Santiago, Chile
- Center for Biomedical Research and Innovation (CIIB), Universidad de Los Andes, Santiago, Chile
| | - Marcela Hernández
- Laboratory of Periodontal Biology and Department of Pathology and Oral Medicine, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Carolina Rojas
- Department of Oral Pathology and Conservative Dentistry, Periodontics, Faculty of Dentistry, Universidad de Los Andes, Santiago, Chile
- Center for Biomedical Research and Innovation (CIIB), Universidad de Los Andes, Santiago, Chile
| | - David Herrera
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, University Complutense, Madrid, Spain
| | | | - Matthew W Kemp
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sebastián E Illanes
- Center for Biomedical Research and Innovation (CIIB), Universidad de Los Andes, Santiago, Chile
- Faculty of Medicine, School of Medicine, Universidad de Los Andes, Santiago, Chile
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Program in Biology of Reproduction, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile
| | - Alejandra Chaparro
- Department of Oral Pathology and Conservative Dentistry, Periodontics, Faculty of Dentistry, Universidad de Los Andes, Santiago, Chile
- Center for Biomedical Research and Innovation (CIIB), Universidad de Los Andes, Santiago, Chile
| |
Collapse
|
4
|
Ustiuzhanina MO, Boyko AA, Vavilova JD, Siniavin AE, Streltsova MA, Astrakhantseva IV, Drutskaya MS, Chudakov DM, Kovalenko EI. The Antigen-Specific Response of NK Cells to SARS-CoV-2 Correlates With KIR2DS4 Expression. J Med Virol 2024; 96:e70057. [PMID: 39540437 DOI: 10.1002/jmv.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/03/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Natural killer (NK) cells play a pivotal role in the immune response against viral infections, including SARS-CoV-2. However, our understanding of memory NK cell responses in the context of SARS-CoV-2 remains limited. To address this, we investigated the memory-like response of NK cells to SARS-CoV-2 peptides, presented by autologous cells. Blood samples from 45 donors underwent analysis for SARS-CoV-2 IgG antibodies, categorizing them into four groups based on the antibody kind and level. NK cells from SARS-CoV-2-experienced donors demonstrated enhanced degranulation and activation levels, IFNγ production and proliferative potential in response to SARS-CoV-2 peptides. Investigation of highly proliferating NK cells demonstrated the formation of distinct clusters depending on the SARS-CoV-2 peptide supplementation and the donor group. RNA sequencing revealed differential gene expression patterns, highlighting metabolism, protein transport, and immune response genes. Notably, KIR2DS4 expression correlated with enhanced IFNγ production, degranulation and proliferation levels, suggesting a role in SARS-CoV-2 recognition. Collectively, these findings provide detailed insights into antigen-specific NK cell responses to SARS-CoV-2 peptides, indicating potential mechanisms underlying NK cell activation in antiviral immunity.
Collapse
Affiliation(s)
- M O Ustiuzhanina
- Department of Genomics of Adaptive Immunity, Department of immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - A A Boyko
- Department of Genomics of Adaptive Immunity, Department of immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - J D Vavilova
- Department of Genomics of Adaptive Immunity, Department of immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - A E Siniavin
- Department of Genomics of Adaptive Immunity, Department of immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Arbovirus and Experimental Production Department, Federal State Budget Institution "National Research Centre for Epidemiology and Microbiology Named After Honorary Academician N. F. Gamaleya" of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - M A Streltsova
- Department of Genomics of Adaptive Immunity, Department of immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - I V Astrakhantseva
- Division of Immunobiology and Biomedicine, Center of Genetics and Life Sciences, Sirius University of Science and Technology, Federal Territory Sirius, Russia
| | - M S Drutskaya
- Division of Immunobiology and Biomedicine, Center of Genetics and Life Sciences, Sirius University of Science and Technology, Federal Territory Sirius, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - D M Chudakov
- Department of Genomics of Adaptive Immunity, Department of immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department Bioinformatics, Abu Dhabi Stem Cell Center, Al Muntazah, Abu Dhabi, United Arab Emirates
| | - E I Kovalenko
- Department of Genomics of Adaptive Immunity, Department of immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
5
|
Sbarigia C, Rome S, Dini L, Tacconi S. New perspectives of the role of skeletal muscle derived extracellular vesicles in the pathogenesis of amyotrophic lateral sclerosis: the 'dying back' hypothesis. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e70019. [PMID: 39534483 PMCID: PMC11555536 DOI: 10.1002/jex2.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/04/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024]
Abstract
Amyotrophic lateral sclerosis (ALS), is a progressive neurodegenerative disease that affects nerve cells in the brain and the spinal cord, and is characterized by muscle weakness, paralysis and ultimately, respiratory failure. The exact causes of ALS are not understood, though it is believed to combine genetic and environmental factors. Until now, it was admitted that motor neurons (MN) in the brain and spinal cord degenerate, leading to muscle weakness and paralysis. However, as ALS symptoms typically begin with muscle weakness or stiffness, a new hypothesis has recently emerged to explain the development of the pathology, that is, the 'dying back hypothesis', suggesting that this degeneration starts at the connections between MN and muscles, resulting in the loss of muscle function. Over time, this damage extends along the length of the MN, ultimately affecting their cell bodies in the spinal cord and brain. While the dying back hypothesis provides a potential framework for understanding the progression of ALS, the exact mechanisms underlying the disease remain complex and not fully understood. In this review, we are positioning the role of extracellular vesicles as new actors in ALS development.
Collapse
Affiliation(s)
- Carolina Sbarigia
- Department of Biology and Biotechnology “C. Darwin”University of Rome SapienzaRomeItaly
| | - Sophie Rome
- CarMeN Laboratory, INSERM 1060‐INRAE 1397, Department of Human Nutrition, Lyon Sud HospitalUniversity of LyonLyonFrance
| | - Luciana Dini
- Department of Biology and Biotechnology “C. Darwin”University of Rome SapienzaRomeItaly
- Research Center for Nanotechnology for Engineering (CNIS)Sapienza University of RomeRomeItaly
| | - Stefano Tacconi
- Department of Biology and Biotechnology “C. Darwin”University of Rome SapienzaRomeItaly
- CarMeN Laboratory, INSERM 1060‐INRAE 1397, Department of Human Nutrition, Lyon Sud HospitalUniversity of LyonLyonFrance
| |
Collapse
|
6
|
Notario Manzano R, Chaze T, Rubinstein E, Penard E, Matondo M, Zurzolo C, Brou C. Proteomic landscape of tunneling nanotubes reveals CD9 and CD81 tetraspanins as key regulators. eLife 2024; 13:RP99172. [PMID: 39250349 PMCID: PMC11383530 DOI: 10.7554/elife.99172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
Tunneling nanotubes (TNTs) are open actin- and membrane-based channels, connecting remote cells and allowing direct transfer of cellular material (e.g. vesicles, mRNAs, protein aggregates) from the cytoplasm to the cytoplasm. Although they are important especially, in pathological conditions (e.g. cancers, neurodegenerative diseases), their precise composition and their regulation were still poorly described. Here, using a biochemical approach allowing to separate TNTs from cell bodies and from extracellular vesicles and particles (EVPs), we obtained the full composition of TNTs compared to EVPs. We then focused on two major components of our proteomic data, the CD9 and CD81 tetraspanins, and further investigated their specific roles in TNT formation and function. We show that these two tetraspanins have distinct non-redundant functions: CD9 participates in stabilizing TNTs, whereas CD81 expression is required to allow the functional transfer of vesicles in the newly formed TNTs, possibly by regulating docking to or fusion with the opposing cell.
Collapse
Affiliation(s)
- Roberto Notario Manzano
- Membrane Traffic and Pathogenesis Unit, Department of Cell Biology and Infection, CNRS 18 UMR 3691, Institut Pasteur, Université Paris Cité, Paris, France
- Sorbonne Université, ED394 - Physiologie, Physiopathologie et Thérapeutique, Paris, France
| | - Thibault Chaze
- Proteomics Platform, Mass Spectrometry for Biology Unit, CNRS USR 2000, Institut Pasteur, Paris, France
| | - Eric Rubinstein
- Centre d'Immunologie et des Maladies Infectieuses, Inserm, CNRS, Sorbonne Université, CIMI-Paris, Paris, France
| | - Esthel Penard
- Ultrastructural BioImaging Core Facility (UBI), C2RT, Institut Pasteur, Université Paris Cité, Paris, France
| | - Mariette Matondo
- Proteomics Platform, Mass Spectrometry for Biology Unit, CNRS USR 2000, Institut Pasteur, Paris, France
| | - Chiara Zurzolo
- Membrane Traffic and Pathogenesis Unit, Department of Cell Biology and Infection, CNRS 18 UMR 3691, Institut Pasteur, Université Paris Cité, Paris, France
| | - Christel Brou
- Membrane Traffic and Pathogenesis Unit, Department of Cell Biology and Infection, CNRS 18 UMR 3691, Institut Pasteur, Université Paris Cité, Paris, France
| |
Collapse
|
7
|
Marquez J, Dong J, Hayashi J, Serrero G. Prostaglandin F2 Receptor Negative Regulator (PTGFRN) Expression Correlates With a Metastatic-like Phenotype in Epidermoid Carcinoma, Pediatric Medulloblastoma, and Mesothelioma. J Cell Biochem 2024; 125:e30616. [PMID: 38924562 DOI: 10.1002/jcb.30616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024]
Abstract
Prostaglandin F2 receptor negative regulator (PTGFRN) is a transmembrane protein associated with metastatic characteristics of certain cancer types. However, it remains poorly characterized and its direct function in cancer remains unclear. The study presented here aims to further examine whether PTGFRN expression affects a cancer cell's phenotype, as well as metastatic-like characteristics. We used stable shRNA and cDNA transfections to respectively knockdown and overexpress PTGFRN in three different cancer cell lines, two of which are representative of rare and aggressive cancers (Mesothelioma and Pediatric Medulloblastoma). We then examined the characteristics of the resulting clones and showed a decrease in proliferation, migration, colony formation, and spheroid growth capabilities in cells where PTGFRN expression had been inhibited, while cells overexpressing PTGFRN showed the opposite. In addition, we showed that PTGFRN displayed direct binding to two protein partners, Integrin β1 and E. Cadherin, the latter of which is a novel direct binding partner to PTGFRN. Furthermore, silencing PTGFRN expression impacted the cellular process of autophagy, thereby providing another avenue by which PTGFRN potentially contributes to a cancer cell phenotype. Our findings demonstrate the potential role of PTGFRN in cancer metastasis and suggest PTGFRN as a future target for drug development in the treatment of metastatic cancers.
Collapse
Affiliation(s)
- Jorge Marquez
- Department of Pharmaceutical Sciences, Baltimore School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
- Target Discovery Division, A&G Pharmaceutical Inc., Columbia, Maryland, USA
| | - Jianping Dong
- Target Discovery Division, A&G Pharmaceutical Inc., Columbia, Maryland, USA
| | - Jun Hayashi
- Precision Antibody Service, Columbia, Maryland, USA
| | - Ginette Serrero
- Target Discovery Division, A&G Pharmaceutical Inc., Columbia, Maryland, USA
- Precision Antibody Service, Columbia, Maryland, USA
| |
Collapse
|
8
|
Xu F, Luo S, Lu P, Cai C, Li W, Li C. Composition, functions, and applications of exosomal membrane proteins. Front Immunol 2024; 15:1408415. [PMID: 39148736 PMCID: PMC11324478 DOI: 10.3389/fimmu.2024.1408415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
Exosomes play a crucial role in various biological processes, such as human development, immune responses, and disease occurrence. The membrane proteins on exosomes are pivotal factors for their biological functionality. Currently, numerous membrane proteins have been identified on exosome membranes, participating in intercellular communication, mediating target cell recognition, and regulating immune processes. Furthermore, membrane proteins from exosomes derived from cancer cells can serve as relevant biomarkers for early cancer diagnosis. This article provides a comprehensive review of the composition of exosome membrane proteins and their diverse functions in the organism's biological processes. Through in-depth exploration of exosome membrane proteins, it is expected to offer essential foundations for the future development of novel biomedical diagnostics and therapies.
Collapse
Affiliation(s)
- Fang Xu
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Shumin Luo
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Pengpeng Lu
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Chao Cai
- Integrated Chinese and Western Medicine Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Weihua Li
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Integrated Chinese and Western Medicine Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Chuanyun Li
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Dharan R, Sorkin R. Tetraspanin proteins in membrane remodeling processes. J Cell Sci 2024; 137:jcs261532. [PMID: 39051897 DOI: 10.1242/jcs.261532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
Membrane remodeling is a fundamental cellular process that is crucial for physiological functions such as signaling, membrane fusion and cell migration. Tetraspanins (TSPANs) are transmembrane proteins of central importance to membrane remodeling events. During these events, TSPANs are known to interact with themselves and other proteins and lipids; however, their mechanism of action in controlling membrane dynamics is not fully understood. Since these proteins span the membrane, membrane properties such as rigidity, curvature and tension can influence their behavior. In this Review, we summarize recent studies that explore the roles of TSPANs in membrane remodeling processes and highlight the unique structural features of TSPANs that mediate their interactions and localization. Further, we emphasize the influence of membrane curvature on TSPAN distribution and membrane domain formation and describe how these behaviors affect cellular functions. This Review provides a comprehensive perspective on the multifaceted function of TSPANs in membrane remodeling processes and can help readers to understand the intricate molecular mechanisms that govern cellular membrane dynamics.
Collapse
Affiliation(s)
- Raviv Dharan
- School of Chemistry , Raymond & Beverly Sackler Faculty of Exact Sciences , Tel Aviv University, 6997801, Tel Aviv, Israel
- Center for Physics and Chemistry of Living Systems , Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Raya Sorkin
- School of Chemistry , Raymond & Beverly Sackler Faculty of Exact Sciences , Tel Aviv University, 6997801, Tel Aviv, Israel
- Center for Physics and Chemistry of Living Systems , Tel Aviv University, 6997801, Tel Aviv, Israel
| |
Collapse
|
10
|
Mrozowska M, Górnicki T, Olbromski M, Partyńska AI, Dzięgiel P, Rusak A. New insights into the role of tetraspanin 6, 7, and 8 in physiology and pathology. Cancer Med 2024; 13:e7390. [PMID: 39031113 PMCID: PMC11258570 DOI: 10.1002/cam4.7390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/24/2024] [Accepted: 06/02/2024] [Indexed: 07/22/2024] Open
Abstract
BACKGROUND The tetraspanin (TSPAN) family comprises 33 membrane receptors involved in various physiological processes in humans. Tetrasapanins are surface proteins expressed in cells of various organisms. They are localised to the cell membrane by four transmembrane domains (TM4SF). These domains bind several cell surface receptors and signalling proteins to tetraspanin-enriched lipid microdomains (TERM or TEM). Tetraspanins play a critical role in anchoring many proteins. They also act as a scaffold for cell signalling proteins. AIM To summarise how tetraspanins 6, 7 and 8 contribute to the carcinogenesis process in different types of cancer. METHODS To provide a comprehensive review of the role of tetraspanins 6, 7 and 8 in cancer biology, we conducted a thorough search in PubMed, Embase and performed manual search of reference list to collect and extract data. DISCUSSION The assembly of tetraspanins covers an area of approximately 100-400 nm. Tetraspanins are involved in various biological processes such as membrane fusion, aggregation, proliferation, adhesion, cell migration and differentiation. They can also regulate integrins, cell surface receptors and signalling molecules. Tetraspanins form direct bonds with proteins and other members of the tetraspanin family, forming a hierarchical network of interactions and are thought to be involved in cell and membrane compartmentalisation. Tetraspanins have been implicated in cancer progression and have been shown to have multiple binding partners and to promote cancer progression and metastasis. Clinical studies have documented a correlation between the level of tetraspanin expression and the prediction of cancer progression, including breast and lung cancer. CONCLUSIONS Tetraspanins are understudied in almost all cell types and their functions are not clearly defined. Fortunately, it has been possible to identify the basic mechanisms underlying the biological role of these proteins. Therefore, the purpose of this review is to describe the roles of tetraspanins 6, 7 and 8.
Collapse
Affiliation(s)
- Monika Mrozowska
- Division of Histology and Embryology, Department of Human Morphology and EmbryologyWroclaw Medical UniversityWroclawPoland
| | - Tomasz Górnicki
- Division of Histology and Embryology, Department of Human Morphology and EmbryologyWroclaw Medical UniversityWroclawPoland
| | - Mateusz Olbromski
- Division of Histology and Embryology, Department of Human Morphology and EmbryologyWroclaw Medical UniversityWroclawPoland
| | - Aleksandra Izabela Partyńska
- Division of Histology and Embryology, Department of Human Morphology and EmbryologyWroclaw Medical UniversityWroclawPoland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and EmbryologyWroclaw Medical UniversityWroclawPoland
- Department of Human Biology, Faculty of PhysiotherapyWroclaw University of Health and Sport SciencesWroclawPoland
| | - Agnieszka Rusak
- Division of Histology and Embryology, Department of Human Morphology and EmbryologyWroclaw Medical UniversityWroclawPoland
| |
Collapse
|
11
|
Ribeiro TP, Martins-de-Sa D, Macedo LLP, Lourenço-Tessutti IT, Ruffo GC, Sousa JPA, Rósario Santana JMD, Oliveira-Neto OB, Moura SM, Silva MCM, Morgante CV, Oliveira NG, Basso MF, Grossi-de-Sa MF. Cotton plants overexpressing the Bacillus thuringiensis Cry23Aa and Cry37Aa binary-like toxins exhibit high resistance to the cotton boll weevil (Anthonomus grandis). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 344:112079. [PMID: 38588981 DOI: 10.1016/j.plantsci.2024.112079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/10/2024]
Abstract
The cotton boll weevil (CBW, Anthonomus grandis) stands as one of the most significant threats to cotton crops (Gossypium hirsutum). Despite substantial efforts, the development of a commercially viable transgenic cotton event for effective open-field control of CBW has remained elusive. This study describes a detailed characterization of the insecticidal toxins Cry23Aa and Cry37Aa against CBW. Our findings reveal that CBW larvae fed on artificial diets supplemented exclusively with Cry23Aa decreased larval survival by roughly by 69%, while supplementation with Cry37Aa alone displayed no statistical difference compared to the control. However, the combined provision of both toxins in the artificial diet led to mortality rates approaching 100% among CBW larvae (LC50 equal to 0.26 PPM). Additionally, we engineered transgenic cotton plants by introducing cry23Aa and cry37Aa genes under control of the flower bud-specific pGhFS4 and pGhFS1 promoters, respectively. Seven transgenic cotton events expressing high levels of Cry23Aa and Cry37Aa toxins in flower buds were selected for greenhouse bioassays, and the mortality rate of CBW larvae feeding on their T0 and T1 generations ranged from 75% to 100%. Our in silico analyses unveiled that Cry23Aa displays all the hallmark characteristics of β-pore-forming toxins (β-PFTs) that bind to sugar moieties in glycoproteins. Intriguingly, we also discovered a distinctive zinc-binding site within Cry23Aa, which appears to be involved in protein-protein interactions. Finally, we discuss the major structural features of Cry23Aa that likely play a role in the toxin's mechanism of action. In view of the low LC50 for CBW larvae and the significant accumulation of these toxins in the flower buds of both T0 and T1 plants, we anticipate that through successive generations of these transgenic lines, cotton plants engineered to overexpress cry23Aa and cry37Aa hold promise for effectively managing CBW infestations in cotton crops.
Collapse
Affiliation(s)
- Thuanne Pires Ribeiro
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil
| | - Diogo Martins-de-Sa
- Department of Cellular Biology, University of Brasília, Brasília, DF 70910-900, Brazil; Genesilico Biotech, Brasília, DF 71503-508, Brazil
| | - Leonardo Lima Pepino Macedo
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil
| | - Isabela Tristan Lourenço-Tessutti
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil
| | - Gustavo Caseca Ruffo
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil; Graduate Program in Genomic Science and Biotechnology, Catholic University of Brasília, Brasília, DF 71966-700, Brazil
| | - João Pedro Abreu Sousa
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil; Graduate Program in Genomic Science and Biotechnology, Catholic University of Brasília, Brasília, DF 71966-700, Brazil
| | - Julia Moura do Rósario Santana
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil; Graduate Program in Genomic Science and Biotechnology, Catholic University of Brasília, Brasília, DF 71966-700, Brazil
| | - Osmundo Brilhante Oliveira-Neto
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil; Euroamerican University Center, Unieuro, Brasília, DF 70790-160, Brazil
| | - Stéfanie Menezes Moura
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil
| | - Maria Cristina Mattar Silva
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil
| | - Carolina Vianna Morgante
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil; Embrapa Semi-Arid, Pretrolina, PE 56302-970, Brazil
| | - Nelson Geraldo Oliveira
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil
| | - Marcos Fernando Basso
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil
| | - Maria Fatima Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil; Graduate Program in Genomic Science and Biotechnology, Catholic University of Brasília, Brasília, DF 71966-700, Brazil; Graduate Program in Biotechnology, Catholic University Dom Bosco, Campo Grande, MS 79117-900, Brazil.
| |
Collapse
|
12
|
Chen J, Ding Y, Jiang C, Qu R, Wren JD, Georgescu C, Wang X, Reuter DN, Liu B, Giles CB, Mayr CH, Schiller HB, Dai J, Stipp CS, Subramaniyan B, Wang J, Zuo H, Huang C, Fung KM, Rice HC, Sonnenberg A, Wu D, Walters MS, Zhao YY, Kanie T, Hays FA, Papin JF, Wang DW, Zhang XA. CD151 Maintains Endolysosomal Protein Quality to Inhibit Vascular Inflammation. Circ Res 2024; 134:1330-1347. [PMID: 38557119 PMCID: PMC11081830 DOI: 10.1161/circresaha.123.323190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Tetraspanin CD151 is highly expressed in endothelia and reinforces cell adhesion, but its role in vascular inflammation remains largely unknown. METHODS In vitro molecular and cellular biological analyses on genetically modified endothelial cells, in vivo vascular biological analyses on genetically engineered mouse models, and in silico systems biology and bioinformatics analyses on CD151-related events. RESULTS Endothelial ablation of Cd151 leads to pulmonary and cardiac inflammation, severe sepsis, and perilous COVID-19, and endothelial CD151 becomes downregulated in inflammation. Mechanistically, CD151 restrains endothelial release of proinflammatory molecules for less leukocyte infiltration. At the subcellular level, CD151 determines the integrity of multivesicular bodies/lysosomes and confines the production of exosomes that carry cytokines such as ANGPT2 (angiopoietin-2) and proteases such as cathepsin-D. At the molecular level, CD151 docks VCP (valosin-containing protein)/p97, which controls protein quality via mediating deubiquitination for proteolytic degradation, onto endolysosomes to facilitate VCP/p97 function. At the endolysosome membrane, CD151 links VCP/p97 to (1) IFITM3 (interferon-induced transmembrane protein 3), which regulates multivesicular body functions, to restrain IFITM3-mediated exosomal sorting, and (2) V-ATPase, which dictates endolysosome pH, to support functional assembly of V-ATPase. CONCLUSIONS Distinct from its canonical function in strengthening cell adhesion at cell surface, CD151 maintains endolysosome function by sustaining VCP/p97-mediated protein unfolding and turnover. By supporting protein quality control and protein degradation, CD151 prevents proteins from (1) buildup in endolysosomes and (2) discharge through exosomes, to limit vascular inflammation. Also, our study conceptualizes that balance between degradation and discharge of proteins in endothelial cells determines vascular information. Thus, the IFITM3/V-ATPase-tetraspanin-VCP/p97 complexes on endolysosome, as a protein quality control and inflammation-inhibitory machinery, could be beneficial for therapeutic intervention against vascular inflammation.
Collapse
Affiliation(s)
- Junxiong Chen
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Yingjun Ding
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Chao Jiang
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Rongmei Qu
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | | | | | - Xuejun Wang
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | | | - Beibei Liu
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Cory B. Giles
- Oklahoma Medical Research Foundation, Oklahoma City, USA
| | | | | | - Jingxing Dai
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | | | | | - Jie Wang
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Houjuan Zuo
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Chao Huang
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Kar-Ming Fung
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Heather C. Rice
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | | | - David Wu
- University of Chicago, Chicago, IL, USA
| | | | - You-Yang Zhao
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Tomoharu Kanie
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Franklin A. Hays
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - James F. Papin
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Dao Wen Wang
- Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xin A. Zhang
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
- Lead contact
| |
Collapse
|
13
|
Cappe B, Vandenabeele P, Riquet FB. A guide to the expanding field of extracellular vesicles and their release in regulated cell death programs. FEBS J 2024; 291:2068-2090. [PMID: 37872002 DOI: 10.1111/febs.16981] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/26/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
Homeostasis disruption is visible at the molecular and cellular levels and may often lead to cell death. This vital process allows us to maintain the more extensive system's integrity by keeping the different features (genetic, metabolic, physiologic, and individual) intact. Interestingly, while cells can die in different manners, dying cells still communicate with their environment. This communication was, for a long time, perceived as only driven by the release of soluble factors. However, it has now been reconsidered with the increasing interest in extracellular vesicles (EVs), which are discovered to be released during different regulated cell death programs, with the observation of specific effects. EVs are game changers in the paradigm of cell-cell communication with tremendous implications in fundamental research with regard to noncell autonomous functions, as well as in biomarkers research, all of which are geared toward diagnostic and therapeutic purposes. This review is composed of two main parts. The first is a comprehensive presentation of the state of the art of the EV field at large. In the second part, we focus on EVs discovered to be released during different regulated cell death programs, also known as cell death EVs (cdEVs), and EV-associated specific effects on recipient cells in the context of cell death and inflammation/inflammatory responses.
Collapse
Affiliation(s)
- Benjamin Cappe
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research (IRC), Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Peter Vandenabeele
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research (IRC), Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Franck B Riquet
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research (IRC), Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
- University of Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, France
| |
Collapse
|
14
|
Dey S, Mohapatra S, Khokhar M, Hassan S, Pandey RK. Extracellular Vesicles in Malaria: Shedding Light on Pathogenic Depths. ACS Infect Dis 2024; 10:827-844. [PMID: 38320272 PMCID: PMC10928723 DOI: 10.1021/acsinfecdis.3c00649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/08/2024]
Abstract
Malaria, a life-threatening infectious disease caused by Plasmodium falciparum, remains a significant global health challenge, particularly in tropical and subtropical regions. The epidemiological data for 2021 revealed a staggering toll, with 247 million reported cases and 619,000 fatalities attributed to the disease. This formidable global health challenge continues to perplex researchers seeking a comprehensive understanding of its pathogenesis. Recent investigations have unveiled the pivotal role of extracellular vesicles (EVs) in this intricate landscape. These tiny, membrane-bound vesicles, secreted by diverse cells, emerge as pivotal communicators in malaria's pathogenic orchestra. This Review delves into the multifaceted roles of EVs in malaria pathogenesis, elucidating their impact on disease progression and immune modulation. Insights into EV involvement offer potential therapeutic and diagnostic strategies. Integrating this information identifies targets to mitigate malaria's global impact. Moreover, this Review explores the potential of EVs as diagnostic biomarkers and therapeutic targets in malaria. By deciphering the intricate dialogue facilitated by these vesicles, new avenues for intervention and novel strategies for disease management may emerge.
Collapse
Affiliation(s)
- Sangita Dey
- CSO
Department, Cellworks Research India Pvt
Ltd, Bengaluru 560066, Karnataka, India
| | - Salini Mohapatra
- Department
of Biotechnology, Chandigarh University, Punjab 140413, India
| | - Manoj Khokhar
- Department
of Biochemistry, All India Institute of
Medical Sciences Jodhpur, Rajasthan 342005, India
| | - Sana Hassan
- Department
of Life Sciences, Manipal Academy of Higher
Education, Dubai 345050, United Arab Emirates
| | - Rajan Kumar Pandey
- Department
of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 17177, Sweden
| |
Collapse
|
15
|
Bunz M, Eisele M, Hu D, Ritter M, Kammerloher J, Lampl S, Schindler M. CD81 suppresses NF-κB signaling and is downregulated in hepatitis C virus expressing cells. Front Cell Infect Microbiol 2024; 14:1338606. [PMID: 38357447 PMCID: PMC10864554 DOI: 10.3389/fcimb.2024.1338606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024] Open
Abstract
The tetraspanin CD81 is one of the main entry receptors for Hepatitis C virus, which is a major causative agent to develop liver cirrhosis and hepatocellular carcinoma (HCC). Here, we identify CD81 as one of few surface proteins that are downregulated in HCV expressing hepatoma cells, discovering a functional role of CD81 beyond mediating HCV entry. CD81 was downregulated at the mRNA level in hepatoma cells that replicate HCV. Kinetics of HCV expression were increased in CD81-knockout cells and accompanied by enhanced cellular growth. Furthermore, loss of CD81 compensated for inhibition of pro-survival TBK1-signaling in HCV expressing cells. Analysis of functional phenotypes that could be associated with pro-survival signaling revealed that CD81 is a negative regulator of NF-κB. Interaction of the NF-κB subunits p50 and p65 was increased in cells lacking CD81. Similarly, we witnessed an overall increase in the total levels of phosphorylated and cellular p65 upon CD81-knockout in hepatoma cells. Finally, translocation of p65 in CD81-negative hepatoma cells was markedly induced upon stimulation with TNFα or PMA. Altogether, CD81 emerges as a regulator of pro-survival NF-κB signaling. Considering the important and established role of NF-κB for HCV replication and tumorigenesis, the downregulation of CD81 by HCV and the associated increase in NF-κB signaling might be relevant for viral persistence and chronic infection.
Collapse
Affiliation(s)
- Maximilian Bunz
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Mona Eisele
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Dan Hu
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Michael Ritter
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Julia Kammerloher
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
- Institute of Virology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Sandra Lampl
- Institute of Virology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Michael Schindler
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
16
|
Schmidt SC, Massenberg A, Homsi Y, Sons D, Lang T. Microscopic clusters feature the composition of biochemical tetraspanin-assemblies and constitute building-blocks of tetraspanin enriched domains. Sci Rep 2024; 14:2093. [PMID: 38267610 PMCID: PMC10808221 DOI: 10.1038/s41598-024-52615-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/21/2024] [Indexed: 01/26/2024] Open
Abstract
Biochemical approaches revealed that tetraspanins are multi-regulatory proteins forming a web, where they act in tetraspanin-enriched-microdomains (TEMs). A microscopic criterion differentiating between web and TEMs is lacking. Using super-resolution microcopy, we identify co-assemblies between the tetraspanins CD9 and CD81 and CD151 and CD81. CD9 assemblies contain as well the CD9/CD81-interaction partner EWI-2. Moreover, CD9 clusters are proximal to clusters of the CD81-interaction partner CD44 and CD81-/EWI-2-interacting ezrin-radixin-moesin proteins. Assemblies scatter unorganized across the cell membrane; yet, upon EWI-2 elevation, they agglomerate into densely packed arranged-crowds in a process independent from actin dynamics. In conclusion, microscopic clusters are equivalent to biochemical tetraspanin-assemblies, defining in their entirety the tetraspanin web. Cluster-agglomeration enriches tetraspanins, which makes agglomerations to a microscopic complement of TEMs. The microscopic classification of tetraspanin assemblies advances our understanding of this enigmatic protein family, whose members play roles in a plethora of cellular functions, diseases, and pathogen infections.
Collapse
Affiliation(s)
- Sara C Schmidt
- Faculty of Mathematics and Natural Sciences, Life & Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115, Bonn, Germany
| | - Annika Massenberg
- Faculty of Mathematics and Natural Sciences, Life & Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115, Bonn, Germany
| | - Yahya Homsi
- Faculty of Mathematics and Natural Sciences, Life & Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115, Bonn, Germany
| | - Dominik Sons
- Faculty of Mathematics and Natural Sciences, Life & Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115, Bonn, Germany
| | - Thorsten Lang
- Faculty of Mathematics and Natural Sciences, Life & Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115, Bonn, Germany.
| |
Collapse
|
17
|
Maqsood Q, Sumrin A, Saleem Y, Wajid A, Mahnoor M. Exosomes in Cancer: Diagnostic and Therapeutic Applications. Clin Med Insights Oncol 2024; 18:11795549231215966. [PMID: 38249520 PMCID: PMC10799603 DOI: 10.1177/11795549231215966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/29/2023] [Indexed: 01/23/2024] Open
Abstract
Small extracellular vesicles called exosomes are produced by cells and contain a range of biomolecules, including proteins, lipids, and nucleic acids. Exosomes have been implicated in the development and spread of cancer, and recent studies have shown that their contents may be exploited as biomarkers for early detection and ongoing surveillance of the disease. In this review article, we summarize the current knowledge on exosomes as biomarkers of cancer. We discuss the various methods used for exosome isolation and characterization, as well as the different types of biomolecules found within exosomes that are relevant for cancer diagnosis and prognosis. We also highlight recent studies that have demonstrated the utility of exosomal biomarkers in different types of cancer, such as lung cancer, breast cancer, and pancreatic cancer. Overall, exosomes show great promise as noninvasive biomarkers for cancer detection and monitoring. Exosomes have the ability to transform cancer diagnostic and therapeutic paradigms, providing promise for more efficient and individualized. This review seeks to serve as an inspiration for new ideas and research in the never-ending fight against cancer. Moreover, further studies are needed to validate their clinical utility and establish standardized protocols for their isolation and analysis. With continued research and development, exosomal biomarkers have the potential to revolutionize cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Quratulain Maqsood
- Department of Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Aleena Sumrin
- Department of Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Yasar Saleem
- Department of Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Laboratories Complex Lahore, Lahore, Pakistan
| | - Abdul Wajid
- Department of Biotechnology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | - Muhammada Mahnoor
- Department of Rehabilitation Science, The University of Lahore, Lahore, Pakistan
| |
Collapse
|
18
|
Konstantinova N, Mor E, Verhelst E, Nolf J, Vereecken K, Wang F, Van Damme D, De Rybel B, Glanc M. A precise balance of TETRASPANIN1/TORNADO2 activity is required for vascular proliferation and ground tissue patterning in Arabidopsis. PHYSIOLOGIA PLANTARUM 2024; 176:e14182. [PMID: 38618986 DOI: 10.1111/ppl.14182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 04/16/2024]
Abstract
The molecular mechanisms guiding oriented cell divisions in the root vascular tissues of Arabidopsis thaliana are still poorly characterised. By overlapping bulk and single-cell transcriptomic datasets, we unveiled TETRASPANIN1 (TET1) as a putative regulator in this process. TET1 is expressed in root vascular cells, and loss-of-function mutants contain fewer vascular cell files. We further generated and characterised a CRISPR deletion mutant and showed, unlike previously described mutants, that the full knock out is additionally missing endodermal cells in a stochastic way. Finally, we show that HA-tagged versions of TET1 are functional in contrast to fluorescent TET1 translational fusions. Immunostaining using HA-TET1 lines complementing the mutant phenotype suggested a dual plasma membrane and intracellular localisation in the root vasculature and a polar membrane localisation in the young cortex, endodermal and initial cells. Taken together, we show that TET1 is involved in both vascular proliferation and ground tissue patterning. Our initial results pave the way for future work to decipher its precise mode of action.
Collapse
Affiliation(s)
- Nataliia Konstantinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Centre for Plant Systems Biology, Ghent, Belgium
| | - Eliana Mor
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Centre for Plant Systems Biology, Ghent, Belgium
| | - Eline Verhelst
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Centre for Plant Systems Biology, Ghent, Belgium
| | - Jonah Nolf
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Centre for Plant Systems Biology, Ghent, Belgium
| | - Kenzo Vereecken
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Centre for Plant Systems Biology, Ghent, Belgium
| | - Feng Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Centre for Plant Systems Biology, Ghent, Belgium
| | - Daniel Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Centre for Plant Systems Biology, Ghent, Belgium
| | - Bert De Rybel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Centre for Plant Systems Biology, Ghent, Belgium
| | - Matouš Glanc
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Centre for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
19
|
Yadav A, Nandy A, Sharma A, Ghatak S. Exosome Mediated Cell-Cell Crosstalk in Tissue Injury and Repair. Results Probl Cell Differ 2024; 73:249-297. [PMID: 39242383 DOI: 10.1007/978-3-031-62036-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
The landscape of exosome research has undergone a significant paradigm shift, with a departure from early conceptions of exosomes as vehicles for cellular waste disposal towards their recognition as integral components of cellular communication with therapeutic potential. This chapter presents an exhaustive elucidation of exosome biology, detailing the processes of exosome biogenesis, release, and uptake, and their pivotal roles in signal transduction, tissue repair, regeneration, and intercellular communication. Additionally, the chapter highlights recent innovations and anticipates future directions in exosome research, emphasizing their applicability in clinical settings. Exosomes have the unique ability to navigate through tissue spaces to enter the circulatory system, positioning them as key players in tissue repair. Their contributory role in various processes of tissue repair, although in the nascent stages of investigation, stands out as a promising area of research. These vesicles function as a complex signaling network for intracellular and organ-level communication, critical in both pathological and physiological contexts. The chapter further explores the tissue-specific functionality of exosomes and underscores the advancements in methodologies for their isolation and purification, which have been instrumental in expanding the scope of exosome research. The differential cargo profiles of exosomes, dependent on their cellular origin, position them as prospective diagnostic biomarkers for tissue damage and regenerative processes. Looking ahead, the trajectory of exosome research is anticipated to bring transformative changes to biomedical fields. This includes advancing diagnostic and prognostic techniques that utilize exosomes as non-invasive biomarkers for a plethora of diseases, such as cancer, neurodegenerative, and cardiovascular conditions. Additionally, engineering exosomes through alterations of their native content or surface properties presents a novel frontier, including the synthesis of artificial or hybrid variants with enhanced functional properties. Concurrently, the ethical and regulatory frameworks surrounding exosome research, particularly in clinical translation, will require thorough deliberation. In conclusion, the diverse aspects of exosome research are coalescing to redefine the frontiers of diagnostic and therapeutic methodologies, cementing its importance as a discipline of considerable consequence in the biomedical sciences.
Collapse
Affiliation(s)
- Anita Yadav
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Aparajita Nandy
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anu Sharma
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Subhadip Ghatak
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
20
|
Nemoto S, Kubota T, Ishikura T, Nakayama M, Kobayashi A, Yazaki J, Uchida K, Matsuda M, Kondo T, Ohara O, Koseki H, Koyasu S, Ohno H. Characterization of metabolic phenotypes and distinctive genes in mice with low-weight gain. FASEB J 2024; 38:e23339. [PMID: 38069905 DOI: 10.1096/fj.202301565r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023]
Abstract
Being overweight exacerbates various metabolic diseases, necessitating the identification of target molecules for obesity control. In the current study, we investigated common physiological features related to metabolism in mice with low weight gain: (1) G protein-coupled receptor, family C, group 5, member B-knockout; (2) gastric inhibitory polypeptide receptor-knockout; and (3) Iroquois-related homeobox 3-knockout. Moreover, we explored genes involved in metabolism by analyzing differentially expressed genes (DEGs) between low-weight gain mice and the respective wild-type control mice. The common characteristics of the low-weight gain mice were low inguinal white adipose tissue (iWAT) and liver weight despite similar food intake along with lower blood leptin levels and high energy expenditure. The DEGs of iWAT, epididymal (gonadal) WAT, brown adipose tissue, muscle, liver, hypothalamus, and hippocampus common to these low-weight gain mice were designated as candidate genes associated with metabolism. One such gene tetraspanin 7 (Tspan7) from the iWAT was validated using knockout and overexpressing mouse models. Mice with low Tspan7 expression gained more weight, while those with high Tspan7 expression gained less weight, confirming the involvement of the Tspan7 gene in weight regulation. Collectively, these findings suggest that the candidate gene list generated in this study contains potential target molecules for obesity regulation. Further validation and additional data from low-weight gain mice will aid in understanding the molecular mechanisms associated with obesity.
Collapse
Affiliation(s)
- Shino Nemoto
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Tetsuya Kubota
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Division of Diabetes and Metabolism, The Institute of Medical Science, Asahi Life Foundation, Tokyo, Japan
- Division of Cardiovascular Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoyuki Ishikura
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Manabu Nakayama
- Laboratory of Medical Omics Research, Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Atsuo Kobayashi
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Junshi Yazaki
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kazuyo Uchida
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Masashi Matsuda
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Takashi Kondo
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Osamu Ohara
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Shigeo Koyasu
- Laboratory for Immune Cell Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Laboratory for Immune Regulation, Graduate School of Medical and Pharmaceutical Sciences, Chiba University, Chiba, Japan
- Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| |
Collapse
|
21
|
Arone C, Martial S, Burlaud-Gaillard J, Thoulouze MI, Roingeard P, Dutartre H, Muriaux D. HTLV-1 biofilm polarization maintained by tetraspanin CD82 is required for efficient viral transmission. mBio 2023; 14:e0132623. [PMID: 37889017 PMCID: PMC10746275 DOI: 10.1128/mbio.01326-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/11/2023] [Indexed: 10/28/2023] Open
Abstract
IMPORTANCE In the early stages of infection, human T-lymphotropic virus type 1 (HTLV-1) dissemination within its host is believed to rely mostly on cell-to-cell contacts. Past studies unveiled a novel mechanism of HTLV-1 intercellular transmission based on the remodeling of the host-cell extracellular matrix and the generation of cell-surface viral assemblies whose structure, composition, and function resemble bacterial biofilms. These polarized aggregates of infectious virions, identified as viral biofilms, allow the bulk delivery of viruses to target cells and may help to protect virions from immune attacks. However, viral biofilms' molecular and functional description is still in its infancy, although it is crucial to fully decipher retrovirus pathogenesis. Here, we explore the function of cellular tetraspanins (CD9, CD81, CD82) that we detect inside HTLV-1 particles within biofilms. Our results demonstrate specific roles for CD82 in the cell-surface distribution and intercellular transmission of HTLV-1 biofilms, which we document as two essential parameters for efficient viral transmission. At last, our findings indicate that N-glycosylation of cell-surface molecules, including CD82, is required for the polarization of HTLV-1 biofilms and for the efficient transmission of HTLV-1 between T-lymphocytes.
Collapse
Affiliation(s)
- Coline Arone
- Infectious Disease Research Institute of Montpellier (IRIM), UMR CNRS, Montpellier, France
| | - Samuel Martial
- Center for International Research on Infectiology (CIRI), UMR Inserm, Lyon, France
| | | | | | - Philippe Roingeard
- IBiSA Electron Microscopy Platform of Tours University, UMR Inserm, Tours, France
| | - Hélène Dutartre
- Center for International Research on Infectiology (CIRI), UMR Inserm, Lyon, France
| | - Delphine Muriaux
- Infectious Disease Research Institute of Montpellier (IRIM), UMR CNRS, Montpellier, France
| |
Collapse
|
22
|
Jiang WI, De Belly H, Wang B, Wong A, Kim M, Oh F, DeGeorge J, Huang X, Guang S, Weiner OD, Ma DK. Early-life stress triggers long-lasting organismal resilience and longevity via tetraspanin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550452. [PMID: 37546737 PMCID: PMC10402089 DOI: 10.1101/2023.07.25.550452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Early-life stress experiences can produce lasting impacts on organismal adaptation and fitness. How transient stress elicits memory-like physiological effects is largely unknown. Here we show that early-life thermal stress strongly up-regulates tsp-1, a gene encoding the conserved transmembrane tetraspanin in C. elegans. TSP-1 forms prominent multimers and stable web-like structures critical for membrane barrier functions in adults and during aging. The up-regulation of TSP-1 persists even after transient early-life stress. Such regulation requires CBP-1, a histone acetyl-transferase that facilitates initial tsp-1 transcription. Tetraspanin webs form regular membrane structures and mediate resilience-promoting effects of early-life thermal stress. Gain-of-function TSP-1 confers marked C. elegans longevity extension and thermal resilience in human cells. Together, our results reveal a cellular mechanism by which early-life thermal stress produces long-lasting memory-like impact on organismal resilience and longevity.
Collapse
Affiliation(s)
- Wei I. Jiang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, USA
| | - Henry De Belly
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Bingying Wang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, USA
| | - Andrew Wong
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, USA
| | - Minseo Kim
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, USA
| | - Fiona Oh
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, USA
| | - Jason DeGeorge
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, USA
| | - Xinya Huang
- The USTC RNA Institute, Division of Life Sciences and Medicine, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, China
| | - Shouhong Guang
- The USTC RNA Institute, Division of Life Sciences and Medicine, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, China
| | - Orion D. Weiner
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Dengke K. Ma
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, USA
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
23
|
Zhu Y, Yang Y, Liu Y, Qian H, Qu G, Shi W, Liu J. A novel tetraspanin-related gene signature for predicting prognosis and immune invasion status of lung adenocarcinoma. J Cancer Res Clin Oncol 2023; 149:13631-13643. [PMID: 37516981 PMCID: PMC10590322 DOI: 10.1007/s00432-023-05176-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD), the most common subtype of lung cancer, is the primary contributor to cancer-linked fatalities. Dysregulation in the proliferation of cells and death is primarily involved in its development. Recently, tetraspanins, a group of transmembrane proteins, have gained increasing attention for their potential role in the progression of LUAD. Hence, our endeavor involved the development of a novel tetraspanin-based model for the prognostication of lung cancer. METHODS A comprehensive set of bioinformatics tools was utilized to evaluate the expression of tetraspanin-related genes and assess their significance regarding prognosis. Hence, a robust risk signature was established through machine learning. The prognosis-predictive value of the signature was evaluated in terms of clinical application, functional enrichment, and the immune landscape. RESULTS The research first identified differential expression of tetraspanin genes in patients with LUAD via publicly available databases. The resulting data were indicative of the value that nine of them held regarding prognosis. Five distinct elements were utilized in the establishment of a tetraspanin-related model (TSPAN7, TSPAN11, TSPAN14, UPK1B, and UPK1A). Furthermore, as per the median risk scores, the participants were classified into high- and low-risk groups. The model was validated using inner and outer validation sets. Notably, consensus clustering and prognostic score grouping analysis revealed that tetraspanin-related features affect tumor prognosis by modulating tumor immunity. A nomogram based on the tetraspanin gene was constructed with the aim of enhancing the poor prognosis of high-risk groups and facilitating clinical application. CONCLUSION Through machine learning algorithms and in vitro experiments, a novel tetraspanin-associated signature was developed and validated for survival prediction in patients with LUAD that reflects tumor immune infiltration. This could potentially provide new and improved measures for diagnosis and therapeutic interventions for LUAD.
Collapse
Affiliation(s)
- Yindong Zhu
- Department of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Ying Yang
- Cancer Research Center Nantong, Nantong Tumor Hospital, The Affiliated Tumor Hospital of Nantong University, Nantong University, Nantong, China
| | - Yuan Liu
- Cancer Research Center Nantong, Nantong Tumor Hospital, The Affiliated Tumor Hospital of Nantong University, Nantong University, Nantong, China
| | - Hongyan Qian
- Cancer Research Center Nantong, Nantong Tumor Hospital, The Affiliated Tumor Hospital of Nantong University, Nantong University, Nantong, China
| | - Ganlin Qu
- Department of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Weidong Shi
- Department of Thoracic Surgery, The Second People Hospital of Nantong, Nantong, China
| | - Jun Liu
- Department of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China.
| |
Collapse
|
24
|
Hu J, Guan X, Zhao M, Xie P, Guo J, Tan J. Genome-wide CRISPR-Cas9 Knockout Screening Reveals a TSPAN3-mediated Endo-lysosome Pathway Regulating the Degradation of α-Synuclein Oligomers. Mol Neurobiol 2023; 60:6731-6747. [PMID: 37477766 DOI: 10.1007/s12035-023-03495-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/09/2023] [Indexed: 07/22/2023]
Abstract
Misfolding and aggregation of α-Synuclein (α-Syn), which are hallmark pathological features of neurodegenerative diseases such as Parkinson's disease (PD) and dementia with Lewy Bodies, continue to be significant areas of research. Among the diverse forms of α-Syn - monomer, oligomer, and fibril, the oligomer is considered the most toxic. However, the mechanisms governing α-Syn oligomerization are not yet fully understood. In this study, we utilized genome-wide CRISPR/Cas9 loss-of-function screening in human HEK293 cells to identify negative regulators of α-Syn oligomerization. We found that tetraspanin 3 (TSPAN3), a presumptive four-pass transmembrane protein, but not its homolog TSPAN7, significantly modulates α-Syn oligomer levels. TSPAN3 was observed to interact with α-Syn oligomers, regulate the amount of α-Syn oligomers on the cell membrane, and promote their degradation via the clathrin-AP2 mediated endo-lysosome pathway. Our findings highlight TSPAN3 as a potential regulator of α-Syn oligomers, presenting a promising target for future PD prevention and treatment strategies.
Collapse
Affiliation(s)
- JunJian Hu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Science, Central South University, Changsha, 410078, Hunan, China
- Department of Central Laboratory, SSL Central Hospital of Dongguan City, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, China
| | - Xinjie Guan
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Science, Central South University, Changsha, 410078, Hunan, China
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - Miao Zhao
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Science, Central South University, Changsha, 410078, Hunan, China
| | - Pengqing Xie
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Science, Central South University, Changsha, 410078, Hunan, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jieqiong Tan
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Science, Central South University, Changsha, 410078, Hunan, China.
- Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, Hunan, China.
| |
Collapse
|
25
|
Waisner H, Lasnier S, Suma SM, Kalamvoki M. Effects on exocytosis by two HSV-1 mutants unable to block autophagy. J Virol 2023; 97:e0075723. [PMID: 37712703 PMCID: PMC10617559 DOI: 10.1128/jvi.00757-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/28/2023] [Indexed: 09/16/2023] Open
Abstract
IMPORTANCE Pathogens often hijack extracellular vesicle (EV) biogenesis pathways for assembly, egress, and cell-to-cell spread. Herpes simplex virus 1 (HSV-1) infection stimulated EV biogenesis through a CD63 tetraspanin biogenesis pathway and these EVs activated antiviral responses in recipient cells restricting the infection. HSV-1 inhibits autophagy to evade the host, and increased CD63 exocytosis could be a coping mechanism, as CD63 is involved in both cargo delivery to lysosomes during autophagy and exocytosis. We analyzed exocytosis after infection with two HSV-1 mutants, a ΔICP34.5 and a ΔICP0, that could not inhibit autophagy. Unlike HSV-1(F), neither of these viruses stimulated increased EV biogenesis through the CD63 pathway. ΔICP34.5 stimulated production of microvesicles and apoptotic bodies that were CD63-negative, while ΔICP0 displayed an overall reduced production of EVs. These EVs activated innate immunity gene expression in recipient cells. Given the potential use of these mutants for therapeutic purposes, the immunomodulatory properties of EVs associated with them may be beneficial.
Collapse
Affiliation(s)
- Hope Waisner
- Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Sarah Lasnier
- Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Sreenath Muraleedharan Suma
- Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Maria Kalamvoki
- Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
26
|
Choi H, Liao YC, Yoon YJ, Grimm J, Lavis LD, Singer RH, Lippincott-Schwartz J. Lysosomal release of amino acids at ER three-way junctions regulates transmembrane and secretory protein mRNA translation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.01.551382. [PMID: 37577585 PMCID: PMC10418176 DOI: 10.1101/2023.08.01.551382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
One-third of the mammalian proteome is comprised of transmembrane and secretory proteins that are synthesized on endoplasmic reticulum (ER). Here, we investigate the spatial distribution and regulation of mRNAs encoding these membrane and secretory proteins (termed "secretome" mRNAs) through live cell, single molecule tracking to directly monitor the position and translation states of secretome mRNAs on ER and their relationship to other organelles. Notably, translation of secretome mRNAs occurred preferentially near lysosomes on ER marked by the ER junction-associated protein, Lunapark. Knockdown of Lunapark reduced the extent of secretome mRNA translation without affecting translation of other mRNAs. Less secretome mRNA translation also occurred when lysosome function was perturbed by raising lysosomal pH or inhibiting lysosomal proteases. Secretome mRNA translation near lysosomes was enhanced during amino acid deprivation. Addition of the integrated stress response inhibitor, ISRIB, reversed the translation inhibition seen in Lunapark knockdown cells, implying an eIF2 dependency. Altogether, these findings uncover a novel coordination between ER and lysosomes, in which local release of amino acids and other factors from ER-associated lysosomes patterns and regulates translation of mRNAs encoding secretory and membrane proteins.
Collapse
|
27
|
Fan Y, Pionneau C, Cocozza F, Boëlle P, Chardonnet S, Charrin S, Théry C, Zimmermann P, Rubinstein E. Differential proteomics argues against a general role for CD9, CD81 or CD63 in the sorting of proteins into extracellular vesicles. J Extracell Vesicles 2023; 12:e12352. [PMID: 37525398 PMCID: PMC10390663 DOI: 10.1002/jev2.12352] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/15/2023] [Indexed: 08/02/2023] Open
Abstract
The tetraspanins CD9, CD81 and CD63 are major components of extracellular vesicles (EVs). Yet, their impact on EV composition remains under-investigated. In the MCF7 breast cancer cell line CD63 was as expected predominantly intracellular. In contrast CD9 and CD81 strongly colocalized at the plasma membrane, albeit with different ratios at different sites, which may explain a higher enrichment of CD81 in EVs. Absence of these tetraspanins had little impact on the EV protein composition as analysed by quantitative mass spectrometry. We also analysed the effect of concomitant knock-out of CD9 and CD81 because these two tetraspanins play similar roles in several cellular processes and associate directly with two Ig domain proteins, CD9P-1/EWI-F/PTGFRN and EWI-2/IGSF8. These were the sole proteins significantly decreased in the EVs of double CD9- and CD81-deficient cells. In the case of EWI-2, this is primarily a consequence of a decreased cell expression level. In conclusion, this study shows that CD9, CD81 and CD63, commonly used as EV protein markers, play a marginal role in determining the protein composition of EVs released by MCF7 cells and highlights a regulation of the expression level and/or trafficking of CD9P-1 and EWI-2 by CD9 and CD81.
Collapse
Affiliation(s)
- Yé Fan
- Centre d'Immunologie et des Maladies InfectieusesSorbonne Université, Inserm, CNRSParisFrance
| | - Cédric Pionneau
- UMS Production et Analyse des données en Sciences de la vie et en Santé, PASSPlateforme Post‐génomique de la Pitié‐Salpêtrière, P3SSorbonne Université, InsermParisFrance
| | - Federico Cocozza
- Inserm U932, Institut Curie Centre de RecherchePSL Research UniversityParisFrance
| | - Pierre‐Yves Boëlle
- Institut Pierre Louis d’Épidémiologie et de Santé PubliqueSorbonne Université, InsermParisFrance
| | - Solenne Chardonnet
- UMS Production et Analyse des données en Sciences de la vie et en Santé, PASSPlateforme Post‐génomique de la Pitié‐Salpêtrière, P3SSorbonne Université, InsermParisFrance
| | - Stéphanie Charrin
- Centre d'Immunologie et des Maladies InfectieusesSorbonne Université, Inserm, CNRSParisFrance
| | - Clotilde Théry
- Inserm U932, Institut Curie Centre de RecherchePSL Research UniversityParisFrance
- CurieCoretech Extracellular VesiclesInstitut Curie Centre de RechercheParisFrance
| | - Pascale Zimmermann
- Centre de Recherche en Cancérologie de Marseille (CRCM)Institut Paoli‐Calmettes, Aix‐Marseille Université, Inserm, CNRSMarseilleFrance
- Department of Human GeneticsKatholieke Universiteit Leuven (KU Leuven)LeuvenBelgium
| | - Eric Rubinstein
- Centre d'Immunologie et des Maladies InfectieusesSorbonne Université, Inserm, CNRSParisFrance
| |
Collapse
|
28
|
Avequin T, Lau KH, Waldhart AN, Guak H, Dykstra H, Krawczyk C, Wu N. Differential effects of sugar and fat on adipose tissue inflammation. iScience 2023; 26:107163. [PMID: 37456843 PMCID: PMC10338233 DOI: 10.1016/j.isci.2023.107163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/05/2022] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Obese individuals experience low grade inflammation initiated within their adipose tissue. However, the early events that lead to the release of these inflammatory factors from adipose tissue are poorly characterized. To separate glucose effects from lipid effects on adipose tissue, we used an adipose-specific TXNIP knockout model where excess basal glucose influx into adipocytes led to modest increase in adiposity without using high fat diet. We found an uncoupling of two events that are generally presumed to be coregulated: (1) an increase of adipose tissue macrophage (ATM) number; and (2) pro-inflammatory activation of ATMs. These two events are associated with different triggering signals: elevated free fatty acids output and extracellular matrix remodeling with increased ATM number, whereas decreased adiponectin level with activated ATM. This separation reflects non-overlapping pathways regulated by glucose and lipids in adipocytes, and neither group alone is sufficient to elicit the full inflammatory response in adipose tissue.
Collapse
Affiliation(s)
| | - Kin H. Lau
- Van Andel Institute, Grand Rapids, MI 49503, USA
| | | | - Hannah Guak
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | - Ning Wu
- Van Andel Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
29
|
Min J, Yang S, Cai Y, Vanderwall DR, Wu Z, Li S, Liu S, Liu B, Wang J, Ding Y, Chen J, Jiang C, Wren JD, Csiszar A, Ungvari Z, Greco C, Kanie T, Peng J, Zhang XA. Tetraspanin Tspan8 restrains interferon signaling to stabilize intestinal epithelium by directing endocytosis of interferon receptor. Cell Mol Life Sci 2023; 80:154. [PMID: 37204469 PMCID: PMC10484302 DOI: 10.1007/s00018-023-04803-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
Inflammation can impair intestinal barrier, while increased epithelial permeability can lead to inflammation. In this study, we found that the expression of Tspan8, a tetraspanin expressed specifically in epithelial cells, is downregulated in mouse model of ulcerative disease (UC) but correlated with those of cell-cell junction components, such as claudins and E-cadherin, suggesting that Tspan8 supports intestinal epithelial barrier. Tspan8 removal increases intestinal epithelial permeability and upregulates IFN-γ-Stat1 signaling. We also demonstrated that Tspan8 coalesces with lipid rafts and facilitates IFNγ-R1 localization at or near lipid rafts. As IFN-γ induces its receptor undergoing clathrin- or lipid raft-dependent endocytosis and IFN-γR endocytosis plays an important role in Jak-Stat1 signaling, our analysis on IFN-γR endocytosis revealed that Tspan8 silencing impairs lipid raft-mediated but promotes clathrin-mediated endocytosis of IFN-γR1, leading to increased Stat1 signaling. These changes in IFN-γR1 endocytosis upon Tspan8 silencing correlates with fewer lipid raft component GM1 at the cell surface and more clathrin heavy chain in the cells. Our findings indicate that Tspan8 determines the IFN-γR1 endocytosis route, to restrain Stat1 signaling, stabilize intestine epithelium, and subsequently prevent intestine from inflammation. Our finding also implies that Tspan8 is needed for proper endocytosis through lipid rafts.
Collapse
Affiliation(s)
- Jiang Min
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Shenglan Yang
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Yang Cai
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - David R Vanderwall
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Zhiping Wu
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Shuping Li
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Songlan Liu
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Beibei Liu
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Jie Wang
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Yingjun Ding
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Junxiong Chen
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Chao Jiang
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | | | - Anna Csiszar
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Zoltan Ungvari
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Céline Greco
- Department of Pain and Palliative Care Unit, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Tomoharu Kanie
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Xin A Zhang
- University of Oklahoma Health Sciences Center, Oklahoma City, USA.
| |
Collapse
|
30
|
Gómez AE, Addish S, Alvarado K, Boatemaa P, Onyali AC, Ramirez EG, Rojas MF, Rai J, Reynolds KA, Tang WJ, Kwon RY. Multiple Mechanisms Explain Genetic Effects at the CPED1-WNT16 Bone Mineral Density Locus. Curr Osteoporos Rep 2023; 21:173-183. [PMID: 36943599 PMCID: PMC10202127 DOI: 10.1007/s11914-023-00783-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/07/2023] [Indexed: 03/23/2023]
Abstract
PURPOSE OF REVIEW Chromosome region 7q31.31, also known as the CPED1-WNT16 locus, is robustly associated with BMD and fracture risk. The aim of the review is to highlight experimental studies examining the function of genes at the CPED1-WNT16 locus. RECENT FINDINGS Genes that reside at the CPED1-WNT16 locus include WNT16, FAM3C, ING3, CPED1, and TSPAN12. Experimental studies in mice strongly support the notion that Wnt16 is necessary for bone mass and strength. In addition, roles for Fam3c and Ing3 in regulating bone morphology in vivo and/or osteoblast differentiation in vitro have been identified. Finally, a role for wnt16 in dually influencing bone and muscle morphogenesis in zebrafish has recently been discovered, which has brought forth new questions related to whether the influence of WNT16 in muscle may conspire with its influence in bone to alter BMD and fracture risk.
Collapse
Affiliation(s)
- Arianna Ericka Gómez
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Sumaya Addish
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Kurtis Alvarado
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Priscilla Boatemaa
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Anne C Onyali
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Emily G Ramirez
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Maria F Rojas
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Jyoti Rai
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Kiana A Reynolds
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - W Joyce Tang
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Ronald Young Kwon
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, WA, USA.
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
31
|
Soler DC, Ballesteros A, Sloan AE, McCormick TS, Stepanyan R. Multiple plasma membrane reporters discern LHFPL5 region that blocks trafficking to the plasma membrane. Sci Rep 2023; 13:2528. [PMID: 36781873 PMCID: PMC9925724 DOI: 10.1038/s41598-023-28045-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/11/2023] [Indexed: 02/15/2023] Open
Abstract
The mechano-electrical transduction (MET) channel of the inner ear receptor cells, termed hair cells, is a protein complex that enables our senses of hearing and balance. Hair cell MET requires an elaborate interplay of multiple proteins that form the MET channel. One of the MET complex components is the transmembrane protein LHFPL5, which is required for hair cell MET and hearing. LHFPL5 is thought to form a multi-protein complex with other MET channel proteins, such as PCDH15, TMIE, and TMC1. Despite localizing to the plasma membrane of stereocilia, the mechanosensing organelles of hair cells, LHFPL5 requires its binding partner within the MET complex, PCDH15, to localize to the stereocilia tips in hair cells and to the plasma membrane in heterologous cells. Using the Aquaporin 3-tGFP reporter (AGR) for plasma membrane localization, we found that a region within extracellular loop 1, which interacts with PCDH15, precludes the trafficking of AGR reporter to the plasma membrane in heterologous cell lines. Our results suggest that the presence of protein partners may mask endoplasmic reticulum retention regions or enable the proper folding and trafficking of the MET complex components, to facilitate expression of the MET complex at the stereocilia membrane.
Collapse
Affiliation(s)
- David C Soler
- Department of Neurosurgery, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
- Brain Tumor and Neuro-Oncology Center, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
- University Hospitals-Cleveland Medical Center and the Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| | - Angela Ballesteros
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Andrew E Sloan
- Department of Neurosurgery, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Brain Tumor and Neuro-Oncology Center, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- University Hospitals-Cleveland Medical Center and the Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Thomas S McCormick
- Department of Dermatology, Case Western Reserve University, Cleveland, OH, USA
- Murdough Family Center for Psoriasis, University Hospitals Case Medical Center, Cleveland, OH, USA
| | - Ruben Stepanyan
- Department of Otolaryngology - HNS, Case Western Reserve University, Cleveland, OH, USA.
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
32
|
Taatjes DJ, Roth J. In focus in HCB. Histochem Cell Biol 2023; 159:115-118. [PMID: 36740634 DOI: 10.1007/s00418-023-02179-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Douglas J Taatjes
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA.
| | - Jürgen Roth
- University of Zurich, 8091, Zurich, Switzerland
| |
Collapse
|
33
|
Moretto E, Miozzo F, Longatti A, Bonnet C, Coussen F, Jaudon F, Cingolani LA, Passafaro M. The tetraspanin TSPAN5 regulates AMPAR exocytosis by interacting with the AP4 complex. eLife 2023; 12:76425. [PMID: 36795458 PMCID: PMC9934860 DOI: 10.7554/elife.76425] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/25/2023] [Indexed: 02/17/2023] Open
Abstract
Intracellular trafficking of AMPA receptors is a tightly regulated process which involves several adaptor proteins, and is crucial for the activity of excitatory synapses both in basal conditions and during synaptic plasticity. We found that, in rat hippocampal neurons, an intracellular pool of the tetraspanin TSPAN5 promotes exocytosis of AMPA receptors without affecting their internalisation. TSPAN5 mediates this function by interacting with the adaptor protein complex AP4 and Stargazin and possibly using recycling endosomes as a delivery route. This work highlights TSPAN5 as a new adaptor regulating AMPA receptor trafficking.
Collapse
Affiliation(s)
- Edoardo Moretto
- Institute of Neuroscience, CNRVedano al LambroItaly,NeuroMI Milan Center for Neuroscience, University of Milano-BicoccaMilanItaly
| | | | | | - Caroline Bonnet
- University of Bordeaux, Interdisciplinary Institute for NeuroscienceBordeauxFrance
| | - Francoise Coussen
- University of Bordeaux, Interdisciplinary Institute for NeuroscienceBordeauxFrance
| | - Fanny Jaudon
- Department of Life Sciences, University of TriesteTriesteItaly,IRCCS Ospedale Policlinico San MartinoGenoaItaly
| | - Lorenzo A Cingolani
- Department of Life Sciences, University of TriesteTriesteItaly,Center for Synaptic Neuroscience and Technology (NSYN), Istituto Italiano di Tecnologia (IIT)GenoaItaly
| | - Maria Passafaro
- Institute of Neuroscience, CNRVedano al LambroItaly,NeuroMI Milan Center for Neuroscience, University of Milano-BicoccaMilanItaly
| |
Collapse
|
34
|
Tumor-Derived Exosomes and Their Role in Breast Cancer Metastasis. Int J Mol Sci 2022; 23:ijms232213993. [PMID: 36430471 PMCID: PMC9693078 DOI: 10.3390/ijms232213993] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer has been the most common cancer in women worldwide, and metastasis is the leading cause of death from breast cancer. Even though the study of breast cancer metastasis has been extensively carried out, the molecular mechanism is still not fully understood, and diagnosis and prognosis need to be improved. Breast cancer metastasis is a complicated process involving multiple physiological changes, and lung, brain, bone and liver are the main metastatic targets. Exosomes are membrane-bound extracellular vesicles that contain secreted cellular constitutes. The biogenesis and functions of exosomes in cancer have been intensively studied, and mounting studies have indicated that exosomes play a crucial role in cancer metastasis. In this review, we summarize recent findings on the role of breast cancer-derived exosomes in metastasis organotropism and discuss the potential promising clinical applications of targeting exosomes as novel strategies for breast cancer diagnosis and therapy.
Collapse
|
35
|
Identification of Differentially Expressed Genes and Prediction of Expression Regulation Networks in Dysfunctional Endothelium. Genes (Basel) 2022; 13:genes13091563. [PMID: 36140731 PMCID: PMC9498925 DOI: 10.3390/genes13091563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/23/2022] [Accepted: 08/28/2022] [Indexed: 11/16/2022] Open
Abstract
The detection of early coronary atherosclerosis (ECA) is still a challenge and the mechanism of endothelial dysfunction remains unclear. In the present study, we aimed to identify differentially expressed genes (DEGs) and the regulatory network of miRNAs as well as TFs in dysfunctional endothelium to elucidate the possible pathogenesis of ECA and find new potential markers. The GSE132651 data set of the GEO database was used for the bioinformatic analysis. Principal component analysis (PCA), the identification of DEGs, correlation analysis between significant DEGs, the prediction of regulatory networks of miRNA and transcription factors (TFs), the validation of the selected significant DEGs, and the receiver operating characteristic (ROC) curve analysis as well as area under the curve (AUC) values were performed. We identified ten genes with significantly upregulated signatures and thirteen genes with significantly downregulated signals. Following this, we found twenty-two miRNAs regulating two or more DEGs based on the miRNA–target gene regulatory network. TFs with targets ≥ 10 were E2F1, RBPJ, SSX3, MMS19, POU3F3, HOXB5, and KLF4. Finally, three significant DEGs (TOX, RasGRP3, TSPAN13) were selected to perform validation experiments. Our study identified TOX, RasGRP3, and TSPAN13 in dysfunctional endothelium and provided potential biomarkers as well as new insights into the possible molecular mechanisms of ECA.
Collapse
|
36
|
Tetraspanin 8 Subfamily Members Regulate Substrate-Specificity of a Disintegrin and Metalloprotease 17. Cells 2022; 11:cells11172683. [PMID: 36078095 PMCID: PMC9454446 DOI: 10.3390/cells11172683] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/09/2022] [Indexed: 12/04/2022] Open
Abstract
Ectodomain shedding is an irreversible process to regulate inter- and intracellular signaling. Members of the a disintegrin and metalloprotease (ADAM) family are major mediators of ectodomain shedding. ADAM17 is involved in the processing of multiple substrates including tumor necrosis factor (TNF) α and EGF receptor ligands. Substrates of ADAM17 are selectively processed depending on stimulus and cellular context. However, it still remains largely elusive how substrate selectivity of ADAM17 is regulated. Tetraspanins (Tspan) are multi-membrane-passing proteins that are involved in the organization of plasma membrane micro-domains and diverse biological processes. Closely related members of the Tspan8 subfamily, including CD9, CD81 and Tspan8, are associated with cancer and metastasis. Here, we show that Tspan8 subfamily members use different strategies to regulate ADAM17 substrate selectivity. We demonstrate that in particular Tspan8 associates with both ADAM17 and TNF α and promotes ADAM17-mediated TNF α release through recruitment of ADAM17 into Tspan-enriched micro-domains. Yet, processing of other ADAM17 substrates is not altered by Tspan8. We, therefore, propose that Tspan8 contributes to tumorigenesis through enhanced ADAM17-mediated TNF α release and a resulting increase in tissue inflammation.
Collapse
|
37
|
Quintanova C, Himmerkus N, Svendsen SL, von Schwerdtner O, Merkel C, Pinckert L, Mutig K, Breiderhoff T, Müller D, Günzel D, Bleich M. Unrecognized role of claudin-10b in basolateral membrane infoldings of the thick ascending limb. Ann N Y Acad Sci 2022; 1517:266-278. [PMID: 35996827 DOI: 10.1111/nyas.14882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Claudin-10b is an important component of the tight junction in the thick ascending limb (TAL) of Henle's loop and allows paracellular sodium transport. In immunofluorescence stainings, claudin-10b-positive cells exhibited extensive extra staining of basolateral, column-like structures. The precise localization and function have so far remained elusive. In isolated cortical TAL segments from C57BL/6J mice, kidney-specific claudin-10 knockout mice (cKO), and respective litter mates (WT), we investigated the localization and protein expression and function by fluorescence microscopy and electrophysiological measurements. Ultrastructural analysis of TAL in kidney sections was performed by electron microscopy. Claudin-10b colocalized with the basolateral Na+ -K+ ATPase and the Cl- channel subunit barttin, but the lack of claudin-10b did not influence the localization or abundance of these proteins. However, the accessibility of the basolateral infolded extracellular space to ouabain or fluorescein was increased by basolateral Ca2+ removal and in the absence of claudin-10b. Ultrastructural analysis by electron microscopy revealed a widening of basolateral membrane infoldings in cKO in comparison to WT. We hypothesize that claudin-10b shapes neighboring membrane invaginations by trans interaction to stabilize and facilitate high-flux salt transport in a water-tight epithelium.
Collapse
Affiliation(s)
| | - Nina Himmerkus
- Institute of Physiology, Christian-Albrechts-University, Kiel, Germany
| | - Samuel L Svendsen
- Department of Biomedicine, Physiology, Aarhus University, Aarhus, Denmark
| | | | - Cosima Merkel
- Institute of Physiology, Christian-Albrechts-University, Kiel, Germany
| | - Lennart Pinckert
- Institute of Physiology, Christian-Albrechts-University, Kiel, Germany
| | - Kerim Mutig
- Department of Anatomy, Charité-Universitätsmedizin, Berlin, Germany
| | - Tilman Breiderhoff
- Department of Pediatrics, Division of Gastroenterology, Nephrology, and Metabolic Medicine, Charité-Universitätsmedizin, Berlin, Germany
| | - Dominik Müller
- Department of Pediatrics, Division of Gastroenterology, Nephrology, and Metabolic Medicine, Charité-Universitätsmedizin, Berlin, Germany
| | - Dorothee Günzel
- Clinical Physiology/Nutritional Medicine, Charité-Universitätsmedizin, Berlin, Germany
| | - Markus Bleich
- Institute of Physiology, Christian-Albrechts-University, Kiel, Germany
| |
Collapse
|
38
|
Hendricks EL, Smith IR, Prates B, Barmaleki F, Liebl FLW. The CD63 homologs, Tsp42Ee and Tsp42Eg, restrict endocytosis and promote neurotransmission through differential regulation of synaptic vesicle pools. Front Cell Neurosci 2022; 16:957232. [PMID: 36072568 PMCID: PMC9441712 DOI: 10.3389/fncel.2022.957232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/04/2022] [Indexed: 11/30/2022] Open
Abstract
The Tetraspanin (Tsp), CD63, is a transmembrane component of late endosomes and facilitates vesicular trafficking through endosomal pathways. Despite being widely expressed in the human brain and localized to late endosomes, CD63's role in regulating endo- and exocytic cycling at the synapse has not been investigated. Synaptic vesicle pools are highly dynamic and disruptions in the mobilization and replenishment of these vesicle pools have adverse neuronal effects. We find that the CD63 homologs, Tsp42Ee and Tsp42Eg, are expressed at the Drosophila neuromuscular junction to regulate synaptic vesicle pools through both shared and unique mechanisms. Tsp42Ee and Tsp42Eg negatively regulate endocytosis and positively regulate neurotransmitter release. Both tsp mutants show impaired locomotion, reduced miniature endplate junctional current frequencies, and increased endocytosis. Expression of human CD63 in Drosophila neurons leads to impaired endocytosis suggesting the role of Tsps in endocytosis is conserved. We further show that Tsps influence the synaptic cytoskeleton and membrane composition by regulating Futsch loop formation and synaptic levels of SCAR and PI(4,5)P2. Finally, Tsp42Ee and Tsp42Eg influence the synaptic localization of several vesicle-associated proteins including Synapsin, Synaptotagmin, and Cysteine String Protein. Together, our results present a novel function for Tsps in the regulation of vesicle pools and provide insight into the molecular mechanisms of Tsp-related synaptic dysfunction.
Collapse
Affiliation(s)
| | | | | | | | - Faith L. W. Liebl
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, United States
| |
Collapse
|
39
|
Antonelli G, Parravano M, Barbano L, Costanzo E, Bertelli M, Medori MC, Parisi V, Ziccardi L. Multimodal Study of PRPH2 Gene-Related Retinal Phenotypes. Diagnostics (Basel) 2022; 12:diagnostics12081851. [PMID: 36010202 PMCID: PMC9406607 DOI: 10.3390/diagnostics12081851] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/25/2022] Open
Abstract
PRPH2 gene mutations are frequently found in inherited retinal dystrophies (IRD) and are associated with a wide spectrum of clinical phenotypes. We studied 28 subjects affected by IRD carrying pathogenic PRPH2 mutations, belonging to 11 unrelated families. Functional tests (best-corrected visual acuity measurement, chromatic test, visual field, full-field, 30 Hz flicker, and multifocal electroretinogram), morphological retino-choroidal imaging (optical coherence tomography, optical coherence tomography angiography, and fundus autofluorescence), and clinical data were collected and analyzed. Common primary complaints, with onset in their 40s, were visual acuity reduction and abnormal dark adaptation. Visual acuity ranged from light perception to 20/20 Snellen. Visual field peripheral constriction and central scotoma were found. Chromatic sense was reduced in one third of patients. Electrophysiological tests were abnormal in most of the patients. Choroidal neovascular lesions were detected in five patients. Three novel PRPH2 variants were found in four different families. Based on the present multimodal study, we identified seven distinct PRPH2 phenotypes in 11 unrelated families carrying either different mutations or the same mutation, both within the same family or among them. Fundus autofluorescence modality turned out to be the most adequate imaging method for early recognition of this dystrophy, and the optical coherence tomography angiography was highly informative to promptly detect choroidal neovascularization, even in the presence of the extensive chorioretinal atrophy phenotype.
Collapse
Affiliation(s)
- Giulio Antonelli
- IRCCS—Fondazione Bietti, Via Livenza 3, 00198 Rome, Italy; (G.A.); (L.B.); (E.C.); (V.P.); (L.Z.)
| | - Mariacristina Parravano
- IRCCS—Fondazione Bietti, Via Livenza 3, 00198 Rome, Italy; (G.A.); (L.B.); (E.C.); (V.P.); (L.Z.)
- Correspondence: ; Tel.: +39-067-705-2963
| | - Lucilla Barbano
- IRCCS—Fondazione Bietti, Via Livenza 3, 00198 Rome, Italy; (G.A.); (L.B.); (E.C.); (V.P.); (L.Z.)
| | - Eliana Costanzo
- IRCCS—Fondazione Bietti, Via Livenza 3, 00198 Rome, Italy; (G.A.); (L.B.); (E.C.); (V.P.); (L.Z.)
| | - Matteo Bertelli
- MAGI’S LAB, Via Delle Maioliche 57/D, 38068 Rovereto, Italy; (M.B.); (M.C.M.)
- MAGI EUREGIO, Via Maso Delle Pieve 60/A, 39100 Bolzano, Italy
- MAGISNAT, Atlanta Tech Park, 107 Technology, Parkway, Peachtree Corners, GA 30092, USA
| | - Maria Chiara Medori
- MAGI’S LAB, Via Delle Maioliche 57/D, 38068 Rovereto, Italy; (M.B.); (M.C.M.)
| | - Vincenzo Parisi
- IRCCS—Fondazione Bietti, Via Livenza 3, 00198 Rome, Italy; (G.A.); (L.B.); (E.C.); (V.P.); (L.Z.)
| | - Lucia Ziccardi
- IRCCS—Fondazione Bietti, Via Livenza 3, 00198 Rome, Italy; (G.A.); (L.B.); (E.C.); (V.P.); (L.Z.)
| |
Collapse
|
40
|
Gioelli N, Neilson LJ, Wei N, Villari G, Chen W, Kuhle B, Ehling M, Maione F, Willox S, Brundu S, Avanzato D, Koulouras G, Mazzone M, Giraudo E, Yang XL, Valdembri D, Zanivan S, Serini G. Neuropilin 1 and its inhibitory ligand mini-tryptophanyl-tRNA synthetase inversely regulate VE-cadherin turnover and vascular permeability. Nat Commun 2022; 13:4188. [PMID: 35858913 PMCID: PMC9300702 DOI: 10.1038/s41467-022-31904-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 07/08/2022] [Indexed: 11/09/2022] Open
Abstract
The formation of a functional blood vessel network relies on the ability of endothelial cells (ECs) to dynamically rearrange their adhesive contacts in response to blood flow and guidance cues, such as vascular endothelial growth factor-A (VEGF-A) and class 3 semaphorins (SEMA3s). Neuropilin 1 (NRP1) is essential for blood vessel development, independently of its ligands VEGF-A and SEMA3, through poorly understood mechanisms. Grounding on unbiased proteomic analysis, we report here that NRP1 acts as an endocytic chaperone primarily for adhesion receptors on the surface of unstimulated ECs. NRP1 localizes at adherens junctions (AJs) where, interacting with VE-cadherin, promotes its basal internalization-dependent turnover and favors vascular permeability initiated by histamine in both cultured ECs and mice. We identify a splice variant of tryptophanyl-tRNA synthetase (mini-WARS) as an unconventionally secreted extracellular inhibitory ligand of NRP1 that, by stabilizing it at the AJs, slows down both VE-cadherin turnover and histamine-elicited endothelial leakage. Thus, our work shows a role for NRP1 as a major regulator of AJs plasticity and reveals how mini-WARS acts as a physiological NRP1 inhibitory ligand in the control of VE-cadherin endocytic turnover and vascular permeability.
Collapse
Affiliation(s)
- Noemi Gioelli
- Department of Oncology, University of Torino School of Medicine, Candiolo (TO), Italy
- Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo (TO), Italy
| | | | - Na Wei
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Giulia Villari
- Department of Oncology, University of Torino School of Medicine, Candiolo (TO), Italy
- Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo (TO), Italy
| | - Wenqian Chen
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Bernhard Kuhle
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Manuel Ehling
- Center for Cancer Biology, Department of Oncology, University of Leuven, Leuven, 3000, Belgium
- Center for Cancer Biology, VIB, Leuven, 3000, Belgium
| | - Federica Maione
- Department of Oncology, University of Torino School of Medicine, Candiolo (TO), Italy
- Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo (TO), Italy
| | - Sander Willox
- Center for Cancer Biology, Department of Oncology, University of Leuven, Leuven, 3000, Belgium
- Center for Cancer Biology, VIB, Leuven, 3000, Belgium
| | - Serena Brundu
- Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo (TO), Italy
- Department of Science and Drug Technology, University of Torino, Torino, Italy
| | - Daniele Avanzato
- Department of Oncology, University of Torino School of Medicine, Candiolo (TO), Italy
- Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo (TO), Italy
| | | | - Massimiliano Mazzone
- Center for Cancer Biology, Department of Oncology, University of Leuven, Leuven, 3000, Belgium
- Center for Cancer Biology, VIB, Leuven, 3000, Belgium
- Department of Science and Drug Technology, University of Torino, Torino, Italy
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Enrico Giraudo
- Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo (TO), Italy
- Department of Science and Drug Technology, University of Torino, Torino, Italy
| | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Donatella Valdembri
- Department of Oncology, University of Torino School of Medicine, Candiolo (TO), Italy
- Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo (TO), Italy
| | - Sara Zanivan
- Cancer Research UK Beatson Institute, Glasgow, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| | - Guido Serini
- Department of Oncology, University of Torino School of Medicine, Candiolo (TO), Italy.
- Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo (TO), Italy.
| |
Collapse
|
41
|
Fu C, Wang J, Pallikkuth S, Ding Y, Chen J, Wren JD, Yang Y, Wong KK, Kameyama H, Jayaraman M, Munshi A, Tanaka T, Lidke KA, Zhang XA. EWI2 prevents EGFR from clustering and endocytosis to reduce tumor cell movement and proliferation. Cell Mol Life Sci 2022; 79:389. [PMID: 35773608 PMCID: PMC10428948 DOI: 10.1007/s00018-022-04417-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 12/01/2022]
Abstract
EWI2 is a transmembrane immunoglobulin superfamily (IgSF) protein that physically associates with tetraspanins and integrins. It inhibits cancer cells by influencing the interactions among membrane molecules including the tetraspanins and integrins. The present study revealed that, upon EWI2 silencing or ablation, the elevated movement and proliferation of cancer cells in vitro and increased cancer metastatic potential and malignancy in vivo are associated with (i) increases in clustering, endocytosis, and then activation of EGFR and (ii) enhancement of Erk MAP kinase signaling. These changes in signaling make cancer cells (i) undergo partial epithelial-to-mesenchymal (EMT) for more tumor progression and (ii) proliferate faster for better tumor formation. Inhibition of EGFR or Erk kinase can abrogate the cancer cell phenotypes resulting from EWI2 removal. Thus, to inhibit cancer cells, EWI2 prevents EGFR from clustering and endocytosis to restrain its activation and signaling.
Collapse
Affiliation(s)
- Chenying Fu
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Jie Wang
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | | | - Yingjun Ding
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Junxiong Chen
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | | | - Yuchao Yang
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | | | | | | | - Anupama Munshi
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Takemi Tanaka
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | | | - Xin A Zhang
- University of Oklahoma Health Sciences Center, Oklahoma City, USA.
| |
Collapse
|
42
|
Bahmani L, Ullah M. Different Sourced Extracellular Vesicles and Their Potential Applications in Clinical Treatments. Cells 2022; 11:cells11131989. [PMID: 35805074 PMCID: PMC9265969 DOI: 10.3390/cells11131989] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) include a heterogeneous group of natural cell-derived nanostructures that are increasingly regarded as promising biotherapeutic agents and drug delivery vehicles in human medicine. Desirable intrinsic properties of EVs including the ability to bypass natural membranous barriers and to deliver their unique biomolecular cargo to specific cell populations position them as fiercely competitive alternatives for currently available cell therapies and artificial drug delivery platforms. EVs with distinct characteristics can be released from various cell types into the extracellular environment as a means of transmitting bioactive components and altering the status of the target cell. Despite the existence of a large number of preclinical studies confirming the therapeutic efficacy of different originated EVs for treating several pathological conditions, in this review, we first provide a brief overview of EV biophysical properties with an emphasis on their intrinsic therapeutic benefits over cell-based therapies and synthetic delivery systems. Next, we describe in detail different EVs derived from distinct cell sources, compare their advantages and disadvantages, and recapitulate their therapeutic effects on various human disorders to highlight the progress made in harnessing EVs for clinical applications. Finally, knowledge gaps and concrete hurdles that currently hinder the clinical translation of EV therapies are debated with a futuristic perspective.
Collapse
Affiliation(s)
- Leila Bahmani
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA;
- Molecular Medicine Department of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Mujib Ullah
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA;
- Molecular Medicine Department of Medicine, Stanford University, Palo Alto, CA 94304, USA
- Correspondence:
| |
Collapse
|
43
|
Zuidema A, Atherton P, Kreft M, Hoekman L, Bleijerveld OB, Nagaraj N, Chen N, Fässler R, Sonnenberg A. PEAK1 Y635 phosphorylation regulates cell migration through association with Tensin3 and integrins. J Biophys Biochem Cytol 2022; 221:213273. [PMID: 35687021 PMCID: PMC9194829 DOI: 10.1083/jcb.202108027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 03/22/2022] [Accepted: 05/18/2022] [Indexed: 02/03/2023] Open
Abstract
Integrins mediate cell adhesion by connecting the extracellular matrix to the intracellular cytoskeleton and orchestrate signal transduction in response to chemical and mechanical stimuli by interacting with many cytoplasmic proteins. We used BioID to interrogate the interactomes of β1 and β3 integrins in epithelial cells and identified PEAK1 as an interactor of the RGD-binding integrins α5β1, αVβ3, and αVβ5 in focal adhesions. We demonstrate that the interaction between integrins and PEAK1 occurs indirectly through Tensin3, requiring both the membrane-proximal NPxY motif on the integrin β tail and binding of the SH2 domain of Tensin3 to phosphorylated Tyr-635 on PEAK1. Phosphorylation of Tyr-635 is mediated by Src and regulates cell migration. Additionally, we found that Shc1 localizes in focal adhesions in a PEAK1 phosphorylated Tyr-1188-dependent fashion. Besides binding Shc1, PEAK1 also associates with a protein cluster that mediates late EGFR/Shc1 signaling. We propose a model in which PEAK1 binds Tensin3 and Shc1 to converge integrin and growth factor receptor signal transduction.
Collapse
Affiliation(s)
- Alba Zuidema
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Paul Atherton
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Maaike Kreft
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Liesbeth Hoekman
- Proteomics Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Onno B. Bleijerveld
- Proteomics Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Nagarjuna Nagaraj
- Mass Spectrometry Core Facility at the Max-Planck Institute of Biochemistry, Planegg, Germany
| | - Nanpeng Chen
- Department of Molecular Medicine, Max-Planck Institute of Biochemistry, Planegg, Germany
| | - Reinhard Fässler
- Department of Molecular Medicine, Max-Planck Institute of Biochemistry, Planegg, Germany
| | - Arnoud Sonnenberg
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands,Correspondence to Arnoud Sonnenberg:
| |
Collapse
|
44
|
Transcriptional Analysis of Cotton Bollworm Strains with Different Genetic Mechanisms of Resistance and Their Response to Bacillus thuringiensis Cry1Ac Toxin. Toxins (Basel) 2022; 14:toxins14060366. [PMID: 35737027 PMCID: PMC9228822 DOI: 10.3390/toxins14060366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 01/27/2023] Open
Abstract
Transgenic crops producing Bacillus thuringiensis (Bt) insecticidal proteins are grown widely for pest control, but the evolution of resistance in target pests could reduce their efficacy. Mutations in genes encoding cadherin, ABC transporter or tetraspanin were linked with resistance to Cry1Ac in several lepidopteran insects, including the cotton bollworm (Helicoverpa armigera), a worldwide agricultural pest. However, the detailed molecular mechanisms by which these mutations confer insect resistance to Cry1Ac remain largely unknown. In this study, we analyzed the midgut transcriptomes of a susceptible SCD strain and three SCD-derived Cry1Ac-resistant strains of H. armigera (SCD-r1, with a naturally occurring deletion mutation of cadherin; SCD-KI, with a knock-in T92C point mutation in tetraspanin; and C2/3-KO, with both ABCC2 and ABCC3 knocked out). Evaluation of midgut transcript profiles of the four strains without Cry1Ac exposure identified many constitutively differentially expressed genes (DEGs) in the resistant SCD-r1 (n = 1355), SCD-KI (n = 1254) and C2/3-KO (n = 2055) strains. Analysis of DEGs in the midguts of each strain after Cry1Ac exposure revealed similar patterns of response to Cry1Ac in the SCD and SCD-r1 strains, but unique responses in the SCD-KI and C2/3-KO strains. Expression of midgut epithelium healing and defense-related genes was strongly induced by Cry1Ac intoxication in the SCD and SCD-r1 strains, while immune-related pattern recognition receptor and effector genes were highly expressed in the SCD-KI strain after Cry1Ac exposure. This study advances our knowledge of the transcriptomic basis for insect resistance to Bt toxins and provides a valuable resource for further molecular characterization of insect response to Cry1Ac toxin in H. armigera and other pest species.
Collapse
|
45
|
Morris‐Love J, O'Hara BA, Gee GV, Dugan AS, O'Rourke RS, Armstead BE, Assetta B, Haley SA, Atwood WJ. Biogenesis of JC polyomavirus associated extracellular vesicles. JOURNAL OF EXTRACELLULAR BIOLOGY 2022; 1:e43. [PMID: 36688929 PMCID: PMC9854252 DOI: 10.1002/jex2.43] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/09/2022] [Accepted: 04/13/2022] [Indexed: 01/26/2023]
Abstract
JC polyomavirus (JCPyV) is a small, non-enveloped virus that persists in the kidney in about half the adult population. In severely immune-compromised individuals JCPyV causes the neurodegenerative disease progressive multifocal leukoencephalopathy (PML) in the brain. JCPyV has been shown to infect cells by both direct and indirect mechanisms, the latter involving extracellular vesicle (EV) mediated infection. While direct mechanisms of infection are well studied indirect EV mediated mechanisms are poorly understood. Using a combination of chemical and genetic approaches we show that several overlapping intracellular pathways are responsible for the biogenesis of virus containing EV. Here we show that targeting neutral sphingomyelinase 2 (nSMase2) with the drug cambinol decreased the spread of JCPyV over several viral life cycles. Genetic depletion of nSMase2 by either shRNA or CRISPR/Cas9 reduced EV-mediated infection. Individual knockdown of seven ESCRT-related proteins including HGS, ALIX, TSG101, VPS25, VPS20, CHMP4A, and VPS4A did not significantly reduce JCPyV associated EV (JCPyV(+) EV) infectivity, whereas knockdown of the tetraspanins CD9 and CD81 or trafficking and/or secretory autophagy-related proteins RAB8A, RAB27A, and GRASP65 all significantly reduced the spread of JCPyV and decreased EV-mediated infection. These findings point to a role for exosomes and secretory autophagosomes in the biogenesis of JCPyV associated EVs with specific roles for nSMase2, CD9, CD81, RAB8A, RAB27A, and GRASP65 proteins.
Collapse
Affiliation(s)
- Jenna Morris‐Love
- Graduate Program in PathobiologyBrown UniversityProvidenceRIUSA
- Department of Molecular biologyCellular Biologyand BiochemistryBrown UniversityProvidenceRIUSA
| | - Bethany A. O'Hara
- Department of Molecular biologyCellular Biologyand BiochemistryBrown UniversityProvidenceRIUSA
| | - Gretchen V. Gee
- Department of Molecular biologyCellular Biologyand BiochemistryBrown UniversityProvidenceRIUSA
- MassBiologicsUniversity of Massachusetts Medical SchoolFall RiverMAUSA
| | - Aisling S. Dugan
- Department of BiologyAssumption UniversityWorcesterMAUSA
- Department of Molecular Microbiology and ImmunologyBrown UniversityProvidenceRIUSA
| | - Ryan S. O'Rourke
- Graduate Program in PathobiologyBrown UniversityProvidenceRIUSA
- Department of Molecular biologyCellular Biologyand BiochemistryBrown UniversityProvidenceRIUSA
| | | | - Benedetta Assetta
- Department of Molecular biologyCellular Biologyand BiochemistryBrown UniversityProvidenceRIUSA
| | - Sheila A. Haley
- Department of Molecular biologyCellular Biologyand BiochemistryBrown UniversityProvidenceRIUSA
| | - Walter J. Atwood
- Department of Molecular biologyCellular Biologyand BiochemistryBrown UniversityProvidenceRIUSA
| |
Collapse
|
46
|
Jimbo K, Nakajima-Takagi Y, Ito T, Koide S, Nannya Y, Iwama A, Tojo A, Konuma T. Immunoglobulin superfamily member 8 maintains myeloid leukemia stem cells through inhibition of β-catenin degradation. Leukemia 2022; 36:1550-1562. [PMID: 35418614 DOI: 10.1038/s41375-022-01564-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/09/2022] [Accepted: 03/30/2022] [Indexed: 11/10/2022]
Abstract
The identification of characteristic differences between cancer stem cells and their normal counterparts remains a key challenge for cancer treatment. Here, we investigated the role of immunoglobulin superfamily member 8 (Igsf8, also known as EWI-2, PGRL, and CD316) on normal and malignant hematopoietic stem cells, mainly using the conditional knockout model. Deletion of Igsf8 did not affect steady state hematopoiesis, but it led to a significant improvement of survival in mouse myeloid leukemia models. Deletion of Igsf8 significantly depletes leukemia stem cells (LSCs) through enhanced apoptosis and β-catenin degradation. At a molecular level, we found that activation of β-catenin in LSCs depends on Igsf8, which promotes the association of FZD4 with its co-receptor LRP6 in the presence of Igsf8. Similarly, IGSF8 inhibition blocks the colony-forming ability of LSCs and improves the survival of recipients in xenograft models of myeloid leukemia. Collectively, these data indicate strong genetic evidence identifying Igsf8 as a key regulator of myeloid leukemia and the possibility that targeting IGSF8 may serve as a new therapeutic approach against myeloid leukemia.
Collapse
Affiliation(s)
- Koji Jimbo
- Division of Hematopoietic Disease Control, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Division of Molecular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Division of Stem Cell and Molecular Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yaeko Nakajima-Takagi
- Division of Stem Cell and Molecular Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takahiro Ito
- Laboratory of Cell Fate Dynamics and Therapeutics, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Shuhei Koide
- Division of Stem Cell and Molecular Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yasuhito Nannya
- Division of Hematopoietic Disease Control, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Hematology/Oncology, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Atsushi Iwama
- Division of Stem Cell and Molecular Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Arinobu Tojo
- Division of Molecular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Hematology/Oncology, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takaaki Konuma
- Division of Hematopoietic Disease Control, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan. .,Department of Hematology/Oncology, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
47
|
Yang L, Patel KD, Rathnam C, Thangam R, Hou Y, Kang H, Lee KB. Harnessing the Therapeutic Potential of Extracellular Vesicles for Biomedical Applications Using Multifunctional Magnetic Nanomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104783. [PMID: 35132796 PMCID: PMC9344859 DOI: 10.1002/smll.202104783] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/12/2022] [Indexed: 04/14/2023]
Abstract
Extracellular vesicles (e.g., exosomes) carrying various biomolecules (e.g., proteins, lipids, and nucleic acids) have rapidly emerged as promising platforms for many biomedical applications. Despite their enormous potential, their heterogeneity in surfaces and sizes, the high complexity of cargo biomolecules, and the inefficient uptake by recipient cells remain critical barriers for their theranostic applications. To address these critical issues, multifunctional nanomaterials, such as magnetic nanomaterials, with their tunable physical, chemical, and biological properties, may play crucial roles in next-generation extracellular vesicles (EV)-based disease diagnosis, drug delivery, tissue engineering, and regenerative medicine. As such, one aims to provide cutting-edge knowledge pertaining to magnetic nanomaterials-facilitated isolation, detection, and delivery of extracellular vesicles and their associated biomolecules. By engaging the fields of extracellular vesicles and magnetic nanomaterials, it is envisioned that their properties can be effectively combined for optimal outcomes in biomedical applications.
Collapse
Affiliation(s)
- Letao Yang
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Kapil D. Patel
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Christopher Rathnam
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Ramar Thangam
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yannan Hou
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123 Bevier Road, Pis cataway, NJ 08854, USA
| |
Collapse
|
48
|
Extracellular Vesicles from Human Cerebrospinal Fluid Are Effectively Separated by Sepharose CL-6B—Comparison of Four Gravity-Flow Size Exclusion Chromatography Methods. Biomedicines 2022; 10:biomedicines10040785. [PMID: 35453535 PMCID: PMC9032713 DOI: 10.3390/biomedicines10040785] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
Extracellular vesicles (EVs) are a versatile group of cell-secreted membranous nanoparticles present in body fluids. They have an exceptional diagnostic potential due to their molecular content matching the originating cells and accessibility from body fluids. However, methods for EV isolation are still in development, with size exclusion chromatography (SEC) emerging as a preferred method. Here we compared four types of SEC to isolate EVs from the CSF of patients with severe traumatic brain injury. A pool of nine CSF samples was separated by SEC columns packed with Sepharose CL-6B, Sephacryl S-400 or Superose 6PG and a ready-to-use qEV10/70 nm column. A total of 46 fractions were collected and analysed by slot-blot followed by Ponceau staining. Immunodetection was performed for albumin, EV markers CD9, CD81, and lipoprotein markers ApoE and ApoAI. The size and concentration of nanoparticles in fractions were determined by tunable resistive pulse sensing and EVs were visualised by transmission electron microscopy. We show that all four SEC techniques enabled separation of CSF into nanoparticle- and free protein-enriched fractions. Sepharose CL-6B resulted in a significantly higher number of separated EVs while lipoproteins were eluted together with free proteins. Our data indicate that Sepharose CL-6B is suitable for isolation of EVs from CSF and their separation from lipoproteins.
Collapse
|
49
|
Ong SC, Cheng WH, Ku FM, Tsai CY, Huang PJ, Lee CC, Yeh YM, Rada P, Hrdý I, Narayanasamy RK, Smutná T, Lin R, Luo HW, Chiu CH, Tachezy J, Tang P. Identification of Endosymbiotic Virus in Small Extracellular Vesicles Derived from Trichomonas vaginalis. Genes (Basel) 2022; 13:genes13030531. [PMID: 35328084 PMCID: PMC8951798 DOI: 10.3390/genes13030531] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 02/07/2023] Open
Abstract
Accumulated evidence suggests that the endosymbiotic Trichomonasvirus (TVV) may play a role in the pathogenesis and drug susceptibility of Trichomonas vaginalis. Several reports have shown that extracellular vesicles (EVs) released from TVV-positive (TVV+) trichomonads can modulate the immune response in human vaginal epithelial cells and animal models. These results prompted us to examine whether EVs released from TVV+ isolates contained TVV. We isolated small extracellular vesicles (sEVs) from six T. vaginalis isolates that were either TVV free (ATCC 50143), harbored a single (ATCC 30236, ATCC 30238, T1), two (ATCC PRA-98), or three TVV subspecies (ATCC 50148). The presence of TVV subspecies in the six isolates was observed using reverse transcription-polymerase chain reaction (RT-PCR). Transmission electron microscopy (TEM) confirmed the presence of cup-shaped sEVs with a size range from 30–150 nm. Trichomonas vaginalis tetraspanin (TvTSP1; TVAG_019180), the classical exosome marker, was identified in all the sEV preparations. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis showed that all the sEVs isolated from TVV+ isolates contain viral capsid proteins derived from the same TVV subspecies in that isolate as demonstrated by RT-PCR. To provide more comprehensive information on the TVV subspecies population in other T. vaginalis isolates, we investigated the distribution of TVV subspecies in twenty-four isolates by mining the New-Generation Sequencing (NGS) RNAseq datasets. Our results should be beneficial for future studies investigating the role of TVV on the pathogenicity of T. vaginalis and the possible transmission of virus subspecies among different isolates via sEVs.
Collapse
Affiliation(s)
- Seow-Chin Ong
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (S.-C.O.); (F.-M.K.); (C.-Y.T.); (R.L.); (H.-W.L.)
| | - Wei-Hung Cheng
- Department of Medical Laboratory Science, College of Medical Science and Technology, I-Shou University, Kaohsiung 824, Taiwan;
| | - Fu-Man Ku
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (S.-C.O.); (F.-M.K.); (C.-Y.T.); (R.L.); (H.-W.L.)
| | - Chih-Yu Tsai
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (S.-C.O.); (F.-M.K.); (C.-Y.T.); (R.L.); (H.-W.L.)
| | - Po-Jung Huang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Guishan District, Taoyuan 333, Taiwan;
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan; (C.-C.L.); (Y.-M.Y.)
| | - Chi-Ching Lee
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan; (C.-C.L.); (Y.-M.Y.)
- Department of Computer Science and Information Engineering, College of Engineering, Chang Gung University, Taoyuan 333, Taiwan
| | - Yuan-Ming Yeh
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan; (C.-C.L.); (Y.-M.Y.)
| | - Petr Rada
- Department of Parasitology, Faculty of Science, Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University in Vestec (BIOCEV), Průmyslová 595, 252 42 Vestec, Czech Republic; (P.R.); (I.H.); (R.K.N.); (T.S.)
| | - Ivan Hrdý
- Department of Parasitology, Faculty of Science, Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University in Vestec (BIOCEV), Průmyslová 595, 252 42 Vestec, Czech Republic; (P.R.); (I.H.); (R.K.N.); (T.S.)
| | - Ravi Kumar Narayanasamy
- Department of Parasitology, Faculty of Science, Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University in Vestec (BIOCEV), Průmyslová 595, 252 42 Vestec, Czech Republic; (P.R.); (I.H.); (R.K.N.); (T.S.)
| | - Tamara Smutná
- Department of Parasitology, Faculty of Science, Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University in Vestec (BIOCEV), Průmyslová 595, 252 42 Vestec, Czech Republic; (P.R.); (I.H.); (R.K.N.); (T.S.)
| | - Rose Lin
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (S.-C.O.); (F.-M.K.); (C.-Y.T.); (R.L.); (H.-W.L.)
| | - Hong-Wei Luo
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (S.-C.O.); (F.-M.K.); (C.-Y.T.); (R.L.); (H.-W.L.)
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan;
| | - Jan Tachezy
- Department of Parasitology, Faculty of Science, Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University in Vestec (BIOCEV), Průmyslová 595, 252 42 Vestec, Czech Republic; (P.R.); (I.H.); (R.K.N.); (T.S.)
- Correspondence: (J.T.); (P.T.)
| | - Petrus Tang
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (S.-C.O.); (F.-M.K.); (C.-Y.T.); (R.L.); (H.-W.L.)
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan;
- Correspondence: (J.T.); (P.T.)
| |
Collapse
|
50
|
Reppert N, Lang T. A conserved sequence in the small intracellular loop of tetraspanins forms an M-shaped inter-helix turn. Sci Rep 2022; 12:4494. [PMID: 35296690 PMCID: PMC8927573 DOI: 10.1038/s41598-022-07243-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/15/2022] [Indexed: 11/30/2022] Open
Abstract
Tetraspanins are a family of small proteins with four transmembrane segments (TMSs) playing multiple roles in human physiology. Nevertheless, we know little about the factors determining their structure. In the study at hand, we focus on the small intracellular loop (SIL) between TMS2 and TMS3. There we have identified a conserved five amino acid core region with three charged residues forming an M-shaped backbone, which we call M-motif. The M´s plane runs parallel to the membrane surface and the central amino acid constitutes the inter-helix turning point. At the second position of the M-motif, in tetraspanin crystal structures we identified a glutamate oriented towards a lysine in the juxtamembrane region of TMS1. Using Tspan17 as example, we find that by mutating either the glutamate or juxtamembrane-lysine, but not upon glutamate/lysine swapping, expression level, maturation and ER-exit are reduced. We conclude that the SIL is more than a short linking segment but propose it is involved in shaping the tertiary structure of tetraspanins.
Collapse
Affiliation(s)
- Nikolas Reppert
- Department of Membrane Biochemistry, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115, Bonn, Germany.
| | - Thorsten Lang
- Department of Membrane Biochemistry, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115, Bonn, Germany.
| |
Collapse
|